Content

Drivermanual English **MELSEC A Profibus DP**

Foreword5
1 Introduction
2 Install and update driver7
2.1 Installation of driver using Internet7
2.2 Installation of driver from disk7
3 Connecting the terminal to the PLC system
3.1 Settings in the MAC Programmer+
3.2 Connecting the terminal to the Profibus DP network 11
3.3 Communication settings for the IFC PBDP card
3.4 Cable to PROFIBUS-DP 11
3.5 Technical data12
3.6 Description of the PLC program section
4 Addressing 15
5 The MMI profile16
5.1 The data exchange
5.2 The request and response containers
5.3 The index structure
6 Efficient communication
6.1 Signals affecting the communication time
6.2 How to make the communication more efficient

Innehåll

Drivermanual Svensk MELSEC A Profibus DP

Förord	5
1 Introduktion	6
2 Installation och uppdatering av drivrutin	7
2.1 Installation av drivrutin med Internet	7
2.2 Installation av drivrutin från disk27	7
3 Anslutning av terminalen till PLC-systemet	3
3.1 Inställningar i MAC Programmer+ 28	8
3.2 Koppla in terminalen till Profibus DP nätverket	1
3.3 Kommunikationsinställningar för IFC PBDP kortet 31	1
3.4 Kabel till PROFIBUS DP 31	1
3.5 Tekniska data	2
3.6 MELSEC MEDOC projekt 34	4
4 Adressering	5
5 MMI-profilen	5
5.1 Datautbyte	6
5.2 Areorna för begäran och svar	7
5.3 Strukturen på index 40	D
6 Effektiv kommunikation	2
6.1 Signaler som påverkar kommunikationstiden	2
6.2 Hur man kan göra kommunikationen effektivare 43	3

Foreword

This manual presents installation and handling of the driver MELSEC A Profibus DP to the terminals in the E-series.

The functionality in the E-terminals and in MAC Programmer+ are described in the E-manual.

© G&L Beijer Electronics AB 1999, MA-00369

G&L Beijer Electronics AB reserves the right to change information in this manual without prior notice. All examples in this manual are used solely to promote understanding of how the program works and its operation. G&L Beijer Electronics AB take no responsibility if these examples are used in real applications.

1 Introduction

This manual describes how the MELSEC A PLC system is connected to the terminals in the E-series via the fieldbus Profibus DP. Addressing of an item in the PLC system is done in the normal MELSEC way. For information about the PLC system we refer to the manual for the current system.

The terminals support the systems in the MELSEC A-series .

The expansion card IFC PBDP must be installed in the terminal. See the IFC PBDP manual.

2 Install and update driver

When installing MAC Programmer+ the drivers available at the time of release are installed too. A new driver can be added into MAC Programmer+ either with MAC Programmer+ using an Internet connection or from diskette. A driver can be updated to a newer version in the same ways.

2.1 Installation of driver using Internet

To update available drivers to the latest version or to install new drivers you can use the function Update terminal drivers, from Internet in the File menu in MAC Programmer+. All projects must be closed before this function is used and the computer must be able to make an Internet connection. You don't need a browser. When the connection is established a list is shown with all drivers that can be downloaded from Internet to the computer. The list shows the version number of available drivers and the version number of installed drivers. Mark the driver/drivers you want to install in the MAC Programmer+. The function Mark Newer will mark all drivers that are available in a newer version then the one installed and the drivers not installed. Then you select Download. Each drivers is approximately 500 kb and it is ready to use when the download is ready.

2.2 Installation of driver from disk

To update available drivers to the latest version or to install new drivers you can use the function Update terminal drivers, from Disk in the File menu in MAC Programmer+. All projects must be closed before this function is used. Select the folder with the new driver and choose to open the mpd-file. A list is shown with all drivers that can be installed showing the version number of available drivers and the version number of installed drivers. Mark the driver/drivers you want to install in the MAC Programmer+. The function Mark Newer will mark all drivers that are available in a newer version then the one installed and the drivers not installed. Then you select Install.

How to select the MELSEC A ProfibusDP driver in the project and how to transfer it to the terminal are described in *chapter 3*.

3 Connecting the terminal to the PLC system

3.1 Settings in the MAC Programmer+

For communication with MELSEC A PLC system via the fieldbus Profibus DP the following settings must be made in the programming tool MAC Programmer+.

Driver selection

Choosing New in the File menu creates a new project and the dialog Project Settings is shown. In an existing project, the dialog is shown by selecting Project Settings in the File menu.

<u> </u>	
Project Settings *	×
Terminal	
E700 4.0x	C <u>h</u> ange
Controller system	
A Series	Ch <u>a</u> nge
Color scheme	
[Current default]	<u>C</u> hange

Press **Change...** under Controller system to get the choice list of available drivers. Choose Brand name, Protocol and Model and then press OK. Press OK again to confirm the project settings.

