

MITSUBISHI
Mitsubishi Industrial Robot

CRn-500 series INSTRUCTION MANUAL

Ethernet Interface

BFP-A8108-D

Page 1 of 1 BFP－A1139

 CE マーキング対策部品取付方法説明書
 EMC Installation guideline and procedure

 Ethernet ｹｰﾌﾞﾙへのﾌｪﾗｲﾄｺｱ取り付け要領

 Coupling procedure of Ferrite core for Ethernet cable

 ロボットコントローラ内蔵の Ethernet カードと Ethernet 機器（パソコンなど）を接続する Ethernet ケー

ブルに、添付のフェライトコアを下図のように 2 個取り付けてください。1 つはイーサネットカード側から

30cm 以内に、もう 1 つは１つ目のフェライトコアから 10ｃｍ以内に取り付けてください。

 また、使用する Ethernet ケーブルは、シールド付きのものを使用ください。

それ以外は、ノイズによる誤動作を起こす可能性があります。

 The two Ferrite cores should be installed to the Ethernet cable between controller and other
Ethernet devices (See below).

Install one ferrite core in less than 30cm from the Ethernet card, and install another one in less
than 10cm from that ferrite core.
 Please use the shielded Ethernet cable under the environment of noise immunity.
If the customer do not install to the Ethernet cable with the Ferrite core, it will be become a
trouble by Immunity and emission noise.

※1 注意 -Caution-

 もし、ノイズによる影響を受けやすい環境下でのご使用の場合は、ケーブルのカバーを剥き、アース端

子を利用してシールドを直接筐体のアースに落としてください。
 If necessary, in case of under the environment of much immunity noise, remove the sheath of
the Ethernet cable, and connect the shield that is inside a cable with the Earth [PE] terminal
directly by cable.

フェライトコア
Ferrite core

ナイロンバンド

Nylon band イーサネットカード側
Ethernet CARD side

ｼｰﾙﾄﾞ付き Ethernet ｹｰﾌﾞﾙ
Shielded Ethernet cable with

30cm 以内

within 30cm

一回巻きにしてください
Make the cable one turn

※1

10cm 以内

within 10cm

■History

 Print date Instruction manual No. Revision content

2000-04-17

2000-04-24

2000-07-06

2002-10-04

2009-06-23

2009-09-30

BFP-A8108Z

BFP-A8108

BFP-A8108-A

BFP-A8108-B

BFP-A8108-C

BFP-A8108-D

First print

Formal style

The Real-time external control function was added.

The section "1.5 Checking the robot controller software version" was added.

The new function of the software version H7 of the controller was added.

1) The client function of the data link .

2) Add the current monitor of the real-time external control function.

Change the structure of the communication packet.

3) Change the sample program.

Ferrite core was added in Confirmation of product and EMC Installation

guideline and procedure.

The EC Declaration of Conformity was changed.

(Correspond to the EMC directive; 2006/42/EC)

 Preface

Thank you very much for employing Mitsubishi Electric Industrial Robot CRn-500 series.

The Ethernet interface is an option to add various network functions to the robot controller in combination with

CRn-500 series controller. Before use, be sure to read through this document for sufficient understanding. Then

make the most use of the Ethernet interface.

And also, the Ethernet interface corresponds from the software version E2 edition of the robot controller. Depending

on the software version, a part of function of the Ethernet option does not operate. For details, refer to the Table "The

software version and function of the controller".

(Refer to the "1.5 Confirming the software version of the robot controller " in this manual for confirming the version.)

Table: The software version and function of the controller

Software version of the

robot controller

Controller

communication

function

Data link function

(server)

Data link function

(Server/Client)

Real-time external

control function

A*, B*, C*, D*, E1 The Ethernet option does not operate.

E2 to E4 O O X X

F*, G*, H1 to H6 O O X O

H7 or later O O O O

O ... Operate

X ... Don't operate

・ No part of this manual may be reproduced by any means or in any form, without prior consent from Mitsubishi.

・ The details of this manual are subject to change without notice

・ An effort has been made to make full descriptions in this manual. However, if any discrepancies or unclear points are

found, please contact your dealer.

・ The information contained in this document has been written to be accurate as much as possible.

Please interpret that items not described in this document "cannot be performed." or "alarm may occur".

・ This Instruction Manual is original

Copyright© 2002-2009 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

Safety Precautions

Always read the following precautions and the separate "Safety
Manual" before starting use of the robot to learn the required
measures to be taken.

CAUTION
All teaching work must be carried out by an operator who has
received special training. (This also applies to maintenance work
with the power source turned ON.)

 Enforcement of safety training

CAUTION
For teaching work, prepare a work plan related to the methods and
procedures of operating the robot, and to the measures to be taken
when an error occurs or when restarting. Carry out work following
this plan. (This also applies to maintenance work with the power
source turned ON.)

 Preparation of work plan

WARNING
Prepare a device that allows operation to be stopped immediately
during teaching work. (This also applies to maintenance work with
the power source turned ON.)

 Setting of emergency stop switch

CAUTION
During teaching work, place a sign indicating that teaching work is in
progress on the start switch, etc. (This also applies to maintenance
work with the power source turned ON.)

 Indication of teaching work in progress

CAUTION
Provide a fence or enclosure during operation to prevent contact of
the operator and robot.

 Installation of safety fence

CAUTION
Establish a set signaling method to the related operators for starting
work, and follow this method.

 Signaling of operation start

CAUTION
As a principle turn the power OFF during maintenance work. Place
a sign indicating that maintenance work is in progress on the start
switch, etc.

 Indication of maintenance work in progress

CAUTION
Before starting work, inspect the robot, emergency stop switch and
other related devices, etc., and confirm that there are no errors.

 Inspection before starting work

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

CAUTION
Use the robot within the environment given in the specifications. Failure to do
so could lead to a drop or reliability or faults. (Temperature, humidity,
atmosphere, noise environment, etc.)

CAUTION
Transport the robot with the designated transportation posture. Transporting
the robot in a non-designated posture could lead to personal injuries or faults
from dropping.

CAUTION
Always use the robot installed on a secure table. Use in an instable posture
could lead to positional deviation and vibration.

CAUTION
Wire the cable as far away from noise sources as possible. If placed near a
noise source, positional deviation or malfunction could occur.

CAUTION
Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

CAUTION
Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

WARNING
Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off
or flies off during operation.

WARNING
Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

CAUTION
Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

WARNING
When carrying out teaching work in the robot's movement range, always
secure the priority right for the robot control. Failure to observe this could lead
to personal injuries or damage if the robot is started with external commands.

CAUTION
Keep the jog speed as low as possible, and always watch the robot. Failure to
do so could lead to interference with the workpiece or peripheral devices.

CAUTION
After editing the program, always confirm the operation with step operation
before starting automatic operation. Failure to do so could lead to interference
with peripheral devices because of programming mistakes, etc.

CAUTION
Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to
do so could lead to personal injuries.

CAUTION
Never carry out modifications based on personal judgments, or use
non-designated maintenance parts.
Failure to observe this could lead to faults or failures.

WARNING
When the robot arm has to be moved by hand from an external area, do not
place hands or fingers in the openings. Failure to observe this could lead to
hands or fingers catching depending on the posture.

CAUTION
Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF.
If the robot controller main power is turned OFF during automatic operation,
the robot accuracy could be adversely affected.

Contents
1. Before use.. 1-1

1.1. How to use the instruction manual.. 1-1

1.1.1. Content of instruction manual ... 1-1

1.1.2. Symbols of instruction manual .. 1-1

1.2. Terms used in the instruction manual ... 1-2

1.3. Confirmation of product .. 1-3

1.4. Ethernet interface ... 1-4

1.4.1. Function of Ethernet interface ... 1-4

1.5. Checking the robot controller software version ... 1-5

2. Preparation before use... 2-1

2.1. Installation of Ethernet interface ... 2-2

2.1.1. 10BaseT/5 changeover switch setting .. 2-2

2.1.2. Installation of interface card on the controller.. 2-3

2.2. Connection of Ethernet cable.. 2-4

2.3. Parameter setting ... 2-5

2.3.1. Parameter list.. 2-5

2.3.2. Details of parameters.. 2-6

2.3.3. Example of setting of parameter 1 (When the Support Software is used)... 2-9

2.3.4. Example of setting of parameter 2-1

(When the data link function is used: When the controller is the server) ... 2-10

2.3.5. Example of setting parameters 2-2

(When the data link function is used: When the controller is the client)... 2-11

2.3.6. Example of setting parameters 3 (for using the real-time external control function).......................... 2-12

2.4. Connection confirmation ... 2-13

2.4.1. Checking the connection with the Windows ping command.. 2-13

3. Operation ... 3-1

3.1. Controller communication function.. 3-2

3.1.1. Connecting the controller and personal computer... 3-2

3.1.2. Setting the personal computer network... 3-2

3.1.3. Setting the controller parameters .. 3-2

3.1.4. Setting the personal computer support software communication.. 3-3

3.1.5. Communication ... 3-3

3.2. Data link function .. 3-4

3.2.1. Connect the controller and personal computer. .. 3-4

3.2.2. Setting the personal computer network... 3-4

3.2.3. Setting the controller parameters. ... 3-5

3.2.4. Starting the sample program... 3-5

3.2.5. Communication ... 3-7

3.2.6. Ending... 3-7

3.3. Real-time external control function ... 3-8

3.3.1. Connecting the controller and personal computer... 3-8

3.3.2. Setting the personal computer network... 3-8

3.3.3. Setting the controller parameters .. 3-8

3.3.4. Starting the sample program... 3-9

3.3.5. Moving the robot ... 3-10

3.3.6. Ending... 3-10

4. Explanation of functions ... 4-1

4.1. Support software function ... 4-1

4.2. Data link function .. 4-2

4.2.1. MELFA-BASICIV Commands.. 4-3

4.3. Real-time external control function ... 4-6

4.3.1. Explanation of command .. 4-8

4.3.2. Explanation of communication data packet... 4-10

5. Appendix .. 5-1

5.1. Error list .. 5-1

5.2. Sample program ... 5-2

5.2.1. Sample program of data link ... 5-2

5.2.2. Sample program for real-time external control function .. 5-9

1Before use

1-1

1. Before use

This chapter describes the confirmation items and cautionary items which must be read before practical use of the

Ethernet interface.

1.1. How to use the instruction manual

1.1.1. Content of instruction manual

Through the following configuration, this document introduces the functions which are added or changed in the Ethernet

interface. For the functions and their operating methods provided in the standard robot controller, refer to "instruction

manual" appended to the robot controller.

Table 1.1 Content of instruction manual
Chapter Title Content

 1 Before use
In addition to the using method of the instruction manual, the confirmation items
and cautionary items are introduced to use the Ethernet interface.

 2
Preparation before use

The preparatory work is introduced to use the Ethernet interface. Referring to the
chapter, install the interface card, apply the cabling and wiring and confirm the
other setting items.

 3
Trial for operation

Using the system configured in "This document/Chapter 2 Preparation before
use", it introduces a series of the operating methods from the start-up to the stop.
Referring to each introduction, understand the basic operating method.

 4 Explanation of functions
The method to operate the Ethernet interface is introduced to each operation
function. The details of each operation method are introduced in this chapter.

 5 Appendix
Since the added errors when indexing the terms or using the Ethernet interface are
herein described, refer to this chapter as necessary.

1.1.2. Symbols of instruction manual

This manual uses the symbols and their expressions as shown in table 1.2.

 Table 1.2 Symbol of instruction manual
 Symbol Meaning

[JOINT]
If [] is added in the sentence as shown in the left, it means the key of the
teaching pendant.
(14) It means that (B) key is pressed with (A) key pressed.

[STEP/MOVE] + [+X(J1)]
(A) (B)

It means that (B) key is pressed with (A) key pressed.
This example (jog operation) means that [+X(J1)] key is pressed with
[STEP/MOVE] pressed.

[STEP/MOVE] + ([ADD ↑] [RPL ↓])
 (A) (B) (C)

It means that (B) key is pressed and released with (A) key pressed, and
then (C) is pressed.
This example (position compensation) means that [ADD ↑] key is
pressed and released with [STEP/MOVE] key pressed, and [RPL ↓] key
is pressed.

1Before use

1-2

1.2. Terms used in the instruction manual

The following terms are used in this document.

