
Mitsubishi Industrial Robot

CRnQ/CRnD Controller
INSTRUCTION MANUAL

Detailed explanations of functions and operations

BFP-A8661-AE

All teaching work must be carried out by an operator who has received special
training. (This also applies to maintenance work with the power source turned
ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures
of operating the robot, and to the measures to be taken when an error occurs
or when restarting. Carry out work following this plan. (This also applies to
maintenance work with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during
teaching work. (This also applies to maintenance work with the power source
turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress
on the start switch, etc. (This also applies to maintenance work with the power
source turned ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the
operator and robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work, and
follow this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign
indicating that maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other
related devices, etc., and confirm that there are no errors.
Inspection before starting work

Always read the following precautions and the separate "Safety
Manual" before starting use of the robot to learn the required
measures to be taken.

Safety Precautions

 CAUTION

 CAUTION

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

Use the robot within the environment given in the specifications. Failure to do
so could lead to a drop or reliability or faults. (Temperature, humidity,
atmosphere, noise environment, etc.)

Transport the robot with the designated transportation posture. Transporting
the robot in a non-designated posture could lead to personal injuries or faults
from dropping.

Always use the robot installed on a secure table. Use in an instable posture
could lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise
source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure
the priority right for the robot control. Failure to observe this could lead to
personal injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation
before starting automatic operation. Failure to do so could lead to interference
with peripheral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to
do so could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-
designated maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not
place hands or fingers in the openings. Failure to observe this could lead to
hands or fingers catching depending on the posture.

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF. If the robot controller main power is turned OFF during
automatic operation, the robot accuracy could be adversely affected. Moreover,
it may interfere with the peripheral device by drop or move by inertia of the arm.

Do not turn off the main power to the robot controller while rewriting the
internal information of the robot controller such as the program or parameters.

If the main power to the robot controller is turned off while in automatic
operation or rewriting the program or parameters, the internal information of the
robot controller may be damaged.

Use the network equipments (personal computer, USB hub, LAN hub, etc)
confirmed by manufacturer. The thing unsuitable for the FA environment
(related with conformity, temperature or noise) exists in the equipments
connected to USB, RS-232 or LAN. When using network equipment, measures
against the noise, such as measures against EMI and the addition of the ferrite
core, may be necessary. Please fully confirm the operation by customer.
Guarantee and maintenance of the equipment on the market (usual office
automation equipment) cannot be performed.

C.Notes of the basic component are shown.

*SD series: CR1DA-700 series

*SQ series: CR1QA-772/CR1QA-700 series

Please install the earth leakage breaker in the primary side supply power supply
of the controller because of leakage protection.

 CAUTION

 CAUTION

 CAUTION

 CAUTION

保護アース端子
(PE)

電源端子台

漏電遮断器
(NV)

端子カバー

端子カバー

アース接続ネジ

コントローラController

Cover

Cover

earth leakage
breaker

Terminal

Earth screw

CR1DA series

保護アース端子
(PE)

電源端子台

漏電遮断器
(NV)

端子カバー

端子カバー

アース接続ネジ

コントローラ
Drive unit

Cover

Cover

Earth leakage
breaker

Terminal

Earth screw

CR1QA series

保護アース端子
(PE)

電源端子台

漏電遮断器
(NV)

端子カバー

端子カバー

アース接続ネジ

コントローラ

KEY11

KEY12

KEY21

KEY22

Drive unit

Cover

Cover

Earth leakage
breaker

Terminal

Earth screw

CR1QA series

Note) The figure is
DU1A-772
Drive unit.

Note) Please prepare by
the customer in the
DU1A-772 drive
unit.

Revision history

Date Specifications No. Details of revisions

2008-05-12 BFP-A8661 First print

2008-09-01 BFP-A8661-A •Command were added (Def Long, Fine J, Fine P, MvTune)
•System variable was added (M_Uar32)
•Signal-parameter were added (ROBOTERR, QMLTCPUN, QMLTCPUn, QMLTCPUS)
•The output signal reset pattern of the sequencer link was added.
•The I/O function of the sequencer link was added.
•The connection method of display equipment (GOT) was added.
•The communications parameter (COMDEV, etc) and the communication setup were changed.
•Continuing function was corrected (parameter: CTN).
•The initial value of TB override operation rights (parameter: OvrdTB) was changed.
•The initial value of the dedicated I/O parameter of CRnQ series was added.
•Display unit (GOT1000 Series) connection was added (Reference)

2008-11-10 BFP-A8661-B •The parameter about the Ethernet interface and sample program were added.
•The details of CRnQ and CRnD were incorporated.

2008-11-12 BFP-A8661-C •Error in writing correction.

2009-06-04 BFP-A8661-D • The movement mode 4 was added to the MvTune command.
•System status variable : M_In8/M_In16/M_In32/M_Out8/M_Out16/M_Out32 were added.
•The necessary pulse width of the dedicated input signal was changed from 30ms to 15ms.
•The function which outputs position data to the external signal was added. (Parameters PSS-
LOT, PSTYPE, and PSNUM, PSOUT, PSPOS)

•Parameter : SYNCIO was added.
•Error in writing was corrected

("_" (underscore) cannot be used for the 2nd character of the label name)
(Correct G device address of assignment of the dedicated I/O signal)

2009-07-23 BFP-A8661-E •The specification of the user definition area was changed. (Parameter: AREAnCS was added)

2009-10-01 BFP-A8661-F •The header of Chapter 4 was corrected.
•Table 3-6: The brake release axis unit classified by type was deleted.

2009-10-27 BFP-A8661-G •The new function of software version (SQ series N8, SD series P8) was added
1) Parameter : RT Tool Box 2 communication-method setting (COMSPEC)
2) Backup/restoration function by the GOT (GT15/GT16 series)
3) The improvement of processing for multi-mechanism of PtoJ, JtoP and M_LdFact
4) Work jog function
5) Hand control by the external signal
•Notice of the target variable to teach on the command line which have mixture of capital letter
and small letter was added
•The table of the brake release axis unit classified by robot type was deleted.
•The function of the program selection by T/B was added.
•The setting conditions using the dedicated input signal were corrected.
•The EC Declaration of Conformity was changed.
 (Correspond to the EMC directive; 2006/42/EC)

2009-11-24 BFP-A8661-H •4.2 The difference between MELFA-BASICV and MELFA-BASICIV was added.
•The example of the setting screen of the IP address was changed into Windows XP and Vista.

2009-12-04 BFP-A8661-J •Extended function for SQ series was added.
(parameter: IQMEM, IQSPEC. Separate manual: "Extended Function Instruction (BFP-A8787)"
is referred to.)

2009-12-10 BFP-A8661-K •The limitations in the palette definition command were added.

2009-12-21 BFP-A8661-L •Error in writing was corrected

2010-02-03 BFP-A8661-M •The reference page to SYNCIO parameter in status variable M_Out/M_Outb/M_Out8/M_Outw/
M_Out16 was corrected.

2010-03-01 BFP-A8661-N •Error in writing correction
In the "(5)" of [Explanation] in the Input command. (CRPC232 parameter was corrected to
CPRC232 parameter)

•The description about the robot's coordinate system was added (Chapter 4).
•The new function of S/W Ver.S1 (SD series) / R1 (SQ series) was added.
Multi-coordinate system (workpiece coordinate system) function
Speed improvement of the M_Dout processing for CC-Link

2010-05-31 BFP-A8661-O •Details explanation of Parameter INB was corrected.

2010-06-17 BFP-A8661-P •The new parameter were added to the List Movement parameter.
(MAPMODE, LOADMODE)

•EAdded that the brake release function by T/B operation, using the Horizontal multi-joint type
robot is release intermittently

2010-07-27 BFP-A8661-R •Error in writing correction
•The "Table 3-4:Process for inputting one line" was deleted (3.5 Programming)
•Details of M_Mode (Table 4-9:Robot status variables and 4.14.2 Explanation of Each Robot
Status Variable)

•Name of Compliance Control function command was corrected (Cmp *)
•Reference program of explanation in "Cnt" command
•The comment at reference program in "For - Next" command
•Format of "Mvr3" command
•Reference Program of "Oadl" command
•Terminology of "Open" command
•Explanation of "M_Spd/M_NSpd/M_RSpd" robot status variable
•The details explanation of HANDINIT parameter (Table 5-1:List Movement parameter)
•"(Example)" in 5.7 About Standard Base Coordinates
•"[Caution2]" in About default hand status
•The program example in "5.11 Automatic execution of program at power up"
•Description and value of WUPAXIS parameter (Table 5-16: Parameter List of the Warm-Up
Operation Mode)

•Program example in 5.23 About the impact detection function
•The necessary pulse width of the dedicated input signal (30ms to 15ms). (PRGSEL,
OVRDSEL, IODATA, PRGOUT, LINEOUT, OVRDOUT, ERROUT (Table 6-7: Table of
dedicated input/output), OUTRESET in 6.5 External signal timing chart)

•Output signal name of LINEOUT (Table 6-7: Table of dedicated input/output)
•7.1.2 Sample program

2010-08-18 BFP-A8661-S •The new function of S/W Ver.R1d (SQ series) / S1d (SD series) was added.
The new function "3.2.10 Changing the world coordinate (specifies the base coordinate
number)" was added.
The new parameters were added to the List Movement parameter.

ITBATERR (CRnQ-700/CRnD-700), TIMESYNC (CRnQ-700 only)
The new parameter were added to the List Table of dedicated input/output.

TMPOUT
•The [Available robot type] of the following command words was deleted. (Available for all robot

type except for special specification)
Cmp Pos, Cmp Tool , Cmp Off, CmpG, ColChk, ColLvl, J_ColMxl, M_ColSts, P_ColDir, Prec

•The specification of M_ErrLvl was changed. (Error level was increased.)
•The description of the operation parameter MFBRST(Resetting Maintenance Forecast) was
corrected.

2010-11-15 BFP-A8661-T •The SpdOpt command and the SPDOPT parameter, and the cylinder limit function (MECAR
parameter) were added.

•S/W Ver corresponding to expansion of M_Err/M_ErrLvl/M_ErrNo was added.

2011-01-19 BFP-A8661-U •Error in writing was corrected. (Robot CPU parameter: IQSPEC)
•Description of brake release of horizontal multi-joint type was corrected.
•The error in writing of parameter ATEXTMD, ATTOPMD and AUTOENA was corrected.

2011-02-02 BFP-A8661-V •The type which can use the SpdOpt command was corrected (error in writing).
•The setting value at shipping of the parameter (SPDOPT, COL, COLLVL, COLLVLJG,
HANDDAT0) was corrected.

•The type which can use the collision detection function was corrected.
•The precautions about interference of the ball screw shaft (RH-3S*HR) and the movement locus
were added.

2011-05-09 BFP-A8661-W •The optional multifunctional electric hand and multi-hand is added to the appendix.
•The setting value of the ColLvl command was corrected.
•The setting value at shipping of the parameter (OVRDTB) was corrected.
•The parameter (OVRDENA) was corrected (error in writing).
•The parameter (MEXTL) was corrected.
•The initial-setting value of parameter MFREPO was corrected (error in writing).
•The STOP signal enabled allocation change only of the input. (Error in writing)
•"3:AUTOMATIC (external)" was added to the value of status variable M_Mode.
•Key operation of hand open / close was corrected. (Error in writing)
•The note of parameter HANDTYPE was added.
•The setting value of parameter OVRDENA was corrected. (Error in writing)

2011-07-01 BFP-A8661-X • Extended function of robot and GOT connection for SD series was added.
• Measures were added to caution in M_Out32.
• The description of the multi-hand and the multifunctional electric hand was deleted.
(Under the export control operation)

• The Example of M_Uar32 [M_Uar32 and User-defined Area Compatibility] was corrected (error
in writing).

2011-08-01 BFP-A8661-Y •The factory setting value of Parameter PRGGBL was corrected (error in writing).
•The target axis and interval of intermittent brake release of the horizontal multi-joint type robot
were added.

•Error in writing correction

Date Specifications No. Details of revisions

2012-05-22 BFP-A8661-AA • Error in writing correction (4.3.2 Executing a multitask)
• (3) Robot type resetting was added.
• The example program for collision detection level setting was added (J_ColMxl).

2012-07-26 BFP-A8661-AB • Notes were added to the hand and the workpiece condition parameter.

2012-10-29 BFP-A8661-AC • The statement about trademark registration was added.
• Parameter: USERMSG was added.

2014-09-11 BFP-A8661-AD • The explanation of parameter CMPJCLL was added.
• The explanations of robot status variable were corrected. (C_Mecha, C_Prg)
• The OPTOVC parameter was added.
• The description of [Reference Program] of status variables M_In32 and M_Out32 were cor-
rected.

• The explanation of R56/57TB in “3.10 Operation to Temporarily Reset an Error that Cannot Be
Canceled”.

• Dedicated input/output were added. (DOORSTS1, DOORSTS2, DOORSTS)
• The cover and corporate logo mark of this manual was changed.

2015-02-02 BFP-A8661-AE • In "5.11 Automatic execution of program at power up", the setting value of the parameter
ALWENA was corrected from "7" into "1" and step 17 was added to the sample program.

• Correction of errors.
CallP command (Error: Speed is valid in a sub program)
SLOTINIT (Error: Do not function in the stop input state (when STOPSTS is ON).)
XLoad command (Error: Error: A program name can be specified also at the character string
variables.)
• The explanation and the reference program about Break command were added to For - Next
and While - WEnd commands.

Date Specifications No. Details of revisions

Contents

i

Page

1 Before starting use .. 1-1

1.1 Using the instruction manuals ... 1-1
1.1.1 The details of each instruction manuals .. 1-1
1.1.2 Terminological definition .. 1-2
1.1.3 Symbols used in instruction manual ... 1-2

1.2 Safety Precautions .. 1-3
1.2.1 Precautions given in the separate Safety Manual .. 1-4

2 Explanation of functions .. 2-6

2.1 Operation panel (O/P) functions ... 2-6

2.2 Teaching pendant (T/B) functions ... 2-10
2.2.1 Operation rights .. 2-11

2.3 Functions Related to Movement and Control .. 2-12

3 Explanation of operation methods .. 3-14

3.1 Operation of the teaching pendant menu screens .. 3-14
(1) Screen tree ... 3-14
(2) Input of the number/character .. 3-18
(3) Selecting a menu .. 3-19

3.2 Jog Feed (Overview) ... 3-21
3.2.1 Types of jog feed .. 3-21
3.2.2 Speed of jog feed .. 3-22
3.2.3 JOINT jog .. 3-23
3.2.4 XYZ jog ... 3-23
3.2.5 TOOL jog .. 3-24
3.2.6 3-axis XYZ jog .. 3-24
3.2.7 CYLNDER jog ... 3-25
3.2.8 WORK jog ... 3-25
3.2.9 Switching Tool Data .. 3-26
3.2.10 Changing the world coordinate (specifies the base coordinate number) 3-27
3.2.11 Impact Detection during Jog Operation .. 3-28

(1) Impact Detection Level Adjustment during Jog Operation ... 3-29

3.3 Opening/Closing the Hands .. 3-30

3.4 Aligning the Hand .. 3-31

3.5 Programming .. 3-33
3.5.1 Creating a program ... 3-33

(1) Opening the program edit screen ... 3-33
(2) Creating a program .. 3-34
(3) Completion of program creation and saving programs .. 3-36
(4) Correcting a program ... 3-37
(5) Registering the current position data .. 3-39
(6) Deletion of the position variable ... 3-42
(7) Confirming the position data (Position jump) ... 3-43
(8) Correcting the MDI (Manual Data Input) .. 3-44

3.6 Debugging ... 3-45
(1) Step feed .. 3-45
(2) Step return .. 3-46
(3) Step feed in another slot .. 3-47
(4) Step jump ... 3-48

3.7 Automatic operation .. 3-50
(1) Setting the operation speed ... 3-50
(2) Selecting the program No. .. 3-50
(3) Starting automatic operation .. 3-51
(4) Stopping ... 3-52
(5) Resuming automatic operation from stopped state .. 3-52
(6) Resetting the program .. 3-53

Contents

ii

Page

3.8 Turning the servo ON/OFF ... 3-54

3.9 Error reset operation ... 3-55

3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled 3-55

3.11 Operating the program control screen .. 3-56
(1) Program list display .. 3-56
(2) Copying programs .. 3-57
(3) Name change of the program (Rename) .. 3-58
(4) Deleting a program (Delete) ... 3-59
(5) Protection of the program (Protect) .. 3-60
(6) Select the program ... 3-61

3.12 Operation of operating screen .. 3-62
3.12.1 Display of the execution line ... 3-62

(1) Select the confirmation menu ... 3-62
(2) Step feed .. 3-62
(3) Step jump ... 3-65
(4) Step feed in another slot .. 3-65
(5) Finishing of the confirmation screen. .. 3-65

3.12.2 Test operation ... 3-66
(1) Select the test operation ... 3-66

3.13 Operating the monitor screen ... 3-67
(1) Input signal monitor .. 3-67
(2) Output signal monitor ... 3-69
(3) Input register monitor ... 3-71
(4) Output register monitor ... 3-72
(5) Variable monitor ... 3-75
(6) Error history .. 3-77

3.14 Operation of maintenance screen ... 3-78

3.15 Operation of the origin and the brake screen .. 3-80
(1) Origin .. 3-80
(2) Brake .. 3-80

3.16 Operation of setup / initialization screen ... 3-82
(1) Initialize the program .. 3-82
(2) Initialize the parameter ... 3-83
(3) Initialize the battery .. 3-84
(4) Operation .. 3-85
(5) Time setup .. 3-85
(6) Version ... 3-86

3.17 ENHANCED .. 3-87
(1) SQ DIRECT .. 3-87
(2) WORK COORD .. 3-87

3.18 Operation of the initial-setting screen ... 3-88
(1) Set the display language .. 3-88
(2) Adjustment of contrast .. 3-90

4 MELFA-BASIC V ... 4-92

4.1 MELFA-BASIC V functions ... 4-92
4.1.1 Robot operation control .. 4-93

(1) Joint interpolation movement ... 4-93
(2) Linear interpolation movement ... 4-94
(3) Circular interpolation movement ... 4-95
(4) Continuous movement ... 4-97
(5) Acceleration/deceleration time and speed control .. 4-98
(6) Confirming that the target position is reached .. 4-100
(7) High path accuracy control ... 4-101
(8) Hand and tool control ... 4-102

4.1.2 Pallet operation ... 4-103

Contents

iii

Page

4.1.3 Program control .. 4-109
(1) Unconditional branching, conditional branching, waiting .. 4-109
(2) Repetition ... 4-111
(3) Interrupt .. 4-112
(4) Subroutine .. 4-113
(5) Timer .. 4-114
(6) Stopping ... 4-115

4.1.4 Inputting and outputting external signals .. 4-116
(1) Input signals ... 4-116
(2) Output signals .. 4-116

4.1.5 Communication ... 4-117
4.1.6 Expressions and operations ... 4-118

(1) List of operator ... 4-118
(2) Relative calculation of position data (multiplication) ... 4-120
(3) Relative calculation of position data (Addition) ... 4-120

4.1.7 Appended statement ... 4-121

4.2 The difference between MELFA-BASIC V and MELFA-BASIC IV .. 4-122
4.2.1 About MELFA-BASIC V .. 4-122
4.2.2 The feature of MELFA-BASIC V ... 4-122
4.2.3 Comparison with MELFA-BASIC IV .. 4-122

4.3 Multitask function .. 4-123
4.3.1 What is multitasking? .. 4-123
4.3.2 Executing a multitask .. 4-124
4.3.3 Operation state of each slot .. 4-124
4.3.4 Precautions for creating multitask program .. 4-126

(1) Relationship between number of tasks and processing time 4-126
(2) Specification of the maximum number of programs executed concurrently 4-126
(3) How to pass data between programs via external variables .. 4-126
(4) Confirmation of operating status of programs via robot status variables 4-126
(5) The program that operates the robot is basically executed in slot 1. 4-126
(6) How to perform the initialization processing via constantly executed programs 4-126

4.3.5 Precautions for using a multitask program ... 4-127
(1) Starting the multitask .. 4-127
(2) Display of operation status ... 4-127

4.3.6 Example of using multitask ... 4-128
(1) Robot work details. ... 4-128
(2) Procedures to multitask execution ... 4-129

4.3.7 Program capacity .. 4-130
(1) Program save area ... 4-130
(2) Program edit area ... 4-130
(3) Program execution area ... 4-130

4.4 Detailed specifications of MELFA-BASIC V .. 4-132
(1) Program name .. 4-132
(2) Command statement .. 4-132
(3) Variable .. 4-133

4.4.1 Statement ... 4-134
4.4.2 Appended statement ... 4-134
4.4.3 Step .. 4-134
4.4.4 Step No. .. 4-134
4.4.5 Label ... 4-134
4.4.6 Types of characters that can be used in program .. 4-135
4.4.7 Characters having special meanings .. 4-136

(1) Uppercase and lowercase identification ... 4-136
(2) Underscore (_) ... 4-136
(3) Apostrophe (') ... 4-136
(4) Asterisk (*) .. 4-136
(5) Comma (,) .. 4-136
(6) Period (.) ... 4-136

Contents

iv

Page

(7) Space ... 4-136
4.4.8 Data type .. 4-137
4.4.9 Constants .. 4-137
4.4.10 Numeric value constants .. 4-137

(1) Decimal number ... 4-137
(2) Hexadecimal number ... 4-137
(3) Binary number .. 4-137
(4) Types of constant ... 4-137

4.4.11 Character string constants .. 4-137
4.4.12 Position constants ... 4-138

(1) Coordinate, posture and additional axis data types and meanings 4-138
(2) Meaning of structure flag data type and meanings .. 4-138

4.4.13 Joint constants .. 4-139
(1) Axis data format and meanings .. 4-139

4.4.14 Angle value ... 4-140
4.4.15 Variables ... 4-140
4.4.16 Numeric value variables ... 4-141
4.4.17 Character string variables ... 4-141
4.4.18 Position variables .. 4-141
4.4.19 Joint variables ... 4-142
4.4.20 Input/output variables ... 4-142
4.4.21 Array variables .. 4-142
4.4.22 External variables ... 4-143
4.4.23 Program external variables ... 4-143
4.4.24 User-defined external variables .. 4-144
4.4.25 Creating User Base Programs .. 4-145

4.5 Coordinate system description of the robot .. 4-146
4.5.1 About the robot's coordinate system ... 4-146
4.5.2 About base conversion ... 4-147
4.5.3 About position data ... 4-148
4.5.4 About tool coordinate system (mechanical interface coordinate system) 4-149

(1) Mechanical interface coordinate system .. 4-149
(2) Tool coordinate system .. 4-150
(3) Effects of use of tool coordinate system ... 4-151

4.6 Robot status variables .. 4-154

4.7 Logic numbers .. 4-158

4.8 Functions .. 4-158
(1) User-defined functions ... 4-158
(2) Built-in functions ... 4-158

4.9 List of Instructions ... 4-161
(1) Instructions related to movement control ... 4-161
(2) Instructions related to program control ... 4-161
(3) Definition instructions ... 4-162
(4) Multi-task related ... 4-162
(5) Others .. 4-163

4.10 Operators .. 4-164

4.11 Priority level of operations ... 4-165

4.12 Depth of program's control structure ... 4-165

4.13 Reserved words .. 4-165

4.14 Detailed explanation of command words .. 4-166
4.14.1 How to read the described items .. 4-166
4.14.2 Explanation of each command word ... 4-166

4.15 Detailed explanation of Robot Status Variable ... 4-285
4.15.1 How to Read Described items .. 4-285
4.15.2 Explanation of Each Robot Status Variable .. 4-285

4.16 Detailed Explanation of Functions .. 4-345

Contents

v

Page

4.16.1 How to Read Described items .. 4-345
4.16.2 Explanation of Each Function ... 4-345

5 Functions set with parameters .. 5-381

5.1 Movement parameter .. 5-381

5.2 Signal parameter ... 5-394
5.2.1 About multi CPU input offsets (CRnQ-700 controller only) ... 5-397

(1) Case (A) ... 5-397
(2) Case (B) ... 5-398

5.3 Operation parameter ... 5-399

5.4 Command parameter .. 5-402

5.5 Communication parameter .. 5-406

5.6 Standard Tool Coordinates ... 5-408

5.7 About Standard Base Coordinates ... 5-410

5.8 About user-defined area ... 5-412
5.8.1 Selecting a coordinate system .. 5-413
5.8.2 Setting Areas .. 5-414

(1) Position Area .. 5-414
(2) Posture Area .. 5-415
(3) Additional Axis Area ... 5-415

5.8.3 Selecting mechanism to be checked .. 5-417
5.8.4 Specifying behavior within user-defined area ... 5-417
5.8.5 Example of settings .. 5-417

5.9 Free plane limit ... 5-418

5.10 Automatic return setting after jog feed at pause ... 5-419

5.11 Automatic execution of program at power up ... 5-421

5.12 About the hand type .. 5-422

5.13 About default hand status ... 5-423

5.14 About the output signal reset pattern .. 5-424

5.15 About the communication setting (RS-232) .. 5-426

5.16 About the communication setting (Ethernet) ... 5-427
5.16.1 Details of parameters .. 5-427

(1) NETIP (IP address of robot controller) ... 5-427
(2) NETMSK (sub-net-mask) .. 5-427
(3) NETPORT (port No.) .. 5-427
(4) CRRCE11 to 19 (protocol) ... 5-427
(5) COMDEV (Definition of devices corresponding to COM1: to 8) 5-428
(6) NETMODE (server specification). .. 5-428
(7) NETHSTIP (The IP address of the server of the data communication point). 5-428
(8) MXTTOUT (Timeout setting for executing real-time external control command) 5-428

5.16.2 Example of setting of parameter 1 (When the Support Software is used) 5-429
5.16.3 Example of setting of parameter 2-1 ... 5-430
5.16.4 Example of setting parameters 2-2 ... 5-431
5.16.5 Example of setting parameters 3 .. 5-432

5.17 Connection confirmation ... 5-433
5.17.1 Checking the connection with the Windows ping command ... 5-433

5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-434

5.19 About the singular point adjacent alarm .. 5-436

5.20 About ROM operation/high-speed RAM operation function .. 5-437

5.21 Warm-Up Operation Mode .. 5-447

5.22 About singular point passage function .. 5-454

5.23 About the impact detection function .. 5-459
(1) Overview of the function ... 5-459
(2) Applicable models .. 5-460

Contents

vi

Page

(3) Related parameters .. 5-460
(4) How to use the impact detection function ... 5-461

6 External input/output functions .. 6-466

6.1 Types .. 6-466

6.2 Sequencer link I/O function ... 6-467
6.2.1 Parameter setting ... 6-467

(1) Sequencer CPU parameter setting .. 6-467
(2) Robot CPU parameter setting .. 6-468

6.2.2 CPU shared memory and robot I/O signal compatibility ... 6-469
6.2.3 Sequence ladder example .. 6-470
6.2.4 Assignment of the dedicated I/O signal. (at factory shipping) ... 6-471
6.2.5 Comparison of the I/O point of the CRnQ700 and the CRn500 series 6-473

6.3 Dedicated input/output .. 6-474

6.4 Enable/disable status of signals .. 6-484

6.5 External signal timing chart ... 6-485
6.5.1 Individual timing chart of each signal .. 6-485
6.5.2 Timing chart example ... 6-492

(1) External signal operation timing chart (Part 1) ... 6-492
(2) External signal operation timing chart (Part 2) ... 6-493
(3) Example of external operation timing chart (Part 3) ... 6-494
(4) Example of external operation timing chart (Part 4) ... 6-495
(5) Example of external operation timing chart (Part 5) ... 6-496

6.6 Emergency stop input ... 6-497
6.6.1 Robot Behavior upon Emergency Stop Input ... 6-497

6.7 Display unit (GOT1000 Series) connection (reference) .. 6-498
(1) Usage example ... 6-498
(2) Specifications ... 6-498
(3) Connection ... 6-499
(4) Settings .. 6-500

7 Appendix .. Appendix-501

7.1 Real-time external control function .. Appendix-501
7.1.1 Explanation of communication data packet ... Appendix-503
7.1.2 Sample program .. Appendix-506

(1) Sample program of data link ... Appendix-506
(2) Sample program for real-time external control function Appendix-512

7.2 Configuration flag ... Appendix-523

*Introduction

Thank you for purchasing the Mitsubishi industrial robot.
This instruction manual explains the functions and operation methods of the robot controller and
teaching pendant (R32TB), and the functions and specifications of the MELFA-BASIC V program-
ming language.

Apply to both the CRnQ-700 series controller corresponding to iQPlatform, and the CRnD-700
series controller. Especially the function added individually is indicated to be "CRnQ" or "CRnQ-700"
and "CRnD", or "CRnD-700."

Always read through this manual before starting use to ensure correct usage of the robot.
Note that this document is prepared for the following software versions.

Controller : Version
CRnQ: R5d or later
CRnD: S5d or later

T/B : Version 1.6 or later

• No part of this manual may be reproduced by any means or in any form, without prior consent
from Mitsubishi.

• The details of this manual are subject to change without notice.
• An effort has been made to make full descriptions in this manual. However, if any discrepancies

or unclear points are found, please contact your dealer.
• The information contained in this document has been written to be accurate as much as possi-

ble. Please interpret that items not described in this document "cannot be performed." or
"alarm may occur".
Please contact your nearest dealer if you find any doubtful, wrong or skipped point.

• This specifications is original.
• The ETHERNET is a registered trademark of the Xerox Corp.
• All other company names and production names in this document are the trademarks or regis-

tered trademarks of their respective owners.

 Copyright(C) 2008-2015 MITSUBISHI ELECTRIC CORPORATION

Notice
*ONLY QUALIFIED SERVICE PERSONNEL MAY INSTALL OR SERVICE THE ROBOT SYSTEM.
*ANY PERSON WHO PROGRAM, TEACHES, OPERATE, MAINTENANCE OR REPAIRS THE ROBOT
SYSTEM IS TRAINED AND DEMONSTRATES COMPETENCE TO SAFELY PERFORM THE
ASSIGNED TASK.

*ENSURE COMPLIANCE WITH ALL LOCAL AND NATIONAL SAFETY AND ELECTRICAL CODES
FOR THE INSTALLATION AND OPERATION OF THE ROBOT SYSTEM.

 1Before starting use

 Using the instruction manuals 1-1

1 Before starting use
This chapter explains the details and usage methods of the instruction manuals, the basic terminology and the
safety precautions.

1.1 Using the instruction manuals

1.1.1 The details of each instruction manuals
The contents and purposes of the documents enclosed with this product are shown below. Use these documents
according to the application.

For special specifications, a separate instruction manual describing the special section may be enclosed.

Explains the common precautions and safety measures to be taken for robot handling, sys-
tem design and manufacture to ensure safety of the operators involved with the robot.

Explains the product's standard specifications, factory-set special specifications, option
configuration and maintenance parts, etc. Precautions for safety and technology, when
incorporating the robot, are also explained.

Explains the procedures required to operate the robot arm (unpacking, transportation,
installation, confirmation of operation), and the maintenance and inspection procedures.

Explains the procedures required to operate the controller (unpacking, transportation,
installation, confirmation of operation), basic operation from creating the program to auto-
matic operation, and the maintenance and inspection procedures.

Explains details on the functions and operations such as each function and operation, com-
mands used in the program, connection with the external input/output device, and parame-
ters, etc.

Explains the causes and remedies to be taken when an error occurs. Explanations are given
for each error No.

Explains the specifications, functions and operations of the additional axis control.

Explains the control function and specifications of conveyor tracking.

Safety Manual

Standard
Specifications
or
special
Specifications

Robot Arm
Setup &
Maintenance

Controller
Setup, Basic
Operation and
Maintenance

Detailed
Explanation of
Functions and
Operations

Troubleshooting

Additional axis
function

Tracking Func-
tion Manual

1-2 Using the instruction manuals

1Before starting use

 Explains the detailed description of data configuration of shared memory, monitoring, and
operating procedures. SQ series only.

1.1.2 Terminological definition
Explain the term currently used in this manual.

Robot controllerThe controller which controls the robot arm
It consists of the robot CPU system and the drive unit.(SQ series)

Robot CPU （Unit）The CPU unit for the robots which installed to the sequencer base unit.
（Q3*DB） (SQ series)

Robot CPU system.................................Multi-CPU system. (SQ series)
It consists of MELSEC units, such as the sequencer base unit, the
sequencer CPU unit, and the robot CPU unit, etc.

Drive unit ..The box which mounts the servo amplifier for the robots, the safety circuit,
etc. (SQ series)

1.1.3 Symbols used in instruction manual
The symbols and expressions shown in Table 1-1 are used throughout this instruction manual. Learn the meaning
of these symbols before reading this instruction manual.

Table 1-1 ： Symbols in instruction manual

Terminology Item/Symbol Meaning

Item

The "Robot controller" or the "Controller"

Indicates the controller which controls the robot arm.

Indicates the box which arranged control parts, such as robot CPU, servo

amplifier, and the safety circuit.

Symbol Precaution indicating cases where there is a risk of operator fatality or

serious injury if handling is mistaken. Always observe these precautions to

safely use the robot.

Precaution indicating cases where the operator could be subject to fatalities

or serious injuries if handling is mistaken. Always observe these precautions to

safely use the robot.

Precaution indicating cases where operator could be subject to injury or

physical damage could occur if handling is mistaken. Always observe these

precautions to safely use the robot.

[JOG]
If a word is enclosed in brackets or a box in the text, this refers to a key on

the teaching pendant.

[RESET] + [EXE]

 (A) (B)

This indicates to press the (B) key while holding down the (A) key.

In this example, the [RESET] key is pressed while holding down the [+EXE]

key.

T/B This indicates the teaching pendant.

O/P This indicates the operating panel on the front of the controller(drive unit).

Extended Func-
tion Instruc-
tion Manual

DANGER

 WARNING

CAUTION

 1Before starting use

 Safety Precautions 1-3

1.2 Safety Precautions

Always read the following precautions and the separate "Safety Manual" before starting use of the robot to learn
the required measures to be taken.

All teaching work must be carried out by an operator who has received special training.
(This also applies to maintenance work with the power source turned ON.)
Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of
operating the robot, and to the measures to be taken when an error occurs or when
restarting. Carry out work following this plan. (This also applies to maintenance work
with the power source turned ON.)
Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching work.
(This also applies to maintenance work with the power source turned ON.)
Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on the
start switch, etc. (This also applies to maintenance work with the power source turned
ON.)
Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator and
robot.
Installation of safety fence

Establish a set signaling method to the related operators for starting work, and follow
this method.
Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicating that
maintenance work is in progress on the start switch, etc.
Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related
devices, etc., and confirm that there are no errors.
Inspection before starting work

 CAUTION

 CAUTION

 WARNING

 CAUTION

 DANGER

 CAUTION

 CAUTION

 CAUTION

1-4 Safety Precautions

1Before starting use

1.2.1 Precautions given in the separate Safety Manual
The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

If the automatic operation of the robot is operated by two or more control equipment,
design the right management of operation of each equipment of the customer.

Use the robot within the environment given in the specifications. Failure to do so could
lead to a drop or reliability or faults. (Temperature, humidity, atmosphere, noise
environment, etc.)

Transport the robot with the designated transportation posture. Transporting the
robot in a non-designated posture could lead to personal injuries or faults from
dropping.

Always use the robot installed on a secure table. Use in an instable posture could lead
to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise
source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable. Failure
to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the rated
load or tolerable torque. Exceeding these values could lead to alarms or faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or flies
off during operation.

Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state could
lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure the
priority right for the robot control. Failure to observe this could lead to personal
injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do so
could lead to interference with the workpiece or peripheral devices.

After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with
peripheral devices because of programming mistakes, etc.
Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to do so
could lead to personal injuries.

Never carry out modifications based on personal judgments, or use non-designated
maintenance parts.
Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or fingers
catching depending on the posture.

 DANGER

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 CAUTION

 WARNING

 WARNING

 CAUTION

 WARNING

 CAUTION

 CAUTION

 CAUTION

 WARNING

 1Before starting use

 Safety Precautions 1-5

Do not stop the robot or apply emergency stop by turning the robot controller's main
power OFF.
If the robot controller main power is turned OFF during automatic operation, the robot
accuracy could be adversely affected.

Do not turn off the main power to the robot controller while rewriting the internal
information of the robot controller such as the program or parameters. If the main
power to the robot controller is turned off while in automatic operation or rewriting the
program or parameters , the internal information of the robot controller may be
damaged.

When the SSCNETIII cable is removed, install the cap in the connector.
If the cap is not installed, there is a possibility of malfunctioning by adhesion of the dust
etc.

Don't remove the SSCNETIII cable, when the power supply of the robot controller is
turned on. Don't face squarely the light emitted from the tip of the SSCNETIII connector
or the cable. If light strikes the eyes, there is a possibility of feeling the sense of
incongruity for the eyes. (The light source of SSCNETIII is equivalent to the class 1
specified to JISC6802 and IEC60825-1.)

 CAUTION

 CAUTION

 DANGER

 DANGER

2-6Operation panel (O/P) functions

2Explanation of functions

2 Explanation of functions
2.1 Operation panel (O/P) functions

(1) Description of the operation panel button

Fig.2-1:Operation panel

① START button This executes the program and operates the robot. The program is run continuously.

② STOP button...................................... This stops the robot immediately. The servo does not turn OFF.

③ RESET button.................................... This resets the error. This also resets the program's halted state and resets the program.

④ Emergency stop switch This stops the robot in an emergency state. The servo turns OFF.

⑤ CHNGDISP button........................... This changes the details displayed on the display panel in the order of "Override" → "Pro-
gram No." → "Line No.".

⑥ END button... This stops the program being executed at the last line or END statement.

⑦ SVO.ON button................................. This turns ON the servo power. (The servo turns ON.)

⑧ SVO.OFF button............................... This turns OFF the servo power. (The servo turns OFF.)

⑨ STATUS NUMBER
　 (display panel) The alarm No., program No., override value (%), etc., are displayed.

⑩ MODE key switch............................. This changes the robot's operation mode.

AUTOMATIC................................operations from the controller or external equipment are valid. Operations for
which the operation mode must be at the external device or T/B are not possible.
It is necessary to set the parameter for the rights of operation to connection
between the operation panel and external equipment. For details, please refer to
"INSTRUCTION MANUAL/Detailed explanations of functions and operations" of
the separate volume.

MANUAL..When the T/B is valid, only operations from the T/B are valid. Operations for
which the operation mode must be at the external device or controller are not pos-
sible.

⑪ UP/DOWN button............................ This scrolls up or down the details displayed on the "STATUS. NUMBER" display panel.

⑫ T/B connection connector This is a dedicated connector for connecting the T/B. When not using T/B, connect the
attached dummy connector.

⑬ Interface coverUSB interface and battery are mounted. Unused in CRnQ-700 series
⑭ RS-232 connector This is an RS-232C specification connector for connecting the personal computer. Not

installed in the CRnQ-700 series

① ③

④

⑤⑦ ⑪

⑩

⑨

⑧

⑬

⑥②

⑫

⑭

 2Explanation of functions

 Operation panel (O/P) functions 2-7

(2) Description of the STATUS NUMBER
1) Display change of STATUS NUMBER

The display of the display panel can be changed by [CHNG DISP], [↑ UP], and [↓ DOWN] key.

Override

Program name

Step number

User information

[CHNG DISP]

User
message

right of
operation Opeertion panel

External signal

 Teaching pendant

No right of
operation

[DOWN] [UP]

Maker information

Mecha
name

Serial number

S/W version

Battery
remaining time

Temperature

Maker
message

[DOWN] [UP]
*1)

*1) The user message displays the character string
(alphanumeric character of a maximum of the 32 characters)
set as USERMEG. It can be used as the name and version
name of the application program of the customer.

right of
operation

right of
operation

right of
operation

2-8Operation panel (O/P) functions

2Explanation of functions

2) The various status displays
The various states are indicated by the character at left end.

Override Program name
Battery

remaining time
Temperature

High level error Low level error Warning

O/P operation
rights

If the operation panel has the right of
operation, the upper left dot turns on.

 2Explanation of functions

 Operation panel (O/P) functions 2-9

(3) Robot type resetting
If the type information is lost by the ablation of the battery etc., the errors (H1600: Mechanism un-setting.
etc.) occur, and the operation becomes impossible.

In this case, it can return to the status at factory shipping by the following type resetting operations.

This operation is valid at the following S/W versions.

 CRnQ-700 series: Ver.N5 or later

 CRnD-700 series: Ver.P2 or later

Because it returns to the status at factory shipping by this operation, so the parameter,
the program, and various log data are eliminated.

Therefore, when the error (H1600) has not occurred, don't carry out this operation. If
you have the package backup data (all files) of RT ToolBox/RT ToolBbox 2 (option), it
can be restored using the restoration function.

[RESET]ボタンを押しながら
電源をONする。

さらに[RESET]ボタンを押し続ける。(約3秒)

[RESET]ボタンを離して、再度[RESET]ボタンを押すと
リセット処理が実行される。

電源リセットされる。

エラー発生時エラー未発生時

No error Error occurrence

Turn on the power supply with
pushing the [RESET] button.

Continuously, pushing the [RESET] button is continued further.
(About 3 seconds)

The resetting process will be executed, if the [RESET] button is once
released and the [RESET] button is pushed again.

Executes the power resetting.

 CAUTION

2-10Teaching pendant (T/B) functions

2Explanation of functions

2.2 Teaching pendant (T/B) functions
This chapter explains the functions of R32TB (optional).

(1) Function of each key

Fig.2-2:General-view

⑪

⑭
⑬

⑫

⑨

⑤
⑥
⑦

⑮

⑯

⑳

⑤
⑥
⑧

⑱

⑲

⑩

⑰

①

④

③

②

1) : [Emergency stop] switchThe robot servo turns OFF and the operation stops immediately.
2) : [Enable/Disable] switchThis switch changes the T/B key operation between enable and dis-

able.
3) : [Enable] switch...................................When the [Enable/Disable] switch "2)" is enabled, and this key is

released or pressed with force, the servo will turn OFF, and the oper-
ating robot will stop immediately.

4) : LCD display panelThe robot status and various menus are displayed.
5) : Status display lampDisplay the state of the robot or T/B.
6) : [F1], [F2], [F3], [F4].........................Execute the function corresponding to each function currently dis-

played on LCD.
7) : [FUNCTION]..Change the function display of LCD.
8) : [STOP] key..This stops the program and decelerates the robot to a stop.
9) : [OVRD ↑][OVRD ↓] keyChange moving speed. Speed goes up by [OVRD ↑] key. Speed goes

down by [OVRD ↓] key
10) : JOG operation key.........................Move the robot according to jog mode. And, input the numerical value.
11) : [SERVO] keyPress this key with holding [Enable] switch lightly, then servo power

will turn on.
12) : [MONITOR] key...............................It becomes monitor mode and display the monitor menu.
13) : [JOG] key ..It becomes jog mode and display the jog operation.
14) : [HAND] keyIt becomes hand mode and display the hand operation.
15) : [CHAR] keyThis changes the edit screen, and changes between numbers and

alphabetic characters.
16) : [RESET] keyThis resets the error. The program reset will execute, if this key and

the EXE key are pressed.
17) : [↑][↓][←][→] keyMoves the cursor each direction .
18) : [CLEAR] key.....................................Erase the one character on the cursor position .
19) : [EXE] key ...Input operation is fixed. And, while pressing this key, the robot moves

when direct mode.
20) : Number/Character keyErase the one character on the cursor position . And, inputs the num-

ber or character

 2Explanation of functions

 Teaching pendant (T/B) functions 2-11

2.2.1 Operation rights
Only one device is allowed to operate the controller (i.e., send commands for operation and servo on, etc.)
at the same time, even if several devices, such as T/Bs or PCs, are connected to the controller.This limited
device "has the operation rights".
Operations that start the robot, such as program start and error reset, and operations that can cause starting
require the operation rights. Conversely, operation that stop the robot, such as stopping and servo OFF, can
be used without the operation rights for safety purposes.

Table 2-1:Relation of setting switches and operation rights ○ :Has operation rights, X:Does not have operation rights

Note 1) When the "operation right input signal (IOENA)" is input from an external device, the external signal
has the operation rights, and the personal computer's operation rights are disabled.

Note 2) If the [MODE] switch is set to "AUTOMATIC" when the T/B is set to "ENABLE", the error 5000 will
occur.

Table 2-2:Operations requiring operation rights Operation item: ○ =Requires operation rights, X= Does not require operation rights

Setting
 switch

T/B [ENABLE/DISBLE] DISABLE ENABLE

Controller [MODE] AUTOMATIC MANUAL AUTOMATIC MANUAL

Operation
rights

T / B X X XNote 2) ○

Controller operation panel ○ Note 1) X XNote 2) X

Personal computer ○ Note 1) X XNote 2) X

External signal ○ Note 1) X XNote 2) X

Class
Operation

rights
Operation

Operation ○ Servo ON

X Servo OFF

○ Program stop/cycle stop

X Slot initialization (program reset)

○ Error reset

X Override change. Note this is always possible from the T/B.

○ Override read

X Program No. change

○ Program No./line No. read

X Program stop/cycle stop

Input/output
signal

X Input/output signal read

X Output signal write

○ Dedicated input start/reset/servo ON/brake ON/OFF/manual mode changeover/general-pur-
pose output reset/program No. designation/line No. designation/override designation

X Dedicated input stop/servo OFF/continuous cycle/ operation rights input signal/ program
No.output request/line No. output request/override output request/error No. request, numeric
input

X Hand input/output signal read

○ Hand output signal write

Program edit-
ing
Note1)

Note1) When one device is being used for editing on-line, editing from other devices is not possible.

X Line registration/read/call; Position addition/correction/read; Variable write/read

○ Step feed/return, execution

X Step up/down

○ Step jump, direct execution, jog

File operation X Program list read/protection setting/copy/delete/rename/ initialization

Maintenance
operation

X Parameter read, clock setting/read, operation hour meter read, alarm history read

○ Origin setting, parameter change

2-12Functions Related to Movement and Control

2Explanation of functions

2.3 Functions Related to Movement and Control
This controller has the following characteristic functions.

Function Explanation Explanation page

Optimum speed control This function prevents over-speed errors as much as possible by limiting
the speed while the robot is tracking a path, if there are postures of the
robot that require the speed to be limited while moving between two
points. However, the speed of the hand tip of the robot will not be con-
stant if this function is enabled.

Page 268, "Spd (Speed)"

Optimum acceleration/
deceleration control

This function automatically determines the optimum acceleration/deceler-
ation time when the robot starts to move or stops, according to the weight
and center of gravity settings of the hand, and the presence of a work-
piece. The cycle time improves normally, although the cycle time
decreases by the condition..

Page 247, "Mxt (Move External)",
Page 231, "Loadset (Load Set)"

XYZ compliance With this function, it is possible to control the robot in a pliable manner
based on feedback data from the servo. This function is particularly effec-
tive for fitting or placing workpieces. Teaching along the robot's orthogo-
nal coordinate system is possible. However, depending on the workpiece
conditions, there are cases where this function may not be used.

Page 183, "Cmp Tool (Compliance
Tool)"

Impact Detection The robot stops immediately if the robot's tool or arm interferes with a
peripheral device, minimizing damage.
This function can be activated during automatic operation as well as dur-
ing jog operation.
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Page 190, "ColChk (Col Check)"
Refer to "COL" parameter in Page
381, "5 Functions set with parame-
ters".

Maintenance Forecast The maintenance forecast function forecasts the robot's battery, belt and
grease maintenance information based on the robot's operating status.
This function makes it possible to check maintenance information using
the optional Personal Computer Support software.
Note) Please note that this function cannot be used together with the

multi-mechanism control function.

Use optional Personal Computer
Support software.

Position Restoration
Support

The position restoration support function calculates the correction values
of OP data, tools and the robot base by only correcting a maximum of
several 10 points if a deviation in the joint axis, motor replacement, hand
deformation or a deviation in the robot base occurs, and corrects position
deviation. This function is implemented by optional Personal Computer
Support software.

Use optional Personal Computer
Support software.
Vertical multi-joint robot:

Continuous path con-
trol

This function is used to operate the robot between multiple positions con-
tinuously without acceleration or deceleration. This function is effective to
improvement of the cycle time.

Page 97, "(4) Continuous move-
ment",
Page 187, "Cnt (Continuous)"

Multitask program
operation

With this function, it is possible to execute programs concurrently by
grouping between programs for the robot movement, programs for com-
munication with external devices, etc. It is effective to shorten input/out-
put processing. In addition, it is possible to construct a PLC-less system
by creating a program for controlling peripheral jigs.

Refer to X*** instructions such as
Page 123, "4.3.1 What is multitask-
ing?", Page 281, "XRun (X Run)".

Program constant exe-
cution function

With this function, it is possible to execute a program all the time after the
controller's power is turned on. This function is effective when using the
multitask functions to make the robot program serve as a PLC.

Refer to "SLTn" parameter start attri-
bute (ALWAYS) in Page 381, "5
Functions set with parameters".

Continuity function With this function, it is possible to store the status at power off and
resume from the same status when the power is turned on again.

Refer to "CTN" parameter in Page
381, "5 Functions set with parame-
ters".

Additional axis control With this function, it is possible to control up to two axes as additional
axes of the robot. Since the positions of these additional axes are stored
in the robot's teaching data as well, it is possible to perform completely
synchronous control. In addition, arc interpolation while moving additional
axes (travelling axes) is also possible. The additional axis interface card
optional is required of CR1/CR2 series controller.

Separate manual "ADDITIONAL
AXIS INTERFACE".

Multi-mechanism con-
trol

With this function, it is possible to control up to two (excluding the stan-
dard robots) robots (user mechanism) driven by servo motors, besides
the standard robots.

Separate manual "ADDITIONAL
AXIS INTERFACE".

 2Explanation of functions

 Functions Related to Movement and Control 2-13

External device com-
munication function

The following methods are available for communicating with the external
devices
For controlling the controller and for interlock within a program
 1) Via input/output signals
 (CRnQ: PLC link input/output : 8192/8192 max.)
 (CRnD: Parallel input/output : 256/256 max.)
 2) Via CC-Link (optional)

As a data link with an external device
 3) Communication via RS-232C
 (1 standard port)
 4) Communication via Ethernet
The data link refers to a given function in order to exchange data, for
instance amount of compensation, with external devices (e.g., vision sen-
sors).

Refer to Page 310, "M_In/M_Inb/
M_In8/M_Inw/M_In16",
Page 320, "M_Out/M_Outb/M_Out8/
M_Outw/M_Out16".

Page 426, "5.15 About the commu-
nication setting (RS-232)"
Separate manual "Ethernet Inter-
face".

Interrupt monitoring
function

With this function, it is possible to monitor signals, etc. during program
operation, and pause the current processing in order to execute an inter-
rupt routine if certain conditions are met. It is effective for monitoring that
workpieces are not dropped during transport.

Page 195, " Def Act (Define act)",
Page 169, " Act (Act)"

Inter-program jump
function

With this function, it is possible to call a program from within another pro-
gram using the CallP instruction.

Page 174, " CallP (Call P)"

Pallet calculation func-
tion

This function calculates the positions of workpieces arranged in the grid
and glass circuit boards in the cassette. It helps to reduce the required
teaching amount. The positions can be given in row-by-column format,
single row format, or arc format.

Page 103, "4.1.2 Pallet operation",
Page 206, "Def Plt (Define pal-
let)",Page 255, "Plt (Pallet)"

User-defined area func-
tion

With this function, it is possible to specify an arbitrary space consisting of
up to 32 areas, monitor whether the robot's hand tip is within these areas
in real time, output the status to an external device, and check the status
with a program, or use it to generate an error. Moreover, two functions
(Zone and Zone2) that have a similar function are available for use in a
robot program.

Page 412, "5.8 About user-defined
area",Page 332, "M_Uar".

Page 378, "Zone",
Page 379, "Zone 2"
Page 380, "Zone3"

JOINT movement
range
XYZ operation range
Free plane limit

It is possible to restrict the robot movement range in the following three
ways
JOINT movement range:
It is possible to restrict the movement range of each axis.
XYZ operation range:
It is possible to restrict the movement range using the robot's XYZ coordi-
nate system.
Free plane limit:
It is possible to define an arbitrary plane and restrict the movement range
of the robot to be only in front of or only behind the plane.

Refer to "MEJAR" and "MEPAR"
parameter in Page 381, "5 Functions
set with parameters"

Refer to Page 418, "5.9 Free plane
limit"

Function Explanation Explanation page

3-14 Operation of the teaching pendant menu screens

3Explanation of operation methods

3 Explanation of operation methods

This chapter describes how to operate R32TB (optional)

3.1 Operation of the teaching pendant menu screens
(1) Screen tree

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 123

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

TEACH123DELETEEDIT INSERT ⇒

<POS.> JNT 100% P1
 X:＋128.56 A:＋180.00
 Y: ＋0.00 B: ＋90.00
 Z:＋845.23 C:－180.00
 L1: L2:
 FL1: 7 FL2: 0

Next123TEACHMOVE Prev ⇒

<PROGRAM COPY>　
　 　
 SRC.NAME (1)

 DSR.NAME ()

CLOSE　 123

<PROGRAM RENAME>　
　 　
 SRC.NAME (1)

 DST.NAME ()

CLOSE　 123

MELFA CRnD-7xx Ver. P2T

RV-6SDL

COPYRIGHT (C) 2008 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

<PROGRAM DELETE>　　 　

 NAME (1)

CLOSE　 123

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

Title screen

Program name input screen

Menu screen

1.File/Edit menu screen

Program editing screen

Position editing screen

Program copy screen

Rename screen

Delete screen

Protect screen

Ａ

⇒

a1

[EXE]

[CLOSE]

[NEW]

[EDIT]

[POSI.]

[COPY]

[RENAME]

[PROECT]

[DELETE]

[CHANGE]

Notes 1) "6. ENHANCED" is displayed
by the following software versions.

T/B :Ver.1.3 or later
SQ series: N8 or later
SD series :P8 or later

 3Explanation of operation methods

 Operation of the teaching pendant menu screens 3-15

Ｂ ＣＣ Ｄ

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<TEST RUN>

 PROG.NAME : 1 STEP : 1

 MODE : CONT.

CLOSE 123CSTOP ⇒

<PARAMETER> NAME()
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<ORIGIN>　　 　

 1.DATA 2.MECH
 3.TOOL 4.ABS
 5.USER

CLOSE　 123

<ORIGIN> DATA
 D:(Z1K85K)
J1:(01ag%4) J2:(F&15K0) J3:(01E27C)
J4:(A&5g%4) J5:(05H&30) J6:(81#DA9)
J7:() J8:()

CLOSE123

<ORIGIN> MECH COMPLETED

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE123

<ORIGIN> TOOL COMPLETED

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE123

Ａ

2.Run menu screen

3.Parameter screen

4.Origin/Brake screen

Check screen

Test run screen

Origin screen

1.Data screen

2.Mechanical stopper screen

3.Tool screen

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

a1

[CHECK]

[TEST
 RUN]

[ORIGIN]

[DATA]

[MECH]

[TOOL]

[Select the program]

3-16 Operation of the teaching pendant menu screens

3Explanation of operation methods

Ｂ ＣＣ Ｄ

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

5.Set/Initialize screen

<ORIGIN> ABS

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123

4.ABS screen

3.User screen

<ORIGIN> USER

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

2.Brake screen

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

<VERSION>

 R/C Ver. P2T
 T/B Ver. 1.2.1

CLOSE 123

1.Initialize screen

2.Operating time screen

3.Clock screen

4.Version screen

E

[ABS]

[USER]

[BRAKE]

[INITIALIZE]

[POWER]

[ClOCK]

[VERSION]

 3Explanation of operation methods

 Operation of the teaching pendant menu screens 3-17

<BASE SELECT>

 BASE:(1)

CLOSE123TOOL

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123

E

<ENHANCED>
1.SQ DIRECT 2.WORK COORD

CLOSE 123

6.ENHANCED 1.SQ DIRECT (SQ series only.)

<CURRENT> JOINT 50% M1 TO
 J1: 0.00 J5: 0.00
 J2: -0.01 J6: 0.00
 J3: -0.03 :
 J4: 0.00 :

JOGTOOLXYZ

3軸直交
Jog screen [JOG]key

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE

Hand screen [HAND]key

⇒CYLNDR3-XYZ

<WORK COORD.> WORK NUMBER (1)
 TEACHING POINT (WO)
 X: 0.00
 Y: 0.00
 Z: 0.00

DEFINE 123TEACH WX WY

2.WORK COORD

<SQ DIRECT> JNT 100% POS.123
 X:＋128.56 A:＋180.00
 Y: ＋0.00 B: ＋90.00
 Z:＋845.23 C:－180.00
 L1: L2:
 FL1: 7 FL2: 0

Next123TEACHMOVE Prev ⇒

This function enable direct control of the robot by PLC.
Refer to separate manual: "Extended Function Instruction"
(BFP-A8787).

[SQ
DIRECT]

[WORK
COORD]

B1

BASE

Tool select screen [HAND]key long push

Base select screen [HAND]key long push

3-18 Operation of the teaching pendant menu screens

3Explanation of operation methods

(2) Input of the number/character
Each time the [CHARACTER] key is pressed, the number input mode and the character input mode change.
The current input mode is displayed in the center under the screen, and the display of "123" shows that the
number input mode and "ABC" is the character input mode.

1) Input the number
The number ("-" (minus) and "." (decimal point) are included) can be inputted if the key currently displayed
on the lower left of each key is pressed.

Press the [CHARACTER] key, and in the condition that "123" is displayed on the screen lower side, press

the number key.

Ex.)If "51" is inputted into the program name.

2) Input the character
The character is displayed on the lower right of each key. The character can be inputted if the key is
pressed. Press the [CHARACTER] key, and in the condition that "ABC" is displayed on the screen lower

side, press the character key. Whenever the key as which two or more characters are displayed presses the

key, it changes the input character.

Ex.)The [ABC] key : "A" "B" "C" "a" "b" "c" ・ ・ ・ ・ ・ ・ It repeats.

If it continues and inputs the character currently displayed on the same key, once press the [→] key and
advance the cursor.

Ex.)If it inputs "ABY", push the [ABC], [→], [ABC] twice, [WXYZ] 3 times.

It comes out to input the character which is not displayed on the key. The character currently assigned to the
key is shown below.

a) [’ ()] key ' → (→) → " → ＾→ ： → ； → ￥ →？

b) [@ =] key.................... ＠→ ＝→ ＋ → － → ＊→ ／ → ＜ → ＞

c) [， %] key ， → ％→ ＃ → ＄ → ！→ ＆ → ＿ → ．

3) Delet the character
The character mistaken and inputted will delete the character in the position of the cursor, if the [CLEAR]
key is pressed.

Ex.)If "B" of "ABY" is changed into "M" and it is made "AMY".

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 123

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (51)

CLOSE　 123

Input the number [CHARACTER] [5] [1]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (ABY)

CLOSE　 ABC

Input the character [CHARACTER] [ABC] [→] [ABC] [ABC] [WXYZ] [WXYZ] [WXYZ]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC

 3Explanation of operation methods

 Operation of the teaching pendant menu screens 3-19

Move the cursor to character"B", and input "M" and "Y" after pressing and deleting the [CLEAR] key.

If the long pushing [CLEAR] key, all the data in the parenthesis can be deleted.

(3) Selecting a menu
A menu can be selected with either of the following two methods.

*Press the number key for the item to be selected.
*Move the cursor to the item to be selected, and press the [EXE] key.

How to select the Management/edit screen ("1. Management/edit") from the menu screen with each method
is shown below.

1) Set the controller [MODE] switch to "MAN-
UAL".

2) Set the T/B to "ENABLE".

3) Press one of the keys (example, [EXE] key)
while the <TITLE> screen is displayed.
The <MENU> screen will appear.

*Press the number key method

1) Press the [1] key. The <Management/edit>
screen will appear.

*Use the arrow key method

1) Press the arrow keys and move the cursor to
"1. Management/edit", and then press the
[EXE] key. The <Management/edit> screen
will appear.

The same operations can be used on the other menu screens.

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC

Correction of the input character [←] [CLEAR] [MNO] [WXYZ] [WXYZ] [WXYZ]

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (ABY)

CLOSE　 ABC

Display the MENU screen from the title screen.

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

O/P T/B

MELFA CRnD-7xx Ver. P2T

RV-6SDL

COPYRIGHT (C) 2008 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

Move the cursor - set [↑] [↓] [←] [→] + EXE

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

3-20 Operation of the teaching pendant menu screens

3Explanation of operation methods

◇◆◇ Using the T/B ◇◆◇
Unless the controller [MODE] switch is set to "MANUAL", operations other than specific operations (cur-
rent position display on JOG screen, changing of override, monitoring of input/output, error history) can-
not be carried out from the T/B.

◇◆◇ Function key ◇◆◇
There is the menu displayed on the lowest stage of the screen in the white character. These are assigned to

[F1], [F2], [F3], and [F4] key sequentially from the left. The menu currently displayed by pressing the

corresponding function key can be selected.
And, if "=>" is displayed at the right end of the menu, it is shown that there is still the menu other than the
current display, and whenever it presses the [FUNCTION] key, the display menu changes.

3-XYZ

<CURRENT> JOINT 50% M1 TO
 J1: 0.00 J5: 0.00
 J2: -0.01 J6: 0.00
 J3: -0.03 :
 J4: 0.00 :

123TOOLXYZ ⇒CYLNDR3-XYZ 3-XYZ

<CURRENT> JOINT 50% M1 TO
 J1: 0.00 J5: 0.00
 J2: -0.01 J6: 0.00
 J3: -0.03 :
 J4: 0.00 :

JOGADD.AX ⇒CLOSE

[FUNCTION]

B1 B1

 3Explanation of operation methods

 Jog Feed (Overview) 3-21

3.2 Jog Feed (Overview)
Jog feed refers to a mode of operation in which the position of the robot is adjusted manually. Here, an over-
view of this operation is given, using the vertical multi-joint type robot as an example. The axes are config-
ured differently depending on the type of robot. For each individual type of robot, please refer to separate
manual: "ROBOT ARM SETUP & MAINTENANCE," which provides more detailed explanations.

3.2.1 Types of jog feed
The following five types of jog feed are available
Table 3-1:Types of jog feed

Type Operation Explanation

JOINT jog 1) Set the key switch to the [ENABLE] posi-
tion.

2) Hold the enable lightly.
3) Press the [SERVO] key. (The servo is

turned on.)
4) Press the [JOG], [F1] key to change to the

JOINT jog mode.
5) Press the key corresponding to each of the

axes from J1 to J6.

In this mode, each of the axes can be adjusted independently.
It is possible to adjust the coordinates of the axes J1 to J6 as
well as the additional axes J7 and J8 independently. Note that
the exact number of axes may be different depending on the
type of robot, however.

The additional axis keys [J1] and [J2] correspond to axes J7
and J8, respectively.

TOOL jog Perform steps 1) to 3) above.
4) Press the function key to change to the

TOOL jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

The position can be adjusted forward/backward, left/right, or
upward/downward relative to the direction of the hand tip of the
robot (the Tool coordinate system).
The tip moves linearly. The posture can be rotated around the
X, Y, and Z axes of the Tool coordinate system of the hand tip
by pressing the A, B, and C keys, without changing the actual
position of the hand tip. It is necessary to specify the tool length
in advance using the MEXTL parameter.
The Tool coordinate system, in which the hand tip position is
defined, depends on the type of robot. In the case of a vertical
multi-joint type robot, the direction from the mechanical inter-
face plane to the hand tip is +Z.
In the case of a horizontal multi-joint type robot, the upward
direction from the mechanical interface plane is +Z.

XYZ jog Perform steps 1) to 3) above.
4) Press the function key to change to the

XYZ jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

The axes are adjusted linearly with respect to the robot coordi-
nate system.
The posture rotates around the X, Y, and Z axes of the robot
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip. It is necessary to
specify the tool length in advance using the MEXTL parameter.

3-axis XYZ jog Perform steps 1) to 3) above.
4) Press the function key twice to switch

to the 3-axis XYZ jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,J4,J5,J6.

The axes are adjusted linearly with respect to the robot coordi-
nate system.
Unlike in the case of XYZ jog, the posture will be the same as
in the case of the J4, J5, and J6 axes JOINT jog feed. While
the position of the hand tip remains fixed, the posture is inter-
polated by X, Y, Z, J4, J5, and J6; i.e., a constant posture is not
maintained. It is necessary to specify the tool length in advance
using the MEXTL parameter.

CYLNDER jog Perform steps 1) to 3) above.
4) Press the function key twice to switch

to the CYLNDER jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

Use the cylindrical jog when moving the hand in the cylindrical
direction with respect to the robot's origin. Adjusting the X-axis
coordinate moves the hand in the radial direction from the cen-
ter of the robot. Adjusting the Y-axis coordinate moves the
hand in the same way as in JOINT jog feed around the J1 axis.
Adjusting the Z-axis coordinate moves the hand in the Z direc-
tion in the same way as in XYZ jog feed.
Adjusting the coordinates of the A, B, and C axes rotates the
hand in the same way as in XYZ jog feed. They may be valid in
horizontal 4-axis (or 5-axis) RH type robots.

+J1

ｰJ1

+J2
-J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6

+Z

+Y
+X

＋Ａ

＋Ｃ

＋Ｂ

ｰＣ

－Ｂ
－Ａ

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ

＋Ｚ

＋Ｙ
＋Ｘ

+J4

+J5

-J5

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ
＋Ｂ

－Ｂ

＋Ｃ －Ｃ

－Ｙ

3-22 Jog Feed (Overview)

3Explanation of operation methods

If the robot's control point comes near a singular point during the operation of TOOL jog, XYZ jog, CYLIN-
DER jog or WORK jog mode among the types of jog feed listed in Table 3-1, a warning mark is displayed on
the T/B screen together with the sound of buzzer to warn the operator. It is possible to set this function valid
or invalid by parameter MESNGLSW. (Refer to Page 381, "5 Functions set with parameters".) Please refer
to Page 436, "5.19 About the singular point adjacent alarm" for details of this function.

3.2.2 Speed of jog feed
The current speed (%) is displayed on the screen. To change these values, press either the [OVRD 　 ↑］ ／

［OVRD 　 ↓] key. The following types of jog feed speed are available.

 [[OVRD 　 ↑] key -- [OVRD 　 ↓] key

LOW and HIGH are fixed-dimension feed. In fixed-dimension feed, the robot moves a fixed amount every
time the key is pressed. The amount of movement depends on the individual robot.

Table 3-2:Fixed-dimension of RV-6SD

WORK jog Perform steps 1) to 3) above.
4) Press the function key to change to the

WORK jog mode.
5) Press the key corresponding to each of the

axes from X,Y,Z,A,B,C.

The axes are adjusted linearly with respect to the work coordi-
nate system.
The posture rotates around the X, Y, and Z axes of the work
coordinate system by pressing the A, B, and C keys, without
changing the actual position of the hand tip. It is necessary to
specify the tool length in advance using the MEXTL parameter.
Notes) Work coordinate system:

Set up beforehand.(eight kinds setting is available)
If the work coordinate system is not set up, will move by
the XYZ jog.
Refer to separate manual: "ROBOT ARM SETUP &
MAINTENANCE"

Notes) Available at the following software version
T/B :Ver.1.3 or later
SQ series: N8 or later
SD series :P8 or later

LOW HIGH 3% 5% 10% 30% 50% 70% 100%

JOINT jog TOOL, XYZ jog

LOW 0.01 deg. 0.01 mm

HIGH 0.10 deg. 0.10 mm

Type Operation Explanation

+Z

+Y
+X

Work
coordinates

Ｘ

Ｙ

Ｚ

 3Explanation of operation methods

 Jog Feed (Overview) 3-23

3.2.3 JOINT jog
Adjusts the coordinates of each axis independently in angle units.

3.2.4 XYZ jog
Adjusts the axis coordinates along the direction of the robot coordinate system.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

 +J1

ｰJ1

+J2
-J2

+J4

-J3

-J4

+J5

-J5

+J3

+J6

-J6

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ

＋Ｂ

－Ｂ

＋Ｃ －Ｃ

3-24 Jog Feed (Overview)

3Explanation of operation methods

3.2.5 TOOL jog
Adjusts the coordinates of each axes along the direction of the hand tip.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

3.2.6 3-axis XYZ jog
Adjusts the X, Y, and Z axis coordinates along the direction of the robot coordinate system in the same way
as in XYZ jog feed. The J4, J5 and J6 axes perform the same operation as in JOINT jog feed, but the pos-
ture changes in order to maintain the position of the control point (X, Y and Z values).
The X, Y, and Z axis coordinates are adjusted in mm units. The J4, J5, and J6 axis coordinates are adjusted
in angle units.

+Z

+Y
+X ＋C

-C

-A
＋A

＋B

-B

+J4
-J4

+J5

-J5

+J6

-J6

＋X
＋Y

＋Z

 3Explanation of operation methods

 Jog Feed (Overview) 3-25

3.2.7 CYLNDER jog
Adjusting the X-axis coordinate moves the hand in the radial direction away from the robot's origin. Adjust-
ing the Y-axis coordinate rotates the arm around the J1 axis. Adjusting the Z-axis coordinate moves the
hand in the Z direction of the robot coordinate system. Adjusting coordinates of the A, B, and C axes moves
the hand in the same way as in XYZ jog feed.
The X and Z axis coordinates are adjusted in mm units. The Y, A, B, and C axis coordinates are adjusted in
angle units.

3.2.8 WORK jog
Adjusts the axis coordinates along the direction of the work coordinate system.
The X, Y, and Z axis coordinates are adjusted in mm units. The A, B, and C axis coordinates are adjusted in
angle units.

＋Ｚ

＋Ｙ
＋Ｘ ＋Ａ

－Ａ
＋Ｂ

－Ｂ

＋Ｃ －Ｃ

－Ｙ

+Z

+Y
+X

Work coordinate system:
 Coordinate system squared with the work, the working table, etc.

+Z

+X

+Y

+A

-B

+C-C

-A
+B

3-26 Jog Feed (Overview)

3Explanation of operation methods

3.2.9 Switching Tool Data
Set the tool data you want to use in the MEXTL1 to 16 parameters, and select the number of the tool you

want to use according to the following operation.

1) Push the [ENABLE] switch of T/B and enable T/B.

2) Long press the [HAND] key, and display the <tool change> screen.
3) If the number key to wish is pressed and the [EXE] key is pressed, tool data will change. MEXTL1-16 of the

parameter corresponds to 1-16 of the number.

4) Press the function key assigned for "closing" and finish.

5) The current tool number (T1-T16) is displayed on the upper right of the jog screen.

To move the robot to the position where teaching was performed while switching
tool data (MEXTL1 to 16 parameters) during the automatic operation of the
program, substitute the M_Tool variable by a tool number when needed, and
operate the robot by switching tool data. Exercise caution as the robot moves to
an unexpected direction if the tool data during teaching does not match the tool
number during operation.

To move the robot while switching tool data during the step operation of the
program, exercise caution as the robot moves to an unexpected direction if the
tool data at the time of teaching does not match the tool number during step
operation.

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<TOOL SELECT>

 TOOL : (0)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 280.00, 0.00, 0.00,
 0.00

CLOSE 123

Display of the tool change screen [HAND]

The change of tool data [1] ～ [16] [EXE]

BASE

BASE

BASE

Completed [F4]

<TOOL SELECT>

 TOOL : (1)
 0.00, 0.00, 0.00, 0.00, 0.00,
 0.00

CLOSE 123BASE

 CAUTION

 CAUTION

◇◆◇ Verifying the Tool Number ◇◆◇
The current tool number can be checked on the <TOOL SETTING> screen, JOG screen, or with the
M_Tool variable.

◇◆◇ Related Information ◇◆◇
MEXTL, MEXTL1, MEXTL2, MEXTL3, MEXTL4 MEXTL16 parameters
Tool instruction, M_Tool variable
The MEXTL parameter holds tool data at that point. When using the MEXTL1 to 16 parameters, be careful
as the MEXTL parameter is overwritten once a tool number is selected.
Execute the Tool instruction to return the tool number to 0.

 3Explanation of operation methods

 Jog Feed (Overview) 3-27

3.2.10 Changing the world coordinate (specifies the base coordinate number)
The world coordinate which is the standard of position control of the robot can be changed easily by T/B

operation
In use of the base conversion function (Base instruction), this function is convenient for teaching

operations.
Set the base coordinate system to specify as parameter WK1 CORD-WK8CORD previously. (Refer to

"Work jog operation" of "ROBOT ARM SETUP & MAINTENANCE" of separate volume. Refer to
"5.1Movement parameter" of this volume for details of the parameter MK1CODE - MK8CODE also.)

When the world coordinate is changed by this function, although the robot does
not move, the current coordinate value will change.
Confirm that the relation of the position in the program to teach corresponding to
the Base instruction and the base coordinate number which you are using now is
right.
Failure to confirm this could lead to personal injuries or damage if you teach by the
wrong base coordinate number, because the robot does the unexpected motion at
program execution.
Make related the name of the position variable corresponding to the base
coordinate number, and please manage rightly.

Operating procedure is shown below.

1) Push the [ENABLE] switch of T/B and enable T/B.

2) Long press the [HAND] key, and display the <BASE SELECT> screen.
If the <TOOL SELECT> screen is displayed, press the function key [F1] corresponding to the "BASE"
under the screen.