Select controller system		×
Brand name Allen-Bradley COMLI DEMO GE Fanuc MELSERVO MODICON OMRON SIMATIC	Protocol Q C24 Protocol A CPU Protocol A Profibus DP A C24 Protocol FX CPU Protocol Q CPU Protocol	Model A Series A1N A2N A2N-S1 A3N A1S A1S A1S A1S A2S A2S-S1 A2A A2A-S1 A2A A2A-S1 A3A A2A-S1 A3A A2A-S1 A3A A2A-S1 A3A A2AS A2AS A2AS A2AS A2AS A2AS A2AS
	OK Cancel	

Communication setup

The settings for the communication between the terminal and the PLC system are done under **Peripherals** in the **Setup** menu. Mark either slot 1 or slot 2 depending on which slot the expansion card IFC BBDP is installed in, and press **Edit.** Select IFC PBDP and press **OK.**

Mark IFC PBDP and press **Edit** to state the settings for the MMI profile. State the size of the input and output area in bytes. Default settings is 32 bytes.

Transfer the driver to the terminal

The selected driver is down-loaded into the terminal when the project is transferred to the terminal. Choose Project in the Transfer menu.

Project Transfer			
Percent complete:	0%		I
			Sena
Byte count (Kb):	0		<u>R</u> eceive
Time elapsed:			⊻erify
Status:			Stop
Info:			
Retries:	0		
Terminal Version:			Se <u>t</u> tings
🔽 Test project on se	nd 🔽 Automatic term	ninal RUN/PROC	i switching
Send complete pr	niect 🔽 Check termina	lversion	
- Partial send options	;	Delete —	
Blocks		🔽 Trend o	lata
O None		🗖 Recipe	Data
	та: П	Download	driver
		C Never	antici
🔽 Alarms	🗹 Message library	C Always	
🗹 Symbols	🗹 Setup	 Automa 	tic
Time channels	Function keys		
IED's	Passwords	□ <u>S</u> et termi	nal clock
	Exit		

There are three alternatives when the driver is downloaded into the terminal.

Function	Description
Never	The driver is not down-loaded and the existing driver in the termi- nal is used.
Always	The driver is down-loaded every time the project is transferred.
Automatic	The driver is down-loaded if the driver in the terminal is not the same as the selected driver in the project. If it is the same the driver is not down-loaded.

3.2 Connecting the terminal to the Profibus DP network

With the expansion card IFC PBDP the terminal can then be connected to a Profibus DP network as a slave. The PLC system in the network most be loaded with a program handling the communication between the terminal and the PLC system.

3.3 Communication settings for the IFC PBDP card

- 1. Connector for the communication cable.
- 2. Bus termination. Set to ON on the first and last units in the network. The first unit in the network often is the master unit in the PLC system.
- 3. 1: Red, ERR, Configuration or communication error. The LED is red until the unit is configured, Indicates time out.
 - 2: Green, PWR, Power supply 5 VDC OK.
 - 3: Green, DIA, Diagnostic error, not used.
- 4. State the station number.

3.4 Cable to PROFIBUS-DP

3.5 Technical data

I/O area size	32-200 byte
Baudrate	9600 bit/s - 12 MBit/s
Identity code	1002
Max. number of nodes without repeater	32
Max. number of nodes with repeater	96
Max. cable length (with repeater)	3000m, 9.6 kb
Max. cable length (without repeater)	200m, 12 Mb

The cable Unitronic-Bus L2/F.I.P is tested and has the following performance:

Capacitance	30 nF/km
Impedance	150 Ohm (3-20 MHz)
Resistance	115 Ohm/km

Example

In this example we use MELSEC A PLC system and the PLC program on the type diskette. The example describes in which order you make the settings and connections to get the correct communication.

- 1. Install the terminal according to the Installation manual delivered with the terminal.
- 2. Configure the terminal with the software package MAC Programmer+. The settings for the IFC PBDP card is made in the **Setup** menu under **Peripherals**.
- 3. Start the PROFIBUS configuration software.
- 4. Configure the master, baudrate, station number, number of bytes in the transfer container etc. For more information, refer to the software manual. Type files for the terminal are available on the IFC PBDP diskette.
- 5. Create binary file. See the software manual.
- 6. Start the SWOIX-DPLD software. Load the binary file to the PROFIBUS DP module. See the software manual.
- 7. Load the enclosed PLC program to the PLC system.
- 8. Connect the cable between the PLC system and the IFC PBDP card in he terminal.
- 9. Put the PLC system and the terminal in RUN mode.

3.6 MELSEC MEDOC project

The project is named PROFILE. The following assumptions are made:

- The AJ71PB92 module is placed in slot 0 of the PLC.
- The AJ71PB92 module communicates with an IFC PBDP with stationnumber 3.

