MITSUBISHI

ELECTRIC
' PROGRAMMABLE CONTROLLERS

Manual

ing

Structured Programm

ic & Applied Instruction

Bas

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

Manual number JY997D34701

Manual revision M

Date 4/2015
Foreword

This manual contains text, diagrams and explanations which will guide the reader through the safe and
correct installation, use, and operation of the FX Series programmable controller function for structured
programs. It should be read and understood before attempting to install or use the unit.

Store this manual in a safe place so that you can take it out and read it whenever necessary. Always forward
it to the end user.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a
result of using the contents noted in this manual.

© 2009 MITSUBISHI ELECTRIC CORPORATION

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Outline Precautions

1)

This manual provides information for the use of the FX Series Programmable Controllers. The manual has
been written to be used by trained and competent personnel. The definition of such a person or persons is
as follows;

Any engineer who is responsible for the planning, design and construction of automatic equipment using
the product associated with this manual should be of a competent nature, trained and qualified to the
local and national standards required to fulfill that role. These engineers should be fully aware of all
aspects of safety with aspects regarding to automated equipment.

Any commissioning or maintenance engineer must be of a competent nature, trained and qualified to the
local and national standards required to fulfill the job. These engineers should also be trained in the use
and maintenance of the completed product. This includes being familiar with all associated manuals and
documentation for the product. All maintenance should be carried out in accordance with established
safety practices.

All operators of the completed equipment should be trained to use that product in a safe and coordinated
manner in compliance with established safety practices. The operators should also be familiar with
documentation that is connected with the actual operation of the completed equipment.

Note: the term 'completed equipment' refers to a third party constructed device that contains or uses the
product associated with this manual.

This product has been manufactured as a general-purpose part for general industries, and has not been
designed or manufactured to be incorporated in a device or system used in purposes related to human life.
Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine
or passenger movement vehicles, consult with Mitsubishi Electric.

This product has been manufactured under strict quality control. However when installing the product
where major accidents or losses could occur if the product fails, install appropriate backup or failsafe
functions into the system.

When combining this product with other products, please confirm the standards and codes of regulation to
which the user should follow. Moreover, please confirm the compatibility of this product with the system,
machines, and apparatuses to be used.

If there is doubt at any stage during installation of the product, always consult a professional electrical
engineer who is qualified and trained in the local and national standards. If there is doubt about the
operation or use, please consult the nearest Mitsubishi Electric representative.

Since the examples within this manual, technical bulletin, catalog, etc. are used as reference; please use it
after confirming the function and safety of the equipment and system. Mitsubishi Electric will not accept
responsibility for actual use of the product based on these illustrative examples.

The content, specification etc. of this manual may be changed for improvement without notice.

The information in this manual has been carefully checked and is believed to be accurate; however, if you
notice any doubtful point, error, etc., please contact the nearest Mitsubishi Electric representative.

Registration

Microsoft®, Windows® and Excel® are either registered trademarks or trademarks of Microsoft Corporation
in the United States and/or other countries.

CompactFlash is a trademark of SanDisk Corporation in the United States and other countries.

Ethernet is a trademark of Xerox Corporation.

MODBUS® is a registered trademark of Schneider Electric SA.
The company name and the product name to be described in this manual are the registered trademarks or
trademarks of each company.

FXCPU Structured Programming Manual
[Basic & Applied Instruction] Table of Contents

Table of Contents

Positioning of This Manual..............cceoiiisseerrrr s sannnes 1
LR B 1 2= I T 0 1 14
Generic Names and Abbreviations Used in Manualscooooooiiniiciinneecemeee s 17
1. Outline 18
1.1 Outline of Structured Programs and Programming languages..........ccccccamrirrsmernnssmsnssssnnenas 18
1.1.1 Outline of StruCtured ProgramsScoiiiiiiie i ee et e et e e e s tre e e e e s sena e e s aannes 18

1.1.2 Programming laNQUAGEScceeiiiuuiiieeiiiiiteeeeett e e e ee sttt eeesaasteeeesasateeeeesssbeeeeessansaeeaessaneeaesannes 19

1.2 PLC Series and Programming Software Version ... ssssms s sssmee s 20
1.3 Cautions on Creation of Fundamental Programsccccvviiniiminninineninnsnsssessessssnsnnns 20
1.3.1 I/O PROCESSING AND RESPONSE DELAYooiiiieiiiieiereeseeeeiestee e nee e nee e e sneaeeneesnees 20

1.3.2 Double output (double coil) operation and countermMeasUres...........cccceeeeeerreeeiiieeeniee e 21

1.3.3 Circuits which cannot be created by structured ladder programs and countermeasures.............. 22

1.3.4 Handling of general flagsS.........oouueiiiiiiiiii e e e e 22

1.3.5 Handling of operation €rror flagocueio i 25

1.3.6 Handling of function extension flag.............ccoiiiiiiiiiii e 25

1.3.7 Limitation in the number of instructions and limitation in simultaneous instruction instances 26

2. Instruction List 28
2.1 BasiC INSTIUCLIONS ...t sssr e anr e e s s s ssnnrr e e e e e s s mn e e e e enssnnns 28
2.2 Step Ladder INStrUuCtiONS.........coiccceeiiiiiiiccccceerrre e snr e e snn s e e e e e e e s nmmen e e nnns 29
2.3 Applied INSLrUCLIONSceeiiiiiiicrr s 29

3. Configuration of Instruction 42
3.1 Expression and Operation Form of Sequence Instructionscccccoeccciirriiniiiscccseeneensines 42

B 7 - | o - 44
3.3 Devices and AdAreSSeS.... ..o e 47
B - 1 T TN L 48

4. How to Read Explanation of Instructions 50
5. Basic Instruction 52
5.1 LD, LDI, AND, ANI, OR, ORIciiiiitiiiieiriisers s ssssss s s sssss s sssss s s ssn s s ssssssnnes 53
5.2 LDP, LDF, ANDP, ANDF, ORP, ORFcocciiiiiiii s sn s s s s s s snsanes 57
5.3 OUT (Excluding timers and COUNters)..........ccocooiiiriiiiiiciis e 62
5.4 0OPerating TIMErcccoiiiiiii i e e e s e s e s s e nn s 65

LS e © 11 S 65

5.5 Operating COUNErSccociiiiiiiiinier i e e s e s e e 69
L3R I © 1 O @ LU I O S 69

L Y 10 (R TR O 71
5.7 MPS, MRD, MPP ...t s s e me e e an e e e an e e e n e e e e e e e nnne 73

£ TR | 77
5.9 MEP, MEFoo e e e s e e e e e s me e s s sn e e s s sme s e me e s e mn e e e s mn e s e nnee e e nnessesmneeasannenansnnen 79
5.0 SET, RST .ttt 81

£ TR0 T T o 0 TR o T 85

£ 1 TR 1 (0 87

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Table of Contents

L300 T =
5.14 NOP (for simple project only)ccccceeeeecirmrirninncccserre s ssnnees

6. Step Ladder Instructions

L TR =Y o 38 1 T Lo =
& 00 s O T 11T SR
6.1.2 Function and operation explanationcccccoeeiiieiiiiiiie e
6.1.3 Program eXamPIESccccuiiiiiiiiiiiie e ceeeee et a e

7. Applied Instructions (Program Flow)

7.1 CJ/ Conditional JUMPeeeriiiiiiiicierrree e insscssssere e sssns e s s s s ssnnnn e s s s ssssssnns
7.2 CALL / Call SUDroUtine........ccccoiiieie i
7.3 SRET / Subrouting Return ... e e
7.4 IRET / Interrupt Return.........coooiiiiiiiii i e e s e e e e e e e s e e e e e e e e e e e
7.5 DI/ Disable INterrupt........cccccciiiiciimmmenininccssesrre e ssssses e ssssss e e s s ssssssnnes
7.6 El/Enable INterrupt ... s
7.7 FEND / Main Routine Program Endccccciimniimininnnnse s
7.8 WDT / Watchdog Timer Refresh ...
7.9 FOR/ Start a FOR/NEXT LOOPcceriirumriinimsrinsss s s sssssss s ssssmsssssanes
7.10 NEXT /End @ FOR/NEXT LOOP...ccctirimmrrmrsmrrinssnnssssssssssssssssssssnsssssssnssssssnnes

8. Applied Instructions (Move and Compare)

8.1 CIMP | COMPAIE.....cceiiiicccnnerreerissssssnnerressssssssssnsssesssssssssssssnessssssssssssessssssssssnnes
8.2 ZCP | ZONE COMPAre.......cerrirmrrririnnrsissannesssssnnesssssnsesssssmsessssssssssssnsesssssnsessnses
< B |1 (0 0 1 o Y
8.4 SMOV / Shift MOVEocciiiiiireiirn st s
8.5 CML / CoMPIEMENL........cccocerreriiiiicsnerree s nssssssssnrre s s s ss s sssnss e s s ssssssssnnnnesssssssssnns
8.6 BMOV / BIOCK MOVEcoiiiimiiiiire s sse s s ss s ssmn s s en s s mn e s
8.7 FMOV [Fill MOVEcoeeeeeeecee e e e me e s e smme e s s e s s s e e n e s e mn e e smn e e ennn
8.8 XCH / EXCRANGE......ccciiiiirie it
8.9 BCD / Conversion to Binary Coded Decimal..........cccccoriiiiicccmmmnnnnnisccsnnnnns
8.10 BIN / Conversion to Binary..........cccoiimniniimmnineis s sssss s

9. Applied Instructions (Arithmetic and Logical Operation)

9.1 ADDP / Additioncoiiiiiimiiieirinrr s
9.2 SUBP / SUbtractioncccouciiiiiininin e
9.3 MULP / Multiplication..........ccocmiiniiiiicrr e
9.4 DIVP | DIVISION.......eciiiecieeecece e e e e sen e e e smn e e e sme e e me s ee e e e e mm e e e mn e e ennnns
9.5 INC /INCrement.........cccccimmiinnemeiiir i s
9.6 DEC / DECrement.........occviriiiieiniinnsinsn s ssssss s s ssss s s s ssss s ssss s sasanes
9.7 WAND / Logical Word ANDcccoumiimmiiere s sssse s sssms s ssn s sssms s sssnns
9.8 WOR / Logical Word OR.........ccciriminiminnins s s s ssssssssssssnnns
9.9 WXOR / Logical EXClusive OR ... e sssmnes
9.10 NEG / Negationcccccvemimmiiiiicsnerrres s ssssssssrr e s s s sssss e s s s ssssssmsnsssssssssssnnnes

FXCPU Structured Programming Manual

[Basic & Applied Instruction] Table of Contents

10. Applied Instructions (Rotation and Shift Operation) 195
10.1 ROR/ Rotation Rightcccoociiiiiiiiiriere s e e 196
10.2 ROL / Rotation Left ... s s s s s smn s s 199
10.3 RCR/ Rotation Right With Carry ... 202
10.4 RCL / Rotation Left With Carryccccuciiiiimininii e 205
10.5 SFTR/ Bit Shift Right......c.ccoviiiiiiii 208
10.6 SFTL / Bit Shift Left........ccccciiiiriiii e 210
10.7 WSFR / Word Shift Right ... 213
10.8 WSFL / Word Shift Left ... e s s e e ss e s sms e s me e n e e 216
10.9 SFWR / Shift Write [FIFO/FILO Control].........cccecimmmininmeiininnnssssss s s sssssssnanns 219
10.10 SFRD / Shift Read [FIFO CONtrol]ccccuiiiimriniiiniins s s 222
11. Applied Instructions (Data Operation) 224
11.1 ZRST] ZONE RESEH ..o e e e s e e s s e e e e e e s mn s e mm e e e e mn e e e e neeennnes 225
(I 1 030 N T o T - 229
T 100 I ¥ o T - 233
11.4 SUM / Sum Of ACtiVe BitSeoiiiiiicirin s 236
11.5 BON / Check Specified Bit Status..........ccccoreioiirireiiirerc e 239
(T 1 N =T 242
11.7 ANS / Timed AnNnUNCIAtor Set ..o ———— 244
11.8 ANR / ANNUNCIator RESEetcoiiiiiicir e 246
11.9 SQR/ SQUArE ROOL......co i e e e s san e s e s e mn e e e s ne s ensnnes 248
11.10 FLT/ Conversion to Floating Pointccccooimiiiiiiiciiir e 250
12. Applied Instructions (High Speed Processing) 254
2 O = I 3 =Y (== o O 255
12.1.1 What should be understood before using the REF instructionccccoioiiiiiineeice. 258

12.2 REFF / Refresh and Filter Adjust............ccooiiiiniiniinrir e 259
12.2.1 What should be understood before using REFF instructionccccoooiiiiiiiiin e 262

12.3 MTR /INPUE MAEIXeceiiiiieieccie e e e e e s sc e e s s e e e e s e e e e e e e e smn e e e e mn e e eemnenemnenennnes 263
12.3.1 Operation and cautions for MTR INStrUCHONccccuiiiiiiiiii e 266

12.4 DHSCS, DHSCS_I/ High Speed Counter Set, High Speed Interrupt Counter Set............. 267
12.4.1 Common cautions on using instructions for high speed counter..............ccccccoiiiiiiiiiiiiii e 271

12.5 DHSCR / High Speed Counter Reset...........cccoooiiiiiiiiiciiirr e 275
12.6 DHSZ / High Speed Counter Zone COMPAre..........ccccceemmmerrrsssssssnmreessssssssssnssssssssssssssnnsesssssas 279
12.6.1 Program in which comparison result is set to ON when power is turned ON [ZCP] instruction ... 283

12.6.2 Table high speed comparison mode (M8130)uiiiiiiiiiiiiee e 285

12.6.3 Frequency control mode (DHSZ, DPLSY) (M8132)cuueiiiiiiiiiiieiee e 289

12.7 SPD / Speed DeteCtion............eeeeeeeeeeeeeeeeeeeennnnnnnnnnnnnsnssnssssssssssnssssnsssnssssssssssssssssssssssssssssssnnnnnnns 292
12.8 PLSY /PUISE Y OULPULeeiiiiiiiciceirre s sssssrr e s s s s e e s s s s s mne e e e s s s s mmn e e e e s n s mmnn e e e naas 296
12.9 PWM / Pulse Width Modulation...........ccccriiiiiiieirr e 303
12.10 PLSR/ Acceleration/Deceleration Setupccccireicimriricerrssssee e e sme e 306
13. Applied Instructions (Handy Instruction) 311
13.1 IST / Initial Statec.ceviiiiiiir i ———— 312
13.2 SER/ Search a Data Stackcccccociiiiiiiiiiirr i 323
13.3 ABSD / Absolute Drum S@QUENCETcccuceeeerrreirerrrssmrerssssessssssseessssnsesssssnsesssssneessssssessssnns 327
13.4 INCD / Incremental Drum S@qUENCETccueeemmmmeemmmmmmmemeeeeeeeeeeeeeeeseeeessssnssssnnnsssnnnnssssnnmsssnnnns 331

FXCPU Structured Programming Manual

[Basic & Applied Instruction] Table of Contents
13.5 TTMR / Teaching Timer ... s e s mme s 334
13.6 STMR / SPeCial TiMer ... i e ssnr s s s s s s ann e e e s s s s s smne e e e s s sannsnnnnnnanan 337
13.7 ALT / Alternate State...........coocooiiiiiiiiiiiri e m e s mn e e 340
13.8 RAMP / Ramp Variable ValUue..........cooo i e e e e e sss e s s s s e e e sn e e 343
13.9 ROTC / Rotary Table Control ... e 346
13.10 SORT / SORT Tabulated Datacccceriiiiiriiiiirir s 349

14. Applied Instructions (External FX I/O Device) 352
14.1 TKY / Ten Key INPULcciiiiiiiiie it s e s s 353
14.2 HKY / Hexadecimal INPUL.........oo . eeeeeeeeieeeeeeneneennnsnnnnsansnnnn s s nnnnsnnnssnsnsnnnnnnsssssssssssssnnssnnnnnnns 357
14.3 DSW / Digital Switch (Thumbwheel INput)cccceeiiicciiiicerrr e 361
14.4 SEGD / Seven Segment DECOUETcccciiiiiiiiriiniiir e ss e ssn s s mn e s s ms s s samn s senans 365
14.5 SEGL / Seven Segment With LatCh ... 367

14.5.1 Selection procedure of 7-segment display UNit...........coooeeiiiieiniiiiiee e 370
14.5.2 Selection procedure of parameter n by specification of 7-segment displaycc.cccceveerennee 370
14.6 ARWS / ArroW SWItCHeooiiiieeceee e e e sme e s e e e e mn e e e e e e me e mnes 372
14.7 ASC / ASCIl Code Data INPUL ... s s s s s s s n s s s s s nn s s s s nnnnsnnnnnnnnnnnes 376
14.8 PR/ Print (ASCIl €COde)cciriimiiiiniriieiriisis s ssss s ssn s s ssssss s s ssns s s ssse s s mns e sas snsnnes 378
14.9 FROM / Read From A Special Function BIOCK............ccooiiine s 381
14.9.1 Common terms of FROM/TO instruction (detail).............coooiiiiiiiiiiiie e 384
14.10 TO / Write To A Special Function BIOCK...........cccciiiiimiiiiiiinrrn s 386

15. Applied Instructions (External Device (optional device)) 389
15.1 RS/ Serial CommMUNICAtIONccvviieiiiiiiiriir 390
15.2 PRUN / Parallel Run (Octal MOde)cccceiiiiiiciinmrieniiissccssnrre s s sss s ssssssse s s s ss s sssmsns s s s ssssssnnmnnnes 393
15.3 ASCI/ Hexadecimal to ASCIl CONVEISION........ccccciriiriserinemrresssmr s s s s s sms e sms s asanes 395
15.4 HEX/ ASCII to Hexadecimal CONVErSIiON...........cccciiiiieeerissreeesssmeeessme e s s ssee e s s e e s sme e nsanes 399
15.5 CCD / CheCk Code......cciiiueiiiiiiiriiiisir i ssss s s an s s s s nn e e n e s nnes 403
15.6 VRRD / VOIUME REAMoiiiiiriiiiir s an s s s s mn e e nm s nne 406
15.7 VRSC / VOIUME SCal@.......coiiiiiriiiierisiiirsssssss s s s s s s ssssms e s s e s s s sss s s ssssmne s ssssmsessnssneessssnsesssnnes 409
15.8 RS2/ Serial Communication 2ccociminiirminnsirs s ———- 411
15.9 PID / PID CONErol LOOP.....cccoierririiiiissnnrrersiissssssssnrsssnssnssssssssssnnsssssns 414

16. Applied Instructions (External Device) 418
16.1 MNET / F-16NP/NT cOMMUNICAtIONoriiieeiecceeeeeme e e e e sme e me s mn e e e e me e 419
16.2 ANRD / Read from F2-6Accoiiiiminiiiiiir s s s s sssssss e 421
16.3 ANWR /Write tO F2-BA........co oo s mn s e ann s 423
16.4 RMST / F2-32RM Startcooo i s mn e s s s s 424
16.5 RMWR / Write to F2-32RIMoo e e e e e e e s s s e e s e e s me e s e e e s s e e e me e names 425
16.6 RMRD / Read from F2-32RM.........ccccciiimimiiiiiiriisrs s s ssnsanes 427
16.7 RMMN / F2-32RM MONILOr......cceiiiieiriiirs i sn s s s s s nn s sasanes 429
16.8 BLK / SPeCify F2-30GMcoccoiiiiiiiiiie s ssss s s s s sn s s s s mn e s s mn e e mmn s nnnans 430
16.9 MCDE / F2-30GM COAEcooiiiereiceeiereceeesssee e s s ssne e ssssms e e s sne e s s s e s e smnesessmnessnssmnenensnnesenssns 432

17. Applied Instructions (Data Transfer 2) 433
17.1 ZPUSH / Batch Store of INndex RegiSter.........cccccciiiiiiicciimmnniiinsccsserr s e sssns e e 434
17.2 ZPOP / Batch POP of Index RegiSter ...t 437

FXCPU Structured Programming Manual

[Basic & Applied Instruction] Table of Contents
18. Applied Instructions (Floating Point) 439
18.1 DECMP / Floating Point COMPAre........cccccoicciiimrmeeiniceer s snr s smn e s s s ssnn e e s 441
18.2 DEZCP / Floating Point Zone COMPAre..........cccccerriiiiccssmmnnsinssssssssseresssssssssssssssesssssssssssssssees 443
18.3 DEMOV / Floating Point MOVE..........ooi s s s s 445
18.4 DESTR/ Floating Point to Character String CoONversion...........cccocvivernnninneennsesssessseenns 447
18.5 DEVAL / Character String to Floating Point Conversion...........cccccccriiiniiccncmmn e, 454
18.6 DEBCD / Floating Point to Scientific Notation Conversion..........ccccccevviccvieinnnisssccsneeenenns 459
18.7 DEBIN / Scientific Notation to Floating Point Conversionccccccoriiiinnninsisnsnnsiennnenes 461
18.8 DEADD / Floating Point Addition............ccooriiiicii e 463
18.9 DESUB / Floating Point Subtraction............ccccoooimiiiiinccccrr e 465
18.10 DEMUL / Floating Point Multiplicationccccciiiiiicicinninnsccerrre e 467
18.11 DEDIV / Floating Point DIVISIONcccoiiiiiiiiiis s s 469
18.12 DEXP / Floating Point EXponent..........cccccviiniminiimiiniiseniss s s s 471
18.13 DLOGE / Floating Point Natural Logarithmcccoomiiiiininerr e 473
18.14 DLOG10 / Floating Point Common Logarithm............ccccomriiiiicimrininncrcceerr e 475
18.15 DESQR / Floating Point Square ROOL...........cccccimiiiciinniir e 477
18.16 DENEG / Floating Point Negationccccciiminmmnnmsininies s e s 479
18.17 INT / Floating Point to Integer CONVersionccccccciimiriinniscssrre e 480
18.18 DSIN / Floating Point SiNe........ccccccicimimiiiiicsserrressssssssssrs s s sssssssssss s s ssssssssssssssssssssssssssssssnas 482
18.19 DCOS / Floating Point COSINe.........cccoiiiiiiriiirr s s s 484
18.20 DTAN / Floating Point TaNgentcccciiiiniminiiinsiniesnes s s s s 485
18.21 DASIN / Floating Point Arc Sine ... s ssmn e 486
18.22 DACOS / Floating Point Arc COSINEeccccivmmrrmriiiissssnrnnsssssssssssnsssssssssssssssssssssssssssssssssseas 488
18.23 DATAN / Floating Point Arc Tangent...........cccccceeriiiiciinmennssssssssssesssssssssssssssssssssssssssssssesnas 490
18.24 DRAD / Floating Point Degrees to Radians Conversionccccccvvimininnnesnennnns 492
18.25 DDEG / Floating Point Radians to Degrees CONVersioncccccciiiiiismernnsnnsssssssssssennns 494
19. Applied Instructions (Data Operation 2) 496
19.1 WSUM / Sum of WOrd Data.........ccccocimiiiiiiiiiiisiisse s sssss s s s s ms s s ssms s s sssns s s s sms s ssssnes 497
19.2 WTOB / WORD to BYTE.......oiicciiiciereiressieesseesse e s see s ser s s sas s s e s s e e s s s ne s smn s snn e s s e nesnnnsnsnnen 500
19.3 BTOW / BYTE t0 WORD.......coiiiiiiiirisrir s s s s s s s e 503
19.4 UNI/ 4-bit Linking of Word Datacccccciiiceiimmminniinicsseee s sssssssssss s s s s s sssssss s e s sssssssssmssssenas 506
19.5 DIS / 4-bit Grouping of Word Data..........cccouceemrrinimriiime s ssss s sms e s 508
19.6 SWAP / BYtE SWaAPuceiiiiiiirieeessseseseessseesssssessssessssessssessssssssnssssssessssessssessssssssnsesassessnsessnsanen 510
19.7 SORT2 / Sort Tabulated Data 2..........cccccciriiiminirir s 512
20. Applied Instructions (Positioning Control) 517
20.1 DSZR / Dog Search Zero RetUINcccciiiimiiininssnis s s s s s sssssnns 518
20.2 DVIT / Interrupt POSitionNing.........cccoimiiiiiiiiiriri e 520
20.3 DTBL / Batch Data Positioning Mode..........cccccciiiiciimmrinniinsccsssers s sssssssssrse s s ssssssssesssssnsns 523
20.4 DABS / Absolute Current Value Read ... s 525
20.5 ZRN / Zero REIUINeeeiiieeeeeeee e e e e e e e e sms e e s mn e e me s s me e s e mme e e e smme e eesemn e e e e s mnensnnenennen 527
20.6 PLSV / Variable Speed Pulse OULPUL..........ccooiiiiiiiiiiiiiiiirr s 531
20.7 DRVI/ Drive to INCrement ... s s s sssse s nsas 534
20.8 DRVA / Drive to ADSOIULEccoiiiiii i s e s ame s 537

FXCPU Structured Programming Manual

[Basic & Applied Instruction] Table of Contents
21. Applied Instructions (Real Time Clock Control) 540
21.1 TCMP / RTC Data COMPArecccceiiiiiiiiiiisisississsssssss s s s s s s s s s ssnnns 541
21.2 TZCP / RTC Data Zone COMPAIeccccccccrsmrrrrrissssssssnrsessissns 544
21.3 TADD / RTC Data Additioncoociiiiiiiiiiieie et se e s e s sms s se e s e e s se e s me s smn e 547
21.4 TSUB / RTC Data Subtractionccoooimiieeceieeecce e cmce e sme e me e s e 549
21.5 HTOS / Hour to Second CONVEIrSIiON.......cccceiiiiuerriisissssisssssisssss s ssss s s ssss s ssssss s sssss s ssssase e 551
21.6 STOH / Second to HOUr CONVEISION.......ccceiiiimmriicir e s 554
21.7 TRD / Read RTC dataccccceriaurerirereieresieaeseeesse e s e e s sessemsssme s s me e s me e s e messme s s e e se e e sennnssmnesnes 557
21.8 TWR/ Set RTC data.......ccccccerreirrcieresiersseessseressne s see s seessssssssssess s essssessssssssssesessessssesssssssnssssnes 559
21.9 HOUR / HOUE MELET........ciiieiiieierie s s s s 563
22. Applied Instructions (External Device) 566
22.1 GRY /Decimal to Gray Code CONVEIrSIONccccurieiriisimrrsssmssssssss s s s ssss s ssssse s ssms e s sssmnessnas 567
22.2 GBIN/ Gray Code to Decimal CONVErSiONccccuccecerircemrerssrereresmee e e smee e e sme e e e smme e eessmeeeas 569
22.3 RD3A / Read form Dedicated Analog BIOCKcccciiniiminiminnnnrs e 571
22.4 WR3A / Write to Dedicated Analog BIOCK..........cccccccmiiniiminnsininr e 573
23. Applied Instructions (Extension Function) 575
23.1 EXTR_IN / External ROM fUNCHION ... e 576
23.2 EXTR_OUT / External ROM funCtioncccvcimiiniininirnsr s s 579
24. Applied Instructions (Others) 583
241 COMRD / Read Device Comment Data........c..ccccrirrimmrnniimrrsseeee e e es e e s s e e s s e smeeeenas 584
24.2 RND / Random Number Generationcccoceeminisininssnminssssss s s s ssssss s 587
24.3 DUTY / Timing Pulse Generationccccccirriiiiiicsssmnnesiisssssssessns 589
24.4 CRC / Cyclic RedundanCy CRECKcccocimirriimminirerines s s s smn s 592
24.5 DHCMOV / High Speed Counter MOVEccccciiimineminsmmnnssssne s sss s sssss s ssssnnns 596
25. Applied Instructions (Block Data Operation) 600
25.1 BK+ / Block Data Addition............coooieiimiiiiiciere e 601
25.2 BK-/ Block Data Subtraction ..o 605
25.3 BKCMP=, >, <, <>, <=, >=/ Block Data Compare.........ccccccccermrrrrrrirsccssmerrensssssssssneeeessssesnns 609
26. Applied Instructions (Character String Control) 616
26.1 STR/ BIN to Character String CONVErSiONcccoccmrrrriissssssssrrerssssssssssssssssssssssssssssssssssssns 617
26.2 VAL / Character String to BIN CONVErSioNccccociiiiiiiinsns s s ssms e 622
26.3 $+/ Link Character StriNgscccoceroeriernrrseree e s e e e e e 628
26.4 LEN / Character String Length Detectioncccocoiiiiiiiiccscrrr e 631
26.5 RIGHT / Extracting Character String Data from the Right...........cccccceiiiiiriiicccccereeecees 634
26.6 LEFT / Extracting Character String Data from the Left..........ccooooomiiiicniiiieeeee 637
26.7 MIDR / Random Selection of Character Stringscccvvminiimiisininsnin s 640
26.8 MIDW / Random Replacement of Character Strings.........cccccccmmiriiiicccicininnnccceeeeeeenes 643
26.9 INSTR/ Character string S@arChccccccciiiiiiiiiccserrre s sssn e smnn e e e s s snns 647
26.10 SMOV / Character String Transfercccuccicciresiiesesessssesse s ssessnesssssssessnsssnssssnssnsssnessns 650

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Table of Contents

27. Applied Instructions (Data Operation 3) 653
27.1 FDEL / Deleting Data from Tablesccccciiiiiiiiiiiirie e 654
27.2 FINS / Inserting Data to TabIesccccccviiimiiiiiccceirre e e sssne s s mne e e s s nnns 657
27.3 POP / Shift Last Data Read [FILO CONtrol]ccccccooiiiriimiirrs s s 660
27.4 SFR/ Bit Shift Right With Carryccccceiriiiiiir e s e se e s 664
27.5 SFL / Bit Shift Left With Carry ..o 666

28. Applied Instructions (Data Comparison) 668
28.1 LD =, >, <, <>, <=, >=/ Data COmMPAriSON........cccviiicciimerieriissssssneeressssssssssssessssssssssssssesssssssssnns 669
28.2 AND=, >, <, <>, <=,>=/ Data CompPariSON..........cccoecmrrirriiiicrsmrrrresrss s csssee e e e e s s s ssmne e e e e s s s enns 672
28.3 OR=, >, <, <>, <=, >=/ Data CoOMPaAriSONcccovviiiiiiiiirssrrrrrsssss s ssss s s s s s s s s s s s 675

29. Applied Instructions (Data Table Operation) 678
29.1 LIMIT / LIMIt CONIOL ... s s 679
29.2 BAND / Dead Band CONIOlc.uuuiiiiiiiiieeeiiiiiiisssessssiisiisessssssssssssessssssssssssseesssssssssssseesssnnssnns 683
29.3 ZONE / ZONE CONLIOL.....ccuuiiiiiiiieieiiiresirsnessssrserrrsnnsssssserrresnnsssssssesresnnsssssssersennnsnssssseessennnnnns 687
29.4 SCL / Scaling (Coordinate by Point Data)............cccoccmrmrmiiicssmerrnnssssscssssees s ss s ssssee e sssssnns 691
29.5 DABIN / Decimal ASCIlI to BIN CONVEIrSIONccciveeeeiiiiiiiiiessesiiisssssssssssssssessssssssssssseessssnnsans 695
29.6 BINDA / BIN to Decimal ASCIl CONVEIrSIONcccieeeeuiiiiiiiiieessiiisessssssssssssessssssssssssseesssnnnsnns 698
29.7 SCL2/ Scaling 2 (Coordinate by X/Y Data).......ccceeeceerrrssrrrrsssnerssssserssssssesssssssrsssssesssssnessnsas 702

30. Applied Instructions (External Device Communication) 707
30.1 IVCK / INverter Status CRECK............iiiiiiiieeeiiiiiiiiieee i s rsssssssssss s s sssssssssssssessssnsssssssseessnnnnnns 708
30.2 IVDR / INVEILEI DIVEceuuiiiiiiiiiieeeiir s e sssneesssessersssnasssss s s e s e essnnsssssssesessnnsssssssersennnsssnssseessennnnnns 711
30.3 IVRD / Inverter Parameter Read............cceeeeuiiiiiiiiieeeeeiiirsssressessssssssessssnsssssssesessssnssssssesesesnnnns 714
30.4 IVWR / Inverter Parameter WIitecccieeeiiiiiiiiiieiiiiiissssssssssnsssssssssssssssseesssssssssssnsssssnnssnes 716
30.5 IVBWR / Inverter Parameter BIOCK WIIte..........cceiieeeiiiiiiiiiiieeiniiisssssssses s seesssssssssssnsesssssssses 719
30.6 IVMC / Inverter Multi COmMmMANd..........coiieeeeiiiiiiiriieerer e rrrreessss s s eesrssnssssssreessnnssssssseesnnnnnnsnns 721
30.7 ADPRW /| MODBUS ReEAU/WII.....ccciiiiiiiiiiiiisisisssnnnnnnns 724

30.7.1 Command Code and Par@meEterS...........coooiiiiiiuiieeiee ettt e e 725

31. Applied Instructions (Data Transfer 3) 728

31.1 RBFM / Divided BFM REAdccooiiiiiiiiiiiiiiiiiiiiiiiiiii it s s 729
31.1.1 Common items between RBFM instruction and WBFM instruction..............ccccccoevvvvcinvvvveenenen. 731
31.2 WBFM / Divided BFM WIIteuueiiiiiririiinneeeeeessssssssseeessrsssssssssssesessssssssssssessssessssssssssesssesnns 735

32. Applied Instructions (High Speed Processing 2) 737
32.1 DHSCT / High Speed Counter Compare With Data Table........cccccccceceivmrrriiiicccceeeereeene 738

33. Applied Instructions (Extension File Register Control) 743
33.1 LOADR / LoAd From ER.........ciccciieeiiieiiisicrnereesesssssssssssessesssssssssssssessessssssssssssssessssssnnsssssssnns 744
33.2 SAVER /SAVE O ER.......cooe et r s s s s s s s s s s s e s s s s s s s s s s s s s s s s e e s s s s s e s e e e e e e e e e s e e s e s e e s ennnnnnnns 748
33.3 INITR / Initialize R and ER.........cccccci s s s s s s e s s s s e s essssnnes 757

FXCPU Structured Programming Manual

[Basic & Applied Instruction] Table of Contents
33.4 LOGR/Logging Rand ER............iiiiirire e r s mnn s s s 761
33.5 RWER / ReWrite t0 ER........cccceiiiiiiiir e s s s e s 765
33.6 INITER / INitialize ERcoc it mn s s mn e s 770

34. Applied Instructions (FX3u-CF-ADP) 774
34.1 FLCRT / File create ® CheCKccccuvvetiiinieininer s s 775
34.2 FLDEL / File delete * CF card format............ccccccmiiiimmninnimnieis e sssne s 779
34.3 FLWR / Data WIte.........ueiiiiiiiicie i se s m s sss s e ms s m s s s mn e s s e e s s nmn e enan 781
B 7 S o 3 40 I - 1 - T = U 785
34.5 FLCMD / FX3U-CF-ADP cOmMMAaNdccociimminiimiminisnsnissnsssssss s ssssss s sssssss s ssssssssnnns 787
34.6 FLSTRD / FX3U-CF-ADP status readcccociiniiiminniiinssss s e 789

35. Interrupt Function and Pulse Catch Function 792
BT TR T T T 792
35.2 COMMON IEMSeeeiiiieir i r e e e e n e e s nan e n e 793

35.2.1 INterruPt FUNCHION.eeiitie ettt e e 793
35.2.2 How to disable interrupt function and pulse catch functioncccooeeeiiiiin e, 794
35.2.3 Related HEMS... ..ttt e e e et e e e e e e e e e e 795
35.2.4 Cautions ON USE (COMMION)eiuuieeiiieeeeiteeuieeesteeeeseeeeesseeeeaseeeeaneeeesnneeeaneeeeaneeeanneeeanseeesaneesneeenn 796
35.3 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function].......... 798
35.3.1 Input Interrupt (Interrupt Triggered by External Signal) [Without Delay Function]..................... 798
35.3.2 Examples of practical programs (programs to measure short pulse width)................ccccceeeenne 802
35.4 Input Interrupt (Interrupt by External Signal) [With Delay function]cccccoeiioiiiiicnnnnnes 804
35.5 Timer Interrupt (Interrupt in Constant Cycle)........ccccvimiiminiiiniinnc e 805
35.5.1 Timer Interrupt (Interrupt in Constant CYCI).........cueviiiiiiiiiiiiie e 805
35.5.2 Example of practical program (timer interrupt program using instruction)............ccccccceeieeennneen. 806
35.6 Counter Interrupt - Interrupt Triggered by Counting Up of High Speed Counter 810
35.7 Pulse Catch Function[M8170 to MBAT77].....cccoiiiiiiiiiriii e 811
35.8 Pulse width/Pulse period measurement function [M8075 to M8083, D8074 to D8097]..... 813
Appendix A: Relationships between devices and addresses 818

Appendix B: Applied Instruction List

[by Instruction Type / in Alphabetic Order] 820

Appendix B-1 Applied instructions [by instruction type] ... 820
Appendix B-2 Applied instructions [in alphabetical order].............ccccoiiiiiiiiiiiii e, 827

L AT L =T /7 833
ReVISEd HiStOrY ...t s 834

10

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Positioning of This Manual

This manual explains sequence instructions for structured programs provided by GX Works2. Refer to other
manuals for devices, parameters and application functions.

Refer to each corresponding manual for analog, communication, positioning control and special units and
blocks.

1. When using FX3s/FX3G/FX3GC/FX3U/FX3uc PLCs

Q/L/F

Structured

—

MELSEC-Q/L/F Structured Programming Manual (Fundamentals) (Additional Manual)

This manual explains programming methods, specifications, functions, etc. required to create
structured programs.

FXCPU Structured Programming Manual [Device & Common] (Additional Manual)

FX This manual explains devices and parameters for structured programs provided
by GX Works2.
Structured
|

(This manual)

FXCPU Structured Programming Manual [Basic & Applied Instruction]

EX (Additional Manual)
This manual explains sequence instructions for structured programs provided
by GX Works2.
Structured
| S

FXCPU Structured Programming Manual [Application Functions]

"I Ex (Additional Manual)

This manual explains application functions for structured programs provided
by GX Works2.

Structured
|
N FX3s/FX3G/FX3Gc/FX3u/FX3uc User's Manual- Analog Control Edition (Additional Manual)
FX3s
"1 FXsc This manual explains details of analog special function blocks and analog special

FX3Gc adapters for FX3s/FX3c/FX3cc/FX3u/FX3uc PLCs and PID instruction.
FX3u Explanation of instructions and instructions used in program examples are expressed
FXsuc for GX Developer.

—————— 1

FX Series User's Manual -Data Communication Edition (Additional Manual)

EX This manual explains details of simple N:N link, parallel link, computer link, no-protocol
communication (RS and RS2 instructions), programming communication and inverter
communication for FX PLCs.

Explanation of instructions and instructions used in program examples are expressed
for GX Developer.

————— 1|
Ex FX3s/FX3G/FX3GC/FX3U/FX3uc Series User's Manual -Positioning Edition (Additional Manual)
» 38
FX3G This manual explains details of wiring, instructions and operations of the positioning
FX3Gec function built in FX3s/FX36/FX3cc/FX3u/FX3uc PLC main units.
FX3u Explanation of instructions and instructions used in program examples are expressed
FXsuc for GX Developer.
| IS
Individual manuals (Manual supplied with product or additional Manual)
»| Special
uniFtJ/bIock This manual explains details of each special unit/block.
Explanation of instructions and instructions used in program examples are expressed
for GX Developer.
*1. Detailed explanation may be provided by a separate manual in some products.
———— 1

11

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

2. When using FX1s/FX1N/FX1NC/FX2N/FX2Nc PLCs

Q/L/F

Structured

—

MELSEC-Q/L/F Structured Programming Manual (Fundamentals) (Additional Manual)

This manual explains programming methods, specifications, functions, etc. required to create
structured programs.

1 FXCPU Structured Programming Manual [Device & Common] (Additional Manual)
" FX This manual explains devices and parameters for structured programs provided
by GX Works2.
Structured
|
(This manual)
n FXCPU Structured Programming Manual [Basic & Applied Instruction]
> Additional Manual
X (Additional Manual)
This manual explains sequence instructions for structured programs provided
by GX Works2.
Structured
—— |
1 FXCPU Structured Programming Manual [Application Functions]
" ex (Additional Manual)
This manual explains application functions for structured programs provided
by GX Works2.
Structured
——— 1|
FX Series User's Manual -Data Communication Edition (Additional Manual)
.
FX This manual explains details of simple N:N link, parallel link, computer link, no-protocol
communication (RS instruction), programming communication and inverter communication
for FX PLCs.
Explanation of instructions and instructions used in program examples are expressed for
GX Developer and FX-PCS/WIN.
—————— 1
Individual manuals (Manual supplied with product or additional Manual™')
» Special
unit/block This manual explains details of each special unit/block.
Explanation of instructions and instructions used in program examples are expressed
for GX Developer and FX-PCS/WIN.
*1. Detailed explanation may be provided by a separate manual in some products.

12

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

3. When using FXos/FXo/FXoN/FXu/FX2c PLCs

Q/L/F

Structured

| E—

MELSEC-Q/L/F Structured Programming Manual (Fundamentals) (Additional Manual)

This manual explains programming methods, specifications, functions, etc. required to create
structured programs.

1 FXCPU Structured Programming Manual [Device & Common] (Additional Manual)
v EX This manual explains devices and parameters for structured programs provided
by GX Works2.
Structured
————— 1
(This manual)
1 FXCPU Structured Programming Manual [Basic & Applied Instruction]
™ x (Additional Manual)
This manual explains sequence instructions for structured programs provided
by GX Works2.
Structured
—— |
1 FXCPU Structured Programming Manual [Application Functions]
™ e (Additional Manual)
This manual explains application functions for structured programs provided
by GX Works2.
Structured
——— |
1 FX Series User's Manual -Data Communication Edition (Additional Manual)
.
FX This manual explains details of parallel link, computer link, no-protocol communication
(RS instruction) and programming communication for FX PLCs.
Explanation of instructions and instructions used in program examples are expressed for
GX Developer and FX-PCS/WIN.
—————— 1
] Individual manuals (Manual supplied with product or additional Manual *1)
» Special
unit/block This manual explains details of each special unit/block.
Explanation of instructions and instructions used in program examples are expressed
for GX Developer and FX-PCS/WIN.
*1. Detailed explanation may be provided by a separate manual in some products.
|

13

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

Related Manuals

This manual explains devices and parameters for structured programs provided by GX Works2.
Refer to other manuals for sequence instructions and applied functions.

This chapter introduces only reference manuals for this manual and manuals which describe the hardware
information of PLC main units.
Manuals not introduced here may be required in some applications.

Refer to the manual of the used PLC main unit and manuals supplied together with used products.

Contact the representative for acquiring required manuals.

Common among FX PLCs [structured]

Manual name Manual number Supplle_d_Wlth product Contents Model
or Additional Manual name code
MELSEC-Q/L/F Structured SH-080782 Additional Manual Programmlng methods, specifications, functions, 13JW06
Programming Manual (Fundamentals) etc. required to create structured programs
FXCPU Structured Programming " Devices, parameters, etc. provided in structured
Manual [Device & Common] JY997D26001 Additional Manual projects of GX Works2 09R925
FXCPU Structured Programming " Sequence instructions provided in structured
Manual [Basic & Applied Instruction] JY997D34701 Additional Manual projects of GX Works2 09R926
FXCPU Structured Programming " Application functions provided in structured
Manual [Application Functions] JY997D34801 Additional Manual projects of GX Works2 09R927
FX3s/FX3G/FX3GC/FX3u/FX3uc PLCs
Manual name Manual number Supplle_d_Wlth product Contents Model
or Additional Manual name code
PLC main unit
I/0 specifications, wiring and installation of the
PLC main unit FX3u extracted from the FX3u
FX3u Series Hardware Manual JY997D18801 Supplied with product | Series User's Manual - Hardware Edition. For -
detailed explanation, refer to the FX3u Series
User’s Manual - Hardware Edition.
. , Details about the hardware including I/O
FXsu Series User's Manual- Hardware | vq97016501 | Additional Manual | specifications, wiring, installation and 09R516
Edition . . .
maintenance of the FX3u PLC main unit.
1/0 specifications, wiring and installation of the
' PLC main unit FX3uc (D, DS, DSS) extracted
FXauc (D, DS, DSS) Series Hardware JY997D28601 Supplied with product | from the FX3uc Series User's Manual - Hardware -
Manual " . :
Edition. For detailed explanation, refer to the
FX3uc Series User's Manual - Hardware Edition.
I/0 specifications, wiring and installation of the
PLC main unit FX3uUc-32MT-LT-2 extracted from
FX3uc-32MT-LT-2 Hardware Manual JY997D31601 Supplied with product | the FX3uc Series User's Manual - Hardware -
Edition. For detailed explanation, refer to the
FX3uc Series User's Manual - Hardware Edition.
EXauC Series User's Manual - Details about the hardware including I/O
» JY997D28701 Additional Manual specifications, wiring, installation and 09R519
Hardware Edition . . .
maintenance of the FX3uc PLC main unit.
1/0 specifications, wiring and installation of the
PLC main unit FX3G extracted from the FX3G
FX3G Series Hardware Manual JY997D46001 Supplied with product | Series User's Manual - Hardware Edition. For -
detailed explanation, refer to the FX3G Series
User’s Manual - Hardware Edition.
. . Details about the hardware including 1/0
FX36 Series User's Manual- Hardware | - v qq7n31301 Additional Manual | specifications, wiring, installation and 09R521
Edition .) .
maintenance of the FX3G PLC main unit.
I/0 specifications, wiring and installation of the
PLC main unit FX3GC extracted from the FX3GC
FX3Gc Series Hardware Manual JY997D45201 Supplied with product | Series User's Manual - Hardware Edition. For -
detailed explanation, refer to the FX3GC Series
User's Manual - Hardware Edition.
EXaGC Series User's Manual- Details about the hardware including I/O
JY997D45401 Additional Manual specifications, wiring, installation and 09R533

Hardware Edition

maintenance of the FX3Ggc PLC main unit.