3) If the base coordinate number to wish is inputted and the [EXE] key is pressed, the world coordinate
will change.
1 to 8 : Base coordinate number (correspond to parameter WK1CORD - WK8CORD)
0: Return to condition at shipment. (Condition without base conversion)

 CAUTION

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<BASE SELECT>

 BASE:(0)

CLOSE123TOOL

Display of the <BASE SELECT> screen :

Long press the [HAND] key

<BASE SELECT>

 BASE:(1)

CLOSE123TOOL

The setup of the world coordinate by the base coordinate number [0], [1] to [8], [EXE]

<BASE SELECT>

 BASE:(0)

CLOSE123TOOL

(Example : Change to the base coordinate number 1.)

3-28 Jog Feed (Overview)

3Explanation of operation methods

4) Press the function key corresponding to "CLOSE" and finish.

5) The current tool number (B1-B8) is displayed on the upper right of the jog screen.

3.2.11 Impact Detection during Jog Operation
 This function can be enabled and disabled with a parameter. If the controller detects an impact, an error
numbered 101n will be generated (the least significant digit, n, is the axis number). This function can also be
enabled during jog operation; initial setting differs depending on the type.

Table 3-3:Impact detection parameters

Parameter Name
No. of

elements
Description Initial value

Impact
detection Note1)

Note1) This function cannot be used together with the multi-mechanism control function.

COL Integer 3 Define whether the impact detection function can/cannot be used, and
whether it is enabled/disabled immediately after power ON.
Element 1: The impact detection function can (1)/cannot (0) be used.
Element 2: It is enabled (1)/disabled (0) as the initial state during operation.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog operation

The NOERR mode does not issue an error even if impact is detected. It
only turns off the servo. Use the NOERR mode if it is difficult to operate
because of frequently occurring errors when an impact is detected.
The specification depends on the settings for jog operation (element 3) in
cases other than program operation (including position jump and step
feed).

RV-SQ/SD
series
0,0,1

RV-SQH/SDH
series
1,0,1

RV-SQHR/
SDHR series
1,1,1

Detection level
during jog
operation

COLLVLJG Integer 8 Set the detection level (sensitivity) during jog operation (including pause
status) for each joint axis. Unit: %
Make the setting value smaller to increase the detection level (sensitivity).
If an impact error occurs even when no impact occurs during jog operation,
increase a numeric value.

Setting range: 1 to 500 (%)

The setting var-
ies depending
on the model.

Hand
condition

HNDDAT0 Real value 7 Set the initial condition of the hand. (Specify with the tool coordinate sys-
tem.)
Immediately after power ON, this set value is used during jog operation.
To use the impact detection function during jog operation, set the actual
hand condition before using. If it is not set, erroneous detection may occur.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, cen-
ter of gravity Z)
Unit: Kg, mm

The setting var-
ies depending
on the model.

Workpiece
condition

WRKDAT0 Real value 7 Set the initial condition of the workpiece. (Specify with the tool coordinate
system.)
Immediately after power ON, this setting value is used during jog opera-
tion.
(Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, cen-
ter of gravity Z)
Unit: Kg, mm

It is only
released with
the RV-SD and
RH-SDH series.
0.0,0.0,0.0,0.0,
0.0,0.0,0.0

Completed 　 [F4]

<BASE SELECT>

 BASE:(1)

CLOSE123TOOL

 3Explanation of operation methods

 Jog Feed (Overview) 3-29

(1) Impact Detection Level Adjustment during Jog Operation
The sensitivity of impact detection during jog operation is set to a lower value. If higher impact sensitivity is
required, adjust the COLLVLJG parameter before use. Also, be sure to set the HNDDAT0 and WRKDAT0
parameters correctly before use. If a jog operation is carried out without setting these parameters correctly,
erroneous detection may occur depending on the posture of the robot.

◇◆◇ Precaution for the Impact Detection Function ◇◆◇
Enabling the impact detection function does not completely prevent the robot, hand, workpiece and others
from being damaged, which may be caused by interference with peripheral devices. In principle, operate
the robot by paying attention not to interfere with peripheral devices.

◇◆◇ Operation after Impact ◇◆◇
If the servo is turned ON while the hand and/or arm is interfering with peripheral devices, the impact
detection state occurs again, preventing the servo from being turned ON. If an error persists even after
repeatedly turning ON the servo, release the arm by a brake release operation once and then turn ON the
servo again. Or, release the arm by turning ON the servo according to the Page 55, "Operation to
Temporarily Reset an Error that Cannot Be Canceled".

◇◆◇ Relationship with impact detection for automatic operation ◇◆◇
Settings of the impact detection function for jog operation and the impact detection function for automatic
operation are independent. The setting for jog operation is used when the robot is not performing program
operation. Even if the impact detection function for automatic operation is disabled in a program when the
setting for jog operation is enabled, the setting is switched to that for jog operation (impact detection
enabled) when the operation is paused.

3-30 Opening/Closing the Hands

3Explanation of operation methods

3.3 Opening/Closing the Hands
The open/close operation of the hands attached to on the robot is explained below.

Hands 1 to 6 can be opened and closed with the T/B.

Press the [HAND] key, and display the hand screen.

Opening and closing hand 1
Open: Press [+C] key
Close: Press [-C] key

Opening and closing hand 2
Open: Press [+B] key
Close: Press [-B] key

Opening and closing hand 3
Open: Press [+A] key
Close: Press [-A] key

Opening and closing hand 4
Open: Press [+Z] key
Close: Press [-Z] key

Opening and closing hand 5
Open: Press [+Y] key
Close: Press [-Y] key

Opening and closing hand 6
Open: Press [+X] key
Close: Press [-X] key

It is possible to mount various tools on the robot's hand area. In the case of pneumatic control, where the
solenoid valve (at double solenoid) is used, two bits of the hand signal is controlled by the open/close oper-
ation of the hand. For more information about the hand signal, please refer to Page 422, "5.12 About the
hand type" and Page 423, "5.13 About default hand status".

OUT-900 ～ OUT-907 7 6 5 4 3 2 1 0

Open/Close Close Open Close Open Close Open Close Open

Hand number 4 3 2 1

IN-900 ～ IN-907 7 6 5 4 3 2 1 0

Input signal 907 906 905 904 903 902 901 900

 <HAND> ±C:HAND1 ±Z:HAND4
_ ±B:HAND2 ±Y:HAND5
_ ±A:HAND3 ±X:HAND6
_ 76543210 76543210
_OUT-900 IN-900
_ SAFE CLOSEALIGN 123 →

Open Close

 [-C]

 [+C]

 3Explanation of operation methods

 Aligning the Hand 3-31

3.4 Aligning the Hand
The posture of the hand attached to the robot can be aligned in units of 90 degrees.
This feature moves the robot to the position where the A, B and C components of the current position are set
at the closest values in units of 90 degrees.

If the tool coordinates are specified by the Tool instruction or parameters, the hand is aligned at the specified
tool coordinates. If the tool coordinates are not specified, the hand is aligned at the center of the mechanical
interface. The above illustration shows an example of a small vertical robot. [With Tool Coordinate Specifica-
tion] indicates when the tool coordinates are specified at the tip of the hand. For more information about the
tool coordinates, refer to Page 408, "5.6 Standard Tool Coordinates".
The hand alignment procedure is as follows:

1) Push the [ENABLE] switch of T/B and enable T/B.

2) Press down the enabling switch (3 position switch), press the [SERVO] key and carry out servo-on.
3) Press the "HAND" key and display the <hand> screen.

4) Pressing the function key currently assigned to "alignment" is kept with the enabling switch (3 position
switch) pressed down. While keeping pushing, the robot does hand alignment movement and [START] LED of
the controller unit turns on during movement.
If either is detached in the middle of movement, the robot will stop.

Without tool coordinate
specification.

With tool coordinate
specification.

Without tool coordinate
specification.

With tool coordinate
specification.

Control
point

Control
point

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE

Hand screen [HAND]

Execution of hand alignment [Align]

<HAND> ±C : HAND1 ±Z : HAND4
 ±B : HAND2 ±Y : HAND5
 ±A : HAND3 ±X : HAND6
 76543210 76543210
OUT-900□□□□□□ IN-900□□□□□□

CLOSE HNDALIGNSAFE

3-32 Aligning the Hand

3Explanation of operation methods

If any posture components (A, B and C) become 180 degrees as a result of align-
ing the hand, the component values can be either +180 degrees or -180 degrees
even if the posture is the same. This is due to internal operation errors, and there
is no consistency in which sign is employed. If the position is used as position data
for the pallet definition instruction (Def Plt) and the same posture component val-
ues include both +180 degrees and -180 degrees, the hand will rotate and move in
unexpected ways because the pallet operation calculates positions by dividing the
distance between -180 degrees and +180 degrees. When using position data
whose posture component values include 180 degrees for pallet definitions, use
either + or - consistently for the sign of 180 degrees. Note that if the position data
is used directly as the target position in an interpolation instruction, the hand
moves without problem regardless of the sign.

 CAUTION

 3Explanation of operation methods

 Programming 3-33

3.5 Programming

MELFA-BASIC Ⅴ used with this controller allows advanced work to be described with ample operation func-
tions. The programming methods using the T/B are explained in this section. Refer to Page 166, "4.14
Detailed explanation of command words" in this manual for details on the MELFA-BASIC Ⅴ commands and
description methods.

3.5.1 Creating a program
(1) Opening the program edit screen

1) Select "1. management / edit" screen on the <menu> screen.
2) Press the function key corresponding to "new." Display the program name input screen.

3) Input the program name. Display the command edit screen.
(Open the existing program, if the existing program name is inputted)

Select the function [F3]

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 ()

CLOSE　 ABC

<NEW PROGRAM>
　　 　
 PROGRAM NAME
 (1_)

CLOSE　 ABC

<PROGRAM> 1 50%

TEACH123DELETEEDIT INSERT ⇒

Inputs "1" of program name [1] [EXE]

3-34 Programming

3Explanation of operation methods

(2) Creating a program
The key operation in the case of inputting the program of the following and the three steps is shown.

1 Mov P1

2 Mov P2

3 End

1) Press the function key ([F3]) corresponding to "insertion" in the command edit screen.

2) Input of step number"1."

Press the [CHARACTER] key, set it in the number input mode and press the [1] key.
The space between step number and command is omissible.

3) Input "Mov."

Press the [CHARACTER] key, set it in the character input mode

Press the [MNO] ("M"),[→], [MNO]("o") 3 times, and [TUV]("v") 3 times in order.

4) Input "P1."
Press the [SP]("space")、 [PQRS] ("P").
Press the [CHARACTER] key, set it in the number input mode and press the [1] key.
For the instruction word and the data which accompanies the command, the space is required.

Step insertion [F3]

<PROGRAM> 1 50%

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 Ins

 ＿

CLOSE123

<PROGRAM> 1 Ins

 1＿

CLOSE123

Step number input [1]

<PROGRAM> 1 Ins

 ＿

CLOSE123

<PROGRAM> 1 Ins

 1MOV＿

CLOSE123

Input "Mov" [CHARACTER] [MNO] [→] [MNO] [MNO] [MNO] [TUV] [TUV][TUV]

<PROGRAM> 1 Ins

 1＿

CLOSE123

<PROGRAM> 1 Ins

 1MOV P1＿

CLOSE123

Input "P1" [SP] [PQRS] [CHARACTER] [1]

<PROGRAM> 1 Ins

 1MOV＿

CLOSE123

 3Explanation of operation methods

 Programming 3-35

5) Registration of Step 1
Press the [EXE] key and register the step 1.

6) Hereafter, input Steps 2 and 3 in the same way.

The input of the program was completed above.

<PROGRAM> 1 50%

1Mov P1

TEACH123DELETEEDIT INSERT ⇒

Registration of Step 1 [EXE]

<PROGRAM> 1 Ins

 1MOV P1＿

CLOSE123

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 End

TEACH123DELETEEDIT INSERT ⇒

◇◆◇ Displaying the previous and next command step ◇◆◇
Display the four lines on the screen of T/B. For moving the cursor to the front line, the [↑] key is pressed, for
moving the cursor to the next line, press the [↓] key, and select.

◇◆◇ Displaying a specific line ◇◆◇
Press the [FUNCTION] key, and change the function display, and press the [F2] key. The display changes to
the JUNP screen. The specification line can be displayed, if the step number to display in the parenthesis is
inputted and the [EXE] key is pressed.

◇◆◇ The step number can be omitted when inserting. ◇◆◇
It is inserted in the next of the cursor line if it omits.

◇◆◇ The capital letter and the small letter are changed automatically. ◇◆◇
Display the reserved word and the variable name in MELFA BASIC V combining the capital letter and the
small letter. Change automatically at the time of confirmation of the line also with the capital letter (with the
small letter) at the time of the input from TB.

3-36 Programming

3Explanation of operation methods

(3) Completion of program creation and saving programs
If the function key which corresponds for "closing" is pressed, the program will be saved and creation will be

finished.

If the "close" is not indicated, press the [FUNCTION] key, and display it.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 End

CLOSE123CHANGEDIRECT ⇒

Save & exit of the program [F4]

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

◇◆◇ Precautions when saving programs ◇◆◇
Make sure to perform the operation above. The edited data will not be updated if the power is turned off
without doing so after modifying a program on the program edit screen. Moreover, as much as possible, try
to save programs not only on the controller but also on a PC in order to make backup copies of your
work.It is recommended to manage programs using RT ToolBox 2 (optional).

 3Explanation of operation methods

 Programming 3-37

(4) Correcting a program
Before correcting a program, refer to Page 33, "3.5.1 Creating a program" in "(1)Opening the program edit
screen", and open the program edit screen.

An example, change"5 Mov P5" to "5 Mvs P5".

1) Display the step 5
Press the [FUNCTION] key and change the function display. Press the [F2](Jump) key and display the
command edit screen. Press the [5], [EXE] key and display the 5th step.
Step 5 can be called even if it moves the cursor to Step 5 by the [↑] or [↓] key.

2) Correction of the instruction word.
Press the function key corresponding to "edit."

3) Press the [->] key 3 times. Move the cursor to "o."

Press the [CLEAR] key twice and delete "ov". Leave "M." Press the [TUV] key 3 times (input "v"), the
[->] key, the [PQRS] key 4 times (input "s"). Then, 5 step is "Mvs P5". Press the [EXE] key, and reg-
ister step 5.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

 STEP (5)

CLOSE123

Call the step 5 [5] [EXE]Call the step 5 [F2]

<PROGRAM> 1 50%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSE123

Correct the command 命令語の修正 [F1]

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSEABC

<PROGRAM> 1 Edit

 5 Mov P5＿

CLOSEABC

<PROGRAM> 1 Edit

 5 MVS P5＿

CLOSEABC

<PROGRAM> 1 50%

4 Mov P4
5 Mvs P5
6 End

TEACH123DELETEEDIT INSERT ⇒

 [TUV] [TUV] [TUV] [→]
 Correct the command [PQRS] [PQRS] [PQRS] [PQRS]

Correct the command [EXE]

3-38 Programming

3Explanation of operation methods

◇◆◇ Select and correct the line. ◇◆◇
[↑] By the [↓] key, the cursor can be moved to Step 5, and the function key corresponding to "edit" can
also be pressed and corrected to it.

◇◆◇ Cancel correction. ◇◆◇
Correction can be canceled if the function key which corresponded for "closing" is pressed in the middle of
correction.

◇◆◇ Correction of the character ◇◆◇
Move the cursor to up to the mistaken character, and input the correct character after pressing the [CLEAR]
key and deleting leftward.

◇◆◇ If the program is corrected ◇◆◇
If the program is corrected, certainly save. （Function key [F4 which correspond for "closing" are pushed, or
push the [ENABLE] switch on the back of T/B, and disable T/B.） Please check that it has been correctly
corrected by step operation about the details.

 3Explanation of operation methods

 Programming 3-39

(5) Registering the current position data
Teach the position variable which moves the robot to the movement position by jog operation etc., and is using

the position by the program (registration). It is overwritten if already taught (correction). There are the teaching in
the command edit screen and the teaching in the position edit screen.

(a)Teaching in the command edit screen

Call the step which is using the position variable to teach.
The operating procedure in the case of teaching the current position to the below to the position variable P5
of step 5"Mvs P5" is shown. Move the robot to the movement position by jog operation etc. beforehand.

1) Call the step 5
Press the function key corresponding to "JUMP", then step number input screen is displayed. Press the
[5], [EXE] key, move cursor to step 5.
Step 5 can be called even if it moves the cursor to Step 5 by the [↑], [↓] key.

2) Teaching of the current position

Press the function key corresponding to "Teach"([F4]), then the confirmation screen is displayed.

3) Press the function key corresponding to "Yes", then the robot's current position data will be taught to P5,
and display will return to the original command edit screen. The teaching can be canceled if the function

key corresponding to "No" is pressed.

The teaching of the current position was completed above.

Call the step 5 [F2] Call the step 5 [5] [EXE]

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

 STEP (5)

CLOSE123

<PROGRAM> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

Register the current position [F4]

<PROGRAM> 1 50%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

Register the current position [F1]

<PROGRAM> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

<PROGRAM> 1 50%

4 Mov P4
5 Mov P5
6 End

TEACH123DELETEEDIT INSERT ⇒

◇◆◇ Only one position variable is the target. ◇◆◇
If the read step is using two or more position variables, such as "Mov P1+P2" and "P1=P10", the position
variable of most left-hand side is the target of the teaching.
And, as shown in "Mov p1+P2", the position variable of the capital letter and the small letter is intermingled,
the position variable of the capital letter is target. (The software version of T/B is 1.3 or later) It is the
following page if it teaches other variables. Refer to "(b)Teaching in the position edit screen."as follows

3-40 Programming

3Explanation of operation methods

(b)Teaching in the position edit screen

The operating procedure in the case of teaching the current position to the below to the position variable P5
is shown. Move the robot to the movement position by jog operation etc. beforehand.

1) Teaching in the position edit screen
Press the function key ([F2]) corresponding to "the change", and display the position edit screen.

2) Press the function key corresponding to "Prev" and "Next", and call "P5".

3) Teaching of the current position

Press the function key corresponding to "Teach"([F4]), then the confirmation screen is displayed.

4) Press the function key corresponding to "Yes", then the robot's current position data will be taught to P5,
and display will return to the original position edit screen. The teaching can be canceled if the function key
corresponding to "No" is pressed.

The teaching of the current position was completed above.

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

Display the current position [F2]

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 5 [F3] [F4]

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 5 [F2]

<POS.EDIT> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Register the current position [F1]

<POS.> JNT 50% P1
 X:+977.45 A:-180.00
 Y: +0.00 B: +89.85
 Z:+928.24 C:+180.00
 L1: L2:
 FL1: 7 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.EDIT> 1

P5
 RECORD CURRENT POSITION.
 OK?

No123Yes

 3Explanation of operation methods

 Programming 3-41

◇◆◇ Change of the command edit screen and the position edit screen ◇◆◇
If the function key corresponding to "the change" is pressed, the command edit screen and the position edit
screen can be changed each other.
If the "change" is not displayed on the screen, it is displayed that the [FUNCTION] key is pressed. If "=>" is
displayed at the right end of the menu, the state of changing the menu by pressing the [FUNCTION] key is
shown.

The position variable of order can be called one by one by Prev (F3) and Next (F4). Usually, although it is the
call of only the position variable, change the function key and the call can do the joint variable by the name
(F2). After calling the joint variable, the joint variable of order can be called one by one by Prev (F3) and
If it displays to the head or the last by the joint variable, it will return to the position variable by the next
display.

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 100% P5
 X:＋128.56 A:＋180.00
 Y: ＋0.00 B: ＋90.00
 Z:＋845.23 C:－180.00
 L1: L2:
 FL1: 7 FL2: 0

Next123TEACHMOVE Prev ⇒

NextTEACHMOVE Prev NextTEACHMOVE Prev
[FUNCTION] key

DELET NAME CHANGE CLOSE

Position edit screen

Command edit screen

 [F3]

 [F2]

3-42 Programming

3Explanation of operation methods

(6) Deletion of the position variable
The operating procedure which deletes the position variable is shown.
Restrict to the variable which is not used by the program and it can delete.

1) Display the position edit screen.
Press the function key corresponding to "Cange", and display the position edit screen.

2) Display the position variable to delete.
Press the function key corresponding to "Prev" and "Next", and display the position variable to delete.

3) Deletion of the position variable
Press the function key corresponding to "Delete", then the confirmation screen is displayed.
(When "Delete" is not displayed, it is displayed that the [FUNCTION] key is pressed)

4) Deletion of the position variable
Press the function key corresponding to "Yes", then the position variable is deleted.

Display the position edit screen [F2]

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Call the position 55 [F3] [F4]

<POS.> JNT 50% P55
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P55
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

CHANGE123NAMEDELETE ⇒CLOSE

<POS.EDIT>

P55
 DELETE OK?

No123Yes

Delete the P55

<POS.> JNT 50% P55
 X: A:
 Y: B:
 Z: C:
 L1: L2:
 FL1: 0 FL2: 0

CHANGE123NAMEDELETE ⇒CLOSE

<POS.EDIT>

P55
 DELETE OK?

No123Yes

 3Explanation of operation methods

 Programming 3-43

(7) Confirming the position data (Position jump)
Move the robot to the registered position data place.
The robot can be moved with the "joint mode" or "XYZ mode" method.
Perform a servo ON operation while lightly holding the deadman switch before moving positions.

Table 3-4:Moving to designated position data

The operation method is shown in the following.
Do this operation by maintaining the servo-on state, carrying out servo-on and holding the enabling switch (3
position switch) lightly.

1) Display the position variable to make it move beforehand.
Press the function key corresponding to "Move", then move the robot to position which currently
displayed variable, only while keeping pressing the key.
If the function key corresponding to "Move" is detached, the robot will stop. And, if the enabling switch (3
position switch) is detached or it presses down still more strongly, servo-off will be carried out and the
robot will stop.

 The robot moves by this operation.
When the robot moves, confirm not interfering with peripheral equipment etc.
beforehand.
We recommend you to lower speed at first. And, also important to predicting the
trajectory of the robot by moving mode (the joint, the XYZ) of operation.

Name Movement method

Joint mode The robot moves with joint interpolation to the designated position data place.
This moving method is used when the jog mode is JOINT jog.
The axes are adjusted in the same way as with the Mov instruction.

XYZ mode The robot moves with linear interpolation to the designated position data place. Thus, the robot will
not move if the structure flag for the current position and designated position differ.
This moving method is used when the jog mode is XYZ, 3-axis XYZ, CYLNDER or TOOL jog.
The axes are adjusted in the same way as with the Mvs instruction.

<POS.> JNT 50% P1
 X:+977.45 A:-180.00
 Y: +0.00 B: +89.85
 Z:+928.24 C:+180.00
 L1: L2:
 FL1: 7 FL2: 0

Prev123TEACHMOVE ⇒Next

 CAUTION

3-44 Programming

3Explanation of operation methods

(8) Correcting the MDI (Manual Data Input)
MDI is the method of inputting the numerical value into each axial element data of position data directly, and

registering into it.
This is a good registration method for registration of the position variable which adds position data and is used as
an amount of relative displacement from a reference position (difference), if it tunes registered position data
finely.

Reference)Position data as an amount of relative displacement

Ex.） In the case of move by joint interpolation to over 50mm from P1 of reference position, the P1 is
registered by teaching.. And set "50.00" into Z-axis element, and set "0.00" to the other element
by MDI. Then, executing the Mov P1+P50 is possible.

The operation method in the case of registering P50 of the above-mentioned example by MDI is shown.

1) Display the position edit screen.
Press the function key corresponding to "Cange", and display the position edit screen.

2) Input "50.00" into Z-axis element
Press the [↓] key twice and move the cursor to the Z-axis. Press the [CLEAR] key, and delete "+0.00"

currently displayed. Press [5], [0], and the [EXE] key. As for the position variable P50, only the value of

the Z-axis is registered as the 50mm.

Display the position edit screen [F2]

<PROGRAM> 1
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123CHANGEDIRECT ⇒

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: 50 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Input 50 [5] [0] [EXE]

Prev123TEACHMOVE ⇒Next

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: 50.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Clear the value [↓] [CLEAR]

<POS.> JNT 50% P1
 X: +0.00 A: +0.00
 Y: +0.00 B: +0.00
 Z: +0.00 C: +0.00
 L1: +0.00 L2: +0.00
 FL1: 0 FL2: 0

Prev123TEACHMOVE ⇒Next

 3Explanation of operation methods

 Debugging 3-45

3.6 Debugging
Debugging refers to testing that the created program operates correctly, and to correcting an errors if an
abnormality is found. These can be carried out by using the T/B's debugging function. The debugging func-
tions that can be used are shown below. Always carry out debugging after creating a program, and confirm
that the program runs without error.

(1) Step feed
The program is run one line at a time in the feed direction. The program is run in line order from the head or
the designated line.
Confirm that the program runs correctly with this process.

Using the T/B execute the program line by line (step operation), and confirm the operation.
Display the edit screen of the program which is the target of debugging. Perform the following operations
while pressing lightly on the enabling switch of the T/B after the servo has been turned on.

1) Execution of step feed
Press the [FUNCTION] key and change the function display. Pressing the [F1] (FWD) key is kept,
and the robot will start moving.
When the execution of one line is completed, the robot will stop, and the next line will appear on the
screen.
If [F1] (FWD) is released during this step, the robot will stop. And, detach the enabling switch (3 posi-

tion switch), or push in still more strongly -- thing servo-off can be carried out and execution can be
stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is

completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. If the [F1]

key is detached, the cursor of the T/B screen will move to the following step.

Whenever it presses the function key corresponding to "FWD", step to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

The robot's locus of movement may change with specified speed.

Especially as for the corner section, short cut distance may change. Therefore, when
beginning automatic operation, moves at low speed at first, and you should gather
speed slowly with being careful of interference with peripheral equipment.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

Step feed [F1]

 CAUTION

 CAUTION

◇◆◇ About step operation ◇◆◇
"Step operation" executes the program line by line. The operation speed is slow, and the robot stops after
each line, so the program and operation position can be confirmed.
During execution, the lamp on the controller's [START] switch will light. Execution of the End command or
the Hlt command will not step feed any more.

◇◆◇ Change of the execution step ◇◆◇
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").

3-46 Debugging

3Explanation of operation methods

(2) Step return
The line of a program that has been stopped with step feed or normal operation is returned one line at a
time and executed. This can be used only for the interpolation commands. Note that only up to four lines
can be returned.

1) Execution of step return
If the function key corresponding to "BWD" is pressed, only while keeping pushing, only the one step will be
executed in the return direction of the step.
If the function key is released during this step, the robot will stop. And, release the enabling switch (3

position switch), or push in still more strongly, then the servo power off, and execution can be stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. The cursor

of the T/B screen moves to the step of the next interpolation command in the return direction of the step.

Whenever it presses the function key corresponding to "BWD", it returns to the front step.

[Supplement]If it does step return after carrying out the step feed of the following program to Step 4 and step
return is further done after returning to P1, it will return to the position at the time of the start which
did step feed.(The position at the time of the start is the position which began to execute Step 1.)

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

◇◆◇ Immediately stopping the robot during operation ◇◆◇
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] (FWD)key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] (FWD)key.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

Step return [F4]

開始時の位置

P1 P2

P3 P4Starting position

P1 P2

P3 P4
Program

1 Mov P1

2 Mov P2

3 Mov P3

4 Mov P4

 :

 :

 CAUTION

 3Explanation of operation methods

 Debugging 3-47

(3) Step feed in another slot
When checking a multitask program, it is possible to perform step feed in the confirmation screen of the
operation menu, not in the edit screen.

1) Selection of the operation menu
Press the [2] keys in the menu screen and select "2. Operation."

2) Selection of the confirmation screen
Press the [1] keys in the menu screen and select "1. Confirm."

Display the program set as the slot 1. The program name is displayed following the slot number.

3) Change of the slot
Press the function key ([F3]) corresponding to the "slot" will display the slot number specified screen.

Input the slot number to wish and press the [EXE] key.

◇◆◇ Immediately stopping the robot during operation ◇◆◇
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] (FWD)key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] (FWD)key.

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<CHECK>　　 　

 SLOT ()

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

3-48 Debugging

3Explanation of operation methods

Display the inputted program of the slot number. (The following example specifies the slot 2)

4) Execution of step operation
Step feed and step return can be executed like the step operation in the command edit screen.
Only while keeping pressing the function key, execute step feed and step return separately.
If the function key is released during this step, the robot will stop. And, detach the enabling switch (3

position switch), or push in still more strongly -- thing servo-off can be carried out and execution can be
stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. If the [F1]
key is detached, the cursor of the T/B screen will move to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

(4) Step jump
It is possible to change the currently displayed step or line.

The operation in the case of doing step operation from Step 5 as an example is shown.

1) Call Step 5.
Press the function key corresponding to "JUMP", and press the [5], [EXE] key. The cursor moves to Step
5.

<CHECK>　　 　

 SLOT (2)

CLOSE　 123

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

<CHECK> SLOT 2 1 50%
　
1 Mov P1
2 Mvs P2
3 Dly 0.5
4 Mvs P1

BWD123JumpFWD SLOT ⇒

 CAUTION

◇◆◇ Change of the execution step ◇◆◇
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

 STEP (5)

CLOSE123

 3Explanation of operation methods

 Debugging 3-49

Step 5 can be called even if it moves the cursor to Step 5 by the [↑] , [↓] key.

2) Execution of step feed
If the function key corresponding to "FWD" is pressed, step feed can be done from Step 5.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

<PROGRAM> 1 50%
　
4 Mov P4
5 Mov P5
6 Mov P6
7 End

BWD123JumpFWD ⇒

<PROGRAM> 1 50%
　
4 Mov P4
5 Mov P5
6 Mov P6
7 End

BWD123JumpFWD ⇒

 CAUTION

3-50 Automatic operation

3Explanation of operation methods

3.7 Automatic operation
(1) Setting the operation speed

The operation speed is set with the controller or T/B.
The actual speed during automatic operation will be the operation speed = (controller (T/B) setting value) x
(program setting value).

*Operating with the controller

1) Press the controller [CHNG DISP] switch
twice, and display the "OVERRIDE" on the
STATUS NUMBER display panel.

2) Each time the [UP] key is pressed, the
override will increase in the order of (10 -
20 - 30 - 40 - 50 - 60 - 70 - 80 - 90 - 100%).
The speed will decrease in reverse each
time the [DOWN] key is pressed.

*Operating with the T/B
Each time the [OVRD↑] keys are pressed, the override will increase in the order of (LOW - HIGH - 3 - 5 - 10
- 30 - 50 - 70 -100%). The speed will decrease in reverse each time the [OVRD ↓] keys are pressed.

(2) Selecting the program No.

1) Set the T/B [ENABLE] switch to "DIS-
ABLE".

2) Set the controller [MODE] switch to
"AUTOMATIC".

3) Press the [CHNG DISP] switch and dis-
play "PROGRAM NO." on the STATUS
NUMBER display.

When the [UP] switch is pressed, the registered
program Nos. will scroll up, and then the
[DOWN] switch is pressed, the program Nos.
will scroll down.

Display the program No. to be used for
automatic operation.

*They are not displayed if a program name
consisting of five or more characters is
specified. If these are selected from an external
device, "P - - - - " is displayed.

CHNG DISP

Display the override

Set the override

DOWN

UP

CHNG DISP

Display the
program number

Select the program number

Prepare the control

Select the program number

Disable the T/B

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Enable the R/C

MODE
MANUAL AUTOMATIC

DOWN

UP

◇◆◇ Program selection by T/B ◇◆◇
Selecting the program by the T/B is possible, when the software version of T/B is 1.3 or later
Refer to the Page 61, "(6) Select the program" for the details of the operation method.

 3Explanation of operation methods

 Automatic operation 3-51

(3) Starting automatic operation

Before starting automatic operation, always confirm the following item. Starting
automatic operation without confirming these items could lead to property damage or
physical injury.

・ Make sure that there are no operators near the robot.

・ Make sure that the safety fence is locked, and operators cannot enter
unintentionally.

・ Make sure that there are no unnecessary items, such as tools, inside the robot
operation range.

・ Make sure that the workpiece is correctly placed at the designated position.

・ Confirm that the program operates correctly with step operation.

1) Set the T/B [ENABLE] switch to "DISABLE".

2) Set the controller [MODE] switch to "AUTO-
MATIC".

3) Push the [SVO ON] switch of the controller, and
servo power turn on.

4) Automatic operation will start when the controller
[START] switch is pressed. (Continuous
operation)
If the [END] switch is pressed during the
continuous operation, the program will stop after
one cycle. The LED blinks during the cycle stop.

Before starting automatic operation, always confirm that the target program No. is
selected.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG. STOP] switch and immediately stop the
robot.

When beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

 CAUTION

START END

Execute(icontinuous) Cycle stop

Prepare the control

Start of automatic operation

Disable the T/B

Enable the R/C

SVO ON

Servo on

Servo on

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

MODE
MANUAL AUTOMATIC

 CAUTION

 CAUTION

 CAUTION

3-52 Automatic operation

3Explanation of operation methods

(4) Stopping
The running program is immediately stopped, and the moving robot is decelerated to a stop.

*Operating with the controller

1) Press the [STOP] switch.

*Operating with the T/B

1) Press the [STOP] key.

(5) Resuming automatic operation from stopped state

Before starting automatic operation, always confirm the following item. Starting
automatic operation without confirming these items could lead to property damage or
physical injury.

・ Make sure that there are no operators near the robot.

・ Make sure that the safety fence is locked, and operators cannot enter
unintentionally.

・ Make sure that there are no unnecessary items, such as tools, inside the robot
operation range.

・ Make sure that the workpiece is correctly placed at the designated position.

・ Confirm that the program operates correctly with step operation.

1) Set the T/B [ENABLE] switch to "DISABLE".

2) Set the controller [MODE] switch to
"AUTOMATIC".

3) Automatic operation will start when the controller
[START] switch is pressed.
Continuation operation / 1 cycle operation holds
the former state.

STOP

Stop

Stop STOP

Operation rights not required
The stopping operation is always valid regardless of the operation rights.

 CAUTION

START END

Execute(icontinuous) Cycle stop

Prepare the control

Restart

Disable the T/B

Enable the R/C

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

 3Explanation of operation methods

 Automatic operation 3-53

(6) Resetting the program
The program's stopped state is canceled, and the execution line is returned to the head.

*Operating with the controller

1) Set the T/B [ENABLE] switch to "DISABLE".

2) Set the controller [MODE] switch to "AUTO-
MATIC".

3) Press the controller [CHG DISP] switch, and
display the program No.

4) Press the controller [RESET] switch.
The STOP lamp will turn OFF, and the pro-
gram's stopped state will be canceled.

*Operating with the T/B

1) Set the [Mode selection switch] on the front of
the controller to "MANUAL".

2) Set the T/B [ENABLE] switch to "ENABLE".

3) Press the [EXE] key while holding down the
[RESET] key. The execution line will return to
the head, and the program will be reset.

RESET

CHNG DISP

Reset

T/B disable

Controller enable

Execute of program reset

Display the program No.

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Program reset [RESET] + [EXE]

Execute of program reset

T/B enable

Controller disable

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

MODE
MANUAL AUTOMATIC

Valid only while program is stopped
The program cannot be reset while the program is running. Always carry out this step while the program is
stopped.
When resetting the program from the controller operation panel, display the "program No." on the STA-
TUS NUMBER display, and then reset.

STOP lamp turns OFF
The STOP lamp will turn OFF when the program is reset.

3-54 Turning the servo ON/OFF

3Explanation of operation methods

3.8 Turning the servo ON/OFF
For safety purposes, the servo power can be turned ON during the teaching mode only while the enable
switch on the back of the T/B is lightly pressed. Carry out this operation with the T/B while lightly pressing
the deadman switch.

*Turning servo ON with T/B

1) Set the [Mode selection switch] on the front of
the controller to "MANUAL".

2) Set the T/B [ENABLE] switch to "ENABLE".

3) The servo will turn ON when the [SERVO] key
is pressed.

4) Servo-off will be carried out, if the enabling
switch (3 position switch) is detached or it
pushes in still more strongly.

*Operating with the controller

1) Set the T/B [ENABLE] switch to "DISABLE".

2) Set the controller [MODE] switch to "AUTO
MATIC".

3) When the [SVO ON] switch is pressed, the
servo will turn ON, and the SVO ON lamp will
light.

4) When the [SVO OFF] switch is pressed, the
servo will turn OFF, and the SVO OFF lamp will
light.

Execute servo ON

T/B enable

Controller disable

Prepare the T/B

Servo ON operation [SERVO]

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

MODE
MANUAL AUTOMATIC

Execute servo OFF

Servo OFF operation [enabling]

SVO ON

SVO OFF

Prepare the controller

T/B disable

Controller enable

Servo ON

Execute servo ON

Servo OFF

Execute servo OFF

MODE
MANUAL AUTOMATIC

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

Brakes will activate
The brakes will automatically activate when the servo is turned OFF. Depending on the type of robot,
some axes may not have brakes.

 3Explanation of operation methods

 Error reset operation 3-55

3.9 Error reset operation

*Error reset operation from the operation panel

1) Press the [RESET] key.
If the error by the side of T/B is not reset, do
reset operation from T/B.

*Error reset operation from the T/B

1) Press the [RESET] key.

3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled
Depending on the type of robot, errors that cannot be cancelled may occur when axis coordinates are out-
side the movement range, etc. In this case, it is not possible to turn the servo on and perform jog operations
with the normal operations. The following procedure can be used to cancel such errors temporarily. For
instance, if the axes are outside the movement range, perform a jog operation to adjust the axes while the
error is canceled temporarily.
The [RESET] key corresponding to the [CAUTION] key in R56/57TB. When operating with R56/57TB, use
the [CAUTION] key and perform following operation.

*Operation to cancel errors temporarily from the T/B

1) Set the [Mode selection switch] on the front of
the controller to "MANUAL".

2) Set the T/B [ENABLE/] switch to "ENABLE".

3) Hold the enabling switch lightly, hold down the
[SERVO] key and keep on pressing the
[RESET] key.

The operation above will reset errors temporarily. Do not release the key; if it is released the error occurs
again. Perform a jog operation as well while keeping the [RESET] key pressed.

Cancel errors

Error reset [RESET]

Cancel errors

Error reset [RESET]

Cancel errors temporarily

T/B enable

Controller disable

Error reset [SERVO] + [RESET]

Down：ENABLE
 *Lighting

Up ：DISABLE

Rear of T/B

MODE
MANUAL AUTOMATIC

3-56 Operating the program control screen

3Explanation of operation methods

3.11 Operating the program control screen

Here, explain the operation method of the following related with program management.

(1) Program list display

(2) Copying programs (Copy)

(3) Name change of the program (Renaming).

(4) Deleting a program (Dele).

(5) Protection of the program (Protect).

(1) Program list display
This functions allows the status of the programs registered in the controller to be confirmed.

1) Select the Management/edit menu
Press the [1] key in the menu screen. "1. Management and edit" are selected and display the list of the

programs.

Same operation can be done, even if the cursor is moved to "1. management and edit" by the [↑] or [↓
] key and it presses the [EXE] key.

And, the program which is the target of each operation can also be selected.

The menu ("Edit", "Position", "New", "Copy") corresponding to the function key is displayed under the
screen.

Press the [FUNCTION] key, then display the "Renaming", "Deletion", " Protection", "Close".

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

 3Explanation of operation methods

 Operating the program control screen 3-57

(2) Copying programs
1) Select the copy menu

Press the function key corresponding to the "copy" by program list display. Display the copy screen.

2) Specification and execution of the program to copy.
In the parenthesis of the copied source, the program name beforehand selected by the program list screen
is displayed. (The figure the program name "1") If it changes, move the cursor by the arrow key.

Input the program name copied in the parenthesis of the copy destination, and press the [EXE] key.

<PROGRAM COPY>　
　 　
 SRC.NAME (1)

 DSR.NAME ()

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<PROGRAM COPY>　
　 　
 SRC.NAME (1)

 DSR.NAME (21)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

◇◆◇ Protected information is not copied ◇◆◇
The program protection information and variable protection information is not copied with the copy opera-
tion.
Reset this information as necessary.

3-58 Operating the program control screen

3Explanation of operation methods

(3) Name change of the program (Rename)
1) Select the rename menu

Press the function key corresponding to the "Rename" by program list display. Display the rename
screenIf the "renaming" menu is not displayed, press and display the [FUNCTION] key.

2) Specification of the program which changes the name.
In the parenthesis of the renaming source, the program name beforehand selected by the program list
screen is displayed. (The figure the program name "1") If it changes, move the cursor by the arrow key.
Into the parenthesis of the renaming destination, input the new program name and press the [EXE] key.

<PROGRAM RENAME>　
　 　
 SRC.NAME (1)

 DST.NAME ()

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851
31 08-04-24 17:20:32 22490

EDIT POSI. NEW COPY123 ⇒

<PROGRAM RENAME>　
　 　
 SRC.NAME (1)

 DST.NAME (31)

CLOSE　 123

◇◆◇ The program name protected cannot be changed. ◇◆◇
The program name with which command protection is set up cannot be changed. Please execute after
removing command protection.

 3Explanation of operation methods

 Operating the program control screen 3-59

(4) Deleting a program (Delete)
1) Select the delete menu

Press the function key corresponding to the "Delete" by program list display. Display the delete screen. If
the "Delete" menu is not displayed, press and display the [FUNCTION] key

2) Specification of the program which delete.
In the parenthesis of the deleteing source, the program name beforehand selected by the program list
screen is displayed. (The figure the program name "1") If it changes, input the correct program name.
Press the [EXE] key, and display the confirmation screen.

3) Delete the program
If the function key corresponding to "Yes" is pressed, it will delete the specification program and will
return to the program list display.
If it does not delete, press the function key corresponding to "No." It returns to the deletion screen.

<PROGRAM DELETE>　　 　

 NAME (1)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

RENAME DELETE PRTCT CLOSE123 ⇒

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<PROGRAM DELETE>　　 　

 NAME (31)

CLOSE　 123

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<PROGRAM DELETE>

 31
 DELETE OK?

No123Yes

<FILE/EDIT>　 　1/ 20 Rem 136320

2　　　 　 08-04-24　14:56:08　 694
3　 　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851
31 08-04-24 17:20:32 22490

EDIT POSI. NEW COPY123 ⇒

◇◆◇ The program name protected cannot be deleted. ◇◆◇
The program name with which command protection is set up cannot be deleted. Please execute after
removing command protection.

3-60 Operating the program control screen

3Explanation of operation methods

(5) Protection of the program (Protect)
1) Select the protect menu

Press the function key corresponding to the "Protect" by program list display. Display the protect screen.
If the "Protect" menu is not displayed, press and display the [FUNCTION] key

2) Setup of the protection.
The protection of the program can specify the command and data (variable value) separately.
If it sets up protection of the command, press the function key corresponding to "Command." If it sets up
protection of the data, press the function key corresponding to "Data."

If the function key corresponding to "ON" is pressed, it will be set up for "protecting." If the function key
corresponding to "OFF" is pressed, it will be set up for "not protecting."

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
A1　　 　 08-04-24　13:05:54　 2208
B1　　 　 08-04-24　13:05:54 　1851

RENAME DELETE PRTCT CLOSE123 ⇒

<PROTECT>　　 　

 1
 SET COMMAND PROTECT.

OFF　 123ON

<PROTECT>　　 　

 1
 SET DATA PROTECT.

OFF　 123ON

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

ON :protecting
OFF:not protecting

<PROTECT>　　 　

 NAME (1) protect
 COMMAND : OFF
 DATE : OFF

CLOSE　 123DATACMD.

<PROTECT>　　 　

 1
 SET COMMAND PROTECT.

OFF　 123ON

<PROTECT>　　 　

 1
 SET DATA PROTECT.

OFF　 123ON

 3Explanation of operation methods

 Operating the program control screen 3-61

(6) Select the program
This function is possible at the software version 1.3 or later of T/B.
The program of step or automatic execution can be selected.
This function is same as "(2)Selecting the program No." by the operation panel. After program selection also the
program number is displayed on "STATUS NUMBER" of the operation panel.
The operation method is shown in the following.

1) Select the program
Move the cursor to the program which select by the key [upper arrow], [Lower].

2) Setting of the program name(number)
Press the [FUNCTION]+[EXE] key of T/B. The confirmation screen is displayed.

Confirm the program name (number) currently displayed. If the function key corresponding to "Yes"([F1]) is

pressed, the program name(number) is selected.
If the function key corresponding to "No"([F4]) is pressed, the operation is canceled. Each returns to the
program list display

Selection of the program is finishing above.

◇◆◇ About command protection ◇◆◇
It is the function which protects deletion of the program, name change, and change of the command from the
operation mistake.
・ Protection information is not copied in copy operation.
・ In initialization operation, protection information is disregarded and execute initialization.

◇◆◇ About data protection ◇◆◇
It is the function which protects the variable from the substitution to each variable by registration of the
position data based on the operation mistake, change, and the mistaken execution of the program.
・ Protection information is not copied in copy operation.
・ In initialization operation, protection information is disregarded and execute initialization.

The figure is the example which selected the program 3.

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

<PROGRAM SELECTION>

 SELECT THE PROGRAM
 INTO TASK SLOT 1. OK?

Yes No123 ⇒

<FILE/EDIT>　 　1/ 20 Rem 136320

1　　　 　 08-04-24　17:20:32　 22490
2　　　 　 08-04-24　14:56:08　 694
3 　　 　 08-04-24　13:05:54　 2208
4 　　 　 08-04-24　13:05:54 　1851

EDIT POSI. NEW COPY123 ⇒

3-62 Operation of operating screen

3Explanation of operation methods

3.12 Operation of operating screen

(1)Display of the execution line1.Confirmation： Display the executing program line, or execute step feed

(2)Display of the test execution line2.Test execution： Display the name of the program selected, and the
executing step number. And, change the continuation mode of
operation to cycle stop mode.

3.12.1 Display of the execution line
(1) Select the confirmation menu

1) Press the [2] key in the menu screen, and display the operation menu screen.

2) Press the [1] key, and display the confirmation screen.
Display the program set as the slot 1 on the screen. The program name is displayed following the slot
number.

The cursor moves to the execution line during program execution.

(2) Step feed
The same operation as above-mentioned step feed and step return can be done.

1) Step feed
Pressing the [F1] (FWD) key is kept, and the robot will start moving.
If [F1] (FWD) is released during this step, the robot will stop. And, detach the enabling switch (3 position

switch), or push in still more strongly -- thing servo-off can be carried out and execution can be stopped.
During execution, the lamp on the controller's [START] switch will light.1 If execution of the one step is

completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. If the [F1]

key is detached, the cursor of the T/B screen will move to the following step.

Whenever it presses the function key corresponding to "FWD", step to the following step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<CHECK> SLOT 1 1 50%
　
1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JumpFWD SLOT ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION

 3Explanation of operation methods

 Operation of operating screen 3-63

2) Step return
The line of a program that has been stopped with step feed or normal operation is returned one line at a
time and executed. This can be used only for the interpolation commands. Note that only up to four lines
can be returned.

If the function key corresponding to "BWD" is pressed, only while keeping pushing, only the one step will be
executed in the return direction of the step.
If the function key is released during this step, the robot will stop. And, detach the enabling switch (3

position switch), or push in still more strongly -- thing servo-off can be carried out and execution can be
stopped.
During execution, the lamp on the controller's [START] switch will light. If execution of the one step is
completed, LED of the [START] switch will go out and LED of the [STOP] switch will turn it on. The cursor

of the T/B screen moves to the step of the next interpolation command in the return direction of the step.

Whenever it presses the function key corresponding to "BWD", it returns to the front step.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

◇◆◇ About step operation ◇◆◇
"Step operation" executes the program line by line. The operation speed is slow, and the robot stops after
each line, so the program and operation position can be confirmed.
During execution, the lamp on the controller's [START] switch will light. Execution of the End command or
the Hlt command will not step feed any more.

◇◆◇ Change of the execution step ◇◆◇
The execution step can be changed by cursor movement by the arrow key, and jump operation ("JUMP").

◇◆◇ Immediately stopping the robot during operation ◇◆◇
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] (FWD)key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] (FWD)key.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION

3-64 Operation of operating screen

3Explanation of operation methods

◇◆◇ Immediately stopping the robot during operation ◇◆◇
・ Press the [EMG.STOP] (emergency stop) switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, reset the alarm, turn the servo ON, and start step operation.

・ Release or for cibly press the "enable" switch.

The servo will turn OFF, and the moving robot will immediately stop.
To resume operation, lightly press the "enable" switch, and start step operation.

・ Release the [F1] (FWD)key.
The step execution will be stopped. The servo will not turn OFF.
To resume operation, press the [F1] (FWD)key.

 3Explanation of operation methods

 Operation of operating screen 3-65

(3) Step jump
It is possible to change the currently displayed step or line.

The operation in the case of doing step operation from Step 5 as an example is shown.

1) Call Step 5.
Press the function key corresponding to "JUMP", and press the [5], [EXE] key. The cursor moves to Step 5.

2) Execution of step feed
If the function key corresponding to "FWD" is pressed, step feed can be done from Step 5.

Take special care to the robot movements during automatic operation. If any
abnormality occurs, press the [EMG.STOP] switch and immediately stop the robot.

(4) Step feed in another slot
When checking a multitask program, it is possible to perform step feed in the confirmation screen of the

operation menu, not in the edit screen.

Refer to "Page 47, "(3) Step feed in another slot"" for operation method.

(5) Finishing of the confirmation screen.
1) Press the function key corresponding to "Close", and return to the operation menu screen.

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

BWD123JUMPFWD ⇒

 CAUTION

<PROGRAM> 1 50%

1 Mov P1
2 Mov P2
3 Mov P3
4 Mov P4

CLOSE123 ⇒

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

3-66 Operation of operating screen

3Explanation of operation methods

3.12.2 Test operation
(1) Select the test operation

1) Press the [2] key in the menu screen, and display the operation menu screen.

2) Press the [2] key, and display the test operation screen.
The program name, execution step number, and operating mode is displayed.

3) When the function key ([F2]) corresponding to "CSTOP" is pressed during program execution, it is change
to the cycle mode of operation. The "cycle" is displayed after the mode and the [END] button of the
operation panel blinks. Finish operation after executing the last line of the End command or the program.

4) Press the function key corresponding to "Close", and return to the operation menu screen.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CYCLE

CLOSE123 ⇒CSTOP

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP

<RUN>　　 　

 1.CHECK 2.TEST RUN

CLOSE　 123

<TEST RUN>
1 Mov P1
 PROG.NAME: 1 STEP: 1

 MODE: CONT.

CLOSE123 ⇒CSTOP

◇◆◇ If execution of the program is stopped, it will become the continuation mode of operation. ◇◆◇
If the [STOP] key is pressed in the cycle mode of operation and execution of the program is stopped, it
changes to the continuation mode of operation. If it continues execution of the program by the cycle mode of
operation, please press the [F4] key again after pushing the [START] button. (It also becomes the cycle
mode of operation to push the [END] button of the controller)

 3Explanation of operation methods

 Operating the monitor screen 3-67

3.13 Operating the monitor screen

Here, explain the operation method of the following functions.

(1)Input signal monitor1.Input ： Parallel input signal monitor

(2)Output signal monitor2.Output ： Parallel output signal monitor. Setup of ON/OFF

(3)Input register monitor.............3.Input register： Input register of CC-Link

(4)Output register monitor.........4.Output register： Output register of CC-Link

(5)Variable monitor........................5.Variable ： Variable value monitor & set up

(6)Error history display6.Error history： History of the occurrence error

All of the above press the [MONITOR] key of T/B. It operates, even when T/B is invalid.
Although the screen currently displayed may be free, the variable monitor does not operate in the program
(command) edit screen.

(1) Input signal monitor
1) Press the [1] key in the monitor menu screen, and display the input signal screen. The input signal of the 32

points can be monitored on the one screen.

The case where the state of the input signals 8-15 is confirmed is shown in the following.

2) Press the function key corresponding to "Number".
Set "8" as the start number.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<INPUT>　　 　

 START No. (8_)

CLOSE　 123

3-68 Operating the monitor screen

3Explanation of operation methods

3) Display the ON/OFF state of the 32 points at the head for the input signal No. 8. Black painting indicates
ON and white indicates OFF.

Press the function key corresponding to "Next", then display the next input signal screen. Press the function
key corresponding to "Prev", then display the previous input screen

4) Press the function key corresponding to "Close", and return to the monitor menu screen.

5) Press the function key corresponding to "Close" in monitor menu screen is pressed, finish the monitor, and
return to the original screen.

Next [F3]

Previous [F2]

<INPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 55 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 40
 71 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 56
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<INPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24
 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<INPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24
 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

◇◆◇ Finish the monitor ◇◆◇
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.

 3Explanation of operation methods

 Operating the monitor screen 3-69

(2) Output signal monitor
There are the function which always makes the ON/OFF state of the output signal the monitor, and the function

outputted compulsorily.

1) Press the [2] key in the monitor menu screen, and display the output signal screen. The output signal of the
32 points can be monitored on the one screen.

The case where the state of the output signals 8-15 is confirmed is shown in the following.

2) Press the function key corresponding to "Number".
Set "8" as the start number.

Although the state of the current output signal is displayed on the output value on the display, it is not always
the display here in the section which sets up the compulsive output value of the signal.
Press the function key corresponding to "Close". Display the ON/OFF state of the 32 points at the head for the
output signal No. 8. Black painting indicates ON and white indicates OFF.

Press the function key corresponding to "Next", then display the next output signal screen. Press the function
key corresponding to "Prev", then display the previous output screen

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT>
START No. （ 8_)

 5432109876543210
OUT.VALUE （0000000000000000）

CLOSE 123OUTPUT

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 55 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 40
 71 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 56

 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

Next [F3]

Previous [F2]

3-70 Operating the monitor screen

3Explanation of operation methods

3) The compulsive output of the output signal.
In the following, the operation method in the case of turning off the output signal No. 8 compulsorily is
shown.
Press the function key corresponding to "Number".
Set "8" as the start number. 　 (Press [8], and [EXE] key)

4) Move the cursor to the position of "8" of the output value by the arrow key.
Since the output signal 8 number is turned on now, value"1" is displayed.
If the value is changed into "0" which shows OFF and the function key ([F1]) corresponding to the
"Output" is pressed, this output signal will actually be off.

5) Press the function key corresponding to "Close", and return to the output monitor screen.

6) Press the function key corresponding to "Close", and return to the monitor menu screen.

<OUTPUT>
START No. （ 8_)

 5432109876543210
OUT.VALUE （0000000000000000）

CLOSE 123OUTPUT

<OUTPUT>

 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
 15 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0
 31 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 16
 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6

NUMBER CLOSE 123 Next Prev

<OUTPUT>
1 Mov P1
START No. (8_)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<OUTPUT>
1 Mov P1
START No. (8)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24

 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

<OUTPUT>
1 Mov P1
START No. (8)

 3210987654321098
OUT.VALUE (0000000000000001)

CLOSE123 ⇒OUTPUT

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT>

 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8
 23 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 8
 39 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 24
 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4

NUMBER CLOSE 123 Next Prev

 3Explanation of operation methods

 Operating the monitor screen 3-71

7) Press the function key corresponding to "Close" in monitor menu screen is pressed, finish the monitor, and
return to the original screen.

(3) Input register monitor
If CC-Link is used, it is the function which always monitors the value of the input register.

Note） Since there is no CC-Link option in the CRnQ-700 series, this function can not be used.

1) Press the [3] key in the monitor menu screen, and display the input register screen. The input register of
the 4 registers can be monitored on the one screen.

The case where the state of the input register 8000 is confirmed is shown in the following.

2) Press the function key corresponding to "Number".
3) Set "8000" as the start number.

4) Display the ON/OFF state of the 4 input register at the head for the input register No. 8000.

Press the function key corresponding to "Next", then display the next input register screen. Press the function
key corresponding to "Prev", then display the previous input register screen.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

<INPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<INPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<INPUT REGISTER>

 START No. （_ ）

CLOSE 123

<INPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<INPUT REGISTER>

 8004 0 0×0000
 8005 0 0×0000
 8006 0 0×0000
 8007 0 0×0000

CLOSE 123NUMBER Prev Next

Next [F3]

Previous [F2]

3-72 Operating the monitor screen

3Explanation of operation methods

5) Press the function key corresponding to "Close", and return to the monitor menu screen.

6) Press the function key corresponding to "Close" in monitor menu screen is pressed, finish the monitor, and
return to the original screen.

(4) Output register monitor
If CC-Link is used, it is the function which always monitors the value of the output register.

Note） Since there is no CC-Link option in the CRnQ-700 series, this function can not be used.

1) Press the [4] key in the monitor menu screen, and display the output register screen. The output register of
the 4 registers can be monitored on the one screen.

The case where the state of the output register 8000 is confirmed is shown in the following.

<INPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

◇◆◇ Finish the monitor ◇◆◇
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

 3Explanation of operation methods

 Operating the monitor screen 3-73

2) Press the function key corresponding to "Number".
Set "8000" as the start number.

3) The current output value of No. 8000 is displayed by the decimal number in the parenthesis following the
output value. The value in the parenthesis following lower 0x is the hexadecimal number.

If the function key which corresponds for "Close" is pressed, it can also return to the monitoring screen on
the basis of No. 8000 of the output register, but the output value can be changed on the current screen.
The case where the value of the output register No. 8000 is set as 12 (decimal number) is shown in the
following.

4) The setup of the value can be set up by the decimal number or the hexadecimal number.
If it sets up by the decimal number, move the cursor to the output value by the arrow key, and input "10."
The unnecessary character should press and erase the [CLEAR] key.
If it sets up by the hexadecimal number, move the cursor to 0x by the arrow key, and input "C." The
unnecessary character should press and erase the [CLEAR] key.
Press the function key ([F1]) corresponding to the "Output", then will actually output the set-up value.

5) Press the function key corresponding to "Close", and return to the output register monitor screen.

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (10)
 0x(000C)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (0)
 0x(0000)

CLOSE 123OUTPUT

<OUTPUT REGISTER>

 8000 0 0×0000
 8001 0 0×0000
 8002 0 0×0000
 8003 0 0×0000

CLOSE 123NUMBER Prev Next

<OUTPUT REGISTER>

 START No. （ 8000 ）
 OUT.VALUE (10)
 0x(000C)

CLOSE 123OUTPUT

3-74 Operating the monitor screen

3Explanation of operation methods

6) Press the function key corresponding to "Close", and return to the output menu screen

7) Press the function key corresponding to "Close", and return to the monitor menu screen.

<OUTPUT REGISTER>

 6000 0 0×0000
 6001 0 0×0000
 6002 0 0×0000
 6003 0 0×0000

CLOSE 123NUMBER Prev Next

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

 3Explanation of operation methods

 Operating the monitor screen 3-75

(5) Variable monitor
It is the function to display or change the details of the variable currently used by the program.

1) Press the [5] key in the monitor menu screen, and display the variable monitor screen.

2) Specify the target program of the monitor with the slot number.
Press the function key corresponding to "SLOT", and input the slot number.
Set up "1", if the multitasking function is not being used.

3) "Display the slot number and the program name after "slot:."
Press the function key corresponding to the "Name", and input the variable name to monitor.

4) Display the value of the numeric variable M1 on the screen.
The variable which will be monitored if the cursor is moved to the line which is vacant in the arrow key and
operation of the above 3 is repeated can be added. The variable which can be monitored simultaneously is
to the three pieces.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<VARIABLE>
SLOT : 1 TEST
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>

 SLOT (1_)

CLOSE 123

<VARIABLE>
SLOT : 1 TEST
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 =
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>

 NAME (M1_)

CLOSE 123

<VARIABLE>
SLOT : 1 5
 M1 =＋1
 =
 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 M1 =＋1
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

Add the variable to monitor.

3-76 Operating the monitor screen

3Explanation of operation methods

5) Change the variable value.
The value of the variable currently displayed can be changed.
Move the cursor to the variable name changed by the arrow key, and press the function key corresponding
to the "Value."
Although the current value (data) is displayed, it can input and change.

6) Press the function key corresponding to "Close", and return to the monitor menu screen.

7) Press the function key corresponding to "Close" in monitor menu screen is pressed, finish the monitor, and
return to the original screen.

<VARIABLE> NAME
DATA M1
＋1

CLOSE 123

<VARIABLE>
SLOT : 1 5
 M1 =＋8
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

<VARIABLE>
SLOT : 1 5
 M1 =＋8
 P1 =(＋595.40､＋0.00､＋829.)
 C1 =

CLOSE 123 VALUESLOT NAME

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<FILE/EDIT> 1/20 Rem 136320

1 08-04-24 17:20:32 22490
2 08-04-24 14:56:08 694
A1 08-04-24 13:05:54 2208
B1 08-04-24 13:05:54 1851

COPY123POSI.EDIT NEW ⇒

◇◆◇ The right of operation is unnecessary. ◇◆◇
It operates, even when T/B is invalid.
And, the value (data) of the variable can be changed also in automatic operation.

◇◆◇ Finish the monitor ◇◆◇
If the [MONITOR] key is pressed, the monitor will be finished always and it will return to the original screen.

 3Explanation of operation methods

 Operating the monitor screen 3-77

(6) Error history
Display the error history. Please use reference at the time of trouble occurrence.

1) Press the [6] key in the monitor menu screen, and display the error history.

Display error history before and after by the arrow key.

<MONITOR>　　 　

1.INPUT 2.OUTPUT
3.INPUT REG. 4.OUTPUT REG.
5.VARIABLE 6.ERROR LOG

CLOSE　 123

<ERROR LOG>　　 　
No-0001 H0120
 08-05-08 16:51:00

Instantaneous power failure

CLOSE　 123

<ERROR LOG>　　 　
No-0002 L1826
 08-05-08 16:49:22

Pos.data disagree. Check origin

CLOSE　 123

[↓]

[↑]

<ERROR LOG>　　 　
No-0001 H0120
 08-05-08 16:51:00

Instantaneous power failure

CLOSE　 123

◇◆◇ The right of operation is unnecessary. ◇◆◇
It operates, even when T/B is invalid.
And, the value (data) of the variable can be changed also in automatic operation.

3-78 Operation of maintenance screen

3Explanation of operation methods

3.14 Operation of maintenance screen

The parallel I/O designated input/output settings and settings for the tool length, etc., are registered as
parameters. The robot moves based on the values set in each parameter. This function allows each parameter
setting value to be displayed and registered.

1) Press the [3] key in the menu screen, and display the parameter screen.

An example of changing the parameter "MEXTL (tool data)" Z axis (3rd element) setting value from 0 to
100mm is shown below.

2) Input "MEXTL" into the name and input "3" into the element.
3) The data set up now is displayed.

4) Press the function key corresponding to the "Data", and input new preset value"100."
Delete the unnecessary number by the [CLEAR] key.

If the [EXE] key is pressed, the buzzer will sound, the value will be fixed and it will return to the screen of
the parameter.
If the function key corresponding to the "Close" is pressed also after inputting the new preset value,
change can be canceled and it can return to the parameter screen.

And, press the function key corresponding to "Next" will display the next parameter.

Display that the previous parameter presses the function key corresponding to "Prev".
In this case, because of to display all the elements of the parameter shown by the name, delete
specification of the element number.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<PARAMETER> NAME()
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> (MEXTL) (3)
100_

CLOSE 123

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

 3Explanation of operation methods

 Operation of maintenance screen 3-79

The value can be changed also in this state.
Press the function key corresponding to the "Data", make it move to the position of the element number
which changes the cursor by the arrow key, and input the new preset value. Delete the unnecessary
number by the [CLEAR] key.

If the [EXE] key is pressed, the buzzer will sound, the value will be fixed and it will return to the screen of
the parameter.
If the function key corresponding to the "Close" is pressed also after inputting the new preset value,
change can be canceled and it can return to the parameter screen.

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (100.00　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev
<PARAMETER> NAME(MEXTL1)
 ELE()
 DATA
 (0.00,0.00,0.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev
<PARAMETER> NAME(MEXTL)
 ELE()
 DATA
 (0.00,0.00,100.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev

[F3]

[F2]

<PARAMETER> NAME(MEXTL)
 ELE(3)
 DATA
 (0.00,0.00,0.00,0.00,0.00,0.00　)

CLOSE 123 NextDATA Prev

<PARAMETER> (MEXTL) ()

 0.00,0.00,100.00,0.00,0.00,0.00　

CLOSE 123 NextDATA Prev

◇◆◇ Power must be turned ON again ◇◆◇
The changed parameter will be validated only after the controller power has been turned OFF and ON once.

◇◆◇ Only display is valid during program execution. ◇◆◇
If the setting value of the parameter is changed during execution of the program, the error will occur. (Even
if the error occurs, execution of the program does not stop)

◇◆◇ Display the parameter near the name of the inputted parameter. ◇◆◇
Even if the name of the parameter does not input all characters correctly, it displays the parameter near the
inputted name automatically.

3-80 Operation of the origin and the brake screen

3Explanation of operation methods

3.15 Operation of the origin and the brake screen
(1) Origin

If the origin position has been lost or deviated when the parameters are lost or due to robot interference, etc.,
the robot origin must be set again using this function.

Refer to the separate manual: "Robot arm setup & maintenance" for details on the operation.

(2) Brake
In the state of servo off, it is the function to release the brake of the servo motor. Refer to the Page 54, "3.8

Turning the servo ON/OFF" for servo off operation.
Use it, if it moves the robot arm directly by hand.

Due to the robot configuration, when the brakes are released, the robot arm will drop
with its own weight depending on the released axis.

Always assign an operator other than the T/B operator to prevent the arm from
dropping. This operation must be carried out with the T/B operator giving signals.

The operation method is shown in the following. Perform this operation, in the condition that the enabling switch
(3 position switch) is pushed lightly.

1) Press the [4] key in the monitor menu screen, and display the origin/brake screen.

2) Press the [2] key in the origin/break screen, and display the break release screen.

3) Input "1" into the axis which release the brake.

 CAUTION

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<ORIGIN/BRAKE>　　 　

 1.ORIGIN 2.BRAKE

CLOSE　 123

<BRAKE>

J1:(0)J2:(0)J3:(1)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

 3Explanation of operation methods

 Operation of the origin and the brake screen 3-81

Due to the robot configuration, when the brakes are released, the robot arm will drop
with its own weight depending on the released axis.

Always assign an operator other than the T/B operator to prevent the arm from
dropping. This operation must be carried out with the T/B operator giving signals.

4) Press function key continuously coresponding to "Relese" to release the brake of the specified axis only
while the keys are pressed.

* Vertical multi-joint type (RV-3SD etc.) :
Only while the function key ([F1]) is pushing, the brake of the specified axis is released.

* Horizontal multi-joint type (RH-20SDH etc.):
Only while the function key ([F1]) is pushing, the brake of the specified axis is released. However, the

brake of the axis shown below repeats release/lock at the interval in each about 200ms for dropping
the J3 axis slowly. (released -> locked -> released -> locked ->...)

・ RH-12SQH/12SDH/18SQH/18SDH J3 axis

・ RH-20SQH/20SDH.. J3, J4 axis

The brakes will activate when the function key or enabling switch is released.

 CAUTION

<BRAKE>

J1:(0)J2:(0)J3:(0)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

<BRAKE>

J1:(0)J2:(0)J3:(1)
J4:(0)J5:(0)J6:(0)
J7:(0)J8:(0)

CLOSE 123REL.

3-82 Operation of setup / initialization screen

3Explanation of operation methods

3.16 Operation of setup / initialization screen

Here, explain the operation method of the following functions.

(1)Initialization.............................1. Programs ： Delete all the programs
2. Parameter： Return the parameter to the setup at the time of shipment.
3. Battery ： Reset the expended hours of the battery.

(2)OperationDisplay the accumulation time of the power supply ON, and the remaining time
of the battery.

(3)Time..Display of the date and time, the setup

(4)Version ..Display the software version of the controller and the teaching pendant.

Press the [5] key in the menu screen, and display the set/initial screen.

(1) Initialize the program
Delete all the programs.
1) Press the [1] key in the set/initial screen, and display the initial menu screen

2) Press the [1] key in the initial menu screen, and select the program.
Display the screen of confirmation.

3) If it initializes, press the function key corresponding to "Yes". If it does not initialize, press the function key
corresponding to "no". The screen returns to initiali menu screen.

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

 INITIALIZE PROGRAM.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

 INITIALIZE PROGRAM.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

 3Explanation of operation methods

 Operation of setup / initialization screen 3-83

4) Press the function key corresponding to "Close", and return to the set/initial screen.

(2) Initialize the parameter
Return the parameter to the setup at the time of shipment.

1) Press the [1] key in the set/initial screen, and display the initial menu screen.

2) Press the [2] key in the initial menu screen, and select the parameter. Display the screen of confirmation.

3) If it initializes, press the function key corresponding to "Yes". If it does not initialize, press the function key
corresponding to "no".
The screen returns to initiali menu screen.

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

◇◆◇ Executed even when protected ◇◆◇
The program will be initialized even if the program protection or variable protection is set to ON.

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

 INITIALIZE PARAMETER.
 OK?

No 123Yes

<INITIALIZE>

 INITIALIZE PARAMETER.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

3-84 Operation of setup / initialization screen

3Explanation of operation methods

4) Press the function key corresponding to "Close", and return to the set/initial screen.

(3) Initialize the battery
Reset the expended hours of the battery

1) Press the [1] key in the set/initial screen, and display the initial menu screen.

2) Press the [3] key in the initial menu screen, and select the battery. Display the screen of confirmation

3) If it initializes, press the function key corresponding to "Yes". If it does not initialize, press the function key
corresponding to "no".
The screen returns to initiali menu screen.

4) Press the function key corresponding to "Close", and return to the set/initial screen.

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

 INITIALIZE BATTERY.
 OK?

No 123Yes

<INITIALIZE>

 INITIALIZE BATTERY.
 OK?

No 123Yes

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<INITIALIZE>

1.DATA 2.PARAMETER
3.BATTERY

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

 3Explanation of operation methods

 Operation of setup / initialization screen 3-85

(4) Operation
Display the accumulation time of the power supply ON, and the remaining time of the battery.

1) Press the [2] key in the set/initial screen, and display the operation screen.

2) Press the function key corresponding to "Close", and return to the set/initial screen.

(5) Time setup
Display of the date and time, the setup

1) Press the [3] key in the set/initial screen, and display the time screen.

2) Date and time can be setup on the time screen.
Move the cursor by the arrow key and input the current date and time.

◇◆◇ Always initialize after battery replacement ◇◆◇
The battery usage time is calculated in the controller, and a caution message is displayed when the battery is
spent. Always initialize the battery consumption time after replacing the battery to ensure that the caution
message is displayed correctly.
If this initialization is carried out when the battery has not been replaced, the display timing of the caution
message will deviate. Thus, carry this step out only when the battery has been replaced.

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<HOURE DATA>

 POWER ON TIME 18 Hr

 BATTERY ACC. 14089 Hr

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:35:20

CLOSE 123

<CLOCK>

 DATE 08-05-07

 TIME 16:04:50

CLOSE 123

3-86 Operation of setup / initialization screen

3Explanation of operation methods

3) Press the function key corresponding to "Close", and return to the set/initial screen.

(6) Version
Display the software version of the controller and the teaching pendant

1) Press the [4] key in the set/initial screen, and display the version screen.

2) Press the function key corresponding to "Close", and return to the set/initial screen.

<CLOCK>

 DATE 08-05-07

 TIME 16:35:20

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

<VERSION>

 R/C Ver. P2T
 T/B Ver. 1.2.1

CLOSE 123

<VERSION>

 R/C Ver. P2T
 T/B Ver. 1.2.1

CLOSE 123

<SET/INITIALIZE>
1.INITIALIZE 2.POWER
3.CLOCK　　　 　　4.VERSION

CLOSE 123

 3Explanation of operation methods

 ENHANCED 3-87

3.17 ENHANCED

(1) SQ DIRECT
This function controls the robot by the program of the PLC directly. (SQ series)
Please refer to separate manual: "Extended Function Instruction".

(2) WORK COORD
This screen defines the work coordinates system necessary for work jog operation. If you use the work

jog, define the target work coordinates system.
The details of the operation method are described in the jog operation.
Please use with reference to them.

[Reference]
1) Setting of work coordinates, work jog operation:

Separate manual: "ROBOT ARM SETUP & MAINTENANCE"
2)Types of jog feed: This instruction manual/ Page 21, "3.2.1 Types of jog feed"

3)Related parameter: This instruction manual/ "Work coordinates" on Page 381, "5.1 Movement parameter"

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<EMHANCED>　　 　

1.SQ DIRECT 2.WORK COORD.

CLOSE　 123

3-88 Operation of the initial-setting screen

3Explanation of operation methods

3.18 Operation of the initial-setting screen

There is the function of initial setting shown in the following.

(1)Setup of the display language The character displayed on the T/B can be set to either Japanese or
English.

(2)Adjustment of contrast The brightness of the screen of T/B can be adjusted in the 16 steps.

Operate this operation on the initial-setting screen displayed at turning on the control power in the condition of
pushing both of [F1] key and [F3] key of T/B.

(1) Set the display language
The character displayed on the T/B can be set to either Japanese or English.

1) Press the [F1] key in the initial-setting screen, and select "1.Configuration"

2) Press the [F1] key , and select "1.Default Language"

3) Display the "JPN" by [F1] or [F2] key, then language is set as Japanese. And, display the "ENG" , then
language is set as English.

[EXE]

<1>：[F1]

<2>：[F2]キ
 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

English

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

Japanese

 <Default Language>
 002
 JPN

 <UP> <DWN> Back

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

 3Explanation of operation methods

 Operation of the initial-setting screen 3-89

4) Press the [EXE] key, and fix it.