The following devices can be accessed from the terminal: Digital: X, Y, M, B Analog: D, R, W, T, C

Not supported devices are: Special D, special M, digital T, digital C and digital F.

To change this, simply adjust the PLC program.

The following devices are used by the program: D100-134, D138-171, D175-D178, D180-211, D220-235, M100-126, M130-M131, M200, Z and V.

4 Addressing

The terminal can manale the following data types in milliono 74,
--

Data types MELSEC	Data types IEC	Description
X	%IX	Input
Y	%QX	Output
м	%MX	Memory cell
В	%MX	Link memory cell (MELSEC NET)
D	%MW	Data register
w	%MW	Link register (MELSEC NET)
R	%MW	File register
т	%MW	Timer, current value
C	%MW	Counter, current value

Note!

The MMI profile uses a number of memory cells and data registers for internal handling. These can not be used for other purposes in the PLC program.

Digital signals

Data type MELSEC	Data type IEC
X n	% IX b
Yn	% QX b
M n	% MXO .b
Bn	% MX1 .b

n=adress, b=bitnummer.

Analog signals

Datatyp MELSEC	Datatyp IEC
Dn	% MWO .n
Wn	% MW1 .n
R n	% MW2 .n
Tn	% MW3 .n
Cn	% MW4 .n

n=address

Refer to the respective manual for more information about addressing to Mitsubishi Electric PLC-system MELSEC A.

Drivermanual MELSEC A Profibus DP

5 The MMI profile

This chapter describes setup of the MMI profile, and is for the benefit of readers who want to learn more about data exchange via the MMI profile.

The MMI profile allows exchange of an unlimited amount of data, and also allows the terminal to access all type of devices in the PLC system.

Together with the card a type diskette is supplied containing PLC program for communication with different PLC system.

PROFIBUS-DP allows a maximum byte length of 200 bytes in and 200 out per station. The MMI profile uses an input area and an output area. These areas are hereafter referred to as containers. The MMI uses the container to access the PLC.

For more detailed information on the MMI profile see the specifications from the Profibus Organisation.

PROFIBUS DP

5.1 The data exchange

- The terminal is a slave in the PROFIBUS-DP net.
- The PLC system is the master.
- The terminal requests data from the PLC system through the input container.
- The PLC program serves the terminal with data through the output container.
- Handshaking between the terminal and the PLC system is performed through a Control byte in the containers.
- The terminal can access all types of PLC devices.
- When the terminal toggles the control byte, the PLC knows that the terminal wants to exchange data.

5.2 The request and response containers

The container starts at address 0 with the control byte. The control byte is used for handshaking and for communication failure detection. Addresses 1-3 are reserved for Fast bytes. These are not used in the terminal.

Addresses 4 to 200 are used for communication. The terminal put indexes here (3 byte each) that refer to the PLC devices that the terminal wants to read or write. The PLC system, on the other hand, will put the data here from the PLC devices that the terminal has asked for. If the terminal wants to write to a PLC device, the data is stored immediately after the index.

	Request container		Response container
00	Control byte	00	Control byte
01	Not used	01	Not used
02	Not used	02	Not used
03	Not used	03	Not used
04	Index 1 Read	04	Data for index 1
05		05	
06		06	Data for index 2-
07	Index 2 Read	07	
08		08	
09		09	
10	Index 3 Write	10	
11		11	
12		12	
13	Data byte for index 3	13	Free
14	Data byte for index 3	14	Free
200		200	Free

The control byte in the request container

The request container contains a message from the terminal to the PLC system.

7	6	5	4	3	2	1	0
Request	COM	Toggle	Error	Acknowle	dge bits, r	ot used	

Request

The request byte is used for handshaking between the units. The bit toggles when the terminal wants information for the PLC system.

СОМ

The COM bit is set by the terminal. If communication breaks the bit will be reset.

Toggle

The toggle bit is always set to the opposite value as the toggle bit in the request container.

Error

This bit is not used.

Acknowledge

These bits are not used.

The control byte in the response container

The response container contains the response from the PLC system to the MMI terminal.

7	6	5	4	3	2	1	0
Response	COM	Toggle	Error	Acknowle	dge bits, n	ot used	

Response

Is set to the same value as request when data is ready for transfer to the MMI terminal.

СОМ

The OM bit is set by the PLC program. If communication breaks the bit will be reset.

Toggle

The toggle bit is always set to the same value as the toggle bit in the request container.

Error

This bit is not used.

Action

These bits are not used.

5.3 The index structure

The index is built up of 3 bytes. The index contains 4 parts of information:

- If the device should be read or written.
- Which type of device (input, data register, timer etc.)
- Number of device (e.g. input 5).
- Data length (from one bit up to 16 bytes).