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

Manual name Manual number Supplle.d.WIth LTS Contents]
or Additional Manual name code

PLC main unit
1/0 specifications, wiring and installation of the
PLC main unit FX3s extracted from the FX3s

FX3s Series Hardware Manual JY997D48301 Supplied with product | Series User's Manual - Hardware Edition. For -
detailed explanation, refer to the FX3s Series
User's Manual - Hardware Edition.

. , Details about the hardware including 1/0

FXss Series User's Manual- Hardware | vq97046601 | Additional Manual | specifications, wiring, installation and 09R535

Edition . - .
maintenance of the FX3s PLC main unit.

Programming

, Details about the analog special function block

PX3S/FXSGIFX3GOIFXSUIXSUC User's | jvgq7p16701 | Additional Manual | (FX3U-4AD, FX3U-4DA, FX3Uc-4AD) and analog | 09R619

Manual- Analog Control Edition . .
special adapter (FX3u-****-ADP).

. . Details about simple N : N link, parallel link,

Eﬁﬁ;ﬁﬁg;g;lﬂig:al -Data JY997D16901 Additional Manual computer link and no-protocol communication 09R715
(RS instruction and FX2N-232IF).

FX3s/FX3G/FX3GC/FX3U/FX3UcC Series) . o

User's Manual - MODBUS Serial JY997D26201 Additional Manual | XP'ains the MODBUS serial communication 09R626

o " network in FX3s/FX3G/FX3GC/FX3U/FX3uc PLCs.

Communication Edition

FX3s/FX3G/FX3GC/FX3U/FX3uc Series " Details about the positioning function built in the

User's Manual -Positioning Edition JY997D16801 Additional Manual | £y e o FX3GC/FX3UIFX3UC Series. 09R620

FX3U-CF-ADP User's Manual JY997D35401 | Additional Manual | DeSCTioes details of the FXsU-CE-ADP CF card | 49075,
special adapter.

FX1s/FX1N/FX1INC PLCs
FX2N/FX2Nc PLCs [whose production is finished]
Manual name Manual number Supplle.d.WIth LTS Contents]
or Additional Manual name code

PLC main unit
Details about the hardware including 1/0

FX1s HARDWARE MANUAL JY992D83901 Additional Manual specifications, wiring, installation and -
maintenance of the FX1s PLC main unit.
Details about the hardware including 1/0

FX1N HARDWARE MANUAL JY992D89301 Additional Manual specifications, wiring, installation and -
maintenance of the FX1N PLC main unit.
Details about the hardware including I/O

FX2N HARDWARE MANUAL JY992D66301 Additional Manual specifications, wiring, installation and 09R508
maintenance of the FX2N PLC main unit.
Details about the hardware including I/O

FXINC HARDWARE MANUAL JY992D92101 Additional Manual | SPecifications, wiring, instaliation and 09R505
maintenance of the FX1NC PLC main unit.
(Japanese only)
Details about the hardware including I/O

FXane HARDWARE MANUAL JY992D76401 Additional Manual specifications, wiring, installation and 09R509
maintenance of the FX2nC PLC main unit.

Programming

. . Details about simple N : N link, parallel link,
FX Series User's Manual -Data JY997D16901 Additional Manual computer link and no-protocol communication 09R715

Communication Edition

(RS instruction and FX2N-232IF).

15

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

FXos/FXo/FXoN/FXu/FX2c PLCs [whose production is finished]

Manual name

PLC main unit

FXo/FXoN HARDWARE MANUAL

Manual number

JY992D47501

Supplied with product
or Additional Manual

Supplied with product

Contents

Details about the hardware including I/O
specifications, wiring, installation and
maintenance of the FXo/FXoN PLC main unit.

Model
name code

FXos HARDWARE MANUAL

JY992D55301

Supplied with product

Details about the hardware including 1/0
specifications, wiring, installation and
maintenance of the FXos PLC main unit.

FX/FX2c HARDWARE MANUAL

Programming

FX Series User's Manual -Data
Communication Edition

JY992D47401

JY997D16901

Supplied with product

Additional Manual

Details about the hardware including /0
specifications, wiring, installation and
maintenance of the FXu/FX2c PLC main unit.

Details about simple N : N link, parallel link,
computer link and no-protocol communication
(RS instruction and FX2N-232IF).

09R715

Manuals of models whose production is finished

Production is finished for FXos/FXo/FXoN/FXU/FX2c/FX2N/FX2Nc PLCs.

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Generic Names and Abbreviations Used in Manuals

Abbreviation/generic name Name

FX3u Series or FX3u PLC Generic name of FX3u Series PLCs
FX3uc Series or FX3uc PLC Generic name of FX3ucC Series PLCs
FX3G Series or FX3G PLC Generic name of FX3G Series PLCs
FX3Gc Series or FX3cc PLC Generic name of FX3GC Series PLCs
FX3s Series or FX3s PLC Generic name of FX3s Series PLCs
FX2N Series or FX2N PLC Generic name of FX2N Series PLCs
FX2Nc Series or FX2nC PLC Generic name of FX2NC Series PLCs
FX1N Series or FX1N PLC Generic name of FX1N Series PLCs

Generic name of FX1NC Series PLCs

FXine Series or FXING PLC These products can only used in Japan.

FX1s Series or FX1s PLC Generic name of FX1s Series PLCs

FXu Series or FXu PLC Generic name of FXU(FX,FX2) Series PLCs

FXac Series or FX2c PLC Generic name of FX2C Series PLCs

FXoN Series or FXoN PLC Generic name of FXoN Series PLCs

FXos Series or FXos PLC Generic name of FXos Series PLCs

FXo Series or FXo PLC Generic name of FXo Series PLCs

Special adapters

CF card special adapter Generic name of CF card special adapters
CF-ADP FX3u-CF-ADP

Programming language

ST Abbreviation of structured text language

Structured ladder Abbreviation of ladder diagram language

FBD Abbreviation of function block diagram language

Q/L/F Structured Programming

Manual (Fundamentals) Abbreviation of MELSEC-Q/L/F Structured Programming Manual (Fundamentals)

FX Structured Programming Manual

[Device & Common] Abbreviation of FXCPU Structured Programming Manual [Device & Common]

FX Structured Programming Manual

[Basic & Applied Instruction] Abbreviation of FXCPU Structured Programming Manual [Basic & Applied Instruction]

FX Structured Programming Manual
[Application Functions]

COMMUNICATION CONTROL
EDITION

Abbreviation of FXCPU Structured Programming Manual [Application Functions]

Abbreviation of FX Series User's Manual-DATA COMMUNICATION CONTROL EDITION

Abbreviation of FX3s/FX3G/FX3GC/FX3U/FX3uc Series User's Manual-ANALOG CONTROL
EDITION

Abbreviation of FX3s/FX3G/FX3GC/FX3U/FX3uc Series User's Manual-POSITIONING CONTROL
EDITION

ANALOG CONTROL EDITION

POSITIONING CONTROL EDITION

17

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.1 Outline of Structured Programs and Programming languages

1.

Outline

This manual explains setting of sequence instructions for structured programs provided by GX Works2.
Refer to another manuals for device, parameter, and application functions for structured programs.
Refer to the following manual for label, data types and programming languages for structured programs.

— Q/L/F Structured Programming Manual (Fundamentals)

Outline of Structured Programs and Programming languages

Outline of Structured Programs

You can construct two or more programs (program blocks) into one program.
Because you can divide the entire machine processing into small sub processes and create a program for
each sub process, you can create a program for a large system efficiently.

. Structured program

Program structuring is a technique to divide the contents of control executed by the PLC CPU into
hierarchical small units (blocks) of processing, and then construct a program. By using this technique, you
can design a program while recognizing structuring of a sequence program.

Advantages of hierarchical program

* You can examine the outline of a program at first, and then design its details gradually.

* Program blocks located at the lowest level in the hierarchy are extremely simple and highly dependent.

Advantages of program consisting of program blocks

» Because the processing of each block is clear, the entire program is easy to understand.

» The entire program can be divided into several blocks that are created by several people.

» The program reusability is improved, and the development efficiency is improved accordingly.

. Improved reusability of programs

You can save program blocks in a library. Program resources in the library can be shared, and often used
again.

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.1 Outline of Structured Programs and Programming languages

11.2 Programming languages

The following programming languages can be used in each program block.

Graphic languages

1. Structured ladder language
This graphic language is created based on the relay circuit design technology.
A circuit always starts from the bus line located on the left side.
The structured ladder language consists of contacts, coils, functions and function blocks. These components
are connected with vertical lines and horizontal lines.

1 X000 X001 Y000
— H { »— |Output Y000

Y000

DO —s d— D2

When X001 is ON, the contents
of DO are transferred to D2.

2. FBD [Function Block Diagram language]
FBD is a graphic language easy to understand visually.
You can easily create programs by connecting parts (functions and function blocks) for special processing,

L EQ AND INT_TO_WORD_E
DO — EN ENO}—
D2 — X000 — K4X010 —_INT i
When the contents | X001
of DO are equivalent | X002 — XOR
to the contents of D30
D2, EQ turns ON. D20 |

Text language

1. ST ("Structured text language")
The ST language can describe control achieved by syntax using selective branches with conditional
statements and repetition by repetitive statements in the same way as high-level languages such as C
language. By using the ST language, you can create simple programs easy to understand.

Y000:=(X000 OR Y000) AND NOT X001;
IF X001 THEN

D2:=DO0; (* When X001 is ON, the contents of DO are transferred to D2.%)
END_IF;
IF X002 THEN

D4:=D4+1; (* When X002 is ON, the contents of D4 are added by "1". *)
ELSE

D6:=D6+1; (* When X002 is OFF, the contents of D6 are added by "1". *)
END_IF;

19

=3
@
&
=
c
2
o
=
[y
@
L

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

1 Outline
1.2 PLC Series and Programming Software Version

1.2 PLC Series and Programming Software Version
PLC series Softvs;z:z:;c::gz)name GX Works2 version
FX3U-FX3UC
FX3G
FX2N+FX2NC
FX1NFX1NC
Ver. 1.08J or later
FX1s GX Works2
FXU-EX2C (SW1DNC-GXW2-E)
FXON
FX0-FX0S
FX3GC Ver. 1.77F or later
FX3s Ver. 1.492N or later
1.3 Cautions on Creation of Fundamental Programs
This section explains cautions on programming.
Refer to the following manual for cautions on structured programs and programming languages:
— QJ/L/F Structured Programming Manual (Fundamentals)
Refer to the following programming manual for detailed operations of and cautions on devices and
parameters:
— FX Structured Programming Manual [Device & Common]
1.3.1 1/0 PROCESSING AND RESPONSE DELAY

. Operation timing of I/O relays and resonse

delay

FX PLCs execute the 1/0 processing by repeating
the processing (1) to processing (3).
Accordingly, the control executed by PLCs
contains not only the drive time of input filters and
output devices but also the response delay caused
by the operation cycle.

Acquiring the latest 1/O information
For acquiring the latest input information or
immediately outputting the operation result in the
middle of the operation cycle shown above, the 1/0
refresh instruction "REF" is available.

. Short input pulses cannot be received.

The ON/OFF status of input terminals

[Input processing]| is received at one time.
Input image . .
memory is read. Input image is read,
and operation is
)

(1)

T

Scan executed according
time [Program processing] | to program.

; Image memory of
gc))/pc):(laer)atlon each device is updated.

[Output processing]
Result is transferred
to output latch

memory.

Output
devices
are driven.

Batch I/O method
(refresh method)

The ON duration and OFF duration of inputs in PLCs require longer time than "PLC scan time + Input filter

response delay."

When the response delay "10 ms" of the input filter is considered and the scan time is supposed as "10 ms",
the ON duration and OFF duration should be at least 20 ms respectively.

Accordingly, PLCs cannot handle input pulses at 25 Hz (1000 / (20+20) = 25) or more. However, the situation
can be improved by PLC special functions and instructions.

Convenient functions for
improvement
By using the following functions, PLCs

This "input ON" can be received.
This "input ON" This "input OFF"

can receive pulses shorter than the rcannot be received. l rcannot be received.

operation cycle. OFF| ON | ON [OFF |

+ High speed counter function Program Program Program Program
. . processing processing processing processing

* Input interrupt function L

+ Pulse catch function T Input processing Operation cycle
i . . Output (—» Time)

* Input filter value adjustment function processing

20

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.3 Cautions on Creation of Fundamental Programs

1.3.2 Double output (double coil) operation and countermeasures

This subsection explains the double output (double coil) operation and countermeasures.

1. Operation of double output

When a coil (output variable) is used twice (double coil) in another program block to be executed or in the 2

same program block, the PLC gives priority to the last coil. _

Suppose that the same coil Y003 is used in two positions as §.

shown in the figure on the right. Input processing =

For example, suppose that X001 is ON and X002 is OFF. X001=ON X002=OFF &

In the first coil Y003, the image memory turns ON and the output X001 First &3, Y003 3

Y004 turns ON also because the input X001 is ON. T (- =9

In the second coil YOO3, however, the image memory is setto | §'§_

OFF because the input X002 is OFF. Y003 Y004 S

It (- &

Accordingly, the actual output to the outside is "Y003 = OFF, -----rmmmmmmmmmmmmem oo 4
Y004 = ON". Second _

X002 43, Y003 Zrz

1 Cr H

___ =)

2383

QhQ_

Output processing
Y003=OFF Y004=0ON

2. Countermeasures against double output
Double output (double coil) does not cause an illegal input (program error), but the operation is disrupted as
described above. Change the program as shown in the example below.

seppetdais @) uononysujoiseg

A B Y000
A B Y000 | " (- _
—— it (» 2
C E S
Y —i # S
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Ignored D
(i — 7
””” cC E Y000 o
—it 4 (» 38
eg
g=
D A B M100 3z
LS LS 0 ge
Or 2
c E M101 oes
— ¥ (E gg
B22
D 333
2z
M100 Y000 .
1 (» &ZE
838
M101 g8
SET, RST or jump instruction can be used instead, or a same output coil can be programmed at each state by §7 3

using step ladder instructions STL or RET.
When you use the step ladder instruction STL or RET, note that the PLC regards it as double coils if you

-
O w

program, inside the state, an output coil located outside the RET from another program block or the STL o%>
instruction. 585
955
(ORI
g2
gag
= 3

21

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.3 Cautions on Creation of Fundamental Programs

1.3.3 Circuits which cannot be created by structured ladder programs and
countermeasures

1. Bridge circuit
A circuit in which the current flows in both directions should be changed as shown in the figure on the right (so
that a circuit without D and a circuit without B are connected in parallel).

F C E B F
{ r —t it it (r
A
—
—
C
—

2. Coil connection position

* You can program a contact on the right side of a coil. In this case, be sure to program a coil (including a
function or a function block) at the end of the circuit.

A B C D A E
Ly : it)=

Or

5

A

A E B D C
: () It It (»
1.3.4 Handling of general flags
In some types of sequence instructions, the following flags operate:
<Examples> M8020: Zero flag M8021: Borrow flag
M8022: Carry flag MB8029: Instruction execution complete flag

M8090: Block comparison signal’ ' M8328: Instruction non-execution flag ™’
M8329: Instruction execution abnormal complete flag 2
M8304: Zero flag™? M8306: Carry flag ™2

*1. Supported only by FX3u and FX3uc PLCs.

*2. Supported only by FX3s, FX3G, FX3Gc, FX3uU and FX3uc PLCs.
Each of these flags turns ON or OFF every time the PLC executes a corresponding function. These flags do
not turn ON or OFF when the PLC does not execute a corresponding function or when an error occurs.
Because these flags turn ON or OFF in many sequence instructions, the ON/OFF status of flags changes
every time such instructions are executed.
Refer to the examples in the next page, and program a flag contact just under the target sequence instruction.

22

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

1 Outline

1.3 Cautions on Creation of Fundamental Programs

1. Program containing many flags (example of instruction execution complete flag M8029)
If you program the instruction execution completion flag M8029 for two or more sequence instructions which
actuate the flag M8029, you cannot judge easily by which sequence instruction the flag M8029 is controlled.
In addition, the flag M8029 does not turn ON or OFF correctly for each corresponding sequence instruction.
Refer to the next page when you would like to use the flag M8029 in any position other than the position just
under the corresponding sequence instruction.

Good example

Bad example

—¥—

M8029 works as
a flag to indicate
that execution
of DSW is
completed.

—¥—

M8029 works as
a flag to indicate
that execution
of DPLSY is
completed.

M8029 works as a
flag to indicate that
execution of DPLSY
(on the lower side)
is completed.

M8029 works as
a flag to indicate
that execution
of DSW is
completed.

M8029 works as
a flag to indicate
that execution of
DPLSY (on the
upper side) is
completed.

—¥—

M8000 DSW
—t EN ENO|—
S d1— Y010
n d2— DO
MUL_E
— EN ENOR—
Egﬁ‘},‘fg{;’g_‘s DO —_IN — Number of output pulses
10 —_IN
X000 MO
—! (Sr—
MO DPLSY
—t EN ENO|—
1000 —s1 df— Y000
Number of | s2
output pulses
MO
R—
Execution is
completed.

output pulses 2~ |

——t {R>— Program for DPLSY (on the upper side)
Execution is
completed.
M8000 DSW

—t EN ENO|—

X010 —s d1— Y010

1—n d2i— DO
X000 MO
—t (Sy—
MO DPLSY DPLSY (on the upper side)

—t EN ENO|—

1000 —s1 dl— Y000

Number of s2
output pulses
% MUL_E Program for DSW
I EN ENO|—
Execution is DO —_IN — Number of output pulses
completed. 10 —{_IN
M1 DPLSY DPLSY (on the lower side)

—t EN ENO|—

1000 —s1 dl— Y001

Number of s2

23

=3
@
&
=
c
2
o
=
[y
@
L

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

1 Outline
1.3 Cautions on Creation of Fundamental Programs

2. Introduction of method for using flags in any positions other than directly under sequence

instructions.

When two or more sequence instructions are programmed, general flags turn ON or OFF when each

sequence instruction turns ON.

Accordingly, when using a flag in any position other than directly under a sequence instruction, set to ON or
OFF another bit device (variable), and then use the contact (variable) of the device as the command contact.

M8000 DSW
—\(— —t EN ENO—
X010 —s d1— Y010
DSW execution 1 —i dg— Do
complete flag
M8029 is changed M802 M100
to M100. 8? o —
Execution is
completed. /
MO /| ppLsy
——t EN ENO—
1600 —|s1 dl— Y000
DPLSY execution Number'of —s2
complete flag outpuf pulses
M8029 is changed MO
to M200. v (Ry—
Execution is,
completed. M200
¥ —
¥ S
It works as DSW
execution complete flag. .~
M100 MUL_E
—t — - EN ENO—
DO —{_IN — Number of
10 — IN output pulses
It works as DPLSY
execution complete flag.
M200 Y030
—t { —

24

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.3 Cautions on Creation of Fundamental Programs

1.3.5

Handling of operation error flag

1.3.6

When there is an error in the sequence instruction configuration, target device or target device number range
and an error occurs while operation is executed, the following flag turns ON and the error information is store.

. Operation error

Device storing error occurrence step
Error flag Device storing error code FXO0S/FX0/FXON/FX1S/FX1N/FX1NC/ EX3UIEX3UC
FXU/FX2C/FX2N/FX2NC/FX3S/FX3G/FX3GC
M8067 D8067 D8069™" D8315, D8314

*1. When the error occurrence step is up to the 32767th step in FX3u and FX3uc PLCs, the error
occurrence step can be checked in D8069 (16 bits).

* When an operation error has occurred, M8067 is set, D8067 stores the operation error code number, and
the device storing error occurrence step (see the table above) stores the error occurrence step number.

« If another error occurs in another step, the stored data is updated in turn to the error code and step number
of the new error. (These devices are set to OFF when errors are cleared.)

* When the PLC mode switches from STOP to RUN, these devices are cleared instantaneously, and then
set to ON again if errors have not been cleared.

. Operation error latch

Device storing error occurrence step
Error flag Device storing error code FXO0S/FX0/FXON/FX1S/FX1N/FX1NC/ S
FXU/FX2C/FX2N/FX2NC/FX3S/FX3G/FX3GC
M8068 - D8068™2 D8313, D8312

*2. When the error occurrence step is up to the 32767th step in FX3u and FX3uc PLCs, the error
occurrence step can be checked in D8068 (16 bits).

* When an operation error has occurred, M8068 is set, and the device storing error occurrence step (see the
table above) stores the error occurrence step number.

» Even if another error has occurred in another step, the stored data is not updated, and remains held until
these devices are forcibly reset or until the power turns OFF.

Handling of function extension flag

In some sequence instructions, the function can be extended by combining a specific special auxiliary relay
determined for each sequence instruction. An example is explained below.

* When X000 turns ON, this instruction exchanges the

contents of D10 and D11 with each other. _X?OO ENXCHENO
d1— D10
d2}|— D11
» |f M8160 has been driven before the XCH function and
the source and destination of the XCH instruction are X000 M8160 Function extension flag
specified to the same device, high-order 8 bits and low- for the XCH instruction
order 8 bits are exchanged with each other inside the XCHP
device. EN ENO
d1— D10] Same
d2}— D10 | number
* For returning this XCH to the normal XCH function, it is M8000 M8160
necessary to set M8160 to OFF. — A —

When using an instruction requiring the function extension flag in an interrupt program, program DI function
(for disabling interrupt) before driving the function extension flag, and program El function (for enabling
interrupt) after turning OFF the function extension flag.

25

=3
@
&
=
c
2
o
=
[y
@
L

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.3 Cautions on Creation of Fundamental Programs

1.3.7

Limitation in the number of instructions and limitation in
simultaneous instruction instances

Each sequence instruction has a limitation in the number of using the instruction and the number of
simultaneous instances of instructions. The limitation, however, differs from one PLC to another.

Limitations in the number of instructions

Some instructions can be used only up to the specified number of times.
As for the instructions having a limited number of times of use and whose operands allow indexing, device
numbers and numeric values in such instructions can be changed by index registers. By indexing, when
driving multiple instances simultaneously is required, such instruction can be used as if they were used
beyond the allowable number of times.

— FX Structured Programming Manual [Device & Common]
Note that some PLCs do not provide some instructions.

— 2. Instruction List

FX3s, FX3G, FX3Gc, FX3u and FX3uc PLCs

Instruction | Allowable number of times of
name use Remarks

MTR 1 -

8 Pay attention so that this instruction does not overlap the input numbers in interrupt
SPD . . . input in DVIT instruction, DOG inputs in ZRN instruction, zero point signal in DSZR

(1 instruction / 1 input or fewer) | . Lo . . .
instruction, input interrupt numbers and high speed counter input numbers.

IST 1 -
SORT 1 FX3S, FX3G or FX3GC PLCs are not provided.
TKY 1 FX3S, FX3G or FX3GC PLCs are not provided.
HKY 1 FX3S, FX3G or FX3GC PLCs are not provided.
ARWS 1 FX3S, FX3G or FX3GC PLCs are not provided.
PR 2 FX3S, FX3G or FX3GC PLCs are not provided.
SORT2 2 FX3S, FX3G or FX3GC PLCs are not provided.

5)
DUTY (1 instruction / 1 output or fewer) FX3S, FX3G or FX3GC PLCs are not provided.
DHSCT 1 FX3S, FX3G or FX3GC PLCs are not provided.

FX1s, FX1N, FX1NC, FX2N and FX2Nc PLCs

Instruction Allowable number of times of use
name FX1S, FX1N, FX1INC FX2N, FX2NC
MTR 1 1
SPD 1 1
PWM 1 1
IST 1 1
ABSD 1 1
INCD 1 1
ROTC FX1S, FX1N or FX1NC PLCs are not provided. 1
SORT FX1S, FX1N or FX1NC PLCs are not provided. 1
TKY FX1S, FX1N or FX1NC PLCs are not provided. 1
HKY FX1S, FX1N or FX1NC PLCs are not provided. 1
DSW No limit 2
SEGL No limit 2
ARWS FX1S, FX1N or FX1NC PLCs are not provided. 1
PR FX1S, FX1N or FX1NC PLCs are not provided. 2

26

FXCPU Structured Programming Manual 1 Outline
[Basic & Applied Instruction] 1.3 Cautions on Creation of Fundamental Programs

FXos, FXo, FXoN, FXu and FX2c PLCs

Instruction Allowable number of
. Remarks
name times of use
MTR 1 FX0, FX0S or FXON PLCs are not provided.
PLSY 1
PWM 1 2_
IST 1 . 2
c
ABSD 1 2
S
INCD 1 =
ROTC 1 o
SORT 1
TKY 1) 3
FXO0S, FX0 or FXON PLCs are not provided. =0
HKY 1 3o
DSW 2 §&
SEGL 2 SE
ARWS 1 2
PR 2 4
Limitation in simultaneous instances of instructions 252
. co=
Some instructions can be programmed two or more times, but the number of simultaneous instances is §§_%
limited. Even in instructions not shown below, if two or more instructions are driven at the same time fora 28 g
same I/O number, it is regarded as double outputs. In some combinations of instructions, the operation may &

be disrupted, or the instructions cannot be executed.
For details, refer to the caution described in each instruction page.

e FX3s, FX3G, FX3Gc, FX3uU and FX3uc PLCs
PLSY, PWM, PLSR, DSZR, DVIT' !, ZRN, PLSV, DRVI, DRVA
DHSCS, DHSCR, DHSZ, DHSCT!
RS, RS2, IVCK, IVDR, IVRD, IVWR, IVBWR™!, IVMC
FLCRT', FLDEL™, FLWR™', FLRD™!, FLCMD™!, FLSTRD"
*1. FX3s, FX3G and FX3Gc PLCs are not compatible.

¢ FX1S, FX1N, FX1NC, FX2N and FX2NC PLCs
DHSCS, DHSCR, DHSZ(FX1s, FX1N, FX1Nc, FX2N and FX2NC PLCs)
RS (FX2N and FX2NC PLCs)
PLSY, PLSR, RS, ZRN, PLSV, DRVI, DRVA(FX1s, FX1N and FX1NC PLCs)

* FXos, FXo0, FX0N, FXU and FX2C PLCs
DHSCS, DHSCR, DHSZ(FXo, FXos, FXoN, FXu and FX2c PLCs)
RS (FXoN, FXu and FX2c PLCs)

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

27

FXCPU Structured Programming Manual 2 Instruction List
[Basic & Applied Instruction] 2.1 Basic Instructions

2. Instruction List

This chapter introduces a list of instructions available in programming.

2.1 Basic Instructions

Applicable PLCs
. . n T m U ;
Instruction name Function X X m be] bed m c m ; Reference
w w > N = b = >
c @ @ z z o~ T) =
| o G G @ (S z @
A1) & & a2 =3
LD Initial logical operation contact type NO
(normally open)
Initial logical operation contact type NC
LDI
(normally closed)
AND Serial connection of NO contacts v v v v v v v v ¥ | Section 5.1
ANI Serial connection of NC contacts
OR Parallel connection of NO contacts
ORI Parallel connection of NC contacts
LDP Initial logical operation of rising edge pulse
LDF Initial logical operation of falling edge pulse
ANDP Serial connection of rising edge pulse)
- - - v v v v v v Section 5.2
ANDF Serial connection of falling edge pulse
ORP Parallel connection of rising edge pulse
ORF Parallel connection of falling edge pulse
ouT Coil drive v v v v v v v v v Section 5.3
OUT_T Timer drive v v v v v v v v v | Section 5.4.1
OUT_C
Counter drive v v v v v v v v v" | Section 5.5.1
OUT_C_32
AND(""") Serial connection of circuit block
v v v v v v v v v Section 5.6
OR(""") Parallel connection of circuit block
MPS Stack pushdown
MRD Stack read v v v v v v v v v Section 5.7
MPP Stack popup
INV Invert .the current result of the internal PLC v v v v v v Section 5.8
operations
MEP Conversion of operation result to leading edge
pulse
- - — 1 v v Section 5.9
MEF Conversion of operation result to trailing edge
pulse
SET Set bit device latch ON
RST Reset bit device OFF and clear current value and | ¥ v v v v v v v v' | Section 5.10
resister
PLS Rising edge pulse differential output
v v v v v v v v v | Section 5.11
PLF Falling edge pulse differential output
MC Connection to common contact
v v 4 v v v v v v" | Section 5.12
MCR Clear connection to common contact
END Program END, I/O refresh and return to step 0 v v v v v v v v v' | Section 5.13
NOP No operation or null step Section 5.14

*1. The instruction is provided in the FX3u and FX3uc PLCs Ver. 2.30 or later.

FXCPU Structured Programming Manual 2 Instruction List
[Basic & Applied Instruction] 2.2 Step Ladder Instructions

2.2 Step Ladder Instructions

Applicable PLCs
. . m m M m =
Instruction name Function x X m > m c m = Reference
w ©w DY N = > = x
[= [) w P4 4 o T 5 2
| © 1 5| ©o @ 'S N)
<2 & a2 <2 =
STL Starts step ladder v v v v v v v v v Section 6.2
RET Completes step ladder v v v v v v v v Section 6.3
2.3 Applied Instructions
Applicable PLCs
Instruction name 2EENHE Function § ; % § ;! J Reference
condition S| 8| | S| 2| 2| E| 2| x
c @ w F4 F4 N T 5 £
| © 1 8| o @ ' = | g
= = = = o
Program Flow
CJ Continuous v v v v v v v v v
Conditional jump Section 7.1
CJP Pulse v v v v v v v
CALL Continuous v v v v v v v
Call subroutine Section 7.2
CALLP Pulse v v v v v v v
SRET Continuous | Subroutine return v v v v v v v Section 7.3
IRET Continuous | Interrupt return v v v v v v v v v Section 7.4
DI Continuous | Disable interrupt v v v v v v v v v Section 7.5
El Continuous | Enable interrupt v v v v v v v v v Section 7.6
FEND Continuous | Main routine program end v v v v v v v v v Section 7.7
WDT Continuous v v v v v v v v v
Watchdog timer refresh Section 7.8
WDTP Pulse v v v v v v v
FOR Continuous | Start a FOR/NEXT loop v v v v v v v v v Section 7.9
NEXT Continuous | End a FOR/NEXT loop v v v v v v v v v | Section 7.10
Move and Compare
CMP Continuous v v v v v v v v v
CMPP Pulse v v v v v v v
Compare Section 8.1
DCMP Continuous v v v v v v v v v
DCMPP Pulse v v v v v v v
ZCP Continuous v v v v v v v v v
ZCPP Pulse v v v v v v v
Zone compare Section 8.2
DzCP Continuous v v v v v v v v v
DzCPP Pulse v v v v v v v
MOV Continuous v v v v v v v v v
MOVP Pulse v v v v v v v
Move Section 8.3
DMOV Continuous v v v v v v v v v
DMOVP Pulse v v v v v v v
SMOV Continuous v v v v v
Shift move Section 8.4
SMOVP Pulse v v v v v
CML Continuous v v v v v
CMLP Pulse v v v v v
Inversion move Section 8.5
DCML Continuous v v v v v
DCMLP Pulse v v v v v
BMOV Continuous v v v v v v v v
Block move Section 8.6
BMOVP Pulse v v v v v v v

29

(@]
=
=
(]

1517 uonoNASU|

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puUe ofjaWyY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Instruction name

Execution
condition

Function

Applicable PLCs

(2)nexd

(0)oex4d

SeEXd

(0)NZX4
(2)NLXA4
SiXd

JzXd/nX4d

NOXd

(s)oxd

Reference

Move and Compare

FMOV Continuous v v v v v
FMOVP Pulse v v v v
Fill move Section 8.7
DFMOV Continuous v v v v *q
DFMOVP Pulse v v v v *1
XCH Continuous v v v
XCHP Pulse v v v
Exchange Section 8.8
DXCH Continuous v v v
DXCHP Pulse v v v
BCD Continuous v v v v v v v v v
BCDP Pulse v v v v v v v
Conversion to binary coded decimal Section 8.9
DBCD Continuous v v v v v v v v v
DBCDP Pulse v v v v v v v
BIN Continuous v v v v v v v v v
BINP Pulse v v v v v v v
Conversion to binary Section 8.10
DBIN Continuous v v v v v v v v v
DBINP Pulse v v v v v v v

Arithmetic and Logical Operation

ADDP Pulse v v v v v v v
DADD Continuous | Addition 4 v v v 4 v 4 v 4 Section 9.1
DADDP Pulse v v v v v v v
SUBP Pulse v v v v v v v
DSUB Continuous | Subtraction v v v v v v v v 4 Section 9.2
DSUBP Pulse v v v v v v v
MULP Pulse v v v v v v v
DMUL Continuous | Multiplication v v v v v v v v v Section 9.3
DMULP Pulse v v v v v v v
DIVP Pulse 4 v v v v v v
DDIV Continuous | Division v v v v v v 4 v v Section 9.4
DDIVP Pulse v v v v v v v
INC Continuous v v v v v v v v v
INCP Pulse v v v v v v v
OING o rTE— Increment — — — v — v ~ — v Section 9.5
DINCP Pulse v v v v v v v
DEC Continuous v v v v v v v v v
DECP Pulse v v v v v v v
ODEG rorTE— Decrement — — — v — v ~ — v Section 9.6
DDECP Pulse v v v v v v v
WAND Continuous v v v v 4 v v v v
WANDP Pulse v v v v v v v
DAND Confimious Logical word AND — — — — — — — — — Section 9.7
DANDP Pulse v v v v v v v
WOR Continuous v v v v 4 v v v v
WORP Pulse v v v v v v v
DOR Contimious Logical word OR — — — — — — — — — Section 9.8
DORP Pulse v v v v v v v
*1. The instruction is provided in the FXu PLC Ver. 2.30 or later.

30

2 Instruction List

FXCPU Structured Programming Manual

[Basic & Applied Instruction] 2.3 Applied Instructions

Execution

Instruction name "
condition

Arithmetic and Logical Operation

Function

Applicable PLCs

(9)nex4d

(9)oex4

SEXd

(o)NZX4
(2)NILXA
SiXd

Jexd/nXd

NOXd

(s)oxd

Reference

WXOR Continuous v v v v v v v v v Q.
c
WXORP Pulse i v v v v v v v =
Logical exclusive OR Section 9.9 S
DXOR Continuous v v v v v v v v v =
DXORP Pulse v v v v v v v
NEG Continuous v v v 3
NEGP Pulse . v v v =0
- Negation Section 9.10)
DNEG Continuous v v v = é‘
Q.
DNEGP Pulse v v v g5
Rotation and Shift Operation §
ROR Continuous v v v v v -
RORP Pulse v v v v v 4
Rotation right Section 10.1
DROR Continuous v v v v v Efuls
g5=
DRORP Pulse v v v v v So =
= Q
ROL Continuous v v v v v 3 g'g
ROLP Pulse v v v v v =
Rotation left Section 10.2
DROL Continuous v v v v v 5
DROLP Pulse v v v v v
RCR Continuous v v v é_?
RCRP Pulse o v v v ;
- Rotation right with carry Section 10.3 4
DRCR Continuous v v v =
DRCRP Pulse v v v <)
RCL Continuous v v v 6
RCLP Pulse v v v _
Rotation left with carry Section 10.4 28
DRCL Continuous v v v s
o
DRCLP Pulse v v v §' §
SFTR Continuous | vlivi]iv v v v v v]v %
Bit shift right Section 10.5
SFTRP Pulse v v v v v v v
SFTL Continuous v v v v v v v v v 7
Bit shift left Section 10.6
SFTLP Pulse v v v v v v v ==
3=
WSFR Continuous . v v v v v 8g
Word shift right Section 10.7 L=
WSFRP Pulse v v v v v _3n 2
=
WSFL Continuous v v v v v gs
Word shift left Section 10.8 T
WSFLP Pulse v v v v v
SFWR Continuous | shift write v v v v v v v
Section 10.9 =3
SFWRP Pulse | [FIFO/FILO control] vl vl vl vl v v v g2
3 =
SFRD Continuous | shift read % v | v v | v v = § 2
Section 10.10 53
SFRDP Pulse [FIFO control] v v v v v v v =g
Data Operation g
ZRST Continuous v v v v v v v v v
Zone reset Section 11.1 9
ZRSTP Pulse v v v v v v v
. 53Z
DECO Continuous v v v v v v v v v ags
Decode Section 11.2 © 38
DECOP Pulse v v v v v v v o % =S
ENCO Continuous v v v v v v v v v s 3 5
Encode Section 11.3 g3
ENCOP Pulse v v v v v v v 2 @
SUM Continuous v v v v v 1 0
SUMP Pulse v v v v v .
i Sum of active bits Section 11.4 Sas
DSUM Continuous v v v v v g gT
DSUMP Pulse v vV v 8BS
SR
=3 g
§°g
= @

31

(@]
=
=
(]

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Instruction name

Execution
condition

Function

Applicable PLCs

(2)nex4d

(0)oex4

SeEXd

(o)NZX4

(2)NLXH

SiXd

Jex4d/nX4

NOXd

Reference

(s)oxd

Data Operation

BON Continuous v v v v v
BONP Pulse » . v v v v v]
Check specified bit status Section 11.5
DBON Continuous v v v v v
DBONP Pulse v v v v v
MEAN Continuous 4 v v v v
MEANP Pulse v v v v v
Mean Section 11.6
DMEAN Continuous v v v v *1
DMEANP Pulse v v v v *1
ANS Continuous | Timed annunciator set v v v v Section 11.7
ANR Continuous v v v v
Annuncator reset Section 11.8
ANRP Pulse v v v v
SQR Continuous v v v
SQRP Pulse v v v
. Square root Section 11.9
DSQR Continuous v v v
DSQRP Pulse v v v
FLT Continuous v *2 v v *3
FLTP Pulse . . . v *2 v v *3 .
: Conversion to floating point Section 11.10
DFLT Continuous v *2 v v *3
DFLTP Pulse v *2 v v *3
High Speed Processing
REF Continuous v v v v v v v v v
Refresh Section 12.1
REFP Pulse v v v v v v v
REFF Continuous v v v
Refresh and filter adjust Section 12.2
REFFP Pulse v v v
MTR Continuous | Input matrix v v v v v v v Section 12.3
DHSCS Continuous | High speed counter set v v v v v v v v v
Section 12.4
DHSCS_| Continuous | High Speed Interrupt Counter Set v v v
DHSCR Continuous | High speed counter reset v v v v v v v v v | Section 12.5
DHSZ Continuous | High speed counter zone compare 4 v 4 v v Section 12.6
SPD Continuous v v v v v v v
- Speed detection Section 12.7
DSPD Continuous *4 v v
PLSY Continuous v v v v v v v v v]
- Pulse Y output Section 12.8
DPLSY Continuous v v v v v v v v v
PWM Continuous | Pulse width modulation v v v v v v v v v | Section 12.9
PLSR Continuous .) v v v v v v]
Acceleration/deceleration setup Section 12.10
DPLSR Continuous v v v v v v

Handy Instruction

IST Continuous | Initial state 4 v v v 4 v 4 v v" | Section 13.1
SER Continuous v v v v *3
SERP Pulse v v v v *3)
- Search a data stack Section 13.2
DSER Continuous v v v v *3
DSERP Pulse v v v v *3
ABSD Continuous v v v v v v v)
- Absolute drum sequencer Section 13.3
DABSD Continuous 4 v 4 v 4 v *1
INCD Continuous | Incremental drum sequencer 4 v 4 v 4 v 4 Section 13.4
TTMR Continuous | Teaching timer v v v Section 13.5
*1. The instruction is provided in the FXu PLC Ver. 2.30 or later.
*2. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*3. The instruction is provided in the FXu PLC Ver. 3.07 or later.
*4. The 32-bit operations are provided in the FX3uc PLC Ver. 2.20 or later.

32

FXCPU Structured Programming Manual 2 Instruction List

[Basic & Applied Instruction] 2.3 Applied Instructions
o
S
Applicable PLCs 3
Instruction name Execution Function > V. % > X 3 Reference
condition >8< @ N S ; g % g x
3|59 |5|5|2|%5|2|@
= = = = o
Handy Instruction —
>
STMR Continuous | Special timer v v v Section 13.6 %
Q
ALT Continuous v v v v v v v v v] 5§
Alternate state Section 13.7 2
ALTP Pulse v v v v v v v &
RAMP Pulse Ramp variable value v v v v v v v v v | Section 13.8
ROTC Continuous | Rotary table control v v v Section 13.9 3
SORT Continuous | SORT tabulated data v v *1 Section 13.10 29
52
External FX 1/O Device 5@
o=
TKY Continuous v v v = %—
Ten key input Section 14.1 =}
DTKY Continuous v v v [=}
HKY Continuous o 4 4 4 .
- Hexadecimal input Section 14.2 4
DHKY Continuous v v v —mT
=]
DSW Continuous | Digital switch v v v v v v v Section 14.3 %‘?_) =
SEGD Continuous v v v g8 %
Seven segment decoder Section 14.4 228
SEGDP Pulse v v v o=
SEGL Continuous | Seven segment with latch v v v v v v v Section 14.5
ARWS Continuous | Arrow switch v v v Section 14.6 5
ASC Continuous | ASCII code data input v v v Section 14.7 o
@,
PR Continuous | Print (ASCII code) v v v Section 14.8 @
>
FROM Continuous v v v v *9 v g—
e
FROMP Pulse v v v v *9 5
Read from a special function block Section 14.9 =
DFROM Continuous v v v v *2 v 6
DFROMP Pulse v v v v *9
5@
TO Continuous 4 v v 4 *2 v Z-g
=
TOP Pulse v v v v * 2 g
Write to a special function block Section 14.10 29
DTO Continuous v v v v *2 v g
DTOP Pulse v v v v *)
External Device (optional devices) 7
RS Continuous | Serial Communication v v v v v v *1 *3 Section 15.1 5z
s=
PRUN Continuous v v v v v v v % g
PRUNP Pulse vl vl vl v v v 2%
- Parallel run (octal mode) Section 15.2 o=t
DPRUN Continuous v v v v v v v 5§
DPRUNP Pulse v v v v v v v
ASCI Continuous v v v v v v *q *3
Hexadecimal to ASCII conversion Section 15.3 o=x
ASCIP Pulse v v v v v v *q g §g_
=3
HEX Continuous)) v v v v v v 1 *3 . 8es
ASCII to hexadecimal conversion Section 15.4 e3E
HEXP Pulse (A A R A A A S
o
CCD Continuous v v v v v v *1 *3 3
Check code Section 15.5
CCDP Pulse v v v v v v *q 9
*1. The instruction is provided in the FXu PLC Ver. 3.07 or later. 8§=&
55
*2. The instruction is provided in the FXu PLC Ver. 2.10 or later. gg%
T o4
*3. The instruction is provided in the FXoN PLC Ver. 1.20 or later. sS85
o o
S 3
S
288
oz
SS9 5
®352
R
gag
= @

33

FXCPU Structured Programming Manual 2 Instruction List
[Basic & Applied Instruction] 2.3 Applied Instructions

Applicable PLCs
Instruction name e aaen Function > ;2 % = X J Reference
condition Py) N [= % < % x
c @ w p4 P4 o~ T 5 =
s|lo|l?|a|la|l°| x| 2|
=~ = = =~ o
External Device (optional devices)
VRRD Continuous M| 23| vV *2 *2 v v
Volume read Section 15.6
VRRDP Pulse *1 *2*3 v *2 *2 v v
VRSC Continuous | 23| Vv *2 *2 v v
Volume scale Section 15.7
VRSCP Pulse M | 23| VvV *2 *2 v v
RS2 Continuous | Serial data communication 2 v v v Section 15.8
PID Continuous | PID control loop 4 v 4 v 4 v *4 Section 15.9

External Device

MNET Continuous *5
F-16NP/NT communication Section 16.1
MNETP Pulse *5
ANRD Continuous *5
Read from F2-6A Section 16.2
ANRDP Pulse *5
ANWR Continuous *5
Write to F2-6A Section 16.3
ANWRP Pulse *5
RMST Continuous | F2-32RM start v Section 16.4
RMWR Continuous v
RMWRP Pulse v
Write to F2-32RM Section 16.5
DRMWR Continuous v
DRMWRP Pulse v
RMRD Continuous v
RMRDP Pulse v
Read from F2-32RM Section 16.6
DRMRD Continuous v
DRMRDP Pulse v
RMMN Continuous v
F2-32RM monitor Section 16.7
RMMNP Pulse v
BLK Continuous *5
Specify F2-30GM Section 16.8
BLKP Pulse *5
MCDE Continuous *5
F2-30GM code Section 16.9
MCDEP Pulse *5
Data Transfer 2
ZPUSH Continuous 4
Batch store of index register Section 17.1
ZPUSHP Pulse v
ZPOP Continuous v
Batch POP of index register Section 17.2
ZPOPP Pulse v
Floating Point
DECMP Continuous v *3 v v
Floating point compare Section 18.1
DECMPP Pulse v *3 v v
DEZCP Continuous v v
Floating point zone compare Section 18.2
DEZCPP Pulse v v
DEMOV Continuous v *3 v
Floating point move Section 18.3
DEMOVP Pulse v *3 v

*1. The instruction is provided in the FX3u and FX3uc PLCs Ver. 2.70 or later.