5) Press the [EXE] key, and display finish screen

6) Press the [F1] key, and save the setup.
If not saved , press the [F2] key. All return to the initial-setting screen.
And, the setup can be done over again if the [EXE] key is pressed.

7) T/B starts in the language set up when the [EXE] key was pressed.

Japanese

English

 <Default Language>
 002
 JPN

 <UP> <DWN> Back

 <Default Language>
 001
 ENG

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

MELFA RV-12SQ-SZ Ver. 1.0
CRnQ-7xx

COPYRIGHT (C) 2007 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

3-90 Operation of the initial-setting screen

3Explanation of operation methods

(2) Adjustment of contrast
The brightness of the screen of T/B can be adjusted in the 16 steps.

1) Press the [F1] key in the initial-setting screen, and select "1.Configuration"

2) Press the [F2] key and select "1.Contrast."
3) The brightness set up now is displayed as the numerical value of 0 to 15.

4) If it makes the screen bright, the [F1] key is pressed, if it makes it dark, press the [F2] key, and set it as the
good brightness. It becomes so bright that the numerical value is large. 。

5) Press the [EXE] key and fix it

6) Press the [EXE] key, and display finish screen

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Contrast>
 012

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Default Language
 2.Contrast

 <1> <2> Next

 <Contrast>
 012

 <UP> <DWN> Back

 <Contrast>
 015

 <UP> <DWN> Back

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Default Language
 2.Contrast

 <1> <2> Next

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 3Explanation of operation methods

 Operation of the initial-setting screen 3-91

7) Press the [F1] key, and save the setup.
If not saved , press the [F2] key. All return to the initial-setting screen.
And, the setup can be done over again if the [EXE] key is pressed.

8) T/B starts in the contrast set up when the [EXE] key was pressed.

 1.Save and Exit
 2.Exit without Save

 <1> <2> Prev

 1.Configuration
 2.Com.Information

 <1> <2> Rset

 1.Configuration
 2.Com.Information

 <1> <2> Rset

MELFA RV-12SQ-SZ Ver. 1.0
CRnQ-7xx

COPYRIGHT (C) 2007 MITSUBISHI ELEC
TRIC CORPORATION ALL RIGHTS RESE
RVED

4-92 MELFA-BASIC V functions

4MELFA-BASIC V

4 MELFA-BASIC V

In this chapter, the functions and the detailed language specification of the programming language "MELFA-
BASIC V" are explained.

4.1 MELFA-BASIC V functions

The outline of the programming language "MELFA-BASIC V" is explained in this section. The basic move-
ment of the robot, signal input/output, and conditional branching methods are described.

Table 4-1:List of items described

For the detailed description of each instruction, please refer to Page 166, "4.14 Detailed explanation of com-
mand words".

Item Details Related instructions, etc.

1 4.1.1Robot operation control (1)Joint interpolation movement Mov

2 (2)Linear interpolation movement Mvs

3 (3)Circular interpolation movement Mvr, Mvr2, Mvr3, Mvc

4 (4)Continuous movement Cnt

5 (5)Acceleration/deceleration time and speed control Accel, Oadl

6 (6)Confirming that the target position is reached Fine, Mov and Dly

7 (7)High path accuracy control Prec

8 (8)Hand and tool control HOpen, HClose, Tool

9 4.1.2Pallet operation -------------- Def Plt, Plt

10 4.1.3Program control (1)Unconditional branching, conditional branching,
waiting

GoTo, If Then Else, Wait, etc

11 (2)Repetition For Next, While WEnd

12 (3)Interrupt Def Act, Act

13 (4)Subroutine GoSub, CallP, On GoSub, etc

14 (5)Timer Dly

15 (6)Stopping End(Pause for one cycle), Hlt

16 4.1.4Inputting and outputting
external signals

(1)Input signals M_In, M_Inb, M_Inw, etc

17 (2)Output signals M_Out, M_Outb, M_Outw, etc

18 4.1.5Communication Note1)

Note1) Cannot use in CRnQ series.

-------------- Open, Close, Print, Input, etc

19 4.1.6Expressions and operations (1)List of operator +, -, *, / , <>, <, >, etc

20 (2)Relative calculation of position data (multiplication) P1 * P2

21 (3)Relative calculation of position data (Addition) P1 + P2

22 4.1.7Appended statement -------------- Wth, WthIf

4MELFA-BASIC V

 MELFA-BASIC V functions 4-93

4.1.1 Robot operation control
(1) Joint interpolation movement

The robot moves with joint axis unit interpolation to the designated position. (The robot interpolates with a
joint axis unit, so the end path is irrelevant.)

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

Mov The robot moves to the designated position with joint interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated

Statement example Explanation

Mov P1 ... ' Moves to P1.

Mov P1+P2... ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page 120.

Mov P1*P2 ... ' Moves to the position relatively converted from P1 to P2. Refer to Page 120.

Mov P1,-50 *1) ... ' Moves from P1 to a position retracted 50mm in the hand direction.

Mov P1 Wth M_Out(17)=1......................... ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

Mov P1 WthIf M_In(20)=1, Skip ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and the
program proceeds to the next stop.

Mov P1 Type 1, 0
(Default value: Long way around)

' Specify either roundabout (or shortcut) when the operation angle of each axis exceeds 180 deg..

Program Explanation

1 Mov P1 ’(1) Moves to P1.

2 Mov P2, -50 *1) ’(2) Moves from P2 to a position retracted 50mm in the hand direction.

3 Mov P2 ’(3) Moves to P2

4 Mov P3, -100 Wth M_Out (17) = 1 ’(4) Starts movement from P3 to a position retracted 100mm in the hand direction, and turns ON output
signal bit 17.

5 Mov P3 ’(5) Moves to P3

6 Mov P3, -100 *1) ’(6) Returns from P3 to a position retracted 100mm in the hand direction.

7 End ’Ends the program.

Function Explanation page

Designate the movement speed.. Page 98, "(5) Acceleration/deceleration time and speed control"

Designate the acceleration/deceleration time. Page 98, "(5) Acceleration/deceleration time and speed control"

Confirm that the target position is reached. Page 100, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target posi-
tion... Page 97, "(4) Continuous movement"

Move linearly. ... Page 94, "(2) Linear interpolation movement"

Move while drawing a circle or arc. ... Page 95, "(3) Circular interpolation movement"

Add a movement command to the process....................................... Page 276, " Wth (With)"

(1)

(2)

P1

(3)

(4) Turn output
 signal bit 17 ON.

(5)

(6)

50
m

m

100mm

P2
P3

Hand

 :Movement position

 :Robot movement

*1) Specification of for-
ward/backward movement
of the hand

The statement examples and program examples
are for a vertical 6-axis robot (e.g., RV-6SD).The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool coor-
dinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

4-94 MELFA-BASIC V functions

4MELFA-BASIC V

(2) Linear interpolation movement
The end of the hand is moved with linear interpolation to the designated position.

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

Mvs The robot moves to the designated position with linear interpolation. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated.

Statement example Explanation

Mvs P1... ' Moves to P1

Mvs P1+P2 .. ' Moves to the position obtained by adding the P1 and P2 coordinate elements. Refer to Page
120.

Mvs P1*P2... ' Moves to the position relatively converted from P1 to P2.

Mvs P1, -50 *1).. ' Moves from P1 to a position retracted 50mm in the hand direction.

Mvs ,-50 *1) ... ' Moves from the current position to a position retracted 50mm in the hand direction.

Mvs P1 Wth M_Out(17)=1 ' Starts movement toward P1, and simultaneously turns output signal bit 17 ON.

Mvs P1 WthIf M_In(20)=1, Skip.......................... ' If the input signal bit 20 turns ON during movement to P1, the movement to P1 is stopped, and
the program proceeds to the next stop.

Mvs P1 Type 0, 0... ' Moves to P1 with equivalent rotation

Mvs P1 Type 9, 1... ' Moves to P1 with 3-axis orthogonal interpolation.

Program Explanation
1 Mvs P1, -50 *1) ' (1) Moves with linear interpolation from P1 to a position retracted 50mm in the hand

direction.

2 Mvs P1 ' (2) Moves to P1 with linear interpolation.

3 Mvs ,-50 *1) ' (3) Moves with linear interpolation from the current position (P1) to a position retracted
50mm in the hand direction.

4 Mvs P2, -100 Wth M_Out(17)=1 *1) (4) Output signal bit 17 is turned on at the same time as the robot starts moving.
5 Mvs P2 (5) Moves with linear interpolation to P2.

6 Mvs , -100 *1) (6) Moves with linear interpolation from the current position (P2) to a position retracted
50mm in the hand direction.

7 End ’Ends the program.

Function Explanation page
Designate the movement speed. .. Page 98, "(5) Acceleration/deceleration time and speed

control"

Designate the acceleration/deceleration time. ... Page 98, "(5) Acceleration/deceleration time and speed control"

Confirm that the target position is reached. ... Page 100, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target position.... Page 97, "(4) Continuous movement"

Move with joint interpolation.. Page 93, "(1) Joint interpolation movement"

Move while drawing a circle or arc. ... Page 95, "(3) Circular interpolation movement"

Add a movement command to the process... Page 276, " Wth (With)"

(1)

(2)
(3)

(4)Turn output
 signal bit 17 ON.

(5)
(6)

50
m

m

100m
m

P1
P2

Hand

 :Movement position

 :Robot movement
*1) Specification of forward/
backward movement of the
hand

The statement examples and program examples
are for a vertical 6-axis robot (e.g., RV-6SD).The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool coor-
dinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

4MELFA-BASIC V

 MELFA-BASIC V functions 4-95

(3) Circular interpolation movement
The robot moves along an arc designated with three points using three-dimensional circular interpolation.
If the current position is separated from the start point when starting circular movement, the robot will move
to the start point with linear operation and then begin circular interpolation.

*Command word

*Statement example

*Program example

Command word Explanation

Mvr Designates the start point, transit point and end point, and moves the robot with circular
interpolation in order of the start point - transit point - end point. It is possible to specify the
interpolation form using the TYPE instruction. An appended statement Wth or WthIf can be
designated.

Mvr2 Designates the start point, end point and reference point, and moves the robot with circular
interpolation from the start point - end point without passing through the reference point. It is
possible to specify the interpolation form using the TYPE instruction. An appended statement Wth
or WthIf can be designated.

Mvr3 Designates the start point, end point and center point, and moves the robot with circular
interpolation from the start point to the end point. The fan angle from the start point to the end
point is 0 deg. < fan angle < 180 deg. It is possible to specify the interpolation form using the
TYPE instruction. An appended statement Wth or WthIf can be designated.

Mvc Designates the start point (end point), transit point 1 and transit point 2, and moves the robot with
circular interpolation in order of the start point - transit point 1 - transit point 2 - end point. An
appended statement Wth or WthIf can be designated.

Statement example Explanation

Mvr P1, P2, P3 ... ' Moves with circular interpolation between P1 - P2 - P3.

Mvr P1, P2, P3 Wth M_Out (17) = 1................................ ' Circular interpolation between P1 - P2 - P3 starts, and the output signal bit 17 turns ON.

Mvr P1, P2, P3 WthIf M_In (20) = 1, Skip ' If the input signal bit 20 turns ON during circular interpolation between P1 - P2 - P3,
circular interpolation to P1 is stopped, and the program proceeds to the next step.

Mvr P1, P2, P3 TYPE 0, 1.. ' Moves with circular interpolation between P1 - P2 - P3.

Mvr2 P1, P3, P11 ... ' Circular interpolation is carried out from P1 to P3 in the direction that P11 is not passed.
P11 is the reference point.

Mvr3 P1, P3, P10 ... ' Moves with circular interpolation from P1 to P3 in the direction with the smallest fan
angle. P10 is the center point.

Mvc P1, P2, P3... ' Moves with circular movement from P1 - P2 - P3 - P1.

(1)

(2)

(3)

(4)

(5)
P1

P2
P3

P4

P5

P7

P6
(Reference
 point)

P10

P9

P11

P8
(Center point)

Hand

 :Movement position
 :Robot movement

Turn output
signal bit
18 ON.

Robot movement

4-96 MELFA-BASIC V functions

4MELFA-BASIC V

•Program example

*Related functions

Program Explanation
1 Mvr P1, P2, P3 Wth M_Out(18) = 1 ' (1) Moves between P1 - P2 - P3 as an arc. The robot current position before movement is

separated from the start point, so first the robot will move with linear operation to the start point. (P1)
output signal bit 18 turns ON simultaneously with the start of circular movement.

2 Mvr P3, P4, P5 ' (2) Moves between P3 - P4 - P5 as an arc.

3 Mvr2 P5, P7, P6 ' (3) Moves as an arc over the circumference on which the start point (P5), reference point (P6) and
end point (P7) in the direction that the reference point is not passed between the start point and end
point.

4 Mvr3 P7, P9, P8 ' (4) Moves as an arc from the start point to the end point along the circumference on which the
center point (P8), start point (P7) and end point (P9) are designated.

5 Mvc P9, P10, P11 ' (5) Moves between P9 - P10 - P11 - P9 as an arc. The robot current position before movement is
separated from the start point, so first the robot will move with linear operation to the start point.(1
cycle operation)

6 End ' Ends the program.

Function Explanation page

Designate the movement speed. .. Page 98, "(5) Acceleration/deceleration time and speed
control"

Designate the acceleration/deceleration time. ... Page 98, "(5) Acceleration/deceleration time and speed
control"

Confirm that the target position is reached. ... Page 100, "(6) Confirming that the target position is reached"

Continuously move to next position without stopping at target position.......... Page 97, "(4) Continuous movement"

Move with joint interpolation.. Page 93, "(1) Joint interpolation movement"

Move linearly. .. Page 94, "(2) Linear interpolation movement"

Add a movement command to the process... Page 276, " Wth (With)"

4MELFA-BASIC V

 MELFA-BASIC V functions 4-97

(4) Continuous movement
The robot continuously moves to multiple movement positions without stopping at each movement position.
The start and end of the continuous movement are designated with the command statement. The speed can
be changed even during continuous movement.

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

Cnt Designates the start and end of the continuous movement.

Statement example Explanation

Cnt 1... Designates the start of the continuous movement.

CNT 1, 100, 200 ... Designates the start of the continuous movement, and designates that the start point
neighborhood distance is 100mm, and the end point neighborhood distance is 200mm.

CNT 0 ... Designates the end of the continuous movement.

Program Explanation

1 Mov P1 ' (1) Moves with joint interpolation to P1.

2 Cnt 1 ' Validates continuous movement. (Following movement is continuous movement.)

3 Mvr P2, P3, P4 ' (2) Moves linearly to P2, and continuously moves to P4 with arc movement.

4 Mvs P5 ' After arc movement, moves linearly to P5.

5 Cnt 1, 200, 100 ' (3) Sets the continuous movement's start point neighborhood distance to 200mm,
and the end point neighborhood distance to 100mm.

6 Mvs P6 ' (4) After moving to previous P5, moves in succession linearly to P6.

7 Mvs P1 ' (5) Continuously moves to P1 with linear movement.

8 Cnt 0 ' Invalidates the continuous movement.

9 End ' Ends the program.

Function Explanation page
Designate the movement speed. .. Page 98, "(5) Acceleration/deceleration time and speed control"

Designate the acceleration/deceleration time. Page 98, "(5) Acceleration/deceleration time and speed control"

Confirm that the target position is reached. Page 100, "(6) Confirming that the target position is reached"

Move with joint interpolation.. Page 93, "(1) Joint interpolation movement"

Move linearly. .. Page 94, "(2) Linear interpolation movement"

Move while drawing a circle or arc.. Page 95, "(3) Circular interpolation movement"

Hand

(1)

(2)

(3)

(4)

(5)

100mm

200m
m

Default value

:Movement position
:Robot movement

P1

P2

P3

P4

P5

P6

1
00m

m

The robot moves continuously for less than the smaller distance
of either the proximity distance when moving toward P6 (200 mm)
or the proximity distance to the starting point of the path to P1 (100 mm).

The robot moves continuously for less than the smaller distance of either
the proximity distance when moving toward P5 (default value) or the proximity
distance to the starting point of the path to P6 (200 mm).

*1) Specification of forward/backward move-
ment of the hand

The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
6SD).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION
Robot movement

The robot's locus of movement may change
with specified speed.
Especially as for the corner section, short cut
distance may change. Therefore, when
beginning automatic operation, moves at low
speed at first, and you should gather speed
slowly with being careful of interference with
peripheral equipment.

CAUTION

4-98 MELFA-BASIC V functions

4MELFA-BASIC V

(5) Acceleration/deceleration time and speed control
The percentage of the acceleration/deceleration in respect to the maximum acceleration/deceleration, and
the movement speed can be designated.

*Command word

*Statement example

*Movement speed during joint interpolation
Controller (T/B) setting value x Ovrd command setting value x JOvrd command setting value.

*Movement speed during linear and circular interpolation
Controller (T/B) setting value x Ovrd command setting value x Spd command setting value.

*Program example

Command word Explanation

Accel Designates the acceleration during movement and the deceleration as a percentage (%) in
respect to the maximum acceleration/deceleration speed.

Ovrd Designates the movement speed applied on the entire program as a percentage (%) in respect
to the maximum speed.

JOvrd Designates the joint interpolation speed as a percentage (%) in respect to the maximum speed.

Spd Designate the linear and circular interpolation speed with the hand end speed (mm/s).

Oadl This instruction specifies whether the optimum acceleration/deceleration function should be
enabled or disabled.

Statement example Explanation

Accel... Sets both the acceleration and deceleration to 100%.

Accel 60, 80.. Sets the acceleration to 60% and the deceleration to 80%.
(For maximum acceleration/deceleration is 0.2 sec.
acceleration 0.2/0.6=0.33 sec. deceleration 0.2/0.8=0.25 sec.)

Ovrd 50... Sets the joint interpolation, linear interpolation and circular interpolation to 50% of the
maximum speed.

JOvrd 70 ... Set the joint interpolation operation to 70% of the maximum speed.

Spd 30 .. Sets the linear interpolation and circular interpolation speed to 30mm/s.

Oadl ON.. This instruction enables the optimum acceleration/deceleration function.

(1)....Maximum speed

(2)..........Maximum speed

P1

(3)....50%

(4)120mm/s

(5)Maximum speed

(6)70%

50
m

m

P2 P3

Hand
 :Movement position
 :Robot movement

*1) Specification of forward/
backward movement of the
hand

The statement examples and program examples
are for a vertical 6-axis robot (e.g., RV-6SD).The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool coor-
dinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTION
Robot movement

4MELFA-BASIC V

 MELFA-BASIC V functions 4-99

•Program example

*Related functions

Program Explanation
1 Ovrd 100 ' Sets the movement speed applied on the entire program to the maximum speed.

2 Mvs P1 ' (1) Moves at maximum speed to P1.

3 Mvs P2, -50 *1) ' (2) Moves at maximum speed from P2 to position retracted 50mm in hand direction.

4 Ovrd 50 ' Sets the movement speed applied on the entire program to half of the maximum speed.

5 Mvs P2 ' (3) Moves linearly to P2 with a speed half of the default speed.

6 Spd 120 ' Sets the end speed to 120mm/s. (Since the override is 50%, it actually moves at 60 mm/s.)

7 Ovrd 100 ' Sets the movement speed percentage to 100% to obtain the actual end speed of 120mm/s.

8 Accel 70, 70 ' Sets the acceleration and deceleration to 70% of the maximum speed.

9 Mvs P3 ' (4) Moves linearly to P3 with the end speed 120mm/s.

10 Spd M_NSpd ' Returns the end speed to the default value.

11 JOvrd 70 ' Sets the speed for joint interpolation to 70%.

12 Accel ' Returns both the acceleration and deceleration to the maximum speed.

13 Mvs , -50 *1) ' (5) Moves linearly with the default speed for linear movement from the current position (P3) to a position
retracted 50mm in the hand direction.

14 Mvs P1 ' (6) Moves to P1 at 70% of the maximum speed.

15 End ' Ends the program.

Function Explanation page

Move with joint interpolation.. Page 93, "(1) Joint interpolation movement"

Move linearly. .. Page 94, "(2) Linear interpolation movement"

Move while drawing a circle or arc.. Page 95, "(3) Circular interpolation movement"

Continuously move to next position without stopping at target position.......... Page 97, "(4) Continuous movement"

4-100 MELFA-BASIC V functions

4MELFA-BASIC V

(6) Confirming that the target position is reached
The positioning finish conditions can be designated with as No. of pulses. (Fine instruction) This designation
is invalid when using continuous movement.

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

Fine Designates the positioning finish conditions with a No. of pulses. Specify a small number of pulses
to allow more accurate positioning.

Mov and Dly After the Mov movement command, command the Dly instruction (timer) to complete positioning .

Statement example Explanation

Fine100... Sets the positioning finish conditions to 100 pulses.

Mov P1 ... Moves with joint interpolation to P1. (The movement completes at the command value
level.)

Dly 0.1 .. Positioning after the movement instruction is performed by the timer.

Program Explanation

1 Cnt 0 ' The Fine instruction is valid only when the Cnt instruction is OFF.

2 Mvs P1 ' (1) Moves with joint interpolation to P1.

3 Mvs P2, -50 *1) ' (2) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.

4 Fine 50 ' Sets positioning finish pulse to 50.

5 Mvs P2 ' (3) Moves with linear interpolation to P2
(Mvs completes if the positioning complete pulse count is 50 or less.)

6 M_Out(17)=1 ' (4) Turns output signal 17 ON when positioning finish pulse reaches 50 pulses.

7 Fine 1000 ' Sets positioning finish pulse to 1000.

8 Mvs P3, -100 *1) ' (5) Moves linearly from P3 to position retracted 100mm in hand direction.

9 Mvs P3 ' (6) Moves with linear interpolation to P3.

10 Dly 0.1 ' Performs the positioning by the timer.

11 M_Out(17)=0 ' (7) Turns output signal 17 off.

12 Mvs , -100 *1) ' (8) Moves linearly from current position (P3) to position retracted 100mm in hand direction.

13 End ' Ends the program.

Function Explanation page
Move with joint interpolation.. Page 95, "(3) Circular interpolation movement"

Move linearly. .. Page 94, "(2) Linear interpolation movement"

Continuously move to next position without stopping at target position.......... Page 97, "(4) Continuous movement"

(1)

(2)

(5)

P1

(3) (6)
(8)

50
m

m

100m
m

P2

Hand

 :Movement position

 :Robot movement

P3

(7) Turns output signal bit 17
OFF at finish of positioning to P3.

(4) Turns output signal bit 17 ON
at finish of positioning to P2.

*1) Specification of forward/
backward movement of the
hand

The statement examples and program examples
are for a vertical 6-axis robot (e.g., RV-6SD).The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool coor-
dinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

4MELFA-BASIC V

 MELFA-BASIC V functions 4-101

(7) High path accuracy control
It is possible to improve the motion path tracking when moving the robot. This function is limited to certain
types of robot. Currently, the Prec instruction is available for vertical multi-joint type 5-axis and 6-axis robots.

*Command word

*Statement example

*Program example

•Program example

The Prec instruction improves the tracking accuracy of the robot's hand tip, but low-
ers the acceleration/deceleration of the robot movement, which means that the cycle
time may become longer. The tracking accuracy will be further improved if the Cnt
instruction is not included. However, the hand tip speed cannot be guaranteed in this
case.

Command word Explanation

Prec This instruction specifies whether the high path accuracy mode should be enabled or disabled.

Statement example Explanation

Prec On .. Enables the high path accuracy mode.

Prec Off .. Disables the high path accuracy mode.

Program Explanation

1 Mov P1, -50 *1) ' (1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.

2 Ovrd 50 ' Sets the movement speed to half of the maximum speed.

3 Mvs P1 ' (2) Moves with linear interpolation to P1.

4 Prec On ' The high path accuracy mode is enabled.

5 Mvs P2 ' (3) Moves the robot from P1 to P2 with high path accuracy.

6 Mvs P3 ' (4) Moves the robot from P2 to P3 with high path accuracy.

7 Mvs P4 ' (5) Moves the robot from P3 to P4 with high path accuracy.

8 Mvs P1 ' (6) Moves the robot from P4 to P1 with high path accuracy.

9 Prec Off ' The high path accuracy mode is ÇÑisableÇÑ.

10 Mvs P1, -50 *1) ' (7) Returns the robot to the position 50 mm behind P1 in the hand direction using linear
interpolation.

11 End ' Ends the program.

P1 P2

P3 P4

(1)

(2)

(3)

(4)

(5)

(6)
(7)

 :Movement position

 :Robot movement
Hand

*1) Specification of for-
ward/backward movement
of the hand

*1) The statement examples and program exam-
ples are for a vertical 6-axis robot (e.g., RV-
6SD).The hand advance/retrace direction
relies on the Z axis direction (+/- direction) of
the tool coordinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

CAUTION

4-102 MELFA-BASIC V functions

4MELFA-BASIC V

(8) Hand and tool control
The hand open/close state and tool shape can be designated.

*Command word

*Statement example

*Program example

•Program example

*Related functions

Command word Explanation

HOpen Opens the designated hand.

HClose Closes the designated hand.

Tool Sets the shape of the tool being used, and sets the control point.

Statement example Explanation

HOpen 1 ... Opens hand 1.

HOpen 2 ... Opens hand 2.

HClose 1... Closes hand 1.

HClose 2... Closes hand 2.

Tool (0, 0, 95, 0, 0, 0) ... Sets the robot control point to the position 95 mm from the flange plane in the extension
direction.

Program Explanation
1 Tool(0, 0, 95, 0, 0, 0) ’Sets the hand length to 95 mm.

2 Mvs P1, -50 *1) ’(1) Moves with joint interpolation from P1 to position retracted 50mm in hand direction.

3 Ovrd 50 ’Sets the movement speed to half of the maximum speed.

4 Mvs P1 ’(2) Moves with linear interpolation to P1. (Goes to grasp workpiece.)

5 Dly 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.

6 HClose 1 ’(3) Closes hand 1. (Grasps workpiece.)

7 Dly 0.5 ’Waits 0.5 seconds.

8 Ovrd 100 ’Sets movement speed to maximum speed.

9 Mvs , -50 *1) ’(4) Moves linearly from current position (P1) to position retracted 50mm in hand direction. (Lifts up
workpiece.)

10 Mvs P2, -50 *1) ’(5) Moves with joint interpolation from P2 to position retracted 50mm in hand direction.

11 Ovrd 50 ’Sets movement speed to half of the maximum speed.

12 Mvs P2 ’(6) Moves with linear interpolation to P2. (Goes to place workpiece.)

13 Dly 0.5 ’ Wait for the 0.5 seconds for the completion of arrival to the target position.

14 HOpen 1 ’(7) Opens hand 1. (Releases workpiece.)

15 Dly 0.5 ’Waits 0.5 seconds.

16 Ovrd 100 ’ Sets movement speed to maximum speed.

17 MVS , -50 *1) ’(8) Moves linearly from current position (P2) to position retracted 50mm in hand direction.
(Separates from workpiece.)

18 End ’Ends the program.

Function Explanation page
Appended statement ... Page 276, " Wth (With)"

(1)

(2)
(4)

(3) Grasps
 workpiece

(5)

(6)
(8)

(7) Releases
 workpiece

P2

Hand

 Workpiece

P1

 :Movement position

 :Robot movement
*1) Specification of for-
ward/backward movement
of the hand

The statement examples and program examples
are for a vertical 6-axis robot (e.g., RV-6SD).The
hand advance/retrace direction relies on the
Z axis direction (+/- direction) of the tool coor-
dinate set for each model.
Refer to the tool coordinate system shown in
"Confirmation of movement" in the separate
"From Robot unit setup to maintenance", and
designate the correct direction.

CAUTIONRobot movement

4MELFA-BASIC V

 MELFA-BASIC V functions 4-103

4.1.2 Pallet operation
When carrying out operations with the workpieces neatly arranged (palletizing), or when removing work-
pieces that are neatly arranged (depalletizing), the pallet function can be used to teach only the position of
the reference workpiece, and obtain the other positions with operations.

*Command word

*Statement example

The relation of the position designation and a pallet pattern is shown below.

 Pallet pattern = 1 (zigzag) Pallet pattern = 2 (same direction) Pallet pattern = 3 (arc pallet)

Command word Explanation

Def Plt Defines the pallet to be used.

Plt Obtains the designated position on the pallet with operations.

Statement example Explanation

Def Plt 1, P1, P2, P3, P4, 4, 3, 1 Defines to operate pallet No. 1 with a start point = P1, end point A = P2, end point B = P3
and diagonal point = P4, a total of 12 work positions (quantity A = 4, quantity B = 3), and
a pallet pattern = 1(Zigzag).

Def Plt 2, P1, P2, P3, , 8, 5, 2 .. Defines to operate pallet No. 2 with a start point = P1, end point A = P2, and end point B
= P3, a total of 40 work positions (quantity A = 8, quantity B = 5), and a pallet pattern = 2
(Same direction).

Def Plt 3, P1, P2, P3, , 5, 1, 3 .. Define that pallet No. 3 is an arc pallet having give five work positions on an arc
designated with start point = P1, transit point = P2, end point = P3 (total three points).

(Plt1, 5)... Operate the 5th position on pallet No. 1.

(Plt1, M1).. Operate position in pallet No. 1 indicated with the numeric variable M1.

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet

4-104 MELFA-BASIC V functions

4MELFA-BASIC V

<Precautions on the posture of position data in a pallet definition>

Please read "*Explanation" below if you use position data whose posture compo-
nents (A, B and C) are approximately +/-180 degrees as the start point, end points
A and B, or the diagonal point.

*Explanation
At a position where a posture component (A, B and C) reaches 180 degrees, the component value can
become either +180 degrees or -180 degrees even if the posture is the same. This is due to internal opera-
tion errors, and there is no consistency in which sign is employed.
If this position is used for the start point, end points A and B or diagonal point of the pallet definition and the
same posture component values include both +180 degrees and -180 degrees, the hand will rotate and
move in unexpected ways because the pallet gird positions are calculated by dividing the distance between
-180 degrees and +180 degrees.
Whether a posture component is +180 degrees or -180 degrees, the posture will be the same. Use the
same sign, either + or -, consistently for position data used to define a pallet.
Note also that similar phenomena can occur if posture components are close to +/-180 degrees (e.g., +179
degrees and -179 degrees) as well, if different signs are used. In this case, add or subtract 360 degrees to/
from the posture components and correct the values such that the sign becomes the same. (For example,
to change the sign of -179 degrees to +, add 360 degrees and correct the value to +181 degrees.)

"•Program example 1" shows an example where the posture components of the end points (P3 and P4) and
diagonal point (P5) are adjusted according to the start point (P2) when the hand direction is the same in all
grid points of a pallet (values of the A, B and C axes are identical) (line numbers 10 to 90). "•Program exam-
ple 2" shows an example where values are corrected to have the same sign as the start point (P2) when the
posture components of a pallet definition position are close to +/-180 degrees and the C-axis values of the
end points (P3 and P4) and diagonal point (P5) are either less than -178 degrees or greater than +178
degrees (line numbers 10 to 100). (+/-178 degrees are set as the threshold values of correction.) Use these
program examples as reference for cases where the pallet precision is not very high and the hand direction
thus must be corrected slightly.

*Program example

CAUTION

13

10

7

4

1

14

11

8

5

2

15

12

9

6

3

P1
(workpiece supply position)

Palletize

3 pcs.

5
pc

s.

P4
(End point B)

P2

(Start point)

P3

(End point A)

P5
(Diagonal point)

Pallet pattern = 2(same direction)

Robot movement

*1) Specification of forward/
backward movement of the
hand

The statement examples and program examples are for a
vertical 6-axis robot (e.g., RV-6SD).The hand advance/
retrace direction relies on the Z axis direction (+/- direc-
tion) of the tool coordinate set for each model.
Refer to the tool coordinate system shown in "Confirma-
tion of movement" in the separate "From Robot unit setup
to maintenance", and designate the correct direction.

CAUTION

4MELFA-BASIC V

 MELFA-BASIC V functions 4-105

The value of the start point of the pallet definition is employed for the structure flag of
grid points (FL1 of position data) calculated by pallet operation (Plt instruction).
For this reason, if position data with different structure flags are used for each point of
the pallet definition, the desired pallet operation cannot be obtained.
Use position data whose structure flag values are all the same for the start point, end
points A and B and the diagonal point of the pallet definition. The value of the start
position of the pallet definition is employed for the multi-rotation flag of grid points
(FL2 of position data) as well. If position data with different multi-rotation flags are
used for each point of the pallet definition, the hand will rotate and move in unex-
pected ways depending on the robot positions the pallet operation goes through and
the type of interpolation instruction (joint interpolation, line interpolation, etc.). In such
cases, use the TYPE argument of the interpolation instruction to set the detour/short
cut operation of the posture properly and ensure that the hand moves as desired.

CAUTION

4-106 MELFA-BASIC V functions

4MELFA-BASIC V

•Program example 1
The hand direction is the same in all grid points of a pallet (values of the A, B and C axes are identical)

Program Explanation

1 P3.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P3.

2 P3.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P3.

3 P3.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P3.

4 P4.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P4.

5 P4.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P4.

6 P4.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P4.

7 P5.A=P2.A ’Assigns the posture component (A) of P2 to the posture component (A) of P5.

8 P5.B=P2.B ’Assigns the posture component (B) of P2 to the posture component (B) of P5.

9 P5.C=P2.C ’Assigns the posture component (C) of P2 to the posture component (C) of P5.

10 Def Plt 1, P2, P3, P4, P5, 3, 5, 2 ’Defines the pallet. Pallet No. = 1, start point = P2, end point A = P3, end point B = P4,
diagonal point = P5, quantity A = 3, quantity B = 5, pallet pattern = 2 (Same direction).

11 M1=1 ’Substitutes value 1 in numeric variable M1. (M1 is used as a counter.

12 *LOOP ’Designates label LOOP at the jump destination.

13 Mov P1, -50 *1) ’Moves with joint interpolation from P1 to a position retracted 50mm in hand direction.

14 Ovrd 50 ’Sets movement speed to half of the maximum speed.

15 Mvs P1 ’Moves linearly to P1. (Goes to grasp workpiece.)

16 HClose 1 ’Closes hand 1. (Grasps workpiece.)

17 Dly 0.5 ’Waits 0.5 seconds.

18 Ovrd 100 ’Sets movement speed to maximum speed.

19 Mvs , -50 *1) ’Moves linearly from current position (P1) to a position retracted 50mm in hand direction. (Lifts
up workpiece.)

20 P10=(Plt1,M1) ’Operates the position in pallet No. 1 indicated by the numeric variable M1, and substitutes
the results in P10.

21 Mov P10, -50 *1) ’Moves with joint interpolation from P10 to a position retracted 50mm in hand direction.

22 Ovrd 50 ’Sets movement speed to half of the maximum speed.

23 Mvs P10 ’Moves linearly to P10. (Goes to place workpiece.)

24 HOpen 1 ’Opens hand 1. (Places workpiece.)

25 Dly 0.5 ’Waits 0.5 seconds.

26 Ovrd 100 ’Sets movement speed to maximum speed.

27 Mvs , -50 ’Moves linearly from current position (P10) to a position retracted 50mm in hand direction.
(Separates from workpiece.)

28 M1=M1+1 ’Increments numeric variable M1 by 1. (Advances the pallet counter.)

29 If M1<=15 Then *LOOP ’If numeric variable M1 value is less than 15, jumps to label LOOP and repeat process. If
more than 15, goes to next step.

30 End ’Ends the program.

4MELFA-BASIC V

 MELFA-BASIC V functions 4-107

•Program example 2
Correction when posture components are close to +/-180 degrees

Program Explanation

1 If Deg(P2.C)<0 Then GoTo *MINUS ’Checks the sign of the posture component (C) of P2 and, if it is -
(negative), jump to the label MINUS line.

2 If Deg(P3.C)<-178 Then P3.C=P3.C+Rad(+360) ’If the posture component (C) of P3 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

3 If Deg(P4.C)<-178 Then P4.C=P4.C+Rad(+360) ’If the posture component (C) of P4 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

4 If Deg(P5.C)<-178 Then P5.C=P5.C+Rad(+360) ’If the posture component (C) of P5 is close to -180 degrees,
adds 360 degrees to correct it to a positive value.

5 GoTo *DEFINE ’Jumps unconditionally to the label DEFINE line.

6 *MINUS ’Specifies the label MINUS line as the jump destination.

7 If Deg(P3.C)<+178 Then P3.C=P3.C-Rad(+360) ’If the posture component (C) of P3 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

8 If Deg(P4.C)<+178 Then P4.C=P4.C-Rad(+360) ’If the posture component (C) of P4 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

9 If Deg(P5.C)<+178 Then P5.C=P5.C-Rad(+360) ’If the posture component (C) of P5 is close to +180 degrees,
adds 360 degrees to correct it to a negative value.

10 *DEFINE ’Specifies the label DEFINE line as the jump destination.

11 Def Plt 1, P2, P3, P4, P5, 3, 5, 2 ’Defines the pallet. Pallet No. = 1, start point = P2, end point A =
P3, end point B = P4, diagonal point = P5, quantity A = 3,
quantity B = 5, pallet pattern = 2 (Same direction).

12 M1=1 ’Substitutes value 1 in numeric variable M1. (M1 is used as a
counter.

13 *LOOP ’Designates label LOOP at the jump destination.

14 Mov P1, -50 *1) ’Moves with joint interpolation from P1 to a position retracted
50mm in hand direction.

15 Ovrd 50 ’Sets movement speed to half of the maximum speed.

16 Mvs P1 ’Moves linearly to P1. (Goes to grasp workpiece.)

17 HClose 1 ’Closes hand 1. (Grasps workpiece.)

18 Dly 0.5 ’Waits 0.5 seconds.

19 Ovrd 100 ’Sets movement speed to maximum speed.

20 Mvs , -50 *1) ’Moves linearly from current position (P1) to a position retracted
50mm in hand direction. (Lifts up workpiece.)

21 P10=(Plt1,M1) ’Operates the position in pallet No. 1 indicated by the numeric
variable M1, and substitutes the results in P10.

22 Mov P10, -50 *1) ’Moves with joint interpolation from P10 to a position retracted
50mm in hand direction.

23 Ovrd 50 ’Sets movement speed to half of the maximum speed.

24 Mvs P10 ’Moves linearly to P10. (Goes to place workpiece.)

25 HOpen 1 ’Opens hand 1. (Places workpiece.)

26 Dly 0.5 ’Waits 0.5 seconds.

27 Ovrd 100 ’Sets movement speed to maximum speed.

28 Mvs , -50 ’Moves linearly from current position (P10) to a position retracted
50mm in hand direction. (Separates from workpiece.)

29 M1=M1+1 ’Increments numeric variable M1 by 1. (Advances the pallet
counter.)

30 If M1<=15 Then *LOOP ’If numeric variable M1 value is less than 15, jumps to label
LOOP and repeat process. If more than 15, goes to next step.

31 End ’Ends the program.

4-108 MELFA-BASIC V functions

4MELFA-BASIC V

<Limitations of the palette definition command>
In the robot types (RV-2SQ etc.) in which the J1 axis or the J4 axis can exceed the +/-180 degrees, the pal-
ette that the joint angle of the J1 axis or the J4 axis straddles the +/-180 degrees cannot be specified. The
alarm will occur, if such position were defined. The example is shown in Fig. 4-1(A) and Fig. 4-2(A).
If you use the pallet in such a position, please divide and define the palette. Refer to Fig. 4-1(B) and Fig. 4-
2(B).

Palette-1: The J1 axis is 0 to +180 degrees, or 0 to -180 degrees.
Palette-2: The J1 axis is +180 to +240 degrees, or -180 to -240 degrees.

Fig.4-1:Limitation of the palette definition(1)

Fig.4-2:Limitation of the palette definition(2)

*Related functions
Function Explanation page

Substitute, operation .. Page 118, "4.1.6 Expressions and operations"

Condition branching ... Page 109, "(1) Unconditional branching, conditional branching, waiting"

多回転フラグ
FL2のJ1軸が
＋1の領域

多回転フラグ
FL2のJ1軸が
0の領域

＋240

＋180

0度

＋240

＋180

0度

(A) (B)

J1 of FL2 is
the area of
"0".

J1 of FL2 is
the area of
"+1".

1 2

多回転フラグ
FL2のJ1軸が
－1の領域

多回転フラグ
FL2のJ1軸が
0の領域

－240

－180

0度

－240

－180

0度

(A) (B)

J1 of FL2 is
the area of
"-1".

J1 of FL2 is
the area of
"0".

12

4MELFA-BASIC V

 MELFA-BASIC V functions 4-109

4.1.3 Program control
The program flow can be controlled with branching, interrupting, subroutine call, and stopping, etc.

(1) Unconditional branching, conditional branching, waiting
The flow of the program to a specified step can be set as unconditional or conditional branching.

*Command word

*Statement example

Command word Explanation

GoTo Jumps unconditionally to the designated step.

On GoTo Jumps according to the value of the designated variable. The value conditions follow the
integer value order.

If Then Else
(Instructions written in one

step)

Executes the command corresponding to the designated conditions.. The value conditions
can be designated randomly. There is only one type of condition per command statement.
If the conditions are met, the instruction after Then is executed. If the conditions are not
met, the instruction after Else is executed. They are written in one step.

If Then
Else

End If
(Instructions written in

several steps)

Several steps can be processed according to the specified variables and specified
conditions of the values. It is possible to specify any conditions for values. Only one type
of condition is allowed for one instruction. If the conditions are met, the steps following
Then until the Else step are executed. If the conditions are not met, the steps after Else
until End IF are executed.

Select
Case

End Select

Jumps according to the designated variable and the designated conditions of that value.
The value conditions can be designated randomly.
Multiple types of conditions can be designated per command statement.

Wait Waits for the variable to reach the designated value.

Statement example Explanation

GoTo *FN.. Jumps unconditionally to the label FN step.

ON M1 GoTo *L1, *L2, *L3 If the numeric variable M1 value is 1, jumps to step *L1, if 2 jumps to step *L2, and if 3 jumps to step
*L3. If the value does not correspond, proceeds to next step.

If M1=1 Then *L1.. If the numeric variable M1 value is 1, branches to step *L1. If not, proceeds to the next step.

If M1=1 Then *L2 Else *L2 If the numeric variable M1 value is 1, branches to step *L1. If not, branches to step *L2.

If M1=1 Then ..
 M2=1
 M3=2
Else
 M2=-1
 M3=-2
EndIf

If the numerical variable of M1 is 1, the instructions M2 = 1 and M3 = 2 are executed. If the value of M1
is different from 1, the instructions M2 = -1 and M3 = -2 are executed.

Select M1 ...
 Case 10 ...
 :
 Break
 Case IS 11...
 :
 Break
 Case IS <5 ..
 :
 Break
 Case 6 TO 9 ..
 :
 Break
Default ...
 :
 Break
End Select ..

Branches to the Case statement corresponding to the value of numeric variable M1.

If the value is 10, executes only between Case 10 and the next Case 11.

If the value is 11, executes only between Case 11 and the next Case IS <5.

If the value is smaller than 5, executes only between Case IS <5 and next Case 6 TO 9.

 If value is between 6 and 9, executes only between Case 6 TO 9 and next Default.

If value does not correspond to any of the above, executes only between Default and next End Select.

Ends the Select Case statement.

Wait M_In(1)=1 Waits for the input signal bit 1 to turn ON.

4-110 MELFA-BASIC V functions

4MELFA-BASIC V

*Related functions
Function Explanation page

Repetition ... Page 111, "(2) Repetition"

Interrupt.. Page 112, "(3) Interrupt"

Subroutine.. Page 113, "(4) Subroutine"

External signal input... Page 116, "(1) Input signals"

4MELFA-BASIC V

 MELFA-BASIC V functions 4-111

(2) Repetition
Multiple command statements can be repeatedly executed according to the designated conditions.

*Command word

*Statement example

*Related functions

Command word Explanation

For Next Repeat between For statement and Next statement until designated conditions are satisfied.

 While WEnd Repeat between While statement and WEnd statement while designated conditions are
satisfied.

Statement example Explanation

For M1=1 To 10 ..
 :
Next

Repeat between For statement and Next statement 10 times.
The initial numeric variable M1 value is 1, and is incremented by one with each
repetition.

For M1=0 To 10 Step 2...
 :
Next

Repeat between For statement and Next statement 6 times.
The initial numeric variable M1 value is 0, and is incremented by two with each
repetition.

While (M1 >= 1) And (M1 <= 10)......................................
 :
WEnd

Repeat between While statement and WEnd statement while the value of the numeric
variable M1 is 1 or more and less than 10.

Function Explanation page

Unconditional branching, branching... Page 109, "(1) Unconditional branching, conditional branching,
waiting"

Interrupt.. Page 112, "(3) Interrupt"

Input signal wait ... Page 116, "(1) Input signals"

4-112 MELFA-BASIC V functions

4MELFA-BASIC V

(3) Interrupt
Once the designated conditions are established, the command statement being executed can be interrupted
and a designated step branched to.

*Command word

*Statement example

*Related functions

Command word Explanation

Def Act Defines the interrupt conditions and process for generating interrupt.

Act Designates the validity of the interrupt.

Return If a subroutine is called for the interrupt process, returns to the interrupt source line.

Statement example Explanation

Def Act 1, M_In(10)=1 GoSub *SUB1 If input signal bit 10 is turned on for interrupt number 1, the subroutine on step *SUB1 is
defined to be called after the robot decelerates and stops. The deceleration time
depends on the Accel and Ovrd instructions.

Def Act 2, M_In(11)=1 GoSub *SUB2, L........................... If input signal bit 11 is turned on for interrupt number 2, the subroutine on step *SUB2 is
defined to be called after the statement currently being executed is completed.

Def Act 3, M_In(12)=1 GoSub *SUB3, S If input signal bit 12 is turned on for interrupt number 3, the subroutine on step *SUB3 is
defined to be called after the robot decelerates and stops in the shortest time and
distance possible.

Act 1=1 ... Enables the priority No. 1 interrupt.

Act 2=0 ... Disables the priority No. 1 interrupt.

Return 0.. Returns to the step where the interrupt occurred.

Return 1.. Returns to the step following the step where the interrupt occurred.

Function Explanation page

Unconditional branching, branching... Page 109, "(1) Unconditional branching, conditional branching,
waiting"

Subroutine.. Page 113, "(4) Subroutine"

Communication .. Page 117, "4.1.5 Communication"

4MELFA-BASIC V

 MELFA-BASIC V functions 4-113

(4) Subroutine
Subroutine and subprograms can be used.
By using this function, the program can be shared to reduce the No. of steps, and the program can be cre-
ated in a hierarchical structure to make it easy to understand.

*Command word

*Statement example

*Related functions

Command word Explanation

GoSub Calls the subroutine at the designated step or designated label.

On GoSub Calls the subroutine according to the designated variable number. The value conditions follow
the integer value order. (1,2,3,4,.......)

Return Returns to the step following the step called with the GoSub command.

CallP Calls the designated program. The next step in the source program is returned to at the End
statement in the called program. Data can be transferred to the called program as an argument.

FPrm An argument is transferred with the program called with the CallP command.

Statement example Explanation

GoSub .. Calls the subroutine from step.

On GoSub ... Calls the subroutine from label GET.

ON M1 GoSub *L1, *L2, *L3........................ If the numeric variable M1 value is 1, calls the subroutine at step *L1, if 2 calls the subroutine at step
*L2, and if 3 calls the subroutine at step *L3. If the value does not correspond, proceeds to next step.

Return.. Returns to the step following the step called with the GoSub command.

CallP "10" .. Calls the No. 10 program.

CallP "20", M1, P1....................................... Transfers the numeric variable M1 and position variable P1 to the No. 20 program, and calls the
program.

FPrm M10, P10 ... Receives the numeric variable transferred with the CallP in M10 of the subprogram, and the position
variable in P10.

Function Explanation page

Interrupt... Page 112, "(3) Interrupt"

Communication ... Page 117, "4.1.5 Communication"

Unconditional branching ... Page 109, "(1) Unconditional branching, conditional branching, waiting"

4-114 MELFA-BASIC V functions

4MELFA-BASIC V

(5) Timer
The program can be delayed by the designated time, and the output signal can be output with pulses at a
designated time width.

*Command word

*Statement example

*Related functions

Command word Explanation

Dly Functions as a designated-time timer.

Statement example Explanation

Dly 0.05 ... Waits for only 0.05 seconds.

M_Out(10)=1 Dly 0.5 ... Turns on output signal bit 10 for only 0.5 seconds.

Function Explanation page
Pulse signal output... Page 116, "(1) Input signals"

4MELFA-BASIC V

 MELFA-BASIC V functions 4-115

(6) Stopping
The program execution can be stopped. The moving robot will decelerate to a stop.

*Command word

*Statement example

*Related functions

Command word Explanation

Hlt This instruction stops the robot and pauses the execution of the program. When the program is
started, it is executed from the next step.

End This instruction defines the end of one cycle of a program. In continuous operation, the program
is executed again from the start step upon the execution of the End instruction. In cycle
operation, the program ends upon the execution of the End instruction when the cycle is
stopped.

Statement example Explanation

Hlt ... Interrupt execution of the program.

If M_In(20)=1 Then Hlt ... Pauses the program if input signal bit 20 is turned on.

Mov P1 WthIf M_In(18)=1, Hlt .. Pauses the program if input signal bit 18 is turned on while moving toward P1.

End ... Terminates the program even in the middle of the execution.

Function Explanation page

Appended statement.. Page 276, " Wth (With)"

4-116 MELFA-BASIC V functions

4MELFA-BASIC V

4.1.4 Inputting and outputting external signals
This section explains the general methods for signal control when controlling the robot via an external
device (e.g., PLC).

(1) Input signals
Signals can be retrieved from an external device, such as a programmable logic controller.
The input signal is confirmed with a robot status variable (M_In(), etc.) Refer to Page 154, "4.6 Robot status
variables" for details on the robot status variables.

*Command word

*System variables
M_In, M_Inb, M_Inw, M_DIn

*Statement example

*Related functions

(2) Output signals
Signals can be output to an external device, such as a programmable logic controller.
The signal is output with the robot status variable (M_Out(), etc.). Refer to Page 154, "4.6 Robot status vari-
ables" for details on the robot status variables.

*Command word

*System variables
M_Out, M_Outb, M_Outw, M_DOut

*Statement example

*Related functions

Command word Explanation

Wait Waits for the input signal to reach the designated state.

Statement example Explanation

Wait M_In(1)=1 ... Waits for the input signal bit 1 to turn ON.

M1=M_Inb(20) .. Substitutes the input signal bit 20 to 27, as an 8-bit state, in numeric variable M1.

M1=M_Inw(5).. Substitutes the input signal bit 5 to 20, as an 16-bit state, in numeric variable M1.

Function Explanation page
Signal output .. Page 116, "(2) Output signals"

Branching with input signal .. Page 109, "(1) Unconditional branching, conditional branching, waiting"

Interrupting with input signal .. Page 112, "(3) Interrupt"

Command word Explanation

Clr Clears the general-purpose output signal according to the output signal reset pattern in the
parameter.

Statement example Explanation

Clr 1 ... Clears based on the output reset pattern.

M_Out(1)=1 ... Turns the output signal bit 1 ON.

M_Outb (8)=0 .. Turns the 8 bits, from output signal bit 8 to 15, OFF.

M_Outw (20)=0.. Turns the 16 bits, from output signal bit 20 to 35, OFF.

M_Out(1)=1 Dly 0.5 ... Turns the output signal bit 1 ON for 0.5 seconds. (Pulse output)

M_Outb (10)=&H0F ... Turns the 4 bits, from output signal bit 10 to 13 ON, and turns the four bits from 14 to 17 OFF.

Function Explanation page

Signal input .. Page 116, "(1) Input signals"

Timer .. Page 114, "(5) Timer"

4MELFA-BASIC V

 MELFA-BASIC V functions 4-117

4.1.5 Communication
Data can be exchanged with an external device, such as a personal computer.
Cannot use in CRnQ series.

*Command word

*Statement example

*Related functions

Command word Explanation

Open Opens the communication line.

Close Closes the communication line.

Print# Outputs the data in the AscII format. CR is output as the end code.

Input# Inputs the data in the AscII format. The end code is CR.

On Com GoSub
Defines the subroutine to be called when an interrupt is generated from the communication line.
The interrupt is generated when data is input from an external device.

Com On Enables the interrupt process from the communication line.

Com Off Disables the interrupt process from the communication line. The interrupt will be invalid even if it
occurs.

Com Stop Stops the interrupt process from the communication line. If there is an interrupt, it is saved, and
is executed after enabled.

Statement example Explanation

Open "COM1:" AS #1................................ Opens the communication line COM1 as file No. 1.

Close #1 .. Closes file No. 1.

Close ... Closes all files that are open.

Print#1,"TEST" .. Outputs the character string "TEST" to file No. 1.

Print#2,"M1=";M1 Output the character string "M1=" and then the M1 value to file No. 2.
Output data example: "M1 = 1" + CR (When M1 value is 1)

Print#3,P1.. Outputs the position variable P1 coordinate value to file No. 3.
Output data example: "(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)" +CR
(When X = 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Print#1,M5,P5.. Outputs the numeric variable M5 value and position variable coordinate value to file No. 1.
M5 and P5 are separated with a comma (hexadecimal, 2C).
Output data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(When M5=8, P5 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Input#1,M3 .. Converts the input data into a value, and substitutes it in numeric variable M3.
Input data example: "8" + CR (when value 8 is to be substituted)

Input#1,P10 ... Converts the input data into a value, and substitutes it in position variable P10.
Input data example: "8, (123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(P5 will be X= 123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

Input#1,M8,P6 ... Converts the first data input into a value, and substitutes it in numeric variable M8. Converts the data
following the command into a coordinate value, and substitutes it in position variable P6. M8 and P6 are
separated with a comma (hexadecimal, 2C)
Input data example: "7,(123.7, 238.9, 33.1, 19.3, 0, 0)(1, 0)"+CR
(The data will be M8 = 7, P6 X=123.7, Y=238.9, Z=33.1, A=19.3, B=0, C=0, FL1=1, FL2=0)

On Com(1) GoSub *SUB3......................... Defines to call step *SUB3 subroutine when data is input in communication line COM1.

On Com(2) GoSub *RECV........................ Defines to call subroutine at label RECV step when data is input in communication line COM2.

Com(1) On... Enables the interrupt from communication line COM1.

Com(2) Off... Disables (prohibits) the interrupt from communication line COM2.

Com(1) Stop .. Stops (holds) the interrupt from communication line COM1.

Function Explanation page
Subroutine.. Page 113, "(4) Subroutine"

Interrupt.. Page 112, "(3) Interrupt"

4-118 MELFA-BASIC V functions

4MELFA-BASIC V

4.1.6 Expressions and operations
The following table shows the operators that can be used, their meanings, and statement examples.

(1) List of operator
Class Operator Meaning Statement example

Substituti
on

= The right side is
substituted in the left
side.

P1=P2
P5=P_Curr
P10.Z=100.0
M1=1
STS$="OK"

’Substitute P2 in position variable P1.
’Substitute the current coordinate value in current position variable P5.
’Set the position variable P10 Z coordinate value to 100.0.
’Substitute value 1 in numeric variable M1.
’Substitute the character string OK in the character string variable
STS$.

Numeric
value
operation

+ Add P10=P1+P2
Mov P8+P9
M1=M1+1
STS$="ERR"+"001"

’GSubstitute the results obtained by adding the P1 and P2 coordinate
elements to position variable P10.
’Move to the position obtained by adding the position variable P8 and
P9 coordinate elements.
’Add 1 to the numeric variable M1.
’Add the character string 001 to the character string ERR and
substitute in character string variable STS$.

- Subtract P10=P1-P2
Mov P8-P9
M1=M1-1

’Substitute the results obtained by subtracting the P2 coordinate
element from P1 in position variable P10.
’ Move to the position obtained by subtracting the P9 coordinate
element from the position variable P8.
’Subtract 1 from the numeric variable M1.

* Multiply P1=P10*P3
M1=M1*5

’Substitute the relative conversion results from P10 to P3 in position
variable P1.
’Multiple the numeric variable M1 value by 5.

/ Divide P1=P10/P3
M1=M1/2

’Substitute the reverse relative conversion results from P10 to P3 in
position variable P1.
’Divide the numeric variable M1 value by 2.

^ Exponential operation M1=M1^2 ’Square the numeric variable M1 value.

\ Integer division M1=M1\3 ’Divide the numeric variable M1 value by 3 and make an integer
(round down).

MOD Remainder operation M1=M1 Mod 3 ’Divide the numeric variable M1 value by 3 and leave redundant.

- Sign reversal P1=-P1
M1=-M1

’Reverse the sign for each coordinate element in position variable P1.
’Reverse the sign for the numeric variable M1 value.

Comparis
on
operation

= Compare whether
equal

If M1=1 Then *L1
If STS$="OK" Then *L2

’Branch to step *L1 if numeric variable M1 value is 1.
’Branch to step *L2 if character string in character string variable STS$ is
OK.

<>
or
><

Compare whether not
equal

If M1<>2 Then *L3
If STS$<>"OK" Then *L4

’Branch to step *L3 if numeric variable M1 value is 2.
’Branch to step *L4 if character string in character string variable STS$
is not OK.

< Compare whether
smaller

If M1< 10 Then *L3
If Len(STS$)<3 Then *L4

’Branch to step *L3 if numeric variable M1 value is less than 10.
’Branch to step *L4 if No. of characters in character string STS$
variable is less than 3.

> Compare whether
larger

If M1>9 Then *L3
If Len(STS$)>2 Then *L4

’Branch to step *L3 if numeric variable M1 value is more than 9.
’Branch to step *L4 if No. of characters in character string variable
STS$ is more than 2.

=<
or
<=

Compare whether
equal to or less than

If M1<=10 Then *L3
If Len(STS$)<=5 Then *L4

’Branch to step *L3 if numeric variable M1 value is equal to or less
than 10.
’Branch to step *L4 if No. of characters in character string variable
STS$ is equal to or less then 5.

=>
or
>=

Compare whether
equal to or more than

If M1=>11 Then *L3
If Len(STS$)>=6 Then *L4

’Branch to step *L3 if numeric variable M1 value is equal to or more
than 11.
’Branch to step *L4 if No. of characters in character string variable
STS$ is equal to or more than 6.

4MELFA-BASIC V

 MELFA-BASIC V functions 4-119

Note1) Please refer to Page 120, "Relative calculation of position data (multiplication)".
Note 2) Please refer to Page 120, "Relative calculation of position data (Addition)".

Logical
operation

And Logical AND operation M1=M_Inb(1) And &H0F ’Convert the input signal bit 1 to 4 status and substitute in numeric
variable M1. (Input signal bits 5 to 8 remain OFF.)

Or Logical OR operation M_Outb(20)=M1 Or &H80 ’Output the numeric variable M1 value to output signal bit 20 to 27.
Output bit signal 27 is always ON at this time.

Not NOT operation M1=Not M_Inw(1) ’Reverse the status of input signal bit 1 to 16 to create a value, and
substitute in numeric variable M1.

Xor Exclusive OR
operation

N2=M1 Xor M_Inw(1) ’Obtain the exclusive OR of the states of M1 and the input signal bits 1
to 16, convert into a value and substitute in numeric variable M2.

<< Logical left shift
operation

M1=M1<<2 ’Shift numeric variable M1 two bits to the left.

>> Logical right shift
operation.

M1=M1>>1 ’Shift numeric variable M1 bit to the right.

Class Operator Meaning Statement example

4-120 MELFA-BASIC V functions

4MELFA-BASIC V

(2) Relative calculation of position data (multiplication)
Numerical variables are calculated by the usual four arithmetic operations. The calculation of position vari-
ables involves coordinate conversions, however, not just the four basic arithmetic operations. This is
explained using simple examples.

An example of relative calculation (multiplication)
1 P2=(10,5,0,0,0,0)(0,0)
2 P100=P1*P2
3 Mov P1
4 Mvs P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand tip is moved relatively within the
P1 tool coordinate system at teaching position P1. The
values of the X and Y coordinates of P2 become the
amount of movement within the tool coordinate system.
The relative calculation is given by multiplication of the P
variables. Be aware that the result becomes different if the
order of multiplication is different. The variable that speci-
fies the amount of relative movement (P2) should be
entered lastly.
If the posture axis parts of P2 (A, B, and C) are 0, the pos-
ture of P1 is used as is. If there are non-zero values avail-
able, the new posture is determined by rotating the hand
around the Z, Y, and X axes (in the order of C, B, and A)
relative to the posture of P1. Multiplication corresponds to
addition within the tool coordinate system, while division
corresponds to subtraction within the tool coordinate sys-
tem.

(3) Relative calculation of position data (Addition)
An example of relative calculation(Addition)
1 P2=(5,10,0,0,0,0)(0,0)
2 P100=P1+P2
3 Mov P1
4 Mvs P100
P1=(200,150,100,0,0,45)(4,0)

In this example, the hand is moved relatively within the
robot coordinate system at teaching position P1. The val-
ues of the X and Y coordinates of P2 become the amount
of movement within the robot coordinate system. The rela-
tive calculation is given by addition of the P variables.
If a value is entered for the C-axis coordinate of P2, it is
possible to change the C-axis coordinate of P100. The
resulting value will be the sum of the C-axis coordinate of
P1 and the C-axis coordinate of P2.

CAUTION)
In the example above, the explanation is made in two dimensions for the sake of simplicity. In actuality, the
calculation is made in three dimensions. In addition, the tool coordinate system changes depending on the
posture.

X

Y

X1

Y1

P1

5mm

10mm
P100

Multip lication between P variab les
(relative calculation in the tool coord inate system)

Tool coord inate system at P1

Robot coord inate system

X

Y

P1

P100

10mm

5mm

Add ition of P variab les
(relative calculation in the robot coord inate system)

Robot coord inate system

4MELFA-BASIC V

 MELFA-BASIC V functions 4-121

4.1.7 Appended statement
A process can be added to a movement command.

*Appended statement

*Statement example

*Related functions

Appended statement Explanation

Wth Unconditionally adds a process to the movement command.

WthIf Conditionally adds a process to the movement command.

Statement example Explanation

Mov P1 Wth M_Out(20)=1.. Turns output signal bit 20 ON simultaneously with the start of movement to P1.

Mov P1 WITHIF M_In(20)=1, Hlt Stops if the input signal bit 20 turns ON during movement to P1.

Mov P1 WthIf M_In(19)=1, Skip Stops movement to P1 if the input signal bit 19 turns ON during movement to P1, and
then proceeds to the next step.

Function Explanation page

Joint interpolation movement ... Page 93, "(1) Joint interpolation movement"

Linear interpolation movement... Page 94, "(2) Linear interpolation movement"

Circular interpolation movement .. Page 95, "(3) Circular interpolation movement"

Stopping... Page 115, "(6) Stopping"

4-122 The difference between MELFA-BASIC V and MELFA-BASIC IV

4MELFA-BASIC V

4.2 The difference between MELFA-BASIC V and MELFA-BASIC IV
4.2.1 About MELFA-BASIC V

By the CRn-700 series robot controller, MELFA-BASIC V is mounted in the robot programming language. It
is easier to use MELFA-BASIC V than conventional MELFA-BASIC IV.
Explains the difference in the following

4.2.2 The feature of MELFA-BASIC V
MELFA-BASIC V has the following features as compared with MELFA-BASIC IV.
(1) The line number is unnecessary The conventional line number is automatically added as a step num-

ber. Thereby, operation of giving the line number is unnecessary and the efficiency of programming
improves. And the loss in debugging by the mistake of the line number will be reduced.

(2) Usage of the small letter is enabled at the command, the variable name, etc. Thereby, the readability
improves sharply.

(3) The command and the function were added and the function was improved.

4.2.3 Comparison with MELFA-BASIC IV
Comparison of MELFA-BASIC V and IV is shown in Table 4-2.

Table 4-2:Comparison with MELFA-BASIC IV

Item MELFA-BASIC V MELFA-BASIC IV

Program name The English capital letter and numeral of the less than 12 characters
(Recommend the less than four characters because of the O/P display)

The character which can be
used

*Alphabetic character (the capital
letter, the small letter)
* Numeral
* Mark

* Alphabetic character (it is only the
capital letter.) (Usage only to the
comment and character string data is
possible for the small letter)
* Numeral
* Mark

Step number (line number) Add automatically by program regis-
tration as a step number.

It is necessary to input as a line num-
ber at programming.

The length of the one line Less than 240 characters Less than 127 characters

Variable name The less than 16 characters. The
English capital letter and the English
small letter can be used for the vari-
able name.
Although the capital letter and the
small letter are handled as the same
variable, converts into the notation
registered first in read-out.

The less than eight characters. All
the alphabetic characters used for
the variable name are converted into
the capital letter.

Label name The less than 16 characters. The
English capital letter and the English
small letter can be used for the label
name.
Although the capital letter and the
small letter are handled as the same
label name, converts into the notation
registered first in read-out

The less than eight characters. All
the alphabetic characters used for
the label name are converted into the
capital letter.

Command word The definition is given combining the
English capital letter and the English
small letter. Although it can register
without difference of the capital letter
and the small letter, converts into the
notation which defines by the system
in read-out.

The capital letter defines all.
Registration is also registered with
the capital letter.Function

System status variable

The jump destination specified
method of the branch instruc-
tion (GoTo, GoSub)

Specify with the label. Specify by the label or the line num-
ber.

4MELFA-BASIC V

Multitask function 4-123

4.3 Multitask function
4.3.1 What is multitasking?

The multitask function is explained in this section.
Multitasking is a function that runs several programs as parallel, to shorten the tact time and enable control
of peripheral devices with the robot program.
Multitasking is executed by placing the programs, to be run in parallel, in the items called "slots" (There is a
total of 32 task slots. The maximum factory default setting is 8.) .

The execution of multitask operation is started by activating it from the operation panel or by a dedicated
input signal, or by executing an instruction related to multitask operation.

The execution environment for multitasking is shown in Fig. 4-3.

Fig.4-3:Multitask slot environment

User base program

Multitask slot environment

External variables, user-defined external variables

Slot 1

XRUN
XLOAD
XRST
XSTP

：：：：：
P

ro
gr

am

Slot 2 Slot n

P
ro

gr
am

P
ro

gr
am

XCLR

Execution of a program
A program is executed by placing it in an item called a "slot" and running it. For example, when running
one program (when normally selecting and running the program with the controller's operation panel), the
controller system unconditionally places the program selected with the operation panel in slot 1.

4-124 Multitask function

4MELFA-BASIC V

4.3.2 Executing a multitask
Table 4-3:The multitask can be executed with the following three methods.

4.3.3 Operation state of each slot
The operation state of each slot changes as shown in Fig. 4-4 according to the operations and commands.
Each state can be confirmed with the robot status variable or external output signal.

Fig.4-4:Operation state of each slot

Types of execution Explanation

1 Execution from a program This method starts parallel operation of the programs from a random
position in the program using a MELFA-BASIC IV command. The pro-
grams to be run in parallel can be designated, and a program running in
parallel can be stopped.
This method is effective when selecting the programs to be run in paral-
lel according to the program flow.
The related commands include the XLoad, XRun, XStp and XRst com-
mands. Refer to Page 166, "4.14 Detailed explanation of command
words" in this manual for details.

2 Execution from controller
operation panel or external
input/output signal

In this execution type, depending on the setting of the information of the
"SLT*" parameter, the start operation starts concurrent execution or con-
stant concurrent execution, or starts concurrent execution at error occur-
rence. It is necessary to set the "SLT*" parameter in advance.
This method does not rely on the program flow, and is effective for carry-
ing out simultaneous execution with a preset format, or for sequential
execution.

3 Executing automatically
when the power is turned
on

It is possible to start constant execution immediately after turning the
controller's power on. If ALWAYS is specified for the start condition of
the SLT* parameter, the program is executed in constant execution
mode immediately after the controller's power is turned on.
This eliminates the trouble of starting the programs in task slots used for
monitoring input/output signals from the PLC side.
In addition, it is possible to execute a program from within another pro-
gram that controls movement continuously. In this case, set the value of
the "ALWENA" parameter to 1 in order to execute X** instructions such
as XRun and XLoad, the Servo instruction, and the Reset instruction.

Program
selection state

(PSA)

Waiting
(WAI)

Start

XRUN

Program reset

XRST

XRUN

Cycle stop

Stop

XSTP

Running
(RUN)

Start

XRst
XRun

XStp

XRun

4MELFA-BASIC V

Multitask function 4-125

<About parameters related to task slots>
The parameters SLT1 to SLT32 contain information about the name of the program to be executed, opera-
tion mode, start condition, and priority for each of the 32 task slots (set to 8 slots at the factory default set-
ting).
Please refer to Page 381, "5 Functions set with parameters" for details.

*Designation format
Parameter name = 1. program name, 2. operation format, 3. starting conditions, 4. order of priority

*Various setting values and meanings

*Setting example
An example of the parameter settings for designating the following items in slot 2 is shown below.
Designation details) Program name : 5

Operation format : Continuous operation
Starting conditions : Always
Order of priority : 10
SLT2=5, REP, ALWAYS, 10

Item of parameter Default value Setting value Explanation

1. Program name SLT1: Program
selected on the
operation panel.
SLT2 to 32: Name
of the program to
be specified with a
parameter.

Possible to set a registered
program

Use the parameter to specify the execution of predeter-
mined programs in multitask operation. If the programs to
be executed vary depending on conditions, it is possible to
specify the program using the XLoad and XRun instructions
in another program. The programs selected on the opera-
tion panel are set if SLT1 is specified.

2. Operation format REP REP : Continuous operation If REP is specified, the program is executed again from the
top after the program ends when the final line of the pro-
gram is reached, or by execution of the End instruction.

CYC : One cycle operation If CYC is specified, the program ends after being executed
for one cycle and the selected status is canceled. Change
the SLOTON setting of the parameter if it is desired to keep
the program in the selected status. Please refer to the sec-
tion for SLOTON in Page 381, "5 Functions set with param-
eters" for details.

 3. Starting conditions START START : Execution of a pro-
gram using the START but-
ton on the operation panel
or the I/O START signal

Select START when it is desired to start normally. Note1)

Note1) The start operation conducted from the operation panel or by sending the dedicated input signal
START will start the execution of programs of all the task slots whose start conditions are set to
"START" at the same time.
To start the program independently, start in slot units with the dedicated input signal (S1 START to
S32START). In this case, the line No. is preassigned to the same dedicated input/output parameter.
Refer to Page 474, "6.3 Dedicated input/output" in this manual for details on the assignment of the
dedicated input/output.

ALWAYS : Execution of a
program when the control-
ler's power is turned on

Use ALWAYS when it is desired to execute the program in
constant execution mode. Note, however, that it is not pos-
sible to execute movement instructions such as Mov during
constant execution of a program. Programs in constant exe-
cution mode can be stopped via the XStp instruction. They
cannot be stopped via the operation panel and external
input signals, or emergency stop.

Error : Execution of a pro-
gram when the controller is
in error status

Specify Error when it is desired to execute a program in
case an error occurs. It is not possible to execute instruc-
tions for moving the robot, such as the Mov instruction. The
operation mode (REP/CYC) is one-cycle operation (CYC)
regardless of the setting value.

4. Order of priority
(number of lines exe-
cuted in priority)

1 1 to 31: Number of lines
executed at one time at mul-
titask operation

If this number is increased, the number of lines executed at
one time for the task slot is increased. For example, if 10 is
specified for SLT1, 5 for SLT2, and 1 for SLT3, then after 10
lines of the program specified in SLT1 have been executed,
five lines of the program specified in SLT2 are executed,
and then one line of the program specified in SLT3 is exe-
cuted. Afterward this cycle will be repeated.

4-126 Multitask function

4MELFA-BASIC V

4.3.4 Precautions for creating multitask program
(1) Relationship between number of tasks and processing time

During multitask operation, it appears as if several robot programs are being processed concurrently. How-
ever, in reality, only one line is executed at any one time, and the processing switches from program to pro-
gram (it is possible to change the number of lines being executed at a time. See the section for the "SLTn"
parameter in "Setting Functions by Parameters" on page 247). This means that if the number of tasks
increases, the overall program execution time becomes longer. Therefore, when using multitask operation,
the number of tasks should be kept to a minimum. However, programs of other tasks executing movement
instructions (the Mov and Mvs instructions) are processed at any time.

(2) Specification of the maximum number of programs executed concurrently
The number of programs to be run in parallel is set with parameter TASKMAX. (The default value is 8.) To
run more than 8 programs in parallel, change this parameter.

(3) How to pass data between programs via external variables
Data is passed between programs being executed in multitask operation via program external variables
such as M_00 and P_00 (refer to Page 143, "4.4.22 External variables") and the user-defined external vari-
ables (refer to Page 144, "4.4.24 User-defined external variables"). An example is shown below. In this
example, the on/off status of input signal 8 is judged by the program specified in task slot 2. Then this pro-
gram notifies the program specified in task slot 1 that the signal is turned on by means of the external vari-

able M_00.

(4) Confirmation of operating status of programs via robot status variables
The status of the program running with multitask can be referred to from any slot using the robot status vari-
ables (M_Run, M_Wai, M_Err).
 Example) M1 = M_Run (2) The operation status of slot 2 is obtained.
Refer to Page 154, "4.6 Robot status variables" for details on the robot status variables.