7	6	5	4	3	2	1	0
Write	Ln2	Ln1	Ln0		PLC dev	ice type	
	Index number bit 15-8						
Index number bit 7-0							

PLC device type

States the type of PLC device according to the following table.

Number	Data type MELSEC	Data type IEC
1	М	%MX0.
2	Х	%IX
3	Y	%QX
4	В	%MX1.
8	D	%MW0.
9	R	%MW2.
10	Т	%MW3.
11	С	%MW4.
12	W	%MW1.

Ln0-Ln2

States the data length according to the following table.

Ln2	Ln1	Ln0	Length
0	0	0	bit
0	0	1	1 byte
0	1	0	2 bytes
0	1	1	4 bytes
1	0	0	6 bytes
1	0	1	8 bytes
1	1	0	12 bytes
1	1	1	16 bytes

Sequence of events

- The terminal decides which variables are to be read/written.
- The terminal toggles the request flag in the control byte.
- In the next PROFIBUS cycle, the PLC notices that the request flag has been changed.
- For each read index, the values of the requested devices are copied to the response container.
- Then the response flag in the response container is set to the same value as the request flag in the request container.
- In the next PROFIBUS cycle, the terminal notices that the request flag and the response flag are the same which means that there is data for the terminal.
- The received values will now be used by the objects in the terminal.

6 Efficient communication

To make the communication between the terminal and the PLC system quick and efficient the following should be noted about how the signals are read and what that can be done to optimize the reading.

6.1 Signals affecting the communication time

It is only signals to objects in the current block that are read continuously. Signals to objects in other blocks are not read, that is the number of blocks does not affect the communication time.

Besides the signals to objects in the current block, the terminal is continuously reading the following signals from the PLC:

Display signals Block print-out signals LED registers Alarm signals Remote acknowledge signals on alarms and alarm groups Login signal Logout signal Trend registers at the sample points Bargraph registers if using min/max indicators New display register **Buzzer** register **Backlight signal** Cursor control block **Recipe control block** Library index register **Index registers** PLC clock register if the PLC clock is used in the terminal List erase signal No protocol control register No protocol on signal

Signals not affecting the communication time

The following signals do not affect the communication time:

- Signals linked to function keys
- Time channels
- Objects in the alarm messages

6.2 How to make the communication more efficient

Group PLC signals consecutively

The signals from the PLC system are read most rapidly if all signals in the list above are consecutive. If for example, 100 signals are defined, it is quickest to read these if they are linked to, for example, M0.0-M11.7. If the signals are spread out (e.g. I0.4, Q30.0, T45.3 etc.) the updating is slower.

Efficient block changes

Block changes are carried out most rapidly and efficiently through the block jump function on the function keys or through a jump object. "Display signals" in the block header should only be used when the PLC system is to force the presentation of another block. The "New Display" register can also be used if the PLC system is to change the block. This does not affect communication as much as a larger number of "Display signals".

Use the clock of the terminal

An extra load is put on communication if the clock of the PLC system is used since the clock register must be read up to the terminal. Downloading of the clock to the PLC system also creates an extra load. The interval between downloadings should therefore be as long as possible.

Packaging of signals

When the signals are transferred between the terminal and the PLC system, all signals are not transferred simultaneously. Instead they are divided into packages with a number of signals in each package. To decrease the number of packages that have to be transferred and make the communication faster this number has to be considered. The number of signals in each package depends on the used driver. In the MELSEC A Profibus DP driver the number is 8 for analog devices and 128 for digital devices.

Drivermanual MELSEC A Profibus DP

To make the communication as fast as possible the number of packages has to be minimized. Consecutive signals require a minimum of used packages but it is not always possible to have consecutive signals. In such cases the so-called waste between two signals has to be considered. The waste is the maximum distance between two signals you can have and still keep them in the same package. The waste depends on the used driver. In the MELSEC A Profibus DP driver the number is 2 for analog devices and 24 for digital devices.

Signal	1	2	3	4	5	6	7	8	9	10
Used	X	X					X	X	Χ	
Waste										

Förord

Denna manual är en installations- och hanteringsmanual till drivrutinen MELSEC A Profibus DP till operatörsterminalerna i E-serien. Funktionaliteten i terminalerna och i MAC Programmer+ är beskriven i E-seriemanualen.

[©] G&L Beijer Electronics AB 1999

G&L Beijer Electronics AB reserverar sig mot att informationen i denna manual kan komma att ändra sig utan föregående varning. Alla exempel i denna i denna manual används endast för att öka förståelsen om hur programmen arbetar. G&L Beijer Electronics AB tar inget ansvar för att dessa fungerar i verkliga applikationer.

1 Introduktion

Manualen beskriver hur MELSEC A PLC-system ansluts till operatörsterminalerna i E-serien via fältbusen Profibus DP. Adressering i PLC-systemet göres på normalt MELSEC sätt. För information om PLC-systemet refereras till manualen för aktuellt system.