(1) Ethernet interface

The Ethernet interface is an option to add various network functions to the robot controller in combination with

CRn-500 series controller.

(2) Network personal computer

The personal computer is a commercially available one which provides the network function, integrating the Ethernet

interface card. Windows95/Windows98/ Me/WindowsNT4.0 Workstation/ Windows2000/ WindowsXP are applicable

as the operating system.

(3) 10Base-5/10Base-T

These cable standards are specified by the Ethernet.

10Base-5 allows the installation of the equipment which is called the transceiver, being connected to the transceiver

with the exclusive transceiver cable.

10Base-T is a connection system which uses the twist pair cable line, providing the equipment which is called the hub

and allowing the network to be connected in the star arrangement with the hub centered. When the hub is used, the

straight cable is used, and when two units are directly connected to each other one to one, the cross cable is used.

Here, 10Base-T is currently popular since it is easier for cable wiring, relatively cheaper and easily available at the

commercial shop.

(4) MELFA-BASICIV/MOVEMASTER command

This is a type of robot language.

The CRn-5xx controller is provided with either the MELFA-BASICIV language or MOVEMASTER command language.

MELFA-BASICIV is a high-function language that allows the program to be described in the same manner as general

BASIC. The MOVEMASTER command language has been popular with the Mitsubishi compact robot MOVEMASTER

Series and E/EN Series, etc.

This option will function with either language.

CAUTION

The MOVEMASTER commands can be used only with some robot models
(RV-1A/RV-2AJ, etc.). Thus, only MELFA-BASICIV may be provided depending on the
model being used.
Refer to the instruction manual enclosed with the robot in use for details on which
language can be used.
As a default, the language is set to MELFA-BASICIV. The parameter RLNG must be
changed to change the robot language. Refer to the enclosed instruction manual for
details.

1Before use

1-3

1.3. Confirmation of product

The standard configuration of the product supplied by the customer is as follows. Confirm the configuration.

No. Part name Type Qty.

1) Instruction manual (this document) BFP－A8108 1

2) Ethernet interface card HR533 1

3) Ferrite core E045R301334 2

Instruction
Manual

2) 1)

3)

In addition to the standard robot system configuration, the following is necessary. These devices are separately procured by the

customer.

No. Part name Type Qty.

3) Network personal computer

(Network interface is necessary.)

Personal computer operated by

Windows95/98/Me/WindowsNT4.0

Workstation/Windows2000/WindowsXP.

In addition, the computer with TCP/IP

network functions, such as LinuxOS .

(Operation is not verified)

1 or more

4) Ethernet cable

(Select the straight cable or cross cable depending on the

connection system.)

10Base-T or10Base-5

1 or more

 Prepare the following as necessary.

5) Hub (Necessary if it is used in the LAN environment.) (Goods on the market) 1

6) Robot controller programming aiding tool corresponding to

Windows for NARC controller of our company

(An optional) Personal computer Support

Software

1

7) Application for network communication program production

corresponding to Windows

(Goods on the market) Microsoft.

VisualC++5.0/6.0, etc.

1

2) Ethernet interface

4) 10BaseT or 1
10Base5 cable

CRn-500 series
robot controller

* Install to the option slot 1.

5) Hub (as necessary)

3) Network personal computer

Customer-supplied

Program VC++, VB

Support software

1Before use

1-4

1.4. Ethernet interface

1.4.1. Function of Ethernet interface

The Ethernet interface has the following functions.

(1)The connection with 10baseT or 10base5 is supported.

(2)TCP/IP protocol is used to allow the communication with the personal computer on the Ethernet.

(3)This one card alone can be installed on one controller. The card is installed in the optional slot 1.

(4)The sampling program (corresponding to Microsoft Visual Basic Version 5.0) of the personal computer is equipped.

The following is provided as the samples. (Refer to Chapter 5 Appendix.)

• The data link function is used to transmit and receive the variables of personal computer and robot (characters and

numerical values). (OPEN/INPUT#/PRINT#)

Here, approve that the result of the operation of the application which the customer produces on the basis of the

sample is out of the responsibility with our company.

(5)The three Ethernet functions are described below.

Refer to the section "4. Explanation of each function" for details on each function.

No. Outline of function Remarks Reference page

1) Controller communication function

Data can be communicated with the robot controller via

Ethernet. (Program upload/download, status monitor, etc.)

Personal computer support software (optional) is available as

an application.

* Communication with up to

16 clients is possible.

Chapter 1 General

Chapter 2 General

Chapter 3. 1

Chapter 4. 1

Chapter 5. 1

2) Data link function

The value and position data can be linked between the

robot program and personal computer using MELFA-BASICIV

language (OPEN/PRINT/INPUT command).

* By changing the

communication open

destination COM No.,

communication with

applications in up to 8 clients

is possible.

Chapter 1 General

Chapter 2 General

Chapter 3. 2

Chapter 4. 2

Chapter 5. 1

Chapter 5. 2.1

3) Real-time external control function

The position command data can be retrieved and operated at

the robot motion control cycle unit. Joint, XYZ or motor pulse

can be designated for the position data. It is also possible to

monitor the input/output signals or output the signals

simultaneously.

Control is started with the MXT command (MELFA-BASICIV

language and MOVEMASTER command).

This function is valid only with the following models.

*RP-1AH/3AH/5AH Series

*RV-1A

*RV-4A/3AL/4AC/3ALC Series

* The user must create an

application program on the

personal computer side to

control the robot.

Communication is carried

out one-on-one.

Chapter 1 General

Chapter 2 General

Chapter 3. 3

Chapter 4. 3

Chapter 5. 1

Chapter 5. 2.2

* The personal computer used to communicate with the robot controller must be located on the same network.

1Before use

1-5

Communication cannot be carried out over firewalls (from internet) or over gateways (from different adjacent network, etc.).
Consider operation with a method that communicates via a server (i.e., HTTP server, etc.) connected to the same network
as the robot controller. Pay special attention to safety and response in this case.

1.5. Checking the robot controller software version

The Ethernet interface is compatible from robot controller software version E2. The robot controller software version E5 and

above must be installed to use the real-time external control function. Check the controller software version with the following

procedure before starting use.

When using the controller software version A*, B*, C*, D* or E1, the functions will not activate even when the Ethernet interface

board is installed. Contact Mitsubishi in this case.

* Checking the software version on the teaching pendant screen

Set the teaching pendant to "DISABLE", and turn ON the robot controller power.

No. 2 shown below indicates the controller software version.

No. Teaching pendant screen display Explanation

1

P28TB Ver.B2
Robot System
Teaching Box

 JUST A MINUTE.

First, the teaching pendant software version will appear briefly.

Teaching pendant software version: B2
Wait for several seconds.

Ethernet

1) Controller communication function
Program creation, editing
Debugging startup support, maintenance

2) Data link function
Transmission/reception of
value and position data

3) Real-time external control function
Transmission/reception of real-time
position data at control cycle

Personal computer support software
(Mitsubishi option)

Personal
computer
program

Data link application
(Customer-created)

Personal
computer
program

Real-time external control application
(Customer -created)

1Before use

1-6

2
 CRn-5xx Ver.H7

RV-1A
Copyright(C)1999

 Press a key.

 Next, the controller software version will appear.

Controller software version: H7

) For example, Ver. A will appear for Version A (*: Value 1 or higher)

2Preparation before use

2-1

2. Preparation before use

What is done before use is described.

Installation of Ethernet interface … Refer to 2.1.

↓

Connection of Ethernet cable … Refer to 2.2.

↓

Parameter setting … Refer to 2.3.

CR2A controller (inside)

CR4 controller (Front view)

Control unit R6CPU

CR2 controller (Top view: inside)

The Ethernet interface can be used in the
optional slot 1 alone.

Option slot 1

CR1 controller

Expansion box

Optional slot 2

Optional slot 1

CR4 front view drawing

Expansion
memory
slot

 Option slot 2 CR2 rear view drawing

Expansion memory slot

Option slot 1

Option slot 1

Install the CR1 controller in the expansion option box.

Refer to the separate manual "Controller setup, basic

operation, and maintenance" for detail.

2Preparation before use

2-2

2.1. Installation of Ethernet interface

The Ethernet interface is installed in the controller. For details of the removal, etc. of the controller box cover, refer to the

instruction manual of the controller.

CAUTION

Since the card uses the electronic parts, they may sometimes be destroyed by static
electricity.
Reading through the cautionary items described on the bag which packs the interface
card, carefully handle the card.

2.1.1. 10BaseT/5 changeover switch setting

Depending on the type of the applied cable, set 10BaseT/5 changeover switch SW1.

For 10BaseT, set the changeover switch at "BASET" (lower side), and for 10Base5, set the changeover switch at "BASE5"

(upper side).

SW1 is located at the upper right of the Ethernet interface board. (Refer to the following drawing.)

 10BaseT/5 changeover

switch

10Base5 connector

10BaseT connector

RT-BUS

SW1

BASE 5

BASET

2Preparation before use

2-3

2.1.2. Installation of interface card on the controller

The procedure to install the Ethernet interface is herein described.
When using the CR1 controller, refer to "Installation of optional device" of the instruction manual of "CR1 controller, controller
setup, basic operation and maintenance".
The Ethernet interface is installed in the control unit (R6CPU unit) of the controller or in the optional slot 1 (OPT1) of the
expansion option box. For details of the control unit (R6CPU unit), refer to the instruction manual "controller setup, basic
operation and maintenance".

 Procedure to install the Ethernet interface

(1) Remove the optional fixing plate of the control unit (R6CPU). (Three fastening screws)
(2) Insert the Ethernet interface to the optional slot 1 (OPT1).
(3) Install the option fixing plate, engaging the end of the Ethernet interface into the option fixing groove. Reversing

procedure (1), tighten the fastening screws (3 places) for fixation.
(4) Referring to "2.2 Connection of Ethernet cable", connect the Ethernet cable to the Ethernet interface.
(5) Process the outlet port of the Ethernet cable connected. For details, refer to the instruction manual "controller setup,

basic operation and maintenance" of each controller.

Ethernet interface

Option slot 2

Option fixing groove

Fastening
screw

Control unit (R6CPU)

Option fixing plate

Option slot 1

Fastening
screw

Fastening
screw

2Preparation before use

2-4

2.2. Connection of Ethernet cable

As shown below, connect the Ethernet cable of 10BaseT or 10Base5 to the connector of the interface card.

When the hub is used, use the straight cable. Or when the personal computer and controller are connected to each other

one to one, use the cross cable.

10BaseT/5
changeover switch

10Base5 connector

10BaseT connector

10Base5 cable

or

10baseT cable RT-BUS

SW1

BASE5

BASET

2Preparation before use

2-5

2.3. Parameter setting

Before use, it is necessary to set the following parameters. The parameters which are set on the robot controller are shown

in the following list. For the method to set the parameter, refer to the instruction manual of the controller.

CAUTION After changing the parameters, turn the power supply of the controller from OFF to ON.

Unless this is done, the changed parameters will not become valid.

2.3.1. Parameter list
The parameters are listed below. For details of the parameters, refer to "2.3.2 Details of parameters".

O ... Setting is necessary

- ... Setting is unnecessary

Parameter list
Parameter

name Details Number of
elements Default value

Controller
communication

function

Data
link

function

Real-time control
function

NETIP IP address of robot controller Character
string 1

“192.168.0.1”
O O O

NETMSK Sub-net-mask Character
string 1

“255.255.255
.0” O O O

NETPORT Port No.
Range 0 to 32767
For function expansion (reserved), ----------
Correspond to OPT 11-19 of COMDEV (OPT11)

(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 10

10000,
10001,
10002,
10003,
10004,
10005,
10006,
10007,
10008,
10009

O O O

CPRCE11
CPRCE12
CPRCE13
CPRCE14
CPRCE15
CPRCE16
CPRCE17
CPRCE18
CPRCE19

Protocol 0: No-procedure
 1: Procedure, 2: Data link
(1: Procedure has currently no function.)
Correspond to OPT 11-19 of COMDEV (OPT11)

(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 9

0
0
0
0
0
0
0
0
0

- O -

COMDEV

Definition of device corresponding to COM1: to 8
Definition of device corresponding to COM1:,
Definition of device corresponding to COM2:,
Definition of device corresponding to COM3:,
Definition of device corresponding to COM4:,
Definition of device corresponding to COM5:,
Definition of device corresponding to COM6:,
Definition of device corresponding to COM7:,
Definition of device corresponding to COM8: .