(5) The program that operates the robot is basically executed in slot 1.
The program that describes the robot arm's movement, such as with the Mov commands, is basically set
and executed in slot 1. To run the program in a slot other than slot 1, the robot arm acquisition and release
command (GetM, RelM) must be used. Refer to Page 166, "4.14 Detailed explanation of command words"
in this manual for details on the commands.

(6) How to perform the initialization processing via constantly executed programs
Programs specified in task slots whose start condition is set to ALWAYS are executed continuously (repeat-
edly) if the operation mode is set to REP. Therefore, in order to perform the initialization processing via such
programs, they should be programmed in such a way that the initialization processing is not executed more
than once, for example by setting an initialization complete flag and perform a conditional branch based on

<Slot 1>
1 M_00=0 ; Substitute 0 in M_00
2 *L
3 If M_00=0 Then *L ; Wait for M_00 value to change from 0.
4 M_00=0 ; Substitute 0 in M_00
5 Mov P1 ; Proceed with the target work.
6 Mov P2
 :
10 GoTo *L ; Repeat from step 2.

<Slot 2> (Program of signals and variables)
1 If M_In(8) <> 1 Then *A1 ; Branch to line 30 if input signal 8 is not ON.
2 M_00=1 ; Substitute 1 in M_00
3 *A1
4 Mov P1 ; Proceed with the target work.

 :

4MELFA-BASIC V

Multitask function 4-127

the flag's status. (This consideration is not necessary for task programs whose operation mode is set to
CYC (1 cycle operation) because they are executed only once.)

4.3.5 Precautions for using a multitask program
(1) Starting the multitask

When starting from the operation panel or with the dedicated input signal START, the programs in all slots
for which the "start request execution" is set in the slot parameter start conditions will start simultaneously.
When starting with the dedicated input signals S1START to S32START, the program can be started in each
slot. In this case, the line No. is preassigned to the same dedicated input/output parameter. Refer to Page
474, "6.3 Dedicated input/output" for details on the assignment of the dedicated input/output.

(2) Display of operation status
The LEDs of the [START] and [STOP] switches on the operation panel and the dedicated input/output sig-
nals START and STOP display the operation conditions of programs specified in task slots for which the
start conditions are set to "START" in the corresponding "SLT*" parameter. If at least one program is operat-
ing, the LED of the [START] switch lights up and the dedicated output signal START turns on. If all the pro-
grams stop, the LED of the [STOP] switch is lit and the dedicated output signal STOP turns on.
The dedicated output signals S1START to S32START and S1STOP to S32STOP output the operation sta-
tus for each of the task slots. If it is necessary to know the individual operation status, signal numbers can
be assigned to the dedicated input/output parameters and their status checked with the status of the exter-
nal signals.
For a detailed description of assignment of dedicated input/output, please refer to Page 474, "6.3 Dedicated
input/output" of this manual.
The status of programs whose start condition is set to ALWAYS or Error does not affect the LEDs of the
[START] and [STOP] switches. The operation status of programs in constant execution mode can be
checked using the monitoring tool of the PC support software (optional).

Mechanism 1 is assigned to slot 1
In the default state, mechanism 1 (robot arm of standard system) is automatically assigned to slot 1.
Because of this, slot 1 can execute the movement command even without acquiring mechanism 1 (with-
out executing GetM command). However, when executing the movement command in a slot other than
slot 1, the slot 1 mechanism acquisition state must be released (RelM command executed), and the
mechanism must be acquired with the slot that is to execute the movement command (execute the GetM
command).

4-128 Multitask function

4MELFA-BASIC V

4.3.6 Example of using multitask
An example of the multitask execution is given in this section.

(1) Robot work details.
The robot programs are the "movement program" and "position data lead-in program".
The "movement program" is executed with slot 1, and the "position data lead-in program" is executed with
slot 2. If a start command is output to the sensor while the robot is moving, a request for data will be made
to the personal computer via the position data lead-in program. The personal computer sends the position
data to the robot based on the data request. The robot side leads in the compensation data via the position
data lead-in program.

<Process flow>

P1: Workpiece pickup position (Vacuum timer Dly 0.05)
P2: Workpiece placing position (Release timer Dly 0.05)
P3: Vision pre-position (Do not stop at penetration point Cnt)
P4: Vision shutter position (Do not stop at penetration point Cnt)
P_01: Vision compensation data
P20: Position obtained by adding P2 to vision compensation data (relative operation)

Workpiece pickup

Sensor start

Sensor recognition

Workpiece mounting

Operation program Position data lead
-in program

Data confirmation

Start

Sensor start

Personal computer

Position data
setting

Data reception

Background execution

P1

P4

P2

P20

RS-
232C

StartStart

Data reception

Data reception

Position data
transmission

Above mounting
position

<Slot1> <Slot2> <Sensor>

P1

X

Y

0

P2

P3 :No acceleration/deceleration

P4 : No acceleration/deceleration
Position to move vision

4MELFA-BASIC V

Multitask function 4-129

(2) Procedures to multitask execution

*Procedure 1: Program creation
<1> Movement program (Program name: 1)
1 Cnt 1 'Validate path connected movement
2 Mov P2,10 'Move to +10mm above P2
3 Mov P1,10 'Move to +10mm above P1
4 Mov P1 'Move to P1 workpiece pickup position
5 M_Out(10)=0 'Pickup workpiece
6 Dly 0.05 'Timer 0.05 second
7 Mov P1,10 'Move to +10mm above P1
8 Mov P3 'Move to vision pre-position P3
9 Spd 500 'Set linear speed to 500mm/sec.
10 Mvs P4 'Start vision lead-in with P4 passage
11 M_02#=0 'Start data lead-in with background process at interlock variable

 (M_01=1/M_02=0)
18 M_01#=1 'Start data load-in with background process
19 Mvs P2,10 'Move to +10mm above P2
20 *L
21 If M_02#=0 Then GoTo *L 'Wait for interlock variable M_02 to reach 1
22 P20=P2*P_01 'Add vision compensation P_01 to P20, and move to +10mm above
23 Mov P20,10 'Move to +10mm above P20
24 Mov P20 'Go to P20 workpiece placing position
24 M_Out(10)=1 'Place workpiece
25 Dly 0.05 'Timer 0.05 second
26 Mov P20,10 'Move to +10mm above P20
27 Cnt 0 'Invalidate path connected movement
28 End 'End one cycle

<2> Position data lead-in program (Program name: 2)
1 *R
2 If M_01#=0 Then GoTo *R 'Wait for interlock variable M_01 to reach 1
3 Open "COM1:" AS #1 'Open RS-232-C line
4 Dly M_03# 'Hypothetical process timer (0.05 second)
5 Print #1,"SENS" 'Transmit character string "SENS" to RS-232-C (vision side)
6 Input #1,M1,M2,M3 'Wait to lead-in vision compensation value (relative data)
7 P_01.X=M1 'Substitute delta X coordinate
8 P_01.Y=M2 'Substitute delta Y coordinate
9 P_01.Z=0.0 '
10 P_01.A=0.0 '
11 P_01.B=0.0 '
12 P_01.C=Rad(M3) 'Substitute delta C coordinate
13 Close 'Close RS-232-C line
14 M_01#=0 'Interlock variable M_01 = 0
15 M_02#=1 'Interlock variable M_02 = 0
16 End 'End process

*Procedure 2: Setting the slot parameters
Set the slot parameters as shown below.

*Procedure 3: Reflecting the slot parameters
 Turn the power OFF and ON to validate the slot parameters.

Parameters Program name Operation mode Operation format Number of executed lines

SLT1 1 REP START 1

SLT2 2 REP START 1

4-130 Multitask function

4MELFA-BASIC V

*Procedure 4: Starting
 Start the program 1 and program 2 operation by starting from the operation panel.

4.3.7 Program capacity
There are 3 types of areas that handle robot programs; save, edit and execution. Refer to "Table 4-
4Capacity of each program area" for the capacity of each area.

(1) Program save area
This area is used to save programs. Under normal circumstances, it is possible to save 920 Kbytes of pro-
gram code in total. The capacity of the program save area can be increased to 2 Mbytes, if it is insufficient,
by mounting expansion memory.

(2) Program edit area
This area is used when editing programs and checking the operation in step execution. The program edit
area has a capacity of 380 Kbytes, which is the maximum size of one program. The capacity of the program
edit area cannot be increased by mounting expansion memory.

(3) Program execution area
The program execution area is used when operating a program automatically. The capacity of the program
execution area is 400 Kbytes. The total capacity of programs loaded into the execution area at the same
time via user base programs, for multitasking purposes, or by XRun and CallP instructions, must be 400
Kbytes or less. The capacity of the program execution area cannot be increased by mounting expansion
memory.

Table 4-4:Capacity of each program area

The capacity of each program can be checked with the teaching pendant and the Program Manager window
of the Personal Computer Support Software (RT ToolBoc2).

Name
Capacity

Standard memory With expansion memory

(1) Program save area 920 Kbytes 2 Mbytes

(2) Program edit area 380 Kbytes

(3) Program execution area 400 Kbytes

4MELFA-BASIC V

Multitask function 4-131

Total: 220 KB

179KB

Program edit area Program save area
(file system)

Program execution area

Total: 184KB

* Capacity in the case of standard memory

380 KB

400 KB

920 KB

4-132 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4 Detailed specifications of MELFA-BASIC V

In this section, detailed explanations of the MELFA-BASIC Ⅴ format and syntax such as configuration are
given, as well as details on the functions of each command word. The following explains the components
that constitute a statement.

(1) Program name
A program name can be specified using up to 12 characters. However, the operation panel display can dis-
play only up to four characters; it is therefore recommended to specify the program name using up to four
characters. Moreover, the characters that may be used are as follows.

If a program name is specified using more than four characters, the program cannot be selected from the
operation panel. In addition, if it is desired to use an external output signal to select a program to be exe-
cuted, the program name should be specified using the numbers. If a program is executed as a sub-pro-
gram via the CallP instruction, more than four alphabetic characters may be used. However, such programs
may not be selected from the operation panel.

(2) Command statement
Example of constructing a statement
 1 Mov P1 Wth M_Out(17)=1
 1) 2) 3) 4)

1) STEP No. : Numbers for determining the order of execution within the program. steps are exe-
cuted in ascending order.

2) Command word : Instructions for specifying the robot's movement and tasks
3) Data : Variables and numerical data necessary for each instruction
4) Appended statement: Specify these as necessary when adding robot tasks.

Class Usable characters

Alphabetic charac-
ters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
(Use uppercase characters only. If a program name is registered using lowercase characters, the program
may not be executed normally.)

Numerals 0 1 2 3 4 5 6 7 8 9

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-133

(3) Variable
The following types of variables can be used in a program.

Variable

System variable

System control variable

User control variable

User variable

Position type
variable

････Required data can be saved.

････This is predetermined by the variable name and saved data.

････This is determined by the variable name and usage purpose.

････The robot's orthogonal coordinate value is saved. The variable name starts with "P".

　　Example) MOV P1: The robot moves to the position saved in variable name P1.

････The robot's joint angle is saved. The variable name starts with "J".

　　Example) MOV J1: The robot moves to the position saved in variable name J1.

････A numeric value (integer, real value, etc.) is saved. The variable name starts with "M".

　　Example) M1 = 1: The value 1 is substituted in variable name M1.

････A character string is saved. A "$" is added to the end of the variable name.

　　Example) C1$ = "ERROR": the character string "ERROR" is substituted in variable name C1$.

Note 1) Each variable is categorized into the following classes.

････This can only be referred to with the program.

　　Example) P_CURR: The robot's current position is
 always saved.

････This can be referred to and substituted in the program.

　　Note that the input signals can only be referred to.

Example) M_OUT(17) = 1: Turns ON output signal bit 17.
 M1=M_IN(20): Substitutes input signal bit 20 in the
 arithmetic variable M1.

Note 1)

Note 1)

Note 1)

Joint type variable

Numeric value type
variable

Character type
variable

4-134 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.1 Statement
A statement is the minimum unit that configures a program, and is configured of a command word and data
issued to the word.
Example) Mov P1
 Command word Data
 Command statement

4.4.2 Appended statement
Command words can be connected with an appended statement, but this is limited to movement com-
mands.
This allows some commands to be executed in parallel with a movement command.
Example) Mov P1 Wth M_Out (17) = 1
 Command statement Appended statement Command statement
Please refer to Page 276, " Wth (With)" or Page 277, " WthIf (With If)", as well as each of the movement
instructions (Mov, Mvs, Mvr, Mvr2, Mvr3, Mvc, Mva) for detailed descriptions.

4.4.3 Step
A step is consisted of a step No. and one command statement. Note that if an appended statement is used,
there will be two command statements.
One step can have up to 127 characters. (This does not include the last character of the step.)

4.4.4 Step No.
Step Nos. should be in ascending order, starting from the first step, in order for the program to run properly.
When a program is stored in the memory, it is stored in the order of the step Nos.
Step Nos. can be any integer from 1 to 32767.

4.4.5 Label
A label is a user-defined name used as a marker for branching.
A label can be created by inserting an asterisk (*) followed by uppercase or lowercase alphanumeric char-
acters after the step No. The head of the label must be an alphabetic character, and the entire label must be
within sixteen characters long. If a label starting with the alphabetic character L is described after the aster-
isk, an underscore (_) can be used immediately after the character.
* Characters that cannot be used in labels:
•Reserved words (Dly, HOpen, etc.)
•Any name that begins with a symbol or numeral
•Any name that is already used for a variable name or function name
•"_" (underscore) cannot be used as 2nd character of the label name.
Example) 1 GoTo *LBL

 ：
 10 *LBL

Only one command statement per step
Multiple command statements cannot be separated with a semicolon and described on one step as done
with the general BASIC.

Direct execution if step No. is not assigned
If an instruction statement is described without a step number on the instruction screen of the T/B, the
statement is executed as soon as it is input. This is called direct execution. In this case, the command
statement will not be saved in the memory, but the value substitution to the variable will be saved.

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-135

4.4.6 Types of characters that can be used in program
The character which can be used within the program is shown in Table 4-5. However, there are restrictions
on the characters that can be used in the program name, variable name and label name. The characters
that can be used are indicated by O, those that cannot be used are indicated by X, and those that can be
used with restrictions are indicated by @.

Table 4-5:List of characters that can be used

Refer to Page 132, "(1) Program name" for detail of program names, refer to Page 140, "4.4.15 Variables"
for detail of variable names, and refer to Page 134, "4.4.5 Label" for detail of label names.

Class Available characters Program name Variable name Label name

Alphabetic
characters

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z O O O

a b c d e f g h i j k l m n o p q r s t u v w x y z X O O

Numerals 0 1 2 3 4 5 6 7 8 9 O @Note1)

Note1) Only alphabetical characters can be used as the first character of the variable name. Numerals can
be used as the second and succeeding characters.

@Note2)

Note2) The head of the label name in the program can use only the English character. The numeral can be
used in 2nd character or later.

Symbols " ’ & () * + - . , / : ; = < > ? @ ` [\] ^ { } ~ | X X X

! # $ % X Available for
type
specification

X

_(Underscore) X @Note3)

Note3) They can be used as the second and succeeding characters. Any variable having an underscore
(_) as the second character becomes an external variable.

@Note4)

Note4) "_" (underscore) can be used in 3rd character or later of the label name.

Spaces Space character X X X

4-136 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.7 Characters having special meanings
(1) Uppercase and lowercase identification

Lowercase characters will be resigned as lowercase characters when they are used in comments or in char-
acter string data. In all other cases, they will be converted to uppercase letters when the program is read.

(2) Underscore (_)
The underscore is used for the second character of an identifier (variable name) to identify the variable as
an external variable between programs. Refer to Page 143, "4.4.22 External variables" for details.
Example) P_Curr, M_01, M_ABC

(3) Apostrophe (')
The apostrophe (') is used at the head of all comments steps. When assigned at the head of a character it
is a substitute for the Rem statement.
Example) 1 Mov P1 'GET ;GET will be set as the comment.

 2 'GET PARTS ;This is the same as 150 Rem GET PARTS.

(4) Asterisk (*)
The asterisk is placed in front of label names used as the branch destination.
Example) 2 *CHECK

(5) Comma (,)
The comma is used as a delimiter when there are several parameters or suffixes.
Example) P1=(200, 150,)

(6) Period (.)
The period is used for obtaining certain components out of multiple data such as decimal points, position
variables and joint variables.
Example) M1 = P2.X ; Substitute the position variable P2.X coordinate element in numeric variable M1.

(7) Space
The space character, when used as part of a character string constant or within a comments step, is inter-
preted as a character. The space character is required as a delimiter immediately after a step No. or a com-
mand word, and between data items. In the [Format] given in section Page 166, "4.14 Detailed explanation
of command words", the space is indicated with a "[] " where required.

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-137

4.4.8 Data type
In MELFA BASIC Ⅴ it is possible to use four data types: numerical values, positions, joints, and character
strings. Each of these is called a "data type." The numerical value data type is further classified into real
numbers and integers. There can be variables and constants of each data type.

Example)
Numeric value type M1 [Numeric value variables],1 [Numeric value constants] (Integer),

1.5 [Numeric value constants](Real number)
Position type P1 [Position variables], (0,0,0,0,0,0) (0,0) [Position constants]
Joint type J1 [Joint variables], (0,0,0,0,0,0) [Joint constants]
Character type C1$ [Character string variables], "ABC" [Character string constants]

4.4.9 Constants
The constant types include the numeric value constant, character string constant, position constant, joint
constant and angle constant.

4.4.10 Numeric value constants
The syntax for numeric value constants is as follows. Numerical constants have the following characteris-
tics.

(1) Decimal number
Example) 1, 1.7, -10.5, +1.2E+5 (Exponential notation)
Valid range -1.7976931348623157e+308 to 1.7976931348623157e+308

(2) Hexadecimal number
Example) &H0001, &HFFFF
Valid range &H0000 to &HFFFF

(3) Binary number
Example) &B0010, &B1111
Valid range &B0000000000000000 to &B1111111111111111

(4) Types of constant
The types of constants are specified by putting symbols after constant characters.
Example) 10% (Integer), 1.0005! (Single-precision real number), 10.000000003# (Double-precision real
number)

4.4.11 Character string constants
String constants are strings of characters enclosed by double quotation marks (").
Example) "ABCDEFGHIJKLMN" "123"

Data type
Position type

Joint type

Character type

Real number type

Integer typeNumeric value type

Constants

Numeric value constants

Character string constants

Position constants

Joint constants

Angle constants

Up to 127 characters for character string
The character string can have up to 127 characters, including the step No. and double quotations.
Enter two double quotation marks successively in order to include the double quotation mark itself in a
character string. For the character string AB"CD, input "AB""CD".

4-138 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.12 Position constants
The syntax for position constants is as shown below. Variables cannot be described within position con-
stants.

Example)
 P1=(300, 100, 400, 180, 0, 180, 0, 0) (7, 0)
 P2=(0, 0, -5, 0, 0, 0) (0, 0) [A case where there is no traveling axis data]
 P3=(100, 200, 300, 0, 0, 90) (4, 0) [A case of a 4-axis horizontal multi-joint robot]

(1) Coordinate, posture and additional axis data types and meanings
[Format] X, Y, Z, A, B, C , L1, L2
[Meaning] X, Y, Z: coordinate data. The position of the tip of the robot's hand in the XYZ coordinates.

 (The unit is mm.)
A, B, C: posture data. This is the angle of the posture. (The unit is deg.) Note1)

L1, L2: additional axis data. These are the coordinates for additional axis 1 and additional axis 2,
respectively. (The unit is mm or deg.)
Note1) The T/B and Personal computer support software display the unit in deg; however, the unit

of radian is used for substitution and calculation in the program.

(2) Meaning of structure flag data type and meanings
[Format] FL1, FL2
[Meaning] FL1: Posture data. It indicates the robot arm posture in the XYZ coordinates.

FL2: Multiple rotation data. It includes information of the rotational angle of each joint axis at the
position (XYZ) and posture (ABC) expressed as XYZ coordinates.
Default value = 0 (The range is 0 to +4294967295 ... Information for eight axes is held with a
1-axis 4-bit configuration.)Two types of screens are available for the PC: screens that dis-
play the number of rotations for each axis (-8 to 7) in decimal and those that display the
number of rotations for each axis in hexadecimal.

(100, 100, 300, 180, 0, 180, 0, 0) (7, 0)

C axis
B axis Posture axes of the robot (degree)
A axis
Z axis
Y axis Coordinate values of the hand tip (mm)
X axis

structure flag 2 (multi-rotation data)
structure flag 1 (posture data)
L2 axis (additional axis 2)
L1 axis (additional axis 1)

 1/0=NonFlip/Flip
 7 = & B 0 0 0 0 0 1 1 1 (Binary number)

 1/0=Above/Below
 1/0=Right/Left

 1 axis
 0 = & H 0 0 0 0 0 0 0 0 (Hexadecimal number)

 2 axis
 3 axis

 4 axis
 5 axis
 6 axis (Most frequently used)
 7 axis
 8 axis

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-139

The wrist tip axis value in the XYZ coordinates (J6 axis in a vertical multi-joint type robot) is the same after
one rotation (360 degrees). For this reason, FL2 is used to count the number of rotations.

4.4.13 Joint constants
The syntax for the joint constants is as shown below

Example)
6 axis robot J1 = (0, 10, 80, 10, 90, 0)
6 axis + Additional axis J1 = (0, 10, 80, 10, 90, 0, 10, 10)
5 axis robot J1 = (0, 10, 80, 0, 90, 0)
5 axis + Additional axis J1 = (0, 10, 80, 0, 90, 0, 10, 10)
4 axis robot J1 = (10, 20, 90, 0)
4 axis + Additional axis J1 = (10, 20, 90, 0, , , 10, 10)

(1) Axis data format and meanings
[Format] J1,J2,J3,J4,J5,J6,J7,J8
[Meaning] J1 to J6: Robot axis data (Unit is mm or deg.)

J7, J8: Additional axis data, and may be omitted (optional).
(Unit is mm or deg. Depending on the parameter setting.
The unit is mm, not degrees, if the J3 axis of a horizontal multi-joint type robot is a direct-driven
axis.

-900 -540 -180 0 180 540 900

...... -2
(E)

-1
(F) 0 1 2

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data

......

Designation of axis No.
1. There is no need to describe the coordinate and posture data for all eight axes. However, if omitted, the

following axis data will be processed as undefined.
For a 4-axis robot (X,Y,Z,C axis configuration), describe as (X, Y, Z, , , C) or (X,Y,Z,0,0,C).

2. To omit all axes,insert at least one ","(comma), such as (,).

Use of variables in position element data
The coordinate, position, additional axis data and structure flag data are called the position element data.
A variable cannot be contained in the position element data that configures the position constant.

Omitting the structure flag data
If the structure flag data is omitted, the default value will be applied.((7,0) Varies depending on the
machine model.)

 (10, -20, 90, 0, 90, 0, 0, 0)

J8 axis (additional axis 2)
J7 axis (additional axis 1)
J6 axis
J5 axis

J3 axis
J2 axis
J1 axis

J4 axis

4-140 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.14 Angle value
The angle value is used to express the angle in "degrees" and not in "radian".

If written as 100Deg, this value becomes an angle and can be used as an argument of trigonometric func-
tions.

Example) Sin(90Deg)----A 90 degree sine is indicated.

4.4.15 Variables
A variable name should be specified using up to eight characters.
The variable types include the numeric value type, character string type, position type, joint type and I/O
type. Each is called a "variable type". The variable type is determined by the head character of the identifier
(variable name).
The numeric value type can be further classified as integer type, single-precision real number type, or dou-
ble-precision real number type.
The following two types of data valid ranges are used.
1. Local variable valid only in one program
2. Robot status variable, program external variable and user-defined external variable valid over programs.

(The user-defined external variable has a _ for the second character of the variable name. Refer to Page
143, "4.4.22 External variables" for details.)

Use of variables in joint element data
The axis data is called the joint element data.
A variable cannot be contained in the joint constant data that configures the joint constant.

Note 1)

Numeric value type Integer type

Single-precision real number typeCharacter string type

Double-precision real number typePosition type

I/O type

Joint type

(Starts with M)

(Starts with C)

(Starts with P)

(Starts with J)

Variables

External variables

Types of variable

Local variable (valid only within the program)

System status variables

Program External Variables

User-defined External Variables

P_CURR, M_IN , etc.

P_00, M_00 , etc.

P1, M1 , etc.

P_100, M_100 , etc.

Note 1) The identifiers include those determined by the robot status variable
 (M_IN,M_OUT, etc.), and those declared in the program with the DEFIO command.

Variables are not initialized
The variables will not be cleared to zero when generated, when the program is loaded, or when reset.

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-141

4.4.16 Numeric value variables
Variables whose names begin with a character other than P, J, or C are considered numeric value variables.
In MELFA-BASIC Ⅴ , it is often specified that a variable is an numeric value variable by placing an M at the
head. M is the initial letter of mathematics.
Example) M1 = 100
 M2! = -1.73E+10
 M3# = 0.123
 ABC = 1

1) It is possible to define the type of variable by attaching an numeric value type indicator at the end of
the variable name. If it is omitted, the variable type is assumed to be of the single-precision real num-
ber type.

2) Once the type of a variable is registered, it can only be converted from integer to single-precision real
number. For example, it is not possible to convert the type of a variable from integer to double-preci-
sion real number, or from single-precision real number to double-precision real number.

3) It is not possible to add an numeric value type indicator to an already registered variable. Include the
type indicator at the end of the variable name at the declaration when creating a new program.

4) If the value is exceeded during a single precision = double precision execution, an error will occur.

Table 4-6:Range of numeric value variable data

4.4.17 Character string variables
A character string variable should start with C and end with "$." If it is defined by the Def Char instruction, it
is possible to specify a name beginning with a character other than C.

Example) C1$ = "ABC"
CS$ = C1$
Def Char MOJI
MOJI = "MOJIMOJI"

4.4.18 Position variables
Variables whose names begin with character P are considered position variables. If it is defined by the Def
Pos instruction, it is possible to specify a name beginning with a character other than P. It is possible to ref-
erence individual coordinate data of position variables. In this case, add "." and the name of a coordinate
axis, e.g. "X," after the variable name.

P1.X, P1.Y, P1.Z, P1.A, P1.B P1.C, P1.L1, P1.L2

The unit of the angular coordinate axes A, B, and C is radians. Use the Deg function to convert it to degrees.

Example) P1 = PORG
Dim P3(10)
M1 = P1. X (Unit : mm)
M2 = Deg(P1. A) (Unit : degree)
Deg POS L10
Mov L10

Numeric value type suffix Meaning

% Integer

! Single-precsion real number type

Double-precsion real number type

Type Range

Integer type -32768 to 32767

Single-precision real number type -3.40282347e+38 to 3.40282347e+38 Note)
E expresses a power of 10.Double-precision real number

type
 -1.7976931348623157e+308 to 1.7976931348623157e+308

4-142 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.19 Joint variables
A character string variable should start with J. If it is defined by the Def Jnt instruction, it is possible to spec-
ify a name beginning with a character other than J.
It is possible to reference individual coordinate data of joint variables.
In this case, add "." and the name of a coordinate axis, e.g. "J1," after the variable name.

JDATA.J1, JDATA.J2, JDATA.J3, JDATA.J4, JDATA.J5, JDATA.J6, JDATA.J7, JDATA.J8

The unit of the angular coordinate axes A, B, and C is radians. Use the DEG function to convert it to
degrees.
Example) JSTARAT = (0, 0, 90, 0, 90, 0, 0, 0)
 JDATA = JSTART
 Dim J3 (10)
 M1 = J1.J1 (Unit : radian)
 M2 = Deg (J1.J2)
 Def Jnt K10
 Mov K 10

4.4.20 Input/output variables
The following types of input/output variables are available. They are provided beforehand by the robot sta-
tus variables.

Please refer to the robot status variables Page 310, " M_In/M_Inb/M_In8/M_Inw/M_In16", Page 320, "
M_Out/M_Outb/M_Out8/M_Outw/M_Out16", and Page 303, " M_DIn/M_DOut".

4.4.21 Array variables
Numeric value variables, character string variables, position variables, and joint variables can all be used in
arrays. Designate the array elements at the subscript section of the variables. Array variables should be
declared with the Dim instruction. It is possible to use arrays of up to three dimensions.
Example) Example of definition of an array variable

Dim M1 (10) Single-precision real number type
Dim M2% (10) Integer type
Dim M3 ! (10) Single-precision real number type
Dim M4# (10) Double-precsion real number type
Dim P1 (20)
Dim J1 (5)
Dim ABC (10, 10, 10)

The subscript of an array starts from 1.
However, among the robot status variables, the subscript starts from 0 for individual input/output signal vari-
ables (M_In, M_Out, etc.) only.
 Whether it is possible to secure sufficient memory for the variable is determined by the free memory size.

Input/output variables name Explanation

M_In For referencing input signal bits

M_Inb For referencing input signal bytes (8-bit signals)

M_Inw For referencing input signal words (16-bit signals)

M_Out For referencing/assigning output signal bits

M_OutB For referencing/assigning output signal bytes (8-bit signals)

M_OutW For referencing/assigning output signal words (16-bit signals)

M_DIn For referencing input registers for CC-Link
Cannot use in CRnQ series.

M_DOut For referencing output registers for CC-Link
Cannot use in CRnQ series.

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-143

4.4.22 External variables
External variables have a "_" (underscore' for the second character of the identifier (variable name). (It is
necessary to register user-defined external variables in the user base program.) The value is valid over mul-
tiple programs. Thus, these can be used effectively to transfer data between programs.
There are four types of external variables, numeric value, position, joint and character, in the same manner
as the Page 137, "4.4.8 Data type". The following three types of external variables are available.

Table 4-7:Types of external variables

4.4.23 Program external variables
Table 4-8 lists the program external variables that have been prepared for the controller in advance.As
shown in the table, the variable name is determined, but the application can be determined by the user.

Table 4-8:Program external variables

Note) When you use the extension, change the following parameter.

External variables Explanation Example

Program external variables Types of external variables P_01,M_01,P_100(1), etc.

User-defined external variables The user can determine the name freely. Declare the vari-
ables using the Def Pos, Def Jnt, Def Char, or DEF INTE/
FLOAT/DOUBLE instructions in the user base program.

P_GENTEN,M_MACHI

Robot status variables
(System status variables)

The robot status variables are controlled by the system, and
their usage is determined in advance.

M_In,M_Out,P_Curr,M_PI, etc.

Data type Variable name Qty. Remarks

Position P_00 to P_19
P_20 to P_39 Note)

20
20

Position array (No. of elements 10) P_100() to P_104()
P_105() to P_109()
Note)

5
5

Use the array element in the first dimensions.

Joint J_00 to J_19
J_20 to J_39 Note)

20
20

Joint array (No. of elements 10) J_100() to J_104()
J_105() to J_109()
Note)

5
5

Use the array element in the first dimensions.

Numeric value M_00 to M_19
M_20 to M_39 Note)

20
20

The data type of the variables is double-precision real
numbers.

Numeric value array
(No. of elements 10)

M_100() to M_104()
M_105() to M_109()
Note)

5
5

Use the array element in the first dimensions. The data
type of the variables is double-precision real numbers.

Character string C_00 to C_19
C_20 to C_39 Note)

20
20

Character string array
(No. of elements 10)

C_100() to C_104()
C_105() to C_109()
Note)

5
5

Use the array element in the first dimensions.

Parameter Value Means

PRGGBL 0:Standard (default)
1:Extension

Sets "1" to this parameter, and turns on the controller power again, then the capacity
of each program external variable will double.
However, if a variable with the same name is being used as a user-defined external
variable, an error will occur when the power is turned ON, and it is not possible to
expand. It is necessary to correct the user definition external variable.

4-144 Detailed specifications of MELFA-BASIC V

4MELFA-BASIC V

4.4.24 User-defined external variables
If the number of program external variables listed above is insufficient or it is desired to define variables with
unique names, the user can define program external variables using a user base program.

(1) By defining a variable having an underscore (_) for the second character of the identifier with the DEF
statement in the user base program Note), that variable will be handled as an external variable.

(2) It is not necessary to execute the user base program.
(3) Write only the lines necessary for declaring variables in the user base program.
(4) If it is desired to define array variables in a user base program and use them as external variables, it

is necessary to declare them using the Dim instruction again in the program in which they will be
used. It is not necessary to declare local variables (variables valid only within programs) again.

Example) Example of using user-defined external variables
On the main program (program name 1) side

On the user base program (program name UBP) side

Procedure before using user-defined external variables

1) First, write a user base program. Use "_" for the second character of the variables.
2) Register the program name in the "PRGUSR" parameter and turn the power off and on again.
3) Write a normal program using the user-defined external variables.

10 Dim P_200(10) ' Re-declaration of external variables
20 Dim M_200(10) ' Re-declaration of external variables
30 Mov P_100(1)
40 If M_200(1) =1 Then Hlt
50 M1=1 ' Local variable

10 Def Pos P_900, P_901, P_902, P_903
20 Dim P_200(10) ' It is necessary to declare this variable again in the

program in which they will be used.
30 Def Inte M_100
40 Dim M_200(10) ' It is necessary to declare this variable again in the

program in which they will be used.

Parameter name Value

PRGUSR UBP

 4MELFA-BASIC V

 Detailed specifications of MELFA-BASIC V 4-145

4.4.25 Creating User Base Programs
Note)

User base programs can be created by using either the teaching box or Personal Computer Support Soft-
ware, in the same way as the normal programs. To create user base programs using the Personal Computer
Support Software, please follow the procedure below:

1) Store a program created as a user base program on your personal computer.
2) Start Program Manager from Program Editor of the Personal Computer Support Software.
3) Specify the program created in step 1) above as the transfer source and the robot as the transfer des-

tination in Program Manager, and perform a "copy" operation. At this point, uncheck the "Position
Variables" check box so that only the "Instructions" check box is checked.

4) When the copy operation is complete, perform the operation in step 3) above again. Uncheck the
"Instructions" check box and check the "Position Variables" check box this time, and then execute.

5) Write a user base program in the robot controller first when deleting a program and then register it
again in the program management window as well.

What is a user base program?
A user base program is used when user-defined external variables are used to define such variables, but
it is not necessary to actually execute the program. Simply create a program containing the necessary
declaration lines and register it in the "PRGUSR" parameter. After changing the parameter, turn the power
off and on again.

How to register a new user base program using the Personal Computer Support Software
Using the Personal Computer Support Software, write only instructions to the robot controller first, and
write only position data next.

4-146 Coordinate system description of the robot

4MELFA-BASIC V

4.5 Coordinate system description of the robot
4.5.1 About the robot's coordinate system

The robot's coordinate system has following four.

① World coordinate system.......................... The coordinate system as the standard for displaying the
current position of robot. note 1)

② Base coordinate system........................... A coordinate system established with reference to the
robot mounting face. It is set by specifying parameter
MEXBS with data on a center position for robot installation
(base conversion data) as viewed from the world coordi-
nate system or by executing a base command.
By default, because the base conversion data is set to
zero (0), the world coordinate system is in agreement with
the base coordinate system.

③ Mechanical interface coordinate system .. A coordinate system established with reference to the
robot's mechanical interface.

④ Tool coordinate system A coordinate system established with reference to the
robot's mechanical interface. Its relation to the interface
coordinate system is determined by the tool data (i.e., by
specified settings for parameter MEXTL or by the execu-
tion of a tool command.)

Fig.4-5:Robot's coordinate system

Zw

Z

Zb

Yw

Y

Yb

Xb

Xw

X

① World coordinate system

② Base coordinate system

③ Mechanical interface
coordinate system

Ym

Xm

Xt

Yt

Zt

base conversion
data

ToolMechanical interface surface

base conversion
data

Note 1) Robot's current position

Curr
en

t

po
sit

ion

④ Tool coordinate
system

Base coordi-
nate system

World coordi-
nate system

 4MELFA-BASIC V

 Coordinate system description of the robot 4-147

4.5.2 About base conversion
The base conversion permits the world coordinate system to be moved, when required, to the reference

position of the work table or the work.
Under the control of this function, the robot's current position is treated as the one relative to the work table
or the work. Therefore, where there are a plurality of work groups involved on which the robot shares an
identical motional/positional relation, the robot can perform the same operations (sequence of motions) just
with a change being made to the world coordinate system, i.e., without the need to be taught the operations
(sequence of motions) for each work group. Change to the world coordinate system stated here are called
base conversion, which is accomplished by specifying parameter MEXBS with base conversion data (coor-
dinate values) or by executing a Base command.

Base conversion data to be specified should be data on the position of the origin point of the base
coordinate system as viewed from a world coordinate system which is newly established. Thus, when you
specify the data by using the robot's current position (using a Fram function, etc.), do so by inversely
converting the position data [for example, Base Inv(P1)].
When you specify work coordinate system parameters WK1CRD - WK3CRD by executing a Base
command, however, you do not have to make the inverse conversion yourself as it is done in internal
processing.

図 4-6 ： Base conversion

Since the performance of the base conversion causes the reference for the
robot's current position to change, data taught till then becomes unusable as it is.
If the robot is inadvertently allowed to move to a position taught before the perfor-
mance of the base conversion, it can stray to an unexpected position, possibly
resulting in property damage or personal injury.
When using the base conversion function, be sure to maintain positive control
over relation between the base coordinate system subject to conversion and the
position which the robot is taught to take so that a proper robot operation and an
effective use of the base conversion function are insured.

Zb

Yb

Xb

Zw

Yw

Xw

New world
coordinates system

Base coordinate
system

base conversion data

 Inv(P1)

P1

C
urrent

position

* P1 is teaching position data.

 CAUTION

4-148 Coordinate system description of the robot

4MELFA-BASIC V

4.5.3 About position data

Positional data for the robot is comprised of six elements which indicate the position of the hand's leading
end (mechanical interface center where no tool setting is made) (X, Y, and Z) and the robot's posture (A, B,
and C), plus a structure flag.
Each element constitutes reference data for the robot's world coordinate system.

【Meaning】 X, Y, Z: Coordinate data. Position of the robot hand's leading end (in mm).
A, B, C:Posture data. Angle that defines the robot's posture (in degrees)

A 　 → 　 Angle of rotation on X axis

B 　 → 　 Angle of rotation on Y axis

C 　 → 　 Angle of rotation on Z axis

Fig.4-7:Reference for posture angles

A, B, and C represent the robot's posture in the coordinate system of its hand's leading end (or flange
center where no tool setting is made), each indicating a angle of rotation on the X axis, Y axis, and Z axis of
the world coordinate system. Rotation corresponding to the direction of a right-handed screw when you look
at the + side of each coordinate axis is "+" rotation. Also, rotation is set to take place in a predetermined
sequence, and the amount of rotation is calculated (controlled) first for a rotation on the Z axis, followed by
one on the Y axis and one on the Z axis in the order shown.

（Z軸）

Z軸

A

B

C

X軸

（X軸）

（Y軸）

Y軸

X

Z

Y

Note) This diagram is produced by
assuming a situation in which no
base data setting is made, i.e., the
robot's world coordinate system is
in agreement with its base
coordinate system.

(Z-axis)

(X-axis)

(Y-axis)

Z-axis

X-axis

Y-axis

 4MELFA-BASIC V

 Coordinate system description of the robot 4-149

4.5.4 About tool coordinate system (mechanical interface coordinate system)

To set the robot's control point at the leading end of the hand attached thereto, it is necessary to make tool
data settings. Tool data defines the position of the tool's leading end with reference to a mechanical
interface coordinate system that is established for the flange. Therefore, our explanation deals with the
mechanical interface coordinate system in the first place.

In helping you to understand the tool coordinate system, explanation here uses a vertical 6-axis robot by
way of example. For details about other models (vertical 5-axis robot, horizontal articulated arm robot, and
others), refer to Page 408, "5.6 Standard Tool Coordinates".

(1) Mechanical interface coordinate system
As shown in Fig. 4-8 , a coordinate system having its origin point chosen at the center of the flange is

called a mechanical interface coordinate system. X axis, Y axis and Z axis of the mechanical interface coor-
dinate system are denoted as Xm, Ym and Zm, respectively.

Zm is an axis which passes through the flange center and is perpendicular to the flange face. The
direction which goes outside from the flange face is + (plus). Xm and Ym are coplanar with the flange face.
A line joining the flange center with the positioning pin hole is represented by Xm axis. "+" direction of the
Xm axis is opposite to the pin hole as seen from the center.

Fig.4-8:Mechanical interface coordinate system

When the flange rotates, the mechanical interface coordinate system rotates, as well. (Fig. 4-9)

Fig.4-9:Rotation of flange and mechanical interface coordinate system

フランジ

フランジ中心

Ym

Zm

Xm

Flange

Flange center

Zm

Xm

Xm
Ym

Ym

Zm

4-150 Coordinate system description of the robot

4MELFA-BASIC V

(2) Tool coordinate system
A tool coordinate system is one that is defined for the leading end of the robot hand (control point for the

robot hand).
It is obtained by shifting the origin point of a mechanical interface coordinate system to the leading end of
the robot hand (control point hand) and adding given rotational elements.
X axis, Y axis and Z axis of the tool coordinate system are denoted as Xt, Yt and Zt, respectively.

Fig.4-10:Mechanical interface coordinate system and tool coordinate system

Tool data consists of the same elements as position data.
X, Y, Z: Amount of shift. Amount by which the origin point of the mechanical interface

coordinate system is shifted to agree with that of the tool coordinate system (in mm).
A, B, C: Angle of rotation of each coordinate axis (in degrees)

A 　 → 　 Angle of rotation on X axis

B 　 → 　 Angle of rotation on Y axis

C 　 → 　 Angle of rotation on Z axis

ツール座標系

メカニカルインタフェース
座標系

Ym

Xm

Zm
Zt

Yt

Xt

Mechanical interface
coordinate system

Tool coordinate
system

 4MELFA-BASIC V

 Coordinate system description of the robot 4-151

(3) Effects of use of tool coordinate system

1) Jogging and teaching operations
When placing the robot into tool-jog mode, you can let it operate in the direction of the face of the robot
hand. This makes it easier to adjust the posture of the robot hand toward the work concerned or the
posture of the work being held by the robot hand.

Fig.4-11:Tool jogging operation with/without tool data

Ym

Ym

Zm

Zm

Xm

Ym

Xm

Zm

Zm

Yt

Yt

Zt

Zt

Xt

Yt

Yt

Zt

Zt

Xt

Ym

In the case of tool data setting being not made In the case of tool data setting being made

Travel in the direction of X axis Travel in the direction of X axis

Travel in the direction of A axis Travel in the direction of A axis

The robot hand rotates on the
Xm axis of the mechanical
interface coordinate system,
thus having a wide range of
motion at its leading end.

The robot hand rotates on the
Xt axis of the tool coordinate
system. Rotational motion on
the leading end of the robot
hand permits a change of pos-
ture without the need to dis-
place the work from its original
position.

Motion along the Xm axis of
the mechanical interface coor-
dinate system

Motion along the Xt axis of
the tool coordinate system.
Motion parallel/perpendicu-
lar to the face of the robot
hand assures a register
with the orientation of the
work.

4-152 Coordinate system description of the robot

4MELFA-BASIC V

2) Automatic operation
Travel command permits you to set robot motion during the removal or transfer of processed work by
specifying approach/pullout distance settings. Approach or pullout takes place in the direction of the Z
axis of the robot's tool coordinate system.
To move the robot hand to a point 50mm over the work transfer position as shown in Fig. 4-12, the fol-
lowing indication is used :

Mov P1,50
This means that the robot hand should move +50mm in the direction of the Z axis at P1 (tool
coordinate system).
Setting the direction of the Z axis of the tool coordinate system to suit the orientation of work being pro-
cess and/or the operating condition of the robot leads to an improved workability.
In the example shown in Fig. 4-12, because the robot hand is oriented laterally to insert or remove the
work, the direction of the Z axis of the tool coordinate system is chosen to agree with the orientation of
the work.

Fig.4-12:Approach/pullout motion

Making tool data settings will come in useful when you have to make changes to the posture of your work
as in work phasing, as well.

To achieve work phasing by turning the work on its center axis as shown in Fig. 4-13, the following indica-
tion is used:

Mov P1*(0,0,0,0,0,45)
"*(0, 0, 0, 0, 0, 45)" means that a position calculation should be carried out at "*" and that C out of (X, Y, Z,
A, B, C) should be rotated 45 degree. As C represents a rotation on the Z axis, the robot comes to rotate 45
degree on the Z axis (Zt axis of tool coordinate system) at P1.

Zt

Yt

Xt 50mm

Work

Work transfer
position
(position: P1)

 4MELFA-BASIC V

 Coordinate system description of the robot 4-153

Fig.4-13:Rotational motion in tool coordinate system

Zt

Yt

Xt

(a) Position of P1 (b) Position of Mov P1* (0, 0, 0, 0, 0, 45)

+45°

4-154 Robot status variables

4MELFA-BASIC V

4.6 Robot status variables
The available robot status variables are shown in Table 4-9. As shown in the table, the variable name and
application are predetermined.
The robot status can be checked and changed by using these variables.

Table 4-9:Robot status variables

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

1 P_Curr Mechanism No.(1 to 3) Current position (XYZ) R Position type 340

2 J_Curr Mechanism No.(1 to 3) Current position (joint) R Joint type 290

3 J_ECurr Mechanism No.(1 to 3) Current encoder pulse position R Joint type 294

4 J_Fbc Mechanism No.(1 to 3) Joint position generated based on the feedback
value from the servo

R Joint type 295

5 J_AmpFbc Mechanism No.(1 to 3) Current feedback value R Joint type 295

6 P_Fbc Mechanism No.(1 to 3) XYZ position generated based on the feedback
value from the servo

R Position type 341

7 M_Fbd Mechanism No.(1 to 3) Distance between commanded position and
feedback position

R Position type 308

8 M_CmpDst Mechanism No.(1 to 3) Amount of difference between a command value
and the actual position when the compliance
function is being performed

R Single-precision
real number type,

mm

299

9 M_CmpLmt Mechanism No.(1 to 3) This is used to recover from the error status by
using interrupt processing when an error has
occurred while the command value in the
compliance mode attempted to exceed the limit.

R Integer type 300

10 P_Tool Mechanism No.(1 to 3) Currently designated tool conversion data R Position type 342

11 P_Base Mechanism No.(1 to 3) Currently designated base conversion data R Position type 338

12 P_NTool Mechanism No.(1 to 3) System default value (tool conversion data) R Position type 342

13 P_NBase Mechanism No.(1 to 3) System default value (base conversion data) R Position type 338

14 M_Tool Mechanism No.(1 to 3) Tool No. (1 to 16) RW Integer type 331

15 J_ColMxl Mechanism No.(1 to 3) Difference between estimated torque and actual
torque

R Joint type, % 291

16 M_ColSts Mechanism No.(1 to 3) Impact detection status (1: Colliding, 0: Others) R Integer type 301

17 P_ColDir Mechanism No.(1 to 3) Movement direction at collision R Position type 339

18 M_OPovrd None Speed override on the operation panel (0 to 100%) R Integer type, % 314

19 M_Ovrd Slot No.(1to 32) Override in currently designated program (0 to
100%)

R Integer type, % 314

20 M_JOvrd Slot No.(1to 32) Currently designated joint override (0 to 100%) R Integer type, % 314

21 M_NOvrd Slot No.(1to 32) System default value (default value of M_Ovrd)
(%)

R Single-precision
real number type, %

314

22 M_NJovrd Slot No.(1to 32) System default value (default value of M_JOvrd)
(%)

R Single-precision
real number type, %

314

23 M_Wupov Mechanism No.(1 to 3) Warm-up operation override (50 to 100%) R Single-precision
real number type, %

335

24 M_Wuprt Mechanism No.(1 to 3) Time until the warm-up operation status is
canceled (sec.)

R Single-precision
real number type,

sec

336

25 M_Wupst Mechanism No.(1 to 3) Time until the warm-up operation status is set
again (sec.)

R Single-precision
real number type,

sec

337

26 M_Ratio Slot No.(1to 32) Fraction of the current movement left before
reaching the target position (%)

R Integer type, % 325

27 M_RDst Slot No.(1to 32) Remaining distance left of the current movement
(only the three dimensions of X, Y, and Z are taken
into consideration: mm)

R Single-precision
real number type,

mm

326

 4MELFA-BASIC V

 Robot status variables 4-155

28 M_Spd Slot No.(1to 32) Current specified speed (valid only for linear/
circular interpolation)

R Single-precision
real number type,

mm/s

329

29 M_NSpd Slot No.(1to 32) System default value (default value of M_Spd)
(mm/s)

R Single-precision
real number type,

mm/s

329

30 M_RSpd Slot No.(1to 32) Current directive speed (mm/s) R Single-precision
real number
type,mm/s

329

31 M_Acl Slot No.(1to 32) Current specified acceleration rate (%) R Single-precision
real number type, %

296

32 M_DAcl Slot No.(1to 32) Current specified deceleration rate (%) R Single-precision
real number type, %

296

33 M_NAcl Slot No.(1to 32) System default value (default value of M_Acl) (%) R Single-precision
real number type, %

296

34 M_NDAcl Slot No.(1to 32) System default value (default value of M_DAcl)
(%)

R Single-precision
real number type, %

296

35 M_AclSts Slot No.(1to 32) Current acceleration/deceleration status
0 = Stopped, 1 = Accelerating, 2 = Constant
speed, 3=Decelerating

R Integer type 296

36 M_SetAdl Axis No.(1 to 8) Specify the acceleration/deceleration time ratio
(%) of each axis.

RW Single-precision
real number type, %

327

37 M_LdFact Axis No.(1 to 8) The load factor of the servo motor of each axis.
(%)

R Single-precision
real number type, %

315

38 M_Run Slot No.(1to 32) Operation status (1: Operating, 0: Not operating) R Integer type 326

39 M_Wai Slot No.(1to 32) Pause status (1: Pausing, 0: Not pausing) R Integer type 334

40 M_Psa Slot No.(1to 32) Specifies whether or not the program selection is
possible in the specified task slot. (1: Selection
possible, 0: Selection not possible, in pause
status)

R Integer type 325

41 M_Cys Slot No.(1to 32) Cycle operation status (1: Cycle operation, 0: Non-
cycle operation)

R Integer type 302

42 M_Cstp None Cycle stop operation status (1: Cycle stop, 0: Not
cycle stop)

R Integer type 302

43 C_Prg Slot No.(1to 32) Execution program name R Character string
type

288

44 M_Line Slot No.(1to 32) Currently executed line No. R Integer type 316

45 M_SkipCq Slot No.(1to 32) A value of 1 is input if execution of an instruction is
skipped as a result of executing the line that
includes the last executed Skip command,
otherwise a value of 0 is input.

R Integer type 328

46 M_BrkCq None Result of the BREAK instruction
(1: BREAK, 0: None)

R Integer type 298

47 M_Err None Error occurring (1: An error has occurred, 0: No
errors have occurred)

R Integer type 307

48 M_ErrLvl None Reads an error level.
・ S/W version R1c or before (SQ series) / S1c or

before (SD series)
No error / Caution / Low / High = 0/1/2/3

・ S/W version R1d or later(SQ series) / S1d or
later(SD series)

No error / Caution / Low / High / Caution1
/ Low1 / High1 = 0/1/2/3/4/5/6

R Integer type 307

49 M_Errno None Reads an error number. R Integer type 307

50 M_Svo Mechanism No.(1 to 3) Servo motor power on (1: Servo power on, 0:
Servo power off)

R Integer type 329

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

4-156 Robot status variables

4MELFA-BASIC V

51 M_Uar Mechanism No.(1 to 3) Bit data.
(1: Within user specified area, 0: Outside user
specified area)
(Bit 0:area 1 to Bit 7:area 8)

R Integer type 332

52 M_Uar32 Mechanism No.(1 to 3) Bit data.
(1: Within user specified area, 0: Outside user
specified area)
(Bit 0:area 1 to Bit 31:area 32)

R Integer type 333

53 M_In Input No.(0 to 32767) Use this variable when inputting external input
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

R Integer type 310

54 M_Inb/
M_In8

Input No.(0 to 32767) Use this variable when inputting external input
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

R Integer type 310

55 M_Inw/
M_In16

Input No.(0 to 32767) Use this variable when inputting external input
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

R Integer type 310

56 M_In32 Input No.(0 to 32767) Use this variable when inputting external input
signals (32-bit units) numerically
General-purpose bit device: double word signal
input
The signal numbers will be 6000s for CC-Link

Ｒ Integer type 312

57 M_Out Output No.(0 to 32767) Use this variable when outputting external output
signals (bit units).
General-purpose bit device: bit signal input 0=off
1=on
The signal numbers will be 6000s for CC-Link

RW Integer type 320

58 M_OutB/
M_Out8

Output No.(0 to 32767) Use this variable when outputting external output
signals (8-bit units)
General-purpose bit device: byte signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 320

59 M_OutW/
M_Out16

Output No.(0 to 32767) Use this variable when outputting external output
signals (16-bit units)
General-purpose bit device: word signal input
The signal numbers will be 6000s for CC-Link

RW Integer type 320

60 M_Out32 Output No.(0 to 32767) Use this variable when outputting numerical

value to external output signals (32-bit units)

General-purpose bit device: double word signal

input

The signal numbers will be 6000s for CC-Link

ＲＷ Integer type 322

61 M_DIn Input No.(from 6000) CC-Link's remote register: Input register
Cannot use in CRnQ series.

R Integer type 303

62 M_DOut Output No.(from 6000) CC-Link's remote register: output register
Cannot use in CRnQ series.

RW Integer type 303

63 M_HndCq Input No.(1 to 8) Returns a hand check input signal. R Integer type 309

64 P_Safe Mechanism No.(1 to 3) Returns an safe point position. R Position type 341

65 J_Origin Mechanism No.(1 to 3) Returns the joint coordinate data when setting the
origin.

R Joint type 295

66 M_Open File No.(1 to 8) Returns the open status of the specified file
or the communication line.

R Integer type 318

67 C_Mecha Slot No.(1 to 32) Returns the type name of the robot. R Character string
type

288

68 C_Maker None Shows manufacturer information (a string of up to
64 characters).

R Character string
type

287

69 C_User None Returns the content of the parameter
"USERMSG."(a string of up to 64 characters).

R Character string
type

289

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

 4MELFA-BASIC V

 Robot status variables 4-157

70 C_Date None Current date expressed as "year/month/date". R Character string
type

286

71 C_Time None Current time expressed as "time/minute/second". R Character string
type

289

72 M_BTime None Returns the remaining battery capacity time
(hours).

R Integer type, Time 298

73 M_Timer Timer No. (1 to 8) Constantly counting. Value can be set. [ms]
It is possible to measure the precise execution
time by using this variable in a program.

RW Single-precision
real number type

330

74 P_Zero None A variable whose position coordinate values (X, Y,
Z, A, B, C, FL1, FL2) are all 0

R Position type 344

75 M_PI None Circumference rate (3.1415...) R Double-precision
real number type

324

76 M_Exp None Base of natural logarithm (2.71828...) R Double-precision
real number type

308

77 M_G None Specific gravity constant (9.80665) R Double-precision
real number type

309

78 M_On None 1 is always set R Integer type 317

79 M_Off None 0 is always set R Integer type 317

80 M_Mode None Contains the status of the key switch of the
operation panel
MANUAL/AUTOMATIC (O/P)/AUTOMATIC
(External)=(1/2/3)

R Integer type 316

Note1) Mechanism No.1 to 3, Specifies a mechanism number corresponding to the multitask processing function.
Slot No..........................1 to 32, Specifies a slot number corresponding to the multitask function.
Input No........................0 to 32767: (theoretical values). Specifies a bit number of an input signal.
Output No.0 to 32767: (theoretical values). Specifies a bit number of an output signal.

Note2) R Only reading is possible.
RW................................ Both reading and writing are possible.

No Variable
name

Array designation
Note1) Details

Attribute
Note2) Data type, Unit Page

4-158 Logic numbers

4MELFA-BASIC V

4.7 Logic numbers
Logic numbers indicate the results of such things as comparison and input/output.
If not 0 when evaluated with an Integer, then it is true, and if 0, it is false. When substituted, if true, 1 is
assigned. The processes that can use logic numbers are shown in Table 4-10.

Table 4-10:Values corresponding to true or false logic number

4.8 Functions
A function carries out a specific operation for an assigned argument, and returns the result as a numeric
value type or character string type. There are built-in functions, that are preassembled, and user-defined
functions, defined by the user.

(1) User-defined functions
The function is defined with the Def FN statement.

Example) Def FNMADD(MA, MB)=MA+MB
...........The function to obtain the total of two values is defined with FNMADD.

The function name starts with FN, and the data type identification character (C: character string, M: numeric
value, P: position, J: joint) is described at the third character. The function is designated with up to eight
characters.

(2) Built-in functions
A list of assembled functions is given in Table 4-11.

Table 4-11:List of built-in functions

Items expressed with logic number "1" Items expressed with logic number "0"
*Result of cmparison operation (if true)
*Result of logic operation (if true)
*Switch ON
*Input/output signal ON
*Hand open (supply current to the hand)
*Settings for enable/valid such as for interrupts

*Result of comparison operation (if false)
*Result of logic operation (if false)
*Switch OFF
*Input/output signal OFF
*Hand close (do not supply current to the hand)
*Settings for disable/invalid such as for interrupts

Class Function name (format) Functions Page Result

Numeric func-
tions

Abs (<Numeric expression>) Produces the absolute value 346 Numeric
valueCint (<Numeric expression>) Rounds off the decimal value and converts into an integer. 351

Deg (<Numeric expression:radian>) Converts the angle unit from radian (rad) to degree (deg). 354
Exp (<Numeric expression>) Calculates the value of the expression's exponential function 355
Fix (<Numeric expression>) Produces an integer section 356
Int (<Numeric expression>) Produces the largest integer that does not exceed the value in the

expression.
358

Len(<Character string expression>) Produces the length of the character string. 360
Ln (<Numeric expression>) Produces the logarithm. 361
Log (<Numeric expression>) Produces the common logarithm. 361
Max (<Numeric expression>...) Obtains the max. value from a random number of arguments. 362
Min (<Numeric expression>...) Obtains the min. value from a random number of arguments. 363
Rad (<Numeric expression: deg.>) Converts the angle unit from radian (rad) to degree (deg). 367
Sgn (<Numeric expression>) Checks the sign of the number in the expression 374
Sqr (<Numeric expression>) Calculates the square root 375
Strpos(<Character string expres-
sion>, <Character string expres-
sion>)

Obtains the 2nd argument character string position in the 1st argu-
ment character string.

375

Rnd (<Numeric expression>) Produces the random numbers. 369
Asc(<Character string expression>) Provides a character code for the first character of the character

string in the expression.
348

Cvi(<Character string expression>) Converts a 2-byte character string into integers. 353
Cvs(<Character string expression>) Converts a 4-byte character string into a single-precision real number. 353
Cvd(<Character string expression>) Converts an 8-byte character string into a double-precision real number. 354
Val(<Character string expression>) Converts a character string into a numeric value. 377

Trigonometric
functions

Atn(<Numeric expression>) Calculates the arc tangent. Unit: radian
Definition range: Numeric value, Value range: -PI/2 to +PI/2

348 Numeric
value

Atn2(<Numeric expres-
sion>,<Numeric expression>)

Calculates the arc tangent. Unit: radian
 THETA=Atn2(delta y, deltax)
 Definition range: Numeric value of delta y or delta x that is not 0
 Value range: -PI to +PI

348

 4MELFA-BASIC V

 Functions 4-159

Trigonometric
functions

Cos(<Numeric expression>) Calculates the cosine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

352 Numeric
value

Sin(<Numeric expression>) Calculates the sine Unit: radian
 Definition range: Numeric value range, Value range: -1 to +1

374

Tan(<Numeric expression>) Calculates the tangent. Unit: radian
 Definition range: Numeric value range, Value range: Range of numeric
value

376

Character
string func-
tions

Bin$(<Numeric expression>) Converts numeric expression value into binary character string. 349 Character
stringChr$(<Numeric expression>) Provides character having numeric expression value character

code.
351

Hex$(<Numeric expression>) Converts numeric expression value into hexadecimal character
string.

358

Left$(<Character string expres-
sion>,<Numeric expression>)

Obtains character string having length designated with 2nd argu-
ment from left side of 1st argument character string.

360

Mid$(<Character string expression>,
<Numeric expression>
<Numeric expression>)

Obtains character string having length designated with 3rd argu-
ment from the position designated with the 2nd argument in the 1st
argument character string.

362

Mirror$(<Character string expres-
sion>)

Mirror reversal of the character string binary bit is carried out. 363

Mki$(<Numeric expression>) Converts numeric expression value into 2-byte character string. 364
Mks$(<Numeric expression>) Converts numeric expression value into 4-byte character string. 364
Mkd$(<Numeric expression>) Converts numeric expression value into 8-byte character string. 365
Right$(<Character string expres-
sion>,<Numeric expression>)

Obtains character string having length designated with 2nd argu-
ment from right side of 1st argument character string.

369

Str$(<Numeric expression>) Converts the numeric expression value into a decimal character string. 376
CkSum(<Character string expres-
sion>,<Numeric expression>,
<Numeric expression>)

Creates the checksum of a character string.
Returns the value of the lower byte obtained by adding the character
value of the second argument position to that of the third argument
position, in the first argument character string.

352 Numeric
value

Position vari-
ables

Dist(<Position>,<Position>) Obtains the distance between two points. 355 Position
Fram
(<Position 1>,<Position 2>,
<Position 3>)

Calculates the coordinate system designated with three points. Position
1 is the plane origin, position 2 is the point on the +X axis, and position
3 is the point on the +Y axis direction plane. The plane origin point and
posture are obtained from the XYZ coordinates of the three position,
and is returned with a return value (position). This is operated with 6-
axis three dimensions regardless of the mechanism structure.
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

357

Rdfl1(<Position>,<Numeric value>) Returns the structure flag of the designated position as character data.
Argument <numeric value>) 0 = R/L, 1 = A/B , 2 = F/N is returned.

367 Character

Setfl1(<Position>,<Character>) Changes the structure flag of the designated position. The data to
be changed is designated with characters.(R/L/A/B/F/N)

370

Rdfl2(<Position>,<Numeric value>) Returns the multi-rotation data of the designated position as a
numeric value (-2 to 1).
The argument <numeric expression> returns the axis No. (1 to 8).

368 Numeric
value

Setfl2
(<Position>>,<Numeric value>,
<Numeric value>)

Changes the multi-rotation data of the designated position as a
numeric value (-2 to 1). The left side of the expression is the axis
No. to be changed; the right side is the value to be set.

371

Align(<Position>) Returns the value of the XYZ position (0,+/-90, +/-180) closest to the
position 1 posture axis (A, B, C).
This function cannot be used in 5-axis robots, because the A, B, and
C posture data has different meaning.

347

Inv(<Position>) Obtains the reverse matrix. 359 Position
PtoJ(<Position>) Converts the position data into joint data. 366 Joint
JtoP(<Position>) Converts the joint data into position data. 359 Position
Zone
(<Position 1>,<Position 2>,<Position 3>)

Checks whether position 1 is within the space (Cube) created by the
position 2 and position 3 points.
 Outside the range=0, Within the range=1
For position coordinates that are not checked or non-existent, the
following values should be assigned to the corresponding position
coordinates:
If the unit is degrees, assign -360 to position 2 and 360 to position 3
If the unit is mm, assign -10000 to position 2 and 10000 to position 3

378 Numeric
value

Class Function name (format) Functions Page Result

4-160 Functions

4MELFA-BASIC V

Position vari-
ables

Zone2
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Checks whether position 1 is within the space (cylinder) created by
the position 2 and position 3 points.
 Outside the range=0, Within the range=1
Only the X, Y, and Z coordinate values are considered; the A, B, and
C posture data is ignored.

379 Numeric
value

PosCq(<Position>) Checks whether <position> is within the movement range. 365 Numeric
value

PosMid
(<Position1>,<Position2>,
<Numeric value1>, <Numeric value2>)

Calculates the middle position between <position 1> and <position
2>.

366 Position

CalArc
(<Position 1>,<Position 2>,<Position 3>
<Numeric value1>, <Numeric value2>,
<Numeric value3>,<Position 4>)

Returns information of an arc created from <position 1>, <position
2>, and <position 3>.

350 Numeric
value

SetJnt
(<J1 axis>,<J2 axis>,<J3 axis>,<J4 axis>
<J5 axis>,<J6 axis>,<J7 axis>,<J8 axis>)

Sets values in joint variables. 372 Joint

SetPos
(<X axis>,<Y axis>,<Z axis>,<A axis>
<B axis>,<C axis>,<L1 axis>,<L2 axis>)

Sets values in position variables. 373 Position

Class Function name (format) Functions Page Result

 4MELFA-BASIC V

 List of Instructions 4-161

4.9 List of Instructions
A list of pages with description of each instruction is shown below. They are listed in the order of presumed
usage frequency.

(1) Instructions related to movement control

(2) Instructions related to program control

Command Explanation Page

Mov (Move) Joint interpolation 232

Mvs (Move S) Linear interpolation 242

Mvr (Move R) Circular interpolation 236

Mvr2 (Move R2) Circular interpolation 2 238

Mvr3 (Move R 3) Circular interpolation 3 240

Mvc (Move C) Circular interpolation 235

Mva (Move Arch) Arch motion interpolation 233

Mv Tune (Move Tune) Specification of the moving characteristics mode 245

Ovrd (Override) Overall speed specification 254

Spd (Speed) Speed specification during linear or circular interpolation move-
ment

268

JOvrd (J Override) Speed specification during joint interpolation movement 228

Cnt (Continuous) Continuous path mode specification 187

Accel (Accelerate) Acceleration/deceleration rate specification 167

Cmp Jnt (Compliance Joint) Specification of compliance in the JOINT coordinate system 179

Cmp Pos (Compliance Posture) Specification of compliance in the XYZ coordinate system 181

Cmp Tool (Compliance Tool) Specification of compliance in the Tool coordinate system 183

Cmp Off (Compliance OFF) Compliance setting invalid 185

CmpG (Compliance Gain) Compliance gain specification 186

Mxt (Move External) Optimum acceleration/deceleration rate specification 247

Loadset (Load Set) Hand's optional condition specification 231

Prec (Precision) High accuracy mode specification 256

Torq (Torque) Torque specification of each axis 273

JRC (Joint Roll Change) Enables multiple rotation of the tip axis 229

Fine (Fine) Robot's positioning range specification 213

Fine J (Fine Joint) Robot's positioning range specification by joint interpolation 215

Fine P (Fine Pause) Robot's positioning range specification by distance in a straight
line

216

Servo (Servo) Servo motor power ON/OFF 266

Wth (With) Addition instruction of movement instruction 276

WthIf (With If) Additional conditional instruction of movement instruction 277

Command Explanation Page

Rem (Remarks) Comment(') 260

If...Then...Else...EndIf (If Then Else) Conditional branching 226

Select Case (Select Case) Enables multiple branching 264

GoTo (Go To) Jump 222

GoSub (Return)(Go Subroutine) Subroutine jump 221

Reset Err (Reset Error) Resets an error (use of default is not allowed) 261

CallP (Call P) Program call 174

FPrm (FPRM) Program call argument definition 219

Dly (Delay) Timer 210

Hlt (Halt) Suspends a program 223

End (End) End a program 211

4-162 List of Instructions

4MELFA-BASIC V

(3) Definition instructions

(4) Multi-task related

On ... GoSub (ON Go Subroutine) Subroutine jump according to the value 251

On ... GoTo (On Go To) Jump according to the value 252

For - Next (For-next) Repeat 217

While-WEnd (While End) Conditional repeat 275

Open (Open) Opens a file or communication line 253

Print (Print) Outputs data 257

Input (Input) Inputs data 227

Close (Close) Closes a file or communication line 177

ColChk (Col Check) Enables or disables the impact detection function 190

On Com GoSub (ON Communication Go Subrou-
tine)

Communication interrupt subroutine jump 250

Com On/Com Off/Com Stop (Communication ON/
OFF/STOP)

Allows/prohibits/stops communication interrupts 194

HOpen / HClose (Hand Open/Hand Close) Hand's open/close 224

Error (error) User error 212

Skip (Skip) Skip while moving 267

Wait (Wait) Waiting for conditions 274

Clr (Clear) Signal clear 178

Command Explanation Page

Dim (Dim) Array variable declaration 209

Def Plt (Define pallet) Pallet declaration 206

Plt (Pallet) Pallet position calculation 255

Def Act (Define act) Interrupt definition 195

Act (Act) Starts or ends interrupt monitoring 169

Def Arch (Define arch) Definition of arch shape for arch motion 198

Def Jnt (Define Joint) Joint type position variable definition 205

Def Pos (Define Position) XYZ type position variable definition 208

Def Inte/Def Long/Def Float/Def Double (Define
Integer/Long/Float/Double)

Integer or real number variable definition 202

Def Char (Define Character) Character variable definition 200

Def IO (Define IO) Signal variable definition 203

Def FN (Define function) User function definition 201

Tool(Tool) Hand length setting 272

Base (Base) Robot base position setting 171

Tool(Tool) Tool length setting 272

Command Explanation Page

XLoad (X Load) Loads a program to another task slot 279

XRun (X Run) Execute the program in another task slot 281

XStp (X Stop) Stop the program in another task slot 282

XRst (X Reset) Resets the program in another task slot being suspended 280

XClr (X Clear) Cancels the loading of the program from the specified task slot 278

GetM (Get Mechanism) Obtains mechanical control right 220

RelM (Release Mechanism) Releases mechanical control right 259

Priority (Priority) Changes the task slot priority 258

Reset Err (Reset Error) Resets an error (use of default is not allowed) 261

Command Explanation Page

 4MELFA-BASIC V

 List of Instructions 4-163

(5) Others
Command Explanation Page

ChrSrch (Character search) Searches the character string out of the character array. 176

Get Pos (Get Position) Reserved. -

4-164 Operators

4MELFA-BASIC V

4.10 Operators
The value's real number or integer type do not need to be declared. Instead, the type may be forcibly con-
verted according to the operation type. (Refer to Table 4-12.) The operation result data type is as follows
according to the combination of the left argument and right argument data types.

Example) Left argument Operation Right argument Operation results
 15 AND 256 15
(Numeric value type) (Numeric value type) (Numeric value type)
 P1 * M1 P2
 (Position type) (Numeric value type) (Position type)
 M1 * P1
(Numeric value type) (Position type) Description error

Table 4-12:Table of data conversions according to operations

Reversal: Sign reversal, Negate: Logical negate, Substitute: Substitute operation, Remainder: Remainder
operation, Comparison: Comparison operation, Logic: Logical Operation (excluding logical negate).

Left argument
type

Operation

Left argument type

Character string
Numeric value

Position Joint
Integer Real number

Character
string

Substitution=
Addition +
Comparison (Compari-
son operators)

Character string
Character string

Integer

-
-
-

-
-
-

-
-
-

-
-
-

Integer

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-
-

Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer
Integer

Real number
Real number
Real number
Real number

Integer
Integer
Integer
Integer
Integer
Integer

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Real number

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

Real number
Real number
Real number
Real number

Integer
Integer
Integer
Integer
Integer
Integer

Real number
Real number
Real number
Real number

Integer
Integer

Real number
Real number

Integer
Integer

-
-
-
-
-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Position

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

-
-

Position
Position

-
-
-
-
-
-

-
-

Position
Position

-
-
-
-
-
-

Position
Position
Position
Position

-
-
-

Position
-
-

-
-
-
-
-
-
-
-
-
-

Joint

Addition +
Substract -
Multiplication *
Division /
Integer division \
Remainder MOD
Exponent ^
Substitution =
Comparison (Compari-
son operators)
Logic (Logic operators)

-
-
-
-
-
-
-
-
-
-

-
-

Joint
Joint

-
-
-
-
-
-

-
-

Joint
Joint

-
-
-
-
-
-

-
-
-
-
-
-
-
-
-
-

Joint
Joint

-
Joint

-
-
-

Joint
-
-

Right argument
only (Single
arugument)

eversal -
Negate NOT

-
-

Integer
Integer

Integer
Integer

Position
-

Joint
-

 4MELFA-BASIC V

 Priority level of operations 4-165

[Caution]
•The operation of the section described with a "-" is not defined.
•The results of the integer and the interger multiplication/division is an integer type for multiplication, and a

real number type for division.
•If the right argument is a 0 divisor (divide by 0), an operation will not be possible.
•During exponential operation, remainder operation or logical operation (including negate), all real numbers

will be forcibly converted into integers (rounded off), and operated.

4.11 Priority level of operations
In the event there are many operators within an expression being calculated, the order of operations is as
shown in Table 4-13.
Table 4-13:Priority level of operations

4.12 Depth of program's control structure
When creating a program, the depth of the control structure must be considered.
When using the commands in the table below, the program's level of control structure becomes one level
deeper. Each command has a limit to the depth of the control structure. Exceeding these limits will cause an
error.
Table 4-14:Limit to control structure depth

4.13 Reserved words
Reserved words are those that are already used for the system.
A name that is the same as one of the reserved words cannot be used in the program.
Instructions, functions, and system status variables, etc. are considered reserved words.

Operations, (operators) Type of operation Priority level

1) Operations inside parentheses ()
2) Functions
3) Exponents
4) Single argument operator (+, -)
5) * /
6) \
7)MOD
8) + -
9)<< >>
10) Comparison operator
 (=,<>,><,<,<=,=<,>=,=>)
11)NOT
12)AND
13)OR
14)XOR

Functions
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Numeric value operation
Logic operation
Comparison operation

Logic operation
Logic operation
Logic operation
Logic operation

High
:
:
:
:
:
:
:
:
:
:
:
:
:

Low

No. of levels Applicable commands

User stack in program 16 levels Repeated controls (For-Next,While-WEnd)

8 levels Function calling (CallP)

800 levels max. Subroutine calling (GoSub)
The number decreases by usage frequency of For-Next, While-WEnd, and CallP
instructions.