Terminalen stöder PLC-systemen i MELSEC A serien.

Expansionskortet IFC PBDP måste installeras i terminalen.

Se manualen för IFC PBDP.

2 Installation och uppdatering av drivrutin

Tillgängliga drivrutiner installeras samtidigt som MAC Programmer+ installeras. En ny drivrutin kan läggas till i MAC Programmer+ antingen med hjälp av MAC Programmer+ och en Internet anslutning eller från diskett. En drivrutin kan bli uppdaterad till nyare version på samma sätt.

2.1 Installation av drivrutin med Internet

För att uppdatera tillgängliga drivrutiner till senaste version eller för att installera nya drivrutiner används funktionen Update terminal drivers, från Internet i menyn File i MAC Programmer+. Alla projekt måste stängas innan funktionen används och datorn måste kunna göra en Internet anslutning. Någon browser behövs inte. När anslutningen är etablerad visas en lista med alla drivrutiner som kan laddas ner via Internet till datorn. I listan visas versionsnummer på tillgängliga drivrutiner och versionsnumret på installerade drivrutiner i MAC Programmer+. Markera de drivrutiner som ska installeras i MAC Programmer+. Funktionen Mark Newer markerar alla drivrutiner som finns tillgängliga i en senare version och de som inte är installerade. Välj därefter Download. Varje drivrutin är ungefär 500 kb stor och de är färdiga att använda när nedladdningen är klar.

2.2 Installation av drivrutin från disk

För att uppdatera tillgängliga drivrutiner till senaste version eller för att installera nya drivrutiner används funktionen Update terminal drivers, from Disk i menyn File i MAC Programmer+. Alla projekt måste stängas innan funktionen används. Välj den katalog som innehåller den nya drivrutinen och välj att öppna mpd-filen. En lista visas med alla drivrutiner som kan installeras. I listan visas versionsnummer på tillgängliga drivrutiner och versionsnumret på installerade drivrutiner i MAC Programmer+. Markera de drivrutiner som ska installeras i MAC Programmer+. Funktionen Mark Newer markerar alla drivrutiner som finns tillgängliga i en senare version och de som inte är installerade. Välj därefter Install.

Hur man väljer MELSEC A Profibus DP drivrutinen i projektet och hur man överför den till terminalen beskrivs i *kapitel 3*.

3 Anslutning av terminalen till PLCsystemet

3.1 Inställningar i MAC Programmer+

För komunikation med MELSEC A PLC-systemet via fältbussen Profibus DP måste följande inställningar göras i programmeringsverktyget MAC Programmer+.

Val av drivrutin

Välj New i File menyn. Då skapas ett nytt projekt och dialogen Project Settings visas. I ett befintligt projekt, visas dialogen genom att man väljer Project Settings i File menyn.

Project Settings *	×
E700 4.0x	C <u>h</u> ange
Controller system	Change
Color scheme [Current default]	<u>C</u> hange
ОК	Cancel

Tryck på **Change...** under Controller system och välj i listan över tillgängliga drivrutiner. Välj fabrikat, protokoll och modell och tryck på OK. Tryck på OK igen och bekräfta projektinställningarna.

Select controller system			×
Brand name Allen-Bradley COMLI DEMO GE Fanuc MELSERVO MODICON OMRON SIMATIC	Protocol Q C24 Protocol A CPU Protocol A C24 Protocol FX CPU Protocol Q CPU Protocol Q CPU Protocol	Model A Series A1N A2N A2N-S1 A3N A1S-S1 A2S A2S-S1 A3A A2A A2A A2A A2A A2A A2AS-S1 A3A A2AS-S1	▲ _ _
	ОК	Cancel	

Kommunikationsinställning

Inställningarna för kommunikationen mellan terminalen och PLC systemet utföres under **Peripherals** i **Setup** menyn. Markera antingen slot 1 eller slot 2 beroende på i vilken slot expansionkortet IFC PBDP är installerat i och tryck **Edit** och tryck **OK**.

Markera IFC PBDP och tryck Edit för att defeniera inställningar för MMI profilen. Ange storleken på ingångs- och utgångsarean i antal bytes. Grundinställningen är 32 bytes.

Överföra drivrutinen till terminalen

Drivrutinen laddas ner till terminalen när hela projektet överförs till terminalen. Välj **Project** i **Transfer** menyn.

Project Transfer			
Percent complete:	0%		
			Send
Byte count (Kb):	0		<u>R</u> eceive
Time elapsed:			⊻erify
Status:			Stop
Info:			
Retries:	0		
Terminal Version:			Se <u>t</u> tings
🔽 Test project on se	nd 🔽 Automatic terr	ninal RUN/PRO	G switching
Send complete pr Partial send options Blocks C None C Ali C From: C Ali K Alarms Symbols	Dject 🔽 Check termine	Delete Trend C Trend Downloau C Never C Alway: C Autom	data e Data d driver
Time channels	 Function keys Passwords 	<mark>⊏</mark> <u>S</u> et term	inal clock

Det finns tre olika alternativ när drivrutinen laddas ner till i terminalen.