Character
string 8

RS232C,
 ,
 ,
 ,
 ,
 ,
 ,

- O -

2Preparation before use

2-6

Parameter
name Details Number of

elements Default value
Controller

communication
function

Data
link

function

Real-time control
function

When the data link is applied, setting is
necessary.
OPT11 to OPT19 are allocated. Here,
RS-232C of the controller is previously allocated
to COM1: .

NETMODE

The
software

version H7
or later.

Server designation (1: Server, 0: Client)
(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 9

1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1

- O -

NETHSTIP

The
software

version H7
or later.

The IP address of the data communication
destination server.
* It is valid if specified as the client by
NETMODE only.

(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Character
string 9 .

192.168.0.2 ,
192.168.0.3 ,
192.168.0.4 ,
192.168.0.5 ,
192.168.0.6 ,
192.168.0.7 ,
192.168.0.8 ,
192.168.0.9 ,
192.168.0.10

- O -

MXTCOM1

MXTCOM2

MXTCOM3

Communication destination IP address for
real-time external control command
The address to set up in the communication
point number 1.
The address to set up in the communication
point number 2.
The address to set up in the communication
point number 3.

Value 1

Value 1

Value 1

192.168.0.2

192.168.0.3

192.168.0.4

- -

O
When the

MOVEMASTER
COMMAND is

used

MXTTOUT Timeout time for executing real-time external
control command
(Multiple of 7.1msec, Set -1 to disable timeout)

Value 1
(0-32767)

-1

- - O

2.3.2. Details of parameters
The parameters are herein described in details.

(1) NETIP (IP address of robot controller)

The IP address of the robot controller is set. IP address is like the address of the mail.

The format of IP address is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 192.168.0.1 or 10.97.11.31.

If the controller and network personal computer are directly connected to each other one-to-one, it is allowed to set

default value (a random value) but if it is connected to the local area network (LAN), IP address must be set as instructed

by the manager of customer's LAN system.

If any IP addresses are overlapped, the function will not properly operate. Therefore, take care to prevent it from being

overlapped with another during setting.

The personal computer used for communication with the robot controller must be located on the same network.

2Preparation before use

2-7

(2) NETMSK (sub-net-mask)

Set the sub-net-mask of the robot controller. Among the IP addresses, the sub-net-mask is set to define the

sub-net-work.

The format of the sub-net-mask is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 255.255.255.0 or 255.255.0.0.

As usual, it is allowed to set default value. If it is connected to the local area network (LAN), the sub-net-mask must be

set as instructed by the manager of customer's LAN system.

(3) NETPORT (port No.)

The port No. of the robot controller is set. The port No. is like the name of the mail.

For the nine elements, the port numbers are each expressed with a value.

The first element (element No. 1) is used for real-time control.

The second to ninth elements (elements No. 2 to 9) are used for the support software or data link.

Normally, the default value does not need to be changed. Make sure that the port numbers are not duplicated.

(4) CRRCE11 to 19 (protocol)

When using the data link function, the setup is necessary.

Sets the protocol (procedure) for communication. The protocol has three kinds of no-procedure, procedure and data link.

0... No-procedure: The protocol is applied to use the personal computer Support Software .

1... Procedure: Reserved. (Since it is not any function, don't set it by mistake.)

2... Data link: The protocol is used to use OPEN/INPUT/PRINT commands for communication.

(5) COMDEV (Definition of devices corresponding to COM1: to 8)

When using the data link function, the setup is necessary.

Definition of device corresponding to COM1: to 8 is set. COM1: to 8 is used for OPEN command of the robot program.

Be sure to set it only when the data link is specified on setting of the protocol (CPRCE11 to 19).

The setting values of the Ethernet interface option correspond to the port Nos. which are set at the parameter NETPORT.

* In the following parameters NETOPORT (n) and COMDEV(n), n indicates the element No. of that parameter.

n The device name set
up by COMDEV(n)

1 OPT11
2 OPT12
3 OPT13
4 OPT14
5 OPT15
6 OPT16
7 OPT17
8 OPT18
9 OPT19

The port number specified by NETPORT(9)
The port number specified by NETPORT(10)

The port number specified by NETPORT(5)
The port number specified by NETPORT(6)
The port number specified by NETPORT(7)
The port number specified by NETPORT(8)

The port number specified by NETPORT(2)

Port number

The port number specified by NETPORT(3)
The port number specified by NETPORT(4)

For example, if the port No. specified at NETPORT(3) is allocated to the data link of COM:3, the following will be applied.

COMDEV(3) = OPT13 * OPT13 is set at 3rd element of COMDEV.

CPRCE13 = 2 * Set up as a data link.

2Preparation before use

2-8

(6) NETMODE (server specification). * The software version H7 or later.

Set up, when using the data link function.

Set the TCP/IP communication in the data link function of the robot controller as the server or the client.

It is necessary to change with the application of the equipment connected to the robot controller.

This function corresponds to the software version H7 or later.

In the version older than H7, the robot controller operates only as a server.

(7) NETHSTIP (The IP address of the server of the data communication point). * The software version H7 or later .

Set up, when using the robot controller as a client by the data link function.

Specify the IP address of the partner server which the robot controller connects by the data link function.

Set up, when only set the robot controller to the client by server specification of NETMODE.

(8) MXTCOM1 to 3 (Communication destination IP address for real-time external control command)

This is set only when using the real-time external control function with the MOVEMASTER command robot language.

Designate the IP address for the robot controller communication destination personal computer.

(9) MXTTOUT (Timeout setting for executing real-time external control command)

This is changed when using real-time external control command and setting the timeout time for communication with the

robot controller.

Set a multiple of the approx. 7.11msec control cycle.

When the real-time external control command is executed, the timeout time during which no communication data is

received by the robot controller from the personal computer is counted up. If the count reaches the value set in MXTTOUT,

the operation will stop with the error (#7820). For example, to generate an error when there is no communication for

approx. 7 seconds, set 1000.

This setting is set to -1 (timeout disabled) as the default.

2Preparation before use

2-9

2.3.3. Example of setting of parameter 1 (When the Support Software is used)

The setting example to use the Support Software is shown below.

Set the parameters for the robot controller, and the network for the personal computer OS being used.

List Conditional example 1

IP address of robot controller 192.168.0.1

IP address of personal computer 192.168.0.2

Port No. of robot controller 10001

Set the robot controller parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

List Parameter change example 1
Parameter name
to be changed

Before/after
change Parameter value

Before 192.168.0.1 NETIP
After 192.168.0.1 (With the default value.)

Before 10001 NETPORT After 10001 (With the default value.)

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties screen.

Windows 95 (lower left screen), Windows NT4.0 (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2Preparation before use

2-10

2.3.4. Example of setting of parameter 2-1
(When the data link function is used: When the controller is the server)

Shows the example of the setting, when the controller is server by the data link function.

List Example of conditions 2-1
Robot controller IP address 192.168.0.1
Personal computer IP address 192.168.0.2
Robot controller port No. 10003
Communication line No.
<For MELFA-BASICIV>
OPEN command COM No.
<For MOVEMASTER command>
OPN command line No.

COM3:

3

List Example of parameter changes 2-1
Name of parameter

to change
Before/after

changes Parameter value

Before 192.168.0.1 NETIP
after 〃 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009 NETPORT after 〃 (Default value)
Before 0 CPRCE13 after 2
Before RS232, , , , , , , COMDEV after RS232, , OPT13, , , , ,

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties screen.

Windows 95 (lower left screen), Windows NT4.0 (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2Preparation before use

2-11

2.3.5. Example of setting parameters 2-2
(When the data link function is used: When the controller is the client)

Shows the example of the setting, when the controller is client by the data link function.
List Example of conditions 2-2

Robot controller IP address 192.168.0.1
Personal computer IP address 192.168.0.2
Robot controller port No. 10003
Communication line No.
<For MELFA-BASICIV>
OPEN command COM No.
<For MOVEMASTER command>
OPN command line No.

COM3:

3

List Example of parameter changes 2-2

Name of parameter
to change

Before/after
changes Parameter value

Before 192.168.0.1 NEITP
After 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)
Before 0 CPRCE13 After 2
Before RS232, , , , , , , COMDEV After RS232, , OPT13, , , , ,
Before 1,1,1,1,1,1,1,1,1 NETMODE After 1,1,0,1,1,1,1,1,1

Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10 NETHSTIP

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties screen.

Windows 95 (lower left screen), Windows NT4.0 (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network
computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,
for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the
personal computer support software.

2Preparation before use

2-12

2.3.6. Example of setting parameters 3 (for using the real-time external control function)

An example of the settings for using the real-time external control function is shown below.

List Example of conditions 3
Robot controller IP address 192.168.0.1
Personal computer IP address 192.168.0.2
Robot controller port No. 10000

List Example of parameter changes 3
Name of parameter

to change
Before/after

changes Parameter value

Before 192.168.0.1 NEITP
after 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT after 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)
Before -1 MXTTOUT after -1 (Default value)
Before 192.168.0.2 MXTCOM1* after 192.168.0.2 (Default value)

* MXTCOM1 is used only when setting the robot language to MOVEMASTER command.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties screen.

Windows 95 (lower left screen), Windows NT4.0 (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Refer to the manuals enclosed with Windows, etc., for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2Preparation before use

2-13

2.4. Connection confirmation

Before use, confirm the following items again.

Connection confirmation

No. Confirmation item Check

1 Is the teaching pendant securely fixed?

2 Is the Ethernet cable properly connected between the controller and personal computer? (Refer to 2.2 in

this manual.)

3 Is any proper Ethernet cable used?

(This cross cable is used to connect the personal computer and controller one-on-one. When using a hub

with LAN, use a straight cable.)

4 Is the parameter of the controller properly set? (Refer to 2.3 in this manual.)

5 Is the power supply of the controller turned off once after the parameter is set?

2.4.1. Checking the connection with the Windows ping command

The method for checking the connection with the Windows ping command is shown below.

Start up the " MS-DOS Prompt " from the Windows " Start " - " Programs " menu, and designate the robot controller IP

address as shown below.

If the communication is normal, " Reply from ... " will appear as shown below.

If the communication is abnormal, " Request time out " will appear.

2Preparation before use

2-14

3Operation

3-1

3. Operation

This chapter explains the methods for using the three Ethernet option functions with a system in which the controller and

network personal computer are connected with a one-on-one cross cable.

(1) Using the controller communication function ... Refer to Chapter 3.1

(2) Using the data link function ... Refer to Chapter 3.2

(3) Using the real-time external control function ... Refer to Chapter 3.3.

3Operation

3-2

3.1. Controller communication function

The operations for communicating with the personal computer support software are explained in this section.

Connecting the controller and personal computer. … Refer to section 3.1.1

|

Setting the personal computer network. … Refer to section 3.1.2

|

Setting the controller parameters. … Refer to section 3.1.3

|

Starting the support software. … Refer to section 3.1.4

|

Communication. … Refer to section 3.1.5

|

Ending … Refer to section 3.1.6

3.1.1. Connecting the controller and personal computer

Connect the controller and personal computer with a 10 BaseT cross cable.

Refer to the connection described in section "2.2 Ethernet cable".

3.1.2. Setting the personal computer network

Refer to section "2.3.3 Example of setting the parameters 1 (for using the support software)" and set the network.

3.1.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Name of parameter
to change

Before/after
changes Parameter value

Before 192.168.0.1 NETIP
After 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

3Operation

3-3

3.1.4. Setting the personal computer support software communication
Start the personal computer support software and make the communication settings. Set the communication method to

TCP/IP, and the IP Address to 192.168.0.1.

Refer to the instruction manual enclosed with the personal computer support software for details on setting the personal

computer support software.

3.1.5. Communication

Communicate with the personal computer support software.

Communication can be carried out with the Ethernet interface TCP/IP in the same manner as RS-232-C communication.

Refer to the instruction manual enclosed with the personal computer support software for details on using the personal

computer support software.

If communication is not possible, refer to section "2.4 Checking the connection" and check the state.

CAUTION
When the robot controller power is turned OFF and ON, the connection will be disconnected

and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3Operation

3-4

3.2. Data link function
This section explains the operations for starting the sample program given in "5.2.1 Sample program for data link function"

and communicating with a system in which the controller and network personal computer are connected with a one-on-one

cross cable.