*2. Though programmed, this instruction is not valid because the FX1NC, FX2NC or FX3Gc PLC does not
have a volume to read out under this instruction.

*3. The instruction is provided in the FX3G PLC Ver. 1.10 or later.
*4. The instruction is provided in the FXu and FX2c PLCs Ver. 3.30 or later.
*5. The instruction is not provided in the FXu and FX2c PLCs Ver. 3.30 or later.

w
S

FXCPU Structured Programming Manual 2 Instruction List

[Basic & Applied Instruction] 2.3 Applied Instructions
o
S
Applicable PLCs 3
Instruction name Execution Function i = = X X Yl Reference
condition S| & | | S| 2| || 2| 5
cle|g|zlz|2|3F| |2
| 6| | 8| 8| || 2| @
< & & < 3
Floating Point 5
>
DESTR Continuous i i i v =
Floatlng. point to character string Section 18.4 s
DESTRP Pulse conversion v g
DEVAL Continuous i i i v &
Charactgr string to floating point Section 18.5 @
DEVALP Pulse conversion v
DEBCD Continuous | Floating point to scientific notation | ¥ v) 3
) Section 18.6
DEBCDP Pulse conversion 4 v =9
=3
DEBIN Continuous | Scientifi i i i v v 5@
Suentlflp notation to floating point Section 18.7 %-S
DEBINP Pulse conversion v v 5 %_
DEADD Continuous RS 2
Floating point addition Section 18.8
DEADDP Pulse v *1 v v 4
DESUB Continuous))) v *1 v v)
Floating point subtraction Section 18.9 SmI
DESUBP Pulse v *1 v v 252
c O 5
DEMUL Continuous (A0 e I A 283
Floating point multiplication Section 18.10 29@
DEMULP Pulse (A B B A -
DEDIV Continuous v *1 v v
Floating point division Section 18.11
DEDIVP Pulse v *1 v v 5
DEXP Continuous)) v) w
Floating point exponent Section 18.12 @
DEXPP Pulse v o
DLOGE Continuous v 2.
Floating point natural logarithm Section 18.13 S
DLOGEP Pulse v =
=)
DLOG10 Continuous v
Floating point common logarithm Section 18.14 6
DLOG10P Pulse v
DESQR Continuous RS 28
Floating point square root Section 18.15 s
DESQRP Pulse 4 *1 4 v % g
DENEG Continuous v @ 3
Floating point negation Section 18.16
DENEGP Pulse v
INT Continuous v *1 v v 7
INTP Pulse v *1 v v .
- Floating point to integer conversion Section 18.17 g
DINT Continuous 4 *1 v v 8 3
DINTP Pulse AR 5g
=
DSIN Continuous v v 2 =
Floating point sine Section 18.18 =32
DSINP Pulse v v
DCOS Continuous v v
Floating point cosine Section 18.19 .
DCOSP Pulse v v o §g’>
3 =
DTAN Continuous]] v v] 838
Floating point tangent Section 18.20 333
DTANP Pulse 4 v —eg
DASIN Continuous v g
Floating point arc sine Section 18.21
DASINP Pulse v 9
DACOS Continuous v
Floating point arc cosine Section 18.22 53
DACOSP Pulse v Sz
838
DATAN Continuous)) v) o2=
Floating point arc tangent Section 18.23 Bo
DATANP Pulse v £ 2s
=1 >
DRAD Continuous i i i v ==
Floatlng' point degrees to radians Section 18.24
DRADP Pulse conversion v 1 0
DDEG Continuous i i i v =
Floatmg. point radians to degrees Section 18.25 %gi
DDEGP Pulse | conversion v oZg&
BSE
*1. The instruction is provided in the FX3G PLC Ver. 1.10 or later. ggg
sz
=) =
= @

35

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Instruction name

Data Operation 2

Execution
condition

Function

Applicable PLCs

(2)nex4

(0)oex4

SeXd

(0)NZX4
(9)NLXH
Sixd

Jzxd/nXd

NOX4d

(s)oxd

Reference

WSUM Continuous *1
WSUMP Pulse *1 .
- Sum of word data Section 19.1
DWSUM Continuous *1
DWSUMP Pulse *1
WTOB Continuous *1
WORD to BYTE Section 19.2
WTOBP Pulse *1
BTOW Continuous *1 .
BYTE to WORD Section 19.3
BTOWP Pulse *1
UNI Continuous *1
4-bit linking of word data Section 19.4
UNIP Pulse *1
DIS Continuous . . *1 .
4-bit grouping of word data Section 19.5
DISP Pulse *1
SWAP Continuous v v
SWAPP Pulse v v .
- Byte swap Section 19.6
DSWAP Continuous v v
DSWAPP Pulse v v
SORT2 Continuous *1 .
. Sort tabulated data 2 Section 19.7
DSORT2 Continuous *1
Positioning Control
DSZR Continuous | Dog search zero return v v v Section 20.1
DVIT Continuous v
- Interrupt positioning Section 20.2
DDVIT Continuous v
DTBL Continuous | Batch data positioning mode *1 v Section 20.3
DABS Continuous | Absolute current value read v v v *2 v v Section 20.4
ZRN Continuous v v v v v
Zero return Section 20.5
DZRN Continuous v v v v v
PLSV Continuous v v v v v
- Variable speed pulse output Section 20.6
DPLSV Continuous v v v v v
DRVI Continuous v v v v v
Drive to increment Section 20.7
DDRVI Continuous v v v v v
DRVA Continuous) v v v v v .
- Drive to absolute Section 20.8
DDRVA Continuous v v v v v
Real Time Clock Control
TCMP Continuous v v v v v v]
RTC data compare Section 21.1
TCMPP Pulse v v v v v v
TZCP Continuous v v v v v v
RTC data zone compare Section 21.2
TZCPP Pulse v v v v v v
TADD Continuous " v v v v v v]
RTC data addition Section 21.3
TADDP Pulse v v v v v v
TSUB Continuous . v v v v v v]
RTC data subtraction Section 21.4
TSUBP Pulse v v v v v v
HTOS Continuous v
HTOSP Pulse v
- Hour to second conversion Section 21.5
DHTOS Continuous v
DHTOSP Pulse v
STOH Continuous v
STOHP Pulse . v .
- Second to hour conversion Section 21.6
DSTOH Continuous 4
DSTOHP Pulse v

*1. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.

*2. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Execution

Instruction name "
condition

Real Time Clock Control

Function

Applicable PLCs

(2)nex4

(0)oex4

SEXd

(o)NZX4
(2)NLX4
SiXd

JZXd/nX4

NOXd

(s)ox4

Reference

TRD Continuous v v v v v v
Read RTC data Section 21.7
TRDP Pulse v v v v v v
TWR Continuous v v v v v v
Set RTC data Section 21.8
TWRP Pulse v v v v v v
HOUR Continuous v v v *1 v v
Hour meter Section 21.9
DHOUR Continuous v v v *1 v v
External Device
GRY Continuous v v v v
GRYP Pulse v v v v
Decimal to gray code conversion Section 22.1
DGRY Continuous v v v v
DGRYP Pulse v v v v
GBIN Continuous v v v v
GBINP Pulse v v v v
Gray code to decimal conversion Section 22.2
DGBIN Continuous v v v v
DGBINP Pulse v v v v
RD3A Continuous v v v *1 v
Read from dedicated analog block Section 22.3
RD3AP Pulse v v v *1 v
WR3A Continuous v v v *1 v
Write to dedicated analog block Section 22.4
WR3AP Pulse v v v *q v
Extension Function
EXTR_IN Continuous *1
Section 23.1
EXTRP_IN Pulse *1
External ROM function
EXTR_OUT Continuous *1
Section 23.2
EXTRP_OUT Pulse *1
COMRD Continuous *2
Read device comment data Section 24.1
COMRDP Pulse *2
RND Continuous v
Random number generation Section 24.2
RNDP Pulse v
DUTY Continuous | Timing pulse generation *2 Section 24.3
CRC Continuous v
Cyclic redundancy check Section 24.4
CRCP Pulse v
DHCMOV Continuous | High speed counter move v Section 24.5
Block Data Operation
BK+ Continuous *2
BK+P Pulse *2
Block data addition Section 25.1
DBK+ Continuous *2
DBK+P Pulse *2
BK- Continuous *2
BK-P Pulse *2
Block data subtraction Section 25.2
DBK- Continuous *2
DBK-P Pulse *2

*1. The instruction is provided in the FX2N and FX2NC PLCs Ver. 3.00 or later.

*2. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.

37

(@]
=
=
(]

1517 uonoNASU|

uoonssuy|
Jo uoneinbyuoy €A

1N

suononssu|
Jo uojeue|dx3
peay 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suoionJsu| payddy

(a1edwon
pue ano}\)
nisu| pajddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonusu) payddy

-—
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

FXCPU Structured Programming Manual 2 Instruction List
[Basic & Applied Instruction] 2.3 Applied Instructions

Applicable PLCs
. Execution . T v} a J ;
Instruction name " Function X x T bl bed m c m Q Reference
condition w (N * N o P = P4 by
c [2) © 4 4 - J =) =
| © 1 5| 0o 2 S z @
< & & = 3
Block Data Operation
BKCMP= Continuous *1
BKCMP> Continuous *1
BKCMP< Continuous *1
BKCMP<> Continuous *1
BKCMP<= Continuous *1
BKCMP>= Continuous *1
BKCMP=P Pulse *1
BKCMP>P Pulse *1
BKCMP<P Pulse *1
BKCMP<>P Pulse *1
BKCMP<=P Pulse *1
BKCMP>=P Pulse *1 i
- Block data compare Section 25.3
DBKCMP= Continuous *1
DBKCMP> Continuous *1
DBKCMP< Continuous *1
DBKCMP<> Continuous *1
DBKCMP<= Continuous *1
DBKCMP>= Continuous *1
DBKCMP=P Pulse *1
DBKCMP>P Pulse *1
DBKCMP<P Pulse *1
DBKCMP<>P Pulse *1
DBKCMP<=P Pulse *1
DBKCMP>=P Pulse *1
Character String Control
STR Continuous *1
STRP Pulse *1
- BIN to character string conversion Section 26.1
DSTR Continuous *1
DSTRP Pulse *1
VAL Continuous *1
VALP Pulse *1
- Character string to BIN conversion Section 26.2
DVAL Continuous *1
DVALP Pulse *1
$+ Continuous | .) v)
Link character strings Section 26.3
$+P Pulse v
LEN Continuous . . 4 .
Character string length detection Section 26.4
LENP Pulse v
RIGHT Continuous i i 4
Extractlng character string data Section 26.5
RIGHTP Pulse | from the right v
LEFT Continuous i i 4
Extracting character string data Section 26.6
LEFTP Pulse from the left v
MIDR Continuous | Random selection of character| ¥ i
) Section 26.7
MIDRP Pulse | strings v
MIDW Continuous v
Rgndom replacement of character Section 26.8
MIDWP Pulse | strings v
INSTR Continuous . *1 .
Character string search Section 26.9
INSTRP Pulse *1
$MOoV Continuous . v .
Character string transfer Section 26.10
$MOVP Pulse v

*1. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.

38

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List
2.3 Applied Instructions

Applicable PLCs
Instruction name 2D Function % Q . . § Y Reference
condition S| S| J|X| 2| 2| g| | x
[=) w P4 4 o T) 2
| o 1 5| © @ 'S zZ| @
& & & & =
Data Operation 3
FDEL Continuous . *1 .
Deleting data from tables Section 27.1
FDELP Pulse *1
FINS Continuous . *1]
Inserting data to tables Section 27.2
FINSP Pulse *1
POP Continuous i v
Shift last data read Section 27 3
POPP Pulse [FILO control] v
SFR Continuous | =~) v]
Bit shift right with carry Section 27.4
SFRP Pulse v
SFL Continuous v
Bit shift left with carry Section 27.5
SFLP Pulse 4
Data Comparison
LD= Continuous v v v v v v
LD> Continuous v v v v v v
LD< Continuous v v v v v v
LD<> Continuous v v v v v v
LD<= Continuous v v v v v v
LD>= Continuous v v v v v v)
Load compare Section 28.1
LDD= Continuous v v v v v v
LDD> Continuous v v v v v v
LDD< Continuous v v v v v v
LDD<> Continuous v v v v v v
LDD<= Continuous v v v v v v
LD>= Continuous v v v v v v
AND= Continuous v v v v v v
AND> Continuous v v v v v v
AND< Continuous v v v v v v
AND<> Continuous v v v v v v
AND<= Continuous v v v v v v
AND>= Continuous v v v v v v
AND compare Section 28.2
ANDD= Continuous v v v v v v
ANDD> Continuous v v v v v v
ANDD< Continuous v v v v v v
ANDD<> Continuous v v v v v v
ANDD<= Continuous v v v v v v
ANDD>= Continuous v v v v v v
OR= Continuous v v v v v v
OR> Continuous v v v v v v
OR< Continuous v v v v v v
OR<> Continuous v v v v v v
OR<= Continuous v v v v v v
OR>= Continuous v v v v v v
OR compare Section 28.3
ORD= Continuous v v v v v v
ORD> Continuous v v v v v v
ORD< Continuous 4 v v v v v
ORD<> Continuous v v v v v v
ORD<= Continuous 4 v v v v v
ORD>= Continuous v v v v v v

*1. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.

39

(@]
=
=
(]

1517 uonoNASU|

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Instruction name

Data Table Operation

Execution
condition

Function

Applicable PLCs

(9)nexd

(0)oexd

SeEXd

(0)NZX4
(9)NLXH
Sixd

Jzxd/nXd

NOX4d

(s)oxd

Reference

LIMIT Continuous v
LIMITP Pulse v
Limit control Section 29.1
DLIMIT Continuous v
DLIMITP Pulse v
BAND Continuous 4
BANDP Pulse v
Dead band control Section 29.2
DBAND Continuous v
DBANDP Pulse v
ZONE Continuous v
ZONEP Pulse v
Zone control Section 29.3
DZONE Continuous v
DZONEP Pulse v
SCL Continuous 4
SCLP Pulse i v
Scaling . Section 29.4
DSCL Continuous | (coordinate by point data) v
DSCLP Pulse v
DABIN Continuous *1
DABINP Pulse *1
Decimal ASCII to BIN conversion Section 29.5
DDABIN Continuous *1
DDABINP Pulse *1
BINDA Continuous *1
BINDAP Pulse *1
BIN to decimal ASCII conversion Section 29.6
DBINDA Continuous *1
DBINDAP Pulse *1
SCL2 Continuous v
SCL2P Pulse i v
Scal|ng 2 Section 29.7
DSCL2 Continuous | (coordinate by X/Y data) v
DSCL2P Pulse v
External Device Communication
IVCK Continuous | Inverter status check v *2 v Section 30.1
IVDR Continuous | Inverter drive v *2 v Section 30.2
IVRD Continuous | Inverter parameter read 4 *2 4 Section 30.3
IVWR Continuous | Inverter parameter write v *2 v Section 30.4
IVBWR Continuous | Inverter parameter block write v Section 30.5
IVMC Continuous | Inverter Multi Command *3 *4 v Section 30.6
ADPRW Continuous | MODBUS Read / Write *5 *6 v Section 30.7
Data Transfer 3
RBFM Continuous | Divided BFM read *1 Section 31.1
WBFM Continuous | Divided BFM write *1 Section 31.2

High Speed Processi

ng 2

DHSCT

Continuous

High speed counter compare with
data table

v

Section 32.1

*1. The instruction is provided in the FX3uc PLC Ver. 2.20 or later.
*2. The instruction is provided in the FX3G PLC Ver. 1.10 or later.

*3. The instruction is provided in the FX3u and FX3uc PLCs Ver. 2.70 or later.

*4. The instruction is provided in the FX3G PLC Ver. 1.40 or later.

*5. The instruction is provided in the FX3u and FX3uc PLCs Ver. 2.40 or later.

*6. The instruction is provided in the FX3G PLC Ver. 1.30 or later.

H
o

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

2 Instruction List

2.3 Applied Instructions

Applicable PLCs
Instruction name e aaen Function > ;2 % = X J Reference
condition >8< @ x S ; g = g x
sls|%|5|5|°| x| 2@
=~ = = =~ o
Extension File Register Control
LOADR Continuous v v
Load from ER Section 33.1
LOADRP Pulse v v
SAVER Continuous | Save to ER v Section 33.2
INITR Continuous v
Initialize R and ER Section 33.3
INITRP Pulse v
LOGR Continuous 4
Logging R and ER Section 33.4
LOGRP Pulse v
RWER Continuous *1 v
Rewrite to ER Section 33.5
RWERP Pulse *1 v
INITER Continuous *1
Initialize ER Section 33.6
INITERP Pulse *1
FX3U-CF-ADP
FLCRT Continuous | File create / check *2 Section 34.1
FLDEL Continuous | File delete / CF card format *2 Section 34.2
FLWR Continuous | Data write *2 Section 34.3
FLRD Continuous | Data read *2 Section 34.4
FLCMD Continuous | CF-ADP command *2 Section 34.5
FLSTRD Continuous | CF-ADP status read *2 Section 34.6
*1. The instruction is provided in the FX3uc PLC Ver. 1.30 or later.
*2. The instruction is provided in the FX3u and FX3uc PLCs Ver. 2.61 or later.

41

(@]
=
=
(]

1517 uonoNASU|

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 3 Configuration of Instruction

[Basic & Applied Instruction]

3.1 Expression and Operation Form of Sequence Instructions

3. Configuration of Instruction

This chapter explains the configuration of sequence instructions.

3.1 Expression and Operation Form of Sequence Instructions

Instructions and arguments

» Each instruction is given a specific name that indicates its contents.
"SMOV" (shift move) is one of such examples.

» Each instruction consists of the arguments that indicate input and output data used in that particular

instruction.
Command
input SMOV
———AEN ENO|—
D0 —s d— D10
K1 —m1
K2 —m2
K3 —n
(@) : This symbol indicates an argument called "source" that does not change its contents by the
execution of an instruction.
(@D) : This symbol indicates an argument called "destination" that changes its contents by the
execution of an instruction.
m, n : Symbols "m" and "n" indicate an argument that belongs to neither the source nor the

destination.

Applicable devices of arguments

« Aninput variable (label or device) specifies the applicable device of an argument.

+ Bit devices such as X, Y, M and S may be handled.

» These bit devices may be combined to form KnX, KnY, KnM and KnS to be handled as numerical data.

— FX Structured Programming Manual [Device & Common]

* The current value register of data register D, timer T and counter C may be handled.

* When handling 32-bit data, a 16-bit data register D is a combination of data registers of two consecutive

points.

For example, where data register DO is defined by a label as the argument of a 32-bit instruction, the 32-bit
data of (D1, DO) is handled. (D1 is high order 16 bits and D2 is low order 16 bits.)

Where the current value registers of T and C are used as general data registers, they are handled in the
same manner.

FXCPU Structured Programming Manual 3 Configuration of Instruction
[Basic & Applied Instruction] 3.1 Expression and Operation Form of Sequence Instructions

Instruction mode and Operation form

Instructions are divided into "16-bit instructions" and "32-bit instructions" depending on the size of values they
handle. The instructions also have characteristics of either a "continuous execution” or "pulse execution”
depending on the form of execution.

Some of the instructions have all these combinations.

1. 16-bit and 32-bit instructions

» An applied instruction that handles a numeric value is either 16 bits or 32 bits depending on the bit length
of the numeric value data.
Instruction that transfers the D10 contents to D12

Command 1 MOV
——+——EN ENO—
D10 —is di— D12
Command 2| DMOV Instruction that transfers the contents of (D21, D20) to (D23,
—————EN ENO|— D22).
D20 —s di— D22

* Where it is a 32-bit instruction, "D" is added to express as "DMOV".

» The specified device can be an even number or an odd number and is used in combination with the device
of the next higher number. (In the case of word devices such as T, C and D)
To avoid confusion, it is suggested to give an even number to the low order device specified by the
argument of a 32-bit instruction.

» A 32-bit counter can be used as a 32-bit data register. 32-bit counters cannot be handled as target devices
in 16-bit applied instructions.

2. Pulse execution and continuous execution instructions

Pulse operation

In an example shown on the right, when X000 changes from OFF X000 MOVP
to ON, the instruction is executed only once. No other execution F——EN ENO—
takes place. D10 —s d— D12

It is therefore suggested that the instructions of pulse operation be
used if not executed all the time.

Symbol "P" indicates that the instruction is of pulse operation.

The same is applied to DMOVP.

Continuous operation
The instruction in the figure on the right is of continuous operation. X001 MOV

It is executed in each cycle of operation while X001 is ON. F——EN ENO—
D10 —s d— D12

Where continuous execution instructions such as INC and DEC are used, some instructions have the
destination contents be changed in each cycle of operation.

In either cases, the instruction is not executed if the drive input X000 or X001 is OFF. The destination does
not change either if the instruction is not specified otherwise.

43

BUND ==

=3
@
&
=
c
2
o
=
[y
@
L

uononsy|
10 uonelnbluo)

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 3 Configuration of Instruction
[Basic & Applied Instruction] 3.2 Labels

3.2 Labels

Types of labels

Labels are either global labels or local labels.
* Global labels are available for use in program blocks and function blocks.
* Local labels are available for use only in a declared program part.

Label classes
The label classes indicate how they are used in which program parts.
The table below shows the label classes.

Program parts available for use

Label class Descriptions Program = . Function
block unction | plock
VAR_GLOBAL A common label that can be used in all program parts. v v
VAR_GLOBAL_CONSTANT | A common constant that can be used in all program parts. v v
VAR A label used within declared program parts. It cannot be used v v v
in other program parts.
VAR CONSTANT A con.stant used within declared program parts. It cannot be v v v
- used in other program parts.
VAR INPUT A label that receives values. It cannot be changed within v v
- program parts.
VAR_OUTPUT A label for output from a function block. v
VAR_IN_OUT ;Irc:cal label that receives values and outputs from a program v

Definition of labels
Before using a label, the label needs to be defined. An error is generated if attempting to convert (compile) a
program where the label is not defined.
* Where defining a global label, the label name, class, data type and device are interrelated.
* Where defining a local label, the label name, class and data type are set.
The user does not have to specify a device when using a local label. A device is allocated automatically

during the compilation.
The following is an example of setting the label Var_dint1 and Var_dint2 of a DMOV instruction.

X000 DMOV
———EN ENO—
Var_dint1—s d—Var_dint2

* When using as a global label:
Set the class, label name and data type and device or address.

2 Global Label Setting Global1

Class Label Hame Data Type Constant Device Address o
1 |WAR_GLOBAL w |War_dintl Double Word[Signed] | .. D10 ZMD0.10
2 |WaR_GLOBAL ~ |War_dint2 Double Word[Signed] | . 020 %MD0.20
3 il -
- | »

[] Systemn label is reserved to be registered. [] System label is reserved to be released. [I;?hseyssiigel
To execute the Reservation to Register/Release for the system Resarvation to Register System Label |
label, reflection to the systemn label database is required.
Flzase execute Reflect to System Label Database', |
* To execute Online Program Change, execute Online Program

Change and save, |

44

FXCPU Structured Programming Manual 3 Configuration of Instruction

[Basic & Applied Instruction] 3.2 Labels
* When using as a local label: o
Set the class, label name and data type. §
£ Local Label Setting POU_01 [PRG]
Clasz Label Mame [ata Type Congtant Device Address —
1 |WaR - [Yar_dint1 Double wWord[Signed]
2 |YaR - [Yar_dint2 D ouble "/ ord[Signed] 2
3 hd —
4 - é
5 e hd S.
Ll S ,—l &
S5
-
2

. Ege)
Expressing constants 29
c =h
. . . . «Q
The following describes the method of expression when setting constant to a label. %’5
5
Type of constant Method of expression Example =
Bit Enter either "FALSE" or "TRUE", or either "0" or "1". TRUE, FALSE 4
Binary number Add "2#" before the binary number. 2#0010, 2#01101010 —mT
=]
Octal number Add "8#" before the octal number. 8#0, 8#337 g’?—)%
- " e : 2.3 °
Decimal number Enter the decimal number directly. Or, add "K" before the decimal 123, K123 g =7
number g L
Hexadecimal number Add "16#" or "H" before the hexadecimal number. 16#FF, HFF
Real number Enter the real number directly. Or, add "E" before the real number. | 2.34, E2.34 5
Character string Put thg cha:f\cter string between single quotations (") or double 'ABC', "ABC" @
quotations (™). 2
2
Data type &
The data type of label is either basic data type or universal data type. >
» The table below lists the basic data types. 6
Data type Description Value range Bit length S o
o
Bit Boolean data O(FALSE), 1(TRUE) 1 bit % 5
Word [signed] Integer -32768 to 32767 16 bits
. L -2147483648 to .
Double Word [signed] Double precision integer 2147483647 32 bits 7
Word [unsigned)/Bit String | 46 1 yata 0 to 65535 16 bits 35
[16-bit] &z
- - 33
Double Word [unsigned]/Bit . . =
String [32-bit] 32-bit data 0 to 4294967295 32 bits %_’ g
E +1.175495"%8 to
FLOAT (Single Precision) | Real number E +3.402823*38 32 bits
(Number of significant figures: 6) o=x
o =8
String Character string (50 characters maximum) Variable é % g
LS5
)) T#-24d-0h31m23s648.00ms to . e3e
Time Time value T#24d20h31m23s647.00ms 32 bits 5

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

45

FXCPU Structured Programming Manual 3 Configuration of Instruction
[Basic & Applied Instruction] 3.2 Labels

+ The universal data type is the data type of a label that puts together several basic data types.
The data type name starts with "ANY".

ANY
[
ANY_SIMPLE Array*1 Structure '
|
ANY_NUM ANY_BIT Time String
?‘ﬁ Bit
Word
[unsigned]/
ANY_REAL ANY_INT Bit String The "ANY" type on a higher layer contains types
FLOAT Word [16-bit] on the lower layer.
Single or The "ANY" type on the top layer contains all types.
f:’reé:ijsion) [signed] Double Word
[unsigned]/
FLOAT Bit String
(Double g%“nﬂzlword [32-bit]
Precision)
ANY16 ANY32
Word Word Double Word| | Double word
[unsigned)/ | | [signed] [unsigned)/ | |[signed]
Bit String Bit String
[16-bit] [32-bit]

*1 Refer to the following manual for details.
— Q/L/F Structured Programming Manual (Fundamentals)

46

FXCPU Structured Programming Manual 3 Configuration of Instruction

[Basic & Applied Instruction] 3.3 Devices and Addresses
3.3 Devices and Addresses =
-

A device is expressed by a device or an address.
Device 2
The device is expressed by a device name and a device number. —
X0 D 100 g
§'.
Device name Device number

Address

An address is expressed by a method defined by IEC61131-3.
It is expressed as follows according to IEC61131-3.

uononsy|
10 uonelnbluo)

1N

1st character: 3rd character and

Top L 2nd character: size e Number _
position onwards: classification Eules
=T
| Input | (Omitted) Bit These are the numbers for = gg
- detailed classification. This =)
Q Output X Bit
P number is separated by "." The number that indicates a ? % §
% M | Internal w Word (16 bits) (period) from subsequent device number (decimal =
numbers. number).
D Double word (32 bits) This number may be 5
omitted.
o
)
o
Z
g
%l X 0 %M X 1.863 §’
Position of Size Classification Number g%
memory area ==
" g3
* Position of memory area 38

This is the first classification to identify the position of memory area either by input, output and internal
where data is allocated.

N

X (X device) I (Input)

Y (Y device) :Q (Output) 3z

Device other than above :M (Internal) % g
. Size f‘_%

The principle of expression method corresponding to device (method of expression for MELSEC) is as gg

follows.

Bit device :X (Bit)
Word device :W (Word), D (Double word)

+ Classification
This is the second classification to identify the types of device that cannot be classified only by the above
position and size.
X orY of a device does not classify.

Refer below for the expression corresponding to the device expression.

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

— Appendix A

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)
suojonusu) payddy

(uonetedo Yys

47

FXCPU Structured Programming Manual 3 Configuration of Instruction
[Basic & Applied Instruction] 3.4 EN and ENO

3.4 ENandENO

The execution control is available for an instruction with "EN".

« EN is for entering an execution condition of instruction.

» ENO is for outputting the state of execution of instruction.

» The table below shows the relationships between the EN and ENO and the contents of operation results.

EN ENO Operation results

TRUE(Without operation error) Operation output value

TRUE(Executing operation)

FALSE(With operation error) Undefined value
FALSE(Stopping operation) | FALSE Undefined value
X000 MOV
—EN ENO— M1
DO —s d— D2

In the instruction above,
instruction MOV is executed
only when X000 is TRUE.

48

3 Configuration of Instruction

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

3.4 EN and ENO

<= Outline

MEMO

C\] Instruction List

Configuration of «gf* How to Read
Instruction Explanation of
Instructions

L) BasicInstruction €€ Step Ladder
Instructions

Applied Instructions Applied Instructions Applied Instructions Applied Instructions
r~ (Program Flow) o (Move and o (Arithmetic and m (Rotation and
Compare) Logical Operation) Shift Operation)

49

FXCPU Structured Programming Manual 4 How to Read Explanation of Instructions
[Basic & Applied Instruction]

4. How to Read Explanation of Instructions

The following shows one of the pages that explains the instructions.

1) ——=| 8.3 MOV /Move
2) FXJU(c)lFXSG(C)l FX3s |szmt:) FX1N(C)| FX1s |qulszc FXON [FXo(s)

ol ol ol olo]lo] o | olo

Outline
This instruction transfers (copies) the contents of a device to another device.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
MoV
MoV 16 bits | Continuous —EN ENO— MOV(EN’.S'G)'
3) —% d Or an assignment statement
—Is —
MOVP
MOVP 16 bits Pulse —EN ENO|— MOVP(EN'S'd)'
d Or an assignment statement
N —
DMOV
DMOV 32bits | Continuous —EN ENO[— DMOV(EN.s,a);
d Or an assignment statement
—Is —
DMOVP
DMOVP | 32bits | Pulse —EN ENO|— DMOVP(EN,s.d);
d Or an assignment statement
—Is —
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Input EN Execution condition Bit
variable [«>) Data or device of transfer source ANY16 |ANY32
4) > Output ENO Execution state Bit
variable @ Transfer destination device ANY16 |ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand . e System | Special Real |Character| .
oo System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C(D| R |UO\GO |V |Z|Modifier| K | H E ao" P
5) ———> oo | oo ofeefai| a2 [e]6] o |[o e
@ o o o [ofofefai| a2 [o]e e
A: Refer to "Cautions".
Function and operation explanation
1. 16-bit operation(MOV, MOVP)
6) —% The contents of the transfer source specified by (O are transferred to the transfer destination specified by

.
* While the command input is OFF, the transfer destination specified by Cd> does not change.
+ When a constant (K) is specified as the transfer source specified by CsD, it is automatically converted into

binary.
Command input MOV
p———EN ENO— GO-@D
Transfer sogrrée —s d—Transfer destination data
ata

Cautions

1) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC.
7) —% To execute pulse operation, make the instruction execution condition pulse type.
2) Some restrictions to applicable devices

A1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

Program examples

1. When reading the current value of a timer and counter

8) _9 [Structured ladder/FBD] [ST]
X001 MoV MOV(X001,TN0,D20);
——1EN ENO|— (Current value of T0) — (D20)
TNO—|s dl—D20 The operation is the same as a counter.

* The above is different from the actual page, as it is provided for explanation only.

FXCPU Structured Programming Manual 4 How to Read Explanation of Instructions
[Basic & Applied Instruction]

1)
2)

3)

Indicates the corresponding chapter, section, subsection, number and instruction name.
Indicates the PLCs that support the instruction.

Item Descriptions
o) Supported by PLCs from the first release.
The support conditions depend on the versions.
A "Cautions" explains the applicable versions.
X This particular series PLCs do not support the instruction.

Indicates the data length, operation form and expression of each instruction.

Item Descriptions
16 bits An instruction of 16-bit data length
32 bits An instruction of 32-bit data length

This is a continuous execution instruction that is executed in each cycle of

Continuous operation while the execution condition (EN) is being satisfied.

This is a pulse execution instruction that is executed only when the execution

Pulse condition (EN) changes from the state of not established to the state of established.

Structured ladder/ | Indicates the instruction expression in the structured ladder language adopted as
FBD the representative.

ST Indicates a ST language instruction.

Some PLCs do not support "16 bits / 32 bits" or "continuous / pulse" depending on their versions.
Refer to "Cautions".

Indicates the names of the input and output variables of the instruction and the contents and data type of
each variable.
Refer to the following manual for details of data type.

— Q/L/F Structured Programming Manual (Fundamentals)

Applicable devices

"@" indicates the devices that can be used in an instruction.
Devices marked "A" have restrictions in use.

Refer to "Cautions".

Function and operation explanation
Explains the functions that the instruction is responsible for.
This explanation uses an example of structured ladder language.

Summarizes the notes before using the instruction.

Program example

Explains a program example in each language.

In program examples of the structured ladder/FBD language, the structured ladder language is adopted
as the representative.

51

BUND ==

157 uononsu IND

50
29
I3
Se
=<
S&
o
=l
o
o

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction]

5. Basic Instruction

This chapter introduces the instructions for the structured project corresponding to the basic instructions for
the simple project.

Instruction name Function Reference
LD Initial logical operation of NO (normally open) contacts Section 5.1
LDI Initial logical operation of NC (normally closed) contact type Section 5.1

AND Serial connection of NO (normally open) contacts Section 5.1
ANDI Serial connection of NC (normally closed) contacts Section 5.1
OR Parallel connection of NO (normally open) contacts Section 5.1
ORI Parallel connection of NC (normally closed) contacts Section 5.1
LDP Initial logical operation of rising edge pulse Section 5.2
LDF Initial logical operation of falling/trailing edge pulse Section 5.2
ANDP Serial connection of rising edge pulse Section 5.2
ANDF Serial connection of falling/trailing edge pulse Section 5.2
ORP Parallel connection of rising edge pulse Section 5.2
ORF Parallel connection of falling/trailing edge pulse Section 5.2
ouT Final logical operation type coil drive (Excluding timers and counters) Section 5.3
OuT_T Final logical operation type coil drive (timers) Section 5.4
OuT_C Final logical operation type coil drive (16-bit counter) Section 5.5
OUT_C_32 Final logical operation type coil drive (32-bit counter) Section 5.5
AND(...) Serial connection of multiple parallel circuits Section 5.6
OR(...) Parallel connection of multiple contact circuits Section 5.6
MPS Stores the current result of the internal PLC operations Section 5.7
MRD Reads the current result of the internal PLC operations Section 5.7
MPP Pops (recalls and removes) the currently stored result Section 5.7
INV Invert the current result of the internal PLC operations Section 5.8
MEP Conversion of operation result to leading edge pulse Section 5.9
MEF Conversion of operation result to trailing edge pulse Section 5.9
SET SET Bit device latch ON Section 5.10
RST RESET Bit device OFF Section 5.10
PLS Rising edge pulse Section 5.11
PLF Falling/trailing edge pulse Section 5.11
MC Denotes the start of a master control block Section 5.12
MCR Denotes the end of a master control block Section 5.12
END Program END, /O refresh and Return to Step 0 Section 5.13
NOP No operation or null step Section 5.14

5 Basic Instruction
5.1LD, LDI, AND, ANI, OR, ORI

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5.1 LD, LDI, AND, ANI, OR, ORI e
s
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
The LD and LDI instructions are contacts connected to bus lines. %
. . . . Q
The AND and ANl instructions connect one contact in series. g
The OR and ORI instructions connect one contact in parallel. =
1. Format and operation, execution form 3
Instruction | Execution Expression in each language —o
hame form Structured ladder/FBD ST 2, S
S =h
. To become an assignment statement, operator, control %‘E
LD Continuous | | p AND ANI syntax and so forth. S&
5
X X002 Y Q
LDI Continuous N OPO \ (I)IO A ,OO)? The ST language may not have the instructions (symbols) -
OR : Y {/ N directly corresponding to the contacts of LD, AND and OR 4
that are programmed in a simple project.
; X001 X003 Y001
AND Continuous N L | The structured ladder shown on the left can be expressed =@z
— —— o
as shown below. 2=
LDl [) . . . o> o
ANI Continuous X000 X002 yoo2 |(When configuring with assignment statements) =8 3
& LA LA { a g g
_ ORI i i ¢ - Y000:=(X000 OR X001) AND X002; o=
OR Continuous Y001:=(X000 OR X001) AND X002 AND NOT X003;
X001 X003 Y003
N ,_ | Y002:=(NOT X000 OR NOT X001) AND NOT X002;
X —
ORI Continuous AND _—7 Y003:=(NOT X000 OR NOT X001) AND NOT X002 AND
X003; g
@,
2
2. Setdata 2
c
Variable Description Data type g‘
Input variable - Variable that are applicable to AND and OR input. Bit
Output variable - Result of operation of AND and OR. Bit 6
28
3. Applicable devices gg
Bit Devices Word Devices Others % §
) . e u System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|[S|DO.b|KnX|KnY|KnM|KnS|T|C|D|R|UCO\GO |V |Z|Modifier| K | H E "a" P 7
LD oo 0000 A A2 Z
o =
LDI NOE WY A2 S
3z
AND 00000 e A A2 ;_ng
ANl |o|e[o]e[e[e] a1 A2 23
OR 000000 A A2
ORI 00006 e Al A2

A: Refer to "Cautions".

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

53

FXCPU Structured Programming Manual

5 Basic Instruction
[Basic & Applied Instruction]

5.1LD, LDI, AND, ANI, OR, ORI

Function and operation explanation

1. LD (Initial logical operation of NO (normally open) contacts)

[Structured ladder/FBD] [ST]
LD
X000 Y000 , ,
| (— Y000:= X000;
timing chart
X000 ON ON
Y000 o ol

2. LDI (Initial logical operation of NC (normally closed) contact type)
[Structured ladder/FBD] [ST]

LDI
| X000 Y000

+F { — Y000:= NOT X000;

timing chart

X000 ON

Y000 ON ON

3. AND (Serial connection of NO (normally open) contacts)

[Structured ladder/FBD] [ST]
AND
X002 X000 Y003 Y003:= X002 AND X000;
: 1 (—
timing chart

LD X002 ON ON
AND | X000 ON ON

Y003 ON

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.1LD, LDI, AND, ANI, OR, ORI

4. ANI (Serial connection of NC (normally closed) contacts)

[Structured ladder/FBD] [ST]
ANI
X002 X000 Y003 Y003:= X002 AND NOT X000;
f H { —
timing chart
LD X002 ON ONI
ANT_| X000 ON ON|{ |
Y003 ON ON

5. OR (Parallel connection of NO (normally open) contacts)
[Structured ladder/FBD] [ST]

| X000 Y000 Y000:= X000 OR X001,
1 (—

‘ X001

timing chart

xooo PN [oN]
OR | X001 ON ON |
Y000 ﬁ ON ON

']]

6. ORI (Parallel connection of NC (normally closed) contacts)
[Structured ladder/FBD] [ST]

| X000 Y001 Y001:= X000 OR NOT X002;

[l (—

X002

#

timing chart

LD X000 m ON
xooz [ON| |1 TONTI] [ON

Y001 ON ON ON

55

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

suononAsul
soppedais @) uononisu) aiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.1LD, LDI, AND, ANI, OR, ORI

7. Relationship with AND (...)

AND(..) The parallel connection by OR or ORI

LD ©/ LD instruction is connected to the preceding LD
/ / or LDl instruction in principle. The "AND (...)
after" instruction, however, the parallel
connection by OR or ORI instruction is
connected to the second preceding LD or LDI
instruction.

>

+ AND (...) before
OR

<

OR
L AND (...) after

8. Indexing

Devices used in LD, LDI, AND, ANI, OR and ORI instructions can be indexed with index registers (V, Z).
(State relays (S), special auxiliary relays (M), 32-bit counters (C) or "D[.b" cannot be indexed.)

Applicable only to the FX3u and FX3uc PLCs.
When a used devices is an input (X) or output

[Structured ladder/FBD] [ST] (Y), the value of an index register (V or Z) is
converted into an octal number, and then
added.

| X?PO Y,OOO Y000:= X000 OR X001V0; Example: When the value of VO is "10", the

g ¢ = LD contact is set to ON (becomes

‘ E)'WO conductive) or OFF (becomes

nonconductive) by X013.

. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in LD, LDI, AND, ANI, OR and ORI instructions.

Applicable only to the FX3u and FX3uc PLCs.

When specifying a bit in data register, input "."

[Structured ladder/FBD] [ST] after a data register (D) number, and then

input a bit number (0 to F) consecutively.

Only 16-bit data resister is applicable.

Specify a bit numberas "0 1, 2, ..., 9, A, B, ...,

F" from the least significant bit.

Example: In the example shown on the left,
LD contact is set to ON (becomes
conductive) or OFF (becomes
nonconductive) by the bit 3 of DO.

X002 DO.3 Y003 Y003:= X002 AND D0.3;
}—4: It (—

Cautions

1) Some restrictions to applicable devices
A1: The FX3u and FX3uc PLCs only are applicable.
A2: Only the FX3u and FX3uc PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.

+ Special auxiliary relays (M)

» 32-bit counters (C)

+ State (S)

» Word bit specification "D.b"

Errors

1) When an I/O number used in LD, LDI, AND, ANI, OR or ORI instruction does not exist due to indexing,
M8316 (Non-existing 1/0O specification error) turns ON. (Applicable to the FX3u and FX3uc PLCs only)

2) When the device number of a device (M, T or C) other than I/O does not exist due to indexing, an
operation error (error code: 6706) occurs. (Applicable to the FX3u and FX3uc PLCs only)

56

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.2 LDP, LDF, ANDP, ANDF, ORP, ORF
5.2 LDP, LDF, ANDP, ANDF, ORP, ORF o
=
(v}
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FX1N(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@) @] @] @] O @] X X X
Outline -
Contact instructions LDP, ANDP, and ORP detect the rising edge, and become active during one operation %
cycle only at the rising edge of a specified bit device (that is, when the bit device turns ON from OFF). g
Contact instructions LDF, ANDF and ORF detect the falling edge, and become active during one operation =
cycle only at the falling edge of a specified bit device (that is, when the bit device turns OFF from ON). a
1. Format and operation, execution form 3
50
Instruction | Execution Expression in each language %5;’
name form Structured ladder/FBD ST %%
S o=
o
Pulse LDP 2
LDP (detecting —EN ENO|— LDP(EN,s);
rising pulse) —Is 4
Pulse LDF 535
LDF (detecting —EN ENO— LDF(EN,s); % §’-é°
falling pulse) —Is o=
Pulse ANDP

ANDP (detecting —EN ENO}— ANDP(EN.s); @
rising pulse) s 2.
&
=S
Pulse ANDF g

ANDF (detecting —EN ENO— ANDF(EN,s);
falling pulse) —Is 6
S@
2]
Pulse ORP §'-5
[o%
ORP (detecting —EN ENO|— ORP(EN 3); 25
rising pulse) s -
Pulse ORF ,_\7
ORF (detecting —EN ENO|— ORF(EN;,s); 6-?%::
falling pulse) —s < g
52
mc
g8
2. Set data —a

Variable Description Data type
. . LDP,LDF: Always TRUE o=
Input EN Execution condition Except LDP, LDF : BOOL g SE
variable - - . B2
(@) Applicable devices Bit 3g_§
OUFPUt ENO Execution state Bit
variable

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

57

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.2 LDP, LDF, ANDP, ANDF, ORP, ORF

3. Applicable devices

Bit Devices Word Devices Others
Instruction System User Digit Specification S{Jsst:rm S%?ﬁial Index Constant Nsriiler Chsat:ianc;er Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY |KnM|KnS|T|C|D|R{UC\GO |V|Z|Modifier| K | H E g~ P
LDP 00000 e A
LDF 0000 0ee Al
ANDP (@ ® ® e e e A1
ANDF |©/©®/® e e e A1
ORP 00000 e A
ORF 000000 A

A: Refer to "Cautions".

Function and operation explanation

1. LDP, ANDP, ORP (Initial logical operation of rising edge pulse, serial connection and parallel
connection)

[Structured ladder/FBD] [ST]
LDP ORP MO MO0:=ORP(LDP(TRUE,X000),X001);
EN ENO EN ENO—— »— M1:= ANDP(M8000,X002);
X000 —s X001 —s

M8000 ANDP M1
— | . EN ENO—— »—

RUN monitor X002 —|s
timing chart

LDP | X000 ON | ON
ORP | X001 ON ON

ON during
one operation

mo _ Teoce [T L]

E

M8000 _| ON

xo02 | ON ON ON |

ON during
one

M _9:|é ggfcelreation —| —|

In the example shown above, MO or M1 is ON during only one operation cycle when X000 to X002 turn ON
from OFF.