Funktion	Beskrivning			
Never	Drivrutinen laddas aldrig, befintlig drivrutin i terminalen används.			
Always	Drivrutinen laddas varje gång projektet överföres.			
Automatic	Drivrutinen laddas om drivrutinen i terminalen inte är samma som i projektet. Om samma drivrutin finns laddas den inte.			

3.2 Koppla in terminalen till Profibus DP nätverket

Med expansionskortet IFC PBDP kan terminalen anslutas som en slavnod i ett Profibus DP nätverk. PLC systemet måste innhålla ett program som sköter kommunikationen mellan terminalen och PLC systemet

3.3 Kommunikationsinställningar för IFC PBDP kortet

- 1. Kontakt för anslutning av kommunikationskabel.
- 2. Bussterminering. Sätts i läge ON på den första och sista enheten i nätverket. Den första enheten i nätverket är oftast masterenheten i PLC-systemet.
- 1: Röd, ERR, Konfigurerings- eller kommunikationsfel. Lysdioden är röd tills enheten är konfigurerad. Indikerar time out.
 2: Grön, PWR, Spänningsmatning, 5 VDC OK.
 3: Grön, DIA, Diagnostikfel. Används inte.
- 4. Anger stationsnummer.

3.4 Kabel till PROFIBUS DP

3.5 Tekniska data

I/O area storlek	32-200 byte
Överföringshastighet	9600 bit/s - 12 MBit/s
Identitetskod	1002
Max. antal noder utan repeater	32
Max. antal noder med repeater	96
Max. kabellängd (med repeater)	3000m, 9.6 kb
Max. kabellängd (utan repeater)	200m, 12 Mb

Kabeln Unitronic-Bus L2/F.I.P är testad och har följande prestanda:

Kapacitans	30 nF/km
Impedans	150 Ohm (3-20 MHz)
Resistans	115 Ohm/km

Exempel

I detta exemplet använder vi ett MELSEC A PLC-system och PLC-programmet finns på typdisketten. Exemplet beskriver i vilken ordning du gör inställningarna och anslutningarna för att få rätt kommunikation.

- 1. Installera terminalen enligt Installationsmanualen som levereras med terminalen.
- 2. Konfigurera terminalen via programpaketet MAC Programmer+.
- 3. Starta konfigureringsprogramvara.
- 4. Konfigurera mastern, överföringshastighet, stationsnummer, antal bytes i överföringsarean etc. För mer information hänvisas till manualen för programvaran. Typfiler för terminalen finns på IFC PBDP disketten
- 5. Skapa en binärfil. Se programvarans manual.
- 6. Starta programmet SWOIX-DPLD. Skicka ner binärfilen till PROFIBUS DP modulen. Se programvarans manual.
- 7. Skicka ner medföljande PLC-programdel.
- 8. Anslut kabeln mellan PLC- systemet och IFC PBDP kortet i terminalen.
- 9. Sätt PLC-systemet och MMI-terminalen i driftläge.

3.6 MELSEC MEDOC projekt

Projektet kallas PROFILE. Vi antar följande:

- AJ71PB92 modulen är placerad på kortplats 0 i PLC-systemet.
- AJ71PB92 modulen kommunicerar med IFC PBDP med stationsnummer 3.

Följande datatyper kan accessas från terminalen:

Digital: X, Y, M, B Analog: D, R, W, T, C

Följande datatyper supportas inte: Special D, special M, digital T, digital C och digital F.

För att ändra detta behöver endast PLC-programmet justeras.

Följande datatyper används av programmet.

D100-134, D138-171, D175-D178, D180-211, D220-235, M100-126, M130-M131, M200, Z and V.

4 Adressering

Datatyper MELSEC	Datatyper IEC	Betydelse
x	%IX	Ingång
Y	% QX	Utgång
м	% MX	Minnescell
В	% MX	Länkminnescell (MELSEC NET)
D	% MW	Dataregister
w	% MW	Länkregister (MELSEC NET)
R	% MW	Filregister
т	% MW	Tidkrets, aktuellt värde
C	% MW	Räknare, aktuellt värde

Terminalen kan hantera följande datatyper i MELSEC A.

Observera!

MMI-profilen använder ett antal minnesceller och dataregister för intern hantering. Dessa kan inte användas till någonting annat i PLC-programmet.

Digitala signaler

Datatyp MELSEC	Datatyp IEC
Xn	%IXb
Yn	%QXb
Mn	% MX0. b
Bn	%MX1. b

n=adress, b=bitnummer.