4-166 Detailed explanation of command words

4MELFA-BASIC V

4.14 Detailed explanation of command words
4.14.1 How to read the described items

[Function] : Indicates the command word functions.
[Format] : Indicates how to input the command word argument.

The argument is shown in <>.
[] indicates that the argument can be omitted.
[] indicates that a space is required.

[Terminology] : Indicates the meaning and range, etc. of the argument.
[Reference Program] : Indicates a program example.
[Explanation] : Indicates detailed functions and cautions, etc.
[The available robot type] : Indicates the available robot type.
[Related parameter] : Indicates the related parameter.
[Related system variables] : Indicates the related system variables.
[Related instructions] : Indicates the related instructions.

4.14.2 Explanation of each command word
Each instruction is explained below in alphabetical order.

 4MELFA-BASIC V

 Detailed explanation of command words 4-167

Accel (Accelerate)

[Function]
Designate the robot's acceleration and deceleration speeds as a percentage (%).
It is valid during optimum acceleration/deceleration.

* The acceleration/deceleration time during optimum acceleration/deceleration refers to the optimum time
calculated when using an Oadl instruction, which takes account of the value of the M_SetAdl variable.

[Format]

[Terminology]
<Acceleration/Deceleration>

1 to 100(%). Designate the acceleration/deceleration to reach the maximum speed from
speed 0 as a percentage. This can be described as a constant or variable. A default value
of 100 is set if the argument is omitted. A value of 100 corresponds to the maximum rate
of acceleration/deceleration. Unit: %

<Acceleration/Deceleration rate when moving upward>
Specify the acceleration/deceleration rate when moving upward in an arch motion due
to the Mva instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

<Acceleration/Deceleration rate when moving downward>
Specify the acceleration/deceleration rate when moving downward in an arch motion due
to the Mva instruction.
A default value of 100 is set if the argument is omitted. It is possible to specify the argument
either by a constant or variable.

[Reference Program]
 1 Accel 50,100 ' Heavy load designation (when acceleration/deceleration is 0.2 sec-

onds, the acceleration will be 0.4, and the deceleration will be 0.2 sec-
onds).

 2 Mov P1
 3 Accel 100,100 ' Standard load designation.
 4 Mov P2
 5 Def Arch 1,10,10,25,25,1,0,0
 6 Accel 100,100,20,20,20,20 ' Specify the override value to 20 when moving upward or downward due

to the Mva instruction.
 7 Mva P3,1

Accel[] [<Acceleration rate>] [, <Deceleration rate>]

,[<Acceleration rate when moving upward>], [<Deceleration rate when moving upward>]

,[<Acceleration rate when moving downward>], [<Deceleration rate when moving down-

ward>]

4-168 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) The maximum acceleration/deceleration is determined according to the robot being used. Set the corre-

sponding percentage(%). The system default value is 100,100.
(2) The acceleration percentage changed with this command is reset to the system default value when the

program is reset or the End statement executed.
(3) Although it is possible to describe the acceleration/deceleration time to more than 100%, some models

internally set its upper limit to 100%. If the acceleration/deceleration time is set to more than 100%, it
may affect the lifespan of the machine. In addition, speed-over errors and overload errors may tend to
occur. Therefore, be extra careful when you are setting it to more than 100%.

(4) The smooth operation when Cnt is valid will have a different locus according to the acceleration speed or
operation speed. To move smoothly at a constant speed, set the acceleration and deceleration to the
same value. Cnt is invalid in the default state.

(5) It is also valid during optimum acceleration/deceleration control (Oadl On).

[Related instructions]
Mxt (Move External), Loadset (Load Set)

[Related system variables]
M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts, M_SetAdl

[Related parameter]
JADL

 4MELFA-BASIC V

 Detailed explanation of command words 4-169

Act (Act)

[Function]
This instruction specifies whether to allow or prohibit interrupt processing caused by signals, etc. during
operation.

[Format]

[Terminology]
<Priority No.> 0: Either enables or disables the entire interrupt.

1 to 8: Designate the priority No. for the interrupt defined in the Def Act statement.
When entering the priority No., always leave a space (character) after the Act command.
If described as Act1, it will be a variable name declaration statement.

<1/0> 1: Allows interrupts, 0:Prohibits interrupts.

[Reference Program]
(1) When the input signal 1 turns on (set to 1) while moving from P1 to P2, it loops until that signal is set to 0.

 1 Def Act 1,M_In(1)=1 GoSub *INTR ' Assign input signal 1 to the interrupt 1 condition
 2 Mov P1
 3 Act 1=1 ' Enable interrupt 1.
 4 Mov P2
 5 Act 1=0 ' Disable interrupt 1.
 :
10 *INTR '
11 IF M_In(1)=1 GoTo 110 ' Loops until the M_In(1) signal becomes 0.
12 Return 0 '

(2) When the input signal 1 turns on (set to 1)while moving from P1 to P2, Operation is interrupted and the
output signal 10 turns on.

1 Def Act 1,M_In(1)=1 GoSub *INTR 'Assign input signal 1 to the interrupt 1 condition
2 Mov P1
3 Act 1=1 ' Enable interrupt 1.
4 Mov P2
 :
10 *INTR
11 Act 1=0 ' Disable interrupt 1.
12 M_Out(10)=1 ' Turn on the output signal 10
13 Return 1 ' Returns to the next step which interrupted

Act[]<Priority No.> = <1/0>

4-170 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) When the program starts, the status of <Priority No.> 0 is "enabled." When <Priority No.> 0 is "disabled,"

even if <Priority No.> 1 to 8 are set to "enabled," no interrupt will be enabled.
(2) The statuses of <Priority No.> 1 to 8 are all "disabled" when the program starts.
(3) An interrupt will occur only when all of the following conditions have been satisfied:

*<Priority No.> 0 is set to "enabled."
*The status of the Def Act statement has been defined.
*When the <Priority No.> designated by Def Act is made valid by an Act statement.

(4) The return from an interrupt process should be done by describing either RETURN 0 or RETURN 1. How-
ever when returning from interruption processing to the next step by RETURN1, execute the statement to
disable the interrupt. When that is not so, if interruption conditions have been satisfied, because interrup-
tion processing will be executed again and it will return to the next step, the step may be skipped.

(5) Even if the robot is in the middle of interpolation, an interrupt defined by a Def Act statement will be exe-
cuted.

(6) During an interrupt process, that <Priority No.> will be executed with the status as "disable."
(7) A communications interrupt (COM) has a higher priority than an interrupt defined by a Def Act statement.
(8) The relationship of priority rankings is as shown below:

 COM > Act > WthIf (Wth)

[Related instructions] Def Act (Define act), Return (Return)

 4MELFA-BASIC V

 Detailed explanation of command words 4-171

Base (Base)

[Function]
Changes (relocation and rotation) can be made to the world coordinate system which is the basis for the
control of the robot's current position. There are two alternative methods to achieve this. One is to directly
specify base conversion data and the other, to specify a predefined work coordinate system number. This
function has significant influences on teaching data for and jog operation of the robot. Read instructions
given in "4.5Coordinate system description of the robot" and proceed with care.

[Format]

[Terminology]
<Base conversion data> Base conversion data is specified with a position constant or a position vari-

able.
Values to be specified (coordinate values) represent position data for the
origin point of the base coordinate system as viewed from a world coordinate
system which is newly furnished.

<Base coordinate number> The system's initial value or value set in the parameter concerned (work coor-
dinate system) is designated as base conversion data.
This value is a constant in numerical form or a variable which is chosen from
0 through 8.

0: 　 P_NBase (system's initial value) is specified.
(Because P_NBase = (0, 0, 0, 0, 0, 0), this value clears base conversion
settings.)

1～8:Each value corresponds to parameter/work coordinate system
(WK1CORD~WK8CORD).

Note) When a real number or a double-precision real number is specified,
the fractional portion is round down.

[Reference Program]
Specify by base conversion data

 1 Base (50,100,0,0,0,90) ' A new world coordinate system is defined by conversion data in the
form of a constant.

 2 Mvs P1 'A move to P1 is made in the new world coordinate system.

 3 Base P2 ' A new world coordinate system is defined by conversion data in the
form of a constant.

 4 Mvs P1 ' move to P1 is made in the new world coordinate system.

 5 Base 0 ' World coordinate system is returned to an initial value.
(P_NBase(ÉVsystem's initial value)is set for base conversion data)

Specify by the base coordinates number

 1 Base 1 ' Work coordinate system 1 (parameter: WK1CORD) is defined as a new
world coordinate system.

 2 Mvs P1 'A move to P1 is made in the new world coordinate system.

 3 Base 2 ' Work coordinate system 2 (parameter: WK2CORD) is defined as a new
world coordinate system.

 4 Mvs P1 'A move to P1 is made in the new world coordinate system.

 5 Base 0 ' World coordinate system is returned to an initial value.
(P_NBase(ÉVsystem's initial value)is set for base conversion data)

Base[]<Base conversion data> ’ Specifying base conversion data directly

Base[]<Base coordinate number> ’ Specifying base conversion data indirectly by a base
coordinate number

4-172 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) Values subject to base conversion (coordinate values) represent position data for the origin point of the

base coordinate system as viewed from a world coordinate system which is newly defined. Therefore,
when you use the robot's current position to specify base conversion data with coordinate values defined
by a Fram function or the like, do so by inversely converting the coordinate values [for example, Base
Inv(P1)]. [for example, Base Inv(P1)].
Note that when you specify a work coordinate system number, the above inverse conversion is accom-
plished automatically in an internal process.
Elements X, Y and Z of position data indicate the amount of translation from the origin point of the world
coordinate system to that of the base coordinate system. Also, elements A, B and C indicate how much
the base coordinate system is tilted relative to the robot's coordinate system.

X.............Distance to move parallel to X axis
Y.............Distance to move parallel to Y axis
Z.............Distance to move parallel to Z axis
A............Angle to turn toward the X axis
B............Angle to turn toward the Y axis
C............Angle to turn toward the Z axis

Elements A, B, and C are set to take a clockwise move as a forward rotation looking at the plus side from
the origin point of the world coordinate system.
(2) The contents of the structural flag have no meaning.
(3) Base coordinate system which has been changed by this command is saved in parameter MEXBS and

retained after controller power-off, too.
(4) You should note that the base conversion data differs in the valid axial elements depending on the

robot's type (structure of the robot arm). Refer to Page 410, "5.7 About Standard Base Coordinates".
Also, refer to the following sections for more information relative to this command.
Page 146, "4.5.1 About the robot's coordinate system"
Page 147, "4.5.2 About base conversion"

(5) The system's default value for this data is P_NBase=(0,0,0,0,0,0) (0,0).

Fig.4-14:Conceptual diagram of the base coordinate system

Zw

Xw
YwXb

Zb

Yb
50

90

Base (50,100,0,0,0,90)

World coordinate system: Xw, Yw, Zw
Base coordinate system: Xb, Yb, Zb

100

 4MELFA-BASIC V

 Detailed explanation of command words 4-173

Fig.4-15:Base conversion with a work coordinate system number being specified

Since the performance of the base conversion causes the reference for the robot's
current position to change, data taught till then becomes unusable as it is.
If the robot is inadvertently allowed to move to a position taught before the perfor-
mance of the base conversion, it can stray to an unexpected position, possibly
resulting in property damage or personal injury.
When using the base conversion function, be sure to maintain positive control
over relation between the base coordinate system subject to conversion and the
position which the robot is taught to take so that a proper robot operation and an
effective use of the base conversion function are insured.

[Related parameter]
MEXBS, WKnCORD("n" is 1 to 8), MEXBSNO

[Related system variables]
M_BsNo, P_Base/P_NBase, P_WkCord

Work

coordinates １

Work
coordinates ２

New world
coordinate １

New world
coordinate ２

Current world coordinate （＝ Base coordinate）

Xw1

Yw1

Zw1

Yw2

Zw2

Xw2

Xw

Yw

Zw

 CAUTION

4-174 Detailed explanation of command words

4MELFA-BASIC V

CallP (Call P)

[Function]
This instruction executes the specified program (by calling the program in a manner similar to using GoSub
to call a subroutine). The execution returns to the main program when the End instruction or the final step in
the sub program is reached.

[Format]

[Terminology]
<Program name> Designate the program name with a character string constant or character string variable.

For the standards for program names, please refer to Page 132, "(1) Program name".
<Argument> Designate the variable to be transferred to the program when the program is called. Up

to 16 variables can be transferred.

[Reference Program]
(1) When passing the argument to the program to call.
Main program
1 M1=0
 2 CallP "10" ,M1,P1,P2
 3 M1=1
 4 CallP "10" ,M1,P1,P2
 :
10 CallP "10", M2,P3,P4
 :
15 End
Sub program side
 1 FPrm M01, P01,P02
 2 If M01<>0 Then GoTo *LBL1
 3 Mov P01
 4 *LBL1
 5 Mvs P02
 6 End 'Return to the main program at this point.

* When step 2 and 4 of the main program are executed, M1, P1 and P2 are set in M01, P01 and P02 of
the sub program, respectively. When step 10 of the main program is executed, M2, P3 and P4 are set in
M01, P01 and P02 of the sub program, respectively.

(2) When not passing the argument to the program to call.
Main program
 1 Mov P1
 2 CallP "20"
 3 Mov P2
 4 CallP "20"
 5 End

"200" sub program side
 201 Mov P1 'P1 of the sub program differs from P1 of the main program.
 202 Mvs P002
 203 M_Out(17)=1
 204 End 'Return to the main program at this point.

CallP[] "<Program name> " [, <Argument> [, <Argument>

 4MELFA-BASIC V

 Detailed explanation of command words 4-175

[Explanation]
(1) A program (sub program) called by the CallP instruction will return to the parent program (main pro-

gram) when the End instruction (equivalent to the Return instruction of GoSub) is reached. If there is no
End instruction, the execution is returned to the main program when the final step of the sub program is
reached.

(2) If arguments need to be passed to the sub program, they should be defined using the FPrm instruction
at the beginning of the sub program.

(3) If the type or the number of arguments passed to the sub program is different from those defined (by the
FPrm instruction) in the sub program, an error occurs at execution.

(4) If a program is reset, the control returns to the beginning of the top main program.
(5) Definition statements (Def Act, Def FN, Def Plt, and Dim instructions) executed in the main program are

invalid in a program called by the CallP instruction. They become valid when the control is returned to
the main program from the program called by the CallP instruction again.

(6) Tool data is valid in a sub program. Values of Accel, Spd, Ovrd, and JOvrd are invalid. The mode of Oadl
is valid.

(7) Another sub program can be executed by calling CallP in a sub program. However, a main program or a
program that is currently being executed in another task slot cannot be called. In addition, own program
cannot be called, either.

(8) Eight levels (in a hierarchy) of sub programs can be executed by calling CallP in the first main program.
(9) Variable values may be passed from a main program to a sub program using arguments, however, it is

not possible to pass the processing result of a sub program to a main program by assigning it in an argu-
ment. To use the processing result of a sub program in a main program, pass the values using external
variables.

[Related instructions]
FPrm (FPRM)

4-176 Detailed explanation of command words

4MELFA-BASIC V

ChrSrch (Character search)

[Function]
Searches the character string out of the character array.

[Format]

[Terminology]
<Character string array variable> Specify the character string array to be searched.
<Character string> Specify the character string to be searched.
<Search result storage destination> The number of the element for which the character string to be searched

is found is set.

[Reference Program]
1 Dim C1$(10)
2 C1$(1)="ABCDEFG"
3 C1$(2)="MELFA"
4 C1$(3)="BCDF"
5 C1$(4)="ABD"
6 C1$(5)="XYZ"
7 C1$(6)="MELFA"
8 C1$(7)="CDF"
9 C1$(8)="ROBOT"
10 C1$(9)="FFF"
11 C1$(10)="BCD"
12 ChrSrch C1$(1), "ROBOT", M1 ' 8 is set in M1.
13 ChrSrch C1$(1), "MELFA", M2 ' 2 is set in M2.

[Explanation]
(1) The specified character string is searched from the character string array variables, and the element

number of the completely matched character string array is set in <search result storage destination>.
Partially matched character strings are not searched.
Even if ChrSrch C1$(1), "ROBO", M1 are described in the above statement example, the matched
character string is not searched.

(2) If the character string to be searched is not found, 0 is set in <search result storage destination>.
(3) Character string search is performed sequentially beginning with element number 1, and the element

number found first is set.
Even if ChrSrch C1$(3), "MELFA", M2 are described in the above statement example, 2 is set in M2.
(The same character string is set in C1$(2) and C1$(6).)

(4) The <character string array variable> that can be searched is the one-dimensional array only. If a two-
dimensional or higher array is specified as a variable, an error will occur at the time of execution.

ChrSrch[]<Character string array variable>,<Character string>,<Search result storage destination>

 4MELFA-BASIC V

 Detailed explanation of command words 4-177

Close (Close)

[Function]
Closes the designated file.(including communication lines)

[Format]

[Terminology]
<File No.> Specify the number of the file to be closed (1 to 8). Only a numerical constant is allowed.

If this argument is omitted, all open files are closed.

[Reference Program]
 1 Open "COM1:" AS #1 ' "Open "COM1:" as file No. 1.
 2 Print #1,M1
 :
10 Input #1,M2
11 Close #1 ' Close file No. 1, "COM1:".
 :
20 Close ' Close all open files.

[Explanation]
(1) This instruction closes files (including communication lines) opened by the Open instruction. Data

remaining in the buffer is flushed.
The data left in the buffer will be processed as follows when the file is closed:

Table 4-15:Processing of each buffer when the file is closed

(2) Executing an End statement will also close a file.
(3) If the file number is omitted, all files will be closed.

[Related instructions]
Open (Open), Print (Print), Input (Input)

Close[] [[#]<File No.>[, [[#]<File No.> ...]

Buffer types Processing when the file is closed

Communication line reception buffer The contents of the buffer are destroyed

Communication line transmission buf-
fer

(No data remains in the transmission buffer since the data in the transmission buf-
fer is sent immediately by executing the Print instruction.)

File load buffer The contents of the buffer are destroyed.

File unload buffer The contents of the buffer are written into the file, and then the file is closed.

4-178 Detailed explanation of command words

4MELFA-BASIC V

Clr (Clear)

[Function]
This instruction clears general-purpose output signals, local numerical variables in a program, and numeri-
cal external variables.

[Format]

[Terminology]
<Type> It is possible to specify either a constant or a variable.

0 : All steps 1 to 3 below are executed.
1 : The general-purpose output signal is cleared based on the output reset pattern.

The output reset pattern is designated with parameters ORST0 to ORST224.
Refer to Page 424, "5.14 About the output signal reset pattern".
(0: OFF, 1: ON, *: Hold)
2 : All local numeric variables and numeric array variables used in the program are cleared

to zero
3 : Clears all external numerical variables (External system variables and user-defined

external variables) and external numerical array variables, setting them to 0. External
position variables are not cleared.

[Reference Program]
(1) The general-purpose output signal is output based on the output reset pattern.
 1 Clr 1

(2) The local numeric variables and numeric array variables in the program are cleared to 0.
 1 Dim MA(10)
 2 Def Inte IVAL
 3 Clr 2 ' Clears MA(1) through MA(10), IVAL and local numeric variables in the program to 0.

(3) All external numeric array variables and external numeric array variables are cleared to 0
 1 Clr 3

(4) (1) though (3) above are performed simultaneously.
 1 Clr 0

[Related parameter]
ORST0 to ORST224

[Related system variables]
M_In/M_Inb/M_In8/M_Inw/M_In16, M_Out/M_Outb/M_Out8/M_Outw/M_Out16

Clr[]<Type>

 4MELFA-BASIC V

 Detailed explanation of command words 4-179

Cmp Jnt (Compliance Joint)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the JOINT coordinates system.
Note) The available robot type is limited. Refer to "[Available robot type]".

[Format]

[Terminology]
<Axis designation> Specify the axis to be controlled in a pliable manner with the bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis 87654321.

[Reference Program]
1 Mov P1
2 CmpG 0.0,0.0,1.0,1.0, , , , ' Set softness.
3 Cmp Jnt,&B11 ' The J1 and J2 axes are put in the state where they are controlled in a

pliable manner.
4 Mov P2
5 HOpen 1
6 Mov P1
7 Cmp Off ' Return to normal state.

[Explanation]
(1) It is possible to control each of the robot's axes in the joint coordinate system in a pliable manner. For

example, if using a horizontal multi-joint robot to insert pins in a workpiece by moving the robot's hand
up and down, it is possible to insert the pins more smoothly by employing pliable control of the J1 and J2
axes (see the statement example above).

(2) The degree of compliance can be specified by the CmpG instruction, which sets the spring constant. If
the robot is of the RH-SDH type, specify 0.0 for the horizontal axes J1 and J2 to make the robot behave
equivalently to a servo free system (the spring constant is zero). (Note that the vertical axes cannot be
made to behave equivalently to a servo free system even if 0.0 is set for them. Also, be careful not to let
these axes reach a position beyond the movement limit or where the amount of diversion becomes too
large.) Note that 4) and 5) below do not function if this servo-free equivalent behavior is in use.

(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,
execute the "Cmp Off" command or turn Off the power.

(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of
each joint axis.

(5) If the amount of difference between the original target position and the actual robot position becomes
greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next step of the program.

(6) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel
the Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(7) Be aware that the position of the robot may change if the servo status is switched on while this instruc-
tion is active.

(8) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the
compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(9) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and then
execute the Cmp Jnt instruction again.

(10) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

(11) If a positioning completion condition is specified using the Fine instruction while the compliance mode is
activated, depending on the operation the robot may be unable to reach the positioning completion

Cmp[]JNT, <Axis designation>

4-180 Detailed explanation of command words

4MELFA-BASIC V

pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

(12) While operation is performed in the compliance mode of the joint coordinate system, if the Excessive
error 1 (H096n) occurs, increase the set value of parameter CMPJCLL to suppress the error.
(Setting range: 1 to 10)
Gradually increase the set value of this parameter until no Excessive error 1 occurs.
To use this function, the controller software version R4b/S4b or later is required.

The compliance mode is in effect continuously until the Cmp Off instruction is exe-
cuted, or the power is turned off.

To execute a jog operation after setting the compliance mode with the Cmp Jnt
instruction, use the JOINT jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, perform
servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Available robot type]

[Related system variables]
M_BTime

[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Pos (Compliance Posture), Cmp Tool
(Compliance Tool)

[Related parameter]
CMPJCLL

RH-6SDH/12SDH/18SDH/20SDH series,
RH-6SQH/12SQH/18SQH/20SQH series

 CAUTION

 CAUTION

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of command words 4-181

Cmp Pos (Compliance Posture)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the XYZ coordinates system.

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
1 Mov P1 ' Move in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness
3 Cmp Pos, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10)=1 ' Instructs to close the chuck for positioning.
6 Dly 1.0 ' Waits for the completion of chuck closing.(1 sec.)
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate sys-

tem.
9 Cmp Off ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the XYZ coordinate system.

For example, when inserting a pin in the vertical direction, if the X, Y, A and B axes are set to soft opera-
tion, the pin can be inserted smoothly.

(2) The degree of softness can be designated with the CmpG command.
(3) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "Cmp Off" command or turn Off the power.
(4) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of

each joint axis.
(5) The deviation of the command position and actual position can be read with M_CmpDst. The success/

failure of pin insertion can be checked using this variable.
(6) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation
shifts to the next step of the program.

(7) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel
the Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(8) If the servo turns from Off to On while this command is functioning, the robot position could change.
(9) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(10) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and
then execute the Cmp Pos instruction again.

(11) If the robot is operated near a singular point, an alarm may be generated or control may be disabled. Do
not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by exe-
cuting a Cmp Off instruction once with servo Off (or turning Off and then On the power again), keep the
robot away from a singular point, and then make the compliance mode effective again.

(12) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

(13) If a positioning completion condition is specified using the Fine instruction while the compliance mode
is activated, depending on the operation the robot may be unable to reach the positioning completion

Cmp[]Pos, <Axis designation>

4-182 Detailed explanation of command words

4MELFA-BASIC V

pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

Fig.4-16:The example of compliance mode use

The compliance mode is in effect continuously until the Cmp Off instruction is
executed, or the power is turned off. Exercise caution when changing the execut-
able program number or operating the jog.

To execute a jog operation after setting the compliance mode with the Cmp Pos
instruction, use the XYZ jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, per-
form servo OFF first.
Be careful that if teaching operation is performed with Servo ON, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Related system variables]
M_BTime

[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Tool (Compliance Tool), Cmp Jnt (Compliance
Joint)

Positioning device

+Y

+X

+Z

P2

Robot hand CMP POS, &B000011
 CBAZYX

Soften the control of
axis X and Y in the
XYZ coordinates
system.

J2

+Y

+X

J4

J1

OP2

Positioning device

J2

+Y

+X

J4

J1

OP2

Positioning device

 CAUTION

 CAUTION

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of command words 4-183

Cmp Tool (Compliance Tool)

[Function]
Start the soft control mode (compliance mode) of the specified axis in the Tool coordinates system.

[Format]

[Terminology]
<Axis designation> Designate axis to move softly with a bit pattern.

1 : Enable, 0 : Disable &B00000000
 This corresponds to axis L2L1CBAZYX

[Reference Program]
1 Mov P1 ' Moves to in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
3 Cmp Tool, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10)=1 ' Instructs to close the chuck for positioning.
6 Dly 1.0 ' Waits for the completion of chuck closing.(1 sec.)
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate sys-

tem.
9 Cmp Off ' Return to normal state.

[Explanation]
(1) The robot can be moved softly with the tool coordinate system. For the tool coordinate system, please

refer to Page 408, "5.6 Standard Tool Coordinates".
(2) For example, when inserting a pin in the tool coordinate Z axis direction, if the X, Y, A and B axes are set to

soft operation, the pin can be inserted smoothly.
(3) The degree of softness can be designated with the CmpG command.
(4) The soft state is maintained even after the robot program execution is stopped. To cancel the soft status,

execute the "Cmp Off" command or turn Off the power.
(5) When pressing in the soft state, the robot cannot move to positions that exceed the operation limit of each

joint axis.
(6) The deviation of the command position and actual position can be read with M_CmpDst. The success/fail-

ure of pin insertion can be checked using this variable.
(7) If the amount of difference between the original target position and the actual robot position becomes

greater than 200 mm by pushing the hand, etc., the robot will not move any further and the operation shifts
to the next step of the program.

(8) It is not possible to use Cmp Jnt, POS, and Tool at the same time. In other words, an error occurs if the
Cmp Pos or Cmp Tool instruction is executed while the Cmp Jnt instruction is being performed. Cancel the
Cmp Jnt instruction once using the Cmp Off instruction to execute these instructions.

(9) If the servo turns from Off to On while this command is functioning, the robot position could change.
(10) It is possible to perform jog operations while the robot is in compliance mode. However, the setting of the

compliance mode cannot be canceled by the T/B; in order to do so, execute this instruction in a program
or execute it directly via the program edit screen of the T/B.

(11) To change the axis specification, cancel the compliance mode with the Cmp Off instruction first, and then
execute the Cmp Tool instruction again.

(12) For vertical 5-axis robots (such as the RV-3SDJ), only the X and Z axes can be used for axis specifica-
tion.

(13) If the robot is operated near a singular point, an alarm may be generated or control may be disabled. Do
not operate the robot near a singular point. If this situation occurs, cancel the compliance mode by exe-
cuting a Cmp Off instruction once with servo Off (or turning Off and then On the power again), keep the
robot away from a singular point, and then make the compliance mode effective again.

Cmp[]Tool, <Axis designation>

4-184 Detailed explanation of command words

4MELFA-BASIC V

(14) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes, even if
specified.

(15) If a positioning completion condition is specified using the Fine instruction while the compliance mode
is activated, depending on the operation the robot may be unable to reach the positioning completion
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

Fig.4-17:The example of using the compliance mode

The compliance mode is in effect continuously until the Cmp Off instruction is exe-
cuted, or the power is turned off. Exercise caution when changing the executable
program number or operating the jog.

To execute a jog operation after setting the compliance mode with the Cmp Tool
instruction, use the Tool jog mode.
If any other jog mode is used, the robot may operate in a direction different from
the expected moving direction because the directions of the coordinate systems
controlled by the jog operation and the compliance mode differ.

When performing the teaching of a position while in the compliance mode, per-
form servo Off first.
Be careful that if teaching operation is performed with Servo On, the original com-
mand position is taught, instead of the actual robot position. As a result, the robot
may move to a location different from what has been taught.

[Related system variables]
M_BTime

[Related instructions]
Cmp Off (Compliance OFF), CmpG (Compliance Gain), Cmp Pos (Compliance Posture), Cmp Jnt
(Compliance Joint)

Positioning device

+Y
+X

+Z

Robot hand

P2

 Tool coordinate system
CMP TOOL, &B000011
 CBAZYX

Softens the X
and Y axis of the
tool coordinate
system.

 CAUTION

 CAUTION

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of command words 4-185

Cmp Off (Compliance OFF)

[Function]
Release the soft control mode (compliance mode).

[Format]

[Reference Program]
1 Mov P1 ' Moves to in front of the part insertion position.
2 CmpG 0.5, 0.5, 1.0, 0.5, 0.5, , , ' Set softness.
3 Cmp Tool, &B011011 ' The X, Y, A, and B axes are put in the state where they are con-

trolled in a pliable manner.
4 Mvs P2 ' Moves to the part insertion position.
5 M_Out(10)=1 ' Instructs to close the chuck for positioning.
6 Dly 1.0 ' Waits for the completion of chuck closing.(1 sec.)
7 HOpen 1 ' Open the hand.
8 Mvs, -100 ' Retreats 100 mm in the Z direction of the Tool coordinate sys-

tem.
9 Cmp Off ' Return to normal state.

[Explanation]
(1) This instruction cancels the compliance mode started by the Cmp Tool, Cmp Pos, or Cmp Jnt instruction.
(2) In order to cancel jog operations in the compliance mode, either execute this instruction in a program or

execute it directly via the program edit screen of the T/B.

[Related instructions]
CmpG (Compliance Gain), Cmp Tool (Compliance Tool), Cmp Pos (Compliance Posture), Cmp Jnt
(Compliance Joint)

Cmp[]Off

4-186 Detailed explanation of command words

4MELFA-BASIC V

CmpG (Compliance Gain)

[Function]
Specify the softness of robot control.

[Format]
Cmp Pos, Cmp Tool

Cmp Jnt

[Terminology]
<X to C axis gain>
<J1 to J6 axis gain> Specify this argument using a constant.

The softness can be set for each axis.
Value 1 .0 indicates the normal status, and the 0.2 is the softest.
If the value is omitted, the current setting value will be applied.

[Reference Program]
1 CmpG , ,0.5, , , , , ' This statement selects only the Z-axis. For axes that are omitted, keep the corre-

sponding entries blank and just enter commas.

[Explanation]
(1) The softness can be designated in each axis units.
(2) The soft state will not be entered unless validated with the Cmp Pos or Cmp Tool commands.
(3) A spring-like force will be generated in proportion to the deviation of the command position and actual

position. CmpG designates that spring constant.
(4) The deviation of the command position and actual position can be read with M_CmpDst. The success/

failure of pin insertion can be checked using this variable.
(5) If a small gain is set, and the soft state is entered with the Cmp Pos, Cmp Tool, and Cmp Jnt commands,

the robot position could drop. Set the softness state gradually while checking it.
(6) The softness can be changed halfway when this command executed under the soft control status.
(7) Even if value of less than minimum is set up, the gain is minimum value.Also, two or more decimal posi-

tions can be set for gain values.

(8) The compliance mode is valid only for the robot arm axes. It is not valid for additional axes (J7, J8 or L1,
L2), even if specified.

CmpG[] [<X axis gain>], [<Y axis gain>], [<Z axis gain>], [<A axis gain>],

 [<B axis gain>], [<C axis gain>], ,

CmpG[] [<J1 axis gain>], [<J2 axis gain>], [<J3 axis gain>], [<J4 axis gain>],

 [<J5 axis gain>], [<J6 axis gain>], ,

Type Cmp Pos,Cmp Tool Cmp Jnt

RV-2SQ/6SQ/6SQL/12SQ
RV-2SD/6SD/6SDL/12SD

0.01, 0.01, 0.01, 0.01, 0.01, 0.01 Use is impossible

RV-12SQL, RV-12SDL 0.01, 0.01, 0.05, 0.05, 0.01, 0.01 Use is impossible

RV-3SQ/3SQJ,RV-3SD/3SDJ 0.10, 0.10, 0.10, 0.10, 0.10, 0.10 Use is impossible

RH-6SQH/12SQH/18SQH/20SQH,
RH-6SDH/12SDH/18SDH/20SDH

0.20, 0.20, 0.20, 0.20, 0.20, 0.20 0.00, 0.00, 0.20, 0.00, 1.00, 1.00

 4MELFA-BASIC V

 Detailed explanation of command words 4-187

Cnt (Continuous)

[Function]
Designates continuous movement control for interpolation. Shortening of the operating time can be per-
formed by carrying out continuous movement.

[Format]

[Terminology]
<1/0> Designate the continuous operation or acceleration/deceleration operation mode.

1 : Continuous movement.
0 : Acceleration/deceleration movement.(default value.)

<Numeric value 1> Specify the maximum proximity distance in mm for starting the next interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

<Numeric value 2> Specify the maximum proximity distance in mm for ending the previous interpolation when
changing to a new path segment.
The default value is the position where the acceleration/deceleration is started.

[Reference Program]
When the maximum neighborhood distance is specified when changing a locus.
1 Cnt 0 ' Invalidate Cnt (Continuous movement).
2 Mvs P1 ' Operate with acceleration/deceleration
3 Cnt 1 ' Validate Cnt (Continuous movement).

 (Operate with continuous movement after this step.)
4 Mvs P2 ' The connection with the next interpolation is continuous movement.
5 Cnt 1,100,200 ' Continuous operation specification at 100 mm on the starting side and at 200

mm on the end side.
6 Mvs P3 ' Continuous operation at a specified distance before and after an interpolation.
7 Cnt 1,300 ' Continuous operation specification at 300 mm on the starting side and at 300

mm on the end side.
8 Mov P4 ' Continuous operation specification at 300 mm on the starting side.
9 Cnt 0 ' Invalidate Cnt (Continuous movement).
10 Mov P5 ' Operate with acceleration/deceleration

Fig.4-18:Example of continuous path operation

Cnt[] <Continuous movement mode/acceleration/deceleration movement mode>]

 [, <Numeric value 1>] [, <Numeric value 2>]

P1

P2

P3

P4P5

Start position of movement

Although the neighborhood
distance (300 mm) when
moving to P4 has been set,
continuous operation when
moving to P5 has been
canceled. Therefore, it moves to
P4 first, and then moves to P5.

It moves to P1 first and then to
P2 since continuous operation
is not set up.

Continuous operation is performed at
a distance shorter than the smaller of
the neighborhood distance (the initial
setting value in the robot controller)
when moving to P2 and the fulcrum
neighborhood point (100 mm) when
moving to P3.

Continuous operation is performed at a distance
shorter than the smaller of the neighborhood distance
(200 mm) when moving to P3 and the fulcrum
neighborhood point (300 mm) when moving to P4.

4-188 Detailed explanation of command words

4MELFA-BASIC V

The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

[Explanation]
(1) The interpolation (4 step to 8 step of the example) surrounded by Cnt 1 - Cnt 0 is set as the target of

continuous action.
(2) The system default value is Cnt 0 (Acceleration/deceleration movement).
(3) If values 1 and 2 are omitted, the connection with the next path segment is started from the time the

deceleration is started.
(4) As shown in Fig. 4-19, in the acceleration and deceleration operating mode, the speed is reduced in front

of the target position. After moving to the target position, the speed for moving to the next target posi-
tion starts to be accelerated. On the other hand, in the continuous operating mode, the speed is
reduced in front of the target position, but it does not stop completely. The speed for moving to the next
target position starts to be accelerated at that point. Therefore, it does not pass through each target
position, but it passes through the neighborhood position.

Fig.4-19:Acceleration/deceleration movement and continuous movement

(5) The neighborhood distance denotes the changing distance to the interpolation operation at the next tar-
get position. If this neighborhood distance (numerical value 1, numerical value 2) is omitted, the accel-
erate and deceleration starting position will be the changing position to the next interpolation. In this
case, it passes through a location away from the target position, but the operating time will be the short-
est. To pass through a location closer to the target position, set this neighborhood distance (numerical

 CAUTION

10 MOV P1
20 MVS P2
30 MOV P3

It decelerates and accelerates to P1, P2
and P3. After moving to the target position,
it moves to the next target position.

10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

It passes through the neighborhood of P1
and P2, and then moves to P3.

P1 P2

P3
Start position of

movement

Acceleration/deceleration movement

P1 P2

P3

Continuous movement

P3P2

t (Time)

P1
v (Speed)

P3P2P1

*The above graph shown an example.
Depending on the moving distance and/or
speed, acceleration and deceleration may
occur during interpolation connection.

Start position of
movement

v (Speed)

t (Time)

1 Mov p1
2 Mvs P2
3 Mov P3

1 Cnt 1
2 Mov P1
3 Mvs P2
4 Mov P3
5 Cnt 0

 4MELFA-BASIC V

 Detailed explanation of command words 4-189

value 1, numerical value 2).

Fig.4-20:Setting Up the Neighborhood Distance

(6) If the specifications of numerical value 1 and numerical value 2 are different, continuous operation will be
performed at the position (distance) that is the smaller of these two.

(7) If numeric value 2 is omitted, the same value as numeric value 1 will be applied.
(8) When continuous operation is specified, the positioning completion specification by the Fine instruction

will be invalid.
(9) If the proximity distance (value 1, value 2) is set small, the movement time may become longer than in

the status where Cnt 0.
(10) Even when continuous operation is specified, acceleration/deceleration is performed for the interpola-

tion instruction that specifies singular point passage as the interpolation method.

P1

P2

P3

If the neighborhood
distance is not specified,
dotted line operation will
be performed.
10 CNT 1
20 MOV P1
30 MVS P2
40 MOV P3
50 CNT 0

If the neighborhood distance
is specified, solid line
operation will be performed.
10 CNT 1, MA, MB
20 MOV P1
30 CNT 1, MC, MD
40 MVS P2
50 MOV P3
60 CNT 0

Deceleration start
position

Acceleration end
position

MB

MC

MC

MD
If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.

*If "30 CNT 1, MC, MD" are
not described, the value of
MC in the figure will be MA,
and the value of MD will be
MB.

Acceleration end
position

Deceleration start
position

If the MB and MC values
are different, connection
is made using a value
lower than the smaller of
these two values.

1 Cnt 1,MA,MB
2 Mov P1
3 Cnt 1,MC,MD
4 Mvs P2
5 Mov P3
6 Cnt 0

1 Cnt 1
2 Mov P1
3 Mov P2
4 Mov P3
5 Cnt 0

 "3 Cnt 1, MC, MD"

4-190 Detailed explanation of command words

4MELFA-BASIC V

ColChk (Col Check)

[Function]
Set to enable/disable the impact detection function in automatic operation.
The impact detection function quickly stops the robot when the robot's hand and/or arm interferes with
peripheral devices so as to minimize damage to and deformation of the robot's tool part or peripheral
devices. However, it cannot completely prevent such damage and deformation.

[Format]

[Terminology]
On Enable the impact detection function.

Once an impact is detected, it immediately stops the robot, issues an error numbered
in 1010's, and turns OFF the servo.

Off Disable the impact detection function
NOErr Even if an impact is detected, no error is issued. (If omitted, an error will occur.)

[Reference Program 1]
If an error is set in the case of impact
1 COlLvl 80,80,80,80,80,80,, 'Specify the allowable level for impact detection.
2 ColChk On 'Enable the impact detection function.
3 Mov P1
4 Mov P2
5 Dly 0.2 'Wait until the completion of operation

 (Fine instruction can also be used).
6 ColChk Off 'Disable the impact detection function.
7 Mov P3

[Reference Program 2]
If interrupt processing is used in the case of impact
1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S 'Define the processing to be executed when an impact is

detected using an interrupt.
2 Act 1=1
3 ColChk On,NOErr 'Enable the impact detection function in the error non-occurrence mode.
4 Mov P1
5 Mov P2 'If an impact is detected while executing steps 4 through 7, it

jumps to interrupt processing.
6 Mov P3
7 Mov P4
8 Act 1=0
 :
10 *HOME 'Interrupt processing during impact detection
11 ColChk Off 'Disable the impact detection function.
12 Servo On 'Turn the servo on.
13 PESC=P_ColDir(1)*(-2) 'Create the amount of movement for escape operation.
14 PDst=P_Fbc(1)+PESC 'Create the escape position.
15 Mvs PDst 'Move to the escape position.
16 Error 9100 'Stop operation by generating a user-defined L level error.

ColChk[]On [, NOErr] / Off

 4MELFA-BASIC V

 Detailed explanation of command words 4-191

[Explanation]
(1) The impact detection function estimates the amount of torque that will be applied to the axes during

movement executed by a Move instruction. It determines that there has been an impact if the difference
between the estimated torque and the actual torque exceeds the tolerance, and immediately stops the
robot.

(2) Immediately after power ON, the impact detection function is disabled. Enable the Col parameter before
using. This instruction specifies whether to enable or disable the impact detection function during pro-
gram operation (including step feed and step jump). The enable/disable status when no program is exe-
cuted, such as pause status and during jog operation, depends on the setting of element 3 of the Col
parameter.

(3) The detection level can be adjusted by a ColLvl instruction. The initial value of the detection level is the
setting value of the ColLvl parameter.

(4) After the impact detection function is enabled by this instruction, that state is maintained continuously
until it is disabled by the ColChk Off instruction, the program is reset, an End instruction is executed or
the power is turned OFF.

(5) Even if the impact detection function is disabled by this instruction, the impact detection level set by a
ColLvl instruction is retained.

(6) When the continuity function is enabled, the previous impact detection setting state is restored at next
power ON even if the power is turned OFF.

(7) Error 3950 occurs if an interrupt by the M_ColSts status variable (an interrupt with the interrupt condition
of M_ColSts(*)=1 and * denotes a machine number) is not enabled when specifying NOErr (error non-
occurrence mode). See [Syntax Example 2]. Error 3960 also occurs if this interrupt processing is
disabled while in the error non-occurrence mode.

(8) If an impact is detected while in the error non-occurrence mode, the robot turns OFF the servo and
stops. Therefore, no error occurs and operation also continues. However, it is recorded in the error log
that an impact was detected. (The recording into the log is done only if no other errors occur
simultaneously.)

(9) If an attempt is made to execute ColChk On and ColChk On,NOErr on a robot that cannot use the impact
detection function, low level error 3970 occurs. In the case of ColChk Off, neither error occurs nor
processing is performed.

(10) The impact detection function cannot be enabled while compliance is being enabled by a Cmp
instruction or the torque limit is being enabled by a Torq instruction. In this case, error 3940 will occur if
an attempt is made to enable the impact detection function. Conversely, error 3930 will occur if an
attempt is made to enable a Cmp or Torq instruction while impact detection is being enabled.

(11) If ColChk Off is described immediately after an operation instruction, impact detection may not work
near the last stop position of a given operation. As shown in syntax example 1, execute ColChk Off upon
completion of positioning by a Dly or Fine instruction between an operation instruction and a ColChk Off
instruction.

推定トルク

検知レベル(ColLvl)が100%の場合

実際のトルク
衝突を検知(100%時)

衝突を検知(60%時)

トルク

時間

検知レベル+側

検知レベル-側

検知レベル(ColLvl)が60%の場合

検知レベル(ColLvl)が60%の場合

検知レベル(ColLvl)が100%の場合

Torque

Detection level + side

Detection level - side

Detects an impact (at 100%)

Detects an impact (at 60%)

Actual torque

Detection level (ColLvl) is 100%

Detection level (ColLvl) is 60%

Estimated torque

Detection level (ColLvl) is 60%

Detection level (ColLvl) is 100%

4-192 Detailed explanation of command words

4MELFA-BASIC V

(12) The impact detection function may not work properly if the hand weight (HNDDATn parameter) and
workpiece weight (WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly
before using.

(13) If the impact detection function is enabled by this instruction, the execution time (tact time) may become
long for some programs. Use the impact detection function only for operations that may interfere with
peripheral devices, rather than enabling it for the entire program.

(14) This function cannot be used together with the multi-mechanism control function.

[Related instructions and variables]
ColLvl (Col Level), M_ColSts, J_ColMxl, P_ColDir

[Related parameter]
COL, COLLVL, COLLVLJG, HNDDATn, WRKDATn

 4MELFA-BASIC V

 Detailed explanation of command words 4-193

ColLvl (Col Level)

[Function]
Set the detection level of the impact detection function in automatic operation.

[Format]

[Terminology]
<J1 to J6 axis> Specify the detection level in a range between 1 and 500%.

If omitted, the previously set value is retained.
This instruction is invalid for the J7 and J8 axes.
The initial value is the setting value of the ColLvl parameter.

[Reference Program]
1 ColLvl 80,80,80,80,80,80,, 'Specify the allowable level for impact detection.
2 ColChk On 'Enable the impact detection function.
3 Mov P1
4 ColLvl ,50,50,,,,, 'Change the allowable level of the J2 and J3 axes for impact detection.
5 Mov P2
6 Dly 0.2 'After arriving at P2, disable impact detection.
7 ColChk Off 'Disable the impact detection function.
8 Mov P3

[Explanation]
(1) Set the allowable level of each axis for the impact detection function during program operation.
(2) This instruction affects the impact detection function in automatic operations (including step feed and

step jump operations). If a program is not running (pause status or during jog operation), the setting level
of the ColLvlJG parameter is used.

(3) Normally, the setting value of the allowable level immediately after power ON is the setting value of the
ColLvl parameter. The initial value of parameter differ by each type.

(4) If this value is increased, the detection level (sensitivity) lowers; if this value is lowered, the detection
level increases.

(5) If the detection level is increased, the probability of erroneous detection becomes high. Adjust the level
such that it does not become too high. Depending on the posture and operation speed, erroneous
detection may also occur with the initial value. In this case, the detection level should be lowered.

(6) The impact detection function may not work properly if the hand weight (HNDDATn parameter) and
workpiece weight (WRKDATn parameter) are not set correctly. Be sure to set these parameters correctly
before using.

(7) When the continuity function is enabled, the previously set value is restored at next power ON even if the
power is turned OFF.

(8) The allowable level is reset to the setting value of the ColLvl parameter when a program reset or an End
instruction is executed.

(9) Even if an attempt is made to execute this instruction on robots that cannot use the impact detection
function, the instruction is ignored and thus no error occurs.

(10) The impact detection function is not valid for the J7 and J8 axes.
(11) The correct setting value may vary even among robots of the same type due to individual differences of

units. Check the operation with each robot.

[Related instructions and variables]
ColChk (Col Check), M_ColSts, J_ColMxl, P_ColDir

[Related parameter]
COL,COLLVL, HNDDATn, WRKDATn

ColLvl[] [<J1 axis>],[<J2 axis>],[<J3 axis>],[<J4 axis>],[<J5 axis>],[<J6 axis>],,

4-194 Detailed explanation of command words

4MELFA-BASIC V

Com On/Com Off/Com Stop (Communication ON/OFF/STOP)

[Function]
Com On :Allows interrupts from a communication line.
Com Off :Prohibits interrupts from a communication line.
Com Stop :Prevents interrupts from a communication line temporarily (data is received).

Jump immediately to the interrupt routine the next time the Com On instruction is executed.

[Format]

[Terminology]
<Communication Line No.> Describes numbers 1 to 3 assigned to the communication line.

(If the argument is omitted, 1 is set as the default value.)

[Reference Program]
 Refer to Page 250, "On Com GoSub (ON Communication Go Subroutine)".

[Explanation]
(1) When Com On Off is executed, even if communications are attempted, the interrupt will not be gener-

ated.
(2) For information on communication line Nos., refer to the Page 253, "Open (Open)".
(3) After Com Stop is executed, even if communication is attempted, the interrupt will not be generated.

Note that the receiving data and the fact of the interrupt will be recorded, and be executed the next time
the line is reopened.

Com[(<Communication Line No.>)][]On

Com[(<Communication Line No.>)][]Off

Com[(<Communication Line No.>)][]Stop

 4MELFA-BASIC V

 Detailed explanation of command words 4-195

Def Act (Define act)

[Function]
This instruction defines the interrupt conditions for monitoring signals concurrently and performing interrupt
processing during program execution, as well as the processing that will take place when an interrupt
occurs.

[Format]

[Terminology]
<Priority No.> This is the priority No. of the interrupt. It can be set with constant Nos. 1 to 8.
<Expression> For the interrupt status, use the formats described below: (Refer to the syntax diagram)

<Numeric type data> <Comparison operator> <Numeric type data> or
<Numeric type data> <Logical operator> <Numeric type data>
<Numeric type data> refers to the following:
<Numeric type constant>| <Numeric variable>|<Numeric array variable>|
<Component data>

<Process> Refers to a GoTo statement or a GoSub statement used to process an interrupt when it
occurs.

<Type> When omitted: Stop type 1
The robot stops at the stop position, assuming 100% execution of the external override.
If the external override is small, the time required for the robot to stop becomes longer, but
it will always stop at the same position.
S : Stop type 2

The robot decelerates and stops in the shortest time and distance possible,
independently of the external override.

L : Execution complete stop
The interrupt processing is performed after the robot has moved to the target position
(the step being executed is completed).

[Reference Program]
1 Def Act 1,M_In(17)=1 GoSub *SUB1 ' Defines the subroutine at label *SUB1 to be the one to

be called up when the status for the general purpose
input signal No. 17 is ON.

2 Def Act 2,MFG1 AND MFG2 GoTo *L200 ' Defines the label *L200 as the one to jump to when the
logic operation of AND applied to MFG1 or MFG2
results in "true."

3 Def Act 3,M_Timer(1)>10.5 GoSub *LBL ' When 10.5 seconds pass, the program calls the label
*LBL subroutine.

 :
9 *SUB1
10 M_Timer(1)=0 ' Sets the timer to zero.
11 Act 3=1 ' Enables Act 3.
12 Return 0
 :
19 *L200
20 Mov P_Safe
21 End
 :
30 *LBL
31 M_Timer(1)=0.0 ' Resets the timer to zero.
32 Act 3=0 ' Disables Act 3.
33 Return 0

Def[]Act[]<Priority No.>, <Expression>[]<Process> [, <Type>]

4-196 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) The priority level for the interrupts is decided by the <Priority No.>, and the priority level, from the highest

ranges from 1 to 8.
(2) There can be up to 8 settings for the interrupts. Use the <Priority No.> to differentiate them.
(3) An <expression> should be either a simple logical operation or a comparison operation (one operator).

Parentheses cannot be used either.
(4) If two Def Act instructions with the same priority number are included in a program, the latter one defined

becomes valid.
(5) Since Def Act defines only the interrupt, always use the Act command to designate the enable/disable

status of the interrupt.
(6) The communications interrupt (COM) has a higher priority level than any of the interrupts defined by Def

Act.
(7) Def Act definitions are valid only in the programs where they are defined. These are invalid when called

up in a program by CallP. If necessary, the data in a sub program may need to be redefined.
(8) If an interrupt is generated when a GoTo command is designated by <Process> for a Def Act command,

during execution of the remaining program, the interrupt in progress will remain, and only interrupts of a
higher level will be accepted. The interrupt in progress for a GoTo statement can be canceled with the
execution of an End statement.

(9) Expressions containing conditional expressions combined with logical operations, such as (M1 AND
&H001) = 1, are not allowed.

Specify the proper interrupt stop type according to the purpose. Specify "S" for the
stop type if it is desired to stop the robot in the shortest time and distance possible
by an interrupt while the robot is executing a movement instruction.

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of command words 4-197

Table 4-16 shows conceptual diagrams that illustrate the effects of the 3 types of program execution stop
commands when the interrupt conditions are met while the robot is moving according to a movement
instruction.

Table 4-16:Conceptual diagram showing the effects of different stop commands

[Related instructions]
Act (Act)

External override 100% (maximum speed) External override 50%

Stop type 1
(If the argument is
omitted)
S1=S2

Stop type 2(S)

Execution com-
plete stop(L)
S3=S4

 Speed

Time

Interrupt

Stop distance S1

Time

Speed

Interrupt

Stop distance S2

 Speed

Time

Interrupt

 Speed

Time

Interrupt

Decelerate and stop immediately

Speed

Time

Interrupt

Total travel distance S3

Speed

Time

Interrupt

Total travel distance S4

4-198 Detailed explanation of command words

4MELFA-BASIC V

Def Arch (Define arch)

[Function]
This instruction defines an arch shape for the arch motion movement corresponding to the Mva instruction.

[Format].

[Terminology]
<Arch number> Arch motion movement pattern number. Specify a number from 1 to 4 using a con-

stant or a variable.
<Upward movement increment>
<Downward movement increment >

Refer to figure at right. It is pos-
sible to specify either a con-
stant or a variable.

<Upward evasion increment>
<Downward evasion increment>
<Interpolation type> Interpolation type for upward

and downward movements.
Linear/joint = 1/0

<Interpolation type 1> Detour/short cut = 1/0,
<Interpolation type 2> 3-axis XYZ/Equivalent rotation = 1/0

If any of the arguments besides the arch number is omitted, the default value is employed.
The default values are set by the following parameters. Check the corresponding parameters to see the values;
it is also possible to modify the values.

Vertical multi-joint robot(RV-6SDL, etc.) Horizontal multi-joint robot(RH-12SDH **, etc.)

[Reference Program]
1 Def Arch 1,5,5,20,20
2 Mva P1,1 'Performs the arch motion movement defined in the shape definition in step 1.
3 Dly 0.3
4 Mva P2,2 'The robot moves according to the default values specified by the parameters.
5 Dly 0.3

[Explanation]
(1) If the Mva instruction is executed without the Def Arch instruction, the robot moves according to the arch

shape specified by the parameters.
(2) Used to change the increments in a program, etc.

Def[]Arch[]<Arch number>, [<upward movement increment>][<downward movement increment >],

[<Upward evasion increment>], [<downward evasion increment>],

[<interpolation type>], [<interpolation type 1>, <interpolation type 2>]

Parameter name Arch number
Upward movement

increment (mm)
Downward movement

increment (mm)
Upward evasion
increment (mm)

Downward evasion
increment (mm)

ARCH1S 1 0.0 0.0 30.0 30.0

ARCH2S 2 10.0 10.0 30.0 30.0

ARCH3S 3 20.0 20.0 30.0 30.0

ARCH4S 4 30.0 30.0 30.0 30.0

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

Parameter
name

Arch
number

Interpolation
type

Interpolation
type 1

Interpolation
type 2

ARCH1T 1 1 0 0 ARCH1T 1 0 0 0

ARCH2T 2 1 0 0 ARCH2T 2 0 0 0

ARCH3T 3 1 0 0 ARCH3T 3 0 0 0

ARCH4T 4 1 0 0 ARCH4T 4 0 0 0

× ●

Downward
movement
increment

Downward
evasion

increment

Upnward
evasion

increment

Upnward
movement
increment

 4MELFA-BASIC V

 Detailed explanation of command words 4-199

The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

[Related instructions]
Mva (Move Arch), Accel (Accelerate), Ovrd (Override), Mvs (Move S)(Used as a reference for interpolation
types 1 and 2)

 CAUTION

4-200 Detailed explanation of command words

4MELFA-BASIC V

Def Char (Define Character)

[Function]
Declares a character string variable. It is used when using a variable with a name that begins with a charac-
ter other than "C." It is not necessary to declare variables whose names begin with the character "C" using
the Def Char instruction.

[Format]

[Terminology]
<Character string variable name> Designate a variable name.

[Reference Program]
 1 Def Char MESSAGE ' Declare "MESSAGE" as a character string variable.
 2 MESSAGE = "WORKSET" ' Substitute "WORKSET" in the MESSAGE variable.
 3 CMSG = "ABC" ' Substitute "ABC" for variable CMSG. For variables starting with

C, the definition of "Def Char" is not required.

[Explanation]
(1) The variable name can have up to 16 characters. Refer to the Page 135, "4.4.6 Types of characters that

can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(3) A variable becomes a global variable that is shared among programs by placing "_" after C in the vari-

able name and writing it in a base program.
Refer to Page 144, "4.4.24 User-defined external variables" for details.

Def[]Char[]<Character string variable name>

 [, <Character string variable name>...

 4MELFA-BASIC V

 Detailed explanation of command words 4-201

Def FN (Define function)

[Function]
Defines a function and gives it name.

[Format]

[Terminology]
<Identification character> The identification character has the following four type.

Numeric value type:M
Character string type:C
Position type:P
Joint type:J

<Name> Describe a user-selected character string. (5 is the maximum)
<Dummy argument> When a function has been called up, it is transferred to the function.

It is possible to describe all the variables, and up to 16 variables can be used.
<Function Definition Expression>

Describe the expression for what operation to use as a function.

[Reference Program]
1 Def FNMAve(MA,MB)=(MA+MB)/2 ' Define FNMAVE to obtain the average of two numeric val-

ues.
2 MDATA1=20
3 MDATA2=30
4 MAVE=FNMAve(MDATA1,MDATA2) ' Substitute average value 25 of 20 and 30 in numeric vari-

able MAVE.
5 Def FNPADD(PA,PB)=PA+PB ' Position type addition.
6 P10=FNPADD(P1,P2)

[Explanation]
(1) FN + <Name> becomes the name of the function. The function name can be up to 8 characters long.
 Example) Numeric value type FNMMAX Identification character: M
 Character string type ... FNCAME$ Identification character: C (Describe $ at the end of the name)
(2) A function defined with Def FN is called a user-defined function. A function as long as one step can be

described.
(3) Built-in functions and user-defined functions that have already been defined can be used in the function

definition expression. In this case, up to 16 levels of user-defined functions can be written.
(4) If the variables used in <Function Definition Expression> are not located in <Dummy Argument>, then

the value that the variable has at that time will be used. Also, an error will occur if during execution, the
number or argument type (numeric value or character string) of arguments differs from the number or
type declared.

(5) A user-defined function is valid only in the program where it is defined. It cannot be used by a CallP des-
ignation program.

Def[]FN <Identification character><Name> [(<Dummy Argument> [, <Dummy Argument>]...)]

 = <Function Definition Expression>

4-202 Detailed explanation of command words

4MELFA-BASIC V

Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double)

[Function]
Use this instruction to declare numerical values. INTE stands for integer, FLOAT stands for single-precision
real number, and DOUBLE stands for double-precision real number.

[Format]

[Terminology]
<Numeric value variable name> Designate the variable name.

[Reference Program]
(1) Definition of the integer type variable.
 1 Def Inte WORK1, WORK2 ' Declare WORK 1 and WORK 2 as an numeric value variable name.
 2 WORK1 = 100 ' Substitute the value 100 in WORK 1.
 3 WORK2 = 10.562 ' Numerical "11" is set to WORK2.
 4 WORK2 = 10.12 ' Numerical "10" is set to WORK2.

(2) Definition of long precision integer type variable

 1 Def Long WORK3

 2 WORK3 = 12345

(3) Definition of the single precision type real number variable.
 1 Def Float WORK3
 2 WORK3 = 123.468 ' Numerical "123.468000" is set to WORK3.

(4) Definition of the double precision type real number variable.
 1 Def Double WORK4
 2 WORK4 = 100/3 ' Numerical "33.333332061767599" is set to WORK4.

[Explanation]
(1) The variable name can have up to 16 characters. Refer to the Page 135, "4.4.6 Types of characters that

can be used in program" for the characters that can be used.
(2) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(3) The variable declared with Inte will be an integer type.(-32768 to +32767)
(4) The variable declared with Long will be a long precision integer type (-2147483648 to 2147483647)
(5) The variable declared with Float will be a single-precision type.(+/-1.70141E+38)
(6) The variable declared with Double will be a double-precision type.(+/-1.701411834604692E+308)

Def[]Inte[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[] Long[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[] Float[] <Numeric value variable name> [, <Numeric value variable name>]...

Def[]Double[] <Numeric value variable name> [, <Numeric value variable name>]...

 4MELFA-BASIC V

 Detailed explanation of command words 4-203

Def IO (Define IO)

[Function]
Declares an input/output variable. Use this instruction to specify bit widths. M_In and M_Out variables are
used for normal single-bit signals, M_Inb and M_Outb are used in the case of 8-bit bytes, M_Inw and
M_Outw are used in the case of 16-bit words, and M_In32, M_Out32 are used in the case of 32-bit words.
Be aware that it is not allowed to reference output signals with variables declared using this instruction.

[Format]

[Terminology]
<Input/output variable name> Designate the variable name.
<Type designation> Designate BIT(1bit), BYTE(8bit), WORD(16bit) or INTEGER.
<Input/output bit No.> Designate the input(When referencing) or output(When assigning) bit No.
<Mask information> Designate when only a specific signal is to be validated.

[Reference Program]
(1) Assign the input variable named PORT1 to input/output signal number 6 in bit type.

 1 Def IO PORT1 = BIT,6
 :
 10 PORT1 = 1 ' Output signal number 6 turns on.
 :
 20 PORT1 = 2 ' Output signal number 6 turns off.(Because the lowest bit of the numerical value 2 is

0.)
 21 M1 = PORT1 ' Substitute the state of the input signal number 6 for M11.

(2) Assign the input variable named PORT2 to input/output signal number 5 in byte type, and specify the
mask information as 0F in hexadecimal.

 1 Def IO PORT2 = BYTE, 5, &H0F
 :
 10 PORT2 = &HFF ' Output signal number 5 to 8 turns on.
 :
 20 M2 = PORT2 ' Substitute the value of the input signals 5 to 8 for the variable M2.

(3) Assign the input variable named PORT3 to input/output signal number 8 in word type, and specify the
mask information as 0FFF in hexadecimal.

 1 Def IO PORT3 = WORD, 8, &H0FFF
 :
 10 PORT3 = 9 ' Output signal number 8 and 11 turns on.
 :
 20 M3 = PORT3 ' Substitute the value of the input signals 8 to 19 for the variable

M3.

Def[]IO[]<Input/output variable name> = <Type designation>, <Input/output bit No.>

 [, <Mask information>]

4-204 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) An input signal is read when referencing this variable.
(2) An output signal is written when assigning a value to this variable.
(3) It is not allowed to reference an output signal by this variable. Use the M_Out variable in order to refer-

ence an output signal.
(4) The variable name can have up to 16 characters. Refer to the Page 135, "4.4.6 Types of characters that

can be used in program" for the characters that can be used.
(5) When mask information is designated, only the specified signal will be validated.
 Example) In the above example on the 20th step, the input/output data with a bit width of eight is masked by
0F in hexadecimal. Thus, if PORT 2 is used thereafter,
•When used as an input signal (M1 = PORT 2):
Numbers 5 to 8 are used for input, and numbers 9 to 12 are always treated as 0.
No. 12 No.5 (Input/output bit No.)
 0000 1111
 Invalid Valid
•When used as an output signal (PORT 2 = M1):
Data to be output this time is output to numbers 5 to 8, and the status currently being output is retained at
numbers 9 to 12.
 No. 12 No.5 (Input/output bit No.)
 **** 1111
 | |
 Retains the current output status Output data of this time

 4MELFA-BASIC V

 Detailed explanation of command words 4-205

Def Jnt (Define Joint)

[Function]
This instruction declares joint type position variables. It is used when using a variable with a name that
begins with a character other than "J." It is not necessary to declare variables whose names begin with the
character "J" using the Def Jnt instruction.

[Format]

[Terminology]
<Joint variable name> Designate a variable name.

[Reference Program]
 1 Def Jnt SAFE ' Declare "SAFE" as a joint variable.
 2 Mov J1 ' For joint type position variables starting with J, the definition of

"Def Jnt" is not required.
 3 SAFE = (-50,120,30,300,0,0,0,0)
 4 Mov SAFE ' Move to SAFE.

[Explanation]
(1) Use this instruction to define a joint position variable by a name beginning with a character other than J.
(2) The variable name can have up to 16 characters. Refer to the Page 135, "4.4.6 Types of characters that

can be used in program" for the characters that can be used. When designating multiple variable
names, the maximum value (240 characters including command) can be set on one step.

(3) A variable becomes a global variable that is shared among programs by placing "_" after J in the variable
name and writing it in a base program.
Refer to Page 144, "4.4.24 User-defined external variables" for details.

Def[]Jnt[] <Joint variable name> [, <Joint variable name>]...

4-206 Detailed explanation of command words

4MELFA-BASIC V

Def Plt (Define pallet)

[Function]
Defines the pallet. (3-point pallet, 4-point pallet)

[Format]

[Terminology]
<Pallet No.> This is the selection No. of the set pallet. (Constants from 1 to 8 only).
<Start Point> Refers to the pallet's start point.
<End Point A> One of the ending points for the pallet. Transit point of arc for arc pallet.
<End Point B> Another ending point for the pallet. Ending point of arc for arc pallet.
<Diagonal Point> The diagonal point from the pallet's start point. Insignificant for arc pallet.
<Quantity A> The No. of workpieces from the pallet's start point to the end point A.

The No. of workpieces between the pallet start point and arc end point when using an
arc pallet.

<Quantity B> The No. of workpieces from the pallet's start point to the end point B.
Insignificant for an arc pallet. (1, etc., must be designated.)

<Pallet Pattern> Specify the pallet pattern and fixation/equal division of the posture when numbering divided
grid points. Constant only.
1: Zigzag (posture equal division)
2: Same direction (posture equal division)
3: Arc pallet (posture equal division)
11: Zigzag (posture fixation)
12: Same direction (posture fixation)
13: Arc pallet (posture fixation)

[Reference Program]
1 Def Plt 1,P1,P2,P3, ,4,3,1 ' Define a 3-point pallet.
2 Def Plt 1,P1,P2,P3,P4,4,3,1 ' Define a 4-point pallet.

[Explanation]
(1) The accuracy of the position calculation will be higher for a 4-point pallet than for a 3-point pallet.
(2) The command is valid only within the program being executed. The command is invalid in the program

that calls up the command from another program. If necessary, redefine.
(3) Quantity A and B should be a non-zero positive number, while if 0 or a negative number is assigned, an

error will occur.
(4) If Quantity A x Quantity B exceeds 32,767, an error will occur when operation starts.
(5) The value of Quantity B is insignificant for the arc pallet, but it must not be omitted. Set 0 or a dummy

value. The diagonal point will be insignificant even if specified.

Def[]Plt[] <Pallet No.>, <Start Point>, <End Point A>, <End Point B>, [<Diagonal Point>],
<Quantity A>, <Quantity B>, <Pallet Pattern>

12

7

6

1

11

8

5

2

10

9

4

3

End point B

Start point End point A

Diagonal point

Start point
10

7

4

1

11

8

5

2

12

9

6

3

１

２
３

４

５

End point

Transit point
End point B Diagonal point

Start point End point A

Zigzag Same direction Arc pallet

 4MELFA-BASIC V

 Detailed explanation of command words 4-207

(6) If the hand is facing downward, the sign of the A, B and C axis coordinates at the start point, end point A,
end point B and diagonal point must match. If the hand is facing downward, A = 180 (or -180), B = 0, and
C = 180 (or -180). If the signs of the A and C axis coordinates at the three positions do not match, the
hand may rotate in the middle position. In this case, modify the signs so that they match in the position
edit screen of the T/B. +180 and -180 result in the same posture; modifying signs poses no problem.

(7) If a value from 11 to 13 is specified for the pallet pattern, the posture at <Start Point> is assigned to the
posture data of the position variable obtained by the pallet operation. If a value from 1 to 3 is specified,
the distance between <Start Point> and <End Point> is divided equally and assigned to the posture data.

(8) In the robot types (RV-2SQ etc.) in which the J1 axis or the J4 axis can exceed the +/-180 degrees, the
palette that the joint angle of the J1 axis or the J4 axis straddles the +/-180 degrees cannot be specified.
The alarm will occur, if such position were defined.
If you use the pallet in such a position, please divide and define the palette. Refer to Page 103, "4.1.2
Pallet operation" for details.

If position data whose posture components (A, B and C) are close to +/-180
degrees is set to <Start Point>, <End Point A>, <End Point B> and <Diagonal
Point> of the pallet definition, the hand will rotate and move in unexpected ways if
different signs are used for the same posture component of the position data.
To use position data whose posture components are close to +/-180 degrees,
please read <Precautions on the posture of position data in a pallet definition> in
Page 103, "4.1.2 Pallet operation".

The value of the start point of the pallet definition is employed for the structure flag
of grid points (FL1 of position data) calculated during pallet operation (Plt instruc-
tion). For this reason, if position data with different structure flags are used for each
point of the pallet definition, the desired pallet operation cannot be obtained.
Use position data whose structure flag values are all the same for the start point,
end points A and B and the diagonal point of the pallet definition. The value of the
start position of the pallet definition is employed for the multi-rotation flag of grid
points (FL2 of position data) as well. If position data with different multi-rotation
flags are used for each point of the pallet definition, the hand will rotate and move in
unexpected ways depending on the robot positions the pallet operation goes
through and the type of interpolation instruction (joint interpolation, line interpola-
tion, etc.). In such cases, use the TYPE argument of the interpolation instruction to
set the detour/short cut operation of the posture properly and ensure that the hand
moves as desired.

Please refer to the illustrations in Page 103, "4.1.2 Pallet operation", which explain this concept.

[Related instructions]
Plt (Pallet)

 CAUTION

 CAUTION

4-208 Detailed explanation of command words

4MELFA-BASIC V

Def Pos (Define Position)

[Function]
This instruction declares XYZ type position variables. It is used when using a variable with a name that
begins with a character other than "P." It is not necessary to declare variables whose names begin with the
character "P" using the Def Pos instruction.

[Format]

[Terminology]
<Position variable name> Designate a variable name.

[Reference Program]
 1 Def Pos WORKSET ' Declare "WORKSET" as the XYZ type position variable.
 2 Mov P1 ' For XYZ type position variables starting with P, the defini-

tion of "Def Pos" is not required.
 3 WORKSET=(250,460,100,0,0,-90,0,0)(0,0)
 4 Mov WORKSET ' Move to WORKSET.

[Explanation]
(1) Use this instruction to define a XYZ type position variable by a name beginning with a character other

than P.
(2) The variable name can have up to 16 characters. Refer to the Page 135, "4.4.6 Types of characters that

can be used in program" for the characters that can be used.
(3) When designating multiple variable names, the maximum value (240 characters including command)

can be set on one step.
(4) A variable becomes a global variable that is shared among programs by placing "_" after P in the vari-

able name and writing it in a base program.
Refer to Page 144, "4.4.24 User-defined external variables" for details.

Def[]Pos[] <Position variable name> [, <Position variable name>]...

 4MELFA-BASIC V

 Detailed explanation of command words 4-209

Dim (Dim)

[Function]
Declares the quantity of elements in the array variable. (Arrays up to the third dimension are possible.)

[Format]

[Terminology]
<Variable name> Describe the name of the array variable.
<Eelement Value> Describe in terms of constants, the number of elements in an array variable.

[Reference Program]
1 Dim PDATA(10) ' Define the position array variable PDATA having ten elements.
2 Dim MDATA#(5) ' Define double-precision type array variable MDATA# having the five

elements.
3 Dim M1%(6) ' Define integer-type array variable M1% having the six elements.
4 Dim M2!(4) ' Define single-precision real number type array variable M2! having the

four elements.
5 Dim CMOJI(7) ' Define the character-string type variable CMOJI having the seven ele-

ments.
6 Dim MD6(2,3), PD1(5,5) ' Define the 2-dimensional single precision real number type array vari-

able MDATA having the element of 2x3.
' Define the 2-dimensional position array variable PD 1 having the ele-
ment of 5x5.

[Explanation]
(1) A one-dimensional, two-dimensional or three-dimensional array can be used.
(2) In the case of numeric variables, it is possible to use integer, single-precision real and double-precision

real variables differently by adding a symbol that indicates the type of each variable to the variable
name. If the variable type is omitted, a single-precision real variable will be assumed.

Dim MABC(10) ' Define the single-precision real number type array variable MABC having ten ele-
ments.

(3) Eelement number start from 1 when actually referencing array variables. For PDATA on step 1 of the
statement example, the element number will be 1 to 10.

(4) <Eelement Value> can be described with numeric constants from 1 to 999. It is not allowed to use a
numerical value operation expression.
If the number of elements is specified using a real number, an integer with rounded decimal part will be
assumed. Depending on the system memory's free space, arrays may not be allocated for the number
of specified elements. In this case, an error will occur when lines are registered.

(5) If an element number larger than the number of defined elements is specified, an error will occur at the
time of execution.

(6) At the point when array variables are defined, variable values are indeterminate.
(7) To use array variables, it is necessary to define them using the Dim instruction.
(8) The arrays defined by the Dim instruction are valid only in the program where they are defined. To use

these arrays by a sub program called by the CallP instruction, it is necessary to define them again.
(9) Array variables can be used similar to normal variables. However, note that variables of which variable

names and/or the number of characters for specifying element numbers exceed eight characters can-
not be used on the monitor variable screen and position edit screen of the teaching pendant.

(10) If a variable name whose second character is underlined "_" is registered in a user program, a user
defined external variable (a variable common among programs) will be assumed..
Refer to Page 144, "4.4.24 User-defined external variables" for details.