The controller can be specified as the client from the software version H7 edition of the controller. (Following table)

Software version H6 or earlier H7 or later

Controller = Server
Personal computer = Client TCP/IP connection

configuration
Controller = Server fixation.
Personal computer = Client fixation. Controller = Client

Personal computer = Server

Connecting the controller and personal computer. … Refer to section 3.2.1

|

Setting the personal computer network. … Refer to section 3.2.2

|

Setting the controller parameters. … Refer to Chapter 3.2.3 (1)

Refer to Chapter 3.2.3 (2)

|

Starting the sample program. … Refer to section 3.2.4

|

Communication. … Refer to section 3.2.5

|

Ending … Refer to section 3.2.6

3.2.1. Connect the controller and personal computer.
Connect the controller and personal computer with a 10 BaseT cross cable.

Refer to the connection described in section "2.2 Ethernet cable".

3.2.2. Setting the personal computer network.
Set one of the following clauses as reference corresponding to the customer's system configuration. (The controller is the

server or the client)

• 2.3.4 Example of setting of parameter 2-1 (When the data link function is used: When the controller is the server.)

• 2.3.5E Example of setting of parameter 2-1 (When the data link function is used: When the controller is the client.)

3Operation

3-5

3.2.3. Setting the controller parameters.
The contents of the setting of parameter differ, when the robot controller is specified as server and client of TCP/IP

connection.

Turn ON the robot controller power, and set the parameters as shown below.

The NETIP/NETPORT parameters do not need to be changed when using the default values.

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

(1) When the controller is specified as the server

Parameter name
to be changed

Before/after
change Parameter value

Before 192.168.0.1 NETIP
After 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)
Before 0 CPRCE13 After 2
Before RS232, , , , , , , COMDEV After RS232, , OPT13, , , , ,

(2) When the controller is specified as the client

Parameter name
to be changed

Before/afte
r change Parameter value

Before 192.168.0.1 NETIP
After 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)
Before 0 CPRCE13 After 2
Before RS232, , , , , , , COMDEV After RS232, , OPT13, , , , ,
Before 1,1,1,1,1,1,1,1,1 NETMODE After 1,1,0,1,1,1,1,1,1

Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10 NETHSTIP

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

3.2.4. Starting the sample program
The test program is an example for establishing a data link between the robot and personal computer. COM3 is used.

(1) Using the teaching pendant or personal computer support software, register the following robot program with an

appropriate program name. Either the MELFA-BASICIV or MOVEMASTER command can be used as the robot language.

MELFA-BASICIV is set as the default. The parameter RLNG must be changed to change the robot language. Refer to the

instruction manual enclosed with the robot controller for details. The MOVEMASTER commands can be used only with

some robot models (RV-1A/RV-2AJ, etc.). Thus, only MELFA-BASICIV may be provided depending on the model being

used.

3Operation

3-6

<Robot program>

1) Example for MELFA-BASICIV
10 OPEN "COM3:" AS #1 ' Open as communication line COM3
20 PRINT #1,"START" ' Send START character string
30 INPUT #1,DTATA ' Wait for reception of value in DATA variable
40 IF DATA<0 THEN GOTO 70 ' If DATA is negative, jump to line 70 and end
50 PRINT #1,"DATA=";DATA ' Reply DATA = value
60 GOTO 30 ' Jump to line 30 and repeat
70 PRINT #1,”END" '. Send END character string
80 END ' End

2) Example for MOVEMASTER command
10 OPN 1,3 ' Open as communication line No. 3
20 SC $1,”START” ‘ Set START characters in character string $1
25 CR $1,1 ' Send START character string
30 INP 1,1,0 ' Wait for reception of value in counter 1
40 CP 1 ' Set counter 1 value in internal register
45 SM 0,70 ‘ If value is negative, jump to line 70 and end
50 CR 1,1 ' Reply counter 1 value
60 GT 30 ' Jump to line 30 and repeat
70 SC $1,”END” ' Set END characters in character string $1
75 CR $1,1 ‘ Send END character string
80 ED ' End

(2) Start the personal computer data link program

Refer to section "5.2.1 Sample program for data link function" and create the execution file. (The created execution file will

be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

Set the IP address and port No., click on the connection check box, and open the communication line with the controller.

If the Send button is not validated, check that the IP address matches NETIP set with the controller.

If the button is still not validated, refer to section "2.4 Checking the connection", and check the connection cable or restart

the controller and sample.exe.

(3) Start the robot program.

Press the START button on the robot controller's operating panel, and start the robot program.

3Operation

3-7

3.2.5. Communication

(1) When the robot controller program is started, first the following data will be sent to the personal computer.

"START"(CR) (CR) indicates the CR code.

(2) When the personal computer receives the data, the characters will appear in the received data area.

(3) Send value data from the personal computer.

For example, input the value data 123 in the transmission data area, and click on the Send button with the mouse.

(4) When the robot controller receives the value data in the DATA variable, it will reply data to the personal computer.

DATA=123 will appear in the personal computer's received data area.

If communication cannot be carried out correctly, refer to section "2.4 Checking the connection" and check.

CAUTION

When the robot controller power is turned OFF and ON, the connection will be disconnected

and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3.2.6. Ending

(1) Press the END button on the robot controller operating panel, and enter cycle operation.

(2) Input the value -1 from the personal computer, and end the program.

(3) End the personal computer's sample program.

(4) Turn OFF the robot controller's power.

3Operation

3-8

3.3. Real-time external control function

This section explains the operations for starting the sample program given in "5.2.2 Sample program for real-time external

control function" and communicating with a system in which the controller and network personal computer are connected with

a one-on-one cross cable.

Connecting the controller and personal computer. … Refer to section 3.3.1

|

Setting the personal computer network. … Refer to section 3.3.2

|

Setting the controller parameters. … Refer to section 3.3.3

|

Starting the sample program. … Refer to section 3.3.4

|

Communication. … Refer to section 3.3.5

|

Ending … Refer to section 3.3.6

3.3.1. Connecting the controller and personal computer

Connect the controller and personal computer with a 10 BaseT cross cable.

Refer to the connection described in section "2.2 Ethernet cable".

3.3.2. Setting the personal computer network

Refer to section "2.3.5 Example of setting the parameters 3 (for using the real-time external control function)" and set the

network.

3.3.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

Name of parameter
to change

Before/after
changes Parameter value

Before 192.168.0.1 NETIP
After 192.168.0.1 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(Default value)
Before -1 MATTOUT After -1 (Default value)
Before 192.168.0.2 MXTCOM1* After 192.168.0.2 (Default value)

*MXTCOM1 is used only when the robot language is set to MOVEMASTER command. It is not used with

MELFA-BASICIV.

3Operation

3-9

3.3.4. Starting the sample program

The test program is an example of communicating in real-time between the robot and personal computer. The XYZ

position data X axis or joint position data J1 axis is commanded from the personal computer to the robot and controlled.

(1) Using the teaching pendant or personal computer support software, register the following robot program with an

appropriate program name. Ether the MELFA-BASICIV or MOVEMASTER command can be used as the robot

language. MELFA-BASICIV is set as the default. The parameter RLNG must be changed to change the robot language.

Refer to the instruction manual enclosed with the robot controller for details. The MOVEMASTER commands can be

used only with some robot models (RV-1A/RV-2AJ, etc.). Thus, only MELFA-BASICIV may be provided depending on

the model being used.

<Robot program>

1) Example for MELFA-BASICIV
10 OPEN "ENET; 192.168.0.2" AS #1 ' Designate personal computer side IP address as Ethernet in file No. 1
20 MOV P1 ' Move to default position P1 (teach random position as P1)
30 MXT1,0 ' Move according to command value issued from file No. 1

Current XYZ position is replied from controller to personal computer
40 MOV P1 ' After external control mode ends, move to default position P1 with joint

interpolation
50 HLT ' Halt
60 END ' End

2) Example for MOVEMASTER command
10 MO 1 ' Move to default position 1 (teach random position as 1)
20 MXT 1,0 ' Move according to command value issued from communication

destination No. 1
 ' Receive XYZ data from the personal computer
30 MO 1 ' After external control mode ends, move to default position 1 with joint

interpolation
40 HLT ' Halt
50 ED ' End

(2) Start the robot program.

Press the START button on the robot controller's operating panel, and start the robot program.

The robot will move to the default position P1, and real-time external control will be executed with the MXT command.

(3) Start the personal computer's real-time external control sample program.

Refer to section "5.2.2 Sample program for real-time external control function" and create the execution file. (The created

execution file will be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

3Operation

3-10

3.3.5. Moving the robot
Specify and input the following values for the numerical value displayed on the screen according to the message of the

sample program.

*The IP address (192.168.0.1) of the robot controller of the connection point

*The port number (10001)

*The data type of command

*The data type of monitoring (The version is H7 or later), etc

Fit the data type of command to the argument of the MXT command of the robot program

Key operation is as follows. For details, refer to the sample program.
Key Contents
Z or X . The robot moves.
C The instruction value is set to 0 and the robot stops.
D Each time the MOVE key is pressed, change the display /

un-displaying of the monitor data
ENTER End the MXT command.

If the amount of instructions becomes too large or the movement range of the robot is exceeded, an error is

generated and the robot controller stops. In this case, reset the robot controller.

If communication cannot be carried out correctly, refer to section "2.4 Checking the connection", and check the connection
cable or restart the controller and sample.exe.

CAUTION

When the robot controller power is turned OFF and ON, the connection will be disconnected
and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3.3.6. Ending
(1) Press the END button on the robot controller operating panel, and enter cycle operation.
(2) End the personal computer's sample program.
When the [ENTER] key is pressed, the MXT command will end, the robot will return to the default position, and the robot
program will stop.
The sample program will also end.
(3) Turn OFF the robot controller's power.

4Explanation of functions

4-1

4. Explanation of functions
This chapter describes the detailed functions of the Ethernet interface.

4.1. Controller communication function
・ Communication via the network of the personal computer is used like the Support software which corresponds to the

existing RS-232C.

・The Support Software enables all functions such as the up down load and status monitor, etc. of the program of the robot.

* It can be used with high speed and away in comparison with the RS232C.

4Explanation of functions

4-2

4.2. Data link function
 Like the data link communication with RS-232C, OPEN/PRINT/INPUT of the robot language can be also used in the Ethernet.

For each robot language, refer to the instruction manual appended to the robot controller.

[Statement example] To set port No. 10003 as communication destination and open as #1

Set parameter COMDEV (element No. 3) to OPT13, NETPORT to 10003.

100 OPEN “COM3:” AS #1 ’Set port No.

110 INPUT #1, C1$ 'Read

120 PRINT #1, ”Reply”, C1$ ‘Writing

130 CLOSE #1 ‘Line closing

140 HLT ‘Stop

CRn-500 robot controller
Robot program E t h e r n e t

Position, value, character
transmission/reception

Windows personal
computer application

O P E N
P R I N T #
I N P U T #

The data link function of the Ethernet interface has the two kinds shown below.

*Uses the robot controller as the server.

*Uses the robot controller as the client.

In addition, to set it as the client, it is necessary for the software version of the robot controller to be H7 or later.

Choose corresponding to the customer's system such as the example of the following figure.

Controller2 Controller3

Computer

Computer1

Controller

Controller1 Controller2

192.168.0.1
(Server)

192.168.0.2
(Client)

Computer2

Controller1
COM2　　COM3 COM2　　COM3 COM2　　COM3

Two or more clients are not connectable with the one line number COMn.
Change the line number, when using the robot controller as the server and
connecting two or more clients.

192.168.0.1
(Server)

192.168.0.1
(Server)

192.168.0.3
(Client)

192.168.0.2
(Client)

192.168.0.3
(Client)

192.168.0.2
(Client)

192.168.0.3
(Client)

4Explanation of functions

4-3

4.2.1. MELFA-BASICIV Commands

This section describes the robot language (MELFA-BASICIV).
The commands described in this section have been added in software version H7 or later. These commands cannot be used in
software version H6 or earlier. For more information about OPEN, CLOSE, INPUT# and PRINT# used for data linking, refer to
the CR1/CR2/CR4/CR7/CR8 Controller INSTRUCTION MANUAL Detailed explanations of functions and operations.