58

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.2 LDP, LDF, ANDP, ANDF, ORP, ORF
2. LDF, ANDF, ORF (Initial logical operation of falling/trailing edge pulse, serial connection o
and parallel connection) =
[Structured ladder/FBD] [ST]
LDF ORF MO
EN ENO EN ENO|l—(— MO0:=ORF(LDF(TRUE,X000),X001);
X000 —1s X001 —s M1:= ANDF(M8000,X002); 2
... g
M8000 ANDF M1 g
—— EN ENO|—— — g
RUN monitor X002 —s g
timing chart 3
LDF X000 ON ON gg
_| y 22
S5
ORF | X001 ON | i _ =
ON =
during one 4
operation
Mo Fegee [L co3
222
239
o=
M8000 J ON 338

x002 | ON ON ON
ON
during one

operation
M1 I cycle —l _|
In the example shown above, MO or M1 is ON during only one operation cycle when X000 to X002 turn OFF
from ON.

3. Bit specification of data register (D)
A bit data register (D) can be specified as a device used in LDP, LDF, ANDP, ANDF, ORP and ORF
instructions.

[Structured ladder/FBD] [ST]

suononAsul
soppedais @) uononisu) aiseg

When specifying a bit in data register, input "."
after a data register (D) number, and then input

LDP Y000 Y000:= LDP(TRUE,DO.3); a bit number (0 to F) consecutively.
EN ENO (— Only 16-bit data resister is applicable.
] Specify a bit numberas"01, 2, ...,9,A,B, ..., F"
Do.3 from the least significant bit.

Example: In the example shown on the left, LDP
contact turns ON (becomes
conductive) or OFF (becomes
nonconductive) when the bit 3 of DO
turns ON or OFF.

N

S

(mo)4 weibold)
suononusu] paljddy

4. Output drive side
The following two circuits offer the same operation.
<OUT instruction> <Pulse instruction>

LDP M6
X010 PLS
EEE ¢ = — lEN ENO—
X010 —s d

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

— M6
X010 4 4 £5%
One One §§§
M 6 4 operation cycle operation cycle § §§
825
In each circuit, M6 is ON during only one operation cycle when X010 turns ON from OFF. §Q§
<Rising edge detection> <Pulse instruction (applied instruction)> 1 0
LDP MOV — X020 MOVP .
EN ENO EN ENO|— = ————EN ENO— g&g
QO @D
X020—{s K10 —s d— Do K10 —s di— Do §,’§'§
In each circuit, MOV instruction is executed only once when X020 turns ON from OFF. ggg
Ec)

59

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.2 LDP, LDF, ANDP, ANDF, ORP, ORF

5. Differences in the operation caused by auxiliary relay (M) numbers

Not supported by the FX1s, FX1N or FX1NC PLC.
When an auxiliary relay (M) is specified as a device in LDP, LDF, ANDP, ANDF, ORP and ORF instructions,
the operation varies depending on the device number range as shown in the figure below.

<MO to M2799, M3072 to M7679> (MO to M2799 for the FX2N and FX2Nc PLCs, MO to M1535 for the FX3s PLC)

\ /

1) LDP SET

EN ENO EN ENO—

MO —S di— M50
................................ LA

X000 N MO
— (—
...................................... AR

\ /

2) LDP SET

EN ENO EN ENO—
MO —S di— M51
________________________________ A
\ /
3) LDP SET
EN ENO EN ENO—

MO0 — s di— M52
________________________________ A
4y MO N M53 7
— { —

7 N
<M2800 to M3071>
\
LDP SET
EN ENO EN ENO|—
M2800—S di— Mo
...................................... A
LDP SET
EN ENO EN ENO—
M2800—s di— M1
X000 ~M2800/
1t ()—
14 A
...................................... Qe cenees
LDP SET
EN ENO EN ENO—
M2800—(s d— M2
/
LDP SET
EN ENO EN ENO[—
M2800—S d— M3
...................................... S —
LDF SET
EN ENO EN ENO|—
M2800—S di— M4
...................................... A
LDP SET
EN ENO EN ENO—
M2800—(S di— M5
LDF SET
EN ENO EN ENO—
M2800—S d— Mé
M2800 SN oM7Y
1t € —_

After MO is driven by X000, all contacts 1) to 4) corresponding
to MO are activated.

» The contacts 1) to 3) detect the rising edge of MO.

» Because of LD instruction, the contact 4) is conductive while
MO is ON.

From M2800 driven by X000, the program is
divided into the upper block (block A) and the
lower block (block B). In each of the blocks A
and B, only the first contact which detects the
\ rising or falling edge is activated.

> Block A Because of LD instruction, the contact in the
block C is conductive while M2800 is ON.
By utilizing these characteristics, "transition
of state by same signal" in a step ladder
circuit can be efficiently programmed.

60

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.2 LDP, LDF, ANDP, ANDF, ORP, ORF

Cautions

1)

2)

When LDP, LDF, ANDP, ANDF, ORP or ORF instruction programmed in a same step is executed two or
more times within one operation cycle, the operation is as follows.

Programs executed two or more times

- Program between FOR and NEXT instructions EN FORENO_
- Program which executes a same subroutine program from two or more KOO —n
CALL instructions during one operation cycle. [T —— LDP """""""""
- Program which jumps to a pointer number or ladder block label in a EN ENOL—
smaller ladder block number by CJ instruction. X000 —Is
Operation NEXT
- When a device turns ON from OFF EN ENO—

1st time :LDP, ANDP or ORP instruction turns ON.
2nd time and later :When the device status is same as the time when the instruction was executed last,
the instruction turns OFF.

- When a device turns OFF from ON
1st time :LDF, ANDF or ORF instruction turns ON.
2nd time and later :When the device status is same as the time when the instruction was executed last,
the instruction turns OFF.

When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF,
ANDF, or ORF instruction), the instruction for falling edge pulse is not executed without regard to the ON/
OFF status of the target device of the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF
instruction), the instruction for falling edge pulse is not executed without regard to the ON/OFF status of
the operation condition device.

It is necessary to set to ON the target device or operation condition device once and then set it to OFF for
executing the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for rising edge pulse, the
instruction for rising edge pulse is executed if a target device of the instruction for rising edge pulse or the
operation condition device is ON.

Target instructions for rising edge pulse: LDP, ANDP, ORP and pulse operation type applied instructions
(such as MOVP)

(CemiE el Mo AR ST (i D Instruction for rising edge pulse Instruction for falling edge pulse
during RUN is executed) g edge p g edge p
OFF Not executed Not executed
ON Executed™ Not executed

*1. PLS instruction is not executed.

Some restrictions to applicable devices
A 1: The FX3uU and FX3uc PLCs only are applicable.

61

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

soppedais @) uononisu) aiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

5 Basic Instruction
5.3 OUT (Excluding timers and counters)

5.3 OUT (Excluding timers and counters)

Outline

FX3U(C) | FX3G(C)| FX3S |FX2N(C) | FX1N(C)

FX1s

FXU/FX2C

FXON

FX0(S)

©) ©) ©) O

©) ©)

©]

This instruction outputs the operation result up to the execution of the OUT instruction to the specified device.

1. Format and operation, execution form

Instruction | Execution Expression in each language
name form Structured ladder/FBD ST
X000 Y000
| PN OUT(EN,d);
: h Or an assignment statement
ouT Continuous Or Example:
X000 ouT OUT(X000,Y000);
I —1EN ENOL— When using an assignment statement.
dl— v000 Y000:=X000;
2. Set data
Variable Description Data type
Inpyt EN Execution condition Bit
variable
Output ENO Execution state Bit
variable @ Target variable ANY_SIMPLE
3. Applicable devices
Bit Devices Word Devices Others
i - e System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|{S|DO.b|KnX{KnY|KnM|KnS|T|C|D|R|UC\GO |V |Z|Modifier| K | H E a" P
ouT (K J o A1 A2

A: Refer to "Cautions".

62

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

5 Basic Instruction
5.3 OUT (Excluding timers and counters)

Function and operation explanation

1. When a bit device is used

A device described in OUT instruction turns ON or OFF according to the driven contact status.

Parallel OUT instructions can be used consecutively as many times as necessary.

In the program example shown below, OUT M100 and OUT M101 are parallel.

If two or more OUT instructions are executed for a same device number, however, the double output (double
coil) operation is resulted.

[Structured ladder/FBD] [ST]

Drive contact of OUT instruction OUT(X000,Y000):
OUT(NOT X001,M100);
xooo4 Yooo | OUT
T(NOT X001,M101);
_”\L ¢ > OUT(NOT X001,M101);
X001 M100
{ »
For assignment statement
mro1 | OUT Y000:= X000;
—() M100:= NOT X001;
M101:= NOT X001;
timing chart
X000 ON ON
ouT Y000 ON ON
X001 ON ON
M100 ON
OUT | m101 ON
. Indexing

Devices used in OUT instruction can be indexed with index registers (V and Z).
(State relays (S), special auxiliary relays (M), or "D1.b" cannot be indexed.)
Applicable only to the FX3u and FX3uc PLCs.

[ST] When a used devices is an input (X) or
output (Y), the value of an index register (V
or Z) is converted into an octal number, and

[Structured ladder/FBD]

OUT(X000,Y000Z0); then added
XO?O YO(OO)EO For assignment statement Example: When the value of Z0 is "20",
Y000Z0:= X000; Y024 turns ON or OFF.

. Bit specification of data register (D)

A bit in data register (D) can be specified as a device used in OUT instruction.
Applicable only to the FX3U and FX3UC PLCs.

[ST] When specifying a bit in data register, input
"." after a data register (D) number, and then
input a bit number (0 to F) consecutively.

[Structured ladder/FBD]

%000 D0.3 OUT(X000,D0.3); Only 16-bit data resister is applicable.
| (> For assignment statement SPecify a bit numberas "0 1,2, ..., 9, A, B,
DO0.3:= X000; ..., F" from the least significant bit.

Example: In the example shown on the left,
the bit 3 of DO turns ON or OFF
when X000 turns ON or OFF.

63

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

soppedais @) uononisu) aiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.3 OUT (Excluding timers and counters)

Cautions

1) Some restrictions to applicable devices
A 1: The FX3u and FX3uc PLCs only are applicable.
A2: Only the FX3u and FX3uc PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.

» Special auxiliary relays (M)
+ State (S)
» Word bit specification "D].b"

2) The following instructions are used to operate the timer and counter in a structured program. Note that
they are not operable in the OUT instruction.

Instruction name Reference
OuT_T Section 5.4.1
OuT_C Section 5.5.1
OUT_C_32 Section 5.5.1

Errors

1) When a Y number used in OUT instruction does not exist due to indexing, M8316 (Non-existing 1/0
specification error) turns ON. (Applicable to the FX3u and FX3uc PLCs only)

2) When the device number of a device (M, T,C)other than 1/0 does not exist due to indexing, an operation
error (error code: 6706) occurs. (Applicable to the FX3u and FX3uc PLCs only.)

Program example

1. When using bit device

[Structured ladder/FBD] [ST]
X005 Y033 X005 ouTt OUT(X005.Y033)
—A > ————1EN ENO— : :
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, dl— vo33 OUT(X006,Y034);
X006 Y034 OUT(X006,Y035);
T e e R
Or X006 ouT
Y035 E— EN ENO|—
—(r di— Y034
ouT
EN ENO|
dr— Y035
2. When specifying bit of word device
[Structured ladder/FBD] [ST]
X005 D0.5 X005 ouTt OUT(X005.00.5);
—A— > ————EN ENO— DVU.0);
d— pos OUT(X006,D0.6);
%006 | D0.6 OUT(X006,D0.7);
L e Or X006 ouT
D0.7 ——} EN ENO|—
< > d— D0.6
ouTt
EN ENO|—
b5 ——m oo oo lb7[b6]l;:5[—7—[——l—-b0 d—po7

DO I

64

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.4 Operating Timer
5.4 Operating Timer o
§
541 OUT.T
FX3U(C) | FX3G(C)| FX3S | FX2N(C) | FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S) 2
o 0 O O 0 O O O O Z
S
=
Outline =
An output is generated when a set time expires. -
1. Format and operation, execution form 3
28
Instruction . Execution Expression in each language =2
Operation s§a
name form Structured ladder/FBD ST S5
§“.
OUT_T (=}
OUT_T 16 bits | Continuous —EN ENO— OUT_T(EN, TColil, TValue); 4
— TCoil
—TValue SmI
252
c o~
23°
2. Setdata S$5%
28
o
Variable Description Data type -
EN Execution condition Bit
Input - - -
. TCoil Target timer Bit
variable [os]
TValue Timer set value ANY16 &
o
Output ENO Execution state Bit ?
variable c
e
. . S
3. Applicable devices
Bit Devices Word Devices Others 6
i 5@
Operand System User Digit Specification System Specflal Index Constant Real Char?cter Pointer 23
type User Unit Number| String s N
X|YIMT|C|S|DO.b|KnX|{KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E o P gg
TColl
TValue O Al A2 ® 7

A: Refer to "Cautions".

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

65

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.4 Operating Timer

Function and operation explanation

1. OUT_T operation

1) When the operation result up to the OUT_T instruction operation is ON, the timer coils is ON and counts
until the set value is reached. When the set time expires (or reaches the set count), the contacts become
as follows:

NO (normally open) contact Timer is conductive.

NC (normally closed) contact Timer is not conductive.

2) When the operation result up to the OUT_T instruction operation turns OFF from ON, the timer
parameters become as follows.

Before time-up After time-up
. . . Current timer
Timer type Timer coil | NO (normally NC (normally NO (normally NC (normally
value closed) closed)
open) contact open) contact
contact contact
100 ms timer
0.1 to 3276.7 seconds
10 ms timer
0.01 to 327.67 seconds OFF 0 Nonconductive | Conductive Nonconductive | Conductive
1 ms timer ™!
0.001 to 32.767 seconds
100 ms integrating timer 2
0.1 to 3276.7 seconds i
> OFF VH;:jjemg current Nonconductive | Conductive Nonconductive | Conductive
1 ms integrating timer
0.001 to 32.767 seconds

*1. Not supported by the FXos, FXo, FX1N, FX1NC, FXU, FX2c, FX2N or FX2NC PLC.
*2. Not supported by the FXos, FXo, FXoN or FX1s PLC.

2. Clearing integrating timer

After the set time expires, the current value of the integrating timer is cleared and the contacts are turned OFF
by the RST.

. Timer set value

The set value can be specified directly by a decimal number (K) or indirectly using a data register (D) or
extension register (R).

Indirect setting by the extension register (R) is applicable only to the FX3u and FX3uc PLCs.

No negative numbers (-32768 to -1) can be set.

If the timer value is set to "0", the time expires at the same time as the OUT _T instruction activates.

. OUT_T operation

The following processes take place when the OUT_T instruction activates.
1) The OUT_T instruction TC coil turns ON or OFF.

2) The OUT_T instruction TS contacts turn ON or OFF.

3) The OUT_T instruction TN current value is changed.

If the OUT_T instruction is skipped by an instruction such as JMP while the OUT_T instruction is ON, neither
the current value is updated nor contacts are turned ON or OFF.

When one particular OUT_T instruction operates more than once within the same scan, the current value is
updated as many times as the timer operates.

66

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.4 Operating Timer

Cautions

1)

2)

When a timer device is specified in a program, use the following depending on the locations of use.
Used as contacts: TS
Used as a coil: TC
Used as a current value: TN

Use the timer T192 to T199 within a subroutine or interrupt routine. This timer counts the time when
executing a coil instruction or END instruction.

When the set value is reached, the output contact operates when the coil instruction or the END
instruction is executed.

A general purpose timer counts the time only when the coil instruction is executed. Such a timer does not
operate normally because it does not count the time if used in a subroutine or an interrupt routine where
the coil instruction is executed only under certain conditions.

Note: If a 1 ms integrating timer is used in a subroutine or an interrupt routine, the output contact operates
when the first coil instruction is executed after the set value is reached
(FX1N, FX1NC, FXuU, FX2c, FX2N, FX2Ne, FX3s, FX3G, FX3Gce, FX3u and FX3uc PLCs)

Some restrictions to applicable devices
A 1: The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2: The target device can be indexed only by the FX3u and FX3uc PLCs.

67

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

soppedais @) uononisu) aiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.4 Operating Timer

Program example

1. Program that turns ON Y010 and Y014 in 10 seconds after X000 turns ON.

[Structured ladder/FBD] [ST]
X000 OUT_T OUT_T(X000,TC1,100);
L ——1EN ENO|— OUT(TS1,Y010);
Tc1 —TCoil OUT(TS1,Y014);
100 —TValue
TS1 Y010
Y014
— —

2. Program that sets the BCD data of X010 to X01F to a timer.

[Structured ladder/FBD] [ST]
X000 BINP BCD data of X010 to X01F is BINP(X000,K4X010,D10);
———EN ENO— converted to binary data and OUT_T(X002,TC2,D10);
K4X010 —{s d—D10 stored in D10. OUT(TS2,Y015);
X002 OUT. T
= When X002 turns ON, timer
2 i B starts to count using data
TC2 —{TCoil stored in D10 as set value.
D10 —TValue
TS2 Y015

When T2 timer completes
counting up, Y015 turns on.

3. Program that turns ON Y010 in 250 milliseconds after X000 turns ON.

[Structured ladder/FBD] [ST]
OUT_T(X000,TC200,25);

X000 OUT_T OUT(TS200,Y010);

——+———-EN ENO—
TC200 — TCoil
25 —TValue

TS200 Y010

—A—(

68

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.5 Operating Counters
5.5 Operating Counters o
=
551 OUT_C,OUT C_32
FX3U(C) |[FX3G(C)| FX3S |FX2N(C) |FXIN(C)| FX1S | FXU/FX2C | FXON | FXO(S) 2
o 0 O O 0 O O O O Z
S
. 5}
Outline =
The counter starts counting when the condition turns ON from OFF. It generates an output when counting up -
to the set value. 3
1. Format and operation, execution form Z‘g’
— §&
Instruction . Execution Expression in each language 55
Operation ER-S
name form Structured ladder/FBD ST S
o
OuT_C 4
. . —EN ENO— .
OuUT_C 16 bits Continuous . OUT_C(EN,CCoil,CValue); _
—{CCaoil 2 _‘g‘ =
—CValue 5 Eéi
= Q
o o
OUT C 32 =
OUT _C 32 | 32bits | Continuous _E'; ; 2N OUT_C_32(EN,CCoil,CValue);
—CCoi
—CValue o
()
o
Z
2. Set data S
Data type s
Variable Description
16-bit operation | 32-bit operation 6
EN Execution condition Bit sw
Input - " @
. CCaoll Target counter Bit 3T
variable S5
CValue Counter set value ANY16 | ANY32 S g
[Z)
OUFPUt ENO Execution state Bit
variable

N

3. Applicable devices

Bit Devices Word Devices Others g%
Operand System User Digit Specification System Specfial Index Constant Real Char:acter Pointer 3 g
type User Unit Number| String g
X|Y[MT|C|S|DO.b|KnX|{KnY|KnM|KnS|T|C|D| R |UC\GO |V |Z|Modifier| K | H E g~ P 23
CCaoil [
CValue O A1 A2 []

A: Refer to "Cautions".

(a1edwo)
pue ano}\)
niysu| paijddy

Function and operation explanation

© sup

1. OUT_C operation

5>Z
Q=D
1) When the operation result up to the OUT_C instruction turns ON from OFF, the counter counts up the 83 &
. Q5
current value (count value) by +1. When the counter completes counting (the current value reaches the §§g
set value), the contact becomes as follows. %’»3%—
NO (normally open) contact Conductive 1 0
NC (normally closed) contac Nonconductive
) . : . - 1
2) The counter does not count if the operation result remains ON. (The count input does not need to be in 25z
the form of pulse.) 8BS
255
§°s

69

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.5 Operating Counters

2. Counter reset

After completing to count, the count value and contact condition does not change until the RST instruction is
executed.

3. Counter set value

The set value of the counter can be specified directly by a decimal number (K) or indirectly using a data
register (D) or extension register (R).

Indirect setting by the extension register (R) is applicable only to the FX3u and FX3uc PLCs.

No negative numbers (-32768 to -1) can be set.

If set to "0", the same process as 1 takes place.

4. When using counter device
When a counter device is specified in a program, use the following depending on the locations of use.

* Used as contacts: CS
* Used as a coil: CC
» Used as a current value: CN

Cautions

1) Some restrictions to applicable devices
A 1: The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2: Only the FX3u and FX3uc PLCs can index the target device.
A 32-bit counter cannot be indexed.

Program example

1. This program turns ON Y30 when X0 turns ON 10 times and resets the counter when X1

turns ON.
[Structured ladder/FBD] [ST]
X000 OuT_C OUT_C(X0,CC10,10);
I +—EN ENO— OUT(CS10,Y30);
CC10 —CCaoll RST(X1,CN10);
K10 —CValue
cs10 0 yoo

2. This program sets "10" to C10 when X0 turns ON and sets to "20" to C10 when X1 turns ON.

[Structured ladder/FBD] [ST]
X000 X001 MOVP MOVP(X0 AND NOT X1,10,D0);
——AF———3—EN ENO— Sets "10" to DO when MOVP(X1 AND NOT X0,20,D0);
10 —s d— po X0 turns ON. OUT_C(X3,CC10,D0);
,, OUT(CS10,Y30);
X001 X000 MOVP
) EN ENOl— Sets "20" to DO when
X1 turns ON.
20 —s di— DO
X003 OuUT_C
—F———EN ENO— C10 counts with the
; data stored in DO as
cc10 —CColl the set value.
DO —CValue
Cs10 Y030 When C10 completes counting,
A * Y30 turns ON.

70

5 Basic Instruction
5.6 AND(...), OR(...)

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5.6 AND(...), OR(..) o
s
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FXo(S)
(@] O O O O O O O O

Outline -

Use AND (...) instruction to connect a branch circuit (parallel circuit block) to the preceding circuit in series. 2

Use OR (...) instruction to connect a series circuit block in parallel. g

-

1. Format and operation, execution form =

Instruction | Execution Expression in each language 3

name form Structured ladder/FBD ST —o

AND(...) R

X000 X002 Y000 The ladder diagram (or LD) is described as follows. %‘E

L Il {)_ =) ‘Q_)—

T 1T \ 6.

i Y000:=(X000 OR X001) AND(X002 OR X003); 2

AND(...) Continuous X001 X003 () () S

SmI

OR(-.) 2352

c O 5

X000 X001 Y001 The ladder diagram (or LD) is described as follows. 252

f 1t { — § g-g;?

i Y001:=(X000 AND X001) OR(X002 AND X003); S

OR(...) Continuous X002 X003 () OR()

P

o

. .)

2. Applicable devices =

(2]

Bit Devices Word Devices Others g

X - e e System | Special Real |Character|_ . §'

Instruction System User Digit Specification User Unit Index Constant Number| String Pointer

X‘Y|M‘T‘C‘S‘Dﬂ.b KnX‘KnY‘KnM‘KnS T|C‘D‘ R [uD\GO V|Z‘Modifier K[H]| E Rag P 6

AND(...) , , 28

_ There are no applicable devices. 3T

OR(...) sl

o

7?8

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

71

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.6 AND(...), OR(...)

Function and operation explanation

1. AND(...)(Serial connection of circuit blocks)
AND (...) is an independent instruction not associated with any device number in the same way as the OR (...)

instruction described later.
When there are many parallel circuits, the AND (...) instruction can be used for each circuit block to connect

them.
[Structured ladder/FBD]

X000 X002 X003 Y007
—t i 1 (»
X001 X004 X005
—
X003 Parallel block
—}
; OR instruction before AND (...) instruction

OR instruction after AND (...) instruction

[ST]
Y007:= ((X000 OR X001) AND ((X002 AND X003) OR (NOT X004 AND X005) OR X006)) OR X003;

2. OR(...)(Parallel connection of circuit blocks)
OR (...) is an independent instruction not associated with any device number in the same way as the AND (...)

instruction.
When there are many parallel circuits, the OR (...) instruction can be used for each circuit block to connect

them.

[Structured ladder/FBD]

X000 X001 Y007
— I ()
X002 X003
—

X004 X005

R\

Serial circuit block

[ST]
Y007:=(X000 AND X001) OR (X002 AND X003) OR (NOT X004 AND X005);

72

5 Basic Instruction
5.7 MPS, MRD, MPP

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5.7 MPS, MRD, MPP e
5
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FX1N(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@) @] @] @] O @] @] @] @]
Outline -
These PLCs have 11 memories called "Stack" which store the intermediate result (ON or OFF) of operations. 2
S
2
1. Format and operation, execution form :.;
Instruction | Execution Expression in each language
name form Structured ladder/FBD ST 3
50
MPS Continuous MPS MPS(EN); 22
—EN ENO|— §&
Ss
=
MRD Continuous MRD MRD(EN); &
—EN ENO|— 4
SmI
MPP Continuous MPP MPP(EN): 252
—|EN ENO|— S8 3
522
238
o
2. Set data =
Variable Description Data type
Input . . MPS: Bit =
variable EN Execution condition MRD, MPP: Always TRUE 8
o
OUFPUt ENO Execution state Bit @,
variable S
S
. . =3
3. Applicable devices
Bit Devices Word Devices Others 6
) - e e System | Special Real |Character . 2%
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer gg
= Q
X‘Y|M‘T‘C‘S‘Dﬂ.b KnX‘KnY‘KnM‘KnS T|C‘D‘ R [uD\GD V|Z‘Modifier K|H| E O P sa
MPS
MRD There are no applicable devices.
MPP 7
Tz
3=
«Q @
g
3z
mc
28
=S

73

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.7 MPS, MRD, MPP

Function and operation explanation
These instructions are convenient in programming branched multi-output circuits.

1. MPS, MRD, MPP (Stack push down, stack read and stack popup)
[Structured ladder/FBD]

X004 MPS X005 Y002
L 1EN ENOl——r— ¢ »
MRD X006 Y003
EN ENOF—F— »
MRD Y004 1 g MEB
EN ENO (+ 2
-- 3 v MPS
MPP X007 Y005
EN ENO———(» 4 t wep
[ST] 10]
Y002:= X005 AND MPS(X004); 11
Y003:= MRD(TRUE) AND X006; Stack

Y004:= MRD(TRUE);
Y005:= MPP(TRUE) AND X007;

1) Use MPS instruction to store the intermediate result of operation, and then drive the output Y002.

2) Use MRD instruction to read the stored data, and then drive the output Y003.
MRD instruction can be programmed as many times as necessary.

3) In the final output circuit, use MPP instruction instead of MRD instruction.
MPP instruction reads the stored data described above, and then resets it.

Error

MPS instruction can be used two or more times. However, the difference between the number of MPS
instructions and the number of MPP instructions should be 11 or less, and should be 0 at the end.

Caution

When a circuit is programmed as shown on the left, it is compiled in fact as the program on the right that does
not use MPS, MRD or MPP instruction.

Program representing actual operation
(program in the PLC)

X000 MPS X001 Y000 X000 X001 Y000
——4——EN ENO——}—(» —A A >
MRD X002 Y001 X000 X002 Y001
EN ENO————(» —A >
MPP X003 Y002 X000 X003 Y002
EN ENO—HAF— > A >
Or
X000 M256

M256 X001 Y000
A >

M256 X002 Y001
— >

M256 X003 Y002
— A >

74

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.7 MPS, MRD, MPP

Program example o)

=

1. Program example 1 (One stack) ¢

Only one stack is used in this example.

[Structured ladder/FBD] [ST] 2

X000 X001 MPS X002 Y000 Y000:= MPS(X000 AND X001) AND X002; Z

——4———+—EN ENO|———() Y001:= MPP(TRUE); g.

MPP Y001 =

EN ENO C Y002:= MPS(X003) AND X004; 2

Y003:= MPP(TRUE) AND X005; 3

Y004:= MPS(X006) AND X007; 59

=3

X003 MPS X004 Y002 Y005:= MRD(TRUE) AND X010; 5_@'

- {+—EN ENO|—} (Y006:= MRD(TRUE) AND X011; Sg

"""""""""""""""""""""""""""""""""" Y007:= MPP(TRUE) AND X012; 2

MPP X005 Y003 =S

EN ENO—} (4

...

8%

288

X006 MPS X007 Y004 oo
—{——EN ENO|—} (r
MRD X010 Y005

EN ENO— Cr g

... I3

MRD X011 Y006 &

EN ENOl— (r 5

... §"-
MPP X012 Y007

EN ENOl—j (6

=)

28

S5

2. Program example 2 (One stack with AND (...) and OR (...) instructions)
[Structured ladder/FBD] [ST]

N

%000 [MPS %001 Y000 Y000:= MPS(X000) AND (X001 OR X002);

- ——1EN ENO » Y001:= MRD(TRUE) AND ((X003 AND X004) OR (X005 AND X006));
Y002:= MPP(TRUE) AND X007;
X002 Y003:= Y002 AND (X010 OR X011);

(mo)4 weibold)
suononusu] paljddy

MRD X003 X004 Y001

1 II ()_
\—005 X006

(a1edwon
pue ano}\)
niysu| paijddy

© sup

X010 Y003

(O
X011

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

75

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.7 MPS, MRD, MPP

3. Program example 3 (Two stacks)

[Structured ladder/FBD] [ST]
X000 | MPS X001 MPS X002 Y000 Y000:= (MPS(X000) AND MPS(X001)) AND X002;
L {EN ENO—+——EN ENO———— » Y001:= MPP(TRUE) AND X003;
"""""""" MPPX003YOO1 Y002:= (MPP(TRUE) AND MPS(X004)) AND X005;
EN ENOL—y . Y003:= MPP(TRUE) AND X006;

MPP X004 MPS X005 Y002
EN ENO—H+——EN ENO|—}+— »

4. Program example 4 (Four stacks)

[Structured ladder/FBD]

X000 | MPS | X001 [MPS | X002 | MPS | X003 | MPS | X004 Y000
——F—EN ENO——+—EN ENO—{—EN ENO|——EN ENO—{—)
MPP Y001

EN ENO (-

MPP Y002

EN ENO (-

MPP Y003

EN ENO (-

MPP Y004

EN ENO (-

[ST]

Y000:= (((MPS(X000) AND MPS(X001)) AND MPS(X002)) AND MPS(X003)) AND X004;
Y001:= MPP(TRUE);

Y002:= MPP(TRUE);

Y003:= MPP(TRUE);

Y004:= MPP(TRUE);

. B

[Structured ladder/FBD] [ST]
X000 Y004 Y004:= X000;
i ¢ - Y003:= Y004 AND X001:
ml‘“ Y003 Y002:= Y003 AND X002:
! ¢ r Y001:= Y002 AND X003;
B?OZ Y002 Y000:= Y001 AND X004;

: (-
_Xﬁ)03 Y001
)_

X004 Y000

— >

In programming a circuit on the upper side, it is necessary to use MPS instruction three times.
By changing the circuit on the upper side into the circuit on the lower side, the same contents can be
programmed easily without MPS instruction.

76

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.8 INV
5.8 INV o
. =4
s
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FXo(S)
O O ©) ©) O O X X X
Outline -
INV instruction inverts the operation result up to just before INV instruction. g
Q
=
1. Format and operation, execution form =
wn
Instruction | Execution Expression in each language
name form Structured ladder/FBD ST 3
; INV 29
INV Continuous INV(EN); g =
—EN ENO(§&
S
o
5
o
2. Set data =
Variable Description Data type 4
Input) " : SmT
variable EN Execution condition Bit g,-%%
23°
OUFPUt ENO Execution state Bit § 53
variable g L

3. Applicable devices

Bit Devices Word Devices Others
) - e e System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer
X‘Y|M‘T‘C‘S‘Dﬂ.b KnX‘KnY‘KnM‘KnS T|C‘D‘ R [uDeO V|Z‘Modifier K|H| E O P
INV There are no applicable devices.

Function and operation explanation

1. INV(inverts the result of operations)

soppedais @) uononisu) aiseg

suononJsu|

[Structured ladder/FBD] Timing chart
ON

X000 INV Y000 xoooﬂ | oFF |

N

—EN ENO—(» . ! . g
Yooo ON OFF ON § g
[ST] Operation result until just Operation result after INV gg’
before INV instruction instruction is executed @
Y000:= INV(X000) OFF o ON
ON —_> OFF

| i)

Inverted

(a1edwo)
pue ano}\)
niysu| paijddy

In the figure above, Y000 turns ON when X000 is OFF, and Y000 turns OFF when X000 is ON.

INV instruction can be used in a same position as serial contact instructions (AND, ANI, ANDP and ANDF).
Different from LD, LDI, LDP and LDF instructions shown in the list, INV instruction cannot execute connection
to bus lines. Different from OR, ORI, ORP and ORF instructions, INV instruction cannot be used
independently in parallel to a contact instruction.

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

77

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.8 INV

2. Operation range of INV instruction
When INV instruction is used in a complicated circuit containing ORB and ANB instructions, the operation
range of INV instruction is as shown in the figure below:

INV INV INV INV INV INV

——EN ENO-—-EN ENOH-EN ENOB-i4—}—EN ENOH--EN ENOH-——EN ENOl—(}—
LD | LD
INV INV
I——+—{EN ENOH —{——EN ENOF
LD s LD
INV INV
I} EN ENO {——EN ENO
LD LD

INV instruction inverts the operation result after LD, LDI, LDP or LDF instruction located before INV

instruction.
Accordingly, if INV instructions are used inside ORB and ANB instructions, blocks after LD, LDI, LDP or LDF
instruction seen from each INV instruction are regarded as the target of INV operation.

78

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.9 MEP, MEF

59 MEP, MEF

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)

A (@] (@) X X X X X X

Outline

MEP and MEF commands are instructions that change the operation results to pulses so that device numbers
do not have to be specified.
1) MEP
The operation results up to the MEP instruction become conductive when the driving contacts turn ON
from OFF.
The use of MEP instructions simplifies the process of changing driving contacts to pulses when multiple
contact points connect in a series.
2) MEF
The operation results up to the MEF instruction become conductive when the driving contacts turn OFF
from ON.
The use of MEF instructions simplifies the process of changing driving contacts to pulses when multiple
contact points connect in a series.

1. Format and operation, execution form

Instruction | Execution Expression in each language
name form Structured ladder/FBD ST
MEP Pulse MEP MEP(EN);
—EN ENO|—
MEF Pulse MEF MEF(EN);
—EN ENO|—
2. Set data
Variable Description Data type
Input EN Execution condition Bit
variable
OUFPUt ENO Execution state Bit
variable

3. Applicable devices

Bit Devices Word Devices Others
) - e e System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer
X‘Y|M‘T‘C‘S‘Dﬂ.b KnX‘KnY‘KnM‘KnS T|C‘D‘ R [umeO V|Z‘Modifier K|H| E O P
MEP .)
_ There are no applicable devices.s
MEF

79

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononAsul
soppedais @) uononisu) aiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.9 MEP, MEF

Function and operation explanation

1. MEP(ON during rising edge of driving contacts results)

[Structured ladder/FBD] Timing chart
X000 X001 MEP SET %000 OFF ON
——FH——EN ENO——EN ENO{— '
di— Mo |
X001 OFF ON
[ST] i
SET(MEP(X000 AND X001),M0); MO OFF ON

2. MEF(ON during falling edge of driving contacts results)

[Structured ladder/FBD] Timing chart
X000 X001 MEF SET
——+——EN ENO—EN ENO|— xo00 OFF | ON | OFF
d— Mo |
OFF ON | OFF
[ST] X001 |
SET(MEF(X000 AND X001),MO0); Mo OFF ON

Cautions

1)
2)

MEP and MEF instructions are provided in the FX3u and FX3uc PLCs Ver. 2.30 or later.

MEP and MEF instructions may not operate normally if the indexed contact is modified and changed to
pulses by sub-routine programs, the FOR and NEXT instructions, etc.

As the MEP and MEF instructions operate using the operation results immediately before them, use at
the list program as the AND instruction.
The MEP and MEF instructions cannot be used at the list program as LD or OR.

Caution on writing during RUN

a) Pulse command during rising edge of operation (MEP instruction) results
After writing to the circuit with MEP instructions during RUN, the MEP instruction result turns ON
(conductive) while the operation results up to the MEP instruction are ON.

b) Pulse instruction during falling edge of operation (MEF command) results
After writing to the circuit with MEF instructions during RUN , the MEF instruction result turns OFF
(nonconductive), regardless of the operation results up to the MEF instruction. The operation results
of MEF instruction turns ON (conductive) when the operation results up to the MEF instruction turn
OFF.

Operation Results up to MEP/MEF Instruction
(while writing is excuted during RUN)

MEP MEF

OFF

OFF (non-conductive)

OFF (non-conductive)

ON

ON (conductive)

OFF (non-conductive)

80

FXCPU Structured Programming Manual

5 Basic Instruction

[Basic & Applied Instruction] 5.10 SET, RST
5.10 SET, RST
FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O

Outline

1)

Setting a bit device (SET instruction [holding operation])

When the command input turns ON, SET instruction sets to ON an output relay (Y), auxiliary relay (M),
state relay (S) and bit specification of word device.

Even if the command input turns OFF after that, the device which was set to ON by SET instruction
remains ON.

Resetting a bit device (RST instruction [resetting folding operation])

RST instruction resets an output relay (Y), auxiliary relay (M), state relay (S), timer (T), counter (C) or bit
specification of a word device.

Use the RST instruction to reset (reset to OFF) a device which was set to ON by SET instruction.

Clearing the current value of a word device (RST instruction [Clearing current value and resister])

RST instruction clears the current value data of a timer (T), counter (C), data register (D), extension
register or (R)index register (V) (Z). (The same result can be obtained by MOV instruction which transfers
the constant KO.)

RST instruction can be used also to reset the current value and return the contact of retentive type timers.
SET and RST instructions can be used for a same device as many times as necessary in an arbitrary
order.

1. Format and operation, execution form

Instruction | Execution Expression in each language
name form Structured ladder/FBD ST
X000 SET
—+—EN ENO—
di— Y000 SET(EN,d);
SET Continuous Or Example:
X000 Y000 SET(X000,Y000);
s
X001 RST
————EN ENO—
d— Y000 RST(EN,d);
RST Continuous Or Example:
X001 Y000 RST(X001,Y000);
—AF——R— 1
*1. This symbol is applicable to the bit type data only.
2. Set data
Variable Description Data type
Inpyt EN Execution condition Bit
variable
ENO Execution state Bit
Output SET Bit
variable i i i !
D Applicable device or variable RST ANY_SIMPLE
3. Applicable devices
Bit Devices Word Devices Others
i - e System | Special Real |Character| _ .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer
XY M‘T C{S|DO.b|KnX|KnY |KnM |KnS|T|C|D| R |UC\GO |V|Z|Modifier| K | H E "a" P
SET ° o| o A1 A3
RST o|o|ooo| A1 o/o0o a2 oo A3

A: Refer to "Cautions".

81

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

soppedais @) uononisu) aiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)
suononsu| paijddy

(uonetedo Yys

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.10 SET, RST

Function and operation explanation

SET instruction drives the coil for an output relay (Y), auxiliary relay (M), state relay (S) and bit specification of
data register (D).

1. When using a bit device

SET instructions located in parallel can be used consecutively as many times as necessary.
In the program example shown below, RST (X1001, Y000) after SET (X000, Y000) corresponds to this

usage.

[Structured ladder/FBD]

X000

SET
ENO—
d— Y000
RST
ENO—
di— Y000

[ST]

SET(X000,Y000);
RST(X001,Y000);

timing chart

X000

o]

X001 oN]
Y000 ON
SET RST
instruction instruction

82

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.10 SET, RST
2. When using word device (timer or counter) o)
Use RST instruction to reset a counter or retentive type timer. =3
1) Program example of an internal counter
CO up-counts the number of turning ON from OFF at X011.
X({J'm— EN RSTENO When the counting result reaches the set value K10, the output
contact CO is activated. Even if X011 changes from OFF to ON 2
d— CNo)
,,, after that, the current value of the counter remains unchanged 5
X011 OUT C and the output contact remains activated. g
L —1EN " ENOl— For clearing the counter and returning the output contact, X010 5
CC0 —CCaoil is set to ON. =
K10 —CValue
——— In case of latched (battery backed) type counters, the current 3
Cso Y003 :
value and the operation status and reset status of the output _
— A - - 9
contact are latched even after power failure. 2g
2) Program example of a high speed counter S
Counting direction For one-phase one-input counters, use special auxiliary relays <
X010 M8AAA for specifying the counting direction. 4
—— (> X010 in ON status: specifies down counting. _
—— X010 in OFF status: Specifies up counting g%_”g
Sequence When X011 turns ON, the output contact of the counter §§ 5]
reset circuit CAAA is returned and the current value of the counter is reset 35 &
X011 RST ey oo
to "0". =Y
—FH——EN ENO|—

In counters with reset input, the same situation is achieved by

di— CNAAA

interrupt operation when the corresponding reset input turns
"""" o ON, but any program is not required for this operation. w
Counting coil When X012 turns ON, turning ON/OFF of a counting input X000 2
S X012 CCAAA . . . =
i : (% to X005 determined according to the counter number is 2
K or D counted. S
SRS In counters having start input, counting is started only after the S
CSAAA Y002 corresponding start input turns ON. 6

— > When the current value of a counter increases and reaches the
set value (K or contents of D), the output contact is set. When Zé’-’
the current value decreases and reaches the set value, the S5
output contact is reset. 28

As a contact driving the counting coil of a high speed counter, program a contact which is normally ON
when high speed counting is executed.
If an input relay (X000 to X005) assigned for high speed counters is used for driving the counting coil,
accurate counting cannot be achieved.

N

3) Caution on using RST instruction for a jumped program, subroutine program or interrupt program
When RST instruction for a timer or counter is executed in a jumped program, subroutine program or
interrupt program, the timer or counter may be kept in the reset status and the timer or counter may be
disabled.
For details, refer to the following sections.

(mo)4 weibold)
suononusu] paljddy

— For a jumped program, refer to section 7.1.
— For a subroutine program, refer to section 7.2.
— For an interrupt program, refer to section 7.3.

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

83

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.10 SET, RST

3. Indexing
Devices used in SET and RST instructions can be indexed with index registers (V, Z).
(State relays (S), special auxiliary relays (M), 32-bit counters, "DJ.b" and word devices cannot be indexed.)

This is applicable only to the FX3u and FX3uc PLCs.
When a used device is an input (X) or output (Y),

[Structured ladder/FBD] [ST] ; . ;
the value of an index register (V, Z) is converted
X000 SET SET(X000,Y000Z0); into octal, and then added.
—EN ENO|— RST(X001,Y000Z0); Example: When Z0 is "20", Y024 turns ON or
di— Y00020 OFF.
X001 RST
——EN ENO—
d— Y000z0

4. Bit specification of a data register (D)
A bit data register (D) can be specified as a device used in SET or RST instruction.
This is applicable only to the FX3u and FX3uc PLCs.
[Structured ladder/FBD] [ST] When specifyir?g a bit in data register, in.put
after a data register (D) number, and then input a
X000 SET SET(X000,D0.3); bit number (0 to F) consecutively.
F———-1EN ENO|— RST(X001,D0.3); Only 16-bit data registers are available.
di—D0.3 Specify a bit number as "0, 1,2, ..., 9, A, B, ..., F"
"""""""""""""""""""""""" from the least significant bit.
Example: In the example shown on the left,
when X000 turns ON once, the bit 3 of
DO turns ON. When X001 turns ON,
the bit 3 of DO turns OFF.

Cautions

1) Some restrictions to applicable devices

A 1: FX3U and FX3uc PLCs only are applicable.

A2: FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.

A3: Only the FX3U and FX3uc PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.
+ Special auxiliary relays (M)
» 32-bit counters (C)
« State (S)
* Word device
» Word bit specification "D[].b"

2) When SET and RST instructions are executed for an output relay (Y) in a same operation, the result of
the instruction located nearest the END instruction (which specifies the end of program) is output.

3) When using the retentive type timers of the FX1N, FX1NC, FX2N and FX2Nc, be sure to create a program
where the RST instruction resets the retentive type timers to be used. If no such a reset circuit by RST is
present in the program, the timers remain in the state of reset, possibly causing the timers not to operate.

1) When an I/O number used in SET or RST instruction does not exist due to indexing, M8316 (non-existing
I/O specification error) turns ON. (Applicable only to the FX3u and FX3uc PLCs.)

2) When the device number of a device (M, T or C) other than I/O used in SET or RST instruction does not
exist due to indexing, an operation error (error code: 6706) occurs. (Applicable only to the FX3u and
FX3uc PLCs.)

84

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.11 PLS, PLF
5.11 PLS, PLF o
5
FX3U(C) [FX3G(C)| FX3S [FX2N(C)|FX1N(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
When PLS instruction is executed, an applicable device is activated during only one operation cycle after a 2
drive input turns ON. 2
When PLF instruction is executed, an applicable device is activated during only one operation cycle after a =
drive input turns OFF. =
For example, when PLC mode is changed in the way "RUN — STOP — RUN while a drive input remains ON,
"PLS(**, M0O) operates, but "PLS (**, M600) (backed up by the battery)" does not operate (when the PLC 3
mode switches from STOP to RUN) because the status of M600 is latched even while the PLC is in the STOP 5o
mode. 23
o€
1. Format and operation, execution form SE
5
Instruction | Execution Expression in each language <
name form Structured ladder/FBD ST 4
PLS SmI
[z R-e)
PLS Pulse —EN ENO— PLS(EN,d); sS=
Q> o
d— 522
238
o
PLF e
PLF Pulse —EN ENO|— PLF(EN,d);
d—
&
()
2. Set data 2
(2]
Variable Description Data type g
Input EN Execution condition Bit s
variable
Output ENO Execution state Bit 6
variable @ Applicable device or variable Bit 28
85
3. Applicable devices S %
Bit Devices Word Devices Others
} - e System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer 7
X|Y| M |T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D|R| UC\GO |V |Z |Modifier| K | H E Rnk P BE
o=
PLS oAl A2 =
33
PLF O A1 A2 ng
Q =
=3

A: Refer to "Cautions".