Analoga signaler

Datatyp MELSEC	Datatyp IEC
Dn	%MW0.n
Wn	%MW1.n
Rn	%MW2.n
Tn	%MW3.n
Cn	%MW4.n

n=adress

För mer information om adressering till Mitsubishi Electric PLC-system MELSEC A hänvisas till respektive manual.

5 MMI-profilen

Detta kapitlet beskriver hur MMI-profilen är uppbyggd och är riktad till de användare som vill veta lite mer om datautbyte via MMI-profilen.

MMI-profilen tillåter utbyte av obegränsat antal data. Dessutom tillåter den terminalen att utbyta alla datatyper i PLC-systemet.

Tillsammans med kortet levereras en typdiskett som innehåller PLC-programdelar för kommunikation med olika PLC-system.

PROFIBUS-DP tillåter max byte längd på 200 bytes in och 200 bytes ut per station. MMI-profilen använder en area för begäran och en area för svar. Areorna används för att accessa PLC-systemet.

För mer information om MMI-profilen hänvisas till specifikationer från the Profibus Organisation.

5.1 Datautbyte

- MMI-terminalen är alltid slav i ett PROFIBUS DP nät.
- PLC-systemet är master.
- MMI-terminalen begär data från PLC-systemet via arean för begäran.
- PLC-program förser MMI-terminalen med data via arean för svar.
- Handskakning mellan MMI-terminalen och PLC-systemet sköts via en kontrollbyte i respektive area.
- MMI-terminalen kan accessa alla datatyper.

När MMI-terminalen växlar status på kontrollbyten vet PLC-systemet att MMI-terminalen vill utbyta data.

5.2 Areorna för begäran och svar

MMI-profilen är uppbyggd av areor mellan vilka datautbytet sker.

Areorna startar på adress 0 med en kontrollbyte. Kontrollbyten används för handskakning och för detektering av kommunikationsfel. Adresserna 1-3 är reserverade för Snabba bytes. Dessa används inte i terminalen.

Adresserna 4 till 200 används för kommunikation. Här sätter MMI-terminalen index (3 byte/index) i arean för begäran, som refererar till de PLCadresser som MMI-terminalen vill läsa eller skriva till. PLC-systemet lägger den data MMI-terminalen önskar från PLC-systemet i motsvarande index i arean för svar. Om MMI-terminalen vill skriva till en PLC-adress lagras data direkt efter index i arean för svar.

	Area för begäran		Area för svar
00	Kontrollbyte	00	Kontrollbyte
01	Används inte	01	Används inte
02	Används inte	02	Används inte
03	Används inte	03	Används inte
04	Index 1 Läs	04	Data för index 1
05		05	
06		06	Data för index 2
07	Index 2 Läs	07	
08		08	
09		09	
10	Index 3 Skriv	10	
11		11	
12		12	
13	Databyte för index 3	13	Ledig
14	Databyte för index 3	14	Ledig
200		200	Ledig

Kontrollbyten i arean för begäran

Arean för begäran innehåller meddelande från MMI-terminalen till PLC-systemet.

7	6	5	4	3	2	1	0
Request	COM	Toggle	Error	Acknowledge bits, not used			

Request

Request-biten används för handskakning mellan enheterna. Biten växlar status när MMI-terminalen vill ha information från PLC-systemet.

СОМ

COM-biten sätts av MMI-terminalen. Bryts kommunikationen nollställs COM-biten.

Toggle

Toggle-biten har alltid motsatt status som toggle-biten i arean för begäran.

Error

Denna bit används inte.

Acknowledge

Dessa bitar används inte.

Kontrollbyten i arean för svar

Arean för svar innehåller svaret från PLC-systemet till MMI-terminalen.

7	6	5	4	3	2	1	0	
Response	COM	Toggle	Error	Acknowledge bits, not used				

Response

Sätts till samma värde som request-biten när data är klart för överföring till MMI-terminalen.

СОМ

COM-biten sätts av PLC-programmet. Bryts kommunikationen nollställs biten.

Toggle

Toggle-biten sätts alltid till samma status som toggle-biten i arean för begäran.

Error

Denna bit används inte.

Acknowledge

Dessa bitar används inte.

5.3 Strukturen på index

Ett index byggs upp av tre bytes. Indexet innehåller fyra delar med information:

- Om datatypen ska läsas/skrivas.
- Vilken datatyp (ingång, dataregister, tidkrets etc.)
- Datatypens adress (t ex ingang 5).
- Datalängd (från en bit till 16 bytes).

7	6	5	4	3	2	1	0	
Skriv	Ln2	Ln1	Ln0	PLC datatyp				
Index nummer bit 15-8								
Index nummer bit 7-0								

PLC datatyp

Anger PLC datatyp enligt följande tabell:

Nummer	Datatyp MELSEC	Datatyp IEC	
1	М	%MX0.	
2	Х	%IX	
3	Y 9		
4	В	%MX1.	
8	D	%MW0.	
9	R	%MW2.	
10	Т	%MWЗ.	
11	С	%MW4.	
12	W	%MW1.	