Dim[]<Variable name> (<Eelement Value> [, <Eelement Value> [, <Eelement Value>]])

 [, <Variable name> (<Eelement Value> [, <Eelement Value>[, <Eelement Value>]])]...

4-210 Detailed explanation of command words

4MELFA-BASIC V

Dly (Delay)

[Function]
1) When used as a single command:
 At a designated time, it causes a wait. It is used for positioning the robot and timing input/output signals.
2) When used as an additional pulse output:
 Designates an output time for a pulse.

[Format]
1) When used as a single command

2) When used as an additional pulse output

[Terminology]
<Time> Describes the waiting time or the output time for the pulse output, in terms of a numeric operation

expression. Unit: [Seconds]
The minimum value that can be set is 0.01 seconds. It is allowed to specify 0.00 as well.
The maximum value is the maximum single-precision real number.

[Reference Program]
(1) Waiting for time
 1 Dly 30 ' Wait for 30 seconds
(2) Pulse output of the signal
 2 M_Out(17)=1 Dly 0.5 ' Send the signal output to the general-purpose output signal 17

for 0.5 seconds.
 3 M_Outb(18)=1 Dly 0.5 ' Among general-purpose output signals 18 to 25, only signal 18 is

output (on) for the first 0.5 seconds, and signals 19 to 25 are
output (on) after 0.5 seconds have passed.

(3) Wait for the completion of positioning.
 1 Mov P1 ' Moves to P1.
 2 Dly 0.1 ' Positions to 1.
(4) Wait for completion of hand opening. (closing)
 1 HOpen 1 ' Open the hand 1.
 2 Dly 0.5 ' Wait for hand 1 to open securely.

[Explanation]
(1) This instruction sets the wait time in a program. It is used for timing input/output signals, positioning

movement instructions, and for specifying pulse output times when used in a signal output statement
(such as step 2 in [statement example] above).

(2) The pulse output will be executed simultaneously as the next command in the steps that follow.
(3) Up to 50 pulse outputs can be issued of all programs simultaneously. Exceeding this, an error will occur

when the program tries to execute it.
(4) A pulse output reverses each of its bits after the specified time. This means that if M_Outb (8-bit signal)

or M_Outw (16-bit signal) is used, the corresponding number of bits are reversed.
(5) As for pulse output, the execution of a program ends without waiting the elapse of the specified duration

if the End instruction or the last step of the program is executed during the specified duration. However,
output turns off after the specified duration.

(6) The relation of the priority levels for other interrupts is as shown below:
 COM > Act > WthIf (Wth) >Pulse output (Time setting ON)

(7) Even if stop is input during the execution of a pulse output, the pulse output operation will not stop.
Note1) If stop is input at step 2 in the following program, the output signal state will be held, and the execu-

tion is stopped.
1 M_Out(17)=1
2 Dly 10
3 M_Out(17)=0

Note2) If a pulse output by the M_Outb (8-bit signal) or the M_Outw (16-bit signal) is used, each bits in the
corresponding bit width are reversed after the designated time.
M_Outb(1)=1 Dly 1.0
In this case the bit pattern 00000001 is output for one second, and the bit pattern 11111110 is output
thereafter.

Dly[]<Time>

Example) M_Out(1) = 1 Dly[]<Time>

 4MELFA-BASIC V

 Detailed explanation of command words 4-211

End (End)

[Function]
This instruction defines the final step of a program.
It is also used to indicate the end of a program explicitly, by entering the End instruction at the end of the
main processing, in case a sub program is attached after the main program. In the case of a sub program
called up by the CallP instruction, the control is returned to the main program when the End instruction is
executed.

[Format]

[Reference Program]
1 Mov P1
2 GoSub *ABC
3 End ' End the program.
 :
10 *ABC
11 M1=1
12 Return

[Explanation]
(1) This instruction defines the final step of a program. Use the Hlt instruction to stop a program in the mid-

dle and put it in the pause status.
(2) If executed from the operation panel, a program is executed in the continuos operation mode; it will be

executed again from the top even if it contains an End instruction. If it is desired to end a program at the
End instruction, press the End key on the operation panel to stop the cycle.

(3) It is allowed to have several End statements within one program.
(4) The End statement does not need to be described at the end of the program.
(5) If the End command is executed by the sub program called by CallP, control will return to the main pro-

gram. The operation will be similar to the RETURN command of GoSub.
(6) The file and communication line which are opened are all closed by execution of the End command.
(7) At program End, the Spd, Accel, Oadl, JOvrd, Ovrd, Fine and Cnt settings will be initialized.

[Related instructions]
Hlt (Halt), CallP (Call P)

End

4-212 Detailed explanation of command words

4MELFA-BASIC V

Error (error)

[Function]
This instruction makes a program generate an error (9000s number).

[Format]

[Terminology]
<Error No.> Either a constant or numeric operation expression can be set. Designate the No. within the range

of 9000 to 9299.

[Reference Program]
(1) Generate the error 9000.
 :
 10 Error 9000

(2) Change the error number to generate corresponding to the value of M1.
 4 If M1 <> 0 Then *LERR ' When M1 is not 0, branches to "*LERR".
 :
 14 *LERR
 15 MERR=9000+M1*10 ' Calculate the error number according to the value of M1.

 16 Error MERR ' The calculated error number is generated.
 17 End

[Explanation]
(1) It is possible to generate any error in the 9000's number range by executing this instruction.
(2) If a LOW level or HIGH level error is generated, the program is paused.

Steps after the Error instruction are not executed. A CAUTION error does not pause a program; the
next step and onward are executed. The action of system by error number is shown in the Table 4-17.

(3) It is possible to create up to 20 error messages using parameters UER1 to UER20.
(4) A system error occurs if a value outside the error number range shown in Table 4-17 is specified.

Table 4-17:Action of system by error number

[Related parameter]
UER1 to 20

Error[]<Error No.>

No. System behavior

9000 to 9099
(H level error)

The program execution is stopped, and the servo power is shut off.
The error state is reset when error reset is input.

9100 to 9199
(L level error)

The program execution is stopped.
The error state is reset when error reset is input.

9200 to 9299
(CAUTION)

The program execution is continued.
The error state is reset when error reset is input.

 4MELFA-BASIC V

 Detailed explanation of command words 4-213

Fine (Fine)

[Function]
This instruction specifies completion conditions of the robot's positioning. It is invalid during the smooth
movement control (Cnt 1).
Depending on the type of robot (RP series), positioning using the Dly instruction may be more effective than
using the Fine instruction.

[Format]

[Terminology]
<No. of pulses> Specify the positioning pulses number.

This will be invalid to when set to 0. The default value is 0.
<Axis No.> Designate the axis No. to which the positioning pulses are to be designated. The positioning

pulses will be applied on all axes when omitted.

[Reference Program]
1 Fine 300 ' Designate 300 for the positioning pulses.
2 Mov P1
3 Fine 100,2 ' Change the 2nd axis positioning pulses to 100.
4 Mov P2
5 Fine 0 ' Invalidate the positioning pulse designation.
6 Mov P3
7 Fine 100 ' Designate 100 for the positioning pulses.
8 Mov P4

[Explanation]
(1) The Fine instruction does not complete movement instructions such as Mov by giving commands to the

servo; rather, it completes positioning by determining whether or not the feedback pulse value from the
servo is within the specified range. It is thus possible to confirm positioning more accurately.

(2) There are cases when the Dly instruction (timer) is used for positioning instead of the Fine instruction.
This instruction is easier to specify.

10 Mov P1
20 Dly 0.1

(3) Fine is invalid in the program until the Fine command is executed. Once Fine is validated, it remains
valid until invalidated.

(4) Fine is invalidated at the end of the program (Execution of the End instruction, program reset after paus-
ing).

(5) When the continuous movement control valid state (Cnt 1) is entered, the Fine command will be ignored
even if it is valid (i.e., it will be treated as invalid, but the status will be kept).

(6) To the addition axis (general-purpose servo axis), although the valid/invalid change of Fine is possible,
specification of the pulse number cannot be performed. The value registered in the "INP" parameter on
the servo amplifier side is used. Thus, when the integers other than zero are specified, the Fine
becomes effective by the parameter set value of servo amplifier, and the Fine becomes invalid when 0
is specified.

(7) If a positioning completion condition is specified using the Fine instruction while the compliance mode is
activated, depending on the operation the robot may be unable to reach the positioning completion
pulse of the target position, and will wait indefinitely for the completion of the operation instruction. As a
result, the program execution comes to a halt. Do not use the compliance mode and the Fine instruction
at the same time.

Fine[]<No. of pulses> [, <Axis No.>]

4-214 Detailed explanation of command words

4MELFA-BASIC V

The RH-A/RH-S series and the RV-SD/RH-SDH series robots use different encoder
resolutions (number of pulses) for joint axes. If the value of <No. of pulses> of the
Fine instruction is the same, the RV-S/RH-S series, which normally has higher
encoder resolution (number of pulses), takes longer to complete positioning. For
this reason, if robots are replaced and the robot model is changed from the RV-A/
RH-A series to the RV-S/RH-S series, the time it takes for the Fine instruction to
complete positioning may change.
In such cases, adjust the value of <No. of pulses> of the Fine instruction.

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of command words 4-215

Fine J (Fine Joint)

[Function]
Specifies the robot positioning complete conditions with a joint axis value.
The Fine J command will be disabled during continuous operation control (Cnt 1).
The Fine command or Fine P command will be disabled for all axes when the Fine J command is executed.

[Format]

[Terminology]
< Positioning Width >The positioning width is specified with either a variable or constant and will be disabled

if 0 is specified. The default value is set to 0.
Units will be in either "mm" or "deg.", depending on the joint axis unit system.
 The minimum value that can be specified is 0.001.

< Axis No. > Specifies the number of the axis that specifies the positioning pulse, and will apply to
all axes if omitted. Specify with either a constant or numeric value variable.

[Reference Program]
1 Fine 1, J 'Specifies the positioning width for all axes to 1 [mm] (or [deg.]).

2 Mov P1

3 Fine 0.5, J, 2 'Changes the no. 2 axis positioning width to 0.5 [mm] (or [deg.]).

4 Mov P2

5 Fine 0, J, 5 'Disables the no. 5 axis positioning width specification.

6 Mov P3

7 Fine 0, J 'Disables the positioning width specification for all axes.

8 Mov P4

[Explanation]
(1) The Fine J command specifies the operation command complete condition (positioning accuracy) with a

feedback joint value. Operation completion is determined with a joint value, resulting in more accurate
positioning.

(2) The Fine J command deems the operation to be complete when the difference between the command joint
position and feedback joint position for all enabled axes is within the <Positioning Width>.

(3) Furthermore, there are also times when positioning is performed with a Dly command (timer) instead of the
Fine J command. This is easier to specify.
 1 Mov P1
 2 Dly 0.1

(4) Fine J is disabled for all axes by default. Once Fine J is enabled, the enabled status is applied continuously
until disabled.

(5) Fine J is disabled when a program is terminated (End command execution, program reset following an
interruption).

(6) The Fine J enabled status is temporarily ignored (disabled, status is maintained) when in the continuous
operation control enabled status (Cnt 1).

(7) The Fine command or Fine P command will be disabled for all axes when the Fine J command is executed.
(The status is not maintained.)

(8) Fine J can be enabled and disabled and the <positioning width> can be specified for additional axes (multi-
purpose servo axes) also.

(9) If the positioning complete condition is specified with the Fine J command when the compliance mode is
functioning, depending on the operation, there may be times when the robot is unable to reach the positioning
completion pulse for its target position, the system waits for completion of the operation command, and
program execution does not proceed any further. Do not use compliance mode and the Fine J command
simultaneously.

Fine[]<Positioning Width>, J [, <Axis No.>]

4-216 Detailed explanation of command words

4MELFA-BASIC V

Fine P (Fine Pause)

[Function]
Specifies the robot positioning complete conditions with a linear distance.

The Fine P command will be disabled during continuous operation control (Cnt 1).

The Fine command or Fine J command will be disabled for all axes when the Fine P command is executed.

[Format]

[Terminology]
<Linear Distance> The positioning linear distance [mm] is specified with either a variable or constant and

will be disabled if 0 is specified. The default value is set to 0.
The minimum value that can be specified is 0.001.

[Reference Program]
1 Fine 1, P 'Specifies the positioning linear distance to 1 mm.

2 Mov P1

3 Fine 0, P 'Disables the positioning linear distance specification.

4 Mov P2

[Explanation]
(1) The Fine P command specifies the operation command complete condition (positioning accuracy) with a

feedback linear distance. Operation completion is determined with a linear distance, resulting in more accurate
positioning.

(2) The operation is deemed to be complete when the linear distance between the respective robot current
positions obtained from the command pulse and feedback pulse is within the <Linear Distance>.

(3) Furthermore, there are also times when positioning is performed with a Dly command (timer) instead of the
Fine P command. This is easier to specify.
 1 Mov P1
 2 Dly 0.1

(4) Fine P is disabled for all axes by default. Once Fine P is enabled, the enabled status is applied continuously
until disabled.

(5) Fine P is disabled when a program is terminated (End command execution, program reset following an
interruption).

(6) The Fine P enabled status is temporarily ignored (disabled, status is maintained) when in the continuous
operation control enabled status (Cnt 1).

(7) The Fine command or Fine J command will be disabled for all axes when the Fine P command is executed. (The
status is not maintained.)

(8) Fine P cannot be enabled and disabled for additional axes (multi-purpose servo axes). Fine P is always
disabled.

(9) If the positioning complete condition is specified with the Fine P command when the compliance mode is
functioning, depending on the operation, there may be times when the robot is unable to reach the positioning
completion pulse for its target position, the system waits for completion of the operation command, and
program execution does not proceed any further. Do not use compliance mode and the Fine P command
simultaneously.

Fine[]<Linear Distance>, P

 4MELFA-BASIC V

 Detailed explanation of command words 4-217

For - Next (For-next)

[Function]
Repeatedly executes the program between the For statement and Next statement until the end conditions
are satisfied.

[Format]

[Terminology]
<Counter> Describe the numerical variable that represents the counter for the number of repetitions.

Same for <Counter 1> and <Counter 2>.
<Default Value> Set default value of the counter for the number of repetitions as a numeric operation

expression.
<End Value> Set the end value of the counter for the number of repeats as a numeric operation

expression.
<Increment> Set the value of the increments for the counter for the number of repetitions as a numeric

operation expression. It is allowed to omit this argument, including STEP.

[Reference Program]
(1) A program that adds the numbers 1 to 10
1 MSUM=0 ' Initialize the total MSUM.
2 For M1=1 TO 10 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 MSUM=MSUM+M1 ' Add M1 value to numeric variable MSUM.
4 Next M1 ' Return to step 2.

(2) A program that puts the result of a product of two numbers into a 2-dimensional array variable
1 Dim MBOX(10,10) ' Reserve space for a 10 x 10 array.
2 For M1=1 To 10 Steo 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 For M2=1 To 10 Step 1 ' Increase the counter by 1 from 1 to 10 for the numeric variable M2.
4 MBOX(M1,M2)=M1*M2 ' Substitute the value of M1*M2 for the array variable MBOX (M1, M2).
5 Next M2 ' Return to step 3.
6 Next M1 ' Return to step 2.

(3) Process of the For-Next can be skipped by Break
1 MSUM=0 ' Initialize the total MSUM.
2 For M1=1 To 10 ' Increase the counter by 1 from 1 to 10 for the numeric variable M1.
3 MSUM=MSUM+M1 ' Add M1 value to numeric variable MSUM.
4 If M_In(8)=1 Then Break ' If the input signal 8 is turned on, jump to Step 6.
5 Next ' Return to step 2.
6 If M_BrkCq=1 Then Hlt

[Explanation]
(1) It is possible to describe For-Next statements between other For-Next statements.Jumps in the program

caused by the For-Next instruction will add one more level to the control structure in a program. It is
possible to make the control structure of a program up to 16 levels deep. An error occurs at execution if
16 levels are exceeded.

(2) If a GoTo instruction forces the program to jump out from between a For statement and a Next state-
ment, the free memory available for control structure (stack memory) decreases. Thus, if a program is
executed continuously, an error will eventually occur. Write a program in such a way that the loop exits
when the condition of the For statement is met.

For[]<Counter> = <Default value> To <End Value> [Step <Increment>]

 :

Next[] [<Counter 1>]

4-218 Detailed explanation of command words

4MELFA-BASIC V

(3) A run-time error occurs under the following conditions.
*The counter's <Default Value> is greater than <End Value> and <Increment> is a positive number.
*The counter's <Default Value> is smaller than <End Value>, and <Increment> is a negative number.

(4) A run-time error occurs if a For statement and a Next statement are not paired.
(5) When the Next statement corresponds to the closest For statement, the variable name in the Next state-

ment can be omitted. In the example, "M2" in step 5 and "M1" in step 6 can be omitted. The processing
speed will be slightly faster to omit the counter variable.

(6) In the For, it can escape to the next step of the Next by Break. That is, process of the For-Next can be
skipped.

 4MELFA-BASIC V

 Detailed explanation of command words 4-219

FPrm (FPRM)

[Function]
Defines the order of the arguments, the type, and number for the main program that uses arguments in a
sub program (i.e., when the host program uses another program with CALL P).

[Format]

[Terminology]
<Dummy Argument> The variable in the sub program that is transferred to the main statement when

executed. All variables can be used. Up to 16 variables may be used.

[Reference Program]
<Main program>
1 M1=1
2 P2=P_Curr
3 P3=P100
4 CallP "100",M1,P2,P3 ' It can be described like "CallP "100", 1, P_Curr, P100" also.

<Sub program "100">
1 FPrm M1,P1,P2
2 If M1=1 Then GoTo *LBL
3 Mov P1
4 *LBL
5 Mvs P2 ' Return to the main program.
6 End

[Explanation]
(1) FPrm is unnecessary if there are no arguments in the sub program that is called up.
(2) An error occur when the type or number is different between the argument of CallP and the dummy argu-

ment that defined by FPrm.
(3) It is not possible to pass the processing result of a sub program to a main program by assigning it in an

argument.
To use the processing result of a sub program in a main program, pass the values using external vari-
ables.

[Related instructions]
CallP (Call P)

FPrm[]<Dummy Argument> [,<Dummy Argument>] ...

4-220 Detailed explanation of command words

4MELFA-BASIC V

GetM (Get Mechanism)

[Function]
This instruction is used to control the robot by a program other than the slot 1 program when a multi-task is
used, or to control a multi-mechanism by setting an additional axis as a user-defined mechanism.
Control right is acquired by specifying the mechanism number of the robot to be controlled. To release con-
trol right, use the RelM instruction.

[Format]

[Terminology]
<Mechanism No.> 1 to 3, Specify this argument using a numerical or a variable.

The standard system's robot arm is assigned to mechanism 1.

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.
Task slot 1.
1 RelM ' Releases the mechanism in order to control mechanism 1 using slot 2.
2 XRun 2,"10" ' Start the program 10 in slot 2.
3 Wait M_Run(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
1 GetM 1 ' Get the control of mechanism 1.
2 Servo On ' Turn on the servo of mechanism 1.
3 Mov P1
4 Mvs P2
5 P3=P_Curr ' Substitute P3 in mechanism 1 current position.
6 Servo Off ' Turn mechanism 1 servo OFF.
7 RelM ' Releases the control right of mechanism 1.
8 End

[Explanation]
(1) Normally (in single task operation), mechanism 1 is obtained in the initial status; it is not necessary to

use the GetM instruction.
(2) Because the control right of the same mechanism cannot be acquired simultaneously by multiple tasks,

the following procedure is required in order to operate the robot by other than slot 1:
First, release control right using the RelM instruction by the slot 1 program. Next, acquire control right
using the GetM instruction by the slot program that operates the robot. An error will be generated if the
GetM instruction is executed again using a slot that has already acquired control right.

(3) The instructions requiring control right include the motor power ON/OFF instruction, the interpolation
instruction, the speed acceleration deceleration specification instruction, and the Tool/Base instruction.

(4) If the argument is omitted from the system status variable requiring the mechanism designation, the cur-
rently acquired mechanism will be designated.

(5) If the program is stopped, RelM will be executed automatically by the system. When the program is
restarted, GetM will be executed automatically.

(6) This instruction cannot be used in a constantly executed program.

[Related instructions]
RelM (Release Mechanism)

GetM[]<Mechanism No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-221

GoSub (Return)(Go Subroutine)

[Function]
Calls up the subroutine at the designated step label. Be sure to return from the jump destination using the
Return instruction.

[Format]

[Terminology]
<Call Destination> Describe the step label name.

[Reference Program]
1 GoSub *LBL
2 End
 :
20 *LBL
21 Mov P1
22 Return ' Be sure to use the Return instruction to return.

[Explanation]
(1) Make sure to return from the subroutine by using the Return command. If return by GoTo command, the

memory for control structure (stack memory) will decrease, and it will cause the error at continuous exe-
cuting.

(2) The call of other subroutines is possible again by the GoSub command out of the subroutine. This
approach can be employed approximately up to 800 times.

(3) When the step or label of the call place does not exist, it becomes the execution-time error.

[Related instructions]
Return (Return)

GoSub[]<Call Destination>

4-222 Detailed explanation of command words

4MELFA-BASIC V

GoTo (Go To)

[Function]
This instruction makes a program branch to the specified label step unconditionally.

[Format]

[Terminology]
<Branch Destination> Describe the label name.

[Reference Program]
 :
 10 GoTo *LBL ' Branches to the label *LBL.
 :
 100 *LBL
 101 Mov P1

[Explanation]
(1) If a branch destination or label does not exist, an error will occur during execution.

GoTo[]<Branch Destination>

 4MELFA-BASIC V

 Detailed explanation of command words 4-223

Hlt (Halt)

[Function]
Interrupts the execution of the program which executed this Hlt command. In use of the multitasking func-
tion, the executing status of other programs is not affected.

[Format]

[Reference Program]
(1) Stop the robot on some conditions.
10 If M_In(18)=1 Then Hlt ' Stop the program execution when the input signal 18 turns on.

11 Mov P1 WthIf M_In(17)=1, Hlt ' When the input signal 17 turns on during moving to P1, the pro-
gram execution is stopped.

(2) Stop the robot without condition during program execution.
15 Hlt ' Stop the program without condition.

[Explanation]
(1) Interrupts the execution of the program which executed this Hlt command, and will be waiting state.
(2) In use of the multitasking function, only the task slot which executed this command interrupts execution.
(3) To restart, start the O/P or issue the start signal from an external source. The program will be restarted at

the next step after the Hlt statement. Note that if the Hlt statement is an appended statement, the oper-
ation will restart from the same step of the program where it was interrupted.

[Related instructions]
End (End)

When using the tracking function
•S/W Ver.R1 or later (SQ series) , S1 or later (SD series).
When this Hlt command is executed during tracking movement, tracking move-
ment will be stopped (an equivalent for the Trk Off command) and execution of the
program will be interrupted. In use of the multi-mechanism, tracking movement is
stopped to the robot of the mechanism number got by the GetM command. When
you continue tracking movement by the restart (continuation), please create the
program to execute the Trk On command.

•S/W Ver. before R1 (SQ series), before S1 (SD series)
When this Hlt command is executed during tracking movement, execution of the
program will stop, but continue the conveyor tracking movement When you stop
tracking movement, please execute the Trk Off command before executing this Hlt
command.

Hlt

 CAUTION

4-224 Detailed explanation of command words

4MELFA-BASIC V

HOpen / HClose (Hand Open/Hand Close)

[Function]
Commands the hand to open or close.

[Format]

[Terminology]
<Hand No.> Select a numeric value between 1 and 8. Specify this argument using a

constant or a variable.

<Starting grasp forcer> *1 This parameter is valid for the motorized hand, and invalid for any other
type of hand.
Set the required grasping force for starting the hand open/close.
Set the grasping force as a step between 0 and 63 (63 = 3.5kg).
The default value is 63. When omitted, the previous setting value will be
applied.

<Holding grasp force> *1 This parameter is valid for the motorized hand, and invalid for any other
type of hand.
Set the required grasping force for holding the hand open/close.
Set the grasping force as a step between 0 and 63 (63 = 3.5kg).
The default value is 63. When omitted, the previous setting value will be
applied.

<Starting grasp force holding timer> *1

This parameter is valid for the motorized hand.
Set the duration to hold the starting grasp force as a constant or variable.
It can be set in the range of 0.00 (sec) to the maximum single-precision
real number.
The default value is 0.3 sec.

*1) It is valid only in our company electric hand.

[Reference Program]
1 HOpen 1 ' Open hand 1.
2 Dly 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to open securely.)
3 HClose 1 ' Close hand 1.
4 Dly 0.2 ' Set the timer to 0.2 sec. (Wait for the hand to close securely.)
5 Mov PUP '

[Explanation]
(1) The operation (single/double) of each hand is set with parameter HANDTYPE.
(2) If the hand type is set to double solenoid, hands 1 to 4 can be supported. If the hand type is set to single

solenoid, hands 1 to 8 can be supported.
(3) The status of the hand output signal when the power is turned ON is set with parameter HANDINIT.
(4) The hand input signal can be confirmed with the robot status variable M_HndCq ("Hand input number").

The signal can also be confirmed with the input signals No. 900 to 907 (when there is one mechanism).
1 HClose 1
2 *LBL: If M_HndCq(1)<>1 Then GoTo *LBL
3 Mov P1

(5) There are related parameters. Refer to Page 419, "5.10 Automatic return setting after jog feed at pause"
and, Page 423, "5.13 About default hand status" of this manual.

HOpen[]<Hand No.> [, <Starting grasp force>, <Holding grasp force>,
<Starting grasp force holding time>]

HClose[]<Hand No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-225

[Related system variables]
M_In/M_Inb/M_In8/M_Inw/M_In16 (900s number), M_Out/M_Outb/M_Out8/M_Outw/M_Out16 (900s num-
ber), M_HndCq

[Related instructions]
Loadset (Load Set), Mxt (Move External)

[Related parameter]
HANDTYPE, HANDINIT
Refer to Page 419, "5.10 Automatic return setting after jog feed at pause"and, Page 423, "5.13 About
default hand status".

4-226 Detailed explanation of command words

4MELFA-BASIC V

If...Then...Else...EndIf (If Then Else)

[Function]
A process is selected and executed according to the results of an expression.

[Format]

.

[Terminology]
<Expression> Describe the expression targeted for comparison as a comparison operation expression

or logic operation expression.
<Process> Describe the process following Then for when the comparison results are true, and the

process following Else for when the comparison results are false.
[Reference Program]

 1 If M1>10 Then *L1 ' When M1 is larger than 10, jump to the step
*L1.

 11 If M1>10 Then GoTo *L2 Else GoTo *L3 ' If M1 is larger than 10, it jumps to step *L2; if
smaller than 10, it jumps to label *L3.
 The "GoTo" after" Then" or "Else" can be
omitted.

 :
 19 *L1
 20 M1=10
 21 Mov P1
 22 GoTo *LC
 23 *L2
 24 M1=-10
 25 Mov P2
 26 GoTo *LC

[Explanation]
(1) The If .. Then .. Else .. statements should be contained in one step.
(2) It is allowed to split an If .. Then .. Else .. EndIf block over several steps.
(3) Else can be omitted.
(4) Make sure to include the EndIf statement in the If .. Then .. Else .. EndIf block.
(5) If the GoTo instruction is used to jump out from inside an If .. Then .. Else .. EndIf block, an error will

occur when the memory for control structure (stack memory) becomes insufficient.
(6) For If .. Then .. Else .. EndIf, it is possible to describe If .. Then .. Else .. EndIf inside Then or Else. (UP to

eight levels of nesting is allowed.)
(7) GoTo following Then or Else may be omitted.

Example) If M1 > 10 Then *L200 Else *L300
Also, only when Then is followed by GoTo, either one of Then or GoTo may be omitted. Else
cannot be omitted.

 Example) If M1 > 10 Then GoTo *L200 (The program at left can be rewritten as shown below.)
--- If M1 > 10 Then *L200
--- If M1 > 10 GoTo *L200

(8) In the Then or the Else, it can escape to the next step of EndIf by Break. That is, process of If Then EndIf
can be skipped.

If[]<Expression>[]Then[]<Process>[][Else <Process>]

If[]<Expression>[]Then
 <Process>
 <Process>
 Break
 :
[Else
 <Process>
 <Process>
 Break
 :]
EndIf

 4MELFA-BASIC V

 Detailed explanation of command words 4-227

Input (Input)

[Function]
Inputs data into a file (including communication lines). Only AscII character data can be received.
Please refer to Page 426, "5.15 About the communication setting (RS-232)", which lists related parameters.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 8.

This corresponds to the file No. assigned with the Open command.
<Input data name> Describe the variable name for saving the input data. All variables can be described.

[Reference Program]
1 Open "COM1:" AS #1 ' Assign RS-232-C to file No. 1.
2 Input #1, M1 ' The value will be set to the numerical variable M1 if data are inputted from the

keyboard.
3 Input #1, CABC$ '
 :
10 Close #1

[Explanation]
(1) Data is input from file having the file No. opened with the Open statement, and is substituted in the vari-

able. If the Open statement has not been executed, an error will occur.
(2) The type of data input and the type of variable that is substituting it must be the same.
(3) When describing multiple variable names, use a comma (,) between variable names as delimiters.
(4) When the Input statement is executed, the status will be "standby for input. "The input data will be substi-

tuted for the variables at the same time as the carriage return (CR and LF) are input.
(5) If the protocol (in the case of the standard port: the "CPRC232" parameter is 0) of the specified port is for

PC support (non procedure), it is necessary to attach "PRN" at the head of any data sent from a PC. Nor-
mally, the standard port is connected to a PC and used for transferring and debugging robot programs.
Therefore, it is recommended to use the optional expansion serial interface if a data link is used.

(6) If the number of elements input is greater than the number of arguments in the Input statement, they will
be read and discarded.
When the End or Close statement is executed, the data saved in the buffer will be erased.

 Example) To input both a character string, numeric value and position.
10 Input #1,C1$,M1,P1

Data sent from the PC side

 (when received by the standard port of the robot: the "CPRC232" parameter is 0)

MELFA is substituted in C1$, 125.75 in M1, and (130.5, -117.2,55.1,16.2,0,0)(1,0) in P1.

[Related instructions]
Open (Open), Close (Close), Print (Print)

Input[]#<File No.>, <Input data name> [, <Input data name>] ...

PRNMELFA,125.75,(130.5,-117.2,55.1,16.2,0,0)(1,0) CR

4-228 Detailed explanation of command words

4MELFA-BASIC V

JOvrd (J Override)

[Function]
Designates the override that is valid only during the robot's joint movements.

[Format]

[Terminology]
<Designated override> Describe the override as a real number.

A numeric operation expression can also be described.
Unit: [%] (Recommended range: 1 to 100.0)

[Reference Program]
1 JOvrd 50
2 Mov P1
3 JOvrd M_NJovrd ' Set the default value.

[Explanation]
(1) The JOvrd command is valid only during joint interpolation.
(2) The actual override is = (Operation panel (T/B) override setting value) x (Program override (Ovrd com-

mand)) x (Joint override (JOvrd command)). The JOvrd command changes only the override for the joint
interpolation movement.

(3) The 100% <Designate override> is the maximum capacity of the robot. Normally, the system default
value (M_NOvrd) is set to 100%. The value is reset to the default value when the End statement is exe-
cuted or the program is reset.

[Related instructions]
Ovrd (Override), Spd (Speed)

[Related system variables]
M_JOvrd/M_NJovrd/M_OPovrd/M_Ovrd/M_NOvrd
(M_NJovrd:System default value, M_JOvrd:Currently specified joint override)

JOvrd[]<Designated override>

 4MELFA-BASIC V

 Detailed explanation of command words 4-229

JRC (Joint Roll Change)

[Function]
• This instruction rewrites the current coordinate values by adding +/-360 degrees to the current joint coordi-

nate values of the applicable axis (refer to <Axis No> in [Terminology]) of the robot arm.
• User-defined axis (additional axis, user defined mechanism)

This instruction rewrites the current coordinate values by adding/subtracting the value specified by a
parameter to/from the current joint coordinate values of the specified axis. This instruction can be used for
both rotating and linear axes. The origin can also be reset at the current position.

[Format]

.

[Terminology]
<+1> The current joint angle of the designated axis is incremented by the amount designated

in parameter JRCQTT(The sign can be omitted.). For the priority axes of the robot arm,
it is fixed at 360 degrees.

<-1> The current joint angle of the designated axis is decremented by the amount designated
in parameter JRCQTT. For the priority axes of the robot arm, it is fixed at 360 degrees.

<0> The origin for the designated axis is reset at the value designated in parameter JRCORG.
This can be used only for the user-defined axis.

<Axis No> The target axis is specified with the number. The priority axes are used if omitted.
Note that this argument cannot be omitted if additional axes and/or user-defined mechan-
ical axes are the targets.
[Applicable Models and Applicable Axes]
(1)Applicable models and priority axes

(2)Additional axes of all models
(3)All axes of user defined mechanisms

<Numeric Value> Specify an incremental/decremental number (a multiple of 360 degrees). Description
by the constant or the variable is possible (J1 edition or later is possible).
Example) +3: Increases the applicable axis angle by 1080 degrees.

 -2: Decreases the angle by 720 degrees..
[Reference Program]

1 Mov P1 ' Moves to P1.(The movement to which the J6 axis moves in the minus direction)
2 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
3 Mov P1 ’ Moves to P1.
4 JRC +1 ' Add 360 degrees to the current coordinate values of the applicable axis.
5 Mov P1 ' Moves to P1.
6 JRC -2 ’ Subtract 720 degrees from the current coordinate values of the applicable axis.

(Reverts)

JRC < [+] 1 / -1 / 0 > [, < Axis No>]

JRC < [+] <Numeric Value> / -<Numeric Value> / 0 > [, < Axis No>]

RV-SD series: J6 axis

RH-SDH series: J4 axis

4-230 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) With the JRC 1/-1 instruction (JRC n/-n), the current joint coordinate values of the specified axis are

incremented/decremented.
The origin for the designated axis is reset with the JRC 0 command.
Although the values of the joint coordinates change, the robot does not move.

(2) When using this command, change the movement range of the target axis beforehand so that it does not
leave the movement range when the command is executed. The range can be changed by changing
the - side and + side value of the corresponding axis in the joint movement range parameter "MEJAR".
Set the movement range for the rotating axis in the range of -2340 deg. to 2340 deg.

(3) If the designated axis is omitted, the priority axis will be the target. The priority axis is the rotating axis (J6
axis) at the end of the robot.

(4) If the designated axis is omitted when a priority axis does not exist (robot incapable of JRC), or if the
designated axis is not a target for JRC, an error will occur when the command is executed.

(5) If the origin is not set, an error will occur when the command is executed.
(6) The robot is stopped while the JRC command is executed. Even if Cnt is validated, the interpolation con-

nection will not be continuous when this command is executed.
(7) The following parameter must be set before using the JRC command.

Set JRCEXE to 1. (JRC execution enabled)
Change the movement range of the target axis with MEJAR.
Set the position change amount during the JRC 1/-1(JRC n/-n) execution with JRCQTT.
(Only for the additional axis or user-defined mechanism.)
Set the origin position for executing JRC 0 with JRCORG.
 (Only for the additional axis or user-defined mechanism.)

(8) When parameter JRCEXE is set to 0, no process will take place even if JRC command is executed.
(9) If the movement amount designated with parameter JRCQTT is not within the pulse data 0 to Max., an

error will occur during the initialization. Here, Max. is 2 ^ (Number of encoder bits + 15) - 1. For example,
with a 13-bit encoder (8192 pulses), this will be Max. = 2 ^ (13+15)-1 = 0x0fffffff,
and for a 14-bit encoder (16384 pulses), this will be Max. 2 ^ (14+15)-1 = 0x1fffffff.

The movement amount to pulse data conversion is as follows:
For rotating axis

Pulse data = movement amount (deg.)/360 * gear ratio denominator/gear ratio numerator * Num-
ber of encoder pulses

For linear axis
Pulse data = movement amount (mm) * gear ratio denominator/gear ratio numerator * Number of
encoder pulses

(10) The origin data will change when JRC is executed, so the default origin data will be unusable.
If the controller needs to be initialized due to a version upgrade, etc., the parameters must be backed
up beforehand in the original state.

(11) Step return operation is not possible with the JRC command.
(12) This instruction cannot be used in a constantly executed program.

[Related parameter]
JRCEXE

Set whether to enable/disable the JRC execution.
Execution disabled = 0 (default value)/execution enabled = 1

JRCQTT
Designate the amount to move (1 deg./1mm unit) when incrementing or decrementing with the JRC com-
mand in additional axis or user-defined mechanism.
For the JRC's applicable axis on the robot arm side, it is fixed at 360 degrees regardless of this setting.

JRCORG
Designate the origin for executing JRC 0. in additional axis or user-defined mechanism.
Refer to Page 381, "5 Functions set with parameters" for detail.

 4MELFA-BASIC V

 Detailed explanation of command words 4-231

Loadset (Load Set)

[Function]
This instruction specifies the condition of the hand/workpiece at execution of the Oadl instruction.

[Format]

[Terminology]
<Hand condition No.> 1 to 8.Designate the hand condition (HNDDAT 1 to 8) No. for which the weight and

size are designated.
<Workpiece condition No.>

1 to 8. Designate the hand condition (WRKDAT 1 to 8) No. for which the weight
and size are designated. .

[Reference Program]
1 Oadl On
2 LoadSet 1,1 ' Hand 1(HNDDAT1) and workpiece 1(WRKDAT1) conditions.
3 Mov P1
4 Mov P2
5 LoadSet 1,2 ' Hand 1(HNDDAT1) and workpiece 2(WRKDAT1) conditions.
6 Mov P1
7 Mov P2
8 Oadl Off

[Explanation]
(1) Set the hand conditions and workpiece conditions used for optimum acceleration/deceleration. This is

used when setting the optimum acceleration/deceleration for workpiece types having different weights.
(2) The maximum load is set for the hand when the program execution starts.
(3) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the hand conditions in parameter

(HNDDAT 1 to 8).
(4) Set the weight, size (X, Y, Z) and center of gravity position (X, Y, Z) as the workpiece conditions in

parameter (WRKDAT 1 to 8).
(5) The hand conditions and workpiece conditions changed when this command is executed are reset to the

system default value when the program is reset and when the End statement is executed.
As the system default values, the hand conditions are set to the rated load, and the workpiece condi-
tions are set to none (0kg).

(6) Refer to Page 434, "5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)"
for details on the optimum acceleration/deceleration.

[Related instructions]
Mxt (Move External), HOpen / HClose (Hand Open/Hand Close)

[Related parameter]
HNDDAT1 to 8, WRKDAT1 to 8, HNDHOLD1 to 8
Refer to Page 434, "5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)".
Refer to Page 394, "Table 5-2: List Signal parameter" for the ACCMODE.

LoadSet[]<Hand condition No.>, <Workpiece condition No.>

4-232 Detailed explanation of command words

4MELFA-BASIC V

Mov (Move)

[Function]
Using joint interpolation operation, moves from the current position to the destination position.

[Format]

[Terminology]
<Movement Target Position>This is the final position for interpolation operation. This position may be specified

using a position type variable and constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a position

separated by the designated distance in the tool coordinate system Z axis direc-
tion (+/- direction).

<Constants 1> 1/0 : Detour/short cut. The default value is 1(detour).
<Constants 2> Invalid (Specify 0).
<Appended conditions> The Wth and WHTIF statements can be used.

[Reference Program]
1 Mov P1 Type 1,0
2 Mov J1
3 Mov (Plt 1,10),100.0 Wth M_Out(17)=1
4 Mov P4+P5,50.0 Type 0,0 WthIf M_In(18)=1,M_Out(20)=1

[Explanation]
(1) The joint angle differences of each axis are evenly interpolated at the starting point and endpoint posi-

tions. This means that the path of the tip cannot be guaranteed.
(2) By using the Wth and WthIf statement, the signal output timing and motion can be synchronized.
(3) The numeric constant 1 for the TYPE designates the posture interpolation amount.
(4) Detour refers to the operating exactly according to the teaching posture. Short cut operation may take

place depending on the teaching posture.
(5) Short cut operation refers to posture interpolation between the start point and end point in the direction

with less motion.
(6) The detour/short cut designation is significant when the posture axis has a motion range of (180 deg. or

more.
(7) Even if short cut is designated, if the target position is outside the motion range, the axis may move with

the detour in the reverse direction.
(8) The TYPE numeric constant 2 setting is insignificant for joint interpolation.
(9) This instruction cannot be used in a constantly executed program.
(10) If paused during execution of a Mov instruction and restarted after jog feed, the robot returns to the inter-

rupted position and restarts the Mov instruction. The interpolation method (JOINT interpolation / XYZ
interpolation) which returns to the interrupted position can be changed by the "RETPATH" parameter.
Moreover, it is also possible by changing the value of this RETPATH parameter to move to the direct target
position, without returning to the interrupted position. (Refer to Page 419, "5.10 Automatic return setting
after jog feed at pause")

Fig.4-21:Example of joint interpolation motion path

Mov[]<Target Position> [, <Close Distance>] [[]Type[]<Constants 1>, <Constants 2>][]
[<Appended conditions>]

Ｐ＿ＣＵＲＲ

Ｐ１

 4MELFA-BASIC V

 Detailed explanation of command words 4-233

Mva (Move Arch)

[Function]
This instruction moves the robot from the current position to the target position with an arch movement (arch
interpolation).

[Format].

[Terminology]
<Target Position> Final position of interpolation movement. This position may be specified using a

position type variable and constant, or a joint variable.
<Arch number> A number defined by the Def Arch instruction (1 to 4).

If the argument is omitted, 1 is set as the default value.

[Reference Program]
1 Def Arch 1,5,5,20,20 ' Defines the arch shape configuration.
2 Ovrd 100,20,20 ' Specifies override.
3 Accel 100,100,50,50,50,50 ' Specifies acceleration/deceleration rate.
2 Mva P1,1 ' Performs the arch motion movement according to the shape configura-

tion defined in step 1.
3 Mva P2,2 ' Moves the robot according to the default values registered in the

parameters.

Mva[]<Target Position> [, <Arch number>]

4-234 Detailed explanation of command words

4MELFA-BASIC V

[Explanation]
(1) The robot moves upward along the Z-axis direction from the current position, then moves to a position

above the target position, and finally moves downward, reaching the target position. This so-called arch
motion movement is performed with one instruction.

(2) If the Mva instruction is executed without the Def Arch instruction, the robot moves with the arch shape
configuration set in the parameters. Refer to Page 198, " Def Arch (Define arch)" for a detailed descrip-
tion about the parameters.

(3) The interpolation form, type and other items are also defined by the Def Arch instruction; refer to Page
198, " Def Arch (Define arch)".

(4) This instruction cannot be used in a constantly executed program.
(5) If paused during execution of a Mva instruction and restarted after jog feed, the robot returns to the inter-

rupted position and restarts the Mva instruction. (this can be changed by the "RETPATH" parameter).
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted posi-
tion can be changed by the "RETPATH" parameter. (Refer to Page 419, "5.10 Automatic return setting
after jog feed at pause")

The robot's locus of movement may change with specified speed.
Especially as for the corner section, short cut distance may change. Therefore,
when beginning automatic operation, moves at low speed at first, and you should
gather speed slowly with being careful of interference with peripheral equipment.

Fig.4-22:Example of arch interpolation motion path (seen from the side)

[Related instructions]
Def Arch (Define arch), Accel (Accelerate), Ovrd (Override)

 CAUTION

DEF ARCH 1,5,5,20,20

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Upward
retreat amount)

20mm (Downward
retreat amount)

Target positionStart position

DEF ARCH 1,5,5,20,20

*If Z is different between the movement starting position and the target position,
 it will operate as follows:

Start position

Target position

20mm (Upward
retreat amount)

5mm (Upward
moving amount)

5mm (Downward
moving amount)

20mm (Downward
retreat amount)

 4MELFA-BASIC V

 Detailed explanation of command words 4-235

Mvc (Move C)

[Function]
Carries out 3D circular interpolation in the order of start point, transit point 1, transit point 2 and start point.

[Format]

[Terminology]
<Start point> The start point and end point for a circle. Describe a position operation expression or

joint operation expression.
<Transit point 1> Transit point 1 for a circular arc. Describe a position operation expression or joint oper-

ation expression.
<Transit point 2> Transit point 2 for a circular arc. Describe a position operation expression or joint oper-

ation expression.
<Additional condition> Describe a Wth conjunction or a WthIf conjunction

[Reference Program]
1 Mvc P1,P2,P3
2 Mvc P1,J2,P3
3 Mvc P1,P2,P3 Wth M_Out(17)=1
4 Mvc P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

[Explanation]
(1) In circular interpolation motion, a circle is formed with the 3 given points, and the circumference is

moved. (360 degrees)
(2) The posture at the starting point is maintained during circle interpolation. The postures while passing

points 1 and 2 are not considered.
(3) If the current position and the starting position do not match, the robot automatically moves to the start-

ing point based on the linear interpolation (3-axis XYZ interpolation), and then performs the circle inter-
polation.

(4) If paused during execution of a Mvc instruction and restarted after jog feed, the robot returns to the
interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 419, "5.10 Automatic return set-
ting after jog feed at pause")

(5) This instruction cannot be used in a constantly executed program.

Fig.4-23:Example of circle interpolation motion path

Mvc[]<Start point>,<Transit point 1>,<Transit point 2>[][<Additional condition>]

P1

P_CURR

P2

P3

MVC P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

4-236 Detailed explanation of command words

4MELFA-BASIC V

Mvr (Move R)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point via transit
points.

[Format]

[Terminology]
<Start Point> Start point for the arc. Describe a position operation expression or joint operation

expression.
<Transit Point> Transit point for the arc. Describe a position operation expression or joint operation

expression.
<End Point> End point for the arc. Describe a position operation expression or joint operation

expression.
<Constants 1> Short cut/detour = 1/0, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr P1,P2,P3
2 Mvr P1,J2,P3
3 Mvr P1,P2,P3 Wth M_Out(17)=1
4 Mvr P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

Mvr[]<Start Point>, <Transit Point>, <End Point>
[[]TYPE[]<Constants 1>, <Constants 2>][] [<Appended Condition>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-237

[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the transit point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 419, "5.10 Automatic return set-
ting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) Of the three designated points, if any points coincide with the other, or if three points are on a straight
line, linear interpolation will take place from the start point to the end point. An error will not occur.

(7) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(8) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

(9) This instruction cannot be used in a constantly executed program.

Fig.4-24:Example of circular interpolation motion path 1

P2

P1 P3

MVR P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P_CURR

4-238 Detailed explanation of command words

4MELFA-BASIC V

Mvr2 (Move R2)

[Function]
Carries out 3-dimensional circular interpolation motion from the start point to the end point on the arc com-
posed of the start point, end point, and reference points.
The direction of movement is in a direction that does not pass through the reference points.

[Format]

[Terminology]
<Start Point> Start point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<End Point> End point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Reference point> Reference point for a circular arc. This position may be specified using a position

type variable and constant, or a joint variable.
<Constants 1> Short cut/detour = 1/0, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr2 P1,P2,P3
2 Mvr2 P1,J2,P3
3 Mvr2 P1,P2,P3 Wth M_Out(17)=1
4 Mvr2 P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

Mvr2[]<Start Point>, <End Point>, <Reference point>
[[]Type[]<Constants 1>, <Constants 2>][][<Appended Condition>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-239

[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the reference point posture has no

effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 419, "5.10 Automatic return set-
ting after jog feed at pause")

(5) The direction of movement is in a direction that does not pass through the reference points.
(6) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,

an error will occur at the execution.
(7) Of the three designated points, if any points coincide with the other, or if three points are on a straight

line, linear interpolation will take place from the start point to the end point. An error will not occur.
(8) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move

with the taught posture.
(9) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation

on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.
(10) This instruction cannot be used in a constantly executed program.

Fig.4-25:Example of circular interpolation motion path 2

P2

P1 P3

MVR2 P1, P2, P3

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

P2

P1

P4

MVR2 P1, P2, P4

P_CURR
P_CURR

Moves by XYZ
interpolation (3-axis
XYZ interpolation)

4-240 Detailed explanation of command words

4MELFA-BASIC V

Mvr3 (Move R 3)

[Function]
Carries out 3-dimensional circular interpolation movement from the start point to the end point on the arc
composed of the center point, start point and end point.

[Format]

[Terminology]
<Start Point> Start point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<End Point> End point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Center Point> Center point for the arc. This position may be specified using a position type variable

and constant, or a joint variable.
<Constants 1> Short cut/detour = 1/0, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.

[Reference Program]
1 Mvr3 P1,P2,P3
2 Mvr3 P1,J2,P3
3 Mvr3 P1,P2,P3 Wth M_Out(17)=1
4 Mvr3 P3,(Plt 1,5),P4 WthIf M_In(20)=1,M_Out(21)=1

Mvr3[]<Start Point>, <End Point>, <Center Point>
[[]Type[]<Constants 1>, <Constants 2>][] [<Appended Condition>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-241

[Explanation]
(1) In circular interpolation motion, a circle is formed with three given points, and robot moves along the cir-

cumference.
(2) The posture is interpolation from the start point to the end point; the center point posture has no effect.
(3) If the current position and start point do not match, the robot will automatically move with linear interpola-

tion (3-axis XYZ interpolation) to the start point.
(4) If paused during execution of a Mvr3 instruction and restarted after jog feed, the robot returns to the

interrupted position by JOINT interpolation and restarts the remaining circle interpolation.
The interpolation method (JOINT interpolation / XYZ interpolation) which returns to the interrupted
position can be changed by the "RETPATH" parameter. (Refer to Page 419, "5.10 Automatic return set-
ting after jog feed at pause")

(5) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,
an error will occur at the execution.

(6) If 3-axis XYZ is designated for the constant 2, the constant 1 will be invalidated, and the robot will move
with the taught posture.

(7) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation
on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

(8) The central angle from the start point to the end point always satisfies 0 < central angle < 180 degrees.
(9) Designate the positions so that the difference from the center point to the end point and the center point

to the distance is within 0.01mm.
(10) If the three points are on the same line, or if the start point and center point, or end point and center

point are the same, an error will occur.
(11) If the start point and end point are the same or if three points are the same, an error will not occur, and

the next command will be executed. Note that if the posture changes at this time, only the posture will
be interpolated.

(12) This instruction cannot be used in a constantly executed program.

Fig.4-26:Example of circular interpolation motion path 3

P2

P3

P1

P_CURR

MVR3 P1, P2, P3
Moves by XYZ

interpolation (3-axis
XYZ interpolation)

Centra
l

angle

4-242 Detailed explanation of command words

4MELFA-BASIC V

Mvs (Move S)

[Function]
Carries out linear interpolation movement from the current position to the movement target position.

[Format 1]

[Format 2]

[Terminology]
<Movement Target Position> The final position for the linear interpolation. This position may be specified

using a position type variable and constant, or a joint variable.
<Close Distance> If this value is designated, the actual movement target position will be a posi-

tion separated by the designated distance in the tool coordinate system Z
axis direction (+/- direction).

<Constants 1> Short cut/detour = 1/0, The default value is 0.
<Constants 2> Equivalent rotation/3-axis XYZ/singular point passage = 0/1/2.

The default value is 0.
<Appended conditions> The Wth and WthIf statements can be used.
<Separation Distance> When this value is designated, the axis will move the designated distance

from the current position to the Z axis direction (+/- direction) of the tool coor-
dinate system.

[Reference Program]
(1) Move to the target position P1 by XYZ interpolation.
1 Mvs P1

(2)Turns on the output signal 17 at the same time if it moves to the target position P1 by linear interpolation.
1 Mvs P1,100.0 Wth M_Out(17)=1

(3)Turns on output signal 20 if the input signal 18 is turned on while moving 50 mm in the Z direction of the
tool coordinate system of the target position P4+P5 (relative operation position obtained by addition) by
linear interpolation.

2 Mvs P4+P5, 50.0 WthIf M_In(18)=1, M_Out(20)=1

(4)Moves 50 mm in the Z direction of the tool coordinate system from the current position by linear interpolation.
3 Mvs ,50

Mvs[]<Movement Target Position> [, <Close Distance>]
[[]Type[]<Constants 1>,<Constants 2>][][<Appended Condition>]

Mvs[], <Separation Distance>
[[]Type[]<Constants 1>,<Constants 2>][][<Appended Condition>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-243

[Explanation]
(1) Linear interpolation motion is a type of movement where the robot moves from its current position to the

movement target position so that the locus of the control points is in a straight line.
(2) The posture is interpolation from the start point to the end point.
(3) In the case of the tool coordinate system specified by using <proximity distance> or <separation dis-

tance>, the + and - directions of the Z axis vary depending on the robot model. Refer to Page 408, "5.6
Standard Tool Coordinates" for detail. The "Fig.4-27:Example of movement at linear interpolation" is the
example of RV-6SD movement.

Fig.4-27:Example of movement at linear interpolation

(4) If paused during execution of a Mvs instruction and restarted after jog feed, the robot returns to the inter-
rupted position and restarts the Mvs instruction. This can be changed by the "RETPATH" parameter,
and also the interpolation method (JOINT interpolation / XYZ interpolation) which returns to the inter-
rupted position can be changed by same parameter. Some robots for liquid crystal transportation have
different default values of this parameter. Refer to Page 419, "5.10 Automatic return setting after jog
feed at pause".

(5) This instruction cannot be used in a constantly executed program.
(6) If the start point and end point structure flags differ when equivalent rotation (constant 2 = 0) is specified,

an error will occur at the execution.
(7) If 3-axis XYZ is designated for the numeric constant 2, the numeric constant 1 will be invalidated, and the

robot will move with the taught posture.
(8) Constant 2 designates the posture interpolation type. 3-axis XYZ is used when carrying out interpolation

on the (X, Y, Z, J4, J5, J6) coordinate system, and the robot is to move near a particular point.

P_CURR

Ｐ１

MVS P1,-100

100mm

P_CURR

MVS ,-100
100mmＭＶＳ Ｐ１

Ｐ１

P_CURR

4-244 Detailed explanation of command words

4MELFA-BASIC V

(9) Description of singular points.
<In the case of a vertical 6-axis robot>
Movement from posture A, through posture B, to posture C can-
not be performed using the normal linear interpolation (Mvs).

This limitation applies only when J4 axis is at zero degrees at all
the postures A, B, and C. This is because the structure flag of axis
J5 (wrist axis) is FLIP for posture A and NONFLIP for posture C.
Moreover, in posture B, the wrist is fully extended and axes J4
and J6 are located on the same line. In this case, the robot cannot
perform a linear interpolation position calculation.
The 3-axis XYZ (TYPE 0, 1) method in the command option of
Mvs should be used if it is desired to perform linear interpolation
based on such posture coordinates. Note that, strictly speaking,
this 3-axis XYZ method does not maintain the postures as it
evenly interpolates the joint angle of axes J4, J5, and J6 at pos-
ture A and C. Therefore, it is expected that the robot hand's pos-
ture may move forward and backward while moving from posture
A to posture C.
In this case, add one point in the middle to decrease the amount
of change in the hand's posture.

Another singular point is when the center of axis J5 is on the Z
axis of the base coordinates and the wrist is facing upward. In this
case, J1 and J6 are located on the same axis and it is not possi-
ble to calculate the robot position.

Fig.4-28:Singular point 1

 About singular points of vertical 6-axis robots

1) Posture A

Posture at which the
flag changes status

2) Posture B

3) Posture C

NONFLIP

FLIP

 4MELFA-BASIC V

 Detailed explanation of command words 4-245

Mv Tune (Move Tune)

[Function]
Select the robot operating characteristics from one of the following four modes. The robot operating performance
will improve by selecting the optimum operating characteristics based on the application.

Operating characteristics are optimized based on the hands and workpieces specified with the LoadSet command.
Set the correct weight, shape and barycentric position of hands and workpieces actually used.

[Format]

[Terminology]
<Operating Characteristics Mode > The robot operating characteristics mode (1 to 4) is specified with either

a constant or numeric value variable.
1: Standard mode (default)
2: High-speed positioning mode
3: Trajectory priority mode
4: Vibration suppression mode

Table 4-18:Movement mode of MvTune

[Reference Program]
LoadSet 1,1 'Sets to hand 1/workpiece 1.
MvTune 2 'Changes the operating characteristics mode to high-speed positioning
Mov P1 'Operates in the high-speed positioning mode
Mvs P1 'Operates in the high-speed positioning mode
MvTune 3 'Changes operating mode to the trajectory priority variation
Mvs P3 'Operates in the trajectory priority mode

[Explanation]
(1) This has been adjusted to ensure the optimum characteristics based on the hand and workpiece conditions

specified with the LoadSet command. If the hand and workpiece conditions have not been set correctly, there
is a possibility that sufficient performance will not be achieved. （Refer to Page 434, "5.18 Hand and Work-
piece Conditions (optimum acceleration/deceleration settings)" ）

(2) Standard mode is specified as the default immediately after the power is turned ON.

MvTune[]<Operating Characteristics Mode>

Operating mode Features

1 Standard mode
(default)

This is the maker standard setting. This mode has been tuned to standard

characteristics that can be used for all applications.

2 High-speed
positioning mode

This mode reduces the time it takes to reach the target position.
Use this mode where it is desired to shorten positioning time and improve work
efficiency.
(Applications: tracking operation, palletizing operation, etc.)

3 Trajectory
priority mode

This mode improves the trajectory accuracy in an interpolating operation.
Use this mode when performing any operation in which trajectory accuracy is an
important consideration.
(Applications: sealing operation, welding operation, deburring operation, etc.)

4 Vibration

suppression

modeNote1)

Note1) The vibration suppression mode (MvTune 4) is usable with software version N7 (CRnQ-700 series)/

P7 (CRnD-700 series) or later.

This mode is effective in suppressing vibration (resonance) of the robot arm.
Use this mode where vibration is encountered during the transfer of work.
(Applications: wafer transfer, precision component transfer, etc.)

4-246 Detailed explanation of command words

4MELFA-BASIC V

(3) The operating characteristics mode returns to standard mode when a program is terminated (End command
execution, program reset following an interruption), however, the current operating characteristics mode is
retained with the sub-program End command executed with the CallP command.

(4) The differences between the standard mode and the other operating characteristics modes are as follows.

Table 4-19:By-operating mode Performance Comparison

(Note) Symbols in the table indicate relative performance rating.

◎ ： Improved、 ○ + ： Somewhat improved、 ○ ： Same、 ○ - ： Somewhat degraded、 △ ： Degraded
*1: For comparing the robot's ability to respond to operating command value
*2: For comparing the capability of suppressing external perturbations which induce vibration
*3: For comparing the amount of heat generated by the motor

(5) If optimum acceleration/deceleration control (specified with the Oadl command or ACCMODE parameter) is
disabled, it is automatically enabled by executing the MvTune command. Furthermore, if OadleOff is executed
after executing the MvTune command, optimum acceleration/deceleration control only will be disabled. (The
operating mode will not change.)

(6) High-speed positioning mode may allow vibration during acceleration or deceleration to become higher as
compared with the standard mode. If this is inconvenient, select the standard mode.

(7) The trajectory priority mode is adjusted so as to achieve maximum effect at operating speeds in medium- to
low-speed range. Therefore, when a motion involved is such that a small circle is drawn, vibration may
increase as compared with the standard mode. In this case, use the Spd command to slow operating speed
and thus decrease vibration.

(8) Use of the vibration-suppressing mode may lead to an increased overshoot in the "time required to reach
target position" depending on the operating condition that is used. In such an operation that starts pending
the completion of the positioning task (e.g. operation which uses Fine command), tact time may become
delayed. (The greater the mass of work, the greater the overshoot.)

(9) This command does not function for the jog operation.

[Related instructions]
Loadset (Load Set)、 Oadl (Optimal Acceleration)、 Prec (Precision)

[Related parameter]
Ａ Ｃ Ｃ ＭＯ Ｄ Ｅ、 Ｈ Ｎ Ｄ Ｄ Ａ Ｔ ０ ～ ８ 、 ＷＲ Ｋ Ｄ Ａ Ｔ ０ ～ ８

Operating mode

Items of comparison

Time required to
reach target

Trajectory
accuracy (*1)

Vibration
suppression (*2)

Load factor (*3)

Standard mode ○ ○ ○ ○

High-speed position
mode

◎ ○ + ○ △

Trajectory priority mode △ ◎ ○ ○ +

Vibration suppression
mode

○ - ○ - ◎ ○

 4MELFA-BASIC V

 Detailed explanation of command words 4-247

Mxt (Move External)

[Function]
The real-time external control function by ethernet I/F
The absolute position data is retrieved from an external source at each controller control time (currently
approx 7.1msec), and the robot is directly moved.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 8 assigned with the Open command.

If the communication destination is not designated with the Open command, an
error will occur, and communication will not be possible.
In addition, data received from a source other than the communication destination
will be ignored.

<Replay position data type>Designate the type of the position data to be received from the personal computer.
A XYZ/joint/motor pulse can be designated.
0: XYZ coordinate data
1: Joint coordinate data
2: Motor pulse coordinate data

<Filter time constant> If 0 is designated, the filter will not be applied. (0 will be set when omitted.) A filter
is applied on the reception position data, an obtuse command value is created
and output to the servo.

[Reference Program]
1 Open "ENET:192.168.0.2" As #1’Set Ethernet communication destination IP address
2 MovP1 ’Move to P1
3 Mxt1,1,50 ’Move with real-time external control with filter time constant set to 50msec
4 Mov P1 ’Move to P1
5 Hlt ’Halt program

[Explanation]
* When the Mxt command is executed, the position command for movement control can be retrieved from
the personal computer connected on the network. (One-on-one communication)
* One position command can be retrieved and operated at the operation control time (currently 7.1msec).
* Operation of Mxt command
(1) When this command is executed with the controller, the controller enters the command value reception

enabled state.The workpiece grasp/not grasp for when the hand is opened or closed is set with param-
eter HNDHOLD 1 to 8.

(2) When the controller receives the command value from the personal computer, it will output the received
command value to the servo within the next control process cycle.

(3) After the command value is sent to the servo, the controller information, such as the current position is
sent from the controller to the personal computer.

(4) A reply is made from the controller to the personal computer only when the command value from the per-
sonal computer is sent to the controller.

(5) If the data is not received, the current position is maintained.
(6) When the real-time external command end command is received from the personal computer, the Mxt

command is ended.
(7) When the operation is stopped from the operating panel or external input, the Mxt command will be

halted, and the transmission/reception will also be halted until restart.
* The timeout is designated with the parameter MXTTOUT.
* One randomly designated (head bit, bit width) input/output signal can be transmitted and received simulta-
neously with the position data.
* A personal computer with sufficient processing speed must be used to command movement in the move-
ment control time.
* Refer to Page 427, "5.16 About the communication setting (Ethernet)" for details.
A Windows NT or 2000/Pentium II 450MHz or higher console application is recommended.

[Related instructions]
Open (Open)

Mxt <File No.>, <Reply position data type> [, <Filter time constant>]

4-248 Detailed explanation of command words

4MELFA-BASIC V

Oadl (Optimal Acceleration)

[Function]
Automatically sets the optimum acceleration/deceleration according to the robot hand's load state (Optimum
acceleration/deceleration control).
By employing this function, it becomes possible to shorten the robot's motion time (tact).
The acceleration/deceleration speed during optimum acceleration/deceleration can be calculated using the
following equation:

Acceleration/deceleration speed (sec) = Optimum acceleration/deceleration speed (sec) x Accel instruction
(%) x M_SetAdl (%)

* The optimum acceleration/deceleration speed is the optimum acceleration/deceleration speed calculated
when an Oadl instruction is used.

[Format]

[Terminology]
<On / Off> ON : Start the optimum acceleration/deceleration speed.

OFF : End the optimum acceleration/deceleration speed.

[Reference Program]
1 Oadl On
2 Mov P1 ' Move with maximum load.
3 LoadSet 1,1 ' Set hand 1 and workpiece 1.
4 Mov P2 ' Move with hand 1 + workpiece 1 load.
5 HOpen 1 '
6 Mov P3 ' Move with hand 1 load.
7 HClose 1 '
8 Mov P4 ' Move with hand 1 + workpiece 1 load.
9 Oadl Off

*When parameter HNDHOLD1 is set to 0, 1

[Explanation]
(1) The robot moves with the optimum acceleration/deceleration according to the hand conditions and work-

piece conditions designated with the LoadSet command.
(2) The workpiece grasp/not grasp for when the hand is opened or closed is set with parameter HNDHOLD

1 to 8.
(3) Initial setting of Oadl can be changed by the ACCMODE parameter. (Refer to Page 394, "Table 5-2: List

Signal parameter")
(4) Once Oadl is On, it is valid until Oadl Off is executed or until the program End is executed.
(5) Depending on the conditions of the hand and/or workpiece, the motion time may become longer than

usual.
(6) It is possible to perform the optimum acceleration/deceleration operation by using the LoadSet and Oadl

instructions, and by setting the HNDDAT1(0) through 8 and WRKDAT1(0) through 8 parameters to
appropriate values. (Refer to Page 434, "5.18 Hand and Workpiece Conditions (optimum acceleration/
deceleration settings)")

(7) The value of the acceleration/deceleration speed distribution rate in units of axes are predetermined by
the JADL parameter. This value varies with models in the S series. Refer to the JADL parameter.

Oadl[]<On / Off>

 4MELFA-BASIC V

 Detailed explanation of command words 4-249

Fig.4-29:Acceleration/deceleration pattern at light load

[Related instructions]
Accel (Accelerate), Loadset (Load Set), HOpen / HClose (Hand Open/Hand Close)

[Related parameter]
HNDDAT 0 to 8, WRKDAT 0 to 8, HNDHOLD 1 to 8, ACCMODE, JADL

S
pe

ed

Time

S
pe

ed

Time

OADL ON

4-250 Detailed explanation of command words

4MELFA-BASIC V

On Com GoSub (ON Communication Go Subroutine)

[Function]
Defines the starting line of a branching subroutine when an interrupt is generated from a designated com-
munication line.

[Format]

[Terminology]
<File No.> Describe a number between 1 and 3 assigned to the communication line.
<Call Destination> Describe the line No. and label name.

[Reference Program]
If an interrupt is generated from the file No. 1 communication line (COM1:), carry out the label RECV pro-

cess.
 1 Open "COM1:" AS #1 ' Communication line opening.
 2 On Com(1) GoSub *RECV ' The definition of interruption.
 3 Com(1) On ' Enable interrupt from file No. 1 communication line.
 4 '
 :
10 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
11 '
12 Mov P1
13 Com(1) Stop ' Suspend the interrupt during movement only from P1 to P2.
14 Mov P2
15 Com(1) On ' If there are some communications during movement from P1 to P2, the

interrupt occurs here.
16 '
 :
22 ' <<If the communicative interrupt occurs here, it will branch to label *RECV.>>
23 '
24 Com(1) Off ' Disable interrupt from file No. 1 communication line.
25 Close #1
26 End
 :
 :
30 *RECV ' Communication interruption processing.
31 Input #1, M0001 ' Set the received information as M0001 and P0001.
32 Input #1, P0001
 :
39 Return 1 ' Returns control to the next step of interrupted step.

[Explanation]
(1) If the file No. is omitted, 1 will be used as the file No.
(2) The file Nos. with the smallest No. have the order of priority for the interrupt.
(3) If the communicative interrupt occurs while the robot is moving, robots operating within the same slot will

stop. It is possible to use Com Stop to stop the interrupt, and prevent the robot from stopping.
(4) Interrupts are prohibited in the initial state. To enable interrupts, execute the Com On instruction after this

instruction.
(5) Make sure to return from a subroutine using theReturn instruction. An error occurs if the GoTo instruction

is used to return, because the free memory available for control structure (stack memory) decreases
and eventually becomes insufficient.

[Related instructions]
Com On/Com Off/Com Stop (Communication ON/OFF/STOP), Return (Return), Open (Open), Input (Input),
Print (Print), Close (Close)

On[]Com[][(<File No.>)][]GoSub[]<Call Destination>

 4MELFA-BASIC V

 Detailed explanation of command words 4-251

On ... GoSub (ON Go Subroutine)

[Function]
Calls up the subroutine at the step label corresponding to the value.

[Format]

[Terminology]
<Terminology> Designate the step label on the step to branch to with a numeric operation expression.
<Call Destination> Describe the step label No. The maximum number is 32.

[Reference Program]
Sets the value equivalent to three bits of input signal 16 in M1, and branches according to the value of M1
(1 through 7).
(Calls label L1 if M1 is 1, label LSUB if M1 is 2, label L2 if M1 is 3, 4 or 5, and label L67 if M1 is 6 or 7.)
1 M1 = M_Inb(16) AND &H7
2 On M1 GoSub *L1,*LSUB,*L2,*L2,*L2,*L67,*L67
 :
10 *L1
11 ' Describes processing when M1=1.
12 '
13 Return ' Be sure to return by using Return.

20 *LSUB
21 ' Describes processing when M1=2.
22 Return ' Be sure to return by using Return.

30 *L67
31 ' Describes processing when M1=6 or M1=7.
32 Return ' Be sure to return by using Return.

40 *L2
41 ' Describes processing when M1=3, M1=4, or M1=5.
42 '
43 Return ' Be sure to return by using Return.

[Explanation]
(1) The value of <Expression> determines which step label subroutine to call.

For example, if the value of <Expression> is 2, the step label described for the second value is called.
(2) If the value of <expression> is larger than the number of <destinations called up>, the program control

jumps to the next step. For example, the program control jumps to the next step if the value of <expres-
sion> is 5 and there are only three <destinations called up>.

(3) When a step No. or abel that is called up does not exist, or when there are two definitions, an error will
occur.

(4) Make sure to return from a subroutine using the Return instruction. An error occurs if the GoTo instruc-
tion is used to return, because the free memory available for control structure (stack memory)
decreases and eventually becomes insufficient.

On[]<Terminology>[]GoSub[][<Expression>] [, [<Call Destination>]] ...

Value of <Expression> Process <Control>

Real number Value is converted to an integer by rounding it off,
and then branching is executed.

When 0, or when the value exceeds the num-
ber of step labels

Control proceeds to the next step

Negative number or 32767 is exceeded Execution error

4-252 Detailed explanation of command words

4MELFA-BASIC V

On ... GoTo (On Go To)

[Function]
Branches to the step with the step label that corresponds to the designated value.

[Format]

[Terminology]
<Expression> Designate the step label on the line to branch to with a numeric operation expression.
<Call Destination> Describe the step label No. The maximum number is 32.

[Reference Program]
Branches based on the value (1-7) of the numerical variable M1.
(Branches to label L1 if M1 is 1, to label LJMP if M1 is 2, to label L2 if M1 is 3, 4 or 5, and to label L67 if

M1 is 6 or 7.)
 10 On M1 GoTo L1,*LJMP,*L2,*L2,*L2,*L67,*L67
 11 ' Control is passed to this line when M1 is other than 1 through 7 (i.e., 0, or 8 or larger).

20 *L1
21 ' Describes processing when M1=1.
22 ' :

30 *LJMP ' When M1=2.
31 ' Describes processing when M1=2.
32 ' :

40 *L67
41 ' Describes processing when M1=6 or M1=7.
42 ' :

50 *L2
51 ' Describes processing when M1=3, M1=4, or M1=5.
52 ' :

[Explanation]
(1) This is the GoTo version of On GoSub.
(2) If the value of <expression> is larger than the number of <destinations called up>, the program control

jumps to the next step. For example, the program control jumps to the next step if the value of <expres-
sion> is 5 and there are only three <destinations called up>.

(3) When a step No. or label that is called up does not exist, or when there are two definitions, an error will
occur.

On[]<Expression>[]GoTo[][<Branch Destination>] [, [<Branch Destination>]] ...

Value of <Expression> Process <Control>

Real number Value is converted to an integer by rounding it off,
and then branching is executed.

When 0, or when the value exceeds the num-
ber of step labels

Control proceeds to the next step

Negative number or 32767 is exceeded Execution error

 4MELFA-BASIC V

 Detailed explanation of command words 4-253

Open (Open)

[Function]
Open the file or communication lines.

[Format]

[Terminology]
<File Descriptor> Describe a file name (including communication lines).

*To use a communication line, set "<Communication Line File Name>:"
*When not using a communications line, set "<File Name>"

<Mode> Designate the method to access a file.
*Omitted = random mode. This can be omitted when using a communication line.
*Input = input mode. Inputs from an existing file.
*OUTPUT = output mode (new file). Creates a new file and outputs it there.
*APPEND = Output mode (existing file). Appends output to the end of an existing file.

<File No.> Specify a constant from 1 to 8.
To interrupt from communication line: 1 to 3.

[Reference Program]
(1) Communication line.
1 Open "COM1:" AS #1 ' Open standard RS-232C line as file No. 1.20 Mov P_01
2 Mov P_01
3 Print #1,P_Curr ' Output current position to external source.

"(100.00,200.00,300.00,400.00)(7.0)" format
40Input #1,M1,M2,M3 ' Receive from external source with "101.00,202.00,303.00" AscII for-

mat.
5 P_01.X=M1
6 P_01.Y=M2
7 P_01.C=Rad(M3) ' Copy to global data.
8 Close ' Close all opened files.
9 End

(2) File operation. (Create the file "temp.txt" to the controller and write "abc")
1 Open "temp.txt" FOR APPEND AS #1
2 Print #1, "abc"
3 Close #1

[Explanation]
(1) Opens the file specified in <File name> using the file number.