CAUTION
An error occurs if a syntax check of this robot language is performed in Mitsubishi personal
computer support software (A*, B*, C* and D1 editions) available from August, 2002.
Therefore, do not perform any syntax check in the personal computer support software.

M_OPEN * Software version H7 or later

[Function]
Indicates whether or not the file has been opened.

[Fomat]

 <Numeric variable> = M_OPEN [(<file number>)]

[Terminology]

<Numeric variable> Specify a numeric variable to be assigned.
<File number> Specify a file number constant between 1 and 8 for the communication line that

was opened by the OPEN instruction. If omitted, 1 is set. If 9 or higher is
specified, an error occurs when executed.

[Reference Program]
10 ' Client Program ----------------
100 M1=0

110 M_TIMER(1)=0 ‘Resets the timer to 0.
120 OPEN "COM2:" AS #1 ‘Opens the line.
130 IF M_TIMER(1)>10000.0 THEN 240 ‘Jumps when 10 seconds elapses.
140 IF M_OPEN(1)<>1 THEN GOTO 120 ‘Loops if no connection is made.
145 DEF ACT 1,M_OPEN(1)=0 GOSUB 300 ‘Monitors the down state of the server using an interrupt.
146 ACT 1=1 ‘Starts monitoring.
150 M1=M1+1

160 IF M1<10 THEN C1$="MELFA" ELSE C1$="END" ‘Sends END after sending the “MELFA” string nine times.
170 PRINT #1,C1$ ‘Sends a character string.
180 INPUT #1,C2$ ‘Receives a character string.
190 IF C1$="END" THEN 210 ‘Jumps to CLOSE after sending “END.”
200 GOTO 150 ‘Loops.
210 CLOSE #1 ‘Closes the line.
220 HLT ‘Halts the program.
230 END ‘Ends.
240 ERROR 9100 ‘Generates error 9100 if no connection can be made to the

server.
250 CLOSE #1

260 HLT

270 END

280 ERROR 9101 ‘Generates error 9101 if the server is down during
processing.
290 CLOSE #1

300 HLT

310 END

4Explanation of functions

4-4

[Explanation]

(1) This command is used in a combination with the OPEN instruction. The following lists the meanings and values for the

types of the files specified by the OPEN instruction.

Type of file to be
opened Meaning Value

File Indicates whether or not the file has been
opened.
1 is always returned after executing the
OPEN instruction.

1: Already opened.
-1: The file number is undefined (not opened).

Communication line

RS232C

Indicates the status of the counterpart of the
RS232C cable communication.
The CTS signal input status is returned as is.
The power off status and cable disconnection
status of the counterpart can be determined.
(Mitsubishi genuine cable specification: Can
be used only when the RTS signal of the
counterpart is enabled using model name
RS-MAXY-CBL/RS-AT-RCBL .)

1: Already connected (CTS signal is ON).
0: Not connected (CTS signal is OFF).
-1: The file number is undefined (not opened).

For server setting 1: Client is already connected.
0: Client is not connected.
-1: The file number is undefined (not opened).

Communication line
Ethernet

Indicates whether
or not connection
is made with the
counterpart. For client setting 1: Already connected to the server. (Connection

has been made.)
0: Not connected to the server. (Connection has
not been made. Equivalent to when the server is
down after being opened.)
-1: The file number is undefined. (When the file

has not been opened, or has been opened
while the server is down.)

[Related Instruction]

OPEN

[Related Parameters]

COMDEV, CPRE**, NETMODE

4Explanation of functions

4-5

C_COM * Software version H7 or later

[Function]
Sets the parameters for the line to be opened by the OPEN instruction. This is used when the communication destination
is changed frequently.
* Character string type
* Only for a client with the Ethernet option.

[Fomat]

C_COM (<communication line number>) = “ETH: <server side IP address> [, <port number>]”

[Terminology]
ETH: An identifier to indicate that the target is an Ethernet
<Communication line number> The number of the COM to be specified by the OPEN instruction (The line type is

assigned by the COMDEV parameter.) Specify 1 through 8.
<Server side IP address> Server side IP address (May be omitted.)
<Port number> Port number on the server side (If omitted, the set value of the NETPORT parameter is

used.)

[Reference Program]
Example when the Ethernet option is installed in an option slot and OPT12 is set in the second element of the COMDEV
parameter

100 C_COM(2)="ETH:192.168.0.10,10010" ' Set the IP address of the communication destination server
corresponding to communication line COM2

110 OPEN "COM2:" AS #1 ' As 192.168.0.10 and the port number as 10010, and then open the line.
120 IF M_OPEN(1)<>1 THEN 110 ‘ Loops if unable to connect to the server.
130 PRINT #1, "HELLO" ‘ Sends a character string.
140 INPUT #1, C1$ ‘ Receives a character string.
150 CLOSE #1 ‘ Closes the line.
160 C_COM(2)="ETH:192.168.0.11,10011" ‘ Set the IP address of the communication destination server

corresponding to communication line COM2
170 OPEN "COM2:" AS #1 ‘ As 192.168.0.11 and the port number as 10011, and then open the line.
180 IF M_OPEN(1)<>1 THEN 170 ‘ Loops if unable to connect to the server.
190 PRINT #1, C1$ ‘ Sends a character string.
200 INPUT #1, C2$ ‘ Receives a character string.
210 CLOSE #1 ‘ Closes the line.
220 HLT ‘ Halts the program.
230 END ‘ Ends.

[Description]
(1) It is not necessary to use this command when the communication counterpart of the robot controller is specified with the

NETHSTIP and NETPORT parameters and the specified communication counterpart will not be changed at all.
(2) Currently, this function is valid only for a client of a data link with the Ethernet option.
(3) Because the communication parameters of the OPEN instruction are set, it is necessary to execute this command

before the OPEN instruction.
(4) When the power is turned on, the set values specified by the NETHSTIP and NETPORT parameters are used. When

this command is executed, the values specified by the parameters of this command are changed temporarily. They are
valid until the power is turned off. When the power is turned on again, the values revert to the original values set by the
parameters.

(5) If this command is executed after the OPEN instruction, the current open status will not change. In such a case, it is
necessary to close the line with the CLOSE instruction once, and then execute the OPEN instruction again.

(6) If an incorrect syntax is used, an error occurs when the program is executed, not when the program is edited.

[Related Parameters]

NETHSTIP, NETPORT

4Explanation of functions

4-6

4.3. Real-time external control function
The robot motion movement control can retrieve the position command at real-time in cycle units, and move to the

commanded position. It is also possible to monitor the input/output signals or output the signals simultaneously.

Using the robot language MXT command, real-time communication (command/monitor) is carried out with communication.

 Real-time external control packet
data * transmission/reception

CRn-500 robot controller
Robot program E t h e r n e t Windows personal

computer application

O P E N
P R I N T #
I N P U T #

Motion movement control cycle (approx. 7.1ms)

Command value calculation

Personal computer

Robot controller

Command position
transmission/reception

The following table lists the position command data for giving the target move position from the personal computer to the

robot for each hour of the motion operation control cycle, and the monitor data types from the robot.

For more information about communication data, see Section 4.3.1, “Command Explanation” and Section 4.3.2,

“Communication Data Packet Explanation” in this document.

Position command data type Monitor data type
[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data

[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data
[4] Rectangular coordinate data (command value after filter processing)
[5] Joint coordinate data (command value after filter processing)
[6] Motor pulse coordinate data (after filter processing)
[7] Rectangular coordinate data (encoder feedback value)
[8] Joint coordinate data (encoder feedback value)
[9] Motor pulse coordinate data (encoder feedback value)
[10] Current command (%)
[11] Current feedback (%)

Note: Items [7] through [11] are supported in software version H7 or later.

4Explanation of functions

4-7

* Flow of real-time external control

Robot program end

Robot program start

Robot program start

Execute process only

when command is issued

Packet data

transmission

Application program end

Reception of packet data

Transmission of packet data

Ethernet initialization, socket

creation, etc.

Application program start

Creation of transmission
packet data

Robot program start

 Automatically

 repeated until end

 command is received
 End command received?

 Robot controller side Personal

Communication

packet data

4Explanation of functions

4-8

4.3.1. Explanation of command
Either the MELFA-BASICIV or MOVEMASTER command languages can be used with the real-time external control

function.

Note that the meanings of the arguments differ for the MELFA-BASICIV and MOVEMASTER commands. (Refer to

following format and terminology.)

Refer to section "4.3.2 Explanation of communication data packet" for details on the structure of the communication data

packet used with this function.

MXT (Move External)
[Function]

The absolute position data is retrieved from an external source at each controller control time (currently approx. 7.1msec),

and the robot is directly moved.

[Format]

(1) For MELFA-BASICIV

MXT <File No.>, <Reply position data type> [, <Filter time constant>]

(2) For MOVEMASTER command

MXT <Communication destination No.>, <Reply position data type> [, <Filter time constant>]

[Terminology]

(1) For MELFA-BASICIV

<File No.> Describe a number between 1 and 8 assigned with the OPEN command.

 If the communication destination is not designated with the OPEN command, an

 error will occur, and communication will not be possible.

 In addition, data received from a source other than the communication destination

 will be ignored.

(2) For MOVEMASTER command

<Communication destination No.> Describe the communication destination as a number between 1 and 3 assigned

 with the parameters MXTCOM1 to MXTCOM3.

 Designate the communication destination as an IP address in parameters

 MXTCOM1 to MXTCOM3. Communication will not be possible if not designated.

 In addition, data received from a source other than the communication destination

 will be ignored.

 For example, to assign the personal computer IP address 192.168.0.2 for the

 communication destination No. 1, set 192.168.0.2 in parameter MXTCOM1.

Settings common for MELFA-BASICIV and MOVEMASTER command

<Replay position data type> Designate the type of the position data to be received from the personal computer.

 A XYZ/joint/motor pulse can be designated.

0: XYZ coordinate data

 1: Joint coordinate data

 2: Motor pulse coordinate data

<Filter time constant> Designate the filter time constant (msec). If 0 is designated, the filter will not be

 applied. (0 will be set when omitted.) A filter is applied on the reception position

 data, an obtuse command value is created and output to the servo.

4Explanation of functions

4-9

[Reference Program]

(1) For MELFA-BASICIV

10 OPEN "ENET; 192.168.0.2" AS #1Set ‘Ethernet communication destination IP address

20 MOV P1 ‘Move to P1

30 MXT1,1,50 ‘Move with real-time external control with filter time constant set to

50msec

40 MOV P1 ‘Move to P1

50 HLT ‘Halt program

(2) For MOVEMASTER command

Set the Ethernet communication destination personal computer IP address as 192.168.0.2 in parameter MXTCOM1.

10 MO 1 ’Move to position 1

20 MXT 1,1,50 ’Move with real-time external control with filter time constant set to

50msec

30 MO 1 ’Move to position 1

40 HLT ’Halt program

[Explanation]

* When the MXT command is executed, the position command for movement control can be retrieved from the personal

computer connected on the network. (One-on-one communication)

* One position command can be retrieved and operated at the operation control time (currently 7.1msec).

* Operation of MXT command

1) When this command is executed with the controller, the controller enters the command value reception enabled state.

2) When the controller receives the command value from the personal computer, it will output the received command

value to the servo within the next control process cycle.

3) After the command value is sent to the servo, the controller information, such as the current position is sent from the

controller to the personal computer.

4) A reply is made from the controller to the personal computer only when the command value from the personal

computer is sent to the controller.

5) If the data is not received, the current position is maintained.

6) When the real-time external command end command is received from the personal computer, the MXT command is

ended.

7) When the operation is stopped from the operating panel or external input, the MXT command will be halted, and the

transmission/reception will also be halted until restart.

* The timeout is designated with the parameter MXTTOUT.

* One randomly designated (head bit, bit width) input/output signal can be transmitted and received simultaneously with the

position data.

* A personal computer with sufficient processing speed must be used to command movement in the movement control time.

A Windows NT or 2000/Pentium II 450MHz or higher console application is recommended.

4Explanation of functions

4-10

4.3.2. Explanation of communication data packet
The structure of the communication data packet used with the real-time external control function is explained in this section.

The same communication data packet for real-time external control is used for commanding the position and for monitoring.

The contents differ when transmitting (commanding) from the personal computer to the controller and when receiving

(monitoring) from the controller to the personal computer.