Function and operation explanation

1. PLS (rising edge differential output)

(a1edwo)
pue ano}\)
niysu| paijddy

[Structured ladder/FBD] [ST] timing chart 2

X000 PLS PLS(X000, MO): X000 ON 3
b——EN ENO—

ON during one 9

dj—mo PLS instruction] M 0 _ ~J[<_ operation cycle

£E3Z

In the figure above, MO is ON during only one operation cycle when X000 changes from OFF to ON. ?_,%g
o=

2. PLF (falling edge differential output) gg%
[Structured ladder/FBD] [ST] timing chart S 2
X000 PLF PLF(X000, M1); X000 ON |, 10
—EN ENO|— ON duri (255} >

B uring one %838

=M1 PLF instruction] M 1 operation cycleejﬁ oEg

BSZ

In the figure above, M1 is ON during only one operation cycle when X000 changes from ON to OFF. g8 g
ooz

85

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

5 Basic Instruction
5.11 PLS, PLF

3. Output drive side
The following two circuits cause a same operation.

<<QUT instruction>>

<<PLS instruction>>

X000 M1 MO
: # (-
X000 PLS
X000 M1 = ——EN ENO|-
: (r dr—Mmo

X000 ON

ON during one

0 9:|ioperation cycle

M 1 ON

In each case, MO is ON during only one operation cycle when X000 changes from OFF to ON.

<<PLS instruction>>

<<Pulse operation type applied instruction>>

X000 PLS MOVP
——F———EN ENO— ———-EN ENO—
di—Mo K10 —s d— DO
MO MOV
——AF——EN ENO—
K10 —s di— DO

In each case, MOV instruction is executed only once when X000 changes from OFF to ON.

Cautions

1)

When write during RUN is completed for a circuit including an instruction for falling edge pulse (LDF,
ANDF or OREF instruction), the instruction is not executed without regard to the ON/OFF status of the
target device of the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for falling edge pulse (PLF
instruction), the instruction is not executed without regard to the ON/OFF status of the operation condition
device.

It is necessary to set to ON the target device or operation condition device once and then set it to OFF for
executing the instruction for falling edge pulse.

When write during RUN is completed for a circuit including an instruction for rising edge pulse, the
instruction is executed if a target device of the instruction for rising edge pulse or the operation condition
device is ON.

Target instructions for rising edge pulse: LDP, ANDP, ORP, and pulse operation type applied instructions

(such as MOVP)

Contact ON/OFF status
(while write during RUN is Instruction for rising edge pulse Instruction for falling edge pulse
executed)
OFF Not executed Not executed
ON Executed™ Not executed

*1. PLS instruction is not executed.

Some restrictions to applicable devices

A 1: Excluding special auxiliary relays (M)

A2: Only the FX3u and FX3uc PLCs are capable of indexing applicable devices.
The following devices cannot be indexed.

» Special auxiliary relays (M)

86

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.12 MC, MCR
512 MC, MCR o
. ’ =
§
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
When MC instruction is executed, instructions from MC to MCR are executed. %
. . . Q
Thereby, efficient ladder switching sequence programs can be created. g
2
1. Format and operation, execution form
Instruction | Execution Expression in each language 3
name form Structured ladder/FBD ST .
29
MC §&
MC Continuous _EN ENO|— MC(EN,n,d); S %_
—In d— 2
MCR 4
MCR Continuous —1EN ENOI— MCR(EN,n); smT
" 555
=)
58
2. Set data o=
Variable Description Data type
. " MC: Bit
EN Execution condition MCR: Always TRUE ©
Input Nesting level (0 to 7) &
variable When adopting a nesting structure, use it in order of 0 - 1 — ANY16 ?
2 53545556 —>7.If not adopting a nesting structure, §
it is always "0". =}
ENO Execution state Bit
Output . . 6
; Device number to be turned ON when executing the MC | _.
variable D) h . Bit _
instruction. 2 %
£r
. - = Q
3. Applicable devices sg
Bit Devices Word Devices Others B
3 L e System | Special Real |Character .
Instruction System User Digit Specification User Unit Index Constant Number| String Pointer 7
X|Y| M [T|C|[S|DO.b|KnX|KnY|KnM|KnS|T|C|D|R|UO\GO |V |Z|Modifier| K | H E "a" P T
3=
MC oAl &g
- - 33
MCR There are no applicable devices. T =
A: Refer to "Cautions". 23

(a1edwo)
pue aAopy)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

87

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.12 MC, MCR

Function and operation explanation

When MC instruction is executed, instructions from MC to MCR are executed. When MC instruction is not
executed, the operation with the contact OFF is executed.
In the program example below, the instructions from MC to MCR are executed as they are while the input
X000 is ON. However, while the input X000 is OFF, each drive device offers the following operation.

Timers (except retentive type timers) and devices driven by OUT instruction: Turn OFF

Retentive type timers, counters and devices driven by SET/RST instruction : Hold the current status.

[Structured ladder/FBD]

X000 MC
- ————EN ENO|—
0—n dj— M100
xo01 Yoo
— (-
X002 Y001
— (r
MCR
EN ENO|—
0—n
[ST]
MC(X000,0,M100);
Y000:= X001;
Y001:= X002;

MCR(TRUE,0);

Caution

1) Some restrictions to applicable devices
A 1: Excluding special auxiliary relays (M)

2) Use MC instruction and MCR instruction at a same nesting level as a pair.
3) Do not attach a contact before MCR instruction. (Always make MCR instruction "TRUE".)

4) When not adopting the nesting structure
Use the nesting level "0" for creating a program.
MC instruction can use the same nesting level "0" as many times as needed by changing the device (Y or
M) number specified by CdD.

5) When adopting the nesting structure
Increase the nesting level intheway "0 > 1 —> ... > 6 > 7"
— Refer to a program example for the details.

6) The device specified by Ca> remains ON while MC instruction is executed.
If the same device number is used in another instruction, it results in the double coil operation in the same
way as OUT instruction.

88

FXCPU Structured Programming Manual 5 Basic Instruction

[Basic & Applied Instruction] 5.12 MC, MCR
Program examples o
=
1. When the nesting structure is not adopted. ¢
[Structured ladder/FBD]
X000 MC 2
——AF———EN ENO|—
0—n d— M100 2
“xo01 vooo g
—t (» =
X002 Y001
EL————F S 3
MCR 28
EN ENO|— s
0—n §'§._
S
... =3
X003 MC 4
—A———EN ENO— <———— When not adopting the nesting structure, use nesting soT
0—n d— M150 level "0" again to program. g%g
--- There is no limitation in the number of nesting level "0". § %c;bu
X004 Y002 Only in the nesting structure, increase the nesting level 258
’ (r 0—1..6 7 as shown in the example 2 on the next -
X005 Y003 page.
—! ()+
... @
MCR 2
EN ENO— 2
0—n B
s
— (- 6
(ST} 58
38
MC(X000,0,M100); -
Y000:= X001;
Y001:= X002; 7
MCR(TRUE,0); =
s
MC(X003,0,M150); 3=
Y002:= X004; g %
Y003:= X005; ;—”S,_
MCR(TRUE,0); £

(a1edwon
pue aAopy)
nisu| pajddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonusu) payddy

-—
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

89

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.12 MC, MCR

2. When the nesting structure is adopted.
When using MC instructions inside MC instruction, increase the nesting level "N" in turn in the way "NO — N1
—> N2 —> N3 -5 N4 > N5 > N6 — N7".
For returning from the nesting structure, reset the nesting levels from the highest one in turn using MCR
instruction in the way "N7 —- N6 — N5 — N4 — N3 —» N2 — N1 — NO".
For example, if "MCR N5" is programmed without programming "MCR N6" and "MCR N7", the nesting level is
returned to 5 at one time.
Available nesting levels are from NO to N7 (eight layers).

[Structured ladder/FBD] [ST]
NO MC(X000,0,M100);
X000 MC Y000:= X001:
—— IEN ENO|—
______________________ 0—n d— Mi00 MC(X002,1,M101);
X001 Y000 Y001:= X003;
—t (- —» Executes when X000 is ON.
0 MC(X004,2,M102);
--- N1 Y002:= X005;
X002 MC %
I [EN ENO— MCR(TRUE,2);
1 —n dl— M101 Y003:= X006;
X003 Y001 3 .
— (F——m—————- - —|-»Executes when X000 and X002 are ON. MCR(TRUE,1);
8 """""""""""""""""""""""""""" Y004:= X007;
--- N2 %
X004 .
L BN MC oL y&iﬁ%ﬁf”
2 —n d— M102 . ’
X005 Y002
—t (F———————1 +—r—|—» Executes when X000, X002 and X004 are ON.
S
MCR
EN ENO|—
2 —n]
--- N2
X006 Y003
e { Fm—mm e ~ 7P Executes when X000 and X002 are ON.
MCR
EN ENO|—
1 —n
... NE
X007 Y004
i O ~» Executes when X000 is ON.
MCR
EN ENO|—
0—n
“xot0 T voos NO
—t (- » Not related to the status of X000, X002 and X004.

90

FXCPU Structured Programming Manual 5 Basic Instruction
[Basic & Applied Instruction] 5.13 END

513 END

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FX0(S)
(@) (@] @] @] O @] O @] @]

Outline

END instruction specifies the end of a program.

(Do not write the END instruction in the middle of a program.)

END instruction for ending a program and input/output processing and returning to 0 step is automatically
written at the end of the program. It cannot be programmed into program structural elements (POU).

Function and operation explanation

PLCs repeat "input processing — program execution — output processing”. When END instruction is written
at the end of a program, PLCs immediately execute the output processing without executing steps after END
instruction.

If END instruction is not written at the end of a program, PLCs execute the program until the final step, and
then execute the output processing.

At the first execution after the PLC mode was changed from STOP to RUN, PLCs start from END instruction.
When END instruction is executed, the watchdog timer (which checks to see if the operation cycle is too long)
is refreshed.

Input processing

Step 000
001 LD X000
002 :
OUT Y000
END
NOP
NOP
NOP

Output processing

Cautions
Do not write END instruction in the middle of a program.

5.14 NOP (for simple project only)

FX3U(C) | FX3G(C)| FX3S | FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FX0(S)

X X X X X X X X X

This instruction is available for use only in the simple project. It cannot be programmed in the structured
project.

91

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

soppedais @) uononisu) aiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.1 Step Ladder

6. Step Ladder Instructions

6.1 Step Ladder
This chapter introduces the instructions of structured project that correspond to the MELSEC-LD step ladder
instructions.

6.1.1 Outline
In programs using step ladder instructions, a state relay S is assigned to each process based on machine
operations, and input condition and output control are programmed as sequences connected to the state
output.

6.1.2 Function and operation explanation

In step ladder program, a state S is regarded as one control process, and a sequence of input condition and
output control are programmed in a state relay.

Because the preceding process is not performed any more when the program execution proceeds to the next
process, a machine can be controlled using simple sequences for each process.

. Operation of instruction

In a step ladder program, each process performed by the machine is expressed by a state relay.
A state relay consists of a drive coil and contact (STL output) in the same way as other relays.
Use SET or OUT instruction to drive a coil, and use STL instruction for a contact.

» When a state relay turns ON, a connected circuit (internal circuit) is activated by way of an STL output.
When a state relay turns OFF, a connected internal circuit is deactivated by way of an STL output.
After one operation cycle, non-driving of an instruction (jump status) is not available.

* When a condition (transfer condition) provided between state relays is satisfied, the next state relay turns
ON, and the state relay which has been ON so far turns OFF (transfer operation).
In the state relay transfer process, the both state relays are ON only instantaneously (during one operation
cycle).
In the next operation cycle after the ON status was transferred the former state is reset to OFF.
When the transfer state relay S is used in a contact instruction, however, the contact image is executed in
the OFF status immediately after the transfer condition is satisfied.

* One state relay number can be used only once.

FXCPU Structured Programming Manual 6 Step Ladder Instructions

[Basic & Applied Instruction] 6.1 Step Ladder
o
- =S
STL Vg 2
EN ENO S r=
7 iAN
S31 —s NNV rsr7y
N SET -
Z|EN ENOI— ~ _ lprocess of S31 2
s d— Y31\
ZTTTTTTITINAN | When X001 turns ON, Z
SET S32 turns ON and S31 5
X001 . . 23
L {——EN ENO— is automatically reset. S
=4
d— S32 @
STL Y030 *1 3
EN ENO { —
50
S Y:03>2_ Process (C%é
of $32 S5
&
X002 SET =
——+—EN ENO|— 4
d— S33
- SmI
252
L Y030 558
EN ENO { — e
831 —s NV LS 2y
N SET s Y31 programmed in SET 5
: EN ENOI— Z instruction remains ON
P d— Y31 even if S31 is reset. o
w
ZTTTITTTT VAN il
>
X001 SET g
———EN ENO— g—_
df— S32 >
s, _
> ST |~ SV~ 28
= EN ENOIZ =)<< Sc
1NN =
~S832 —s ~ ALy Activated S &
=032 c> 28
Z0 PN TTTTTVNAN A Y
X002 SET 7
L {+——{EN ENO— =z
df— $33 83
L=
38
*1. Output coils can be used again in different state relays. §§’

2. Primary knowledge for creating programs

+ List of sequence instructions available between STL instruction and RET instruction

Instruction

LD/LDI/LDP/LDF

State relay AND/ANI/ANDP/ANDF, ANB/ORB/MPS/MRD/

OR/ORI/ORP/ORF, OUT, MPP
SET/RST, PLS/PLF

Initial/general state relay Available Available” Not available

(a1edwo)
pue ano}\)
niysu| paijddy

MC/MCR

© sup

o Drive processing Available Available™ Not available
Branch/recombination

state relay Transfer Available Not available Not available
processing

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

- STL instruction cannot be used in interrupt program and subroutine programs.

- ltis not prohibited to use jump instructions in state relays. But it is not recommended to use jump
instructions because complicated movements will be resulted.

(e Pd

o k=]

=38

*1. MPS instruction cannot be used immediately after an STL instruction, even in a drive processing o8&
Lo =
circuit. 252
aels

5%g

w

93

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

6 Step Ladder Instructions
6.1 Step Ladder

Special auxiliary relays
For efficiently creating step ladder programs, it is necessary to use some special auxiliary relays. The table
below shows major ones.

Device
number

Name

Function and application

M8000

RUN monitor

This relay is normally ON while the PLC is in the RUN mode.
Use this relay as the program input condition requiring the normally driven status or for indicating the PLC
operation status.

M8002

Initial pulse

This relay turns ON and remains ON only instantaneously (during one operation cycle) when the PLC
mode is changed from STOP to RUN.
Use this relay for the initial setting of a program or for setting the initial state relay.

M8040

STL transfer
disable

When this relay is set to ON, transfer of the ON status is disabled among all state relays.
Because programs in state relays are operating even in the transfer disabled status, output coils do not
turn OFF automatically.

M8046™1

STL state ON

Use this relay to prevent simultaneous startup of another flow or as a process ON/OFF flag.
When M8047 is OFF, M8046 is normally OFF.

When M8047 is ON, M8046 operates as follows:

FX3S PLC

When at least one among the state relays SO to S255 is ON: ON

When all of the state relays SO to S255 are OFF: OFF

FX3G/FX3GC/FX3U/FX3UC PLCs

When at least one among the state relays SO to S899 and S1000 to S4095 is ON: ON
When all of the state relays SO to S899 and S1000 to S4095 are OFF: OFF

M80471

Enable STL
monitoring

When this relay is driven, the device number of a state relay in the ON status having the smallest device
number among SO to S255 (FX3S PLC), SO to S899 and S1000 to S4095 (FX3G/FX3GC/FX3U/FX3UC
PLCs) is stored to D8040, and the state relay number in the ON status having the next smallest device
number is stored to D8041.

In this way, up to eight state relays in the ON status are stored in registers up to D8047.

*1. Processed when END instruction is executed.

Block

When there are relay ladder blocks and
step ladder blocks, put RET instruction
at the end of each step ladder program.
A PLC starts the step ladder processing
by STL instruction, and returns to the
relay ladder processing from the step
ladder processing by RET instruction.
However, when consecutively
programming a step ladder in a different
flow (when there is no relay ladder
before the step ladder in the different
flow), RET instruction between flows can
be omitted, and RET instruction can be
programmed only at the end of the last
flow.

M8002 HET
— EN ENO—
Initial pulse dl— so
Relay ladder
SET
EN ENO—
d— S1
STL Y000 7] Step ladder is
EN ENO — started by STL
S0 —s instruction.
X000 SET
—EN ENO|—
d— S20 Step ladder
STL Y001
EN ENO (
S20 —s X001 s0 It can be omitted.
(= / Step ladder is
RET finished by RET
EN ENO|— instruction
STL Y001
EN ENO (Step ladder is
S1 —s started by STL
X002 SET instruction.
———EN ENO—
d— S30 Step ladder
STL Y003
EN ENO { —
S30 —s X003 91
——{ =
Step ladder is
RET finished by RET
EN ENO— instruction

94

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.1 Step Ladder

* Output driving method
It is required to include a LD or LDI instruction before the last OUT instruction in a state relay.
Change such a circuit as shown below.

STL Y001
EN ENO —
S20 s X005 Y002
— —
Y003
—()_
‘Change ’ Change
STL Y001 STL Y001
EN ENO (— EN ENO —
— Or _
S20 s Y003 S20 s X005 Y002
I — =
X005 Y002 M8000 Y003
— ——(—
Move the RUN) .
position. monitor Insert "always
ON" contact.

+ State relay transfer method
Each OUT and SET instruction in state relays automatically resets the transfer source, and has the self-
holding function.
OUT instructions can be used only for transfer to a separate state relay in an SFC program.

STL
EN ENO -
S41 —s SET
—— EN ENO|— Transfer to the next state relay
SET instruction

Transfer df— sa2 ()
condition S50 Transfer to a separate state relay

I (— (OUT instruction)

3. Program with state relays in branches and recombination

« Example of selective branch
Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with
branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
In the same way as programs for general state relays, program the drive processing first, and then
program the transfer processing.
Continuously program all transfer processing.

EN STLENO Y(OO)O_ Drive processing
8§20 —s .
X000 SET
—+——EN ENO—
di— S21
_X?fl EN SElTENO . Transfer processing
di— S31
X002 SET
——EN ENO—
di— S41

95

1517 uoponsul N oUIND m=

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

uononysuj aiseg €I

suononJsuj
Joppe deig

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puUe ofjaWyY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.1 Step Ladder

» Example of selective recombination
Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with
branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
Pay attention to the programming order so that a branch line does not cross a recombination line.

SIE Y010
EN ENO}——M—(»—
S29 —s
STL Y011 . .
EN ENO——\ Drive processing
S39 —s
SIE Y012
EN ENO}——(»—
S49 —s
STL X010 SET
EN ENO I EN ENO—
S29 —s d— S50
STL X011 SET .
EN ENO I} EN ENO|l— Transfer processing
S39 —s d— S50
STL X012 SET
EN ENO {t EN ENO—
S49 —is dl— S50

Before recombination, program the drive processing of state relays first.
After that, program only the transfer processing to recombination state relays continuously.
This rule should be observed to enable inverse conversion into an SFC program.

» Example of parallel branch
Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with
branches and recombination.
Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.
In the same way as programs for general state relays, program the drive processing first, and then
program the transfer processing.
Continuously program all transfer processing.

ik Y001 : .
EN ENO — Drive processing
S20 —s _
X000 SET
} EN ENO}|—
d— S21
SET
—EN ENO— Transfer processing
di— S31
SET
L—EN ENO|—
d— S41

96

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.1 Step Ladder

1)

Example of parallel recombination

Do not use MPS, MRD, MPP, AND (...) and OR (...) instructions in a transfer processing program with
branches and recombination.

Even in a load driving circuit, MPS instructions cannot be used immediately after STL instructions.

Pay attention to the programming order so that a branch line does not cross a recombination line.

STL Y010
EN ENO—7M—(»—
S29 —s
STL Y011 _ _
EN ENOfF——M(— Drive processing
S39 —s
STL Y012
EN ENO——M—(»—
S49 —s
STL —
EN ENO—
S29 s
STL
EN ENO—
S39 —s
----------------- S -|-|_ Transfer processing
EN ENO—
S49 —s
X010 X011 X012 SET
—H—FH—FH——EN ENO—
d— S50

Before recombination, program the drive processing of state relays first.
After that, program only the transfer processing to recombination state relays continuously.

Composition of branches and recombination

When a recombination line is directly connected to a branch line (not by way of a state relay as shown
below), it is recommended to provide a dummy state relay between the lines.

Create step ladder programs as shown below.

Selective recombination and selective branch

STL X000 SET
EN ENO {1 EN ENO}—
S20 —s d— S100
STL X001 SET
EN ENO fl EN ENO{—
S30 —s d— S100
STL X003 SET
EN ENO {1 EN ENO|—
S100 —s df— S50
X004 SET
——-oEN ENO{—
df— S60

97

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

uononysuj aiseg €I

suononJsuj
Joppe deig

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.1 Step Ladder

2) Parallel recombination and parallel branch

STL
EN ENO|—
S20 —s
STL X000 SET
EN ENO {1 EN ENO—
S30 —s d— S101
STL S101 SET
EN ENO {1 EN ENO—
S101 —s dI— S50
SET
EN ENO|—
dI— S60

3) Selective recombination and parallel branch

STL X000 SET
EN ENO il EN ENO|—
S20 —s dI— S102
STL X001 SET
EN ENO {1 EN ENO|—
S30 —s d— S102
STL S102 SET
EN ENO il EN ENO|—
S102 —s dI— S40
SET
EN ENO|—
dI— S50

4) Parallel recombination and selective branch

STL
EN ENO|—
S20 —s
STL X000 SET
EN ENO {1} EN ENO—
S30 —s d— S103
STL X001 SET
EN ENO i1 EN ENO|—
S103 —s d— S40
X002 SET
——-EN ENO|—
d— S50

98

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

6 Step Ladder Instructions
6.1 Step Ladder

6.1.3 Program examples

Examples of single flows

1. Example of flicker circuit

* When the PLC mode is changed from STOP to RUN, the state relay S3 is driven by the initial pulse

(M8002).

» The state relay S3 outputs Y000. One second later, the ON status transfers to the state relay S20.

» The state relay S20 outputs Y001. 1.5 seconds later, the ON status returns to the state relay S3.

Yooo [] []

k—sk—

1 second 1.5 second

[Structured ladder/FBD]

Step M8002 SET
number 0 it EN ENO—
Initial dl— s3
pulse
STL Y000
3 EN ENO {
S3 —s
OUT_T
EN ENO—
TCO — TCail
K10 —TValue
8 —t EN ENO|—
d— S20
STL Y001
11 EN ENO (
S20—s
OUT_T
EN ENO—
TC1 — TCaoil
K15 —TValue
TS S3
16—t (
RET
19 EN ENO|—
[ST]
SET(M8002,S3);
STL(TRUE, S3);
Y000:=TRUE;

OUT_T(TRUE, TCO0,K10);
SET(TS0, S20);
STL(TRUE, S20);
Y001:=TRUE;
OUT_T(TRUE, TC1, K15);
S3:=TS1;
RET(TRUE);

99

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

uononysuj aiseg €I

suononJsuj
Joppe deig

N

(mo)4 weibold)
suononusu] paljddy

(a1edwon
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

6 Step Ladder Instructions
6.2 STL

6.2 STL

Outline

FX3U(C) | FX3G(C)| FX3S |FX2N(C)

FX1N(C)

FX1s

FXUIFX2C | FXON | FX0(S)

©) ©) ©) O

©)

©] ©) ©]

In programs using step ladder instructions, a state relay State S is assigned to each process based on
machine operations, and input condition and output control are programmed as sequences connected to the

state output.

STL instruction for step ladder programs is expressed as follows in each language.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
STL
STL 16 bits Continuous —EN ENO— STL(EN,s);
—s
2. Set data
Variable Description Data type
Input EN Execution condition Always TRUE
variable
Output Target device or variable Bit
variable ENO Execution state Bit
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spet‘:lal Index Constant Real Char:acter Pointer
type User Unit Number| String
X|Y[M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D|R|UO\GO |V|Z|Modifier| K | H E a" P
(@) L4
4. Caution

Refer to the cautions in the items below for expressing step ladders in a structured project (Structured ladder/

FBD, ST).

— Section 6.3 RET

100

FXCPU Structured Programming Manual 6 Step Ladder Instructions

[Basic & Applied Instruction] 6.3RET
6.3 RET o
. =4
§
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FXo(S)
(@] O O O O O O O O

Outline -
RET instruction for step ladder programs is expressed as follows in each language. 2
Q
=
1. Format and operation, execution form :.;

Instruction . Execution Expression in each language

Operation
name form Structured ladder/FBD ST 3
RET g g
- . . c =h
RET 16 bits Continuous N ENOl— RET(EN); %%
5
5
o,
2. Set data 4
Variable Description Data type SsmT
Input 28 g
. EN Execution condition Always TRUE §5s
variable =8 3
@os
OUFPUt ENO Execution state Bit 9=
variable
3. Applicable devices 5
Bit Devices Word Devices Others éo
e
Operand . e e System | Special Real |Character . =
type System User Digit Specification User Unit Index Constant Number| String Pointer %
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\Go V|Z‘Modifier K|H| E O P g
- No target device is available.

suononJsuj
Joppe deig

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue aAopy)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

101

FXCPU Structured Programming Manual 6 Step Ladder Instructions
[Basic & Applied Instruction] 6.3RET

4. Caution
The following examples show how MELSEC-LD step ladders are expressed in the structured programs.

Reference: MELSEC-LD step ladder expression

1) When expressing step ladder (STL) 2) When expressing step ladder (STL)
instructions in the coil format. (Same as that instructions in the contact format.
for GX Developer)

M8002 M8002
i SET SO — —————— SET SO —
S0
STL SO — —STL Y000
oo X000
(Y000) —— SET $20 —
X000
S20 X000
—————— SET $20
— — STL ——t @—
STL $20 — RET
X001
i (so
END | —
RET [—
END | —|

Expressing step ladder in structured program
1) Structured ladder/FBD

M8002 SET
- ——EN ENO|—
dl— S0
STL Y000
EN ENO C—
S0 —s X000 SET
— 1EN ENOl—
dl— s20
STL X001 S0
EN ENO [—
S20 —s RET
EN ENOl—
2) ST

SET(M8002, S0);
STL(TRUE, S0);
Y000:=TRUE;
SET(X000, S20);
STL(TRUE, S20);
S0:=X001;
RET(TRUE);

102

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)

7. Applied Instructions (Program Flow)

This chapter introduces the instructions mainly related to control flow of sequence programs such as

conditional program execution and priority processing.

Instruction name Function Reference
CJ
Conditional Jump Section 7.1
CJP
CALL
Call Subroutine Section 7.2
CALLP
SRET Subroutine Return Section 7.3
IRET Interrupt Return Section 7.4
DI Disable Interrupt Section 7.5
El Enable Interrupt Section 7.6
FEND Main Routine Program End Section 7.7
WDT Watchdog Timer Refresh Section 7.8
FOR Start a FOR/NEXT Loop Section 7.9
NEXT End a FOR/NEXT Loop Section 7.10

103

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneinbyuoy €A

1N

suononssu|
Jo uojeue|dx3
peay 0} MOH

suononusu|
seppetdais @) uononysujoiseg

(mo)4 weibold)
suoionJsu| payddy

(a1edwon
pue ano}\)
nisu| pajddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonusu) payddy

-—
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump

71 CJ / Conditional Jump

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] @] @]

Outline

CJ or CJP instruction jumps to the specified pointer number or ladder block label.
The sequence program steps between CJ or CJP instruction and the pointer are not executed.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
CcJ
CJ 16 bits | Continuous —EN ENO— Syntax such as condition sentence is used.
—p Refer to the following manual for syntaxes.
— Q/L/F Structured
CJP Programming Manual
CJP 16 bits Pulse —{EN ENO}— (Fundamentals)
—P
2. Input and output data types
Variable Description Data type
Input EN Execution condition Bit
variable D) Pointer number or ladder block label for the jump destination ANY16
OUFPUt ENO Execution state Bit
variable
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
XYM T|C|[S|DO.b |KnX|KnY|KnM|KnS|T|C|D|R|UO\GO |V |Z|Modifier] K | H E o P
@ L4

104

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)

[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump
Function and operation explanation o
=
1. 16-bit operation(CJ, CJP) ¢
While the command input is ON, CJ or CJP instruction executes a program with a specified pointer number or
ladder block label.
1) In the case of CJ instruction 2
i} User program é’
... S
-
Command cJ o
i} EN ENO|— Command
Jumps to the pointer P10 _p input 3
while the command is ON. ?
--- CJ | Executed in every scan gg
! User program 1: §&
:_Which is skipped and is not executed when the command turns ON. S3
e L 2D S
P10: . S
i User program 4
2) In the case of CJP instruction g;:_ng
255
i} User program @ % §

C:c?mmand EN ENOL— Command ON

Jumps to the pointer only in one P10 —p input
operation while the command is ON. T

... CJP []

e = .

User program \ —s}—k— Executed in one scan
Which is skipped and is not executed in one operation :

cycle when the command turns ON. |

r-—----
1
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
I
L

P10: i User program

seppetdais @) uononysujoiseg

suononJsu|

Cautions
1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.

To execute pulse operation, make the instruction execution condition pulse type. ?gl_’
2) Set a pointer number or ladder block label for the jump destination in the ladder block header . § %
Add ":" to the entered pointer number or ladder block label. ;_ng’
X030 cJ =3

{} EN ENO—

P20—p

--- o=z
............... S g5
X031 Y010 B 58
- =325

X032 Y011
P20: |—i——(»

© sup

3) A pointer number or ladder block label can be programmed in a smaller number step than CJ instruction.
However, note that a watchdog timer error occurs when the scan time exceeds 200 ms (default setting).

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

m
A
O w

P10: —A—(»

pue uonejoy)
suojonusu) payddy

3
o
|
©
(uonesado Yus

105

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump

4) When the pointer number or ladder block label specified by (7> is same and there is one jump
destination, the following operation is caused.
When X020 turns ON, the program execution jumps from CJ instruction corresponding to X020 to the
pointer P9. When X020 turns OFF and X021 turns ON, the program execution jumps from CJ instruction
corresponding to X021 to the pointer P9.

P9: 5

5) When a pointer number or ladder block label (including pointer number or ladder block label for CALL
instructions described later) is used two or more times, an error is caused.

X020 e
{t EN ENO—
P9—p
............................ LI
X030 e
{} EN ENO|—
P9—p
Pg: - _"_"_"_"L';';'::'_";:';':::'_':I
| User program |
L o o e e e I
PY I_E'_";';'L';';'::'_' o '_'I
" User program :
L 1

6) The pointer P63 specifies jump to END step. The pointer P63 needs not to be programmed.
7) Any pointer number or ladder block label cannot be shared by CALL instruction and CJ instruction.

Command CcJ

CALLP
X000
{t EN ENO—
P15—p
X001
A >
FEND —
EN ENO|—
""""""""""""""""""""""""""""""""""""""" Subroutine program
M8000 dedicated to CALL instruction
P15: i} User program
RUN monitor Program a label (P)
(normally ON) after FEND instruction.
SRET
EN ENO—

106

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump

8) Because M8000 is normally ON while a PLC is operating, unconditional jump is specified when M8000 is
used in the following example.

M8000 CJ
{1 EN ENO|— —
RUN monitor P5 —p

User program
(It is skipped, and is not executed.)

P5:

User program <l

9) The operation of the CJ instruction and contact coils are described later.
10) The relationships between the master control instructions and jump instructions are described later.

11) The jumping ranges of CJ instruction is different according to the pointer type specified by (.

Pointer type Jumping range
Pointer number Pointer numbers within the same program file
Ladder block label Ladder block labels within the same POU

Program examples

In one operation cycle after X023 changes to ON from OFF, CJ P7 instruction becomes valid.
By using this method, jump can be executed after all outputs between CJ P7 instruction and the pointer P7

turn OFF.
X023 PLS
{1 EN ENO—
di— Mo
MO CJ
e4s EN ENO—
P7 —p
| xo23
HF it { »
— i (r
(r
P7: I User program

107

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.1 CJ / Conditional Jump

CJ instruction and operations of contact and coil

In the program example shown below, when X000 turns ON, the program execution jumps from CJ instruction
in the first circuit to the pointer P8. While X000 is OFF, jump is executed. The program is sequentially
executed from first step, and jumps from 11th circuit to the pointer P9.

The jumped instruction is not executed.

1. Circuit example 1 for explain operations

X000 cJ
1st circuit i EN ENO—
P8 —p
Cx001 yoor
i >
X002 M1
-
X003 S1
——— -
X004 OUT_T
i} EN ENO—
TCO —{TCall
K10 —TValue
X005 RST
it EN ENO—
d—TN246
X006 OUT_T
i} EN ENO—
TC246 —{TCoil
K1000 —TValue
X007 RST
i} EN ENO|—
d— CNO
X010 OuUT C
i EN ENO—
CCO—{CCall
K20 —CValue
X011 MOV
i} EN ENO|—
K3 —s d— DO
- <
X000 cJ
11th circuit I EN ENO|—
P9 —p
X012 Y001
>
P9:
X013 RST
it EN ENO—
d—TN246
RST
EN ENO|—
di—CNoO

+ Double coil operation of output Y001
While X000 is OFF, output Y001 is activated by X001.
While X000 is ON, output Y001 is activated by X012.
Even in a program divided by conditional jumps, if a
same coil (Y0OO in this case) is programmed two or more
times within the jump area or outside the jump area, such
a coil is handled as double coil.

* When the reset (RST) instruction for the retentive type
timer (T246) is located outside jump area:
Even if the counting coil (T246) is jumped, reset (return
of the contact and clearing of the current value) is valid.

* When the reset (RST) instruction for the counter (C0) is
located outside the jump area:
Even if the counting coil is jumped, reset (return of the
contact and clearing of the current value) is valid.

 Operation of the routine timers:
A routine timer continues its operation even if it is jumped
after the coil is driven, and the output contact is
activated.

» Operation of the high speed counters:
A high speed counter continues its operation even if it is
jumped after the coil is driven, and the output contact is
activated.

When each input changes during jump in the program
shown on the left, each coil executes the following
operation:

e Contact status before Coil operation during
Classification . .
jump jump
Y, M, S X001, X002, X003 OFF |Y001, M1, S1 OFF
(Y001, M1, 81) [X001, X002, X003 ON [Y001, M1, S1 ON
. X004 OFF Timer is not activated.
10 ms timer and S—
100 ms timer Counltlng is paused
(T0) X004 ON (and is restarted after X000
turns OFF).
X005 OFF Timer is npt aptlvated. .
X006 OFF The deactivation status is
1 ms timer reset when X013 turns ON.
T246 ing i i
() X005 OFF Counting is continued
X006 ON (and the contact is activated
after X000 turns OFF).
X007 OFF Countint |§ nolt actwated..
The deactivation status is
X010 OFF
reset when X013 turns ON.
Counter (C0) Counting is paused
;8% 8;': (and is restarted after X000
turns OFF).
X011 OFF Instruction is not executed
during jump.
Instruction But MTR, HSCS, HSCR,
(MOV) X011 ON HSZ, SPD, PLSY and PWM
instructions continue their
operations.

108

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)

[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump
1
2. Circuit example 2 for explaining operations (when only an RST instruction for timer or o
counter is jumped) =

When X011 turns ON while the RST instruction

X012 OouT_C for the counter CO is operating (X010 is ON), the

L EN ENO— program execution jumps past the RST
CC0 —CColl instruction due to the CJ instruction. 2
K10_Cva'“e _______________________ In this jump status, the counter CO remains =
X011 cJ reset. Accordingly, the current value of CO g
f EN ENOl— remains "0" even if X012 turns ON. 2
PO —p To clear this reset status, it is necessary to turn :u;
--- OFF the RST instruction for counter CO. (Refer -

X010 RST to the program shown below.)
1 EN ENO 3
di— CNO 59
PO: £z
S
Timing chart =
Jump operation by 4
CJ instruction driven by X011 smT
25 =
| | Egs
X012 | | | 35%
— o=
I | | | | I

| Because CO remains
l l Counter reset, its current value | |

|
|
I 3| Ijsreset. remains unchan 1
: ged
Current value 2 ! | '_'27
of CO 7 le/ even if X012 turns ON.! 7
|
|
|
|

X010 | ON

| }
RST T -
Cco | | Remains reset I

seppetdais @) uononysujoiseg

=3
Program example for activating a timer and counter even during a jump é’
X012 ouT_C 2
{t EN ENO—
CCO0 —{CCall
K10 —CValue
X011 cJ Fel
it EN ENOf— g3
33
PO —p ng
""" 25
X010 RST @
{F EN ENO—
di— CNO
PO: [e o=z
325
E%2
F"“""“‘“““““““‘R'S}““““““". *3z
| M8000 . g
N BN ENO | of counter 0O during jump -
I
] di— CNO ! 9

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

109

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.1 CJ/ Conditional Jump

Timing chart

Jump operation by
CJ instruction driven by X011

X012 | | |

I
: | 3 I Counter :
is reset.
Current value 2 ST |
of CO 1 |
| |
X010 ON I
: | *1 In the same operating
cycle as the reset, the
ggT |_| : reset status of counter
1 CO is cleared.

Relationship between master control instruction and jump instruction

The figure below shows the contents of operation and the relationship between the master control instruction.
Avoid using 2), 4) and 5) because the operation will be complicated.

| CJ PO |
1) Jump from outside MC to
outside MC is available
arbitrarily. _
CJP1) o MCNOM1
2) Jump from outside MC €
to inside MC 8
MCNOMO Jump is executed 9] CJP 4
regardless of the MC g
operation. s o
P 1 Even if MO is OFF, MO is MCR N 0 5) Jump from inside
regarded as ON after P1. I\/{g tol\l/InCSIde
other
MCNOM2
© 3) Jump from inside MC to °
£ CJP2 inside MC € P 4
8 Jump is disabled while 8
5 MO is OFF. S
% P2 is O %
]
g g MCRNO
4) Jump from inside MC to
outside MC
CJP 3 Jump is disabled while
[\I/IO is OFF. o whil Jump is enabled while M1 is ON.
ump Is executed while In circuits after jump, M2 is regarded as ON
MCRN 0 M\(/)all?dON’ but MCR is regardless of the actual ON/OFF status of M2.
: And the first MCR is ignored.
P 3
PO

110

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.2 CALL / Call Subroutine

7.2 CALL / Call Subroutine

FX3U(C)

FX3G(C)

FX3s

FX2N(C)

FXIN(C)| FX1S | FXU/FX2C

FXON

FX0(S)

©)

©)

O

©)

©) ©]

Outline

This instruction calls and executes a program which should be processed commonly in a sequence program.
This instruction saves the number of program steps, and achieves efficient program design.
For creating a subroutine program, FEND and SRET instructions are required.

A similar processing is available by creating a function block and read it out from the program block.
Refer to the following manual for creating function blocks.

— GX Works2 Version 1 Operating Manual (Structured Project)

— QJ/L/F Structured Programming Manual (Fundamentals)

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
CALL
CALL Continuous —EN ENOf—
. P Use a subroutine program by reading out the
16 bits)
function block made of other program parts.
CALLP
CALLP Pulse —EN ENOR—
—P
2. Set data
Variable Description Data type
Input EN Execution condition Bit
variable a4 Pointer number or ladder block label of subroutine program to be executed. ANY16
OUTpUt ENO Execution state Bit
variable
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spetflal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D|R|UO\GO |V|Z|Modifier| K | H E a" P
@ g

111

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.2 CALL / Call Subroutine

Function and operation explanation

1. 16-bit operation
While the command input is ON, CALL instruction is executed and the program execution jumps to a step with
a specified pointer number or ladder block label. Then, the corresponding subroutine program is executed.
When SRET instruction is executed, the program execution returns to the step after CALL instruction.

» At the end of the main program, put FEND instruction.

Put a pointer p for CALL instruction after FEND instruction.

i User program

i EN ENO— e— Main program

Program area from the
step 0 to FEND instruction

Pn: M8000

RUN monitor Subroutine program

(normally ON) Program area from a pointer Pn
"""""""""""""""""""""""""""""""""""""" to SRET instruction

Cautions

1)

2)

5)

Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

Enter a pointer number or ladder block label for specifying the jump destination to the ladder block header
in the ladder block regarded as the jump destination.
Add ":" to an entered pointer.

To use the subroutine call, follow the steps below.

Name the task "MELSEC_MAIN".

Using a different task name prompts an error because the "one set in the program block" by FEND
instruction and the "one finally added to the program block during compiling" become redundant.

Be sure to program in combination with the SRET and FEND functions.
— Refer to Section 7.3 for SRET.
— Refer to Section 7.7 for FEND.

In CALL instructions, a same number can be used two or more times in pointer number or ladder block
label.
However, do not use a pointer number or ladder block label and number used in another instruction (CJ).

X020 L
it EN ENO—
P9 —P
5
X030 CALLP
it EN ENO—
P9 —p
)
P9: {} User program

Cautions about the use in subroutines or interrupt routines are described later.

112

7 Applied Instructions (Program Flow)
7.2 CALL / Call Subroutine

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Program examples o
=
1. Example of fundamental use (no nesting) ¢
X000 CALL
{} EN ENO— —

P10 —P 2
"""""""""""""""""""" Main program g
< While X000 is ON, the program &

S execution jumps to a step with the label P10. ":’i
...................................... =
FEND

EN ENO— 3
P10: ———— h 29
"""""" 3 Subroutine program 58
...................................... . . o3
N When SRET |nst_ruct|on is executed S=
...................................... after the subroutine program has executed, 5
SRET the program execution returns to the original step +1. -
EN ENO|— i} 4
SmI

(o=}
EF
w S 8

. =]

2. Example of multiple CALL instructions in subroutines (multiple nesting) -

CALL instruction can be used up to 4 times in subroutine programs. Nesting of up to five layers is allowed.

X001 CALLP @
I EN ENO— %
P11—p Main program =
..................................... When X001 turns ON from OFF, the program S,
___________ S execution jumps to the pointer P11 only once. S
FEND
it EN ENO— 6
5@
"""""""""""""""""""""""" = 20
P11 —m«+——(» 55
""""""""""""""""""""" s&
X002 CALL Subroutine program1 £y
ft EN ENO|— When SRET instruction is executed, the program
P12—{p execution returns to the main program.
------------------------------------- If X002 is ON while the subroutine program 1 is
___________ S executed, the program execution jumps to a step with the pointer P12. =5
SRET &g
EN ENO|— 32
...................................... ==
— Q =
X003 7] . 23
I — Subroutine program?2 “
R 3 """"""""""""" The subroutine program with P12 is executed,
"""""""""""""""""""""""" and then the program execution returns to the subroutine program .
SRET with P11 by SRET instruction. §s%
EN ENO|— g ® %
| ® S @
e32

113

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.2 CALL / Call Subroutine

Cautions on subroutines and interrupt routines

This section explains cautions on creating programs in subroutines and interrupt routines.
The explanation below is given for subroutines, but the situation also applies to interrupt routines.

. When using timers in subroutines (or interrupt routines)

Use retentive type timers T192 to T199 in subroutines.

These timers execute counting when the coil instruction or END instruction is executed.

After a timer reaches the set value, the output contact is activated when the coil instruction or END instruction
is executed.

Because general timers execute counting only when the coil instruction is executed, they do not execute
counting if they are used in subroutines in which the coil instruction is executed only under some conditions.

. When using retentive type 1 ms timers in subroutines (or interrupt routines)

If a retentive type 1 ms timer is used in a subroutine, note that the output contact is activated when the first
coil instruction (or subroutine) is executed after the timer reaches its set value.

. Countermeasures against latches of devices used in subroutines (or interrupt routines)

Devices which were set to ON in a subroutine are latched in the ON status even after the subroutine is
finished. (Refer to the program described later.)

When RST instruction for a timer or counter is executed, the reset status of the timer or counter is latched
also.

For turning OFF such a device latched in the ON status or for canceling such a timer or counter latched in the
reset status, reset such a device in the main program after the routine is finished, or program a sequence for
resetting such a device or for deactivating RST instruction in the routine. (Refer to the program described
later.)

1) Example in which outputs are latched

In the following program example, the counter CO is provided to count X001. When X000 is input, the
subroutine PO is executed only in one scan, and then the counter is reset and Y007 is output.

* Program examples

X000 CALLP
i} EN ENO|—
PO —P
X001 OuUT_C
i EN ENO|—
CcCco—{CcCoil
K10—CValue
FEND
EN ENO|—
X000 RST
PO: i EN ENO|—
di—CNoO
Y007
e
SRET
EN ENO|—
+ Timing chart
Execution of subroutine %I—le Subroutine is executed.
PO triggered by X000 H
|
|
| N

| Counteris Because the reset instruction for CO is valid,

3 reset. the current value of CO remains unchanged
Current value 2 / even if pulses are input.
of CO i .