Use this file No. when reading from or writing to the file.
A communication line is handled as a file.
(2) [Related instructions]
Close (Close), Print (Print), Input (Input), Mxt (Move External)

[Related parameter]
COMDEV

Open[] "<File Descriptor>" [][For <Mode>][]AS[] [#] <File No.>

File type File name Access method

File Describe with 16 characters or less. Input,OUTPUT,APPEND

Communi-
cation line

COM1: Standard RS-232C(default value)
COM2:The setting in the "COMDEV" parameter.
 :
COM8:The setting in the "COMDEV" parameter.

Omitted = random mode only

ENET:192.168.0.2Note1)

Note1) It is specification in the case of using the real-time external control by the
Ethernet interface. Specify the IP address which takes absolute position data
by the "Mxt" command following "ENET:."

Mxt command

4-254 Detailed explanation of command words

4MELFA-BASIC V

Ovrd (Override)

[Function]
This instruction specifies the speed of the robot movement as a value in the range from 1 to 100%. This is
the override applied to the entire program.

[Format]

.

[Terminology]
<Override> Designate the override with a real number. The default value is 100.

Unit: [%] (Recommended range: 0.1 to 100.0)
A numeric operation expression can also be described. If 0 or a value over 100 is set,
an error will occur.

<Override when moving upward/downward>
Sets the override value when moving upward/downward by the arch motion instruction
(Mva).

[Reference Program]
1 Ovrd 50
2 Mov P1
3 Mvs P2
4 Ovrd M_NOvrd ' Set default value.
5 Mov P1
6 Ovrd 30,10,10 ' Sets the override when moving upward/downward by the arch motion

instruction to 10.
70 Mva P3,3

[Explanation]
(1) The Ovrd command is valid regardless of the interpolation type.
(2) The actual override is as follows:
*During joint interpolation: Operation panel (T/B) override setting value) x (Program override (Ovrd com-

mand)) x (Joint override (JOvrd command)).
*During linear interpolation: Operation panel (T/B) override setting value) x (Program override (Ovrd com-

mand)) x (Linear designated speed (Spd command)).
(3) The Ovrd command changes only the program override. 100% is the maximum capacity of the robot.

Normally, the system default value (M_NOvrd) is set to 100%. The designated override is the system
default value until the Ovrd command is executed in the program.

(4) Once the Ovrd command has been executed, the designated override is applied until the next Ovrd com-
mand is executed, the program End is executed or until the program is reset. The value will return to the
default value when the End statement is executed or the program is reset.

[Related instructions]
JOvrd (J Override) (For joint interpolation), Spd (Speed)(For linear/circular interpolation)

[Related system variables]
M_JOvrd/M_NJovrd/M_OPovrd/M_Ovrd/M_NOvrd
(M_NOvrd (System default value), M_Ovrd (Current designated speed))

Ovrd[]<Override>

Ovrd[]<Override> [, <Override when moving upward> [, <Override when moving downward>]]

 4MELFA-BASIC V

 Detailed explanation of command words 4-255

Plt (Pallet)

[Function]
Calculates the position of grid in the pallet.

[Format]

[Terminology]
<Pallet No.> Select a pallet No. between 1 and 8 that has already been defined with a Def Plt command.

Specify this argument using a constant or a variable.
<Grid No.> The position number to calculate in the palette. Specify this argument using a constant

or a variable.

[Reference Program]
10 Def Plt 1,P1,P2,P3,P4,4,3,1 ' The definition of the four-point pallet. (P1,P2,P3,P4)
11 '
12 M1=1 ' Initialize the counter M1.
13 *LOOP
14 Mov PICK, 50 ' Moves 50 mm above the work unload position.
15 Ovrd 50
16 Mvs PICK
17 HClose 1 ' Close the hand.
18 Dly 0.5 ' Wait for the hand to close securely (0.5 sec.)
19 Ovrd 100
20 Mvs,50 ' Moves 50 mm above the current position.
21 PLACE = Plt 1, M1 ' Calculates the M1th position
22 Mov PLACE, 50 ' Moves 50 mm above the pallet top mount position.
23 Ovrd 50
24 Mvs PLACE
25 HOpen 1 ' Open the hand.
26 Dly 0.5
27 Ovrd 100
28 Mvs,50 ' Moves 50 mm above the current position.
29 M1=M1+1 ' Add the counter.
30 If M1 <=12 Then *LOOP ' If the counter is within the limits, repeats from *LOOP.
31 Mov PICK,50
32 End

[Explanation]
(1) The position of grid of a pallet defined by the Def Plt statement is operated.
(2) The pallet Nos. are from 1 to 8, and up to 8 can be defined at once.
(3) Note that the position of the grid may vary because of the designated direction in the pallet definition.
(4) If a grid No. is designated that exceeds the largest grid No. defined in the pallet definition statement, an

error will occur during execution.
(5) When using the pallet grid point as the target position of the movement command, an error will occur if

the point is not enclosed in parentheses as shown above. Refer to Page 103, "4.1.2 Pallet operation" for
detail.

[Related instructions]
Def Plt (Define pallet)

Plt[]<Pallet No.> , <Grid No.>

4-256 Detailed explanation of command words

4MELFA-BASIC V

Prec (Precision)

[Function]
This instruction is used to improve the motion path tracking. It switches between enabling and disabling the
high accuracy mode.

[Format].

[Terminology]
<On / Off> On : When enabling the high accuracy mode.

Off : When disabling the high accuracy mode.

[Reference Program]
1 Prec On ' Enables the high accuracy mode.
2 Mvs P1
3 Mvs P2
4 Prec Off ' Disables the high accuracy mode.
5 Mov P1

[Explanation]

(1) The high accuracy mode is enabled using the Prec On instruction if it is desired to perform interpolation
movement with increased path accuracy.

(2) When this instruction is used, the path accuracy is improved but the program execution time (tact time)
may become longer because the acceleration/deceleration times are changed internally.

(3) The enabling/disabling of the high accuracy mode is activated from the first interpolation instruction after
the execution of this instruction.

(4) The high accuracy mode is disabled if the Prec Off or End instruction is executed, or a program reset
operation is performed.

(5) The high accuracy mode is disabled immediately after turning the power on.
(6) The high accuracy mode is always disabled in jog movement.

[Related instructions]
Loadset (Load Set), Mv Tune (Move Tune)

[Related system variables]
HNDDAT 0 to 8, WRKDAT 0 to 8

Prec[]<On / Off>

 4MELFA-BASIC V

 Detailed explanation of command words 4-257

Print (Print)

[Function]
Outputs data into a file (including communication lines). All data uses the AscII format.

[Format]

[Terminology]
<File No.> Described with numbers 1 to 8.

Corresponds to the control No. assigned by the Open command.
<Expression> Describes numeric operation expressions, position operation expressions and character

string expressions.

[Reference Program]
1 Open "COM1" AS #1 ' Open standard RS-232-C line as file No. 1.20 Mov P_01.
2 MDATA=150 ' Substitute 150 for the numeric variable MDATA.
3 Print #1,"***Print TEST***" ' Outputs the character string "***Print TEST****."
4 Print #1 ' Issue a carriage return
5 Print #1,"MDATA=",MDATA ' Output the character string "MDATA" followed by the value of

MDATA, (150).
6 Print #1 ' Issue a carriage return.
4 Print #1,"****************" ' Outputs the character string "**************."
5 End ' End the program.

The output result is shown below.
Print TEST
MDATA=150

[Explanation]
(1) If <Expression> is not described, then a carriage return will be output.
(2) Output format of data (reference)

The output space for the value for <Expression> and for the character string is in units of 14 characters.
When outputting multiple values, use a comma between each <Expression> as a delimiter.
If a semicolon (;) is used at the head of each space unit, it will output after the item that was last dis-
played. The carriage return code will always be returned after the output data.

(3) The error occurs when Open command is not executed.
(4) If data contains a double quotation mark ("), only up to the double quotation mark is output.

Example)
[1 M1=123.5
 2 P1=(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0)]
1)[3 Print #1,"OUTPUT TEST",M1,P1]is described,
OUTPUT TEST 123.5 (130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

2)[3 Print #1,"OUTPUT TEST";M1;P1]is described,
OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

If a comma or semicolon is inserted after a <Expression>, the carriage return will not be issued, and instead,
printing will continue on the same line.

3) 3 Print #1,"OUTPUT TEST",
 4 Print #1,M1;
 5 Print #1,P1]is described,
OUTPUT TEST 123.5(130.5,-117.2,55.1,16.2,0.0,0.0)(1,0) is output.

[Related instructions]
Open (Open), Close (Close), Input (Input)

Print[]#<File No.>[] [, [<Expression> ;] ...[<Expression>[;]]]

4-258 Detailed explanation of command words

4MELFA-BASIC V

Priority (Priority)

[Function]
In multitask program operation, multiple program lines are executed in sequence (one by one line according
to the default setting). This instruction specifies the priority (number of lines executed in priority) when pro-
grams are executed in multitask operation.

[Format].

[Terminology]
<Number of executed lines> Specify the number of lines executed at once .

Use a numerical value from 1 to 31.
<Slot number> 1 to 32. If this argument is omitted, the current slot number is set.

[Reference Program]
Slot 1
1 Priority 3 ' Sets the number of executed steps for the current slot to 3.

Slot 2
1 Priority 4 ' Sets the number of executed steps for this slot to 4.

[Explanation]
(1) Programs of other slots are not executed until the specified number of steps is executed. For example,

as in the statement example above, if Priority 3 is set for slot 1's program and Priority 4 is set for slot 2's
program, three steps of the slot 1 program are executed first, then four steps of the slot 2 program are
executed. Afterward, this cycle is repeated.

(2) The default value is 1 for all the slots. In other words, the execution moves to the next slot every time one
step has been executed.

(3) An error occurs if there is no program corresponding to the specified task slot.
(4) It is possible to change the priority even while the program of the specified task slot is being executed.

Priority[]<Number of executed lines> [, <Slot number>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-259

RelM (Release Mechanism)

[Function]
This instruction is used in connection with control of a mechanism via task slots during multitask operation.
It is used to release the mechanism obtained by the GetM instruction.

[Format]

[Reference Program]
(1) Start the task slot 2 from the task slot 1, and control the mechanism 1 in the task slot 2.

Task slot 1
1 RelM ' Releases the mechanism in order to control mechanism 1 using slot 2.
2 XRun 2,"10" ' Start the program 10 in slot 2.
3 Wait M_Run(2)=1 ' Wait for the starting confirmation of the slot 2.
 :

Task slot 2. (Program "10")
1 GetM 1 ' Get the control of mechanism 1.
2 Servo On ' Turn on the servo of mechanism 1.
3 Mov P1
4 Mvs P2
5 Servo Off ' Turn off the servo of mechanism 1.
6 RelM ' Releases the control right of mechanism 1.
7 End

[Explanation]
(1) Releases the currently acquired mechanism resource.
(2) If an interrupt is applied while the mechanism is acquired and the program execution is stopped, the

acquired mechanism resource will be automatically released.
(3) This instruction cannot be used in a constantly executed program.

[Related instructions]
GetM (Get Mechanism)

RelM

4-260 Detailed explanation of command words

4MELFA-BASIC V

Rem (Remarks)

[Function]
Uses the following character strings as comments.

[Format]

[Terminology]
<Comment> Describe a user-selected character string.

Descriptions can be made in the range of position steps.

[Reference Program]
1 Rem ***MAIN PROGRAM***
2 ' ***MAIN PROGRAM***
3 Mov P1 ' Move to P1.

[Explanation]
(1) Rem can be abbreviated to be a single quotation mark (') .
(2) It can be described after the instruction like an 3 step in reference program.

Rem[][<Comment>]

 4MELFA-BASIC V

 Detailed explanation of command words 4-261

Reset Err (Reset Error)

[Function]
This instruction resets an error generated in the robot controller. It is not allowed to use this instruction in the
initial status. If an error other than warnings occurs, normal programs other than constantly executed pro-
grams cannot be operated. This instruction is effective if used in constantly executed programs.

[Format].

[Reference Program]
Example of execution in a constantly executed program
1 If M_Err=1 Then Reset Err 'Resets an error when an error occurs in the controller.

[Explanation]
(1) This instruction is used in a program whose start condition is set to constant execution (ALWAYS) by the

"SLT*" parameter when it is desired to reset system errors of the robot.
(2) It becomes enabled when the controller's power is turned on again after changing the value of the

"ALWENA" parameter from 0 to 1.

[Related parameter]
ALWENA

[Related system variables]
M_Err/M_ErrLvl/M_Errno

Reset Err

4-262 Detailed explanation of command words

4MELFA-BASIC V

Return (Return)
[Function]

(1) When returning from a normal subroutine returns to the next step after the GoSub.
(2) When returning from an interrupt processing subroutine, returns either to the step where the interrupt
was generated, or to the next step.

[Format]
(1) When returning from a normal subroutine:

(2) When returning from an interrupt processing subroutine:

[Terminology]
<Return Designation No.> Designate the step number where control will return to after an interrupt has been

generated and processed.
0 ... Return control to the line where the interrupt was generated.
1 ... Return control to the next line after the line where the interrupt was issued.

[Reference Program]
(1) The example of Return from the usual subroutine .

1 ' ***MAIN PROGRAM***
2 GoSub *SUB_INIT ' Subroutine jumps to label SUB_INIT.
3 Mov P1
 :
100 ' ***SUB INIT*** ' Subroutine
11 *SUB_INIT
12 PSTART=P1
13 M100=123
14 Return ' Returns to the step immediately following the step where the subrou-

tine was called from.

(2) The example of Return from the subroutine for interruption processing. Calls the subroutine on step 10
when the input signal of general-purpose input signal number 17 is turned on.

1 Def Act 1,M_In(17)=1 GoSub *SUB1 ' Definition of interrupt of Act 1.
2 Act 1=1 ' Enable the Act 1.
 :
10 *SUB1 ' The subroutine for interrupt of Act 1.
11 Act 1=0 ' Disable the interrupt.
12 M_Timer(1)=0 ' Set the timer to zero.
13 Mov P2 ' Move to P2.
14 Wait M_In(17)=0 ' Wait until the input signal 17 turns off.
15 Act 1=1 ' Set up interrupt again.
16 Return 0 ' Returns control to the interrupted step.

Return

Return <Return Designation No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-263

[Explanation]
(1) Writes the Return instruction at the end of the jump destination processing called up by the GoSub

instruction.
(2) An error occurs if the Return instruction is executed without being called by the GoSub instruction.
(3) Always use the Return instruction to return from a subroutine when called by the GoSub instruction. An

error occurs if the GoTo instruction is used to return, because the free memory available for control
structure (stack memory) decreases and eventually becomes insufficient.

(4) When there is a Return command in a normal subroutine with a return-to designation number, and when
there is a Return command in an interrupt-processing subroutine with no return-to destination number,
an error will occur.

(5) when returning from interruption processing to the next step by Return1, execute the statement to dis-
able the interrupt. When that is not so, if interruption conditions have been satisfied, because interrup-
tion processing will be executed again and it will return to the next step, the step may be skipped.
Please refer to Page 195, "Def Act (Define act)" for the interrupt processing.

[Related instructions]
GoSub (Return)(Go Subroutine), On ... GoSub (ON Go Subroutine), On Com GoSub (ON Communication
Go Subroutine), Def Act (Define act)

4-264 Detailed explanation of command words

4MELFA-BASIC V

Select Case (Select Case)

[Function]
Executes one of multiple statement blocks according to the condition expression value.

[Format]

[Terminology]
<Condition> Describe a numeric operation expression.
<Expression> Describe an expression using the following format. The type must be the same as the

condition expression.
*IS <Comparison operator> <Constant>
*<Constant>
*<Constant> TO <Constant>

<Process> Writes any instruction (other than the GoTo instruction) provided by MELFA-BASIC V.

[Reference Program]
1 Select MCNT
2 M1=10 ' This line is not executed
3 Case Is <= 10 ' MCNT <= 10
4 Mov P1
5 Break
6 Case 11 'MCNT=11 OR MCNT=12
6 Case 12
7 Mov P2
8 Break
9 Case 13 TO 18 '13 <= MCNT <= 18
10 Mov P4
11 Break
12 Default ' Other than the above.
13 M_Out(10)=1
14 Break
15 End Select

Select[] <Condition>
Case[]<Expression>

[<Process>]
Bresk

Case[]<Expression>
[<Process>]
Break

 :
Default

[<Process>]
Break

End[]Select

 4MELFA-BASIC V

 Detailed explanation of command words 4-265

[Explanation]
(1) If the condition matches one of the Case items, the process will be executed until the next Case, Default

or EndSelect. If the case does not match with any of the Case items but Default is described, that block
will be executed.

(2) If there is no Default, the program will jump to the step after EndSelect without processing.
(3) The Select Case and End Select statements must always correspond. If a GoTo instruction forces the

program to jump out from a Case block of the Select Case statement, the free memory available for
control structure (stack memory) decreases. Thus, if a program is executed continuously, an error will
eventually occur.

(4) If an End Select statement that does not correspond to Select Case is executed, an execution error will
occur.

(5) It is possible to write While-WEnd and For-Next within a Case block.
(6) Use "Case IS", when using the comparison operators (<, =, >, etc.) for the "<Expression>".

4-266 Detailed explanation of command words

4MELFA-BASIC V

Servo (Servo)

[Function]
Controls the ON and OFF of the servo motor power.

[Format]
(1) The usual program

(2) The program of always (ALWAYS) execution.

[Terminology]
<On / Off> On : When turning the servo motor power on.

Off : When turning the servo motor power off.
<Mechanism No.> This is valid only within the program of always execution.

The range of the value is 1 to 3, and describe by constant or variable.

[Reference Program]
1 Servo On ' Servo On.
2 *L2
3 IF M_Svo<>1 GoTo *L2 ' Wait for servo On.
4 Spd M_NSpd
5 Mov P1
6 Servo Off

[Explanation]
(1) The robot arm controls the servo power for all axes.
(2) If additional axes are attached, the servo power supply for the additional axes is also affected.
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related system variables]
M_Svo (1 : On, 0 : Off)

[Related parameter]
ALWENA

Servo[]<On / Off>

Servo[]<On / Off> , <Mechanism No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-267

Skip (Skip)

[Function]
Transfers control of the program to the next step.

[Format]

[Reference Program]
1 Mov P1 WthIf M_In(17)=1,Skip ' If the input signal (M_In(1 7)) turns ON while moving with joint

interpolation to the position indicated with position variable P1,
stop the robot interpolation motion, and stop execution of this
command, and execute the next step.

2 If M_SkipCq=1 Then Hlt ' Pauses the program if the execution is skipped.

[Explanation]
(1) This command is described with the WHT or WthIf statements. In this case, the execution of that step is

interrupted, and control is automatically transferred to the next step. Execution of skip can be seen with
the M_SkipCq information.

[Related system variables]
M_SetAdl (1: Skipped, 0: Not skipped)

Skip

4-268 Detailed explanation of command words

4MELFA-BASIC V

Spd (Speed)

[Function]
Designates the speed for the robot's linear and circular movements. This instruction also specifies the opti-
mum speed control mode.

[Format]

[Terminology]
<Designated Speed> Designate the speed as a real number. Unit: [mm/s]

[Reference Program]
1 Spd 100
2 Mvs P1
3 Spd M_NSpd ' Set the default value.(The optimal speed-control mode .)
4 Mov P2
5 Mov P3
6 Ovrd 80 ' Countermeasure against an excessive speed error in the optimal speed mode
7 Mov P4
8 Ovrd 100

[Explanation]
(1) The Spd command is valid only for the robot's linear and circular movements.
(2) The actual designated override is (Operation panel (T/B) override setting value) x (Program override

(Ovrd command)) x (Linear designated speed (Spd command)).
(3) The Spd command changes only the linear/circular designated speed.
(4) When M_NSpd (The default value is 10000) is designated for the designated speed, the robot will

always move at the maximum possible speed, so the line speed will not be constant(optimum speed
control).

(5) An error may occur depending on the posture of the robot despite of the optimal speed control. If an
excessive speed error occurs, insert an Ovrd instruction in front of the error causing operation instruc-
tion in order to lower the speed only in that segment.

(6) The system default value is applied for the designated speed until the Spd command is executed in the
program. Once the Spd command is executed, that designated speed is held until the next Spd com-
mand.

(7) The designated speed will return to the system default value when the program End statement is exe-
cuted.

[Related system variables]
M_Spd/M_NSpd/M_RSpd

Spd[]<Designated Speed

Spd[]M_NSpd (Optimum speed control mode)

 4MELFA-BASIC V

 Detailed explanation of command words 4-269

SpdOpt (Speed Optimize)

[Function]
Adjusts the speed so that the speed does not exceed during the linear interpolation operation in the horizontal
direction which passes through near the singular point (X=Y=0: one of the robot's singular points).

Note) This command is limited to the corresponding S/W Ver. and robot models .

S/W Ver. 　 SQ series: R1w or later

SD series: S1w or later.

Type : RH-3SQHR series
RH-3SDHR series

[Format]

[Terminology]
<On/Off> ON: Enable the speed-optimization function.

OFF: Disable the speed-optimization function.

[Reference Program]
1 Mov P1

2 SpdOpt On ' Enable the speed-optimization function.

3 Mvs P2

4 Mvs P3

5 SpdOpt Off ' Disable the speed-optimization function.

6 Mvs P6

[Explanation]
(1) When performing a XYZ interpolation operation while maintaining the speed of the control point, the J1 axis

must rotate at a faster speed when passing through a point near the origin point O (one of the robot's singular

points) as shown in Fig. 4-30, causing an excessive speed error depending on the specified speed. If SpdOpt
On is executed, the speed is adjusted automatically in order to prevent an excessive speed error from
occurring.
For example, while in operation at the command speed V, it approaches the origin point O, and the speed will
be exceeded if it continues to operate at the current speed, the speed is decreased automatically as shown
by A in Fig. 4-31 in order to prevent the speed to be exceeded. Then, when it has passed near the origin point

O and it becomes possible to increase the speed, it starts accelerating to reach command speed V as shown
by B in Fig. 4-31.

(2) Relation between Ovrd or Spd command
Moves at one of late speed.

a) If the specified speed (Ovrd or Spd command) is slower...........Moves at specified speed
b) If the specified speed (Ovrd or Spd command) is faster............Moves at at the adjustment speed in

this function

SpdOpt[]<On/Off>

4-270 Detailed explanation of command words

4MELFA-BASIC V

Fig.4-30:Passing through near the origin point Fig.4-31:The situation of speed at speed-optimization.

(3) This command is valid only in linear interpolation movement. It functions in neither joint interpolation nor
circle interpolation. And, even if the speed optimization function is valid, if the J4 axis does not pass through
the area shown in ""Fig. 4-32Speed regulation area and singular point area""by linear interpolation, this does
not function.

図 4-32 ： Speed regulation area and singular point area

(4) The initial condition of the speed optimization function at turning ON the power supply can be changed with
parameter SPDOPT. This parameter also limits the models which can be used.

The initial value in the target models is SPDOPT=1 (speed optimization valid).
(5) If the End instruction or a program reset operation is executed, the status of the speed adjustment function

returns to the initial state immediately after the power is turned on.
(6) When the speed adjustment function is enabled, error 2804 will be generated if the XYZ interpolation by

which the J4 axis passes through a singular point area shown in Fig. 4-32 is executed, and the operation is

then suspended.
(7) Even if this instruction is described in a program, it is ignored on models other than the applicable models.
(8) Even if the speed adjustment function is enabled, an exceeded speed error may be generated if a path is

connected by enabling the Cnt instruction near the origin point, or a XYZ interpolation operation that
drastically changes the posture is executed. In such a case, move the position where a path is connected
away from the origin point, or adjust the speed by using the Ovrd instruction.

(9) In the case of a XYZ interpolation that operates slightly in the horizontal direction but operates significantly
in the vertical direction, the operation speed may degrade drastically when the speed adjustment function is
enabled vs. when it is disabled. In such a case, disable the speed adjustment function, or operate by using a
JOINT interpolation (Mov instruction).

速 度

時 間

V

Ａ
↓

Ｂ
↓

速度調整領域
J2

+Y

+X

J2

J4

原点

J4

J1

直線補間

Speed

 Origin

Time

Speed regulation area

Linear interpolation

+Y

+X

J2

J4

直線補間

J1

R1

R2 Distance of R1 and R2

RH-3SQHR3515/RH-3SDHR3515 series
R1=240.0mm， R2=1.0mm

Inside of R2 :Singular point area (positioning and passage
only by joint interpolation are possible)

R1-R2: Speed regulation area

Linear interpolation

 4MELFA-BASIC V

 Detailed explanation of command words 4-271

[The available robot type]

[Related parameter]
SPDOPT

Title (Title)

[Function]
Appends the title to the program. The characters specified in the program list display field of the robot con-
troller can be displayed using the separately sold personal computer support software.

[Format]

[Terminology]
<Character String> Message for title

[Reference Program]
1 Title "ROBOT Loader program"
2 Mov P1
3 Mvs P2

[Explanation]
(1) Although characters can be registered up to the maximum allowed for each step in the program, only a

maximum of 20 characters can be displayed in the program list display field of the robot controller using
the personal computer support software.

RH-3SQHR series
RH-3SDHR series

Title[]"<Character String>"

4-272 Detailed explanation of command words

4MELFA-BASIC V

Tool(Tool)

[Function]
Designates the tool conversion data. This instruction specifies the length, position of the control point from
the mechanical interface, and posture of the tools (hands).

[Format]

[Terminology]
<Tool Conversion Data> Specifies the tool conversion data using the position operation expression. (Position

constants, position variables, etc.)

[Reference Program]
(1) Set up the direct numerical value.

1 Tool (100,0,100,0,0,0) ' Changes the control position to an X-axis coordinate value of
100 mm and a Z-axis coordinate value of 100 mm in the tool
coordinate system.

2 Mvs P1
3 Tool P_NTool ' Returns the control position to the initial value. (mechanical inter-

face position, flange plane.)

(2) Set up the position variable data in the XYZ coordinates system.
(If (100,0,100,0,0,0,0,0) are set in PTL01, it will have the same meaning as (1).)
1 Tool PTL01
2 Mvs P1

[Explanation]
(1) The Tool instruction is used to specify the control points at the tip of each hand in a system using double

hands. If both hands are of the same type, the control point should be set by the "MEXTL" parameter
instead of by the Tool instruction.

(2) The tool conversion data changed with the Tool command is saved in parameter MEXTL, and is saved
even after the controller power is turned OFF.

(3) The system default value (P_NTool) is applied until the Tool command is executed.
Once the Tool command is executed, the designated tool conversion data is applied until the next Tool
command is executed. This is operated with 6-axis three-dimension regardless of the mechanism struc-
ture.

(4) If different tool conversion data are used at teaching and automatic operation, the robot may move to an
unexpected position. Make sure that the settings at operation and teaching match.
The valid axis element of tool conversion data is different depending on the type of robot.
Set up the appropriate data referring to the Page 409, "Table 5-8: Valid axis elements of the tool conver-
sion data depending on the robot model".

(5) Using the M_Tool variable, it is possible to set the MEXTL1 to 16 parameters as tool data.

[Related parameter]
MEXTL, MEXTL 1 to 16 Refer to Page 408, "5.6 Standard Tool Coordinates" for detail.

[Related system variables]
P_Tool/P_NTool, M_Tool

Tool[]<Tool Conversion Data>

 4MELFA-BASIC V

 Detailed explanation of command words 4-273

Torq (Torque)

[Function]
Designates the torque limit for each axis. By specifying the torque limit, an excessive load (overload) on
works and so froth can be avoided. An excessive error is generated if the torque limit value ratio is
exceeded.

[Format]

[Terminology]
<Axis No.> Designate the axis No. with a numeric constant. (1 to 6)
<Torque Limitation Rate> Designate the limit of the force generated from the axis as a percentage. (1 to 100)

[Reference Program]
1 Def Act 1,M_Fbd>10 GoTo *SUB1,S

' Generate an interrupt when the difference between the com-
mand position and the feedback position reaches 10 mm or
more.

2 Act 1=1 ' Enable the interrupt 1
3 Torq 3,10 ' Set the torque limit of the three axes to 10% of the normal torque

using the torque instruction.
4 Mvs P1 ' Moves
5 Mov P2
:
10 *SUB1
11 Mov P_Fbc ' Align the command position with the feedback position.
12 M_Out(10)=1 ' Signal No. 10 output
13 Hlt ' Stop when a difference occurs.

[Explanation]
(1) Restrict the torque limit value of the specified axis so that a torque exceeding the specified torque value

will not be applied during operation. Specify the ratio relative to the standard torque limit value. The
standard torque limit value is predefined by the manufacturer.

(2) The available rate of torque limitation is changed by robot type. The setting is made for each servo
motor axis; thus, it may not be the torque limit ratio at the control point of the tip of the actual robot. Try
various ratios accordingly.

(3) If the robot is stopped while still applying the torque limit, it may stop at the position where the command
position and the feedback position deviate (due to friction, etc.). In such a case, an excessive error may
occur when resuming the operation. To avoid this, program so as to move to the feedback position
before resuming the operation, as shown on the 10th step of the above example.

(4) This instruction is valid only for standard robot axes. It cannot be used for general-purpose servo axes
(additional axes and user-defined mechanisms). Change the parameters on the general-purpose servo
side to obtain similar movement.

[Related system variables]
P_Fbc, M_Fbd

Torq[]<Axis No.>, <Torque Limitation Rate>

4-274 Detailed explanation of command words

4MELFA-BASIC V

Wait (Wait)

[Function]
Waits for the variable to reach the designated value.

[Format]

[Terminology]
<Numeric variable> Designate a numeric variable. Use the input/output signal variable (in such cases

as M_In, M_Out) well.
<Numeric constant> Designate a numeric constant.

[Reference Program]
(1) Signal state

1 Wait M_In(1)=1 ' The same meaning as 1 *L10:If M_In(1)=0 Then GoTo *L10.
2 Wait M_In(3)=0

(2) Task slot state
3 Wait M_Run(2)=1

(3) Variable state
4 Wait M_01=100

[Explanation]
(1) This command is used as the interlock during signal input wait and during multitask execution.
(2) The Wait instruction allows the program control to continue to the next step once the specified condition

is met.
(3) In case the Wait instruction is executed in several tasks at one time in the multitask execution status, the

processing time (tact time) may become longer and affect the system. In such cases, use the If-Then
instruction instead of the Wait instruction.

(4) Number of conditions which may be included in a Wait command is one. If more than one is included, an
erroneous judgment or an error in execution process can result.

An example of wrong indication) Wait M_in(38)=1 Or M_IN(39)=1

⇒ To attain an intended purpose as in this example, avoid using a Wait command and use a "If-Then"

statement instead

Example) *Loop
If M_in(38)=1 Or M_IN(39)=1 Then *Next Else *Loop

＊ Next

Wait[]<Numeric variable>=<Numeric constant>

 4MELFA-BASIC V

 Detailed explanation of command words 4-275

While-WEnd (While End)

[Function]
The program between the While statement and WEnd statement is repeated until the loop conditions are
satisfied.

[Format]

[Terminology]
<Loop Condition> Describe a numeric operation expression. (Refer to the syntax diagram)

[Reference Program]
(1) Repeat the process while the numeric variable M1 value is between -5 and +5, and transfer control to

step after WEnd statement if range is exceeded.
1 While (M1>=-5) AND (M1<=5) ' Repeat the process while the value of numeric variable M1 is

between -5 and +5.
2 M1=-(M1+1) ' Add 1 to M1, and reverse the sign.
3 Print# 1, M1 ' Output the M1 value.
4 WEnd ' Return to the While statement (step 1)
5 End ' End the program.

(2) Process of the While-WEnd can be skipped by Break
1 While (M1>=-5) AND (M1<=5) ' Repeat the process while the value of numeric variable M1 is

between -5 and +5.
2 M1=-(M1+1) ' Add 1 to M1, and reverse the sign.
3 M_Out(8)=M1 ' Output the numeric variable M1.
4 If M_In(8)=1 Then Break ' If the input signal 8 is turned on, jump to Step 6.
5 WEnd ' Return to the While statement (step 1)
6 If M_BrkCq=1 Then Hlt

[Explanation]
(1) The program between the While statement and WEnd statement is repeated.
(2) If the result of <Expression> is true (not 0), the control moves to the step following the While statement

and the process is repeated.
(3) If the result of <Expression> is false (is 0), then the control moves to the step following the WEnd state-

ment.
(4) If a GoTo instruction forces the program to jump out from between a While statement and a WEnd state-

ment, the free memory available for control structure (stack memory) decreases. Thus, if a program is
executed continuously, an error will eventually occur. Write a program in such a way that the loop exits
when the condition of the While statement is met.

(5) In the While, it can escape to the next step of the WEnd by Break. That is, process of the While-WEnd
can be skipped.

While[]<Loop Condition>

 :

WEnd

4-276 Detailed explanation of command words

4MELFA-BASIC V

Wth (With)

[Function]
A process is added to the interpolation motion.

[Format]

[Terminology]
<Process> Describe the process to be added. The commands that can be described are as follow.

 1. <Numeric type data B> <Substitution operator><Numeric type data A> [Substitute,
signal modifier command (refer to syntax diagram)]

[Reference Program]

1 Mov P1 Wth M_Out(17)=1 Dly M1+2 ' Simultaneously with the start of movement to P1, the out-
put signal No. 17 will turn ON for the value indicated with
the numeric variable M1 + two seconds.

[Explanation]
(1) This command can only be used to describe the additional condition for the movement command.
(2) An error will occur if the Wth command is used alone.
(3) The process will be executed simultaneously with the start of movement.
(4) The relationship between the interrupts regarding the priority order is shown below.

 Com > Act > WthIf(Wth)

Example) MOV P1 Wth[]<Process>

 4MELFA-BASIC V

 Detailed explanation of command words 4-277

WthIf (With If)

[Function]
A process is conditionally added to the interpolation motion command.

[Format]

[Terminology]
<Additional Condition> Describe the condition for adding the process. (Same as Act condition expres-

sion)
<Process> Describe the process to be added when the additional conditions are estab-

lished. (Same as Wth)
The commands that can be described as a process are as follow. (Refer to
syntax diagram.)
 1. <Numeric type data B> <Substitution operator><Numeric type data A>
 Example) M_Out(1)=1, P1=P2
 2. Hlt statement
 3. Skip statement

[Reference Program]
(1) If the input signal 17 turns on, the robot will stop.

1 Mov P1 WthIf M_In(17)=1, Hlt

(2) If the current command speed exceeds 200 mm/s, turn on the output signal 17 for the M1+2 seconds.
2 Mvs P2 WthIf M_RSpd>200, M_Out(17)=1 Dly M1+2

(3) If the rate of arrival exceeds 15% during movement to P3, turn on the output signal 1.
3 Mvs P3 WthIf M_Ratio>15, M_Out(1)=1

[Explanation]
(1) This command can only be used to describe the additional conditions to the movement command.
(2) Monitoring of the condition will start simultaneously with the start of movement.
(3) It is not allowed to write the Dly instruction at the processing part.
(4) If the robot is stopped using the Hlt instruction, it decelerates and stops in the same way as for "Stop type

1" of the Def Act instruction.(Refer to Page 195, " Def Act (Define act)")

WthIf[]<Additional Condition>, <Process>

4-278 Detailed explanation of command words

4MELFA-BASIC V

XClr (X Clear)

[Function]
This instruction cancels the program selection status of the specified task slot from within a program. It is
used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2,"1" ' Executes the first program in task slot 2.
 :
10 XStp 2 ' Pauses the program of task slot 2.
11 Wait M_Wai(2)=1 ' Waits until the program of task slot 2 pauses.
12 XRst 2 ' Cancels the pause status of the program of task slot 2.
 :
20 XClr 2 ' Cancels the program selection status of task slot 2.
21 End

[Explanation]
(1) An error occurs at execution if the specified slot does not select the program.
(2) If the designated program is being operating, an error will occur at execution.
(3) If the designated program is being pausing, an error will occur at execution.
(4) If this instruction is used within a constantly executed program, it becomes enabled by changing the

value of the "ALWENA" parameter from 0 to 7 and turning the controller's power off and on again.

[Related instructions]
XLoad (X Load), XRst (X Reset), XRun (X Run), XStp (X Stop)

[Related parameter]
ALWENA

XClr[]<Slot No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-279

XLoad (X Load)

[Function]
This instruction commands the specified program to be loaded into the specified task slot from within a pro-
gram.
It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.
<Program Name> Designate the program name. Specify with the character string constant. (The character

[Reference Program]
1 If M_Psa(2)=0 Then *L1 ' Checks whether slot 2 is in the program selectable state.
2 XLoad 2,"10" ' Select program 10 for slot 2.
3 *L3
4 If C_Prg(2)<>"10" Then GoTo *L3 ' Waits for a while until the program is loaded.
5 XRun 2 ' Start slot 2.
6 Wait M_Run(2)=1 ' Wait to confirm starting of slot 2.
7 *L1
8 ' When the slot 2 is already operating, execute from here.

[Explanation]
(1) An error occurs at execution if the specified program does not exist.
(2) If the designated program is already selected for another slot, an error will occur at execution.
(3) If the designated program is being edited, an error will occur at execution.
(4) If the designated program is being executed, an error will occur at execution.
(5) Designate the program name in double quotations.
(6) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.
(7) If XRun is executed immediately after executing XLoad, an error may occur while loading a program. If

necessary, perform a load completion check as shown on the 4'th step of the statement example.

[Related instructions]
XClr (X Clear), XRst (X Reset), XRun (X Run), XStp (X Stop)

[Related parameter]

ALWENA

XLoad[]<Slot No.> <Program Name>

string variables cannot be used.)

4-280 Detailed explanation of command words

4MELFA-BASIC V

XRst (X Reset)

[Function]
This instruction returns the program control to the first step if the program of the specified task slot is paused
by a command within the program (program reset). It is used during multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2 ' Start.
2 Wait M_Run(2)=1 ' Wait to confirm starting.
 :
10 XStp 2 ' Stop.
11 Wait M_Wai(2)=1 ' Wait for stop to complete.
 :
15 XRst 2 ' Set program execution start step to head step.
16 Wait M_Psa(2)=1 ' Wait for program reset to complete.
 :
20 XRun 2 ' Restart.
21 Wait M_Run(2)=1 ' Wait for restart to complete.

[Explanation]
(1) This is valid only when the slot is in the stopped state.
(2) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XClr (X Clear), XLoad (X Load), XRun (X Run), XStp (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_Psa (Slot number) (1: Program selection is possible, 0: Program selection is impossible)
M_Run (Slot number) (1: Executing, 0: Not executing)
M_Wai (Slot number) (1: Stopping, 0: Not stopping)

XRst[]<Slot No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-281

XRun (X Run)

[Function]
This instruction executes concurrently the specified programs from within a program.It is used during
multitask operation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.
<Program Name> Designate the program name.

1 = Cycle stop operation. If the operation mode is omitted, the current operation mode
will be used. Specify this argument using a constant or a variable.

[Reference Program]
(1) When the program of execution is specified by XRun command (continuous executing).

1 XRun 2,"1" ' Start the program 1 with slot 2.
2 Wait M_Run(2)=1 ' Wait to have started.

(2) When the program of execution is specified by XRun command (cycle operation)
1 XRun 3,"2",1 ' Start the program 2 with slot 3 in the cycle operation mode
2 Wait M_Run(3)=1 ' Wait to have started.

(3) When the program of execution is specified by XLoad command (continuous executing).
1 XLoad 2, "1" ' Select the program 1 as the slot 2.
2 *L2
3 If C_Prg(2)<>"1" Then GoTo *L3 ' Wait for load complete.
4 XRun 2 ' Start the slot 2.

(4) When the program of execution is specified by XLoad command (cycle operation)
1 XLoad 3, "2" ' Select the program 2 as the slot 3.
2 *L2
3 If C_Prg(2)<>"1" Then GoTo *L2 ' Wait for load complete
4 XRun 3, ,1 ' Start the program 1 with cycle operation.

[Explanation]
(1) An error occurs at execution if the specified program does not exist.
(2) If the designated slot No. is already in use, an error will occur at execution.
(3) If a program has not been loaded into a task slot, this instruction will load it. It is thus possible to operate

the program without executing the XLoad instruction.
(4) If XRun is executed in the "Pausing" state with the program stopped midway, continuous execution will

start.
(5) Designate the program name in double quotations.
(6) If the operation mode is omitted, the current operation mode will be used.
(7) If it is used in programs that are constantly executed, change the value from 0 to 7 in the ALWENA

parameter, and power ON the controller again.
(8) If XRun is executed immediately after executing XLoad, an error may occur while loading a program. If

necessary, perform a load completion check as shown on the 3rd step of both statement examples [3]
and [4].

[Related instructions]
XClr (X Clear), XLoad (X Load), XRst (X Reset), XStp (X Stop)

[Related parameter]
ALWENA

[Related system variables]
M_Run (Slot number) (1: Executing, 0: Not executing)

XRun[]<Slot No.> [, ["<Program Name>"] [, <Operation Mode>]]

Specify with either the character string constant or character string variables.
< <Operation Mode> 0 = Continuous operation,

4-282 Detailed explanation of command words

4MELFA-BASIC V

XStp (X Stop)

[Function]
This instruction pauses the execution of the program in the specified task slot from within a program. If the
robot is being operated by the program in the specified task slot, the robot stops. It is used in multitask oper-
ation.

[Format]

[Terminology]
<Slot No.> Specify a slot number in the range from 1 to 32 as a constant or variable.

[Reference Program]
1 XRun 2 ' Execute.
 :
10 XStp 2 ' Stop.
11 Wait M_WAI(2)=1 ' Wait for stop to complete.
 :
20 XRun 2 ' Restart.

[Explanation]
(1) If the program is already stopped, an error will not occur.
(2) XStp can also stop the constant execution attribute program.
(3) If used in a program that is executed constantly, this instruction is enabled by changing the value of the

"ALWENA" parameter from 0 to 7 and then turning the controller's power on again.

[Related instructions]
XClr (X Clear), XLoad (X Load), XRst (X Reset), XRun (X Run)

[Related parameter]
ALWENA

[Related system variables]
M_Wai (Slot number) (1: Stopping, 0: Not stopping)

XStp[]<Slot No.>

 4MELFA-BASIC V

 Detailed explanation of command words 4-283

Substitute

[Function]
The results of an operation are substituted in a variable or array variable.

[Format]

For pulse substitution

[Terminology]
<Variable Name> Designate the variable name of the value is to be substituted.

(Refer to the syntax diagram for the types of variables.)
<Expression 1> Substitution value. Describe an numeric value operation expression.
<Expression 2> Pulse timer. Describe an numeric value operation expression.

[Reference Program]

(1) Substitution of the variable operation result .
1 P100=P1+P2*2

(2) Output of the signal.
2 M_Out(10)=1 ' Turn on the output signal 10.

(3) Pulse output of the signal.
3 M_Out(17)=1 Dly 2.0 ' Turn on the output signal 17 for 2 seconds.

[Explanation]
(1) When using this additionally for the pulse output, the pulse will be executed in parallel with the execution

of the commands on the following steps.
(2) Be aware that if a pulse is output by M_Outb or M_Outw, the bits are reversed in 8-bit units or 16-bit

units, respectively. It is not possible to reverse at any bit widths.
(3) If the End command or program's last step is executed during the designated time, or if the program exe-

cution is stopped due to an emergency stop, etc., the output state will be held. But, the output reversed
after the designated time.

<Variable Name> = <Expression 1>

<Variable Name> = <Expression 1> Dly <Expression 2>

4-284 Detailed explanation of command words

4MELFA-BASIC V

(Label)

[Function]
This indicates the jump site.

[Format]

[Terminology]
<Label Name> Describe a character string that starts with an alphabetic character.

Up to 16 characters can be used. (Up to 17 characters including *.)
<Command line> The command line can be described after the colon after the label (:).

[Reference Program]
1 *SUB1
2 If M1=1 Then GoTo *SUB1
3 *LBL1 : IF M_In(19)=0 Then GoTo *LBL1 ' Wait by the step 3 until the input signal of No. 10 turns on.

[Explanation]
(1) An error will not occur even if this is not referred to during the program.
(2) If the same label is defined several times in the same program, an error will occur at the execution.
(3) The reserved words can't be used for the label.
(4) The underscore ("_") cannot be specified as the 2nd character. This form is for the system external vari-

able. For example, "*A_", "*B_", "*Z_", etc. are the syntax error.
When using the "*L_", the error occur at execution. This form is reservation for the system.
In addition, the underscore ("_") can be used in the 3rd character or later.

(5) The software J1 or later, the command line can be described after the colon after the label (:). However,
after the command line, the colon cannot be described and the command line cannot be described
again.

*<Label Name>

*<Label Name> [:<Command line>]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-285

4.15 Detailed explanation of Robot Status Variable
4.15.1 How to Read Described items

[Function] : This indicates a function of a variable.
[Format] : This indicates how to enter arguments of an instruction. [] means that

arguments may be omitted.
System status variables can be used in conditional expressions, as well
as in reference and assignment statements. In the format example, only
reference and assignment statements are given to make the description
simple.

[Reference Program] : An example program using variables is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related items.

4.15.2 Explanation of Each Robot Status Variable
Each variable is explained below in alphabetical order.

4-286 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

C_Com

[Function]
Sets the parameters for the line to be opened by the Open instruction. This is used when the communication
destination is changed frequently.
* Character string type
* Only for a client with the Ethernet.

[Format]

[Terminology]
ETH: An identifier to indicate that the target is an Ethernet
<Communication line number>The number of the COM to be specified by the Open instruction (The line

type is assigned by the COMDEV parameter.) Specify 1 through 8.
<Server side IP address> Server side IP address (May be omitted.)
<Port number> Port number on the server side (If omitted, the set value of the NETPORT

parameter is used.)

[Reference Program]
Example when the Ethernet option is installed in an option slot and OPT12 is set in the second element of
the COMDEV parameter

1 C_Com(2)="ETH:192.168.0.10,10010"' Set the IP address of the communication destination server cor-
responding to communication line COM2

2 *O1
3 Open "COM2:" AS #1 ' As 192.168.0.10 and the port number as 10010, and then open

the line.
4 If M_Open(1)<>1 Then *O1 ’ Loops if unable to connect to the server.
5 Print #1, "HELLO" ’ Sends a character string.
6 Input #1, C1$ ’ Receives a character string.
7 Cose #1 ’ Closes the line.
8 C_Com(2)="ETH:192.168.0.11,10011"’ Set the IP address of the communication destination server cor-

responding to communication line COM2
9 *O2
10 Open "COM2:" AS #1 ’ As 192.168.0.11 and the port number as 10011, and then open

the line.
11 If M_Open(1)<>1 Then *O2 ’ Loops if unable to connect to the server.
12 Print #1, C1$ ’ Sends a character string.
13 Input #1, C2$ ’ Receives a character string.
14 Close #1 ’ Closes the line.
15 Hlt ’ Halts the program.
16 End ’ Ends.

[Explanation]
(1) It is not necessary to use this command when the communication counterpart of the robot controller is

specified with the NETHSTIP and NETPORT parameters and the specified communication counterpart
will not be changed at all.

(2) Currently, this function is valid only for a client of a data link with the Ethernet option.
(3) Because the communication parameters of the OPEN instruction are set, it is necessary to execute this

command before the OPEN instruction.
(4) When the power is turned on, the set values specified by the NETHSTIP and NETPORT parameters are

used. When this command is executed, the values specified by the parameters of this command are
changed temporarily. They are valid until the power is turned off. When the power is turned on again,
the values revert to the original values set by the parameters.

C_Com (<communication line number>) = "ETH: <server side IP address> [, <port number>]"

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-287

(5) If this command is executed after the OPEN instruction, the current open status will not change. In such
a case, it is necessary to close the line with the CLOSE instruction once, and then execute the OPEN
instruction again.

(6) If an incorrect syntax is used, an error occurs when the program is executed, not when the program is
edited.

[Related parameter]
NETHSTIP, NETPORT

C_Date

[Function]
This variable returns the current date in the format of year/month/date.

[Format]

[Reference Program]
1 C1$=C_Date ' "2000/12/01" is assigned to C1$.

[Explanation]
(1) The current date is assigned.
(2) This variable only reads the data. Use the T/B to set the date.

[Reference]
C_Time

C_Maker

[Function]
This variable returns information on the manufacturer of the robot controller.

[Format]

[Reference Program]
1 C1$=C_Maker ' "COPYRIGHT1999......." is assigned to C1$.

[Explanation]
(1) This variable returns information on the manufacturer of the robot controller.
(2) This variable only reads the data.

[Reference]
C_Mecha

Example) <Character String Variable >=C_Date

Example) <Character String Variable >=C_Maker

4-288 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

C_Mecha

[Function]
This function returns the mechanism name (robot type name) for which control right has been acquired.

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Mechanism Number> 1 to 32, Enter the task slot number. If the argument is omitted, current

task slot number is set as the default value.

[Reference Program]
1 C1$=C_Mecha(1) ' "RV-6SD" is assigned to C1$. (If the robot type name is RV-6SD)

[Explanation]
(1) The mechanism name (robot type name), for which the specified task slot has acquired control right, is

returned.
(2) When a task slot, which has not acquired control right of the mechanism, is specified, "" (none) is

returned.
(3) This variable only reads the data.

[Related instructions]

GetM (Get Mechanism), RelM (Release Mechanism)

C_Prg

[Function]
This variable returns the selected program name (number).

[Format]

[Terminology]
<Character String Variable > Specify a character string variable to be assigned.
<Numeric> 1 to 32, Enter the task slot number. If the argument is omitted, current

task slot number is set as the default value.

[Reference Program]
1 C1$=C_Prg(1) ' "10" is assigned to C1$. (if the program name is "10".)

[Explanation]
(1) The program name (number) set (loaded) into the specified task slot is assigned.
(2) If this variable is used in single task operation, the task slot number becomes 1.
(3) If it is set in the operation panel, that program name (number) is set.
(4) This variable only reads the data.
(5) If a task slot for which a program is not loaded is specified, an error occurs at execution.

Example) <Character String Variable >=C_Mecha[(<Numeric>)]

Example) <Character String Variable >=C_Prg [(<Numeric>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-289

C_Time

[Function]
This variable returns the current time in the format of time:minute:second (24 hours notation).

[Format]

[Reference Program]
1 C1$=C_Time ' "01/05/20" is assigned to C1$.

[Explanation]
(1) The current clock is assigned.
(2) This variable only reads the data.
(3) Use the T/B to set the time.

[Reference]
C_Com

C_User

[Function]
This variable returns the data registered in the "USERMSG" parameter.

[Format]

[Reference Program]
1 C1$=C_User ' The characters registered in "USERMSG" are assigned to C1$.

[Explanation]
(1) This variable returns the data registered in the "USERMSG" parameter.
(2) This variable only reads the data.
(3) Use the PC support software or the T/B to change the parameter setting.

Example) <Character String Variable >=C_Time

Example) <Character String Variable >=C_User

4-290 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

J_Curr

[Function]
Returns the joint type data at the current position.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Curr ' J1 will contain the current joint position.

[Explanation]
(1) The joint type variable for the current position of the robot specified by the mechanism number will be

obtained.
(2) This variable only reads the data.

[Reference]
P_Curr

Example) <Joint Type Variable>=J_Curr [(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-291

J_ColMxl

[Function]
Return the maximum value of the differences between the estimated torque and actual torque while the
impact detection function is being enabled.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.(Joint type variable will be used

even if this is a pulse value.)
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=100 'Set the initial value of the allowable impact level of each axis.
2 M2=100
3 M3=100
4 M4=100
5 M5=100
6 M6=100
7 ColLvl M1,M2,M3,M4,M5,M6,, 'Set the allowable impact level of each axis.
8 ColChk On 'Enable the impact detection function.

(Start the calculation of the maximum value of torque error.)
9 Mov P1
 :
 :
50 ColChk Off 'Disable the impact detection function.

(End the calculation of the maximum value of torque error.)
51 M1=J_ColMxl(1).J1+10 'For each axis, the allowable impact level with a margin of 10% is

calculated.
(10% is a reference value for the reference program and not an
actual guaranteed value.)

52 M2=J_ColMxl(1).J2+10
53 M3=J_ColMxl(1).J3+10
54 M4=J_ColMxl(1).J4+10
55 M5=J_ColMxl(1).J5+10
56 M6=J_ColMxl(1).J6+10
57 GoTo 70

Example) <Joint Type Variable>=J_ColMxl [(<Mechanism Number>)]

4-292 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

[Explanation]
(1) Keep the maximum value of the error of the estimated torque and actual torque of each axis while impact

detection function is valid.

(2) When this value is 100%, it indicates that the maximum error value is the same as the manufacturer's ini-
tial value of the allowable impact level.

(3) For robots that prohibit the use of impact detection, 0.0 is always returned for all axes.
(4) The maximum error value is initialized to 0.0 when the servo is turned ON during the execution of a Col-

Chk ON or COLLVL instruction.
(5) Because they are joint-type variables, it will be conversion values from rad to deg if they are read as joint

variables. Therefore, substitute each axis element by a numeric variable as shown in the syntax exam-
ple when using these joint-type variables.

(6) This variable only reads the data.

[Reference]
ColChk (Col Check), ColLvl (Col Level), M_ColSts, P_ColDir

[Sample program]
The program which sets the collision detection level automatically is shown below.

Sets up the collision detection level automatically in the moving to P2
from P1.

Estimated
torque

Actual torque

COLMXL

COLLVL

Torque

Time

Work

Hand

Jig

InsertP1

P2

Work

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-293

Sample program Explanations

'********** Collision detection level automatic setup **********
'GoSub *LEVEL ' Collision detection level automatic setting

program
'HLT
'***

*MAIN
Oadl ON
LoadSet 2,2

Collvl M_01,M_02,M_03,M_04,M_05,M_06,,

Mov PHOME
Mov P1
Dly 0.5

ColChk ON
Mvs P2
Dly 0.5
ColChk OFF

Mov PHOME
End

'************************** LEVEL FIX ***************************
*LEVEL
Mov PHOME

M1=0 ' Collision detection level of the J1 axis (initialization)
M2=0 ' Collision detection level of the J2 axis (initialization)
M3=0 ' Collision detection level of the J3 axis (initialization)
M4=0 ' Collision detection level of the J4 axis (initialization)
M5=0 ' Collision detection level of the J5 axis (initialization)
M6=0 ' Collision detection level of the J6 axis (initialization)
ColLvl 500,500,500,500,500,500,,

' Set the collision detection level to 500%

For MCHK=1 To 10
 Dly 0.3
 Mov P1
 Dly 0.3
 Colhk ON 'Enable the collision detection.
 Mvs P2
 Dly 0.3
 ColChk OFF 'Disable the collision detection.
 If M1<J_COLMXL(1) Then M1=J_COLMXL(1)
 If M2<J_COLMXL(2) Then M2=J_COLMXL(2)
 If M3<J_COLMXL(3) Then M3=J_COLMXL(3)
 If M4<J_COLMXL(4) Then M4=J_COLMXL(4)
 If M5<J_COLMXL(5) Then M5=J_COLMXL(5)
 If M6<J_COLMXL(6) Then M6=J_COLMXL(6)
Next MCHK

M_01=M1+10
M_02=M2+10
M_03=M3+10
M_04=M4+10
M_05=M5+10
M_06=M6+10
ColLvl M_01,M_02,M_03,M_04,M_05,M_06,,

Mvs P1
Mov PHOME
RETURN
'***

Is the command which executes the collision detection level
automatic setting subroutine. Remove the comment out of the head
when set up automatically.

Moves in the optimal acceleration and deceleration.
Reads the information on the hand and the work-piece. (For the
system optimization of the acceleration-and-deceleration hours)

Re-set up the collision detection level.

Moves to PHOME (standby position).
Moves to P1 (starting position).

Enable the collision detection.

Disable the collision detection.

Return to PHOME (standby point)
End of program line.

The collision detection level automatic setting subroutine.

Set the collision detection level to 500% (maximum value).
(Before starting movement, confirms that there is no obstacle on the
course)

Although the collision detection level is automatically detectable,
please execute two or more times in consideration of the dispersion
etc. The ten of repeat number in the sample is reference values.
J_COLMXL is the maximum value of differences between the
estimated torque and actual torque while the collision detection
function is being enabled.
Memorizes the maximum values in the ten times measured for
consideration of the dispersion.

Usually, as for the detection level, the value of the parameter "ColLvl"
will be set up after the power supply ON. Therefore, the value set up
automatically should be recorded on external variable.
"10" is added with the sample, because 10% of circular land is given
for the value searched for by automatic detection.
* 10% is the reference value.

Depending on the system to be used, it may not operate normally.
Please confirm with the system and adjust to the optimal value.
Refer to "ColLvl (Col Level)" for details.

4-294 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

J_ECurr

[Function]
Returns the current encoder pulse value.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_ECurr(1) ' JA will contain the encoder pulse value of mechanism 1.
2 MA=JA. 1 ’ Loads the encoder pulse value of the J1 axis to the MA.

[Explanation]
(1) Although the value to be returned is a pulse value, use the joint type as the substitution type. Then, spec-

ify joint component data, and use by substituting in a numeric variable.
(2) This variable only reads the data.

Example) <Joint Type Variable>=J_ECurr [(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-295

J_Fbc/J_AmpFbc

[Function]
J_Fbc:Returns the current position of the joint type that has been generated by encoder feedback.
J_AmpFbc:Returns the current feedback value of each axis

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Fbc ' J1 will contain the current position of the joint that has been generated by

servo feedback.
2 J1=J_AmpFbc ' The present current feedback value is entered in J2.

[Explanation]
(1) J_Fbc returns the present position of the joint type generated by the feedback of the encoder.
(2) J_Fbc can check the difference between the command value to the servo and the delay in the actual

servo.
(3) J_Fbc can also check if there is a difference as a result of executing a Cmp Jnt instruction.
(4) This variable only reads the data.

[Reference]
P_Fbc

J_Origin

[Function]
Returns the joint data when the origin has been set.

[Format]

[Terminology]
<Joint Type Variable> Specify a joint type variable to be assigned.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 J1=J_Origin(1) ' J1 will contain the origin setting position of mechanism 1.

[Explanation]
(1) Returns the joint data when the origin has been set.
(2) This can be used to check the origin, for instance, when the position of the robot shifted.
(3) This variable only reads the data.

Example) <Joint Type Variable>=J_Fbc [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_AmpFbc [(<Mechanism Number>)]

Example) <Joint Type Variable>=J_Origin [(<Mechanism Number>)]

4-296 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts

[Function]
Returns information related to acceleration/deceleration time.
M_Acl : Returns the ratio of current acceleration time. (%)
M_DAcl : Returns the ratio of current deceleration time. (%)
M_NAcl : Returns the initial acceleration time value. (100%)
M_NDAcl : Returns the initial deceleration time value. (100%)
M_AclSts : Returns the current acceleration/deceleration status.
(Current status: 0 = Stopped, 1 = Accelerating, 2 = Constant speed, 3 = Decelerating)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
1 M1=M_Acl ' M1 will contain the ratio of acceleration time set for task slot 1.
2 M1=M_DAcl(2) ' M1 will contain the ratio of deceleration time set for task slot 2.
3 M1=M_NAcl ' M1 will contain the ratio of initial acceleration time value set for task slot 1.
4 M1=M_NDAcl(2) ' M1 will contain the ratio of initial deceleration time value set for task slot 2.
5 M1=M_AclSts(3) ' M1 will contain the current acceleration/deceleration status for task slot 3.

[Explanation]
(1) The ratio of acceleration/deceleration time is the ration against each robot's maximum acceleration/

deceleration time (initial value). If this value is 50%, the amount of time needed to accelerate/decelerate
is doubled, resulting in slower acceleration/deceleration.

(2) M_NAcl and M_NDAcl always return 100 (%).
(3) This variable only reads the data.

Example) <Numeric Variable>=M_Acl [(<Equation>)]

Example) <Numeric Variable>=M_DAcl [(<Equation>)]

Example) <Numeric Variable>=M_NAcl [(<Equation>)]

Example) <Numeric Variable>=M_NDAcl [(<Equation>)]

Example) <Numeric Variable>=M_AclSts [(<Equation>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-297

M_BsNo

[Function]
Returns a current base coordinate system number.

[Format]

[Terminology]
<Numerical variable> A numerical variable to which a value is to be assigned is designated.

<Mechanism number> A mechanism number which is chosen from 1 through 3. (1 is chosen to indicate
omission.)
Constants, variables, logic/arithmetic expressions, and functions are usable.
When a real number or a double-precision real number is specified, the fractional
portion of 0.5 or over of the number is counted as one and the rest is cut away.

[Reference Program]
1 M1=M_BsNo 'Assign base coordinate number for Mechanism No. 1 to variable M1.

2 If M1=1 Then 'If base coordinate number is one, move to P1.

3 Mov P1

4 Else 'If base coordinate number is other than one, move to P2.

5 Mov P2

6 EndIf

[Explanation]
(1) Base coordinate number being currently specified (parameter: MEXBSNO) is read.
(2) The following coordinate system is set according to the value that is read.

a) 0: System's initial value (P_Nbase)
b) 1~8: Work coordinate system number 1 through 8 (parameter: WK1CORD~WK8CORD)
c) -1: Base conversion setting is made by other than the above options.

(Base conversion data is specified by a base command, or parameter MEXBS is directly
edited.)

(3) If reference is made to the M_BrkCq variable even for once, the existing "break" condition is cleared (rel-
evant value goes to zero). When you want to retain the condition, therefore, save it by assigning an
appropriate value to the numerical variable.

(4) You can clear the "break" condition via the T/B monitor screen, as well.

[Related instructions]

Base (Base)

[Related parameter]

MEXBSNO, WKnCORD("n" is 1 to 8), MEXBS

Example) <Numerical variable>=M_BsNo[(<mechanism number>)]

4-298 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_BrkCq

[Function]
Returns the result of executing a line containing a BREAK command that was executed last.
1 : BREAK was executed
0 : BREAK was not executed

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this argument is omitted, the current slot

will be used as the default.

[Reference Program]
1 While M1<>0
2 If M2=0 Then Break ' The remaining battery capacity time is assigned to M1.
3 WEnd
4 If M_BrkCq=1 Then Hlt ' Hlt, if Break in While is executed.

[Explanation]
(1) Check the state of whether the Break command was executed.
(2) This variable only reads the data.
(3) If the M_BrkCq variable is referenced even once, the Break status is cleared. (The value is set to zero.)

Therefore, to preserve the status, save it by substituting it into a numeric variable.
(4) The Break status is also cleared even if it is referenced on T/B monitor screen and so forth.

M_BTime

[Function]
Returns the remaining hour of battery left. (Unit: hour)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_BTime ' The remaining battery capacity time is assigned to M1.

[Explanation]
(1) Returns the remaining hours the battery can last from now.
(2) As for the battery life, 14,600 hours are stored as the initial value.
(3) After summing the total amount of time the power of robot controller has been off, this value will be sub-

tracted from 14,600 and the result is returned.
(4) This variable only reads the data.

Example) <Numeric Variable>=M_BrkCq [(<Equation>)]

Example)<Numeric Variable>=M_BTime

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-299

M_CmpDst

[Function]
Returns the amount of difference (in mm) between the command value and the actual value from the robot
when executing the compliance function.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 Mov P1
2 CmpG 0.5,0.5,1.0,0.5,0.5, , , ' Set softness.
3 Cmp Pos, &B00011011 ' Enter soft state.
4 Mvs P2
5 M_Out(10)=1
6 Mvs P1
7 M1=M_CmpDst(1) ' M1 will contain the difference between the position specified by the

operation command and the actual current position.
8 Cmp Off ' Return to normal state.

[Explanation]
(1) This is used to check the positional discrepancy while executing the compliance function.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_CmpDst [(<Mechanism Number>)]

4-300 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_CmpLmt

[Function]
Returns whether or not the command value when the compliance function is being executed is about to
exceed various limits.
1: The command value is about to exceed a limit.
0: The command value is not about to exceed a limit.

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1, M_CmpLmt(1)=1 GoTo *Lmt ' Define the conditions of interrupt 1.
2 '
3 '
 ;
10 Mov P1
11 CmpG 1,1,0,1,1,1,1,1
12 Cmp Pos, &B100 ' Enable compliance mode.
13 Act 1=1 ' Enable interrupt 1.
14 Mvs P2 '
15 '
16
 ; '
100 *Lmt
101 Mvs P1 ' Movement to P2 is interrupted and returns to P1.
102 Reset Err ' Reset the error.
103 Hlt ' Execution is stopped.

[Explanation]
(1) This is used to recover from the error status by using interrupt processing if an error has occurred while

the command value in the compliance mode attempted to exceed a limit.
(2) For various limits, the joint operation range and operation speed of the command value in the compli-

ance mode, and the dislocation between the commanded position and the actual position are checked.
(3) 0 is set if the servo power is off, or the compliance mode is disabled.
(4) This is a read only variable.

Example) Def Act 1, M_CmpLmt [(<Mechanism Number>)]=1 GoTo *Lmt

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-301

M_ColSts

[Function]
Return the impact detection status..
1: Detecting an impact
0: No impact has been detected

[Format]

[Terminology]
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S 'Define the processing to be executed when an impact is

detected using an interrupt.
2 Act 1=1
3 ColChk ON,NOERR 'Enable the impact detection function in the error non-occurrence mode.
4 Mov P1
5 Mov P2 'If an impact is detected while executing lines 40 through 70, it jumps to

interrupt processing.
6 Mov P3
7 Mov P4
8 Act 1=0
 :
 :
100 *HOME 'Interrupt processing during impact detection.
101 ColChk Off 'Disable the impact detection function.
102 Servo On 'Turn the servo on.
103 PESC=P_ColDir(1)*(-2) 'Create the amount of movement for escape operation
104 PDst=P_Fbc(1)+PESC 'Create the escape position.
105 Mvs PDst 'Move to the escape position.
106 Error 9100 'Stop operation by generating a user-defined L level error.

[Explanation]
(1) When an impact is detected, it is set to 1. When the servo is turned off and the impact state is canceled,

it is set to 0.
(2) It is used as an interrupt condition in the Def Act instruction when used in the NOERR mode.
(3) This variable only reads the data.

Example) Def Act 1, M_ColSts [(<Mechanism Number>)]=1 GoTo *LCOL,S

4-302 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Cstp

[Function]
Returns the status of whether or not a program is on cycle stop
1: Cycle stop is entered, and cycle stop operation is in effect.

(The input of the End key on the operation panel, or the input of a cycle stop signal)
0: Other than above

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
 1 M1=M_Cstp ' 1 is assigned to M1. (When under a cycle stop)

[Explanation]
(1) When the End key on the operation panel is pressed while the program is under continuous execution,

the system enters a cycle operation state. The status at this time is returned as 1.
(2) This variable only reads the data.

M_Cys

[Function]
Returns the status of whether or not a program is on cycle operation
1: In cycle operation (operating mode set by the slot parameter SLT* to ...)
0: Other than above.

[Format]

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.

[Reference Program]
 1 M1=M_Cys ' The numerical value 1 is substituted for M1. (When under a cycle operation)

[Explanation]
(1) When starting a program, the cycle mode - either continuous operation or cycle operation - can be spec-

ified using a parameter, etc. Returns this operation mode.
(2) Even if CYC has been specified in the slot parameter, the value will be 0 when continuous operation is

specified by XRun.
(3) This is a read only variable.

Example)<Numeric Variable>=M_Cstp

Example)<Numerical variable> = M_Cys

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-303

M_DIn/M_DOut

[Function]
This is used to write or reference the remote register of CC-Link (optional). Cannot use in CRnQ series.
M_DIn : References the input register.
M_DOut : Writes or reference the output register.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable that assigns the CC-Link register value.
<Equation 1> Specifies the CC-Link register number (6000 or above).
<Equation 2> Specifies the CC-Link register number (6000 or above).

[Reference Program]
1 M1=M_DIn(6000) ' M1 will contain the CC-Link input register value.

' (If CC-Link station number is 1.)
2 M1=M_DOut(6000) ' M1 will contain the CC-Link output register value.
3 M_DOut(6000)=100 ' Writes 100 to the CC-Link output register.

[Explanation]
(1) For details, refer to the "CC-Link Interface Instruction Manual."
(2) Signal numbers in 6,000's will be used for CC-Link.
(3) M_DIn is read-only.

Example)<Numeric Variable>=M_DIn (<Equation 1>)

Example)<Numeric Variable>=M_DOut (<Equation 2>)

4-304 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_DIn32

[Function]
Obtains 32-bit data via the CC-Link register from an external device.

[Format]

[Terminology]
<Numeric Variable> Specifies a long-precision integer number variable to be

substituted.
<Equation/Inputting register number> The range of CC-Link register numbers that can be specified is

from 6000 to 6254.

[Reference Program]
1 M1=M_DIn(6000) ' Obtains a value of 32 bits from CC-Link register number 6000

and 6001, and assigns that value to M1&.
2 M2%=6002 ' Assigns 6002 to M2%.
3 M3&=M_DIn32(M2%) And &H7FFFF ' Obtains a value of 32 bits from the CC-Link register number

specified by M2%, and assigns the lowest 19-bit value from that
value to M3&.

[Explanation]
(1) Two points are used for obtaining 32-bit data from the specified CC-Link register number.
(2) Use a long-precision integer number variable for <Numeric Variable>. If any other variable is used, the

correct information cannot be obtained.
(3) Specify a CC-Link register number between 6000 and 6254. If a number outside the range is specified,

an all-zero value will be returned and no error will be generated.
(4) M_DIn32 is read-only.

Example)<Numeric Variable>=M_DIn32 (<Equation/Inputting register number>)

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-305

M_DOut32

[Function]
Outputs 32-bit data to an external device via the CC-Link register. Alternatively, checks the current output
information.

[Format]

[Terminology]
<Numeric Variable> Specifies a long-precision integer number variable to be substi-

tuted.
<Equation/Inputting register number> The range of CC-Link register numbers that can be specified is

from 6000 to 6254.
<Numeric> Specifies the data to be output.

The range of the numerical value is from -2147483648 to
2147483647 (&H80000000 to &H7FFFFFFF).

[Reference Program]
1 M_DOut32(6000)=&H12345678 ' Outputs 12345678 in hexadecimal notation to CC-Link

register number 6000 and 6001.
&H4567 will be output to register number 6000, and
&H1234 will be output to 6001.

2 M1&=M_DOut32(6002) And &H7FFFF ' The lowest 19-bit value from the 32-bit data output to CC-
Link register number 6002 and 6003 will be assigned to
M1&.

[Explanation]
(1) The specified 32-bit data is output to two points from the specified CC-Link register number.
(2) The current information (32-bit data) output to two points is obtained from the specified CC-Link register

number.
(3) Use a long-precision integer number variable for <Numeric Variable> and <Numerical Value>. If any

other variable is used, the information may not be processed.
(4) Specify a CC-Link register number between 6000 and 6254. If a number outside the range is specified,

an all-zero value will be returned when referenced and no processing will be performed when written,
resulting in no error being generated. However, if a minus value is specified, error L3110 will be gener-
ated.

(5) By setting the SYNCIO parameter to the high-speed mode, the updating cycle of the register output can
be sped up. It is recommended to use high-speed mode with signals interlocked for synchronization in
order to keep the timing of the I/O signals correct.

(6) When the specified register number is not occupied by a robot, although data is displayed on the output
register monitor, such as RT ToolBox2, as output information, the data is not actually output via the CC-
Link. When the last register occupied is specified, although data is displayed on the monitor as output
information, only the information of the last register occupied (lowest 16 bits) is output.

(7) The pulse output which combines the Dly command cannot be used. If the Dly command is used, error
L4220 (syntax error) occurs.

(8) When data is output to a register number assigned to the dedicated output of the DIODATA and SVDATA
parameters, error L0091 (signal already assigned to dedicated output) will occur.

Reference

Example)<Numeric Variable>=M_DOut32 (<Equation/Inputting register number>)

Write

Example)M_DOut32 (<Equation/Inputting register number>)=<Numeric Variable>

4-306 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_ErCode

[Function]
Returns the detailed error number of the error currently generated.

[Format]

[Terminology]
<Numeric Variable> Specifies a 32-bit long-precision integer number.

(Specifying a 16-bit long-precision integer number will cause an out-of-range
error when substituted.)
Refer to (2) in [Explanation] for the meaning of the read value.

[Reference Program]
1 *LBL: If M_Err=0 Then *LBL ' Waits until an error is generated.
2 MD&=M_ErCode ' Reads the detailed error number (substitutes for the long-preci-

sion integer number).
3 MS%=Int(MD&/1000) Mod 100 ' Obtains two digits of the detailed error number.

[Explanation]
(1) If two or more errors occur, returns the information on the highest level error. (Only one error)
(2) The detailed error number is a number with a maximum of nine digits.

XXXXYYYYY............. XXXX: Four-digit error number displayed by the O/P and T/B
YYYYY: Detailed error number (Content determined by error.)

Example) <Numeric Variable>=M_ErCode

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-307

M_Err/M_ErrLvl/M_Errno

[Function]
Returns information regarding the error generated from the robot.
M_Err : Error occurrence condition
M_ErrLvl : The level of the occurrence error
M_Errno : Error number

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

The value assigned and meaning.
M_Err : 0/1 = No error/Under error occurrence
M_ErrLvl : 0/1/2/3/4/5/6=No error / Caution / Low / High / Caution1

/ Low1 / High1
Note) The meaning of each terminology is shown in Table 4-20.

M_ErrNo : Error number

[Reference Program]
1 *LBL: If M_Err=0 Then *LBL ' Waits until an error is generated.
2 M2=M_ErrLvl ' M2 will contain the error level
3 M3=M_Errno ' M3 will contain the error number.