Refer to the following communication data packet structure and section "5.2.2 Sample program for real-time external control

function", and create the application. The C language data type is used in the following table. In addition, there are the

communication data packet 1 and the communication data packet 2 by the software version of the controller. Choose

according to the software version of the controller of use. Refer to "1.5 Checking the robot controller software version" for

check method of the version.

(1) Communication data packet 1. When the software version is H6 or earlier.
Name Data type Explanation

Command unsigned short
(2-byte)

Designate the validity of the real-time external command, and the end.
0 // Real-time external command invalid
1 // Real-time external command valid
255 // Real-time external command end

Transmission data type
designation
SendType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of position data transmitted from the
personal computer.
There is no data at the first transmission.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)

Reply data type
designation
RecvType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)

2) When receiving (monitoring) from the controller to the personal
computer, this has no significant meaning.

Reservation
reserve

unsigned short
(2byte)

Not used.

4Explanation of functions

4-11

Name Data type Explanation
Position data
Pos / jnt / pls

POSE, JOINT or
PULSE (40-byte)

* Refer to strdef.h
in the sample
program for
details on each
data structure.

1) When transmitting (commanding) from the personal computer to the
controller, designate the command position data transmitted from the
personal computer.
Set this to the same data type as that designated for the transmission data
type designation.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the position data replied from the controller.

The contents of the data are common.

POSE // XYZ type [mm/rad]
JOINT // Joint type [rad]
PULSE // Motor pulse type [pulse]

Transmission
input/output signal data
designation
SendIOType

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal transmitted
from the personal computer.
Designate "No data" when not using this function.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the data type of the input/output signal replied
from the controller.

The contents of the data are common.

0 // No data
1 // Output signal
2 // Input signal

Reply input/output
signal data designation
RecvIOType

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal replied from
the controller.
Designate "No data" when not using this function.

0 // No data
1 // Output signal
2 // Input signal

2) When receiving (monitoring) from the controller to the personal
computer, this has no significant meaning.

Input/output signal data
BitTop
BitMask
IoData

unsigned short
unsigned short
unsigned short

(2-byte x 3)

1) When transmitting (commanding) from the personal computer to the
controller, designate the output signal data transmitted from the personal
computer.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the input/output signal data replied from the
controller.

The contents of the data are common.

BitTop; // Head bit No. of input or output signal
BitMask; // Bit mask pattern designation (valid only for

commanding)
IoData; // Input or output signal data value (for monitoring)

Output signal data value (for commanding)
* Data is 16-bit data

Timeout time counter
value

1) When transmitting (commanding) from the personal computer to the
controller, this has no significant meaning.

4Explanation of functions

4-12

Name Data type Explanation
Tcount unsigned short

(2-byte)

2) When receiving (monitoring) from controller to personal computer, if the
timeout time parameter MXTTOUT is a value other than -1, this indicates
the No. of times communication with the controller was not possible. When
the No. of times is counted and reaches the maximum value, the value will
return to the minimum value 0, and the count will be repeated. This is set
to 0 when the MXT command is started.

Counter value for
communication data
Ccount

unsigned long

(4-byte)

1) When transmitting (commanding) from the personal computer to the
controller, this has no significant meaning.

2) When receiving (monitoring) from controller to personal computer, this
indicates the No. of communication times. When the No. of times is
counted and reaches the maximum value, the value will return to the
minimum value 0, and the count will be repeated. This is set to 0 when the
MXT command is started.

(2) Communication data packet 2. When the software version is H7 or later.

Command unsigned short
(2-byte)

Designate the validity of the real-time external command, and the end.
0 // Real-time external command invalid
1 // Real-time external command valid
255 // Real-time external command end

Transmission data type
designation
SendType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of position data transmitted from the
personal computer.
There is no data at the first transmission.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

Reply data type
designation
RecvType

unsigned short
(2-byte)

�1) When transmitting (commanding) from the personal computer to the
controller, designate the type of data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // pulse data

4Explanation of functions

4-13

4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

Reservation
reserve

unsigned short
(2byte)

Not used.

Position data
Pos / jnt / pls

POSE, JOINT or
PULSE (40-byte)

* Refer to strdef.h
in the sample
program for
details on each
data structure.

1) When transmitting (commanding) from the personal computer to the
controller, designate the command position data transmitted from the
personal computer.
Set this to the same data type as that designated for the transmission data
type designation.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the position data replied from the controller.
The data type is shown in SendType (= RecvType) .

The contents of data are common to command/monitor.

POSE // XYZ type [mm/rad]
JOINT // Joint type [rad]
PULSE // Motor pulse type [the pulse] or Current type [%].

Transmission
input/output signal data
designation
SendIOType

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal transmitted
from the personal computer.
Designate "No data" when not using this function.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the data type of the input/output signal replied
from the controller.

The contents of the data are common.

0 // No data
1 // Output signal
2 // Input signal

Reply input/output
signal data designation

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal replied from

4Explanation of functions

4-14

RecvIOType unsigned short
(2-byte)

the controller.
Designate "No data" when not using this function.

0 // No data
1 // Output signal
2 // Input signal

2) When receiving (monitoring) from the controller to the personal
computer, Not used.

Input/output signal data
BitTop
BitMask
IoData

unsigned short
unsigned short
unsigned short
(2-byte x 3)

1) When transmitting (commanding) from the personal computer to the
controller, designate the output signal data transmitted from the personal
computer.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the input/output signal data replied from the
controller.

The contents of the data are common.

BitTop; // Head bit No. of input or output signal
BitMask; // Bit mask pattern designation (valid only for

commanding)
IoData; // Input or output signal data value (for monitoring)

Output signal data value (for commanding)
* Data is 16-bit data

Timeout time counter
value
Tcount

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, Not used.

2) When receiving (monitoring) from controller to personal computer, if the
timeout time parameter MXTTOUT is a value other than -1, this indicates
the No. of times communication with the controller was not possible. When
the No. of times is counted and reaches the maximum value, the value will
return to the minimum value 0, and the count will be repeated. This is set
to 0 when the MXT command is started.

Counter value for
communication data
 Ccount

unsigned long

(4-byte)

1) When transmitting (commanding) from the personal computer to the
controller, Not used.

2) When receiving (monitoring) from controller to personal computer, this
indicates the No. of communication times. When the No. of times is
counted and reaches the maximum value, the value will return to the
minimum value 0, and the count will be repeated. This is set to 0 when the
MXT command is started.

Reply data-type
specification addition
1
 RecvType1

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Don't use it for instructions.

Reservation 1
 reserve1

unsigned short
(2-byte)

Not used.

Data addition 1
 pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Don't use it for instructions.

Reply data-type
specification addition
2
 RecvType2

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Don't use it for instructions.

Reservation 2 unsigned short Not used.

4Explanation of functions

4-15

 Reserve2 (2-byte)
Data addition 2
 pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Don't use it for instructions.

Reply data-type
specification addition
3
 RecvType3

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Don't use it for instructions.

Reservation 3
 Reserve3

unsigned short
(2-byte)

Not used.

Data addition 3
 pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Don't use it for instructions.

4Explanation of functions

4-16

5Appendix

5-1

5. Appendix

5.1. Error list

The errors which occur only when the Ethernet interface is used are listed as follows.

Error No. Error causes and remedies

7800

■ Two Ethernet interfaces are installed.

Cause) One Ethernet interface alone is allowed to install.

Measures) Install one Ethernet interface.

■ Initialization error of Ethernet interface.

Cause) The card is faulted.

Measures) Replace the card.

7810

■ Parameter ***** setting error of Ethernet interface parameter.

 Cause) ***** parameter is wrongly set. (The parameter name is input in *****.)

 Measures) Check the setting content of the parameter.

7820

■ MXT Command time out.

Cause) The time set in parameter MXTTOUT was exceeded.

Measures) Check parameter MXTTOUT.

7830

■ Ethernet interface not installed.

Cause) The Ethernet interface is not installed.

Measures) Install the Ethernet interface.

7840

■ Received MXT command data illegal.

Cause) The command argument and data type do not match.

Measures) Check the contents of the command and the communication data packet to be transmitted.

For the other errors except these, refer to the errors list of the instruction manual of the controller.

5Appendix

5-2

5.2. Sample program

This is the sample program of the Ethernet interface.

5.2.1. Sample program of data link

The sample program to do the data link with Microsoft Visual Basic 5.0/6.0 (hereafter written as VB) is herein described.

The program creation is briefly introduced with the following procedure.

For details of VB operation and application producing method, refer to the instruction manual of this software.

(1) Preparation of Winsock control

(2) Production of form screen

(3) Program (Form1.frm)

There is the program following 2 passages. Use either according to the customer's system.
1) Program for the clients (when using the personal computer as the client and using the controller as the server).
2) Program for the server (when using the personal computer as the server and using the controller as the client).
* About the work of 1) 2), the client and the server are the same.

Here, VB requires either Professional Edition or Enterprise Edition. Learning Edition can not be used since Winsock

(Windows Socket) control is not appended.

5Appendix

5-3

(1) Preparation of Winsock control

Winsock control is added to the project.

Start-up VB, newly open standard EXE and click "component" of "project" menu, and the window will be displayed as

follows. And, check "Microsoft Winsock Control **". (Lower left drawing ** represents the version)

"Winsock" is added to the tool box. (Lower right drawing)

(2) Production of form screen

 On the form, 4 test boxes, 1 command button, 1 check box and 1 Winsock control are arranged.

 The major change points of the properties are shown below.

Major changed points of properties

Object name Property Setting value

Form1 Caption Data link

Caption Send Command1

Enabled False

Text1 Text 192.168.0.1

Text2 Text 10003

Text3 Text

MultiLine True Text4

ScrollBars 2-Vertical

Check1 Caption Connection

5Appendix

5-4

(3) Program (Form1.frm)
VERSION 5.00
Object = "{248DD890-BB45-11CF-9ABC-0080C7E7B78D}#1.0#0"; "MSWINSCK.OCX"

Begin VB.Form Form1 'Screen setting From here ↓
 Caption = "Data link"
 ClientHeight = 3795
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4800
 LinkTopic = "Form1"
 ScaleHeight = 3795
 ScaleWidth = 4800
 StartUpPosition = 3 Predefined value of Windows
 Begin MSWinsockLib.Winsock Winsock1
 Left = 2040
 Top = 2040
 _ExtentX = 741
 _ExtentY = 741
 End
 Begin VB.CommandButton Command1
 Caption = "Send"
 Enabled = 0 'False
 Height = 375
 Left = 3960
 TabIndex = 6
 Top = 1080
 Width = 735
 End
 Begin VB.CheckBox Check1
 Caption = "Connection"
 Height = 375
 Left = 3960
 TabIndex = 4
 Top = 360
 Width = 735
 End
 Begin VB.TextBox Text4
 Height = 1815
 Left = 120
 MultiLine = -1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 7
 Top = 1800
 Width = 4575
 End
 Begin VB.TextBox Text3
 Height = 375
 Left = 120
 TabIndex = 5
 Top = 1080
 Width = 3735
 End
 Begin VB.TextBox Text2
 Height = 375
 Left = 2280
 TabIndex = 3
 Text = "10003"

5Appendix

5-5

 Top = 360
 Width = 1575
 End
 Begin VB.TextBox Text1
 Height = 375
 Left = 120
 TabIndex = 2
 Text = "192.168.0.1"
 Top = 360
 Width = 2055
 End
 Begin VB.Label Label4
 Caption = "Receive data"
 Height = 195
 Left = 120
 TabIndex = 9
 Top = 1560
 Width = 975
 End
 Begin VB.Label Label3
 Caption = "Send data"
 Height = 195
 Left = 120
 TabIndex = 8
 Top = 840
 Width = 975
 End
 Begin VB.Label Label2
 Caption = "Port No."
 Height = 195
 Left = 2280
 TabIndex = 1
 Top = 120
 Width = 975
 End
 Begin VB.Label Label1
 Caption = "IP address"
 Height = 255
 Left = 120
 TabIndex = 0
 Top = 120
 Width = 1095
 End
End 'Screen setting To here ↑

Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

5Appendix

5-6

1) Program for the clients (when using the personal computer as the client and using the controller as the server).