RST

co T Remains reset T
|

Y007 /|\ Y007 is being output. \‘

Outputs are held.

114

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.2 CALL / Call Subroutine

2) Example for resetting held outputs (countermeasures) o
* Program examples 3
X000 CALLP
i} EN ENO—
PO —P 2
X001 ouT C S
I EN ENO|— z
Ccco—|CCaoil %
K10—CValue =
‘- I '_"_"_"_"_":::;';':::::::I
1| X002 RST | 3
| i EN ENO— ! Y007 is reset at an arbitrary timing. o
! di— Y007 ! £3
L intatatedatedatatetateititete it %%
FEND =
EN ENO|— o
PO: 1t EN ENO|— ® oz
di— CNO SF=
e T ______ 23°
| M8001 RST | 758
I | o
l T EN ENO|— | 2
I RUN monitor dl—cNo 1 The preceding RST CO instruction
Ll ________|(momally OFF) L—————— "~ " 1 jsdeactivated in the subroutine. 5
Y007 w
(> 2
.. o
=3
SRET 2
EN ENO| g
S
* Timing chart 6
=7
Subroutine i ted. £3
Execution of PO —s}—<— Subroutine is execute 5,-:'7
triggered by X000. T—l gg
w

X001 | I

3 = 4
Current value 2 2
of CO 1 1

Counter is reset

—
(part@ in above program).ﬂ/

< Counter reset
instruction is deactivated (part in above program).

(mo)4 weibold)
suononusu] paljddy

CO
Y007 A

I
X002 Y007 is reset. T—|

(a1edwon
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

115

7 Applied Instructions (Program Flow)

FXCPU Structured Programming Manual
7.3 SRET / Subroutine Return

[Basic & Applied Instruction]

7.3 SRET / Subroutine Return

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] X X

Outline
This instruction returns the program execution from a subroutine to the main program.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
SRET 16 bits Continuous SRET Use .a subroutine program by reading out the
—1EN ENO|— function block made of other program parts.
2. Set data
Variable Description Data type
Inpyt EN Execution condition Always TRUE
variable
OUTpUt ENO Execution state Bit
variable
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spetflal Index Constant Real Char.acter Pointer
type User Unit Number| String
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E R P
- No target device is available.

Function and operation explanation
When CALL instruction in the main program is executed, the program execution jumps to a subroutine.

SRET instruction returns the program execution to the main routine.
— Refer to Section 7.2.

116

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.4 IRET / Interrupt Return

7.4 IRET / Interrupt Return

BUND ==

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)

(@] O O O O O O O O

Outline -

This instruction returns the program execution from an interrupt routine to the main program. g

S

2

1. Format and operation, execution form ;
Instruction . Execution Expression in each language

Operation

name form Structured ladder/FBD ST 3

28

53

IRET 16 bits | Continuous IRET IRET(EN); §&

—{EN__ ENO|— 55

8’.

=l

Qh

2. Input and output data types

1N

Variable Description Data type oz

Input . . =B =

. EN Execution condition Always TRUE SS &

variable 23 ?u

2 o @

OUTpUt ENO Execution state Bit > 2
variable [}

3. Applicable devices

Bit Devices Word Devices Others
Operand System User Digit Specification System Spetflal Index Constant Real Char.acter Pointer
type User Unit Number| String
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E R P
- No target device is available.

Function and operation explanation

When an interrupt (input, timer or counter) is generated while the main program is executed, the program
execution jumps to an interrupt (I) routine.

IRET instruction returns the program execution to the main routine.

The table below shows the three types of jump to an interrupt routine.

suononusu|
seppetdais @) uononysujoiseg

Function Description —
Input interrupt Executes the interrupt processing when an input(X) signal turns ON or OFF. §§
Timer interrupt Executes the interrupt processing at a specified time interval (constant cycle). g %
Counter interrupt " Executes the interrupt processing when a high speed counter reaches its set value. é—né

*1. This function is provided only in the FX3u, FX3uc and FX2c PLCs Ver. 3.07 or later.
— For the interrupt function, refer to Chapter 35.

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

pue djeLLAKY)
ojjonssu| payddy

—-—
O suw

(uonessdo [ealbo

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

117

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.4 IRET / Interrupt Return

Cautions

1) Create a task for the interrupt program and the main program.

2) Use "Event" to specify the interrupt pointer to be used for the task for the interrupt program.
— For the interrupt pointer, refer to Chapter 35.
Property El

Details 1 Comment |

Attribures

[[mor |« Set an interrupt pointer
Interval o
Prioity 3 =

Data Name: Task_01

Title: | Interrupk program
[TimerfOutput Control

Last Change 4/20/2012 2:50:55 AM

3) IRET instruction needs not to be programmed because the IRET instruction is automatically added during
the compilation at the end of the program block that is registered in the task for the interrupt program.

Interrupt program

INC
EN ENO—
d— DO
R Do not program IRET instruction because
= ENO
— f < it is automatically added during the compilation.

4) The program block registered in the task for the main program requires the function El instruction
(interrupt enabled). Program the function DI instruction (interrupt disabled) as necessary.

El —
EN ENO|—
[eeeemeerosse e
: Range of interrupt enabled
1
1
DI - If necessary, program the DI instruction as
EN ENO|— it is a interrupt disabled function.
=t : D t the FEND instructi
="ENO o not program the instruction as
— } it is automatically added during the compilation.

118

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.4 IRET / Interrupt Return

Program examples

[Structured ladder/FBD]
Task for main program

El
EN ENO|—
M8000 oL ,
Y EN ENOL— |Main program
CC255 — CCaoll
K100 —cValue
——A— >
5

Task for interrupt program(Interrupt pointer 1001 is set by event.)
1001:The rising edge of X000 is detected.

Input interrupt routine

Task for interrupt program(Interrupt pointer 1620 is set by event.)
1620:Interrupt every 20 ms.

Timer interrupt routine

Task for interrupt program(Interrupt pointer 1010 is set by event.)
1010:High speed counter interrupt

)_ High speed counter routine
5
[ST]
Task for main program
EI(TRUE); .
OUT_C(M8000, CC255, K100); Main program

5

Task for interrupt program(Interrupt pointer 1001 is set by event.)
1001:The rising edge of X000 is detected.

Y000: =X000;
5

] Input interrupt routine

Task for interrupt program(Interrupt pointer 1620 is set by event.)
1620:Interrupt every 20 ms.

Y000: =X000;
5

] Timer interrupt routine

Task for interrupt program(Interrupt pointer 1010 is set by event.)
1010:High speed counter interrupt

Y000: =X000;
5

] High speed counter routine

Interrupts are usually disabled in PLCs.

Use El instruction to enable interrupts.

When X000 turns ON while the main program is
executed,instructions after the interrupt

routine pointer 1001 are executed, and the
program execution returns to the original main
program by IRET instruction.

The timer interrupt of the pointer 1620 is executed
every timer time of 20 ms, and the program execution
is returned to the original main program by IRET
instruction each time.

The high speed counter interrupt of the pointer 1010

is executed when the current value of a high speed
counter becomes equivalent to a value specified by
DHSCS instruction, and the program execution returns
to the original main program by IRET.

Interrupts are usually disabled in PLCs.

Use El instruction to enable interrupts.

When X000 turns ON while the main program is
executed,instructions after the interrupt

routine pointer 1001 are executed, and the
program execution returns to the original main
program by IRET instruction.

The timer interrupt of the pointer 1620 is executed
every timer time of 20 ms, and the program execution
is returned to the original main program by IRET
instruction each time.

The high speed counter interrupt of the pointer 1010

is executed when the current value of a high speed
counter becomes equivalent to a value specified by
DHSCS instruction, and the program execution returns
to the original main program by IRET.

119

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneinbyuoy €A

1N

suononssu|
Jo uojeue|dx3
peay 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

(mo)4 weibold)
suoionJsu| payddy

(a1edwon
pue ano}\)
nisu| pajddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonusu) payddy

-—
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

7 Applied Instructions (Program Flow)

FXCPU Structured Programming Manual
7.5 DI / Disable Interrupt

[Basic & Applied Instruction]

7.5 DI/ Disable Interrupt

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] @] @]

Outline
This instruction disables interrupts after interrupts were enabled by El instruction.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
DI 16 bits | Continuous DI DIEN);
—1EN ENO—
2. Set data
Variable Description Data type
Inpyt EN Execution condition Always TRUE
variable
OUTpUt ENO Execution state Bit
variable
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spetflal Index Constant Real Char.acter Pointer
type User Unit Number| String
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E R P
- No target device is available.

Function and operation explanation
Dl instruction is the independent type, and does not require command (drive) contact.

Cautions
Interrupts (requests) generated after DI instruction are processed after El instruction is executed.

120

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)

[Basic & Applied Instruction] 7.6 El/ Enable Interrupt
7.6 El/Enable Interrupt o
5
FX3U(C) [FX3G(C)| FX3S [FX2N(C)|FX1N(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
Interrupts are usually disabled in PLCs. This instruction enables interrupts in PLCs. g
Use this instruction for using the input interrupt, timer interrupt and counter interrupt functions. g
-
1. Format and operation, execution form =
Instruction . Execution Expression in each language 3
Operation
name form Structured ladder/FBD ST —o
S
§&
El 16 bits | Continuous El EIEN); Ss
—EN ENO{— g
=3
2. Set data 4
- — Z0Z
Variable Description Data type 38=
Input EN Input condition Always TRUE SEx
variable P 4 39S 8;3_
o
OUTpUt ENO Input status Bit
variable 5
3. Applicable devices @
()
Bit Devices Word Devices Others ;_’
Operand . e System | Special Real |Character . &
type System User Digit Specification User Unit Index Constant Number| String Pointer é__
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E R P >
- No target device is available. 6
S@
(7]
- - - 5T
Function and operation explanation 85
o
El instruction is the independent type, and does not require command (drive) contact. ?8

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue aAopy)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

121

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.6 El/ Enable Interrupt

Cautions

1) Refer to the following items for the cautions on the interrupt program.
— Refer to Section 7.4.

2) Use the Elinstruction as follows when the FXU, FX2c, FX2N, FX2Nc, FX3U and FX3uc PLCs use the pulse
catch function. The IE instruction does not need to be programmed when the FXos, FXo, FXoN, FX1s,
FX1N, FXINC, FX3s, FX3G or FX3Gc PLC uses the pulse catch function.

For the details of special auxiliary relays and other devices used with the pulse catch function, refer to the
following manual.
— FX Structured Programming Manual [Device & Common]

When using the FX3u PLC

[Structured ladder/FBD] [ST]
EI(TRUE
El (l;')
EN ENOI— 1
,,, '
1 1
. Y000:=M8170; "
1 RST(X002, M8170);""
]
]
]
[]
M8170" Y000 With the rising edge of X000 detected,
—A—{ = M8170 is reset by interrupt.
X002 RST
L —1EN ENO|— Resets pulse catch results.
d— M8170

*1. A special auxiliary relay for the X000 pulse catch function used in the FX1s, FX1N, FX1NC, FXu, FX2cC,
FX2N, FX2Nc, FX3s, FX3G, FX3Gc, FX3u and FX3uc PLCs. The special auxiliary relay depends on the
PLC used and input number. For the pulse catch function, refer to Chapter 35.

122

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)

[Basic & Applied Instruction] 7.7 FEND / Main Routine Program End
7.7 FEND / Main Routine Program End o
5
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
O O ©) ©) O O ©) ©) ©)
Outline -
This instruction indicates the end of the main program. 2
S
2
1. Format and operation, execution form :.;
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST 3
28
==
FEND 16 bits | Continuous FEND FEND(EN); §&
—EN ENO|— g5
8’.
5
o
2. Set data 4
Variable Description Data type smT
Input EN Input condition Always TRUE 852
variable P y %—’» 3 ?u
>0 ®
OUTpUt ENO Input status Bit ? > 2
variable [}
3. Applicable devices 5
Bit Devices Word Devices Others g,
Operand . e g System | Special Real |Character . 2
type System User Digit Specification User Unit Index Constant Number| String Pointer g
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E O P 2
=)
- No target device is available. 6
Function and operation explanation §§
[
When FEND instruction is executed, output processing, input processing and watchdog timer refresh are g»ng
executed, and then the program execution returns to the step 0. ?8
FEND instruction is required in creating subroutine programs and interrupt programs.

1. In the case of CJ instruction

2

—>® Main routine program —

(mo)4 weibold)
suononusu] paljddy

-

R
N
o
|
©

When X010 is OFF

Jump

(a1edwo)
pue ano}\)
niysu| paijddy

~

© sup

P20

Main routine program —

'I'I
m
Z
O

When X010 is ON

pue djeLLAKY)
ojjonssu| payddy

(uonessdo [ealbo

-
O w

*1. The function FEND instruction is added automatically during compilation, and does not require to be
programmed.
Refer to "Cautions".

pue uoiejoy)
suononsu| paijddy

(uonetedo Yys

123

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.7 FEND / Main Routine Program End

2. In the case of CALL instruction

-

P21
| Subroutine program —

0]) <
- A Main routine program — @ :
h |
o g |
= [T
< | | X011 CALL L |
25 | | H———EN ENO— ||
e P21—p <
,,, S|
| x|
: Main routine program — S :
L
| FEND !
| EN ENO— |
[
|
|
|

*1

*1. If task names other than "MELSEC_MAIN" are used, FEND instruction is added automatically, and
cause an error.
Refer to item 6 of "Cautions".
Cautions

1)

The function FEND instruction is usually added automatically during compilation.
It is not necessary to program the FEND instruction in the program block except when creating subroutine
program and interrupt routine program. As for the subroutine programs, refer to the following.

— Refer to Section 7.2.

When FEND instruction is programmed two or more times, put a subroutine program or interrupt routine
program after the last FEND instruction.

When CALL or CALLP instruction is used, put a label after FEND instruction. And the SRET instruction is
required in every case.

When CALL or CALLP instruction is used, if FEND instruction is executed after CALL or CALLP
instruction was executed and before SRET instruction is executed, an error is caused.

When FOR instruction is used, if FEND instruction is executed after FOR instruction was executed and
before NEXT instruction is executed, an error is caused.

When CALL instruction is used, set the registered task name to "MELSEC_MAIN".

Any other task names add FEND instruction automatically at the end of the program block (*1 in "2. In the
case of CALL instruction") during compilation, and cause an error during writing to the PLC (due to
already existing FEND instruction located at the end of the main program (*2 in "2. In the case of CALL
instruction")).

It is not possible to use CALL instruction in multiple tasks. Use function blocks.

124

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.8 WDT / Watchdog Timer Refresh

7.8 WDT / Watchdog Timer Refresh

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] @] @]

Outline

This instruction refreshes the watchdog timer in a sequence program.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
WDT Continuous WDT WDT(EN);
—EN ENO
16 bits
WDTP Pulse WDTP WDTP(EN);
—EN ENO
2. Set data
Variable Description Data type
Inpyt EN Execution condition Bit
variable
OUTpUt ENO Execution state Bit
variable

3. Applicable devices

Bit Devices Word Devices Others
Operand System User Digit Specification System Spec:lal Index Constant Real Char:dcter Pointer
type User Unit Number| String
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R uo\eo V|Z‘Modifier K|H| E R P
- No target device is available.

Function and operation explanation

When the operation cycle (time until END or FEND instruction is executed after the step 0) of a PLC exceeds
200 ms, a watchdog timer error (indicating abnormal operation) occurs. The CPU error LED lights, and the
PLC stops. When the operation cycle is long, insert WDT instruction in the middle of the program to avoid the
watchdog timer error.

Command
COmmand Com

input WDTP
——+—EN ENO|— One scan is
%l Ie— executed. |_|
Command
contact
Command 4,—|—,7
input WDT

——+—EN ENO— 4,—|—|7

Each scan is
executed.

Device Name Description

Related device

D8000 Watchdog timer time Up to 32767 ms can be set in units of ms (initial value: 200 ms).

125

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)
suononsu| paijddy

(uonetedo Yys

7 Applied Instructions (Program Flow)
7.8 WDT / Watchdog Timer Refresh

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Cautions

1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) A watchdog timer error may occur in the following cases. To avoid the error, input a program shown
below near the head step to extend the watchdog timer time, or shift FROM/TO instruction execution
timing.

- Caution when many special extension devices are connected.
In such configuration that many special extension devices (such as positioning units, cam switches,
analog units and link units) are connected, the buffer memory initialization time may become longer,
thus the operation time may become longer, and a watchdog timer error may occur.

- Caution when many FROM/TO instructions are driven at one time.
When many FROM/TO instructions are executed or when many buffer memories are transferred, the
operation time may become longer, and a watchdog timer error may occur.

- Caution when there are many high speed counters (software counters).
When many high speed counters are provided and high frequency are counted at one time, the
operation time may become longer, and a watchdog timer error may occur.

3) The watchdog timer time can be changed.
By overwriting the contents of D8000 (watchdog timer time), the watchdog timer detection time (initial
value: 200 ms) can be changed.
By inputting the program shown below, the sequence program after this insertion is monitored by a new
watchdog timer time.

M8002 MOV
! EN ENO— Watchdog timer time 300ms
Initial pulse K300 8 d— D8000
WDT Watchdog timer refresh
EN ENO|— IfWDT (FNC 07) instruction is not programmed,

the value of D8000 is valid during END processing.

Program examples

1. When the operation cycle is long and causes an error
For example, by dividing a program whose operation cycle is 240 ms into two portions and inserting WDT
instruction between them, the operation cycle becomes less than 200 ms in both the former half portion and
the latter half portion.

Program whose

Program whose

— | —— operation cycle
is 120 ms
WDT

——— operation cycle
is 240 ms
—— —EN ENO—
Program whose
END L |—— operation cycle
is 120 ms

smaller than the step number of CJ instruction
Put WDT instruction after the pointer number or ladder block label.

. When a pointer number or ladder block label of CJ instruction is located in a step number

If an input relay (X) is used as the

Pn: ﬁ?oo EN WDTENO_ command contact, input refresh is
" | RUN monitor disabled, so the program
'' execution cannot be returned from
— Program When the command the area between Pn and CJ.
,,, contact turns ON As the command contact, use
Command cJ such device that can be set to
— EN ENO|— OFF in a program being jumped.
Pn—P

126

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.8 WDT / Watchdog Timer Refresh

3. When FOR/NEXT instruction is repeated many times
Put WDT instruction between FOR and NEXT.

FOR
EN ENO
K30000—n
—t Program
WDT
1 EN ENO
NEXT
EN ENO

127

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

FXCPU Structured Programming Manual 7 Applied Instructions (Program Flow)
[Basic & Applied Instruction] 7.9 FOR / Start a FOR/NEXT Loop

7.9 FOR/ Start a FOR/NEXT Loop

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] @] @]

Outline
FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Syntax such as condition sentence is used.
FOR Refer to the following manual for syntaxes.
FOR 16 bits Continuous —{EN ENOI— — Q/L/F Structured
—n Programming Manual
(Fundamentals)
2. Set data
Variable Description Data type
Input EN Execution condition Always TRUE
npu
vaFl)'iabIe D) Number of repetition of the loop between FOR and NEXT ANY16
instructions
OUFPUt ENO Execution state Bit
variable

3. Applicable devices

Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V|Z|Modifier| K | H E "an P
@) o | ® & 0 o000.A A2 ([] [] (]

A: Refer to "Cautions".

Function and operation explanation
— Refer to Section 7.10 for details.

Related instruction
FOR instruction and NEXT instruction are set as a pair in programming.

Cautions

1) Some restrictions to applicable devices
A 1: The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2: The FX3u and FX3uc PLCs only are applicable.

128

7 Applied Instructions (Program Flow)
7.10 NEXT / End a FOR/NEXT Loop

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7.10 NEXT/End a FOR/NEXT Loop

FX3U(C) | FX3G(C) FX2N(C) | FXIN(C) | FX1S | FXU/FX2C | FXON | FXo(S)
(@) @] @] @] O @] @] @] @]

FX3s

Outline

FOR instruction specifies the number of repetition of the loop between FOR and NEXT instructions.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Syntax such as condition sentence is used.
NEXT Refer to the following manual for syntaxes.
NEXT 16 bits Continuous — Q/L/F Structured
—EN ENO— Programming Manual
(Fundamentals)
2. Set data
Variable Description Data type
Inp.ut EN Execution condition Always TRUE
variable
OUFPUt ENO Execution state Bit
variable
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spet‘:lal Index Constant Real Char:acter Pointer
type User Unit Number| String
X‘Y‘M‘T‘C|S‘Dﬂ.b KnX‘KnY|KnM|KnS T‘C|D‘R um\eO V|Z‘Modifier K|H| E Rag P
- No target device is available.

Function and operation explanation
The loop between FOR and NEXT instruction is repeated "n" times (which is specified by the input variable

(n)).

After the loop is repeated by the specified number of times, steps after NEXT instruction are executed.

FOR
EN ENO—
AN
n—n \
\
,, \
S 1 Repeated "n" times
,, I
/
NEXT R4
EN ENO—

Related instruction
NEXT instruction and FOR instruction are set as a pair in programming.

129

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

7 Applied Instructions (Program Flow)
7.10 NEXT / End a FOR/NEXT Loop

Cautions
FOR-NEXT loop can be nested up to 5 levels.

FOR
EN

—n

ENO—

EN
—in

FOR

ENO—

EN
—in

FOR
ENO—

EN

NEXT
ENO—

EN

NEXT

ENO—

NEXT
EN

ENO—

Error

2)

\
\ |
1

\ st 12nd 13rd
Ilevel level! level

FOR

EN ENO—

FOR

EN ENO|—

NEXT

EN ENO|—

FOR

EN ENO}—

NEXT

EN ENO}—

NEXT

EN ENO—

[<8
~
AN
\
\
\
\
\
\
\ \
\ \
\,1st ‘\
level \
/ \
4 |
]
1
12nd level
I
I
N 1
\]
vist
1 1
,level,
/ I
7/ /
/
/
4
7
'
V-

1) When FOR-NEXT loop is repeated many times, the operation cycle (D8010) is too long, and a watchdog
timer error may occur. In such a case, change the watchdog timer time or reset the watchdog timer.
— For details on changing and resetting the watchdog timer, refer to Section 7.8.

The following programs are regarded as errors.

When NEXT instruction is located before FOR instruction When NEXT instruction does not exist

NEXT

ENO|—

FOR

—n

EN ENO—

When number of FOR instructions is not equivalent to the

FOR

number of NEXT instructions.

FOR

—n

EN ENO}—

FOR

EN ENO—
n

NEXT

EN ENO—

—n

EN ENO—

“Nexd |

_____ 1

ENO:— < Not programmed

When NEXT instruction exits after FEND instruction.

FOR

—n

EN ENO—

FEND

EN ENO|—

NEXT |

EN ENO—

CONEXT |

130

FXCPU Structured Programming Manual

7 Applied Instructions (Program Flow)
[Basic & Applied Instruction]

7.10 NEXT / End a FOR/NEXT Loop

Program examples o
=
1. Program example with three FOR-NEXT loops ®
5 FOR
EN ENO|— . 2
K4—n 2
———————S— ———————————————————————————————— \\\ g
,, \——— Theloop 3) is repeated 4 times. 5
FOR &
*® \ @
EN ENO|—

D0Z—n When the data value (current value) of DOZ 3
S ”””””””””””””””””” \ Y (D4 when Z is "4") is "6", the loop 2) is
,, Y repeated 6 times. 59

\ \ =3
X010 cJ Voo 28
—f———EN ENO|— Ss

P22—p Lo s

FOR ””””” k] - When X010 is OFF -
= i \\1) 32) 53) When K1X090 is "7", the loop 1) is repeated 7 times. 4

K1X000—n "‘. :: i - When X010 is ON o . Euks

77 Vo i The program execution jumps to the pointer P22, and =3 =
§ the loop 1) is skipped. 283
””””””””””””””””””””””””” ;o { 23S 8
NEXT ,, o=
£l S — ?timés /
pop. [T ’," Number of times of repeating the loops 1), 2) and 3). 5
S X010=0OFF X010=ON ©
NEXT 1)| 7xX6x4 = 168 times | 0 time 2
EN ENO[— %6 times,” 2)| 6X4 =24 times 24 times =
77 3) 4 times 4 times g
S g
A\2A] 4 times 6
EN ENO|— v
EXY)
5 23
=
®Q

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue ano}\)
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

131

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction]

8. Applied Instructions (Move and Compare)

This chapter introduces fundamental data processing instructions such as data transfer and data comparison
which are regarded as most important in applied instructions.

Instruction name Function Reference
CMP
CMPP
DCMP
DCMPP
ZCP
ZCPP
DzCP
DzZCPP
MOV
MOVP
DMOV
DMOVP
SMOV
SMOVP
CML
CMLP
DCML
DCMLP
BMOV
BMOVP
FMOV
FMOVP
DFMOV
DFMOVP
XCH
XCHP
DXCH
DXCHP
BCD
BCDP
DBCD
DBCDP
BIN
BINP
DBIN
DBINP

Compare Section 8.1

Zone Compare Section 8.2

Move Section 8.3

Shift Move Section 8.4

Complement Section 8.5

Block Move Section 8.6

Fill Move Section 8.7

Exchange Section 8.8

Conversion to Binary Coded Decimal Section 8.9

Conversion to Binary Section 8.10

132

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.1 CMP / Compare
8.1 CMP / Compare o
s
FX3U(C) | FX3G(C)| FX3S | FX2N(C) | FXIN(C)| FX1S | FXU/IFX2C | FXON | FX0(S)
O O ©) ©) O O ©) ©) ©)
Outline n
>
This instruction compares two values, and outputs the result (smaller, equal or larger) to bit devices (3 &
points). 2
- - - S5
— For the contact comparison instruction, refer to Chapter 28. =
— For floating point comparison, refer to Section 18.1. -
1. Format and operation, execution form 3
Instruction . Execution Expression in each language 2 g
Operation ==
name form Structured ladder/FBD ST s@
S8
CMP S
—EN ENO— S
CMP 16 bits Continuous 1 d CMP(EN,s1,s2,d);
—{s2 4
SmI
@« _é Q
S8 =
EN CMPF:ENO 5§ 3
— — o' =D
CMPP 16 bits Pulse CMPP(EN,s1,s2,d); % g%
—s1 d— 9=
—s2
DCMP 5
1 | ue)
DCMP 32 bits Continuous E:‘ EN% DCMP(EN,s1,s2,d); §_
—s — 2
—1s2 .a»
S
DCMPP s
) —EN ENO—
DCMPP 32 bits Pulse 1 d DCMPP(EN,s1,s2,d); 6
—s2 3@"’
S5
o
2. Set data Ex
Data type
Variable Description 16-bit 32-bit
operation operation 7
EN Execution condition Bit 32
\I/r;rij'il:ble Data or device number handled as comparison value ANY16 ANY32 § §
Data or device number handled as comparison source ANY16 ANY32 = g
Output ENO Execution state Bit S
variable D) Head bit device to which comparison result is output. ARRAY [0..2] OF Bit
3. Applicable devices £5%
=1
Bit Devices Word Devices Others B2 %
D> a
Operand . e e System | Special Real |Character . —ag
type System User Digit Specification User Unit Index Constant Number| String Pointer %.
X|Y|M|T|C|S|DO.b|KnX|KnY |KnM(KnS|T|C|D| R [UC\GO |V |Z |Modifier| K | H E "an P
o 0|0 o (00042 A3 (00 o ° 9
oo o |0 oee|a2] A3 [e|e] e oo 8E%
838
D o0 ® A1 (] o2
T o4
A: Refer to "Cautions". §°g’§
o

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

133

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.1 CMP / Compare

Function and operation explanation

1. 16-bit operation(CMP, CMPP)
The comparison value specified by and the comparison source specified by are compared with
each other. According to the result (smaller, equal or larger), any of the three points of the devices specified
by CdD turns on.

» The source data specified by and are handled as BIN (binary) values.
» Comparison is executed algebraically. Example: -10 < 2

Command
Command input CMP input : |_I |_| :
I EN ENO : [51
Comparison 3 :
value data S dr— M100 E 2
Comparison —S2 E 49 :
source data 48
I : :
[m100 ! .
| | Turns on in the case of GD>(GD
I I
N owior | Latched .
! —{— | Turnsonin the case of D=2 CaD +1 r—L—
1 I H
! >
Ll oM102 _ Latchedl—:—
! —{— | Tumnsonin the case of GD <2 D +2 !
R J >t

Latched

Even if the command input turns OFF and CMP instruction is not executed,
CdD toCdD +2 latch the status just before the command input turns OFF from ON.

2. 32-bit operation(DCMP, DCMPP)
The comparison value specified by and the comparison source specified by are compared with
each other. According to the result (smaller, equal or larger), any of the three points of the devices specified

by (@D turns on.
» The source data specified by and are handled as BIN (binary) values.

» Comparison is executed algebraically. Example: -125400 < 22466

Command
Com J_| [] I_I -
Command input DCMP ; : 51
e R — EN ENO : 5319; ;
omparison : : :
value data —s1 d—M100 GD+1 (5D : 49 : :
Comparison —|s2 2+1, 2D 48; +1,
source data H : :
(@D —| : I—‘—‘—: :
o it k——f :
| |
Latched
tl 100 ! _
| —f—— 1 Tums on in the case of D +1 | : :
: L [GDHGD] > [GD+1,(s2)] k—
| 101 | Latched —
| —d+—— | Turns on in the case of D2 ;
: I [GED+H1GED] = [G2D+1,G2D)])
| 102 : . Latched
, ——1F——— Turns on in the case of

'""T"" [GD+1sD] < [(2+1,G2]

Even if the command input turns OFF and DCMP instruction is not executed,
(dD) to(CdD +2 latch the status just before the command input turns OFF from ON.

134

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.1 CMP / Compare
Cautions o
1) Some restrictions to applicable devices 3
A 1:The FX3u and FX3uc PLCs only are applicable. Not indexed (V,Z).
A2:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A 3:The FX3u and FX3uc PLCs only are applicable. 2
2) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC. n
To execute pulse operation, make the instruction execution condition pulse type. 2
3) From the device specified as (d), three devices are occupied. =
Be sure not to use those devices in another control. E
Program examples 3
1. When comparing present value of a counter 28
[Structured ladder/FBD] 25
£
X00 cMP w000 — [LT 1. :
— EN ENO|— K X X -
K100—s1 d—Mo | . 4
CN20—s2 i i —
T I 2%0
MO Y000 : : =t
——+—— > Turns ON in the case of I—l I)
K100 > C 20 current value. MO , 238
M1 Y001 I s
—F———= > Turns ON in the case of M1 —l_
K100 = C 20 current value. ‘
M2 Y002
—AF—— >—— Turns ON in the case of M2 AN

K100 < C 20 current value.
Latched Latched Latched
inthe ON inthe ON inthe ON
status. status. status.

CMP(X000, K100, CN20, MO);
Y000:=X000 AND MO;
Y001:=X000 AND M1;
Y002:=X000 AND M2;

If it is necessary to clear the comparison result when the instruction is not executed, add the following
contents under the above program.

seppetdais @) uononysujoiseg

suononJsu|

1) RST
[Structured ladder/FBD] [ST] 7
=2
X000 RST RST(NOT X000, MO); é’%
F EN ENO|— RST(NOT X000, M1); S e
dl— Mo RST(NOT X000, M2); 3 z2
[CR=%
RST 23
EN ENO|—

di— M1
RST £5%
EN ENO|— BoS
d— M2 gaé,
2) ZRST 5
[Structured ladder/FBD] [ST] -
X000 ZRST , g3
o e ZRST(NOT X000, M0, M2); §’%§
d1— Mo 238
d2}— M2 2 3
MO to M2 are reset. 1 0
2TE
59.'%
g5
o
S8
ooz
2 3

135

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.2 ZCP / Zone Compare

8.2

ZCP | Zone Compare

Outline

FX3U(C) | FX3G(C)| FX3s

FX2N(C)

FX1N(C)

FX1s

FXU/FX2C

FXON | FXO(S)

©) ©) O

©)

©]

This instruction compares two values (zone) with the comparison source, and outputs the result (upper, equal
or lower) to bit devices (3 points).

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
ZCP
—EN ENO—
ZCP 16 bits Continuous —s1 d— ZCP(EN,s1,s2,s3,d);
—s2
—{s3
ZCPP
—EN ENO—
ZCPP 16 bits Pulse —{s1 d— ZCPP(EN,s1,s2,s3,d);
—{s2
—s3
DzZCP
—EN ENO—
DzCP 32 bits Continuous —s1 di— DZCP(EN,s1,s2,s3,d);
—s2
—{s3
DZCPP
—EN ENO—
DzZCPP 32 bits Pulse —s1 di— DZCPP(EN,s1,s2,s3,d);
—{s2
—{s3
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Input Data or device handled as lower comparison value ANY16 ANY32
variable Data or device handled as upper comparison value ANY16 ANY32
Data or device number handled as comparison source ANY16 ANY32
Output ENO Execution state Bit
variable D Head bit device to which comparison result is output. ARRAY [0..2] OF Bit
3. Applicable devices
Bit Devices Word Devices Others
Operand . e System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R [UO\GO |V|Z|Modifier| K | H E a" P
[N] (] ® (000 A2 A3 |00 [] o0
o o | o o 000Ai2 A3 (00 o o | o
[N] (] ® (000 A2 A3 |00 [] { N)
D o0 o A1 []

A: Refer to "Cautions".

136

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.2 ZCP / Zone Compare

Function and operation explanation

1. 16-bit operation(ZCP, ZCPP)

The lower comparison value specified by and the upper comparison value specified by are
compared with the contents of the comparison source specified by (s3). According to the result (smaller,
within zone or larger), any of the three points of the devices specified by CdD turns ON.

» Comparison is executed algebraically. Example: -10 <2 <10

Command input 2CP
| . EN ENO—
Lower compa\;gslag_ s1 d—M100

Upper comparison—!s2
value
Comparison—S3
source data

1 I

'l M100 !

| —+— | (Lower comparison value specified by (s1)) > (Comparison source specified by(s3))
1 I

] I

| M0t (Lower comparison value specified by (s1))=< (Comparison source specified by (s3))=<
A . e

| 1 (Upper comparison value specified by (s2))

I 1

: M102 !

I

Even if the command input turns OFF and ZCP instruction is not executed,
(dD to (CdD +2 latch the status just before the command input turns OFF from ON.

2. 32-bit operation(DZCP, DZCPP)

The lower comparison value specified by and the upper comparison value specified by are
compared with the contents of the comparison source specified by (s3D. According to the result (smaller,
within zone or larger), any of the three points of the devices specified by (Cd> turns ON.

» Comparison is executed algebraically. Example: -125400 < 22466 < 1015444

Command input DZCP
—f EN ENO—

Lower CompachﬁSg_ s1 d—M100

Upper comparison—|s2
value

Comparison—{S3
source data

1 I

' M100 !

Ve (Lower comparison value specified by (sT)) > (Comparison source specified by(s3))

I I

I I

| Mot (Lower comparison value specified by (s1D)< (Comparison source specified by (s3)) <
\ I (Upper comparison value specified by (G2))

| M102

! ———— | (Comparison source specified by (s3)) > (Upper comparison value specified by (s2))

Even if the command input turns OFF and DZCP instruction is not executed,
(dD to CdD +2 latch the status just before the command input turns OFF from ON.

137

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

=
T
3%
%o_
2z
=
[CR=%

o
=

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.2 ZCP / Zone Compare

Cautions

1) Some restrictions to applicable devices
A 1:The FX3u and FX3uc PLCs only are applicable. Not indexed (V,Z).
A2:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.

A 3:The FX3u and FX3uc PLCs only are applicable.

2) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

3) From the device specified as (d)), three devices are occupied.

Be sure not to use those devices in another control.

4) The lower comparison value specified by should be smaller than the upper comparison value
specified by (2.

* When the lower comparison value is smaller than the upper comparison value

X000

}

K100 —
K120 —
CN30 —

EN
s1
s2
s3

ZCP

ENO
d

—M3

M3

M4

M5

——F—— Turns ON in the case of "K100
> CN30 (current value)".

——F—— Turns ON in the case of "K100
= CN30 (current value) = K120"

——F—— Turns ON in the case of "K120
< CN30 (current value)".

X000

M5

* When the lower comparison value is larger than the upper comparison value

ZCP

ENO

d

—M3

M4

M5

X000
—1 EN
K120 —s1
K100 —s2
CN30—s3
M3

It is handled as K120 (1.

——+F—— Turns ON in the case of "K120
> CN30 (current value)".

——+—— Turns ON in the case of "K120
= CN30 (current value)".

——+F—— Turns ON in the case of "K120
< CN30 (current value)".

X000

138

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.3 MOV / Move
8.3 MOV/Move o
§
FX3U(C) [FX3G(C)| FX3S |[FX2N(C)|FXIN(C)| FX1S | FXUIFX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
This instruction transfers (copies) the contents of a device to another device. 2
Q
=
1. Format and operation, execution form :.;
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST 3
MOV) 28
MOV 16 bits | Continuous —EN ENOR— MOV(EN’.S’d)’ Eé’
Or an assignment statement 2'c
—s d— Ss
o
5
MOVP &
MOVP 16 bits Pulse —EN ENO{— MOVP(EN’S’d)’
q Or an assignment statement 4
— S —
DMOV . ez
DMOV 32bits | Continuous —JEN ENO[- DMOV(EN s.d) g2
Or an assignment statement #7898
—1s dl— o, [}
DMOVP
DMOVP 32 bits Pulse —EN ENO}— DMOVP(EN.s,d); 5
Or an assignment statement =
—s d— ©
@,
2
>
(2]
2. Set data g
Data type S
Variable Description 16-bit 32-bit 6
operation operation
Input EN Execution condition Bit 2
. [
variable Data or device of transfer source ANY16 ‘ ANY32 %g
>
Output ENO Execution state Bit e8]
variable D) Transfer destination device ANY16 ‘ANY32
3. Applicable devices —_
s
Bit Devices Word Devices Others <_8‘ ;:
: g=
Operand System User Digit Specification System Spec‘:lal Index Constant Real Char:acter Pointer 3%
type User Unit Number| String %—, =
X|Y|MT|C|S|DO.b|KnX|{KnY|KnM |KnS|T|C|(D| R |UO\GO |V |Z|Modifier] K | H E "a" P =3
o 0| o |0 (000l A2 00 o
D oo |0 o0o0ai| A2 00 o e
32 F
A: Refer to "Cautions". Bss
—a g

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

139

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.3 MOV / Move

Function and operation explanation

1. 16-bit operation(MOV, MOVP)
The contents of the transfer source specified by are transferred to the transfer destination specified by
.
* While the command input is OFF, the transfer destination specified by Cd) does not change.

* When a constant (K) is specified as the transfer source specified by (Cs), it is automatically converted into

binary.
Command input MOV
——EN ENO|— - Cd
Transfer sogr(%e —s d—Transfer destination data
ata

When specifying digits of a bit device (K1X000 — K1Y000)
The bit device transfers a maximum of 16 points (multiple of 4).

Command input MOV
——+——EN ENO—
K1X000—s d—K1Y000
CsD: K1X000 CdD: K1Y000 Command contact ON
Befor.e X3 X2 X1 X0 Y3 Y2 Y1 YO)
execution) [onlorlorFlon ON| ON| ONOFF X000 ol
~ 7 X001 OFF
Transfer &)
After | X3 X2 X1 X0 Y3 Y2 Y1 Y0 X002 OFF
e |ON|OFF|OFF|ON| —> |ON|OFF|OFF|ON| L X003 ON
[YOOO OFF ON
Y001 ON OFF
(@D
Y002 ON OFF
L Y003 ON
When a word device is specified
The word device transfers 1 point.
Command input MOV
——}—EN ENO—
D10—s di—D50
:D10 (Cd>: D50 Command contact ON
Before
execution | K50 | | KO |
__ Cs) 50
() Transfer
After
execution | K50 | :{>| K50 | (@D) 0 50

140

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.3 MOV / Move
2. 32-bit operation(DMOV, DMOVP) o
The contents of the transfer source specified by (5D are transferred to the transfer destination specified by =3
.
« While the command input is OFF, the transfer destination specified by Cd>) does not change.
* When a constant (K) is specified as the transfer source specified by (s, it is automatically converted into 2
binary. _
2
Command input DMOV B
—— EN ENO— [CsO+1, D] —» [C+1,Cd 5
Transfer SOUnie—8 d—Transfer destination data @
When specifying digits of a bit device (K8X000 — K8Y000) 3
The bit device transfers a maximum of 32 points (multiple of 4). 59
==
Command input | DMOV Command contact ON %%
———EN ENO[— S &
K8X000 —|s dj—K8Y000 [X000 ON 2
X001 OFF
) GD:K8xo00 CdD: K8Y000 oy OFF 4
Before X37 to X1 X0 Y37 to Y1YO X037 ON Efules
exeedton fonjorFjorr|oN| lonjon|onjor| - E5 2
) g TY000 OFF ON S=x
Transfer Y001 "ON OFF °328
After X37 to X1 X0 Y37 to Y1Y0 D) -
execution) [\ [orloFFlon |:{>|0N|0FF|OFF|0N| o "ON OFF 5
b ’ L Y037 ON
g
When a word device is specified i_’
The word device transfers 1 point. g
2
Command input | DMOV 5
——F——EN ENO— 6
D10 —s d—D50
¢
) :D11,D10 (dD: D51, D50 Command contact ON S
Before s
execution K500000 K4321 s
— 500000
Transfer
After 7
execution| | k500000 | ==> | K500000 D 432 500000 3z
EH
8=
3z
- mc
Cautions gg

1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) Some restrictions to applicable devices ggg
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable. 3 § §
A2:The FX3u and FX3uc PLCs only are applicable. £3g

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

141

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.3 MOV / Move

Program examples

1. When reading the current value of a timer and counter

[Structured ladder/FBD] [ST]
X001 MOV MOV(X001,TN0,D20);
———1EN ENO}— (Current value of TO) — (D20)
TNO—s d—D20 The operation is the same as a counter.

2. When indirectly specifying the set value of a timer or counter
As the set value of the timer T20, two values can be specified by turning ON or OFF the switch X002.
For specifying more than three set values, more than one switch is required.

[Structured ladder/FBD]

X002 MOV
—— ——EN ENO—
K100—]s d— p1o (K100)— (D 10)
X002 MOV
EN ENO— (K50) — (D 10)
K50 —{s d— D10
MO ouT T
————EN ENO— When X002 is ON, D 10=K100(10-second timer)
TC20 —{TCoil When X002 is OFF, D 10=K50(5-second timer)
D10 —TValue
[ST]

MOV/(X002, K100, D10);
MOV(NOT X002, K50, D10);
OUT_T(MO, TC20, D10);
3. When transferring a bit device
The program written by basic instructions shown below can be expressed using MOV instruction.

[Structured ladder/FBD]

X000 Y000
— M8000 MOV
-------------------------------------- b 1EN ENO|—
X001 Y001 RUN _ -
- monitor K1X000—($ di—K1Y000
X002 Y002 <:> [ST]
L —— MOV(M8000, K1X000, K1Y000);
X003 Y003
—

4. When transferring 32-bit data

Be sure to use DMOV instruction for transferring an applied instruction (such as MUL) whose operation result
is output in 32 bits, and for transferring a 32-bit numeric value or transferring the current value of a high speed
counter (C235 to C255) which is a 32-bit device.

[Structured ladder/FBD]

X000 DMOV
—A————EN ENO— (D1,D0)— (D 11, D 10)
DO —{s d—D10
X001 DMOV
————EN ENO— (Current value of C235) — (D 21, D 20)
CN235 —s df—D20

[ST]

DMOV(X000, DO, D10);
DMOV(X001, CN235, D20);

142

FXCPU Structured Programming Manual

8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.4 SMOV / Shift Move
8.4 SMOV / Shift Move o
§
FX3U(C) | FX3G(C) FXIN(C)| FX1S | FXU/IFX2C | FXON | FXo(S)
O O X O X X
Outline -
This instruction distributes and composes data in units of digit (4 bits). 2
Q
=
1. Format and operation, execution form ;
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST 3
SMoV 28
N Es
. . —s S8
SMOV 16 bits Continuous m SMOV(EN,s,m1,m2,n,d); g'
o
—m2 -
SMOVP 252
—EN §35
5B
—Is g o C;DU
SMOVP 16 bits Pulse 1 SMOVP(EN,s,m1,m2,n,d); °328
—m2
g
2. Set data &
>
Variable Data type %
Q
EN Execution condition Bit §'
Word device storing data whose digits will be moved. ANY16 6
Inpyt Head digit position to be moved ANY16 _
variable 22
Number of digits to be moved ANY16 gl‘i
= Q
(@) Head digit position of movement destination ANY16 % %
Output ENO Execution state Bit
variable D) Word device storing data whose digits are moved ANY16 7
3. Applicable devices 32
ez
Bit Devices Word Devices Others g %
Operand System User Digit Specification System Index Constant Real Char:acter Pointer 3 §
type Number| String = S
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM |KnS|T Z | Modifier H E o P
KRR °
o=z
o 38F
B22
° S38
(@) o %»
D e o o |0 o o 9

A: Refer to "Cautions".