Ln0-Ln2

Anger datalängden enligt följande tabell:

Ln2	Ln1	Ln0	Längd	
0	0	0	bit	
0	0	1	1 byte	
0	1	0	2 bytes	
0	1	1	4 bytes	
1	0 0		6 bytes	
1	0	1	8 bytes	
1	1	0	12 bytes	
1	1	1	16 bytes	

Händelseförlopp

- MMI-terminalen bestämmer vilken variabel som ska läsas/skrivas.
- Terminalen växlar status på request flaggan i kontrollbyten.
- Nästa PROFIBUS cykel upptäcker PLC-systemet att requestflaggan har ändrats.
- För varje läsindex kopieras värdet i den begärda datatyper till arean för svar.
- Därefter sätts response-flaggan i arean för svar till samma värde som request-flaggan i arean för begäran.
- Nästa PROFIBUS cykel upptäcker MMI-terminalen att request-flaggan och response-flaggan har samma värde vilket betyder att det finns data till terminalen.
- De mottagna värdena kommer nu att användas av objekten i terminalen.

6 Effektiv kommunikation

För att göra kommunikationen mellan terminalen och PLC systemet snabb och effektiv bör följande noteras om hur signalerna läses och vad som kan göras för att optimera detta.

6.1 Signaler som påverkar kommunikationstiden

Det är endast signalerna till objekten i aktuellt block som läses kontinuerligt. Signalerna till objekten i de andra blocken läses inte och antalet block påverkar därför inte kommuniktionstiden.

Förutom signalerna till objekten det i aktuella blocket, läser terminalen hela tiden följande signaler från PLCn:

Display signaler Blockutskriftsignaler LED register Larmsignaler Fjärrkvittering till larm och larmgrupper Login signal Logout signal Trendregister vid samplingspunkterna Register till stapelobjekten om min/max indikatorer används New displayregistret Summerregistret Registret som styr bakrundsbelysningen Kontrollblocket för markören Kontrollblocket för recept i PLC systemet Indexregistret till biblioteket Indexregister Registren till PLC klockan om PLC klockan används i terminalen Signalen som styr radering av larmlistan Kontrollregistret för No protocol Kontrollsignalen som styr om No protocol skall vara aktivt

Signaler som inte påverkar kommunikationstiden

Följande signaler som påverkar inte kommunikationstiden:

- Signaler kopplade till funktionstangenterna
- Tidkanalerna
- Objekt i larmtexter

6.2 Hur man kan göra kommunikationen effektivare

Gruppera PLC-signalerna i en följd

Signalerna från PLC systemet läses snabbast om signalerna i listan ovan är i en följd. Till exempel om 100 signaler är definerade, läses dessa snabbast om de grupperas, till exempel M0.0-M11.7. Om signalerna sprides ut (t ex I0.4, Q30.0, T45.3 etc.) går uppdateringen långsammare.

Effektiva blockbyten

Blockbyte sker effektivas via blockhoppsfunktionen på funktionstangentrna eller via hoppobjekt. "Display signals" i blockhuvudet bör endast användas då PLC systemet ska tvinga fram en annat block. Ska PLCsystemet byta bild kan även "New Display" -registret användas. Det belastar inte kommunikationen lika mycket som ett större antal "Display signals".

Använd klockan i terminalen

Används terminalklockan belastas kommunikationen eftersom PLC-systemets klockregister måste läsas upp till terminalen. Nerladdningen av terminalklockan till PLC-systemet belastar också.

Intervallet mellan nerladdningarna bör därför vara så långt som möjligt.

Packning av signaler

När signalerna skall överföras mellan terminalen och PLC-systemet, överförs inte alla signalerna samtidigt. De delas istället in i paket med ett antal signaler i varje. För att minska antalet paket som skall överföras och för att göra kommunikationen snabbare måste man ta hänsyn till detta. Antalet signaler i varje paket beror på drivrutinen. I MELSEC A Profibus DP drivrutinen är antalet 8 st för analoga signaler och 128 för digitala signaler.

För att göra kommunikation så snabb som möjligt måste antalet paket minimeras. Signaler i en följd behöver ett minimalt antal paket men det är kanske inte alltid nödvändigt. I sådana fall blir det sk glapp mellan två signaler. Glappet är maximumavståndet mellan två signaler där de fortfarande kan hållas inom samma paket.

Glappet beror på vilken drivrutin du använder. I MELSEC A Profibus DP drivrutinen är antalet 2 för analoga signaler och 24 för digitala signaler.

Signal	1	2	3	4	5	6	7	8	9	10
Använd	x	x					x	x	x	

Glapp