Option Explicit
Dim RecvData() As Byte

Private Sub Check1_Click() ' Process when the connection check button is clicked
If Check1.Value Then
 Winsock1.RemoteHost = Text1.Text
 Winsock1.RemotePort = Text2.Text
 Winsock1.Connect
Else
 Winsock1.Close
End If
End Sub

Private Sub Winsock1_Connect() ' Process when the network can be connected
 Command1.Enabled = True
End Sub

Private Sub Winsock1_Close() ' Process when the network is closed
 Check1.Value = False
End Sub

Private Sub Command1_Click() ' Process when "Transmission" command button is clicked
 Winsock1.SendData (Text3.Text)
End Sub

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long) ' Process when the received data arrives
 If bytesTotal > 0 Then
 ReDim RecvData(bytesTotal - 1)
 Call Winsock1.GetData(RecvData, , bytesTotal)
 Text4.SelStart = Len(Text4.Text)
 Text4.SelText = StrConv(RecvData, vbUnicode)
 End If
End Sub

Private Sub Winsock1_Error(ByVal Number As Integer, _
 Description As String, ByVal Scode As Long, _
 ByVal Source As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, CancelDisplay As Boolean) ' Process when an error occurs in Window Socket
 Check1.Value = False
 Command1.Enabled = False
 Winsock1.Close
 MsgBox " Error:" & Number & "(" & Description & ")"
End Sub

5Appendix

5-7

2) Program for the server (when using the personal computer as the server and using the controller as the client).

Option Explicit
Dim RecvData() As Byte

Private Sub Form_Load()
 Text1.Enabled = False ' Make edit of the IP address impossible.
End Sub

Private Sub Check1_Click() ' Process when the connection check button is clicked
 If Check1.Value Then
 Text1.Text = Winsock1.LocalIP
 Winsock1.LocalPort = Text2.Text
 Winsock1.Listen
 Else
 Command1.Enabled = False
 Winsock1.Close
 End If
End Sub

Private Sub Winsock1_Connect() ' Process when the network can be connected
 Command1.Enabled = True
End Sub

Private Sub Winsock1_Close() ' Process when the network is closed
 Check1.Value = False
End Sub

Private Sub Command1_Click() ' Process when "Transmission" command button is clicked
 Winsock1.SendData (Text3.Text)
End Sub

Private Sub Winsock1_ConnectionRequest(ByVal requestID As Long) ' Process when the connection demand comes
 If Winsock1.State <> sckClosed Then Winsock1.Close
 Winsock1.Accept requestID
 Command1.Enabled = True
End Sub

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long) ' Process when the received data arrives
 If bytesTotal > 0 Then
 ReDim RecvData(bytesTotal - 1)
 Call Winsock1.GetData(RecvData, , bytesTotal)
 Text4.SelStart = Len(Text4.Text)
 Text4.SelText = StrConv(RecvData, vbUnicode)
 Text4.Text = Text4.Text & vbCrLf
 End If
End Sub

Private Sub Winsock1_Error(ByVal Number As Integer, _
 Description As String, ByVal Scode As Long, _
 ByVal Source As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, CancelDisplay As Boolean) ' Process when an error occurs in Window Socket
 Check1.Value = False
 Command1.Enabled = False
 Winsock1.Close
 MsgBox "Error:" & Number & "(" & Description & ")"
End Sub

5Appendix

5-8

 Relation of OPEN command communication line file

name COMn: and parameter COMDEV

COMDEV (1), (2), (3), (4), (5), (6), (7), (8)

Communication line file name COMDEV

COM1: (1)

COM2: (2)

COM3: (3)

COM4: (4)

COM5: (5)

COM6: (6)

COM7: (7)

COM8: (8)

 Channel name assigned to parameter COMDEV and

protocol setting parameter name

OPT11 to OPT19 are assigned to (1) to (8).

The protocol is set in 2 (data link).

Channel name Protocol

Port No.*1 COMDEV
setting value

CPRCE** Setting value

10001 OPT11 CPRCE11 2
10002 OPT12 CPRCE12 2
10003 OPT13 CPRCE13 2
10004 OPT14 CPRCE14 2
10005 OPT15 CPRCE15 2
10006 OPT16 CPRCE16 2
10007 OPT17 CPRCE17 2
10008 OPT18 CPRCE18 2
10009 OPT19 CPRCE19 2

*1... The port No. can be changed with parameter NETPORT.

5Appendix

5-9

5.2.2. Sample program for real-time external control function
A sample program that establishes a data link using Microsoft Visual C++5.0/6.0 (hereinafter VC) is shown below.
The procedures for creating the program are briefly explained below.
Refer to the software manuals for details on operating VC and creating the application.

(1) Create new project
(2) Create program sample.cpp/strdef.h

 (1) Create new project
Start VC, and create a new project. Set the name to Win32 Console Application.

Using the project setting, add wsock32.lib to the object/library module.

(2) Create program sample.cpp/strdef.h

Newly create the header file strdef.h and source file sample.cpp.

Make the comment a part of header file strdef.h according to the software version of the controller of use. (Refer to the list

of strdef.h shown below for detail).

Refer to "1.5 Checking the robot controller software version" for check method of the version.

<Notes at compiling>

Use the setup of the alignment compiler option of the structure member with the 8 bytes of initial value. After new creation

of the project of Visual C++, if the setup is used with initial value, there is no problem. Refer to the help of Visual C++ for

details.

5Appendix

5-10

 Header file strdef.h

//**
// Real-time control sample program
// Communication packet data structure definition header file
//**
// strdef.h

// If the software version of the controller is H7 or later, validate the following define line.
// If the version is H6 or earlier, make the following line the comment. (invalid).
#define VER_H7

/***/
/* Joint coordinate system (Set unused axis to 0) */
/* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/***/
typedef struct{
 float j1; // J1 axis angle (radian)
 float j2; // J2 axis angle (radian)
 float j3; // J3 axis angle (radian)
 float j4; // J4 axis angle (radian)
 float j5; // J5 axis angle (radian)
 float j6; // J6 axis angle (radian)
 float j7; // Additional axis 1 (J7 axis angle) (radian)
 float j8; // Additional axis 2 (J8 axis angle) (radian)
} JOINT;

/***/
/* XYZ coordinate system (Set unused axis to 0) */
/* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/***/
typedef struct{
 float x; // X axis coordinate value (mm)
 float y; // Y axis coordinate value (mm)
 float z; // Z axis coordinate value (mm)
 float a; // A axis coordinate value (radian)
 float b; // B axis coordinate value (radian)
 float c; // C axis coordinate value (radian)
 float l1; // Additional axis 1 (mm or radian)
 float l2; // Additional axis 2 (mm or radian)
} WORLD;

typedef struct{
 WORLD w;
 unsigned int sflg1; // Structural flag 1
 unsigned int sflg2; // Structural flag 2
} POSE;

/***/
/* Pulse coordinate system (Set unused axis to 0) */
/* These coordinates express each joint */
/* with a motor pulse value. */
/***/
typedef struct{
 long p1; // Motor 1 axis
 long p2; // Motor 2 axis

5Appendix

5-11

 long p3; // Motor 3 axis
 long p4; // Motor 4 axis
 long p5; // Motor 5 axis
 long p6; // Motor 6 axis
 long p7; // Additional axis 1 (Motor 7 axis)
 long p8; // Additional axis 2 (Motor 8 axis)
} PULSE;

/**/
/* Real-time function communication data packet */
/**/
typedef struct enet_rtcmd_str {
 unsigned short Command; // Command
#define MXT_CMD_NULL 0 // Real-time external command invalid
#define MXT_CMD_MOVE 1 // Real-time external command valid
#define MXT_CMD_END 255 // Real-time external command end

 unsigned short SendType; // Command data type designation
 unsigned short RecvType; // Monitor data type designation

 //////////// Command or monitor data type ///
#define MXT_TYP_NULL 0 // No data
 // For the command and monitor ////////////////////
#define MXT_TYP_POSE 1 // XYZ data
#define MXT_TYP_JOINT 2 // Joint data
#define MXT_TYP_PULSE 3 // pulse data
 ///////////// For position related monitor ///
#define MXT_TYP_FPOSE 4 // XYZ data (after filter process)
#define MXT_TYP_FJOINT 5 // Joint data (after filter process)
#define MXT_TYP_FPULSE 6 // Pulse data (after filter process)
#define MXT_TYP_FB_POSE 7 // XYZ data (Encoder feedback value) <H7A>
#define MXT_TYP_FB_JOINT 8 // Joint data (Encoder feedback value) <H7A>
#define MXT_TYP_FB_PULSE 9 // Pulse data (Encoder feedback value) <H7A>
 // For current related monitors //////////////////// <H7A>
#define MXT_TYP_CMDCUR 10 // Electric current command <H7A>
#define MXT_TYP_FBKCUR 11 // Electric current feedback <H7A>

 unsigned short reserve; // Reserved
 union rtdata { // Command data
 POSE pos; // XYZ type [mm/rad]
 JOINT jnt; // Joint type [rad]
 PULSE pls; // Pulse type [pls]

long lng1[8]; // Integer type [% / non-unit]
 } dat;

 unsigned short SendIOType; // Send input/output signal data designation
 unsigned short RecvIOType; // Return input/output signal data designation
#define MXT_IO_NULL 0 // No data
#define MXT_IO_OUT 1 // Output signal
#define MXT_IO_IN 2 // Input signal

 unsigned short BitTop; // Head bit No.
 unsigned short BitMask; // Transmission bit mask pattern designation (0x0001-0xffff)
 unsigned short IoData; // Input/output signal data (0x0000-0xffff)

 unsigned short TCount; // Timeout time counter value
 unsigned long CCount; // Transmission data counter value

5Appendix

5-12

#ifdef VER_H7
 unsigned short RecvType1; // Reply data-type specification 1 .
 unsigned short reserve1; // Reserved 1
 union rtdata1 { // Monitor data 1 .
 POSE pos1; // XYZ type [mm/rad] .
 JOINT jnt1; // JOINT type [mm/rad] .
 PULSE pls1; // PULSE type [mm/rad] .
 long lng1[8]; // Integer type [% / non-unit] .
 } dat1;
 unsigned short RecvType2; // Reply data-type specification 2 .
 unsigned short reserve2; // Reserved 2
 union rtdata2 { // Monitor data 2 .
 POSE pos2; // XYZ type [mm/rad] .
 JOINT jnt2; // JOINT type [mm/rad] .
 PULSE pls2; // PULSE type [mm/rad] or Integer type [% / non-unit].
 long lng2[8]; // Integer type [% / non-unit] .
 } dat2;
 unsigned short RecvType3; // Reply data-type specification 3 .
 unsigned short reserve3; // Reserved 3
 union rtdata3 { // Monitor data 3 .
 POSE pos3; // XYZ type [mm/rad] .
 JOINT jnt3; // JOINT type [mm/rad] .
 PULSE pls3; // PULSE type [mm/rad] or Integer type [% / non-unit].
 long lng3[8]; // Integer type [% / non-unit] .
 } dat3;
#endif

} MXTCMD;

 Source file sample.cpp
// sample.cpp

// Change the definition in the "strdef.h" file by the S/W version of the controller.
// Refer to the "strdef.h" file for details.