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

143

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.4 SMOV / Shift Move

Function and operation explanation

1. 16-bit operation(SMOV, SMOVP)

The contents of the transfer source specified by and transfer destination specified by CdD are converted
into 4-digit BCD (0000 to 9999) respectively. "m2" digits starting from "m1"th digit are transferred (composed)
to the transfer destination specified by (CdD starting from "n"th digit, converted into binary, and then stored to
the transfer destination specified by CdD.

» While the command input is OFF, the transfer destination specified by Cd) does not change.

» When the command input turns ON, the data of the transfer source specified by and unspecified
digits in the transfer destination specified by CdD do not change.

Command input SMOV
———— EN ENO{—

Digit transfer __| d—Result data
data

Head digit position —m1

(2]

Number of digits —m2

Digit position at —n
transfer destination

1) is converted from

4th digit| 3rd digit|2nd digit] 1st digit| " the case of MD=4,m2 =2,Cn)=3 " pin 1y into BCD.
LITLITL T[]] Cso(e-bitbinary data) 2) "m2" digits starting from
| Data is automatically converted. 1) "m1"th digit are transferred
(composed) to Cd)' starting
[108 | 102 | 100 | 100 | &' (4-digit BCD data) from "n"th digit. The digits of

Command contact=ON | Digits are moved. 2) 103 and 10° of ' gre not
affected even if data is

[108 | 102 [100 | 100 | CdD'(4-digit BCD data) transferred from D"
\L 1\— Do not change —1\ l/ | Data is automatically converted. 3) 3) The composed data (BCD)
l

o is converted into binary, and
[TTTTTTTTITTITTITT]] G (16-bitbinary data) stored to CdD.

2. Extension function
When M8168 is set to ON first and then SMOV instruction is executed, conversion from binary to BCD is not

executed.
Data is moved in units of 4 bits.
M8168
A
X010 SMOV
EN ENO—
D1—s d—D2
K4—m1
K2— m2
K3—n
+ M8168 is available for other instructions also.
— = After using M8168 for SMOV instruction, return it to OFF.
X010 M8168
Cautions

1) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

144

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.4 SMOV / Shift Move

Program examples o
The data on three-digit digital switches are composed, and stored as binary data to D2. 3

[Structured ladder/FBD]

BIN
102 10" 100

— EN ENO|— (X020 to X027)2-digit BCD 2
N N N M8000 | K2X020—|s d—p2 — D 2(Binary) -
7} el |4 2
. 4 BIN g
8 1 8 1 EN ENO|— (X000 to X003)1-digit BCD =
8 1 K1X000—(s d—p1 — D 1(Binary) @
X003 to X000 X027 to X020 SMOV 3
EN ENO— 1-digit BCD data of D1 is =6
PLC D1—ls dl—pp transferred to the 3rd digit 29
K1 1 (BCD data) of D2, and S&
Data on three digital switches connected —m automatically converted §'§
to non-consecutive input terminals are K1—m2 into binary data. §
composed. K3—{n [=3
[ST] 4
BIN(M8000, K2X020, D2); smT
BIN(M8000, K1X000, D1); g»'%s
SMOV(M8000, D1, K1, K1, K3, D2); 5§38
9».0_

seppetdais @) uononysujoiseg

suononJsu|

N

=
T
3%
%o_
2z
=
[CR=%

o
=

—

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

A
O w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

145

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.5 CML / Complement

8.5 CML/Complement

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] X X @] X X

Outline

This instruction inverts data in units of bit, and then transfers (copies) the inverted data.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
CML
CML 16 bits Continuous —{EN ENO— CML(EN;,s,d);
—Is d—
CMLP
CMLP 16 bits Pulse —EN ENO|— CMLP(EN,s,d);
—Is d—
DCML
DCML 32 bits Continuous —EN ENO}— DCML(EN,s,d);
—Is d—
DCMLP
DCMLP 32 bits Pulse —EN ENO{— DCMLP(EN,s,d);
—Is dl—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Input EN Execution condition Bit
variable Data to be inverted or word device storing the data ANY16 ‘ANY32
Output ENO Execution state Bit
variable D) Destination word device storing inverted data ANY16 ‘ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand i e System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
® | ® 6 0 000.A1 A2 |@|0® []
D ® | O | 0 000 A A2 |00 []

A: Refer to "Cautions".

146

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.5 CML / Complement
Function and operation explanation o
=
1. 16-bit operation(CML, CMLP) ¢
Each bit of a device specified by is inverted (from 0 to 1 or from 1 to 0), and then transferred to the
device specified by CdD.
* When a constant (K) is specified as Cs), it is automatically converted into binary. 2
» This operation is useful when a logically inverted output is required as an output from a PLC. g
51
Command input CML _ g
——EN ENO— & -» D &
Data to be —s d— Data having been inverted a
inverted 3
b15 b14 b13 b12 b11 b11 b9 b8 b7 b6 nS5 b4 b3 b2 b1 b0 S50
»n O
& [t Jo]J1]Jof[t1r]Jo]1]ofoJo]1][1][1]o]1] o] S2
e
_sign bit c d contact=ON Ss
(O=Positive number 1=Negative number) ommand contact= §
@ [o]1]JofJ1r]Jo[t1tfJoJ1]1][1]ofJoJo[1][o]1]

\ J
'

Inverted data is transferred.

1N

2. 32-bit operation(DCML, DCMLP)

Each bit of a device specified by is inverted (from 0 to 1 or from 1 to 0), and then transferred to the
device specified by CdD.

suononssu|
Jo uojeue|dx3
pesy 0} MOH

* When a constant (K) is specified as (s, it is automatically converted into binary.
» This operation is useful when a logically inverted output is required as an output from a PLC.

Command input | DCML -
b———EN ENO|- GO+, GO » GO+, D
Data to be —s d— Data having been inverted

inverted

b31 b30 b29 b28 b27 b26 b25 to b7 b6 n5 b4 b3 b2 bl b0

seppetdais @) uononysujoiseg

G [tJoJrJofJtfof1] JoJoJt]Jt]jt]of1]o] 5
L signbi S
gn bit _ ®
(0=Positive number 1=Negative number) @ Command contact=ON
@ [(ofJrJoJrJof1fJof [1[]r1]JoJojJof1[ofd1] 7
| ~ J

Inverted data is transferred.

Cautions

—
Y
5]

Q
Q
o
3
]
5]
=

=

suononusu] paljddy

1) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

147

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.5 CML / Complement

Program examples

1. When receiving an inverted input
The sequence program can be written by CML instruction.

X000 Mo
(—
X001 M1
i (—
X002 M2
3 (—
X003 M3

—

SERZS

[Structured ladder/FBD]

CML
ENO
d

X000 MO
—
X001 M1
—
X002 M2
—
X003 M3
—
[ST]
CML(M8000, K1X000, K1MO);
— K1MO

M8000

— EN
RUN K1x000 —s
monitor

2. When four bits are specified for a device with digit specification

[Structured ladder/FBD]

[ST]

X000 CML CML(X000, DO, K1Y000);
R EN ENO
D0—{s d— K1Y000
(D 0) = (K1Y000)

Y015 b14 b13 b12 b11 b11 b9 b8 b7 b6 n5 b4 b3 b2 bl bo
[1]Jof[1]o]J1]o|l1]Jof[1]o]1]o]1]of]1]o0]
DO % sign bit (0=Positive number 1=Negative number) X000=ON D
(0 I S S A e e e S S S [o]J 1o 1]

K1Y000 Y017 YO16 Y015 YO14 YO13 Y012 Y011 Y010 Y007 Y006 Y005 Y004 Y003 Y002 Y001 YOOO

7

Inverted data
is transferred.

~
Do not change.

148

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)

8.6 BMOV / Block Move

8.6 BMOV / Block Move

FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O @] X
Outline
This instruction transfers (copies) a specified number of data at one time.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
BMOV
BMOV 16 bits | Continuous _EN ENa_ BMOV(EN,s,n,d);
BMOVP
BMOVP 16 bits Pulse _SEN EN%— BMOVP(EN,s,n,d);
2. Set data
Variable Description Data type
EN Execution condition Bit
Inpgt Transfer source device ANY16
variable
(@) Number of transferred points (including file registers) ANY16
Output ENO Execution state Bit
variable D Transfer destination device ANY16
3. Applicable devices
Bit Devices Word Devices Others
Operand . e System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|{KnX|KnY|KnM|KnS|T|(C|D| R |UO\GO Z | Modifier H E a" P
o o | o |0 000al A2 °
D) o o
D ® | o | o 000Al A2 °

A: Refer to "Cautions".

149

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

pue djeLLAKY)
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.6 BMOV / Block Move

Function and operation explanation

BMOV instruction transfers "n" points of data from the device specified by to the device specified by
(d)D at one time.

+ If the device number range is exceeded, data is transferred within the possible range.

(@D
Command input BMOV o i 1
+ +
. 'fi EN ENO— . - n points
ranster sogg%g_ s di—Transfer destination : :
Number of points—{n data +n CdD +n
transferred

. Transfer is enabled even if the transfer number range is overlapped.

To prevent overwriting before transfer of source data, data is automatically transferred in the order "1)—2)—
3)" according to the number overlap status.

X001 BMOV D10 —" D9

— EN ENOL- —1.2 5
D10—s d—D9 3)

ka3 D 12 D11
3)

X002 BMOV D 10 D 11

R — D11 25 D12
D10—]s dl— D11 1)

K3—]n D 12 D13

. Extension function (bi-directional transfer function)

By controlling the direction inverse flag M8024"" for BMOV instruction, data can be transferred in two
directions in one program.

X001 mgo24t
[(L irection BMOV direction inverse Transfer
—| ,, inverse . flag direction G, (D
X000 BMOV D5-D10
p—EN ENO|— M8024*1:0FF CGOH-Ch D6—-D11
D5—is d—D10 D7-D12
K3—n D5<D10
—— M8024"1:0N - D6+-D11
M800* M8024™ B\10v direction D7-D12
i { = inverse OFF
Normally OFF

during operation

*1. M8024 is cleared when the PLC mode is changed from RUN to STOP.

150

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.6 BMOV / Block Move
Cautions o
1) The FXoN, FXU and FX2c PLCs handle file registers as follows. 3
BMOV instruction
Read Write
FXON v 2
FXU P , =
FX2C 2
FXU . g
(V2.30 or earlier) 2
2) Instructions of pulse operation type are not provided in the FXoN PLC. ;
To execute pulse operation, make the instruction execution condition pulse type. 3
3) When specifying digits of bit devices, specify a same number of digits for CsD and CdD. =9
==
M8000 BMOV M 0 Y000 5%
Ss
————EN ENO— M 1 Y001 5
KIMO—s d—K1Y000 o
K2—|n M 2 Y002
M 3 Y003 4
Specify a same number of digits. > N =2 points oz
. 28 =
(Example: K1) M 4 Y004 §§ =
M 5 Y005 35%
o o
M 6 Y006 -
M 7 Y007
4) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

seppetdais @) uononysujoiseg

suononJsu|

N

—
Y
5]

Q
Q
o
3
]
5]
=

=

suononusu] paljddy

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

151

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.6 BMOV / Block Move

Function of transfer between file registers and data registers

BMOV instruction has a special function to file registers (D1000 and later).
The maximum number of file register differs from one PLC to another.
This explanation here uses the FX3u and FX3uc PLCs as examples.

For the details of the file registers, refer to the following manual.

500 points x 14 blocks

(7000 points maximum)

— FX Structured Programming Manual [Device & Common]

1. What are file registers
By parameter setting, D1000 to D7999 can be handled as file registers, and written to and read from the
program memory area.

1)

2)

Outline of setting
File registers (D1000 to D7999) do not exist in the initial status. They are valid only when some number of
file registers are secured by parameter setting in a programming tool.

Number of file registers

In parameter setting, set 500 file registers as 1 block.

1 to 14 blocks (each of which has 500 file registers) can be set.
1 block occupies 500 steps in the program memory area.

Difference between BMOV instruction and other instructions
The table below shows the difference between BMOV instruction and other instructions with regard to file
registers (D1000 and later).

Instruction Contents of transfer Remarks

Can read from and write to the file register area [A]
BMOV o -
inside the program memory.

Because the data register area [B] is provided inside the
system RAM in PLCs, its contents can be arbitrarily
changed without regard to the optional memory format.

Other applied
instructions than
BMOV

Can read from and write to the data register area
[B] inside the image memory in the same way as
general data registers.

When power is turned ON, data registers set as file registers are automatically copied from the file
register area [A] to the data register area [B].

Inside built-in memory Inside system RAM
or

memory cassette

DO
Program Data
memory memory
When power is
Program/ | turned ON Data register
comment | \when PLC
D1000 mode is D1000 Devices D1000 and later specified as
file changed from Data register operands in applied instructions other
: register STOP to RUN than BMOV, indirectly specified values
maximum I: for timers or counters or devices in
[A] N [B] RST instruction are read from and
Data register | Read) \yritten to the area [B] in the same
D7999 way as general data registers.

0

Remaining area can be used as data register for general purpose.

2. Cautions on use

1)

When updating the contents of a file register with a same number (same-number update mode), make
sure that the file register number is equivalent between (CsD and CdD).

When using file registers in the same-number update mode, make sure that the number of transfer points
specified by "n" does not exceed the file register area.

If the file register area is exceeded while file registers are used in the same-number update mode, an
operation error (M8067) is caused and the instruction is not executed.

In the case of indexing (in the same-number update mode)
When and CdD are modified with index, the instruction is executed if the actual device number is
within the file register area and the number of transfer points does not exceed the file register area.

152

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.6 BMOV / Block Move
1
5) Handling of flash memory o
<In FX3u, FX3uc PLCs> =
When changing the contents of file registers secured inside the flash memory, observe the following ®
condition:
- Set the protect switch to OFF in the optional memory.
- When writing data using a continuous operation type instruction in a program, data is written to the flash 2
memory in every operation cycle of the PLC. =
To prevent this, as the flash memory has a limit to the number of times of writing operations, be sure to &
use a pulse operation type instruction (BMOVP) so that the number of times of writing is reduced. =
- It takes 66 to 132 ms to write data of one serial block (500 points) to the flash memory. ;
Execution of the program is paused during this period. Because the watchdog timer is not refreshed at -
this time, it is necessary to take proper countermeasures such as inserting the WDT instruction into the 3
sequence program.
- Do not turn OFF the power while the contents of file registers are changed. Z‘g’
If the power is turned OFF during the change, the data stored in file registers may be filled with gcg
unexpected values, or a parameter error may occur. g g.
6) Write to the EEPROM 2
<In FX3s, FX3G, FX3Gc PLCs>
- It takes 80 ms to write data in one continuous block (500 points) to the EEPROM. 4
Note that execution of the program is paused during this period, but the watchdog timer is automatically ~ Z X'g
refreshed. = g?;
<In FX1s, FX1N, FX1NC, FX2N and FX2Nc PLCs> 5%@?
- It takes 10 ms to write data in one point to the EEPROM. Ch

Note that execution of the program is paused during this period, and the watchdog timer is automatically
refreshed.
<In FXoN PLCs>

- Write to the EEPROM using peripheral equipment.
7) File register operation
File registers are secured inside the built-in memory or memory cassette.

Different from general data registers, file registers can be read and written directly only by peripheral
equipment or BMOV instruction.

8) If a file register is not specified as the destination in BMQOV instruction, the file register is not accessed.
a) Outline of memory operation

seppetdais @) uononysujoiseg

suononJsu|

Inside built-in RAM Inside system RAM

or
optional cassette

DO

D200 7

Program — > 1| Image
memory memory =z
14 3E
T Q @
Program/ D599 | Data register 55
comment 3 g
D1000 $ I 2z
500 points x 14 blocks file D1100| Data register T

. register
maximum 1

(7000 points maximum) [A] D1499 [B] —
______ =2
Data register 392
D7999 g%e
L3g

b) Program examples
When X000 is set to ON, the data register area [B] is read.

© sup

[Structured ladder/FBD] [ST]
X000 BMOVP BMOVP(X000, D1100, K400, D200); 558
—EN ENO— 555
D1100—s d—D200 g58
K400—n S35
g o

A file register can be specified as CdD. But if a same number with is specified, the same-number
register update mode is selected.
However, even if a file register having different number is specified for CsD and CdD respectively,

-
O w

TS
data cannot be transferred from the file register area to another file register area. In such a case, read %§%
the contents of a file register specified as in the same-number register update mode to the data §§%
register area [B] once, and then write the data. ggg

153

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.7 FMQOV / Fill Move

8.7 FMOV / Fill Move
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O X X @] X X
Outline
This instruction transfers same data to specified number of devices.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
FMOV
—EN ENO—
FMOV 16 bits Continuous s d FMOV(EN,s,n,d);
FMOVP
—EN ENO—
FMOVP 16 bits Pulse s d FMOVP(EN,s,n,d);
DFMOV
—EN ENO—
DFMQOV 32 bits Continuous d DFMOV(EN,s,n,d);
DFMOVP
DFMOVP 32 bits Pulse _EN ENa_ DFMOVP(EN,s,n,d);
—n
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Inp,Uth Transfer source data or device storing data ANY16 ANY32
variable
(@) Number of transfer points ANY16
ENO Execution state Bit
Output Head word device of transfer destinati
variable ead word device of transfer destination
D (Same data is transferred from the transfer source at one time.) ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand - e e System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
o | o o |0 000l A2 |0 °
@ o o
(@D [J [J ® (000 A A2 []

A: Refer to "Cautions".

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.7 FMOV / Fill Move
Function and operation explanation o
1. 16-bit operation(FMOV, FMOVP) ¢
The data or contents of a device specified by (CsD are transferred to "n" devices starting from a device
specified by CdD.
* The contents will be same among all of "n" devices. 2
+ If the number of points specified by "n" exceeds the device number range, data is transferred within the g
possible range. 5
[}
« While the command input is OFF, the transfer destination specified by Cd> does not change. ;
» While the command input is ON, the data of the transfer source specified by does not change.
* When a constant (K) is specified as the transfer source specified by (sD, it is automatically converted into 3
binary. =9
Command input FMOV N gé‘
——EN ENO|— D SE
sourégndsgg —s d—Transfer destination 2
Number of points —{n device CdD +1
transferred 4
smT
@z | pn EEE
830
35%
Cdo +3 *28
CD +4 5
/
g
2. 32-bit operation(DFMOV, DFMOVP) =
The contents of the transfer source specified by are transferred to "n" 32-bit devices starting from the é’
device specified by CdD. 5
» The contents will be the same among all of "n" 32-bit devices. 6
+ If the number of points specified by "n" exceeds the device number range, data is transferred within the S0
possible range. 23
» While the command input is OFF, the transfer destination specified by CdD does not change. g%
« While the command input is ON, the data of the transfer source specified by does not change.

* When a constant (K) is specified as the transfer source specified by (s, it is automatically converted into

N

binary.
~ TE
Command input [DFMOV Sl
+ + = O
C EN ENOL_ CsD +1, C+1, D 8=
Transfer __|g |_Transfer destination ne
source data device 2z
Number of points —{n —> [+3, CdO+2 =3

transferred

> |G +5, CD+4 >n

(a1edwo)
pue sAop\|
niysu| paijddy

—> | (D +7, (dDO+6

—> | (D +9, CdDO+8

N
O suop

Cautions
1) 32-bit instructions are not provided in the FXu PLC Ver. 2.30 or earlier.

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

2) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

155

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.7 FMOV / Fill Move

Program examples

1. When writing specified data to two or more devices

[Structured ladder/FBD] [ST]
X000 FMOV FMOV(X000, K0, K5, DO);
pb——EN ENO—
Ko—s d—Do0
K5—n
Before After
execution execution

KO KO DO |- K3 - Ko
I KO ——> D1 | K 5 - K 0
— KO0 ——> D2 |- K 65 - KO0
— KO _> D3 |- K 7 —_ K 0
— KO ——>| D4 |- K100 | = | KO

1\—Va|ues before execution are shown as examples.

156

FXCPU Structured Programming Manual

8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.8 XCH / Exchange
8.8 XCH / Exchange
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@) X X X X @] X X
Outline
This instruction exchanges data between two devices.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
XCH
XCH 16 bits Continuous EN E'\L?_ XCH(EN,d1,d2);
d2—
XCHP
XCHP 16 bits Pulse =) E'\L?_ XCHP(EN,d1,d2);
d2—
DXCH
DXCH 32 bits Continuous EN E'\:j?_ DXCH(EN,d1,d2);
d2—
DXCHP
DXCHP 32 bits Pulse =) E'\:ﬁ_ DXCHP(EN,d1,d2);
d2—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Input EN Execution condition Bit
variable
ENO Execution state Bit
OUFPUt Device storing data to be exchanged. ANY16 ANY32
variable
Device storing data to be exchanged. ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand . I System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
o | o o 00 Al A1 °
o | o oo Al A1 (o0 o

A: Refer to "Cautions".

157

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.8 XCH / Exchange

Function and operation explanation

1. 16-bit operation(XCH, XCHP)
Data is exchanged between the device specified by and the device specified by (@2 .

Command
input XCH

——F——EN ENO—
d1!—Data exchanged 1 <>
d2—Data exchanged 2

Before execution After execution
= K10 K36 =
= K36>< K10 =
Exchange

2. 32-bit operation(DXCH, DXCHP)
Data is exchanged between the device specified by and the device specified by (d2.

Command
input DXCH
——F—EN ENO—
d1—Data exchanged 1 A +1, <> (@2)+1,
d2+—Data exchanged 2
Before execution After execution

@D +1, dD| = K10000 ><K1433600= o +1, dD
2 +1,(d2> | = K1433600 K10000 = [(d2 +1,d2>

Exchange

Extension function

When the instruction is executed while M8160 is ON, high-order 8 bits (byte) and low-order 8 bits (byte) of a
word device are exchanged each other.

(The FXu PLC of V2.30 or earlier does not support the extension function.)
This is the same operation as SWAP instruction, so use SWAP instruction for newly programming.
In the case of 32-bit operation, high-order 8 bits (byte) and low-order 8 bits (byte) of a word device are

changed.
X000 M8160
—/———— — SWAP
DXCH
EN ENO— D 11 D 10
d1— D10
| High-order| Low-order High-order| Low-order
d2r—b10 8bits |8 bits 8bits |8 bits
M8000 M8160 X A X A
Cautions
1) Some restrictions to applicable devices
A 1:The FX3U and FX3uc PLCs only are applicable.
Error
An operation error occurs in the following case. The error flag M8067 turns ON, and the error code is stored in
D8067.

« When M8160 is ON, and the device numbers specified by and are different.

158

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)

8.9 BCD / Conversion to Binary Coded Decimal

8.9 BCD/ Conversion to Binary Coded Decimal

Outline

This instruction converts binary (BIN) data into binary-coded decimal (BCD) data.

FX3U(C) | FX3G(C)| FX3S |FX2N(C) | FX1N(C)

FX1s

FXU/FX2C

FXON

FX0(S)

©) ©) ©) O ©)

©]

Binary data is used in operations in PLCs. Use this instruction to display numeric values on the seven-
segment display unit equipped with BCD decoder.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
BCD
BCD 16 bits Continuous —EN ENO|— BCD(EN,s,d);
—Is d—
BCDP
BCDP 16 bits Pulse —EN ENO|— BCDP(EN,s,d);
—Is dl—
DBCD
DBCD 32 bits Continuous —EN ENO— DBCD(EN,s,d);
—Is d—
DBCDP
DBCDP 32 bits Pulse —EN ENO|— DBCDP(EN,s,d);
—Is dl—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Input EN Execution condition Bit
variable Word device storing the conversion source (binary) data ANY16 ANY32
ENO Execution state Bit
Output Word device of th ion destinati
variable ord device of the conversion destination
D (binary-coded decimal) data ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|MT|C|S|DO.b|KnX|{KnY|KnM |KnS|T|C|(D| R |UC\G |V |Z|Modifier] K | H E "a" P

o0 (] ® 000 A A2 (@|® []

@D

(] (] ® 000 A A2 |00 []

A: Refer to "Cautions".

159

BUND ==

157 uononsu IND

w

uononsy|
10 uonelnbluo)

1N

suononJsu|
Jo uojeue|dx3
pesy 0} MOH

suononJsu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.9 BCD / Conversion to Binary Coded Decimal

Function and operation explanation

1. 16-bit operation(BCD, BCDP)
This instruction converts the binary (BIN) data specified by into binary-coded decimal (BCD) data, and
transfers the converted BCD data to the device specified by CdD.

+ The data of the device specified by (CsD can be converted if it is within the range from KO to K9999 (BCD).
« The table below shows digit specification for the devices specified by and CdD respectively.

Command

input BCD PLC BIN
——EN ENO|— BCD
Conversion—s di—Conversion
source data destination data Y014 Y010 Y004 Y000
to to to to
Y017 Y013 Y007 Y003
When "K4Y000" is specified
(sequence on the right)
[@D) Number of digits Data range
K1Y000 1 0to9
K2Y000 2 00 to 99
K3Y000 3 000 to 999
K4Y000 4 0000 to 9999

2. 32-bit operation(DBCD, DBCDP)
This instruction converts the binary (BIN) data specified by into binary-coded decimal (BCD) data, and
transfers the converted BCD data to the device specified by CdD.

» The data of the device specified by (sD can be converted if it is within the range from KO to K99999999
(BCD).

» The table below shows digit specification for the devices specified by and CdD respectively.

Command
input DBCD PLC BIN
——EN ENO|— DBCD
Conversion __|¢ |__Conversion
source data destination data Y034 Y030 Y024 Y020 Y014 Y010 Y004 Y000
to to to to to to to to
When "K8Y000" is specified Y037 Y033 Y027 Y023 Y017 Y013 Y007 Y003

(sequence on the right). _% _$ \% % % % {1 $_1

()] seo

l
N
=

—
||
I-
'
S—
L
I-
'
—
I-
—
||
—
L
—
||

[Ca+,Cd] Number of digits Data range
K1Y000 1 0to9
K2Y000 2 00 to 99
K3Y000 3 000 to 999
K4Y000 4 0000 to 9999
K5Y000 5 00000 to 99999
K6Y000 6 000000 to 999999
K7Y000 7 0000000 to 9999999
K8Y000 8 00000000 to 99999999

160

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.9 BCD / Conversion to Binary Coded Decimal
Extension function(FXu and FX2c PLCs) o)
The FXu PLC of V2.30 or earlier does not support the extension function. 3
When executing the instruction with M8023 ON, conversion takes place from binary float to decimal float.
X000 M8023
—A) 2
DBCD . =
BN Binary floatvalue | D1 [DO | 2
DO —s dj— D2 C
Variable @ ;
Meo0o M0z Decimal float value 3
For the float conversion, only data register (D) is applicable as the device for CsD and Cd). S0
»n O
: , 5E
Related instruction S5
o
Instruction Function ;
BIN Converts binary-coded decimal (BCD) data into binary (BIN) data. 4
Cautions 253
c o o
1) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC. %%%
To execute pulse operation, make the instruction execution condition pulse type. °328
2) Because conversion between binary-coded decimal data and binary data is automatically executed in
SEGL and ARWS instructions, BCD instruction is not required.
3) Binary data is used in all operations in PLCs including arithmetic operations (+, -, x and +), increment and
decrement instructions.
* When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use
BIN instruction for converting BCD data into binary data.

* When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use
BCD instruction for converting binary data into BCD data.

4) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

seppetdais @) uononysujoiseg

suononJsu|

Error
In BCD or BCDP (16-bit type) instructions, an operation error occurs when the (CsD value is outside the range
from 0 to 9,999.

In DBCD or DBCDP (32-bit type) instructions, an operation error occurs when the value is outside the
range from 0 to 99,999,999.

N

—
T
3%

%D_
-
=
[S=3

o
=

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

161

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)
[Basic & Applied Instruction] 8.9 BCD / Conversion to Binary Coded Decimal

Program examples

1. When the seven-segment display unit has 1 digit
[Structured ladder/FBD]

X000 BCD
——EN ENO[— PLC
DO0—s d—K1Y000
[ST]
BCD(X000, DO, K1Y000); l_-l

2. When the seven-segment display unit has 2 to 4 digits
[Structured ladder/FBD]

X000 BCD PLC

——— EN ENO|—
D0O—s d—K2Y000

Output destination

In the case of 2 digits: K2
In the case of 3 digits: K3
In the case of 4 digits: K4

[ST]
BCD (X000, DO, K2Y000);

3. When the seven-segment display unit has 5 to 8 digits
[Structured ladder/FBD]

X000 DBCD PLC
p——EN ENO|—
D0 —s d—K5Y000

Output destination

In the case of 5 digits: K5
In the case of 6 digits: K6
In the case of 7 digits: K7
In the case of 8 digits: K8

[ST]
DBCD (X000, DO, K5Y000);

162

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.10 BIN / Conversion to Binary

8.10 BIN/ Conversion to Binary

Outline

This instruction converts binary-coded decimal (BCD) data into binary (BIN) data.

FX3U(C) | FX3G(C)| FX3S |FX2N(C) | FX1N(C)

FX1s

FXU/FX2C

FXON

FX0(S)

©) ©) ©) O ©)

©]

Use this instruction to convert a binary-coded decimal (BCD) value such as a value set by a digital switch into
binary (BIN) data and to receive the converted binary data so that the data can be handled in operations in

PLCs.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
BIN
BIN 16 bits | Continuous —EN ENO}— BIN(EN,s,d);
—Is d—
BINP
BINP 16 bits Pulse —EN ENO|— BINP(EN,s,d);
—Is d—
DBIN
DBIN 32 bits Continuous —{EN ENO— DBIN(EN,s,d);
—|s d—
DBINP
DBINP 32 bits Pulse —EN ENO{— DBINP(EN,s,d);
—Is dl—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Input Word device storing th i
variable ord device storing the conversion source
(binary-coded decimal) data ANY16 ANY32
Output ENO Execution state Bit
variable D) Word device of the conversion destination (binary) ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UC\GO |V |Z |Modifier| K | H E a" P

o0 (] ® 000 A A2 (@|® []

@D

(] ® ® 000 A A2 |@|0® []

A: Refer to "Cautions".

163

BUND ==

157 uononsu IND

w

uononsy|
10 uonelnbluo)

1N

suononJsu|
Jo uojeue|dx3
pesy 0} MOH

suononJsu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)

8.10 BIN / Conversion to Binary

Function and operation explanation

1. 16-bit operation(BIN, BINP)

This instruction converts the binary-coded decimal (BCD) data specified by (sD into binary (BIN) data, and
transfers the converted binary data to the device specified by CdD.

» The data of the device specified by (CsD can be converted if it is within the range from 0 to 9999 (BCD).
« The table below shows digit specification for the devices specified by and CdD.

Command input BIN
p———EN ENO—

Conversion —s di— Conversion destination
source device device

When "K4X000" is specified

ilicilinil s
o0 (70 |18 | Lo
]]]]

P11

(sequence on the right)
X014 X010 X004 X000
to to to to
X017 X013 X007 X003
BIN
PLC
Number of digits Data range
K1X000 1 Oto9
K2X000 2 00 to 99
K3X000 3 000 to 999
K4X000 4 0000 to 9999

2. 32-bit operation(DBIN, DBINP)

BCD

BIN

This instruction converts the binary-coded decimal (BCD) data specified by (Cs) into binary (BIN) data, and
transfers the converted binary data to the device specified by Cd).

» The data of the device specified by CsD can be converted if it is within the range from 0 to 99999999

(BCD).

« The table below shows digit specification for the devices specified by and CdD.

]]]]]]]] BCD
Command input [DBIN 2H [[BH |[4H | BH |[eH | [7H | [eH
—— EN ENO|—]]] N []] [
Conversion __|g dl—Conversion destination
source device device % % # # \,/_% % %\l/ #_\l/
|:When "K8X000" is specified
(sequence on the right) X034 X030 X024 X020 X014 X010 X004 X000
to to to to to to to to
X037 X033 X027 X023 X017 X013 X007 X003 BIN
DBIN(FNC 19)
PLC
GO+,) Number of digits Data range
K1X000 1 0to9
K2X000 2 00 to 99
K3X000 3 000 to 999
K4X000 4 0000 to 9999
K5X000 5 00000 to 99999
K6X000 6 000000 to 999999
K7X000 7 0000000 to 9999999
K8X000 8 00000000 to 99999999

164

FXCPU Structured Programming Manual 8 Applied Instructions (Move and Compare)

[Basic & Applied Instruction] 8.10 BIN / Conversion to Binary
Extension function(FXu and FX2c PLCs) o)
The FXu PLC of V2.30 or earlier does not support the extension function. 3
When executing the instruction with M8023 ON, conversion takes place from binary-coded decimal float to
binary float.
X000 M8023
—A) 2
DBIN g
EN ENOL Decimal float value %
D4 —s d— D6 =
Variable @ 2
MBO0D M8023 Binary floatvalue | D7 | D6 | —2
For the float conversion, only data register (D) is applicable as the device for and CdD. 2,3
Related instruction S
Instruction Function S
BCD Converts binary (BIN) data into binary-coded decimal (BCD) data. 4
Cautions

suononssy|
Jo uojeue|dx3
pesy 0} MOH

1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) Because conversion between binary-coded decimal data and binary data is automatically executed in
DSW, BIN instruction is not required.

3) Binary data is used in all operations in PLCs including arithmetic operations (+, -, x and <), increment and
decrement instructions.

* When receiving the digital switch information in the binary-coded decimal (BCD) format into a PLC, use
BIN instruction for converting BCD data into binary data.

* When outputting data to the seven-segment display unit handling binary-coded decimal (BCD) data, use
BCD instruction for converting binary data into BCD data.

4) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3uU and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

seppetdais @) uononysujoiseg

suononJsu|

Error

When the data of specified by is not binary-coded decimal (BCD), M8067 (operation error) turns ON.
But M8068 (operation error latch) does not turn ON.

N

—
T
3%

%D_
-
=
[S=3

o
=

(a1edwo)
pue sAop\|
niysu| paijddy

© sup

(uonessdo [ealbo
puE DBWLLIY)
ojjonssu| payddy

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

165

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

8 Applied Instructions (Move and Compare)
8.10 BIN / Conversion to Binary

Program examples

1. When the digital switch has 1 digit

[Structured ladder/FBD]

X000 BIN

—— EN ENO
d

(2]

K1X000—

[ST]
BIN(X000, K1X000, DO);

— DO

MOV instruction can be used instead.

[Structured ladder/FBD]

X000 MOV

———EN ENO

[

K1X000—

d

— DO

[ST]
MOV (X000, K1X000, DO);

2. When the digital switch has 2 to 4 digits

[Structured ladder/FBD]

X000

BIN

————EN ENO|—
K2X000—s dj— DO

In the case of 2 digits: K2
In the case of 3 digits: K3
In the case of 4 digits: K4

[ST]

Digital switch input

BIN (X000, K2X000, DO);

3. When the digital switch has 5 to 8 digits

[Structured ladder/FBD]

X000

DBIN

—————EN ENO

K5X000 —

(2]
o

In the case of 5 digits: K5
In the case of 6 digits: K6
In the case of 7 digits: K7
In the case of 8 digits: K8

[ST]

Digital switch input

i
61
]
PLC
K4 K3 K2 K1
1 e e | et
EI I EI |
]]] 1
—|_Output destination
PLC
KB K7 K6 K5 K4 K3 K2 Ki
1 el el el Ted | e0 | | s
— 20 |13 |l (e |18 |7 | len | ek
Do []] [l]]]]
Output
destination
PLC

DBIN (X000, K5X000, DO0);

166

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction]

;A .
=4
3
9. Applied Instructions (Arithmetic and Logical Operation)
This chapter introduces the instructions for arithmetic operations and logical operations of numeric data. 2
Instruction name Function Reference g
ADDP g
DADD Addition Section 9.1 ;
wn
DADDP -
SUBP 3
DSUB Subtraction Section 9.2 -6
DSUBP 29
sSa&
MULP 22
Sg
DMUL Multiplication Section 9.3 =}
DMULP S
DIVP 4
DDIV Division Section 9.4 _
20z
DDIVP 23 2
§S5
INC o2
238
INCP -8
Increment Section 9.5 =5
DINC
DINCP 5
DEC @
DECP 2
Decrement Section 9.6 s
DDEC 2
DDECP é—
WAND =
WANDP 6
Logical Word AND Section 9.7
DAND Eg%)
23
DANDP So
WOR 2 %
WORP
Logical Word OR Section 9.8
DOR
DORP 7
WXOR T
WXORP &g
Logical Exclusive OR Section 9.9 £
DXOR ne
oS 2
DXORP gs
NEG
NEGP Negati Section 9.10
egation ection 9.
DNEG 9 =]
S22 =
DNEGP 533
32
—a g
§.

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

167

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)
9.1 ADDP / Addition

9.1 ADDP/ Addition

FX3U(C)
(@)

FX3G(C)
@]

FX3S | FX2N(C)

O

FX1N(C)
O

FX1S | FXU/FX2C

©]

FXON | FXO(S)

Outline

This instruction executes addition by two values to obtain the result (A + B = C)
— For the floating point addition instruction [DEADD], refer to Section 18.8.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Use application functions (ADD(_E)) for 16-bit operation and continuous execution.
- 16 bits Continuous | For details, refer to the following manual.
— FX Structured Programming Manual [Application Functions]
ADDP
—EN ENO—
ADDP 16 bits Pulse s1 d ADDP(EN,s1,s2,d);
—s2
DADD
.) —EN ENO—
DADD 32 bits Continuous 1 d DADD(EN,s1,s2,d);
—s2
DADDP
) —EN ENO—
DADDP 32 bits Pulse o1 d DADDP(EN,s1,s2,d);
—s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Inp_Uth Data for addition or word device storing data ANY16 ANY32
variable
Data for addition or word device storing data ANY16 ANY32
Output ENO Execution state Bit
variable D) Word device storing the addition result ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spec:lal Index Constant Real Char:dcter Pointer
type User Unit Number| String
X|Y|M|T|C|[S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
[] 000 Al A2 [JX J []
[] 00O Al A2 (0|® [] []
D o © | 0 000 A A2 |@|0® []

A: Refer to "Cautions".

168

9 Applied Instructions (Arithmetic and Logical Operation)
9.1 ADDP / Addition

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

Function and operation explanation

1. 16-bit operation(ADDP)

The data specified by and are added in the binary format, and the addition result is transferred to
the device specified by CdD.

Command input ADDP
b——EN ENO|—

Addition data 1—{s1 dL— Device storing + - D
. the addition result

Addition data 2—{s2

« The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is added
algebraically.
5+(-8)=-3

» When a constant (K) is specified in or (s2), it is automatically converted into the binary format.
2. 32-bit operation(DADD, DADDP)

The data specified by and are added in the binary format, and the addition result is transferred to
the device specified by CdD.

Command input DADD

——EN ENO—
Addition data 1—s1 dr— Device storing [GD+1,GD] + [2D+1,GD)] — [Cd+1,Cd))
Addition data 2—|s2 the addition result

» The most significant bit of each data indicates the sign (positive: O or negative: 1), and data is added
algebraically.
5,500+(-8,540)=-3,040

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.
Related device

1. Relationship between the flag operation and the sign
— For the flag operations, refer to Section 1.3.4.

Device Name Description
ON : When the operation result is 0
M8020 zero OFF : When the operation result is not 0
ON : When the operation result is less than -32,768 (in 16-bit operation) or -2,147,483,648 (in
32-bit operation), the borrow flag operates.
M8021 Borrow OFF : When the operation result is not less than -32,768 (in 16-bit operation) or
-2,147,483,648 (in 32-bit operation)
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in
32-bit operation), the carry flag operates.
M8022 Carry OFF : When the operation result is not more than 32,767 (in 16-bit operation) or
2,147,483,647(in 32-bit operation)
Zero flag Zero flag Zero flag
N /N
-2, -1, 0, -32,768 <——7—— 0, 32,767, 0, 1, 2
RN NA A \ A7
Borrow flag Carry flag
The most S|gn|f|cant The most significant
bit of data bit of data
Zero flag becomes "1 " becomes "0". Zero flag
-2, -1, 0, -2,147,483,648 % 1%2147483 647, 0, 1, 2
Borrow flag Zero flag Carry flag

169

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

pue ano}\)

(a1edwo)
suononuisu| paijddy

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.1 ADDP / Addition

Extension function(FXu and FX2c PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function.

When executing an instruction with M8023 ON, a binary float operation takes place.

In this case, K, H and D are valid as the object device for and and D is valid for Cd).
The source data needs to be converted into binary float value in advance by FLT instruction.
Note, however, that constants K and H are automatically converted into binary float values.

Cautions

1) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) When using a 32-bit operation instruction (DADD or DADDP) and specifying word devices, a 16-bit word
device on the low-order side is specified first, and a word device with the subsequent device number is
automatically set for the high-order 16 bits.

To prevent number overlap, it is recommended to always specify an even number, for example.

3) The same device number can be specified for both the source and the destination.

In this case, note that the addition result changes in every operation cycle if a continuous operation type
instruction (ADD or DADD) is used.

X001 DADD
——EN ENO[—
no_lst J_po (D1.D0)+ 25 - (D1,00)
K25 —{s2

4) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

Program examples

1.

Difference between ADDP and INCP instruction caused by a program for adding "+1".

When ADDP instruction is executed, "1" is added to the contents of DO every time X001 turns ON from OFF.
ADDP instruction is similar to INCP instruction described later except the contents shown in the table below.

ADDP/DADD/DADDP INC/INCP/DINC/DINCP
Flag (zero, borrow, carry) Operates Does not operate
= | 16-bit GO ++1)=Cd +32,767 >0 > +1 > +2 > +32,767 — -32,768 — -32,767
0 .
£ |operation | = 4 ()=CD 2 -1¢0¢-32768
(s}
® 32.bit GO ++1)=Cd +2,147,483,647 >0 > +1 > +2 - +2,147,483,647 — -2,147,483,648 — -2,147,483,647
@ .
& |operation |~ 4 1)=CD -2 10« -2,147,483,648
[Structured ladder/FBD] [ST]
X001 ADDP ADDP(X001, DO, K1, DO);
p——EN ENO—
D +1 D
D0—]s1 dlpg P 9+ (D0)
K1—s2
X001 INCP INCP(X001, DO);
————— EN ENO— (D 0)+1 —>(D 0)
d— DO

170

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)
9.2 SUBP / Subtraction

9.2 SUBP / Subtraction

FX3U(C)

FX3G(C)| FX3s

FX2N(C)

FX1N(C)

FX1s

FXU/FX2C

FXON

FX0(S)

©)

©)

O

©)

©]

Outline

This instruction executes subtraction using two values to obtain the result (A -B = C).
— For the floating point subtraction instruction [DESUB], refer to Section 18.9.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Use application functions (SUB(_E)) for 16-bit operation and continuous execution.
- 16 bits | Continuous | For details, refer to the following manual.
— FX Structured Programming Manual [Application Functions]
SUBP
SUBP 16 bits Pulse _E1N EN(;_ SUBP(EN,s1,s2,d);
pu— S —
—s2
DSuUB
DSUB 32 bits | Continuous] E1N ENOd B DSUB(EN,s1,s2,d);
— S —
—{s2
DSUBP
DSUBP 32 bits Pulse _E1N EN(;_ DSUBP(EN,s1,52,d);
u— S —
—s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Inp_Uth Data for subtraction or word device storing data ANY16 ANY32
variable
Data for subtraction or word device storing data ANY16 ANY32
Output ENO Execution state Bit
variable D) Word device storing the subtraction result ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spec:lal Index Constant Real Char:dcter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UC\GO |V |Z |Modifier| K | H E "a" P
[] 000 Al A2 [JX J []
[} 00O A A2 (X J [[J
@ ® | o | 0 000Ari A2 (00 o

A: Refer to "Cautions".

17

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

=
[5)
<
@
[}
3
a

o=z
S 53
EREY
kel o
LS5
J @
~ =
=
S
=3
=1
w

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.2 SUBP / Subtraction

Function and operation explanation

1. 16-bit operation(SUBP)
The data specified by is subtracted from the data specified by in the binary format, and the
subtraction result is transferred to (d).

(2]

Command input SUBP

F——EN ENO—

SUbtrggttgo?_ 1 d —aevic%ftor{ng - A ED)
i e subtraction
Subtrggttgog—SZ tne st

» The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is
subtracted algebraically.
(5-(-8)=13)

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.
2. 32-bit operation(DSUB, DSUBP)

The data specified by is subtracted from the data specified by in the binary format, and the
subtraction result is transferred to (d).

Command input DSuB
S»ﬁEN ENO|— [GD+1,D] - [G2D+1,(s2)] - [CdO+1,Cd))
ubirae ol —s1 d— Device storing
a’ | the subtraction
Subtrggttgog s2 result

» The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is
subtracted algebraically.
(5,500-(-8,540)=14,040)

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.

Extension function(FXu and FX2c PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function.

When executing an instruction with M8023 ON, a binary float operation takes place.

In this case, K, H and D are valid as the object device for and and D is valid for CdD.
The source data needs to be converted into binary float value in advance by FLT instruction.
Note, however, that constants K and H are automatically converted into binary float values.

Related device

1. Relationship between the flag operation and the sign
— For the flag operations, refer to Section 1.3.4.

Device Name Description

ON : When the operation result is 0
OFF : When the operation result is not 0

ON : When the operation result is less than -32,768 (in 16-bit operation) or -2,147,483,648 (in
32-bit operation), the borrow flag operates.