#include <windows.h>
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <math.h>
#include "strdef.h"
#define NO_FLAGS_SET 0
#define MAXBUFLEN 512

INT main(VOID)
{
 WSADATA Data;
 SOCKADDR_IN destSockAddr;
 SOCKET destSocket;
 unsigned long destAddr;
 int status;
 int numsnt;
 int numrcv;
 char sendText[MAXBUFLEN];
 char recvText[MAXBUFLEN];

5Appendix

5-13

 char dst_ip_address[MAXBUFLEN];
 unsigned short port;
 char msg[MAXBUFLEN];
 char buf[MAXBUFLEN];
 char type, type_mon[4];
 unsigned short IOSendType; // Send input/output signal data designation
 unsigned short IORecvType; // Reply input/output signal data designation
 unsigned short IOBitTop=0;
 unsigned short IOBitMask=0xffff;
 unsigned short IOBitData=0;

 cout << " Input connection destination IP address (192.168.0.1) ->";
 cin.getline(dst_ip_address, MAXBUFLEN);
 if(dst_ip_address[0]==0) strcpy(dst_ip_address, "192.168.0.1");

 cout << " Input connection destination port No. (10000) -> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) port=atoi(msg);
 else port=10000;

 cout << " Use input/output signal?（[Y] / [N]）-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0 && (msg[0]=='Y' || msg[0]=='y')) {
 cout << " What is target? Input signal/output signal（[I]nput / [O]utput）-> ";
 cin.getline(msg, MAXBUFLEN);
 switch(msg[0]) {
 case 'O': // Set target to output signal
 case 'o':
 IOSendType = MXT_IO_OUT;
 IORecvType = MXT_IO_OUT;
 break;
 case 'I': // Set target to input signal
 case 'i':
 default:
 IOSendType = MXT_IO_NULL;
 IORecvType = MXT_IO_IN;
 break;
 }

 cout << " Input head bit No. （0～32767）-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) IOBitTop = atoi(msg);
 else IOBitTop = 0;

 if(IOSendType==MXT_IO_OUT) { // Only for output signal
 cout << " Input bit mask pattern for output as hexadecimal （0000～FFFF）-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitMask);
 else IOBitMask = 0;
 cout << " Input bit data for output as hexadecimal （0000～FFFF）-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitData);
 else IOBitData = 0;
 }
 }

cout <<" --- Input the data type of command. --- ¥n";
cout <<"[0: None / 1: XYZ / 2:JOINT / 3: PULSE]¥n".;
cout <<" -- please input the number -- [0] - [3]->";

5Appendix

5-14

 cin.getline(msg, MAXBUFLEN);
 type = atoi(msg);

#ifdef VER_H7
 for(int k=0; k<4; k++) {
 sprintf (msg," --- input the data type of monitor (%d-th) --- ¥n", k); .
 cout << msg;
 cout << "[0: None]¥n";
 cout << "[1: XYZ / 2:JOINT / 3: PULSE] Command value ¥n";
 cout << "[4: XYZ/ 5: JOINT/ 6: PULSE] Command value after the filter process ¥n";
 cout << "[7: XYZ/ 5:JOINT/ 6:PULSE] Feedback value. ¥n";
 cout << "[10: Electric current value / 11: Electric current feedback] ... Electric current value. ¥n";
 cout << "Input the numeral [0]～[11] -> ";
 cin.getline(msg, MAXBUFLEN);
 type_mon[k] = atoi(msg);
 }
#else
 type_mon[0]=type;
 type_mon[1]=type_mon[2]=type_mon[3]=0;
#endif
 sprintf(msg, "IP=%s / PORT=%d / Send Type=%d / Monitor Type0/1/2/3=%d/%d/%d/%d"

, dst_ip_address, port , type
, type_mon[0], type_mon[1], type_mon[2], type_mon[3]);
 cout << msg << endl;

 cout << "[Enter]= End ／ [d]= Monitor data display";
 cout << "[z/x]= Increment/decrement first command data transmitted by the delta amount. ";

 cout << " Is it all right? [Enter] / [Ctrl+C] ";
 cin.getline(msg, MAXBUFLEN);

 // Windows Socket DLL initialization
 status=WSAStartup(MAKEWORD(1, 1), &Data);
 if (status != 0)
 cerr << "ERROR: WSAStartup unsuccessful" << endl;

 // IP address, port, etc., setting
 memset(&destSockAddr, 0, sizeof(destSockAddr));
 destAddr=inet_addr(dst_ip_address);
 memcpy(&destSockAddr.sin_addr, &destAddr, sizeof(destAddr));
 destSockAddr.sin_port=htons(port);
 destSockAddr.sin_family=AF_INET;

 // Socket creation
 destSocket=socket(AF_INET, SOCK_DGRAM, 0);
 if (destSocket == INVALID_SOCKET) {
 cerr << "ERROR: socket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }

 MXTCMD MXTsend;
 MXTCMD MXTrecv;
 JOINT jnt_now;
 POSE pos_now;
 PULSE pls_now;

5Appendix

5-15

 unsigned long counter = 0;
 int loop = 1;
 int disp = 0;
 int disp_data = 0;
 int ch;
 float delta=(float)0.0;
 long ratio=1;
 int retry;
 fd_set SockSet; // Socket group used with select
 timeval sTimeOut; // For timeout setting

 memset(&MXTsend, 0, sizeof(MXTsend));
 memset(&jnt_now, 0, sizeof(JOINT));
 memset(&pos_now, 0, sizeof(POSE));
 memset(&pls_now, 0, sizeof(PULSE));

 while(loop) {

 memset(&MXTsend, 0, sizeof(MXTsend));
 memset(&MXTrecv, 0, sizeof(MXTrecv));

 // Transmission data creation
 if(loop==1) { // Only first time
 MXTsend.Command = MXT_CMD_NULL;
 MXTsend.SendType = MXT_TYP_NULL;
 MXTsend.RecvType = type;
 MXTsend.SendIOType = MXT_IO_NULL;
 MXTsend.RecvIOType = IOSendType;
 MXTsend.CCount = counter = 0;
 }
 else { // Second and following times
 MXTsend.Command = MXT_CMD_MOVE;
 MXTsend.SendType = type;
 MXTsend.RecvType = type*_mon[0];
#ifdef VER_H7
 MXTsend.RecvType1= type_mon[1];
 MXTsend.RecvType2= type_mon[2];
 MXTsend.RecvType3= type_mon[3];
#endif
 switch(type) {
 case MXT_TYP_JOINT:
 memcpy(&MXTsend.dat.jnt, &jnt_now, sizeof(JOINT));
 MXTsend.dat.jnt.j1 += (float)(delta*ratio*3.141592/180.0);
 break;
 case MXT_TYP_POSE:
 memcpy(&MXTsend.dat.pos, &pos_now, sizeof(POSE));
 MXTsend.dat.pos.w.x += (delta*ratio);
 break;
 case MXT_TYP_PULSE:
 memcpy(&MXTsend.dat.pls, &pls_now, sizeof(PULSE));
 MXTsend.dat.pls.p1 += (long)((delta*ratio)*10);
 break;
 default:
 break;
 }
 MXTsend.SendIOType = IOSendType;
 MXTsend.RecvIOType = IORecvType;

5Appendix

5-16

 MXTsend.BitTop = IOBitTop;
 MXTsend.BitMask =IOBitMask;
 MXTsend.IoData = IOBitData;
 MXTsend.CCount = counter;
 }

// Keyboard input
// [Enter]=End / [d]= Display the monitor data, or none / [0/1/2/3]= Change of monitor data display
// [z/x]=Increment/decrement first command data transmitted by the delta amount
while(kbhit()!=0) {

 ch=getch();
 switch(ch) {
 case 0x0d:
 MXTsend.Command = MXT_CMD_END;
 loop = 0;
 break;
 case 'Z':
 case 'z':
 delta += (float)0.1;
 break;
 case 'X':
 case 'x':
 delta -= (float)0.1;
 break;
 case 'C':
 case 'c':
 delta = (float)0.0;
 break;
 case 'd':
 disp = ~disp;
 break;
 case '0': case '1': case '2': case '3':
 disp_data = ch - '0';
 break;
 }
 }

 memset(sendText, 0, MAXBUFLEN);
 memcpy(sendText, &MXTsend, sizeof(MXTsend));
 if(disp) {
 sprintf(buf, "Send (%ld):",counter);
 cout << buf << endl;
 }

numsnt=sendto(destSocket, sendText, sizeof(MXTCMD), NO_FLAGS_SET
, (LPSOCKADDR) &destSockAddr, sizeof(destSockAddr));

 if (numsnt != sizeof(MXTCMD)) {
 cerr << "ERROR: sendto unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }

 memset(recvText, 0, MAXBUFLEN);

5Appendix

5-17

 retry = 1; // No. of reception retries
 while(retry) {
 FD_ZERO(&SockSet); // SockSet initialization
 FD_SET(destSocket, &SockSet); // Socket registration
 sTimeOut.tv_sec = 1; // Transmission timeout setting (sec)
 sTimeOut.tv_usec = 0; // (μsec)
 status = select(0, &SockSet, (fd_set *)NULL, (fd_set *)NULL, &sTimeOut);
 if(status == SOCKET_ERROR) {
 return(1);
 }
 // If it receives by the time-out
 if((status > 0) && (FD_ISSET(destSocket, &SockSet) != 0)) {
 numrcv=recvfrom(destSocket, recvText, MAXBUFLEN, NO_FLAGS_SET, NULL, NULL);
 if (numrcv == SOCKET_ERROR) {
 cerr << "ERROR: recvfrom unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }
 memcpy(&MXTrecv, recvText, sizeof(MXTrecv));
 char str[10];
 if(MXTrecv.SendIOType==MXT_IO_IN)

 sprintf(str,"IN%04x", MXTrecv.IoData);
 else if(MXTrecv.SendIOType==MXT_IO_OUT)

 sprintf(str,"OT%04x", MXTrecv.IoData);
 else sprintf(str,"------");

 int DispType;
 void *DispData;
#ifdef VER_H7
 switch(disp_data) {
 case 0:
 DispType = MXTrecv.RecvType;
 DispData = &MXTrecv.dat;
 break;
 case 1:
 DispType = MXTrecv.RecvType1;
 DispData = &MXTrecv.dat1;
 break;
 case 2:
 DispType = MXTrecv.RecvType2;
 DispData = &MXTrecv.dat2;
 break;
 case 3:
 DispType = MXTrecv.RecvType3;
 DispData = &MXTrecv.dat3;
 break;
 default:
 break;
 }
#else
 DispType = MXTrecv.SendType;
 DispData = &MXTrecv.dat;
#endif

5Appendix

5-18

 switch(DispType) {
 case MXT_TYP_JOINT:
 case MXT_TYP_FJOINT:
 case MXT_TYP_FB_JOINT:
 if(loop==1) {
 memcpy(&jnt_now, DispData, sizeof(JOINT));
 loop = 2;
 }
 if(disp) {
 JOINT *j=(JOINT*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(JOINT)=%d¥n

%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,j->j1, j->j2, j->j3 ,j->j4, j->j5, j->j6, j->j7, j->j8, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_POSE:
 case MXT_TYP_FPOSE:
 case MXT_TYP_FB_POSE:
 if(loop==1) {
 memcpy(&pos_now, &MXTrecv.dat.pos, sizeof(POSE));
 loop = 2;
 }
 if(disp) {
 POSE *p=(POSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(POSE)=%d¥n

%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f, %04x,%04x (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType

 ,p->w.x, p->w.y, p->w.z, p->w.a, p->w.b, p->w.c
, p->sflg1, p->sflg2, str);

 cout << buf << endl;
 }
 break;
 case MXT_TYP_PULSE:
 case MXT_TYP_FPULSE:
 case MXT_TYP_FB_PULSE:
 case MXT_TYP_CMDCUR:
 case MXT_TYP_FBKCUR:
 if(loop==1) {
 memcpy(&pls_now, &MXTrecv.dat.pls, sizeof(PULSE));
 loop = 2;
 }
 if(disp) {
 PULSE *l=(PULSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(PULSE/OTHER)=%d¥n

%ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,l->p1, l->p2, l->p3, l->p4, l->p5, l->p6, l->p7, l->p8, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_NULL:
 if(loop==1) {
 loop = 2;
 }
 if(disp) {
 sprintf(buf, "Receive (%ld): TCount=%d Type(NULL)=%d¥n (%s)"

5Appendix

5-19

 ,MXTrecv.CCount,MXTrecv.TCount, DispType, str);
 cout << buf << endl;
 }
 break;
 default:
 cout << "Bad data type.¥n" << endl;
 break;
 }
 counter++; // Count up only when communication is successful
 retry=0; // Leave reception loop
 }
 else { // Reception timeout
 cout << "... Receive Timeout! <Push [Enter] to stop the program>" << endl;
 retry--; // No. of retries subtraction
 if(retry==0) loop=0; // End program if No. of retries is 0
 }
 } /* while(retry) */
 } /* while(loop) */

 // End
 cout << "/// End /// ";
 sprintf(buf, "counter = %ld", counter);
 cout << buf << endl;

// Close socket
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;

 return 0;
}

Oct..2009 MEE Printed in Japan on recycled paper. Specifications are subject to change without notice.

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 5-1-14, YADA-MINAMI, HIGASHI-KU, NAGOYA 461-8670, JAPAN

Authorised representative:
MITSUBISHI ELECTRIC EUROPE B.V. GERMANY
Gothaer Str. 8, 40880 Ratingen / P.O. Box 1548, 40835 Ratingen, Germany