M8020 Zero

M8021 Borrow OFF : When the operation result is not less than -32,768 (in 16-bit operation) or
-2,147,483,648 (in 32-bit operation)
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in
32-bit operation), the carry flag operates.
M8022 Carry OFF : When the operation result is not more than 32,767 (in 16-bit operation) or
2,147,483,647(in 32-bit operation)
Zero flag Zero flag Zero flag
1/'\6\/\1
-2, -1, 0, -32,768 <——— -1, , 32,767, 0, 1, 2
SN NA/\a A \AAA
Borrow flag Carry flag
The most significant The most significant
bit of data bit of data
Zero flag becomes "1" becomes "0". Zero flag

-2, -1, 0, -2,147,483,648 ﬂOMZ,M?ASS,(MZ 0, 1,

SN S N \ AT

Borrow flag Zero flag Carry flag

N

172

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)

[Basic & Applied Instruction] 9.2 SUBP / Subtraction
Cautions o
1) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC. 3
To execute pulse operation, make the instruction execution condition pulse type.
2) When using a 32-bit operation instruction (DSUB or DSUBP) and specifying word devices, a 16-bit word
device on the low-order side is specified first, and a word device with the subsequent device number is 2
automatically set for the high-order 16 bits. n
To prevent number overlap, it is recommended to always specify an even number, for example. 2
3) The same device number can be specified for both the source and the destination. =
In this case, note that the addition result changes in every operation cycle if a continuous operation type :.;
instruction (DSUB) is used. i
X001 DSUB 3
- EN - ENO— 1 p0)— 255 (D1,D0) -6
D0 —s1 d —DO0 g S
K25—s2 Sg
S
4) Some restrictions to applicable devices §
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable. -
A2:The FX3U and FX3uc PLCs only are applicable. 4
ZXZ
Program examples °5=
=)
1. Difference between SUBP and DECP instruction caused by a program for subtracting "1" @ § g
"1" is subtracted from the contents of DO every time X001 turns ON from OFF. B

SUB instruction is similar to DECP instruction described later except the contents shown in the table below. 5
SUBP/DSUB/DSUBP instructions DEC/DECP/DDEC/DDECP instructions @
Flag (zero, borrow, carry) Operates Does not operate %
>
§ 16-bit GO -+1)=CD —-2¢-1¢0<«-32,768 -32,768 — +32,767 — +32,766 é’
g operation | —— (N=CD +32,767 50 > +1 > +2 - - S
S
B |30-pit GO -+1)=CD -2 -1 <0« -2,147,483,648 -2,147,483,648 — +2,147,483,647 — +2,147,483,646 6
@ .
& |operation | —— (N=CD +2,147,483,647 >0 > +1 > +2 - - @
[Structured ladder/FBD] [ST] S5
[Z)
X001 SUBP SUBP(X001, DO, K1, DO); B
}—H—EN ENO— p 0)—15 (D 0)
DO—|s1 d—po 7
K1—s2 5=
g=
32
a5
Q =
X001 DECP DECP(X001, DO);
——EN ENO— (D 0)-1— (D 0) .
di— po £5s
go2

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

173

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)

9.3 MULP / Multiplication

9.3 MULP / Multiplication

FX3U(C) | FX3G(C)| FX3S |FX2N(C)

FX1N(C)

FX1s

FXU/FX2C

FXON | FXO(S)

©) ©) O

©)

©]

Outline

This instruction executes multiplication by two values to obtain the result (A x B = C).

— For the floating point multiplication instruction [DEMUL], refer to Section 18.10.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Use application functions (MUL(_E)) for 16-bit operation and continuous execution.
- 16 bits | Continuous | For details, refer to the following manual.
— FX Structured Programming Manual [Application Functions]
MULP
MULP 16 bits Pulse] E1N EN(; B MULP(EN,s1,s2,d);
_S —
—s2
DMUL
DMUL 32 bits | Continuous] E1N ENOd B DMUL(EN,s1,s2,d);
_S —
—{s2
DMULP
DMULP 32 bits Pulse] E1N EN(S B DMULP(EN,s1,s2,d);
_S —
—s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Input Data for multiplication or word device storing the multiplication ANY16 ANY32
. data
variable — i i —
(I:’):tf for multiplication or word device storing the multiplication ANY16 ANY32
ENO Execution state Bit
Output ARRAY [1..2]
variable i i iplicati N
(@ D) Head word device storing the multiplication result ANY32 OF ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Speqal Index Constant Real Char:acter Pointer
type User Unit Number| String
X|{Y|MT|C|S|DO.b|KnX|KnY |KnM|KnS|T|C|D| R [UCO\GO |V| Z |Modifier| K | H E a" P
® | 0| © | 0 000.A A2 []
® | 0| ® | 0 0004 A2 [] [] []
@ ® o |0 0004l A A3| o

A: Refer to "Cautions".

174

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.3 MULP / Multiplication

Function and operation explanation

1. 16-bit operation(MULP)

The data specified by is multiplied by data specified by in the binary format, and the multiplication
result is transferred to 32-bit (double word) device specified by CdD.

}ﬁ{nmand input MULP
—— EN ENO|— BIN BIN BIN
Multiplication —is1 d—Device storing (GD) x (&) - (CD+1, CD)
Multiplication —S2 the multiplication 4g pits 16 bits 32 bits
data 2 result

» The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is
multiplied algebraically.
(5x(-8)=-40)

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.

« When a digit (K1 to K8) is specified for the device specified by CdD:
A digit can be specified in the range from K1 to K8.
For example, when K2 is specified, only low-order 8 bits can be obtained out of the product (32 bits).

Command input MULP
b—EN ENO—

K53 —s1 d—K2Y000
K15 —{s2
[K53(H0035) |
X
| K15(HOOOF) |

When command contact turns ON

| K795(H031B) |
v Sign bit (0=Positive 1=Negative)
Y027 Y026 Y025 -+ Y013 Y012 Y011 Y010 Y007 Y006 Y005 Y004 Y003 Y002 Y001 Y000
@ {ojoitotfoioriiiTTofoJol ATl o]1T[1]
N\ A J
Vo Vo
Not output Operation result is output to K2Y000

175

11 uogonisul IN) oUNO =

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

pue ano}\)

(a1edwo)
suononuisu| paijddy

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.3 MULP / Multiplication

2. 32-bit operation(DMUL, DMULP)

The data specified by is multiplied by the data specified by in the binary format, and the
multiplication result is transferred to 64-bit Cd> (four word devices).

Command input DMUL
——— EN ENO—

Multiplication _|g4 dl— Device storing BIN BIN BIN
Multiphaton —s2 the multiplication [ED+1,GED] * [GD+1,GD] — [Ca+3,CaD+2,.CaD+, C]
data 2 result 32 bits 32 bits 64 bits

» The most significant bit of each piece of data indicates the sign (positive: 0 or negative: 1), and data is
multiplied algebraically.
(5,500x%(-8,540)=-46,970,000)

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.

* When a digit (K1 to K8) is specified for the device specified by (CdD, the result is obtained only for low-
order 32 bits, and is not obtained for high-order 32 bits.
Transfer the data to word devices once, then execute the operation.

Command input DMUL
—— EN ENO|— (D51, D50) (D103, D102, D101, D100)
D50 —|s1 dl— D100 K100 x K150 — K15000
K150 —{s2
DMOV D100 is output to Y017 to Y000
EN ENO— D101 is output to Y037 to Y020
D100 —Is di— K8Y000
ENDMOE\L o D102 iis output to YO57 to Y040
B D103 is output to Y077 to Y060
D102 —S di— K8Y040

Extension function(FXu and FX2c PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function.

When executing an instruction with M8023 ON, a binary float operation takes place, for example, (D1, DO) x
(D3, D2) = (D5, D4).

In this case, K, H and D are valid as the object device for and and D is valid for CdD.

The source data needs to be converted into binary float value in advance by FLT instruction.

Note, however, that constants K and H are automatically converted into binary float values.

Related device

1. Relationship between the flag operation and the sign

Device Name Description

ON : When the operation result is 0
OFF : When the operation result is not 0

*1. Supported only by FX3s, FX3G, FX3Gc, FX3u and FX3uc PLCs.
Available in the FX3u and FX3uc PLCs of Ver. 2.30 or later.

M8304 "1 Zero

Cautions

1) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.
A3:Available only for a 16-bit operation. Not available for a 32-bit operation.

2) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

3) When a 32-bit operation (DMUL or DMULP) is used, "Z" cannot be specified to the device specified by
.
4) In monitoring the operation results by a programming tool, 64-bit data as the operation results cannot be
monitored at one time even if a word device is used.
In such a case, the FX3s, FX3G, FX3Gc, FX3U and FX3uc PLCs can use floating point operation.
— For the floating point operation, refer to Chapter 18.

176

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)

[Basic & Applied Instruction] 9.3 MULP / Multiplication
Program examples o
1. 16-bit operation ®

[Structured ladder/FBD]
X000 MULP 2
—EN ENO— (D0)x(D2)x(D5,D4) -
DO —s1 d—D4 8 9 72 z
D2 —{s2 5
S
[ST] =
MULP(X000, DO, D2, D4); 3
2. 32-bit operation =0
[Structured ladder/FBD] =&
o=
X001 DMUL S %
F——EN ENO— (b1,b0)x(D3D2)—>(D7D6,D5D4) e
DO —s1 d—D4 1,756 327 574,212
D2 —s2 4
axT
[ST] T
DMUL(X001, DO, D2, D4); g%—gzg
o o
Function changes according to versions
Compatible versions
Item Function summary
FX3s FX3G FX3GC FX3U FX3uc
Ver.1.000r | Ver.1.00 or | Ver.1.400r | Ver.2.30or | Ver.2.30 or Zero fla Turns the special device M8304 ON when the operation
later later later later later 9 | result of MUL instruction is 0.

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

pue ano}\)

(a1edwo)
suononuisu| paijddy

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

177

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.4 DIVP / Division

9.4 DIVP / Division

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
(@) @] @] @] O @] @] @] @]

Outline

This instruction executes division by two values to obtain the result [A + B =C...(remainder)].
— For the floating point division instruction [DEDIV], refer to Section 18.11.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
Use application functions (DIV(_E))) for 16-bit operation and continuous execution.
- 16 bits | Continuous | For details, refer to the following manual.
— FX Structured Programming Manual [Application Functions]
DIVP
DIVP 16 bits Pulse 1k = DIVP(EN,s1,s2,d);
—s1 d—
—s2
DDIV
DDIV 32 bits | Continuous] E1N ENOd B DDIV(EN,s1,s2,d);
— S —
—{s2
DDIVP
DDIVP 32 bits Pulse _E1N EN(j— DDIVP(EN,s1,52,d);
u— s —
—s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
'”p_“tbl Data for division or word device storing the data (dividend). ANY16 ANY32
variable
Data for division or word device storing the data (divisor). ANY16 ANY32
ENO Execution state Bit
Output - - —
variable D Head word device storing the division result ARRAY [0..1] ARRAY [0..1]
(quotient and remainder) OF ANY16 OF ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y(MT|C|S|DO.b|KnX|KnY |KnM|KnS|T|C|D| R |UC\GO |V| Z |Modifier] K | H E o P
e o | 0|0 000Aal| A2 ° °
([[J [J ® 000 A A2 [[[N]
@ oo | o 000l a2 A3l o

A: Refer to "Cautions".

178

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)

[Basic & Applied Instruction] 9.4 DIVP / Division
Function and operation explanation o
1. 16-bit operation(DIVP) ¢
The contents specified by indicates the dividend, the contents specified by indicates the divisor, the
quotient and remainder are transferred to the device specified by CdD.
Command input DIVP 2
EN ENOl— Dividend Divisor Quotient Remainder 5
Division data 1—s1 d— Device storing BIN BIN BIN BIN g
Division data 2—ls2 the division (GD) + (D) —» (CdD) (CdD+1) 5§
result 16 bits 16 bits 16 bits 16 bits =
» The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is divided -
algebraically, for example, 36 + (-5) = -7 (quotient) and 1 (remainder). 3
» Two devices in total starting from (Cd> are occupied to store the operation result (quotient and remainder). =9
Make sure that these two devices are not used for other control. £2
* When a constant (K) is specified in or (s2), it is automatically converted into the binary format. gg—.
2. 32-bit operation(DDIV, DDIVP) <
The contents specified by indicates the dividend, the contents specified by indicates the divisor, the 4
quotient and remainder are transferred to the device specified by CdD. smz
£8 2
Command input DDIV - .) . sS3&
Dividend Divisor Quotient Remainder =5
&N ENO— BIN BIN BIN BIN 35§
Division data 151 I oo soning [GD+1,GD) + [GDH,GD] - [CD+,CD] -~ [CD+3, 2] %
Division data 2—{s2 the division i . .)
result 32 bits 32 bits 32 bits 32 bits

» Four devices in total starting from (Cd>D are occupied to store the operation result (quotient and remainder).
Make sure that these four devices are not used for other control.

» The most significant bit of each data indicates the sign (positive: 0 or negative: 1), and data is divided
algebraically, for example, 5,500 + (-540) = -10 (quotient) and 100 (remainder).

* When a constant (K) is specified in or (s2), it is automatically converted into the binary format.

Extension function(FXu and FX2c PLCs)

The FXu PLC of V2.30 or earlier does not support the extension function.

When executing an instruction with M8023 ON, a binary float operation takes place, for example, (D1, DO) +
(D3, D2) = (D5, D4).

In this case, K, H and D are valid as the object device for and and D is valid for CdD).

The source data needs to be converted into binary float value in advance by FLT instruction.

seppetdais @) uononysujoiseg

suononJsu|

N

Note, however, that constants K and H are automatically converted into binary float values. ==
g%
. =
Related device 32
[SR=3
Device Name Description =
“ Zero ON : When the operation result is 0

M8304 OFF : When the operation result is not 0
ON : When the operation result is more than 32,767 (in 16-bit operation) or 2,147,483,647 (in Qgg
06" Car 32-bit operation), the carry flag operates. g ST
Ma3 ry OFF : When the operation result is not more than 32,767 (in 16-bit operation) or @% 2
2,147,483,647(in 32-bit operation) = g
=
=1

*1. Supported only by FX3s, FX3G, FX3Gc, FX3uU and FX3uc PLCs.
Available in the FX3u and FX3uc PLCs of Ver. 2.30 or later.

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

179

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.4 DIVP / Division

Cautions

1) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.
A 3:Available only for a 16-bit operation. Not available for a 32-bit operation.

2) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

3) The most significant bit of the quotient and remainder indicates the sign (positive: 0 or negative: 1).

4) The quotient is negative when either the dividend or divisor is negative.
The remainder is negative when the dividend is negative.

5) The remainder is not obtained when a bit device is specified with digit specification for the device
specified by CdD.
6) In a 32-bit operation (by DDIV or DDIVP), Z cannot be specified as the device specified by CdD.

Program examples

1. 16-bit operation
[Structured ladder/FBD]

X000 DIVP
b———EN ENO— Dividend Divisor Quotient Remainder
DO —|s1 di—D4 (D0)+(D2)—(D4) (D5)
D2 —s2 100 33 3 1
[ST]
DIVP(X000,D0,D2,D4);
2. 32-bit operation
[Structured ladder/FBD]
X001 DDIV
[\ ENO|— Dividend Divisor Quotient Remainder
DO —s1 d—D4 (b1,D0)+(D3,D2)—> (D5 D4)---(D7,D6)
100,000 3,333 30 10
D2 —s2
[ST]

DDIV(X001, DO, D2, D4);

Function changes according to versions

Compatible versions
Item Function summary
FX3s FX3G FX3GC FX3U FX3ucC
Turns M8304 ON when the operation result of DIV instruction
Zero flag |.
is 0.
Turns M8306 ON when the operation result of DIV instruction
Ver.1.00 | Ver.1.00 | Ver. 1.40 | Ver.2.30 | Ver. 2.30 overflows.
or later or later or later or later or later Carry flag | 16-bit operation : Only when the maximum negative value
Ty flag (-32,768) is divided by "-1".
32-bit operation : Only when the maximum negative value
(-2,147,483,648) is divided by "-1".

180

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.5 INC / Increment

9.5 INC / Increment

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)

©) ©) ©) O ©) ©) ©] ©) ©]

Outline

This instruction increments the data of a specified device by "1" (+1 addition).

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
INC
INC 16 bits | Continuous —|EN ENO|— INC(EN,d);
d—
INCP
INCP 16 bits Pulse —EN ENO{— INCP(EN,d);
d—
DINC
DINC 32 bits Continuous —EN ENO|— DINC(EN,d);
d—
DINCP
DINCP 32 bits Pulse —EN ENO— DINCP(EN,d);
d—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Inp.ut EN Execution condition Bit
variable
Output ENO Execution state Bit
variable D Word device storing data to be incremented by "1" ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand . e System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
D (] (] ® 000 Al A2 |00 []

A: Refer to "Cautions".

Function and operation explanation

1. 16-bit operation(INC, INCP)
The contents of the device specified by (@) is incremented by "1", and the increment result is transferred to
Cd).
Command input INC
b——EN ENO— CHO+1-»CD
df—+1 addition data

2. 32-bit operation(DINC, DINCP)
The contents of the device specified by (@) is incremented by "1", and the increment result is transferred to
.
Command input | DINC

——EN ENO}|—
df—+1 addition data

[CO+1, Cd] +1 > [CdDO+1,CdD)

181

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

=
[5)
<
@
[}
3
a

o=z
S 53
EREY
kel o
LS5
J @
~ =
=
S
=3
=1
w

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)
9.5 INC / Increment

Cautions

1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) Note that data is incremented in every operation cycle in a continuous operation type instruction.

3) In a 16-bit operation, when "+32,767" is incremented by "1", the result is "-32,768". Flags (zero, borrow

and carry) are not activated at this time.

4) In a 32-bit operation, when "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648". Flags
(zero, borrow and carry) are not activated at this time.

5) Some restrictions to applicable devices

A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.

A2:The FX3u and FX3uc PLCs only are applicable.

Program examples

[Structured ladder/FBD]

X010 MOVP
] EN ENO|— 0->(2)
M1 KO —{s d—z
-
X011 BCDP
C 0Z) — (K4Y000
— EN ENO— (BIN) (BCD)
CNOZ —s dl— K4Y000
INCP
EN ENO— (2)+1 = (2)
d—z
CMPP
K10 ;N ENZ Mo When (Z2) is 10
] — M 1=ON
7Z—{s2
[ST]

MOVP(X010 OR M1, KO, Z);
BCDP(X011, CNOZ, K4Y000);
INCP(X011, 2);

CMPP(X011, K10, Z, MO);

Z is cleared by reset input X010.

The current values of counter CO to C9 are BCD
converted, and the result is outputted into
K4Y000.

Every time X011 turns ON, the current values
are outputted one at a time in the order of
Co0, C1, ... and C9.

182

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)

1. 16-bit operation(DEC, DECP)

The contents of the device specified by (@) are decremented by "1", and the decremented result is
transferred to the device specified by CdD.

[Basic & Applied Instruction] 9.6 DEC / Decrement
9.6 DEC/Decrement o
=
FX3U(C) | FX3G(C) | FX3S |FX2N(C) |FXIN(C)| FX1S | FXU/FX2C | FXON | FXo0(S)
(@) (@) (@) O (@) (@) @] (@) @)
Outline -
This instruction decrements the data of a specified device by "1" (-1 addition). 2
S
2
1. Format and operation, execution form =
(%]
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST 3
DEC 28
DEC 16 bits | Continuous —EN ENO|— DEC(EN,d); ?,'é
d— g3
o
=l
DECP =%
DECP 16 bits Pulse —EN ENO— DECP(EN,d);
o 4
203
DDEC é% =
DDEC 32bits | Continuous —|EN ENO|— DDEG(EN.d); g2 5
d— 3233
Qho_
DDECP
DDECP 32 bits Pulse —EN ENOR— DDECP(EN,d); 5
d— &
@,
e
2. Setdata 2
o
Data type g—.
Variable Description 16-bit 32-bit >
operation operation 6
Input . " . =5
variable EN Execution condition Bit Z-@
c
Output ENO Execution state Bit =1
variable D) Device storing data to be decremented by "1" ANY16 ANY32 ag
3. Applicable devices 7
Bit Devices Word Devices Others
A =2
Operand . e System | Special Real |Character . i
type System User Digit Specification User Unit Index Constant Number| String Pointer % g
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GOI |V|Z |Modifier| K | H E h P 2%
=S
@ ® | © | © (000 A1l A2 (00 o %g
A : Refer to "Cautions".
. . . o=
Function and operation explanation 39%
o
GEE|
232
§

Command input DEC CaE
F————EN ENO— O-1->CD g%ﬁ%

d—"1" decrement data 5 g %

8o g

- - g: g

2. 32-bit operation(DDEC, DDECP) 55

The contents of the device specified by (@) are decremented by "1", and the decremented result is
transferred to the device specified by CdD.

-
O w

(e Pd

Command input | DDEC 228
——— EN ENO|— [CO+1,CdD] -1 - [CdO+1,(dD] oig
d—"1" decrement data g; Z

g=¢g

183

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.6 DEC / Decrement

Cautions

1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) In a 16-bit operation, when "+32,767" is incremented by "1", the result is "-32,768". Flags (zero, borrow
and carry) are not activated at this time.

3) In a 32-bit operation, when "+2,147,483,647" is incremented by "1", the result is "-2,147,483,648". Flags
(zero, borrow and carry) are not activated at this time.

4) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

184

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)

9.7 WAND / Logical Word AND

9.7 WAND / Logical Word AND
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline
This instruction executes the logical product (AND) operation of two numeric values.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
WAND
WAND 16 bits Continuous - E:I ENdO1 B WAND(EN,s1,s2,d1);
_S I—
—{s2
WANDP
WANDP 16 bits Pulse] E1N E'\L? N WANDP(EN,s1,s2,d1);
48 —
—s2
DAND
DAND 32 bits Continuous] E:I EN% N DAND(EN,s1,s2,d);
_s —
—{s2
DANDP
DANDP 32 bits Pulse] E:‘ EN(Z N DANDP(EN,s1,s2,d);
_S —
—{s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Inp_Uth Data used for logical product or word device storing data ANY16 ANY32
variable
Data used for logical product or word device storing data ANY16 ANY32
Output ENO Execution state Bit
variable D Word device storing the logical product result ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|{KnY|KnM |KnS|T|C|(D| R |UO\GO |V |Z|Modifier] K | H E "a" P
[J [([® 000 A A2 (X J [}
[J ® 000 A A2 (K J [[N
@ o 000Aai| A2 (00 @

A: Refer to "Cautions".

185

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

=
[5)
<
@
[}
3
a

o=z
S 53
EREY
kel o
LS5
J @
~ =
=
S
=3
=1
w

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)
9.7 WAND / Logical Word AND

Function and operation explanation

1. 16-bit operation(WAND, WANDP)

The logical product (AND) operation is executed to the contents specified by and in units of bit, and
the result is transferred to the device specified by CdD.

Command input WAND
——EN ENO|—
Logical p(rjoc:ucf_m d1—Logical A - (dD
ata
Logical product —{s2 product result
data 2

While the command input is OFF, the data of the transfer destination specified by (Cd>) does not change.

While the command input is ON, the data of the transfer sources specified by and do not
change.

When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.

The logical product operation is executed in units of bit as shown in the table below (1 A1=1,0A1=0,
1A0=0and 0A0=0).

In the table : 1=ON, 0=OFF

«»
WAND
0 0 0
Logical operation 1 0 0
(unit: bit) 0 1 0
1 1 1
2. 32-bit operation(DAND, DANDP)
The logical product (AND) operation is executed to the contents specified by and in units of bit, and
the result is transferred to the device specified by CdD.
Command input DAND
————EN ENO{—
Logical product s+ di— Logical GDH,GD A GD+1, GD - C+1, (D
Logical product —s2 product result
data 2
» While the command input is OFF, the data of the transfer destination specified by (Cd> does not change.
« While the command input is ON, the data of the transfer sources specified by and do not
change.
* When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.
» The logical product operation is executed in units of bit as shown in the table below (1A1 =1, 0A1 =0, 1A0
=0and 0A0 = 0).
In the table : 1=ON, 0=OFF
GD#, @D, SN
DAND instruction
0 0 0
Logical operation 1 0 0
(unit: bit) 0 1 0
1 1 1
Cautions
1) Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.
2) Some restrictions to applicable devices

A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

186

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)

9.8 WOR / Logical Word OR

9.8 WOR/ Logical Word OR
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline
This instruction executes the logical sum (OR) operation of two numeric values.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
WOR
WOR 16 bits | Continuous] E1N E'\iﬁ N WOR(EN,s1,s2,d1);
_s —
—{s2
WORP
WORP 16 bits Pulse = 2N WORP(EN,s1,52,d1);
—s1 d1—
—s2
DOR
DOR 32 bits | Continuous] E1N EN(Z N DOR(EN,s1,s2,d);
_s —
—{s2
DORP
DORP 32 bits Pulse] E1N EN(Z N DORP(EN,s1,52,d);
_S —
—{s2
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Inp_Uth Data used for logical sum or word device storing data ANY16 ANY32
variable
Data used for logical sum or word device storing data ANY16 ANY32
Output ENO Execution state Bit
variable D Word device storing the logical sum result. ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer
type User Unit Number| String
X|Y|M|T|C|S|DO.b|KnX|{KnY|KnM |KnS|T|C|(D| R |UO\GO |V |Z|Modifier] K | H E "a" P
[J [([® 000 A A2 (X J [}
[J ® 000 A A2 (K J [[N
@ o 000Aai| A2 (00 @

A: Refer to "Cautions".

187

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

suononusu|
seppetdais @) uononysujoiseg

N

(mo)4 weibold)
suononusu] paljddy

=
[5)
<
@
[}
3
a

o=z
S 53
EREY
kel o
LS5
J @
~ =
=
S
=3
=1
w

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.8 WOR / Logical Word OR

Function and operation explanation

1. 16-bit operation(WOR, WORP)
The logical sum (OR) operation is executed to the contents specified by and in units of bit, and the
result is transferred to the device specified by CdD.

Command input WOR
}_1 ——EN ENO|— v - D
Loglczélastgr'?_s1 d1}— Logical sum result
Logical sum—s2
data 2

» While the command input is OFF, the data of the transfer destination specified by Cd> does not change.

» While the command input is ON, the data of the transfer sources specified by and do not
change.

* When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.

» The logical sum operation is executed in units of bit as shown in the table below (1v1=1,0v1=1,
Ov0=0and1vO0=1).
In the table : 1=0ON, 0=OFF

WOR
0 0 0
Logical operation 1 0 1
(unit: bit) 0 1 1
1 1 1

2. 32-bit operation(DOR, DORP)

The logical sum (OR) operation is executed to the contents specified by and in units of bit, and the
result is transferred to the device specified by CdD.

Command input DOR
— lEN ENO— GD+1,GD v GD +1,GED » CD+1, (D
LOQIC?é'aSth _ls1 dl— Logical sum result
Logical sum —{s2
data 2

» While the command input is OFF, the data of the transfer destination specified by Cd> does not change.

» While the command input is ON, the data of the transfer sources specified by and do not
change.

» When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.

» The logical sum operation is executed in units of bit as shown in the table below (1v1=1,0v1=1,
Ov0=0and1v0=1).
In the table : 1=ON, 0=OFF

Cd+1, CD
GDH, G2+, :
DOR instruction
0 0 0
Logical operation 1 0 1
(unit: bit) 0 1 1
1 1 1

Cautions

1) Instructions of pulse operation type are not provided in the FXo, FXos or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

2) Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A2:The FX3u and FX3uc PLCs only are applicable.

188

9 Applied Instructions (Arithmetic and Logical Operation)
9.9 WXOR / Logical Exclusive OR

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9.9 WXOR/ Logical Exclusive OR o
§
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
(@] O O O O O O O O
Outline -
This instruction executes the exclusive logical sum (XOR) operation of two numeric values. 2
Q
=
1. Format and operation, execution form ;
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST 3
WXOR 28
— - c =h
WXOR 16 bits | Continuous = N9 WXOR(EN,s1,s2,d1); 22
—s1 d1i— Sg
—1s2 g
9»-
WXORP 4
. —EN ENO— .
WXORP 16 bits Pulse WXORP(EN,s1,s2,d1); smT
—is1 d1— 232
—1s2 §38
[SR=1s]
2383
DXOR S
DXOR 32 bits | Continuous = 2N DXOR(EN,s1,s2,d);
—s1 d— 5
—{s2
ue)
2]
DXORP ;_’
(2]
DXORP 32 bits Pulse] E1N EN(Z B DXORP(EN,s1,s2,d); s
— S — =
o
—|s2 =
2. Set data =)
28
Data type § 5
Variable Description 16-bit 32-bit % §
operation operation -
EN Execution condition Bit
Inp_Uth Data used for exclusive logical sum or word device storing data |ANY16 ANY32 7
variable
Data used for exclusive logical sum or word device storing data | ANY16 ANY32 @é’
o =
Output ENO Execution state Bit S
. 32
variable [@D) Word device storing the exclusive logical sum result ANY16 ANY32 N g’
28
3. Applicable devices
Bit Devices Word Devices Others
- o=z
Operand System User Digit Specification System Spe(flal Index Constant Real Char.acter Pointer 3 2%
type User Unit Number| String B g =
X|Y|M|T|C|S|DO.b|KnX|{KnY|KnM |KnS|T|C|(D| R |UO\GO |V |Z|Modifier] K | H E o P 33%
=3
[[] [] ® 000 A A2 (X J [} g
[[] [] ® 000 A A2 (K J [[N
@ o (000Ai| A2 (o0 o =
858
A Refer to "Cautions". 838
O=32
T o4
Las
575

189

-
O w

pue uoiejoy)

(uonesedo YuS
suononsu| paijddy

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

9 Applied Instructions (Arithmetic and Logical Operation)

9.9 WXOR / Logical Exclusive OR

Function and operation explanation

1. 16-bit operation(WXOR, WXORP)

The exclusive logical sum (XOR) operation is executed to the contents specified by and in units of
bit, and the result is transferred to the device specified by CdD.

Command input WXOR
SR — v GD - (D
XOR data 1—{s1 d1— XOR result
XOR data 2—{s2

» While the command input is OFF, the data of the transfer destination specified by Cd> does not change.
« While the command input is ON, the data of the transfer sources specified by and do not

change.

* When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.

» The logical exclusive sum operation is executed in units of bit as shown in the table below (1 v 1=0,0Vv 0
=0,1v0=1and0V1=1).

In the table : 1=0ON, 0=OFF

«»
WXOR
0 0 0
Logical operation 1 0 1
(unit: bit) 0 1 1
1 1 0
2. 32-bit operation(DXOR, DXORP)
The exclusive logical sum (XOR) operation is executed to the contents specified by and in units of
bit, and the result is transferred to the device specified by CdD.
Command input DXOR
——EN ENOo— GD +1,GDVY GD +1,GD - (D +1, (D
XOR data 1 —{s1 df— XOR result
XOR data 2 —s2
» While the command input is OFF, the data of the transfer destination specified by Cd> does not change.
» While the command input is ON, the data of the transfer sources specified by and do not
change.
* When a constant (K) is specified in the transfer sources specified by and (s2), it is automatically
converted into the binary format.
» The logical exclusive sum operation is executed in units of bit as shown in the table below (1 v 1=0,0Vv 0
=0,1v0=1and0V1=1).
In the table : 1=ON, 0=OFF
GD#, GD @, GD B, &
DXOR instruction
0 0 0
Logical operation 1 0 1
(unit: bit) 0 1 1
1 1 0
Cautions

1)

2)

Instructions of pulse operation type are not provided in the FXos, FXo or FXoN PLC.
To execute pulse operation, make the instruction execution condition pulse type.

Some restrictions to applicable devices
A 1:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A2:The FX3U and FX3uc PLCs only are applicable.

190

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.9 WXOR / Logical Exclusive OR

Program examples
By combining WXOR and CML instructions, the exclusive logical sum not (XORNOT) operation can be
executed.
[Structured ladder/FBD] [ST]

X000 WXOR WXOR(X000, D10, D12, D14);
" EN ENOL_ CML(X000, D14, D14);

D10 —s1 d1— D14
D12 —s2

BUND ==

1517 uogonsu N

CML
EN ENO—

D14—s d— D14

uoonssuy|
Jo uoneanbyuoy €

1N

suononssu|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

pue ano}\)

(a1edwo)
suononuisu| paijddy

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

A
O w

pUE UOREIOY)

(uonesedo YuS
suojonusu) payddy

191

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.10 NEG / Negation

9.10 NEG/ Negation

FX3U(C) | FX3G(C)| FX3S |FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FX0(S)
e} X X) X X o) X X

Outline

This instruction obtains the 2's complement of a numeric value (by inverting each bit and adding "1").
A sign of a numeric value can be converted by this instruction.
— For the floating point sign inversion instruction [DENEG], refer to Section 18.16.

1. Format and operation, execution form

Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
NEG
NEG 16 bits Continuous —EN ENO— NEG(EN,d);
dl—
NEGP
NEGP 16 bits Pulse —EN ENO— NEGP(EN,d);
d—
DNEG
DNEG 32 bits Continuous —EN ENO— DNEG(EN,d);
d—
DNEGP
DNEGP 32 bits Pulse —EN ENO— DNEGP(EN,d);
d—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
Inp.ut EN Execution condition Bit
variable
ENO Execution state Bit
Output Word device which stores data for obtaining complement and will
variable D store the operation result. (The operation result will be stored in | ANY16 ANY32
the same word device.)
3. Applicable devices
Bit Devices Word Devices Others
Operand - e s System | Special Real |Character .
type System User Digit Specification User Unit Index Constant Number| String Pointer
X|Y|M|T|C|S|DO.b|KnX|KnY|KnM|KnS|T|C|D| R |UO\GO |V |Z|Modifier| K | H E a" P
@ o | o | 0 000l A1 |00 o

A: Refer to "Cautions".

192

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.10 NEG / Negation

Function and operation explanation

1. 16-bit operation(NEG, NEGP)

Each bit of the device specified by CdD is inverted (0 - 1, 1 — 0), "1" is added, and then the result is stored
in the original device.

Command input NEG -
b————EN ENO|- (@) +1 >
d—Complement data

2. 32-bit operation(DNEG, DNEGP)

Each bit of the device specified by CdD is inverted (0 - 1, 1 — 0), "1" is added, and then the result is stored
in the original device.

Command input DNEG -
——EN ENO|— (CD +1, G+ = (T+, ()

d—Complement data

Cautions

1) Note that the complement is obtained in every scan time (operation cycle) in a continuous operation type
instruction (NEG,DNEG).

2) Some restrictions to applicable devices
A 1:The FX3u and FX3uc PLCs only are applicable.

Program examples
The program examples below are provided to obtain the absolute value of a negative binary value.

1. Obtaining the absolute value of a negative value using NEG instruction
[Structured ladder/FBD]

M8000 BON
——p——EN ENO|— In BON (ON bit check) instruction, MO
RUN D10—!s dl—Mmo turns ON when the bit 15 (b15 among
monitor b0 to b15) of D10 is "1".
K15—n
MO NEGP
——4p—————EN ENO— T74_,
d—p10 D10 = D10 NEGP instruction is executed for D10
only when MO turns ON.
[ST]

BON(M8000, DO, K15, MO);
NEGP(MO, D10);

193

1517 uoponsul N oUIND m=

uoionAsuy|
Jo uoneanbyuoy €

1N

suononssy|
Jo uojeue|dx3
pesy 0} MOH

seppetdais @) uononysujoiseg

suononJsu|

N

(mo)4 weibold)
suononusu] paljddy

pue ano}\)

(a1edwo)
suononuisu| paijddy

pue sy,
ojjonssu| payddy

(uonessdo [ealbo

-
O w

pue uoiejoy)

(uonesedo YuS
suojonusu) payddy

FXCPU Structured Programming Manual 9 Applied Instructions (Arithmetic and Logical Operation)
[Basic & Applied Instruction] 9.10 NEG / Negation

2. Obtaining the absolute value by SUB (subtraction) instruction
Even if NEG instruction (complement operation) is not used, D30 always stores the absolute value of the
difference.

[Structured ladder/FBD]

X000 CMP
i EN e (D 10) > (D 20) (D10) = (D 20) (D 10) < (D 20)
D10—|s1 d—M10 = M 10=ON M 11=ON M 12=ON
D20—s2
M10 SUB_E
— EN ENOI— In the case of "D10 = D20",
D10—_IN1 — D30 D10 - D20 — D30
M11 D20—{_IN2
|— — " "
— EN ENO In the case of "D10 < D20",
D20—_IN1 — D30 D20 - D10 — D30
D10—| IN2
[ST]

CMP(X000,D10, D20, M10);
SUB_E(X000 AND (M10 OR M11), D10, D20, D30);
SUB_E(X000 AND M12, D20, D10, D30);

Negative value expression and absolute value (reference)

In PLCs, a negative value is expressed in 2's complement.
When the most significant bit is "1", it is a negative value, and its absolute value can be obtained by NEG
instruction.

(D10)=2
[o[ofofofofofofofofo]ofofofo1]0]

(D 10) =1
[o[oJofofofofofofofofofofofofo0]1]

(D10)=0
[o]ofofofofofofofofofofo]o]o]0]0]

(D 10) = -1 (D 10) +1 = 1
Ll fafefafafefafefa1]1]1]1]—>[0fofoJofofofofoJofofofofo[ofo]1]

(D 10) = -2 (D 10) +1 =2
e fefafefafa]afe[a]1[1]1[1]o]—>[ofo]o[oJofo[o[oJofofofofofo[1]O]

¢ ¢

(D 10) = —32,767 (D 10) +1 = 32,767
[1[oJofofofofofofofofofofofofoft|—=[of1[t[1[t[1[a[t]1][1[1][1[1][1]1]1]

(D 10) = —32,767 (D 10)+1 = —32,768
[1][ofoJojofofofofofoofofoJofofo|—>[1][o]ofo[ofofo[o]oJofofofofof0]0]

7

The absolute value can be obtained up to 32,767.

194

FXCPU Structured Programming Manual 10 Applied Instructions (Rotation and Shift Operation)
[Basic & Applied Instruction]

;A .
=
3
10. Applied Instructions (Rotation and Shift Operation)
This chapter introduces the instructions for rotating and shifting bit data and word data in specified directions. 2
Instruction name Function Reference g
ROR S
S
RORP -
Rotation Right Section 10.1 @
DROR
DRORP 3
ROL
50
ROLP 29
Rotation Left Section 10.2 Sa
DROL g€
S2
DROLP S
RCR S
RCRP 4
Rotation Right with Carry Section 10.3
DRCR _
20z
DRCRP 3o =
§35
= @
RCL S$5%
RCLP -
Rotation Left with Carry Section 10.4 =5
DRCL
DRCLP 5
SFTR =
Bit Shift Right Section 10.5 [0
SFTRP @,
SFTL g
Bit Shift Left Section 10.6 =
SFTLP s
WSFR =
Word Shift Right Section 10.7
WSFRP 6
WSFL ER%)
Word Shift Left Section 10.8 2R}
WSFLP =
2o
SFWR sa
Shift Write [FIFO/FILO Control] Section 10.9 [ZH<]
SFWRP
SFRD
Shift Read [FIFO Control] Section 10.10
SFRDP
T35
3=
e
L=
3z
el
Q =
=S
=
H
ga2
3323
£32g
=3
2
8Z%
8§32
o=
Bse
5°5
3 w

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

195

FXCPU Structured Programming Manual
[Basic & Applied Instruction]

10 Applied Instructions (Rotation and Shift Operation)

10.1 ROR / Rotation Right

10.1 ROR/ Rotation Right
FX3U(C) | FX3G(C)| FX3s |[FX2N(C)|FXIN(C)| FX1S | FXU/FX2C | FXON | FXo(S)
O O ©) O X X O X X
Outline
This instruction shifts and rotates the bit information rightward by the specified number of bits without the
carry flag.
1. Format and operation, execution form
Instruction . Execution Expression in each language
Operation
name form Structured ladder/FBD ST
ROR
ROR 16 bits Continuous —EN ENO|— ROR(EN,n,d);
—In di—
RORP
RORP 16 bits Pulse —EN ENO|— RORP(EN,n,d);
—n di—
DROR
DROR 32 bits Continuous —EN ENO|— DROR(EN,n,d);
—n dl—
DRORP
DRORP 32 bits Pulse —|EN ENO— DRORP(EN,n,d);
—n d—
2. Set data
Data type
Variable Description 16-bit 32-bit
operation operation
EN Execution condition Bit
Input -
variable Number of bits to be rotated ANY16
Cn [n<16] (16-bit operation), [n<32] (32-bit operation)
Output ENO Execution state Bit
variable D) Word device storing data to be rotated rightward ANY16 ANY32
3. Applicable devices
Bit Devices Word Devices Others
Operand System User Digit Specification |System User Spe(flal Index Constant Real Charfacter Pointer
type Unit Number| String
X|Y|/M|T|C|S|DO.b|KnX|KnY |KnM|KnS|T|C| D | R |UO\GO |V |Z|Modifier| K | H E v P
A2|A3
(@D Al| A1 | A1)|© @ @ A3 A4 (K J [J

A: Refer to "Cautions".

196

FXCPU Structured Programming Manual 10 Applied Instructions (Rotation and Shift Operation)

[Basic & Applied Instruction] 10.1 ROR / Rotation Right
Function and operation explanation o
=
1. 16-bit operation (ROR, RORP) ¢
"n" bits out of 16 bits of the device specified by CdD are rotated rightward.
Command input ROR 2
——— EN ENO—
Number of bits —n di— Rightward rotation data 2
to be rotated =1
2
» The final bit is stored in the carry flag (M8022). ?L
* In a device with digit specification, K4 (16-bit instruction) is valid. 2
"n" bits (in the case of K4) 3
-
High order Low order 2 §
Before b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Carry flag §&
execution [T [4]4T1]1]1T1 oJoTo o oo o}my [M8022] &
After the " "n-1" bits o
instruction :
is executed once. : b0 to b3 (n-1) are moved. 4
' Th f the bit "n-1 d 283
"n-1" bi ; : . tat tl it"n-1"i ied. IS =
n-1" bits R|ghtward rotation € status ot the bit 'n IS copie §§ =)
High order Low order - 35%
After b15b14b13b12b11b10b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 1 =
execution ofoJo[1[1[1[1[1[1]1]1]oJoJo]0 “
i< Carry flag 5
Before shift Before shift M8022
b3 to b0 b15to b4 The contents of b3 are stored. 33’3
o
2. 32-bit operation (DROR, DRORP) g
S
"n" bits out of 32 bits of the device specified by CdD are rotated rightward. S
Command input DROR 6
p——EN ENO— —
Number of bits —|N d—Rightward rotation data g-g’
to be rotated aL
38
* The final bit is stored in the carry flag (M8022). =

+ In a device with digit specification, K8 (32-bit instruction) is valid.

"n" bits (in the case of K4)

1 F
High order Low order &%
Before b31b30b29b28b27b26b25b24b23b22621b20b19b18b17b16015014b13012b11610 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 Carry flag 52
execution |1|1|1|1|1|1|1|1|o|o|o|o|o|o|o|0|1|1|1|1|1|1|1|1|0|o|0|0no|o|o [M8022) ;—Jg
_ After the The status of the : b0 to b3 (n-1) -
_ instruction bit "n-1" is copied.. are moved.
is executed once. :
o=
"1-1" bits : The status of the bit _§ §
| Rightward rotation Lon-1"Is copied. . 3“8’-
High order _— Low order
After b31b30029b28b27b26025b24b23022521b20b19018017b16015014b 13012011610 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0 :
execution ofofJo[1[1[1[1[1]1]1]1JoJo o o JoJoJoJo]1]1]1]1]1]1]1]1]oJoo o “

Carry flag

I<

)
suoonsujparddy €©) suononusujpayddy

Before shift Before shift M8022 5%
b3 to b0 b31 to b4 The contents of g5
b3 are stored. 5§

23

pue uonejoy)
suojonusu) payddy

(uonetedo Yys

197

FXCPU Structured Programming Manual

[Basic & Applied Instruction]

10 Applied Instructions (Rotation and Shift Operation)
10.1 ROR / Rotation Right

Related device

— For the carry flag use method, refer to Section 1.3.4.

Device

Name

Description

M8022

Carry

Turns ON when the bit shifted last from the lowest position is "1".

Cautions

1) Some restrictions to applicable devices
A 1:KAYOOO, KAMOOO and K4SOOO are valid for a 16-bit operation.

K8YOOO, KBMOOO and K8BSOOO are valid for a 32-bit operation.

A2:The FX3s, FX3G, FX3Gc, FX3U and FX3uc PLCs only are applicable.
A 3:The FX3G, FX3Gc, FX3u and FX3uc PLCs only are applicable.
A4:The FX3U and FX3uc PLCs only are applicable.

2) In the case of continuous operation type instructions (ROR and DROR), note that shift and rotation are
executed in every scan time (operation cycle).

3) When a device with digit specification is specified as Cd)D, only K4 (16-bit instruction) or K8 (32-bit
instruction) is valid (examples: K4Y010 or K8MO).

198

FXCPU Structured Programming Manual 10 Applied Instructions (Rotation and Shift Operation)

[Basic & Applied Instruction] 10.2 ROL / Rotation Left
10.2