[Explanation]
(1) Normal programs will pause when an error (other than cautions) is generated. The error status of the

controller may be monitored using this variable for programs whose startup condition is set to ALWAYS
by the SLT* parameter. The program set to ALWAYS will not stop even when an error is generated from
other programs.

(2) If two or more errors occur, returns the information on the high error of the error level most.
(3) The error level which M_ErrLvl returns, and its meaning are shown below.

Table 4-20:The error level and meaning

[Related instructions]
Error (error), Reset Err (Reset Error)

Example) <Numeric Variable>=M_Err

Example) <Numeric Variable>=M_ErrLvl

Example) <Numeric Variable>=M_Errno

Error levelNote1)

Note1) 5 and 6 of the error level are valid at the following S/W Ver.
SQ series: R1d or later
 SD series: S1d or later

Terminology Meaning Error reset

0 No error The error has not occurred. －

1 Caution Program is continued. [RESET] Key

2 Low The program under execution is interrupted. [RESET] Key

3 High The program under execution is interrupted and turns off the servo power. [RESET] Key

4 Caution1 Program is continued. Power supply reset

5 Low1 The program under execution is interrupted. Power supply reset

6 High1 The program under execution is interrupted and turns off the servo power. Power supply reset

4-308 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Exp

[Function]
Returns the base of natural logarithm (2.718281828459045).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_Exp ' Base of natural logarithm (2.718281828459045) is assigned to M1.

[Explanation]
(1) This is used when processing exponential and logarithmic functions.
(2) This variable only reads the data.

M_Fbd
[Function]

Returns the difference between the command position and the feedback position.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Specify the mechanism number 1 to 3. The default value is 1.

[Reference Program]
1 Def Act 1,M_Fbd>10 GoTo *SUB1,S ' Generate an interrupt when the difference between the

command position and the feedback position reaches 10
mm or more.

2 Act 1=1 ' An interrupt takes effect.
3 Torq 3,10 ' Set the torque limit of the three axes to 10% or less using

the torque instruction.
4 Mvs P1 ' Moves.
5 End
 ;
10 *SUB1
11 Mov P_Fbc ' Align the command position with the feedback position.
12 M_Out(10)=1 ' Signal No. 10 output
13 Hlt ' Stop when a difference occurs.

[Explanation]
(1) This function returns the difference between the command position specified by the operation instruction

and the feedback position from the motor. When using the torque instruction, use this in combination
with a Def Act instruction to prevent the occurrences of excessive errors (960, 970, etc.).

(2) This variable only reads the data.

[Reference]
Torq (Torque), P_Fbc

Example) <Numeric Variable>=M_Exp

Example) <Numeric Variable>=M_Fbd[(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-309

M_G

[Function]
Returns gravitational constant (9.80665).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_G ' Gravitational constant (9.80665) is assigned to M1.

[Explanation]
(1) This is used to perform calculation related to gravity.
(2) This variable only reads the data.

M_HndCq

[Function]
Returns the hand check input signal value.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the hand input signal number.

1 to 8, (Corresponds to input signals 900 to 907.)

[Reference Program]
1 M1=M_HndCq(1) ' M1 will contain the status of hand 1.

[Explanation]
(1) Returns one bit of the hand check input signal status (such as a sensor).
(2) M_HndCq(1) corresponds to input signal number 900. Same result will be obtained using M_In (900).
(3) This variable only reads the data.

Example) <Numeric Variable>=M_G

Example) <Numeric Variable>=M_HndCq (<Equation>)

4-310 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_In/M_Inb/M_In8/M_Inw/M_In16

[Function]
Returns the value of the input signal.
M_In : Returns a bit.
M_Inb or M_In8 : Returns a byte (8 bits).
M_Inw or M_In16: Returns a word (16 bits).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign. Supplementary explanation is

shown in Table 4-21.

<Equation> Enter the input signal number. Supplementary explanation is shown in Table 4-22.
(1)CRnQ-700 series

10000 to 18191: Multi-CPU share device
716 to 731 : Multi-hand input.
900 to 907 : Hand input.

(2)CRnD-700 series
0 to 255 : Standard remote inputs.
716 to 731 : Multi-hand input.
900 to 907 : Hand input.
2000 to 5071 : Input signal of PROFIBUS.
6000 to 8047 : Remote input for CC-Link.

[Reference Program]
1 M1%=M_In(0) ' M1 will contain the value of the input signal 0 (1 or 0).
2 M2%=M_Inb(0) ' M2 will contain the 8-bit information starting from input signal 0.
3 M3%=M_Inb(3) AND &H7 ' M3 will contain the 3-bit information starting from input signal 3.
4 M4%=M_Inw(5) ' M4 will contain the 16-bit information starting from input signal 5.

[Explanation]
(1) Returns the status of the input signal.
(2) M_Inb/M_In8 and M_Inw/M_In16 will return 8- or 16-bit information starting from the specified number.
(3) Although the signal number can be as large as 32767, only the signal numbers with corresponding hard-

ware will return a valid value. Value for a signal number without corresponding hardware is set as unde-
fined.

(4) This variable only reads the data.

Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

Example) <Numeric Variable>=M_In(<Equation>)

Example) <Numeric Variable>=M_Inb(<Equation>) or M_In8(<Equation>)

Example) <Numeric Variable>=M_Inw(<Equation>) or M_In16(<Equation>)

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-311

[Supplement]
Table 4-21:<Numeric Variable>

Table 4-22:<Equation>

[Reference status variable]
M_Out32

[Related instructions]
Def IO (Define IO)

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision

real
number

Ex.)M1!

Double-
precision

real
number

Ex.)M1#

Posi-

tionNote1)

Ex.)P1.X

Note1) The unit is the radian if the value of variable is the angle. (The elements of A, B and C of position variable, and
all elements of joint variable) The display of the monitor etc. is converted into the degree.
Example) If the input signal 8 is ON in P1.A=M_In (8), P1.A is displayed as "57.296." Therefore, ON/OFF sta-
tus does not look clear. Because the unit of the element X, Y, and Z of the position variable is "mm", there is no
such condition.

Joint
Note1)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_In O O O O O O X

M_Inb/M_In8 O O O O O O X

M_Inw/M_In16 O O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric

valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadecim
al number

Ex.)&HC

Integer

Ex.)M1%

Long-
precision
integer
number

Ex.)M1&

Single-
precision
real
number
Note1)

Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint
variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as
the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result
is "0" when 8 degree is converted to radian (0.14) and rounded off.Because the unit of the element X, Y, and Z of the position variable is "mm", there is
no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_In O O O O O O O O O X

M_Inb/M_In8 O O O O O O O O O X

M_Inw/M_In16 O O O O O O O O O X

4-312 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_In32

[Function]

Returns the value of the input signal of 32-bit width as a value.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign. Supplementary explanation is

shown in Table 4-23.

<Equation> Enter the input signal number. Supplementary explanation is shown in Table 4-24.
(1)CRnQ-700 series

10000 to 18191: Multi-CPU share device
716 to 731 : Multi-hand input.
900 to 907 : Hand input.

(2)CRnD-700 series
0 to 255 : Standard remote inputs.
716 to 731 : Multi-hand input.
900 to 907 : Hand input.
2000 to 5071 : Input signal of PROFIBUS.
6000 to 8047 : Remote input for CC-Link.

[Reference Program]
1 *ack_wait
2 If M_In(7)=0 Then *ack_check 'Wait until the input signal 7 turns on (interlock).
3 M1&=M_In32(10000) 'Store the data of 32-bit width to the long precision numeric variable

M1 as a value from the input signal 10000.
4 P1.Y=M_In32(10100)/1000.0 'The data of 32-bit width is inputted as a value from the input signal

10100, divide by 1000, and store it to Y element of position variable
P1.
(The example that at the external equipment side, the real number
multiplied by 1000 and converted into integer)

[Explanation]
(1) Return the input-signal data of 32-bit width as a numerical value.
(2) Although the signal number can be as large as 32767, only the signal numbers with corresponding hard-

ware will return a valid value. Value for a signal number without corresponding hardware is set as unde-
fined.

(3) Specify the long precision integer type or the real-number type variable as the <Numeric Variable>.
(4) This variable only reads the data.

Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

Example) <Numeric Variable>=M_In32(<Equation>)

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-313

[Supplement]
Table 4-23:<Numeric Variable>

Table 4-24:<Equation>

[Reference status variable]
M_In/M_Inb/M_In8/M_Inw/M_In16

[Related instructions]
Def IO (Define IO)

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-preci-
sion integer

number

Ex.)M1&

Single-pre-
cision real
number

Ex.)M1!

Double-
precision

real numbe

Ex.)M1#

Position
Note1)

Ex.)P1.X

Note1) The unit is the radian if the value of variable is the angle. The 32-bit input signal is stored without converting as
a numerical value of the radian unit. (The elements of A, B and C of position variable, and all elements of joint
variable) The display of the monitor etc. is converted into the degree.
Example) If the input data is 5 (decimal number) in P1.A=M_In32(16), P1.A is displayed as "286.479" (deg).

Joint
Note1)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_In32 X O O O O O X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadeci-
mal number

Ex.)&HC

Integer

Ex.)M1%

Long-pre-
cision inte-

ger
number

Ex.)M1&

Single-pre-
cision real
number

Note1)

Ex.)M1!

Double-
precision
real numbe

Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of
joint variable) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same
value as the setting value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result
is "0" when 8 degree is converted to radian (0.14) and rounded off.Because the unit of the element X, Y, and Z of the position variable is "mm", there is
no such condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_In32 O O O O O O O O O X

4-314 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_JOvrd/M_NJovrd/M_OPovrd/M_Ovrd/M_NOvrd

[Function]
Returns override value.
M_JOvrd : Value specified by the override JOvrd instruction for joint interpolation.
M_NJovrd : Initial override value (100%) for joint interpolation.
M_OPovrd : Override value of the operation panel.
M_Ovrd : Current override value, value specified by the Ovrd instruction.
M_NOvrd : Initial override value (100%).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Enter the task slot number. If this parameter is omitted, the current slot

will be used as the default.

[Reference Program]
1 M1=M_Ovrd ' M1 will contain the current override value.
2 M2=M_NOvrd ' M2 will contain the initial override value (100%).
3 M3=M_JOvrd ' M3 will contain the current joint override value.
4 M4=M_NJovrd ' M4 will contain the initial joint override value.
5 M5=M_OPovrd ' M5 will contain the current OP (operation panel) override value.
6 M6=M_Ovrd(2) ' M6 will contain the current override value for slot 2.

[Explanation]
(1) If the argument is omitted, the current slot status will be returned.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_JOvrd [(i<Equation>)]

Example)<Numeric Variable>=M_NJOvrd[(i<Equation>)]

Example)<Numeric Variable>=M_OPovrd

Example)<Numeric Variable>=M_Ovrd[(<Equation>)]

Example)<Numeric Variable>=M_NOvrd[(<Equation>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-315

M_LdFact

[Function]
The load ratio for each joint axis can be referenced.

[Format]

[Terminology]
<Numeric Variable> The load ratio of each axis is substituted. The range is 0 to 100%.
<Axis Number> 1 to 8, Specifies the axis number.

[Reference Program]
1 Accel 100,100 ' Lower the overall deceleration time to 50%.
2 *Label
3 Mov P1
4 Mov P2
5 If M_LdFact(2)>90 Then
6 Accel 50,50 ' Lower the acceleration/deceleration ratio to 50%.
7 M_SetAdl(2)=50 ' Furthermore, lower the acceleration/deceleration ratio of the J2 axis to

50%. (In actuality, 50% x 50% = 25%)
8 Else
9 Accel 100,100 ' Return the acceleration/deceleration time.
10 EndIf
11 GoTo *Label

[Explanation]
(1) The load ratio of each axis can be referenced.
(2) The load ratio is derived from the current that flows to each axis motor and its flow time.
(3) The load ratio rises when the robot is operated with a heavy load in a severe posture for a long period of

time.
(4) When the load ratio reaches 100%, an overload error occurs. In the above example statement, once the

load ratio exceeds 90%, the k acceleration/deceleration time is lowered to 50%.
(5) To lower the load ratio, measures, such as decreasing the acceleration/deceleration time, having the

robot standing by in natural posture, or shutting down the servo power supply, are effective.
(6) The initial value of the target mechanism number is "1" under software version N8(SQ series) and P8(SD

series). Therefore, when mechanism number 1 is targeted, after executing the RelM command, or the
program slot is other than 1, execution of the GetM command is unnecessary. If target mechanism is
other than 1, execute the GetM command beforehand.

[Related instructions]
Accel (Accelerate), Ovrd (Override), M_SetAdl

Example)<Numeric Variable>=M_LdFact(<Axis Number>)

4-316 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Line

[Function]
Returns the line number that is being executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Line(2) ' M1 will contain the line number being executed by slot 2.

[Explanation]
(1) This can be used to monitor the line being executed by other tasks during multitask operation.
(2) This variable only reads the data.

M_Mode

[Function]
Returns the key switch mode of the operation panel.
1: MANUAL
2: AUTOMATIC (O/P)
3: AUTOMATIC (External)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_Mode ' M1 will contain the key switch status.

[Explanation]
(1) This can be used in programs set to ALWAYS (constantly executed) during multitask operation.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Line [(<Equation>)]

Example)<Numeric Variable>=M_Mode

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-317

M_On/M_Off

[Function]
Always returns 1 (M_On) or 0 (M_Off).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_On ' 1 is assigned to M1.
2 M2=M_Off ' 0 is assigned to M2.

[Explanation]
(1) Always returns 1 or 0.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_On

Example)<Numeric Variable>=M_Off

4-318 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Open

[Function]
Returns the status indicating whether or not a file is opened.
Returns the status of other end of the RS-232C cable.

[Format]

[Terminology]
<Numerical variable> Specify the numerical variable to substitute.
<File number> Specify the file number 1-8 by constant value of communication line opened by

Open command. The default value is 1. If 9 or more are specified, the error will
occur when executing.

[Reference Program]
1 Open "COM2:" AS #1 ' Open the communication line COM2 as the file number 1.
2 *LBL:If M_Open(1)<>1 Then GoTo *LBL ' Wait until the file number 1 opens.

<Using the ethernet I/F>
1 ' Client Program ----------------
2 M1=0
3 M_Timer(1)=0 ’Resets the timer to 0.
4 *O1
5 Open "COM2:" As #1 ’Opens the line.
6 If M_Timer(1)>10000.0 Then *E1 ’Jumps when 10 seconds elapses.
7 If M_Open(1)<>1 Then Goto *O1 ’Loops if no connection is made.
8 Def Act 1,M_Open(1)=0 GoSub *E2 ’Monitors the down state of the server using an interrupt.
9 Act 1=1 ’Starts monitoring.
10 *M1
11 M1=M1+1
12 If M1<10 Then C1$="MELFA" Else C1$="END" ’Sends END after sending the "MELFA" string nine

times.
13 Print #1,C1$ ’Sends a character string.
14 Input #1,C2$ ’Receives a character string.
15 If C1$="END" Then *C1 ’Jumps to CLOSE after sending "END."
16 GoTo *M1 ’Loops.
17 *C1
18 Close #1 ’Closes the line.
19 Hlt ’Halts the program.
20 End ’Ends.
21 *E1
22 Error 9100 ’Generates error 9100 if no connection can be made to the server.
23 Close #1
24 Hlt
25 End
26 *E2
27 Error 9101 ’Generates error 9101 if the server is down during processing.
28 Close #1
29 Hlt
30 End

Example)<Numerical variable>=M_Open [<File number>]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-319

[Explanation]
(1) This is a read only variable.
(2) The return value differ corresponding to the file type specified by Open command as follows.

[Related instructions]
Open (Open)

[Related parameter]
COMDEV, CPRE**, NETMODE

Kind of files Meaning Value

File Returns the status indicating whether or not a file is
opened.
Returns 1 until the Close instruction, the End instruc-
tion or End in a program is executed after executing
the Open instruction.

1: Already opened
-1: Undefined file number (not
opened)

Communication line
RS-232C

*Returns the status of other end of the RS-232C
cable.
Returns the status of the CTS signal input as is.
(This can be used only when the RTS signal of other
end is enabled using the Mitsubishi genuine cable
specification.)

1: Already connected (CTS signal is
ON)
0: Unconnected (CTS signal is OFF)
 -1: Undefined file number (not
opened)

4-320 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Out/M_Outb/M_Out8/M_Outw/M_Out16

[Function]
Writes or references external output signal.
M_Out:Output signal bit.
M_Outb or M_Out8:Output signal byte (8 bits).
M_Outw or M_Out16:Output signal word (16 bits).

[Format]

[Terminology]
<Numeric value 1> Specify the output signal number. Supplementary explanation is shown in Table 4-25.

(1)CRnQ-700 series
10000 to 18191: Multi-CPU share device
716 to 723 : Multi-hand output.
900 to 907 : Hand output.

(2)CRnD-700 series
0 to 255 : Standard remote outputs.
716 to 723 : Multi-hand output.
900 to 907 : Hand output.
2000 to 5071 : Input signal of PROFIBUS.
6000 to 8047 : Remote input for CC-Link.

<Numeric Variable> Specifies the numerical variable to assign.
<Numeric value 2>, <Numeric value 3>, <Numeric value 4>

Describe the value to output by the numeric variable, the constant, or numerical
arithmetic expression.Supplementary explanation is shown in Table 4-26.
Numerical range

<Numeric value 2>: 0 or 1 (&H0 or &H1)
<Numeric value 3>: -128 to +127 (&H80 to &H7F)
<Numeric value 4>: -32768 to +32767 (&H8000 to &H7FFF)

<Time> Describe the output time for the pulse output as a constant or numeric opera-
tion expression. Unit: [Seconds]

[Reference Program]
1 M_Out(2)=1 ' Turn ON output signal 2 (1 bit).
2 M_Outb(2)=&HFF ' Turns ON 8-bits starting from the output signal 2.
3 M_Outw(2)=&HFFFF ' Turns ON 16-bits starting from the output signal 2.
4 M4=M_Outb(2) AND &H0F ' M4 will contain the 4-bit information starting from output signal 2.

[Explanation]
(1) This is used when writing or referencing external output signals.
(2) Numbers 6000 and beyond will be referenced/assigned to the CC-Link (optional).
(3) Refer to Page 210, " Dly (Delay)" for the explanation of pulse output.
(4) By high-speed mode setting of parameter: SYNCIO, the updating cycle to the external output signal can

be made speedy. However, always make interlock of signal to take synchronization. Because to make
the timing of the I/O signal correct. Refer to SYNCIO in Page 396, " SYNCIO"

Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

Example)M_Out(<Numeric value 1>)=<Numeric value 2>

Example)M_Outb(<Numeric value 1>) or M_Out8(<Numeric value 1>)=<Numeric value 3>

Example)M_Outw(<Numeric value 1>) or M_Out16(<Numeric value 1>)=<Numeric value 4>

Example)M_Out(<Numeric value 1>)=<Numeric value 2> Dly <Time>

Example)<Numeric Variable>=M_Out(<Numeric value 1>)

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-321

[Supplement]
Table 4-25:<Numeric value 1>

Table 4-26:<Numeric value 2>, <Numeric value 3>, <Numeric value 4>

Table 4-27:<Numeric value>

[Related status variable]
M_Out32

[Related instructions]
Def IO (Define IO)

[Related parameter]
SYNCIO

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric

valueNote1)

Ex.)12

Note1) The real value is rounded off.

Binary num-
ber

Ex.)&B1100

Hexadeci-
mal number

Ex.)&HC

Integer

Ex.)M1%

Long-pre-
cision inte-

ger
number

Ex.)M1&

Single-pre-
cision real
number
Note1)

Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint variable)
Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as the setting value
displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result is

"0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position variable is "mm", there is no such
condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_Out O O O O O O O O X X

M_Outb/M_Out8 O O O O O O O O X X

M_Outw/M_Out16 O O O O O O O O X X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value

Ex.)12

Binary
number

Ex.)&B1100

Hexadeci-
mal number

Ex.)&HC

Integer

Ex.)M1%

Long-pre-
cision inte-
ger
number
Ex.)M1&

Single-pre-
cision real

number

Ex.)M1!

Double-
precision

real numbe

Ex.)M1#

Positio

Ex.)P1.X

Joint

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_Out O O O O X X X X X X

M_Outb/M_Out8 O O O O X X X X X X

M_Outw/M_Out16 O O O O X X X X X X

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-preci-
sion integer

number

Ex.)M1&

Single-pre-
cision real

number

Ex.)M1!

Double-
precision

real numbe

Ex.)M1#

Positio
Note1)

Ex.)P1.X

Note1) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of
position variable, and all elements of joint variable) The display of the monitor etc. is converted into the degree and
displayed

Joint
Note1)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_Out O O O O O O X

M_Outb/M_Out8 O O O O O O X

M_Outw/M_Out16 O O O O O O X

4-322 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Out32

[Function]
Writes or references external output signal of 32-bit width as numerical value.

[Format]

[Terminology]
<Numeric value 1> Specify the output signal number. Supplementary explanation is shown in Table 4-25.

(1)CRnQ-700 series
10000 to 18191: Multi-CPU share device
716 to 723 : Multi-hand output.
900 to 907 : Hand output.

(2)CRnD-700 series
0 to 255 : Standard remote outputs.
716 to 723 : Multi-hand output.
900 to 907 : Hand output.
2000 to 5071 : Input signal of PROFIBUS.
6000 to 8047 : Remote input for CC-Link.

<Numeric value> Describe the value to output by the numeric variable, the constant, or numerical arith-
metic expression. Supplementary explanation is shown in Table 4-26.
Numerical range: -2147483648 to +2147483647 (&H80000000 to &H7FFFFFFF)

<Numeric Variable> Specifies the numerical variable to assign. Supplementary explanation is shown in
Table 4-25.

[Reference Program]
1 M_Out32(10000)=P1.X * 1000 'Multiply X coordinate value of the P1 by 1000, and write to 32-bit

width from the output signal number 10000.(Integer)
2 *ack_wait
3 If M_In(7)=0 Then *ack_check 'Wait until the input signal 7 turns on (interlock).
4 P1.Y=M_In32(10100)/1000.0 'The data of 32-bit width is inputted as a value from the input signal

10100, divide by 1000, and store it to Y element of position variable
P1.
(The example that at the external equipment side, the real number
multiplied by 1000 and converted into integer)

[Explanation]
(1) This is used when writing or referencing external output signal of 32-bit width as numerical value.
(2) The data is outputted to 32-bit width from the specified signal number.
(3) By high-speed mode setting of parameter: SYNCIO, the updating cycle to the external output signal can

be made speedy. However, always make interlock of signal to take synchronization. Because to make
the timing of the I/O signal correct. Refer to SYNCIO in Page 394, "5.2 Signal parameter"

Always make interlock of signal to take synchronization. Failure to observe this
could lead to cause of malfunction by the signal transmitted incorrectly.

Example)M_Out32(<Numeric value 1>)=<Numeric value>

Example)<Numeric Variable>=M_Out32(<Numeric value 1>)

 CAUTION

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-323

[Supplement]
Table 4-28:<Numeric value 1>

Table 4-29:<Numeric value>

Table 4-30:<Numeric value>

[Related status variable]
M_Out/M_Outb/M_Out8/M_Outw/M_Out16

[Related instructions]
Def IO (Define IO)

[Related parameter]
SYNCIO

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value
Note1)

Ex.)12

Note1) The real value is rounded off.

Binary
number

Ex.)&B1100

Hexadeci-
mal number

Ex.)&HC

Integer

Ex.)M1%

Long-pre-
cision inte-

ger
number

Ex.)M1&

Single-pre-
cision real
number
Note1)

Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Position
Note1)
Note2)

Ex.)P1.X

Note2) If the value of the variable is the angle, the unit will be processed by the radian. (The elements of A, B and C of position variable, and all elements of joint vari-
able) Therefore, designation of the signal number is very difficult. The display of the monitor etc. is converted into the degree, and the same value as the setting
value displayed.
Example) It is processed by value "0", even if it sets "8" as the value of P1.A (The input in the key by T/B etc.) to specify the input signal No.8. The result

is "0" when 8 degree is converted to radian (0.14) and rounded off. Because the unit of the element X, Y, and Z of the position variable is "mm", there is no such
condition.

Joint
Note1)
Note2)

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_Out32 O O O O O O O O X X

O: The available, X: unavailable

Bit width

constant types Numeric variables types Other variables

Numeric
value

Ex.)12

Binary
number

Ex.)&B1100

Hexadeci-
mal number

Ex.)&HC

Integer

Ex.)M1%

Long-pre-
cision inte-

ger
number

Ex.)M1&

Single-pre-
cision real
number
Note1)

Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Position

Ex.)P1.X

Joint

Ex.)J1.J1

Charac-
ter string

Ex.)C1$

M_Out32 ONote1)

Note1) For the numerical value of the less than 16 bits of the binary number (-32768 to +32767), the specified constant will handle

as a negative numerical value, if the bit 15 (the 16th bit) turns on. Therefore, please be careful of turning on all of upper 16
bits. (The sign bit is extended)
Example)

Designation of "-32768(&B1000000000000000)" will output the "&B11111111111111111000000000000000."
[Measures]

After substituting the constant for the long-precision integer number variable as follows, when substituting to this robot
status variable M_YDevD, &B00000000000000001000000000000000 (binary number) can be outputted.

1 M1&=32768
2 M_YDevD(&H20)=M1&

ONote1) ONote1) ONote1) O O ONote2)

Note2) The ranges of the numerical value which can be outputted are -2147483648 to 2147483647.

O O X

O: The available, X: unavailable

Bit width

Numeric variables types Other variables

Integer

Ex.)M1%

Long-preci-
sion integer

number

Ex.)M1&

Single-pre-
cision real
number
Note1)

Ex.)M1!

Double-
precision
real numbe
Note1)

Ex.)M1#

Positio
Note1)

Ex.)P1.X

Note1) The unit is the radian if the value of variable is the angle. The 32-bit current
output value is stored without converting as a numerical value of the radian unit.
(The elements of A, B and C of position variable, and all elements of joint variable)
The display of the monitor etc. is converted into the degree.

Joint
Note1)

Ex.)J1.J1

Character
string

Ex.)C1$

M_Out32 X O O O O O X

 CAUTION

4-324 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_PI

[Function]
Returns pi (3.14159265358979).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.

[Reference Program]
1 M1=M_PI ' 3.14159265358979 is assigned to M1.

[Explanation]
(1) A variable to be assigned will be a real value.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_PI

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-325

M_Psa

[Function]
Returns whether the program is selectable by the specified task slot.
1 : Program is selectable.
0 : Program not selectable (when the program is paused).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Psa(2) ' M1 will contain the program selectable status of task slot 2.

[Explanation]
(1) Returns whether the program is selectable by the specified task slot.
(2) This variable only reads the data.

M_Ratio

[Function]
Returns how much the robot has approached the target position (0 to 100%) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_Ratio>80, M_Out(1)=1' The output signal 1 will turn ON when the robot has moved

80% of the distance until the target position is reached
while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Psa [(<Equation>)]

Example)<Numeric Variable>=M_Ratio [(<Equation>)]

4-326 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_RDst

[Function]
Returns the remaining distance to the target position (in mm) while the robot is moving.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_RDst<10 M_Out(10)=1 ' The output signal 1 will turn ON when the remaining dis-

tance until the target position is reached becomes 10
mm or less while moving toward P1.

[Explanation]
(1) This is used, for instance, when performing a procedure at a specific position while the robot is moving.
(2) This variable only reads the data.

M_Run

[Function]
Returns whether the program for the specified task slot is being executed.
1 : Executing.
0 : Not executing (paused or stopped).

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Run(2) ' M1 will contain the execution status of slot 2.

[Explanation]
(1) This will contain 1 if the specified slot is running, or 0 if the slot is stopped (or paused).
(2) Combine M_Run and M_Wai to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

Example)<Numeric Variable>=M_RDst [(<Equation>)]

Example)<Numeric Variable>=M_Run [(<Equation>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-327

M_SetAdl

[Function]
Set the acceleration/deceleration time distribution rate of the specified axis when optimum acceleration/
deceleration control is enabled (Oadl ON). Since it can be set for each axis, it is possible to reduce the
motor load of an axis with a high load. Also, unlike a method that sets all axes uniformity, such as Ovrd, Spd
and Accel instructions, the effect on the tact time can be minimized as much as possible. The initial value is
the setting value of the JADL parameter.
This status variable can only be used in certain models (Refer to "[Available robot type]".).

[Format]

[Terminology]
<Axis Number> 1 to 8, Specifies the axis number.
<Numeric Variable> Specify the ratio for the standard acceleration/deceleration time, between 1

and 100. The unit is %. The initial value is the value of the optimum accelera-
tion/deceleration adjustment rate parameter (JADL).

[Reference Program]
1 Accel 100,50 ' Set the overall acceleration/deceleration distribution rate to 50%.
2 If M_LdFact(2)>90 Then ' If the load rate of the J2 axis exceeds 90%,
3 M_SetAdl(2)=70 ' set the acceleration/deceleration time distribution rate of the J2

axis to 70%.
4 EndIf ' Acceleration 70% (= 100% x 70%), deceleration 35% (= 50% x

70%)
5 Mov P1
6 Mov P2
7 M_SetAdl(2)=100 ' Return the acceleration/deceleration time distribution rate of the

J2 axis to 100%.
8 Mov P3 ' Acceleration 100%, deceleration 50%
9 Accel 100,100 ' Return the overall deceleration distribution rate to 100%.
10 Mov P4

[Explanation]
(1) The acceleration/deceleration time distribution rate when optimum acceleration/deceleration is enabled

can be set in units of axes. If 100% is specified, the acceleration/deceleration time becomes the short-
est.

(2) Using this status variable, the acceleration/deceleration time can be set so as to reduce the load on axes
where overload and overheat errors occur.

(3) The setting of this status variable is applied to both the acceleration time and deceleration time.
(4) When this status variable is used together with an Accel instruction, the specification of the acceleration/

deceleration distribution rate of the Accel instruction is also applied to the acceleration/deceleration
time calculated using the optimum acceleration/deceleration speed.

(5) With the Accel instruction, the acceleration/deceleration time changes at the specified rate. Because this
status variable is set independently for each axis and also the acceleration/deceleration time that takes
account of the motor load is calculated, the change in the acceleration/deceleration time may show a
slightly different value than the specified rate.

[Reference]
Accel (Accelerate),Ovrd (Override),Spd (Speed),M_LdFact

[Available robot type]

Example)M_SetAdl(<Axis Number>)=<Numeric Variable>

RV-2SD/3SD/3SDJ/6SD/6SDL/12SD/12SDL series, RH-3SQHR
RV-2SQ/3SQ/3SQJ/6SQ/6SQL/12SQ/12SQL series, RH-3SDHR

4-328 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_SkipCq

[Function]
Returns the result of executing the line containing the last executed Skip command.
1 : Skip has been executed.
0 : Skip has not been executed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 Mov P1 WthIf M_In(10)=1,Skip ' If the input signal 10 is 1 when starting to move to P1, skip

the Mov instruction.
2 If M_SkipCq=1 Then GoTo *Lskip ' If Skip instruction has been executed, jump to line 1000.
 ;
10 *Lskip

[Explanation]
(1) Checks if a Skip instruction has been executed.
(2) This variable only reads the data.
(3) If the M_SkipCq variable is referenced even once, the Skip status is cleared. (The value is set to zero.)

Therefore, to preserve the status, save it by substituting it into a numeric variable.

Example)<Numeric Variable>=M_SkipCq [(<Equation>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-329

M_Spd/M_NSpd/M_RSpd

[Function]
Returns the speed information during XYZ and JOINT interpolation.
M_Spd : Currently set speed.
M_NSpd : Initial value (optimum speed control).
M_RSpd : Directive speed.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Spd ' M1 will contain the currently set speed.
2 Spd M_NSpd ' Reverts the speed to the optimum speed control mode.

[Explanation]
(1) M_RSpd returns the directive speed at which the robot is operating. When the servo-off condition, the

feedback speed is returned. At this time, even if the robot is stopping, the value may change between
- 0.01, to +0.01

(2) This can be used in M_RSpd multitask programs or with Wth and WthIf statements.
(3) This variable only reads the data.

M_Svo

[Function]
Returns the current status of the servo power supply.
1 : Servo power ON
0 : Servo power OFF

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Svo(1) ' M1 will contain the current status of the servo power supply.

[Explanation]
(1) The status of the robot's servo can be checked.
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Spd [(<Equation>)]

Example)<Numeric Variable>=M_NSpd [(<Equation>)]

Example)<Numeric Variable>=M_RSpd [(<Equation>)]

Example)<Numeric Variable>=M_Svo [(<Mechanism Number>)]

4-330 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Timer

[Function]
Time is measured in milliseconds. This can be used to measure the operation time of the robot or to mea-
sure time accurately.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> Enter the number to 8 from 1. Parentheses are required.

[Reference Program]
1 M_Timer(1)=0
2 Mov P1
3 Mov P2
4 M1=M_Timer(1) ' M1 will contain the amount of time required to move from P1 to P2 (in ms).

Example) If the time is 5.346 sec. the value of M1 is 5346.
5 M_Timer(1)=1.5 ' Set to 1.5 sec.

[Explanation]
(1) A value may be assigned. The unit is seconds when set to M_Timer.
(2) Since measurement can be made in milliseconds (ms), precise execution time measurement is possible.

Example)<Numeric Variable>=M_Timer (<Equation>)

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-331

M_Tool

[Function]
In addition to using the tool data (MEXTL1 to 16) of the specified number as the current tool data, it is also
set in the MEXTL parameter.
The current tool number can also be read.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number to 3 from 1.

If the argument is omitted, 1 is set as the default value.
<Equation> Enter the tool number to 16 from 1.

[Reference Program]
Setting Tool Data
1 Tool (0,0,100,0,0,0) ' Specify tool data (0,0,100,0,0,0), and write it into MEXTL.
2 Mov P1
3 M_Tool=2 ' Change the tool data to the value of tool number 2 (MEXTL2).
4 Mov P2

Referencing the Tool Number
1 If M_In(900)=1 Then ' Change the tool data by a hand input signal.
2 M_Tool=1 ' Set tool 1 in tool data.
3 Else
4 M_Tool=2 ' Set tool 2 in tool data.
5 EndIf
6 Mov P1

[Explanation]
(1) The values set in the MEXTL1, MEXTL2, MEXTL3 MEXTL16 tool parameters are reflected in the tool

data. It is also written into the MEXTL parameter.
(2) Tool numbers 1 to 16 correspond to MEXTL1 to 16.
(3) While referencing, the currently set tool number is read.
(4) If the reading value is 0, it indicates that tool data other than MEXTL1 to 16 is set as the current tool data.
(5) The same setting can be performed on the Tool Setup screen of the teaching pendant. For more infor-

mation, see Page 26, "3.2.9 Switching Tool Data".

[Reference]
Tool(Tool), MEXTL, MEXTL1 to 16

Example)<Numeric Variable>=M_Tool [(<Mechanism Number>)]'Referencing the Current Tool Number

Example)M_Tool [(<Mechanism Number>)] = [(<Equation>)] 'Set a tool number.

4-332 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Uar

[Function]
Returns whether the robot is in the user-defined area.
Bits 0 through 7 correspond to areas 1 to 8 and each bit displays the following information.
1 : Within user-defined area
0 : Outside user-defined area

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Uar(1) ' M1 indicates whether the robot is within or outside the user-defined area.

The value 4 indicates that the robot is in the user-defined area 3.

[Explanation]
(1) For details on how to use user-defined areas, refer to Page 412, "About user-defined area".
(2) This variable only reads the data.

Example)<Numeric Variable>=M_Uar [(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-333

M_Uar32

[Function]
Returns whether contained in the user-defined area.

Bits 0 to 31 correspond to areas 1 to 32, with the respective bits displaying the information below.

1: Within user-defined area
2: Outside user-defined area

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number from 1 to 3. If the argument is omitted, 1 is set as

the default value.
[Reference Program]

1 Def Long M1

2 M1& = M_Uar32(1) AND &H00080000 'The result for area 20 only is assigned to M1.

3 If M1&<>0 Then M_Out(10)=1 'Output signal 10 turns ON if contained in area 20.

[Explanation]
(1) Refer to, Page 412, "5.8 About user-defined area" for details on how to use a user-defined area.

(2) An error will occur if a 16-bit integer type is used for the <Numeric Variable> and the value is over. If so, use a
32-bit integer type.

(3) The area in which 1 (signal output) is specified for parameter AREAnAT (n is the area no. (n = 1 to 32)) is
applicable.

(4) When performing a comparison operation or logic operation, a negative value results in decimal notation if bit
31 is 1, and therefore it is recommended that hexadecimal notation be used.

(5) This variable only reads the data.

[Related System Variables]
M_Uar

[M_Uar32 and User-defined Area Compatibility]

Example) If contained in user-defined area 5 and 10, this will be the combined value of &H00000010, the value
indicating area 5, and H00000200, the value indicating area 10, however, this will be returned as an
M_Uar32 value.

Example) <Numeric Variable> = M_Uar32 [(<Mechanism Number>)]

Bit Area
Decimal
Value

Hexadecimal Value Bit Area Decimal Value
Hexadecimal

Value

0 1 1 &H00000001 16 17 65536 &H00010000

1 2 2 &H00000002 17 18 131072 &H00020000

2 3 4 &H00000004 18 19 262144 &H00040000

3 4 8 &H00000008 19 20 524288 &H00080000

4 5 16 &H00000010 20 21 1048576 &H00100000

5 6 32 &H00000020 21 22 2097152 &H00200000

6 7 64 &H00000040 22 23 4194304 &H00400000

7 8 128 &H00000080 23 24 8388608 &H00800000

8 9 256 &H00000100 24 25 16777216 &H01000000

9 10 512 &H00000200 25 26 33554432 &H02000000

10 11 1024 &H00000400 26 27 67108864 &H04000000

11 12 2048 &H00000800 27 28 134217728 &H08000000

12 13 4096 &H00001000 28 29 268435456 &H10000000

13 14 8192 &H00002000 29 30 536870912 &H20000000

14 15 16384 &H00004000 30 31 1073741824 &H40000000

15 16 32768 &H00008000 31 32 -2147483648 &H80000000

4-334 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Wai

[Function]
Returns the standby status of the program for the specified task slot.
1 : Paused (The program has been paused.)
0 : Not paused (Either the program is running or is being stopped.)

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Equation> 1 to 32, Specifies the task slot number. If this parameter is omitted, the current

slot will be used as the default.

[Reference Program]
1 M1=M_Wai(1) ' M1 will contain the standby status of slot 1.

[Explanation]
(1) This can be used to check whether the program has been paused.
(2) Combine M_Run and M_Wai to determine if the program has stopped (in case the currently executed

line is the top line).
(3) This variable only reads the data.

[Reference]
M_Wupov, M_Wuprt, M_Wupst

Example)<Numeric Variable>=M_Wai [(<Equation>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-335

M_Wupov

[Function]
Returns the value of an override (warm-up operation override, unit: %) to be applied to the command speed
in order to reduce the operation speed when in the warm-up operation status.
Note: For more information about the warm-up operation mode, see Page 447, "5.21 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wupov(1) ' The value of a warm-up operation override is entered in M1.

[Explanation]
(1) This is used to confirm the value of an override (warm-up operation override) to be applied to the com-

mand speed in order to reduce the operation speed when the robot is in the warm-up operation status
(the status in which operation is performed by automatically reducing the speed).

(2) If the warm-up operation mode is disabled, the MODE switch on the front of the controller is set to
"TEACH," or the machine is being locked, the value is always 100.

(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set
immediately after power on, the value specified in the first element (the initial value of a warm-up oper-
ation override) of the WUPOvrd parameter is set as the initial value, and the value of M_Wupov
increases according to the operation of the robot. And when the warm-up operation status is canceled,
the value of M_Wupov is set to 100.

(4) The actual override in the warm-up operation status is as follows:
During joint interpolation operation = (operation panel (T/B) override setting value) x (program override
(Ovrd instruction)) x (joint override (JOvrd instruction)) x warm-up operation override
During linear interpolation operation = (operation panel (T/B) override setting value) x (program over-
ride (Ovrd instruction)) x (linear specification speed (Spd instruction)) x warm-up operation override

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wupov [(<Mechanism Number>)]

4-336 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

M_Wuprt

[Function]
Returns the time (sec) during which a target axis must operate to cancel the warm-up operation status.

Note: For more information about the warm-up operation mode, see Page 447, "5.21 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wuprt(1) ' The time during which a target axis must operate is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status can be canceled after how long more the joint

axis specified in the WUPAXIS parameter (warm-up operation mode target axis) operates when the
robot is in the warm-up operation status (the status in which operation is performed by automatically
reducing the speed).

(2) If the warm-up operation mode is disabled, 0 is always returned.
(3) If the normal status changes to the warm-up operation status, or the warm-up operation status is set

immediately after power on, the time specified in the first element (the valid time of the warm-up opera-
tion mode) of the WUPTIME parameter is set as the initial value, and the value of M_Wuprt decreases
according to the operation of the robot. And when the value is set to 0, the warm-up operation status is
canceled.

(4) If a multiple number of target axes in warm-up operation mode exist, the value of the axis with the short-
est operation time among them is returned.
For example, when a target axis (A) operates and the warm-up operation status is canceled in remain-
ing 20 seconds (when M_Wuprt = 20), if another target axis (B) that has continuously been stopped
changes from the normal status to the warm-up operation status, (B) becomes the axis with the shortest
operation time (operation time of 0 sec). Therefore, the time during which (B) must operate (= the valid
time of the warm-up operation mode, initial value is 60 sec) becomes the value of this status variable
(M_Wuprt = 60).

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wuprt [(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-337

M_Wupst

[Function]
Returns the time (sec) until the warm-up operation status is set again after it has been canceled.
Note: For more information about the warm-up operation mode, see Page 447, "5.21 Warm-Up Operation
Mode" for detail.

[Format]

[Terminology]
<Numeric Variable> Specifies the numerical variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 M1=M_Wupst(1) ' The time until the warm-up operation status is set again is entered in M1.

[Explanation]
(1) This is used to confirm when the warm-up operation status is set again after how long more the joint axis

specified in the WUPAXIS parameter (warm-up operation mode target axis) continues to stop operating
while the robot’s warm-up operation status (the status in which operation is performed by automatically
reducing the speed) is canceled.

(2) If the warm-up operation mode is disabled, the time specified in the second element (warm-up operation
mode resume time) of the WUPTIME parameter is returned.

(3) If a target axis operates while the warm-up operation status is canceled, the time specified in the second
element (warm-up operation mode resume time) of the WUPTIME parameter is set as the initial value,
and the value of M_Wupst decreases while the target axis is stopping. And when the value is set to 0,
the warm-up operation status is set.

(4) If a multiple number of target axes exist, the value of the axis that has been stopped the longest among
them is returned.

(5) This variable only reads the data.

Example)<Numeric Variable> = M_Wupst [(<Mechanism Number>)]

4-338 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

P_Base/P_NBase

[Function]
Returns information related to the base conversion data.
P_Base : Returns the base conversion data that is currently being set.
P_NBase : Returns the initial value (0, 0, 0, 0, 0, 0) (0, 0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 P1=P_Base ' P1 will contain the base conversion data that is currently being set.
2 Base P_NBase ' Resets the base conversion data to the initial value.

[Explanation]
(1) P_NBase will contain (0, 0, 0, 0, 0, 0) (0, 0).
(2) Be careful when using base conversion since it may affect the teaching data.
(3) Use the Base instruction when changing the base position.
(4) This variable only reads the data.

Example)<Position Variables>=P_Base [(<Mechanism Number>)]

Example)<Position Variables>=P_NBase

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-339

P_ColDir

[Function]
Return the operation direction of the robot when an impact is detected.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

Refer to Page 190, " [Reference Program 2]" for "ColChk (Col Check)".

[Explanation]
(1) This is used to verify the operation direction of the robot in automatic restoration operation after impact

detection.
(2) The operation direction of the robot at the very moment of impact detection is expressed as a ratio using

the maximum travel axis as ±1.0. Example: If the robot was being operated at a ratio of (X-axis direc-
tion:Y-axis direction) = (2:-1)...P_ColDir = (1,-0.5,0,0,0,0)(0,0)

(3) The posture axis and structural flag are always (*.*.*.0,0,0,0,0)(0,0).
(4) A value is calculated when an impact is detected, and then that value is retained until the next impact is

detected.
(5) If an impact is detected when an external object hits the robot in the stationary state, all axes are set to

0.0.
(6) Because this variable calculates the operation direction based on the target position of an operation

instruction, all elements may be set to 0.0 if an impact occurs at a position near the target position.
(7) This is read only.
(8) For robots that prohibit the use of impact detection, 0.0 is always returned for all axes.

[Reference]
ColChk (Col Check), ColLvl (Col Level), M_ColSts, J_ColMxl

Example)<Position Variables>=P_ColDir [(<Mechanism Number>)]

4-340 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

P_Curr

[Function]
Returns the current position (X, Y, Z, A, B, C,L1,L2) (FL1, FL2).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

1 Def Act 1,M_In(10)=1 GoTo *LACT ' Defines interrupt.
2 Act 1=1 ' Enables interrupt.
3 Mov P1
4 Mov P2
5 Act 1=0 ' Disables interrupt.
 :
100 *LACT
101 P100=P_Curr ' Loads the current position when an interrupt signal is

received.
102 Mov P100,-100 ' Moves 100 mm above P100 (i.e, -100 mm in the Z direc-

tion of the tool).
103 End ' Ends the program.

[Explanation]
(1) This can be used to identify the current position.
(2) This variable only reads the data.

[Reference]
J_Curr

Example)<Position Variables>=P_Curr [(<Mechanism Number>)]

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-341

P_Fbc

[Function]
Returns the current position (X,Y,Z,A,B,C,L1,L2)(FL1,FL2) based on the feedback values from the servo.

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.
[Reference Program]

1 P1=P_Fbc ' P1 will contain the current position based on the feedback.

[Explanation]
(1) Returns the current position based on the feedback values from the servo.
(2) This variable only reads the data.

[Reference]
Torq (Torque),J_Fbc/J_AmpFbc,M_Fbd

P_Safe

[Function]
Returns the safe point (XYZ position of the JSAFE parameter).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 P1=P_Safe ' P1 will contain the set safe point being set.

[Explanation]
(1) Returns the XYZ position, which has been converted from the joint position registered in parameter

JSAFE.
(2) This variable only reads the data.

Example)<Position Variables>=P_Fbc [(<Mechanism Number>)]

Example)<Position Variables>=P_Safe [(<Mechanism Number>)]

4-342 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

P_Tool/P_NTool

[Function]
Returns tool conversion data.
P_Tool: Returns the tool conversion data that is currently being set.
P_NTool: Returns the initial value (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.
<Mechanism Number> Enter the mechanism number. 1 to 3, If the argument is omitted, 1 is set as the

default value.

[Reference Program]
1 P1=P_Tool ' P1 will contain the tool conversion data.

[Explanation]
(1) P_Tool returns the tool conversion data set by the Tool instruction or the MEXTL parameter.
(2) Use the Tool instruction when changing tool data.
(3) This variable only reads the data.

Example)<Position Variables>=P_Tool [(<Mechanism Number>)]

Example)<Position Variables>=P_NTool

 4MELFA-BASIC V

 Detailed explanation of Robot Status Variable 4-343

P_WkCord

[Function]
This function permits you to make reference to the work coordinate data being currently

specified or to make a setting for a new work coordinate.
Parameters to be worked with are WK1CORD through WK8CORD.

[Format]

[Terminology]
<Position variable> A position variable to which a value is to be assigned is designated.
<Work coordinate number> A work coordinate number which is chosen from 1 through 8.

Constants, variables, logic/arithmetic expressions, and functions are usable.
When a real number or a double-precision real number is specified, the frac-
tional portion of 0.5 or over of the number is counted as one and the rest is
cut away.

<Work coordinate data> Work coordinate data is specified with a position constant or a position vari-
able.
Values to be specified (coordinate values) represent the position of the origin
point of a work coordinate system viewed from the base coordinate system.

[Reference Program]
1 PW=P_WkCord(1) ' Read work coordinate 1 (set value for parameter: WK1CORD) and assign it to PW.

2 PW.X=PW.X+100 ’Add 100 to X coordinate value that has been read.

3 PW.Y=PW.Y+100 ’Add 100 to Y coordinate value that has been read.

4 P_WkCord(2)=PW ’Set the results of the above operations for work coordinate 2.
(Set them to parameter: WK2CORD).

5 Base 2 ’Let work coordinate 2 be a new world coordinate system.

6 Mov P1

[Explanation]
(1) By designating a work coordinate number, work coordinate values concerned are read, or work coordi-

nate values are specified. The "1 to 8" specified as work coordinate number correspond to parameter:
WK1CORD-WK8CORD.

(2) Elements X, Y and Z of work coordinate data indicate the amount of translation from the origin point of
the base coordinate system to that of the work coordinate system.
Also, elements A, B and C indicate how much the work coordinate system is tilted relative to the robot's
coordinate system.

Ｘ ・ ・ ・ Distance the robot hand translates in the direction of the X axis
Ｙ ・ ・ ・ Distance the robot hand translates in the direction of the Y axis
Ｚ ・ ・ ・ Distance the robot hand translates in the direction of the Z axis
Ａ ・ ・ ・ Angle the robot hand rotates on the X axis
Ｂ ・ ・ ・ Angle the robot hand rotates on the Y axis
Ｃ ・ ・ ・ Angle the robot hand rotates on the Z axis

Elements A, B, and C are set to take a clockwise move as a forward rotation looking at the plus side
from the origin point of the work coordinate system.

(3) There is nothing significant about the structure flag.
(4) Specifying work coordinates by this command clears WO, WX and WY data for the corresponding work

coordinate number [coordinate values of 3 points to be taught as work coordinates - parameters:
WKnWO, WKnWX, WKnWY (n: 1~8)].

Example) Executing Step 4 (P_WKcORD(2)=PW) which is previously listed causes WK2WO, WK2WX
and WK2WY to be set to "0".

Example)<Position variable>=P_WkCord(<work coordinate number>)Reference

P_WkCord(<work coordinate number>)=<work coordinate data>Setting

4-344 Detailed explanation of Robot Status Variable

4MELFA-BASIC V

[Related instructions]
Base (Base)

[Related parameter]
MEXBSNO, WKnCORD("n" is 1 to 8), WKnWO, WKnWX, WKnWY("n" is 1 to 8)

P_Zero

[Function]
Always returns (0,0,0,0,0,0,0,0)(0,0).

[Format]

[Terminology]
<Position Variables> Specifies the position variable to assign.

[Reference Program]
1 P1=P_Zero '(0,0,0,0,0,0,0,0)(0,0) is assigned to P1.

[Explanation]
(1) This can be used to initialize the P variable to zeros.
(2) This variable only reads the data.

Example)<Position Variables>=P_Zero

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-345

4.16 Detailed Explanation of Functions
4.16.1 How to Read Described items

[Function] : This indicates a function of a function.
[Format] : This indicates how to input the function argument.
[Reference Program] : An example program using function is shown.
[Terminology] : This indicates the meaning and range of an argument.
[Explanation] : This indicates detailed functions and precautions.
[Reference] : This indicates related function.

4.16.2 Explanation of Each Function
Each variable is explained below in alphabetical order.

4-346 Detailed Explanation of Functions

4MELFA-BASIC V

Abs

[Function]
Returns the absolute value of a given value.

[Format]

[Reference Program]
1 P2.C=Abs(P1.C) ' P2.C will contain the value of P1.C without the sign.
2 Mov P2
3 M2=-100
4 M1=Abs(M2) ' 100 is assigned to M1.

[Explanation]
(1) Returns the absolute value (Value with the positive sign) of a given value.

[Reference]
Sgn

<Numeric Variable>=Abs(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-347

Align

[Function]
Positional posture axes (A, B, and C axes) are converted to the closest XYZ postures (0, +/-90, and +/-180).
Align outputs numerical values only. The actual operation will involve movement instructions such as the
Mov instruction.

[Format]

[Reference Program]
 1 P1=P_Curr
 2 P2=Align(P1)
 3 Mov P2

[Explanation]
(1) Converts the A, B, and C components of the position data to the closest XYZ postures (0, +/-90, and +/-

180).
(2) Since the return value is of position data type, an error will be generated if the left-hand side is of joint

variable type.
(3) This function cannot be used in vertical multi-joint 5-axes robot.

The following shows a sample case for the axis B.

<Position Variables>=Align(<Position>)

4-348 Detailed Explanation of Functions

4MELFA-BASIC V

Asc

[Function]
Returns the character code of the first character in the string.

[Format]

[Reference Program]
 1 M1=Asc("A") ' &H41is assigned to M1.

[Explanation]
(1) Returns the character code of the first character in the string.
(2) An error will be generated if the string is a null string.

[Reference]
Chr$, Val, Cvi, Cvs, Cvd

Atn/Atn2

[Function]
Calculates the arc tangent.

[Format]

[Terminology]
<Numeric Variable> Calculates the arc tangent with specified expression, and returns the result. The unit is radian.
<Equation> Calculated value of delta Y/delta X.
<Equation 1> delta Y
<Equation 2> delta X

[Reference Program]
1 M1=Atn(100/100) 'PI/4 is assigned to M1.
2 M2=Atn2(-100,100) '-PI/4 is assigned to M1.

[Explanation]
(1) Calculates the arc tangent of a given equation. Unit is in radians.
(2) The range of the returned value for Atn is -PI/2 < Atn < PI/2.
(3) The range of the returned value for Atn2 is -PI < Atn < PI.
(4) If <Equation 2> evaluates to 0, Atn2 will return PI/2 when <Equation 1> evaluates to a positive value and

-PI/2 when <Equation 1> evaluates to a negative value.
(5) In the case of Atn2, it is not possible to describe a function that contains an argument in <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.
NG exampleM1=Atn2(Max(MA,MB), 100)
 M1=Atn2(Cint(10.2), 100)

[Reference]
Sin, Cos, Tan

<Numeric Variable>=Asc(<Character String Expression>)

<Numeric Variable>=Atn(<Equation>)

<Numeric Variable>=Atn2(<Equation 1>, <Equation 2>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-349

Bin$

[Function]
Value is converted to a binary string.

[Format]

[Reference Program]
 1 M1=&B11111111
 2 C1$=Bin$(M1) ' C1$ will contain the character string of "11111111".

[Explanation]
(1) Value is converted to a binary string.
(2) If the equation does not evaluate to an integer, the integral value obtained by rounding the fraction will be

converted to a binary string.
(3) Val is a command that performs the opposite of this function.

[Reference]
Hex$, Str$, Val

<Character String Variable >=Bin$(<Equation>)

4-350 Detailed Explanation of Functions

4MELFA-BASIC V

CalArc

[Function]
Provides information regarding the arc that contains the three specified points.

[Format]

[Terminology]
<Position 1> Specifies the starting point of the arc.
<Position 2> Specifies the passing point of the arc. Same as the three points in the Mvr instruction.
<Position 3> Specifies the endpoint of the arc.
<Numeric Variable 1> Radius of the specified arc (in mm) will be calculated and returned.
<Numeric Variable 2> Central angle of the specified arc (in radians) will be calculated and returned.
<Numeric Variable 3> Length of the specified arc (in mm) will be calculated and returned.
<Position Variables 1> The center coordinates of the specified arc (in mm) will be calculated and returned (as a position data

type, ABC are all zeros).
<Numeric Variable 4> Return value

1 : Calculation was performed normally.
-1 : Of positions 1, 2, and 3, either two points had the exact same position or all three points were on

a straight line.
-2 : All three points are at approximately the same position.

[Reference Program]
1 M1=CalArc(P1,P2,P3,M10,M20,M30,P10)
2 If M1<>1 Then End ' Ends if an error occurs.
3 MR=M10 ' Radius.
4 MRD=M20 ' Circular arc angle.
5 MARCLEN=M30 ' Circular arc length.
6 PC=P10 ' Coordinates of the center point.

[Explanation]
(1) Provides information regarding the arc that is determined by the three specified points, position 1, posi-

tion 2 and position 3.
(2) If the arc generation and calculation of various values succeeded, 1 will be returned as the return value.
(3) If some points have the exact same position or if all three points are on a straight line, -1 will be returned

as the return value. In such cases, the distance between the starting point and the endpoint will be
returned as the arc length, -1 as the radius, 0 as the central angle, and (0, 0, 0) as the center point.

(4) If circular arc generation fails, -2 will be returned as the return value. If a circular arc cannot be gener-
ated, -1, 0, 0 and (0, 0, 0) are returned as the radius, central angle, arc length and center point, respec-
tively.

(5) It is not possible to describe a function that contains an argument in <position 1>, <position 2>, <position
3>, <numeric variable 1>, <numerical variable 2>, <numeric variable 3> and <position variable 1>. If
such a function is described, an error will be generated during execution.

<Numeric Variable 4> = CalArc(<Position 1>, <Position 2>, <Position 3>,

 <Numeric Variable 1>, <Numeric Variable 2>, <Numeric Variable 3>,

<Position Variables 1>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-351

Chr$

[Function]
Returns the character that has the character code obtained from the specified equation.

[Format]

[Reference Program]
1 M1=&H40
2 C1$=Chr$(M1+1) ' "A" is assigned to C1$.

[Explanation]
(1) Returns the character that has the character code obtained from the specified equation.
(2) If the equation does not evaluate to an integer, the character will be returned whose character code cor-

responds to the integral value obtained by rounding the fraction.

[Reference]
Asc

Cint

[Function]
Rounds the fractional part of an equation to convert the value into an integer.

[Format]

[Reference Program]
1 M1=Cint(1.5) ' 2 is assigned to M1.
2 M2=Cint(1.4) ' 1 is assigned to M2.
3 M3=Cint(-1.4) ' -1 is assigned to M3.
4 M4=Cint(-1.5) ' -2 is assigned to M4.

[Explanation]
(1) Returns the value obtained by rounding the fractional part of an equation.

[Reference]
Int, Fix

<Character String Variable >=Chr$(<Equation>)

<Numeric Variable>=Cint(<Equation>)

4-352 Detailed Explanation of Functions

4MELFA-BASIC V

CkSum

[Function]
Calculates the checksum of the string.

[Format]

[Terminology]
<Character String> Specifies the string from which the checksum should be calculated.
<Equation 1> Specifies the first character position from where the checksum calculation

starts.
<Equation 2> Specifies the first character position from where the checksum calculation

ends.

[Reference Program]
1 M1=CkSum("ABCDEFG",1,3) ' &H41("A")+&H42("B")+&H43("C")=&HC6 is assigned to M1.

[Explanation]
(1) Adds the character codes of all characters in the string from the starting position to the end position and

returns a value between 0 and 255.
(2) If the starting position is outside the range of the string, an error will be generated.
(3) If the end position exceeds the end of the string, checksum from the starting position to the last character

in the string will be calculated.
(4) If the result of addition exceeds 255, a degenerated value of 255 or less will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String>, <Equation 1>

and <Equation 2>. If such a function is described, an error will be generated during execution.

Cos

[Function]
Gives the cosine.

[Format]

[Reference Program]
1 M1=Cos(Rad(60))

[Explanation]
(1) Calculates the cosine of the equation.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
Sin, Tan, Atn/Atn2

<Numeric Variable>=CkSum(<Character String>, <Equation 1>, <Equation 2>)

<Numeric Variable>=Cos(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-353

Cvi

[Function]
Converts the character codes of the first two characters of a string into an integer.

[Format]

[Reference Program]
1 M1=Cvi("10ABC") ' &H3031 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first two characters of a string into an integer.
(2) An error will be generated if the string consists of one character or less.
(3) Mki$ can be used to convert numerical values into a string.
(4) This can be used to reduce the amount of communication data when transmitting numerical data with

external devices.

[Reference]
Asc, Cvs, Cvd, Mki$, Mks$, Mkd$

Cvs

[Function]
Converts the character codes of the first four characters of a string into a single precision real number.

[Format]

[Reference Program]
1 M1=Cvs("FFFF") ' 12689.6 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first four characters of a string into an single-precision real number.
(2) An error will be generated if the string consists of three character or less.
(3) Mks$ can be used to convert numerical values into a string.

[Reference]
Asc, Cvi, Cvd, Mki$, Mks$, Mkd$

<Numeric Variable>=Cvi(<Character String Expression>)

<Numeric Variable>=Cvs(<Character String Expression>)

4-354 Detailed Explanation of Functions

4MELFA-BASIC V

Cvd

[Function]
Converts the character codes of the first eight characters of a string into a double precision real number.

[Format]

[Reference Program]
1 M1=Cvd("FFFFFFFF") ' +3.52954E+30 is assigned to M1.

[Explanation]
(1) Converts the character codes of the first eight characters of a string into a double precision real number.
(2) An error will be generated if the string consists of seven character or less.
(3) Mkd$ can be used to convert numerical values into a string.

[Reference]
Asc, Cvi, Cvs, Mki$, Mks$, Mkd$

Deg

[Function]
Converts the unit of angle measurement from radians (rad) into degrees (deg).

[Format]

[Reference Program]
1 P1=P_Curr
2 If Deg(P1.C) < 170 OR Deg(P1.C) > -150 Then *NOERR
3 Error 9100

 4 *NOERR

[Explanation]
(1) Converts the radian value of an equation into degree value.
(2) When the posture angles of the position data are to be displayed using positional constants, the unit

used for ((500, 0, 600, 180, 0, 180) (7, 0)) is Deg. As in the case of P1.C, the unit used will be in radians
(rad) when the rotational element of the positional variable is to be referenced directly. Value of P1.C
can be handled in Deg. In such case, set parameter "PRGMDeg" to 1.

[Reference]
Rad

<Numeric Variable>=Cvd(<Character String Expression>)

<Numeric Variable>=Deg(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-355

Dist

[Function]
Calculates the distance between two points (position variables).

[Format]

[Reference Program]
1 M1=Dist(P1,P2) ' M1 will contain the distance between positions 1 and 2.

[Explanation]
(1) Returns the distance between positions 1 and 2 (in mm).
(2) Posture angles of the position data will be ignored; only the X, Y, and Z data will be used for calculation.
(3) The joint variables cannot be used. Trying to use it will result in an error during execution.
(4) It is not possible to describe a function that contains an argument in <position 1> and <position 2>. If

such a function is described, an error will be generated during execution.

Exp

[Function]
Calculates exponential functions. (an equation that uses "e" as the base.)

[Format]

[Reference Program]
1 M1=Exp(2) ' e2 is assigned to M1.

[Explanation]
(1) Returns the exponential function value of the equation.

[Reference]
Ln

<Numeric Variable>=Dist(<Position 1>, <Position 2>)

<Numeric Variable>=Exp(<Equation>)

4-356 Detailed Explanation of Functions

4MELFA-BASIC V

Fix

[Function]
Returns the integral portion of the equation.

[Format]

[Reference Program]
1 M1=Fix(5.5) ' 5 is assigned to M1.

[Explanation]
(1) Returns the integral portion of the equation value.
(2) If the equation evaluates to a positive value, the same number as Int will be returned.
(3) If the equation evaluates to a negative value, then for instance Fix(-2.3) = -2.0 will be observed.

[Reference]
Cint, Int

<Numeric Variable>=Fix(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-357

Fram

[Function]
Calculates the position data that indicates a coordinate system (plane) specified by three position data.
Normally, use Def Plt and Plt instructions for pallet calculation.

[Format]

[Terminology]
<Numeric Variable 1> This will be the origin of X, Y, and Z of the plane to be specified by three posi-

tions. A variable or a constant.
<Numeric Variable 2> A point on the X axis of the plane to be specified by three positions. A variable

or a constant.
<Numeric Variable 3> A point in the positive Y direction of the X-Y plane on the plane to be specified

by three positions. A variable or a constant.
<Numeric Variable 4> Variable to which the result is assigned.

Substitute the structural flag by the value of <position 1>.

[Reference Program]
1 Base P_NBase ' Return base conversion data to the initial value.
2 P100=Fram(P1,P2,P3) ' Create P100 coordinate system based on P1, P2 and P3 positions.
3 P10=Inv(P10) ' Convert (inversely convert) P10 to what represents the position of the

origin point of base coordinate system viewed from P10.
4 Base P10 ' Newly establish the position of P10 defined in Step 2 in the world

coordinate system.
 :

[Explanation]
(1) This can be used to define the base coordinate system.
(2) This creates a plane from the three coordinates X, Y, and Z for the three positions to calculate the posi-

tion of the origin and the inclination of the plane, and returns the result as a position variable. The X, Y,
and Z coordinates of the position data will be identical to that of position variable 1, while A, B, and C
will be the inclination of the plane to be specified by the three positions.

(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-
hand side.

(4) It is not possible to describe a function that contains an argument in <position 1>, <position 2> and
<position 3>. If such a function is described, an error will be generated during execution.
NG exampleP10=Fram(FPrm(P01,P02,P03), P04, P05)

[Reference]
Relative conversion (* operator). Refer to Page 412, "5.8 About user-defined area".

<Numeric Variable 4>=Fram(<Numeric Variable 1>, <Numeric Variable 2>,

<Numeric Variable 3>)

4-358 Detailed Explanation of Functions

4MELFA-BASIC V

Hex$

[Function]
Converts the value of an equation (Between -32768 to 32767) into hexadecimal string.

[Format]

[Reference Program]
1 C1$=Hex$(&H41FF) ' "41FF" is assigned to C1$.
2 C2$=Hex$(&H41FF,2) ' "FF" is assigned to C2$.

[Explanation]
(1) Converts the value of an equation into hexadecimal string.
(2) If <Number of output characters> is specified, the right most part of the converted string is output for the

specified length.
(3) If the numerical value is not an integer, the integer value obtained by rounding the fraction will be con-

verted into hexadecimal string.
(4) Val is a command that performs this procedure in reverse.
(5) If <number of output characters> is specified, it is not possible to describe a function that contains an

argument in <Equation>. If such a function is described, an error will be generated during execution.
NG example C1$=Hex$(Asc("a"),1)

[Reference]
Bin$, Str$, Val

Int

[Function]
Returns the largest integer that does not exceed the value of the equation.

[Format]

[Reference Program]
1 M1=Int(3.3) ' 3 is assigned to M1.

[Explanation]
(1) Returns the largest integer that does not exceed the value of the equation.
(2) If the nquation evaluates to a positive value, the same number as Fix will be returned.
(3) If the equation evaluates to a negative value, then for instance Fix(-2.3) = -3.0 will be observed.

[Reference]
Cint, Fix

<Character String Variable >=Hex$(<Equation> [, <Number of output characters>])

<Numeric Variable>=Int(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-359

Inv

[Function]
Obtains the position data of the inverse matrix of the position variable. This is used to perform relative calcu-
lation of the positions.

[Format]

[Reference Program]
1 P1=Inv(P2) ' P1 will contain the inverse matrix of P2.

[Explanation]
(1) Obtains the position data of the inverse matrix of the position variable.
(2) Joint variables cannot be used as the argument. When a joint variable is used, an error will be gener-

ated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.

JtoP

[Function]
Given joint data will be converted into position data.

[Format]

[Reference Program]
1 P1=JtoP(J1) ' The position that expresses the J1 (joint type) position using the XYZ

type will be assigned to P1.
[Explanation]

(1) Converts the joint data into the position data.
(2) Position variables cannot be used as the argument. When a position variable is used, an error will be

generated.
(3) Since the return value is a position data, an error will be generated if a joint variable is used in the left-

hand side.
(4) The initial value of the target mechanism number is "1" under software version N8(SQ series) and P8(SD

series). Therefore, when mechanism number 1 is targeted, after executing the RelM command, or the
program slot is other than 1, execution of the GetM command is unnecessary. If target mechanism is
other than 1, execute the GetM command beforehand.

[Reference]
PtoJ

<Position Variables>=Inv(<Position Variables>)

<Position Variables>=JtoP(<Joint Variables>)

4-360 Detailed Explanation of Functions

4MELFA-BASIC V

Left$

[Function]
Obtains a string of the specified length starting from the left end.

[Format]

[Reference Program]
1 C1$=Left$("ABC",2) ' "AB" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the left end.
(2) An error will be generated if the value is a negative value or is longer than the string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
Mid$, Right$

Len

[Function]
Returns the length of the string.

[Format]

[Reference Program]
1 M1=Len("ABCDEFG") ' 7 is assigned to M1.

[Explanation]
(1) Returns the length of the argument string.

[Reference]
Left$, Mid$, Right$

<Character String Variable >=Left$(<Character String>, <Equation>)

<Numeric Variable>=Len(<Character String>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-361

Ln

[Function]
Returns the natural logarithm. (Base e.)

[Format]

[Reference Program]
1 M1=Ln(2) ' 0.693147 is assigned to M1.

[Explanation]
(1) Returns the natural logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
Exp, Log

Log

[Function]
Returns the common logarithm. (Base 10.)

[Format]

[Reference Program]
1 M1=Log(2) ' 0.301030 is assigned to M1.

[Explanation]
(1) Returns the common logarithm of the value of the equation.
(2) An error will be generated if the equation evaluates to a zero or a negative value.

[Reference]
Exp, Ln

<Numeric Variable>=Ln(<Equation>)

<Numeric Variable>=Log(<Equation>)

4-362 Detailed Explanation of Functions

4MELFA-BASIC V

Max

[Function]
Obtains the maximum value.

[Format]

[Reference Program]
1 M1=Max(2,1,3,4,10,100) ' 100 is assigned to M1.

[Explanation]
(1) Returns the maximum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123 charac-

ters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
Min

Mid$

[Function]
Returns a string of the specified length starting from the specified position of the string.

[Format]

[Reference Program]
1 C1$=Mid$("ABCDEFG",3,2) ' "CD" is assigned to C1$.

[Explanation]
(1) A string of the length specified by argument 3 is extracted from the string specified by the first argument

starting from the position specified by argument 2 and returned.
(2) An error will be generated if equation 2 or 3 evaluates to a zero or a negative value.
(3) An error is generated if the position of the last character to be extracted is larger than the length of the

string specified by the first argument.
(4) It is not possible to describe a function that contains an argument in <Character String>, <Equation 2>

and <Equation 3>. If such a function is described, an error will be generated during execution.

[Reference]
Left$, Right$, Len

<Numeric Variable>=Max(<Equation 1>, <Equation 2>, ...)

<Character String Variable >=Mid$(<Character String>, <Equation 2>, <Equation 3>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-363

Min

[Function]
Obtains the minimum value.

[Format]

[Reference Program]
1 M1=Min(2,1,3,4,10,100) ' 1 is assigned to M1.

[Explanation]
(1) Returns the minimum value among the arbitrary number of arguments.
(2) The length of this instruction can be up to the number of characters allowed in a single line (123 charac-

ters).
(3) It is not possible to describe a function that contains an argument in <Equation 1>, <Equation 2> and

. If such a function is described, an error will be generated during execution.

[Reference]
Max

Mirror$

[Function]
Inverts the bit string representing each character code of the string in binary, and obtains the character-
coded string.

[Format]

[Reference Program]
1 C1$=Mirror$("BJ") ' "RB" is assigned to C1$.

' "BJ" =&H42,&H4A=&B01000010,&B01001010.
' Inverted =&H52,&H42=&B01010010,&B01000010.
' Output ="RB".

[Explanation]
(1) Inverts the bit string representing each character code of the string in binary, and obtains the character-

coded string.

<Numeric Variable>=Min(<Equation 1>, <Equation 2>, )

<Character String Variable >=Mirror$(<Character String Expression>)

4-364 Detailed Explanation of Functions

4MELFA-BASIC V

Mki$

[Function]
Converts the value of an equation (integer) into a two-byte string.

[Format]

[Reference Program]
1 C1$=Mki$(20299) ' "OK" is assigned to C1$.
2 M1=Cvi(C1$) ' 20299 is assigned to M1.

[Explanation]
(1) Converts the lowest two bytes of the value of an equation (integer) into a strings.
(2) Use Cvi to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mks$, Mkd$

Mks$

[Function]
Converts the value of an equation (single-precision real number) into a four-byte string.

[Format]

[Reference Program]
1 C1$=Mks$(100.1) ' "100.1" is assigned to C1$.
2 M1=Cvs(C1$) ' 100.1 is assigned to M1.

[Explanation]
(1) Converts the lowest four bytes of the value of an equation (single-precision real number) into the strings.
(2) Use Cvs to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mki$, Mkd$

<Character String Variable >=Mki$(<Equation>)

<Character String Variable >=Mks$(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-365

Mkd$

[Function]
Converts the value of an equation (double-precision real number) into a eight-byte string.

[Format]

[Reference Program]
1 C1$=Mkd$(10000.1) ' "10000.1" is assigned to C1$.
2 M1=Cvd(C1$) ' 10000.1 is assigned to M1.

[Explanation]
(1) Converts the lowest eight bytes of the value of an equation (single-precision real number) into the

strings.
(2) Use Cvd to convert the string to a value.
(3) This can be used to reduce the amount of communication data when transmitting numerical data to

external devices.

[Reference]
Asc, Cvi, Cvs, Cvd, Mki$, Mki$

PosCq

[Function]
Checks whether the given position is within the movement range.

[Format]

[Reference Program]
1 M1=PosCq(P1) ' M1 will contain 1 if the position P1 is within the movement range.

[Explanation]
(1) Check whether the position data given by an argument is within the movement range of the robot. Value

1 will be returned if it is within the movement range of the robot; value 0 will be returned if it is outside
the movement range of the robot.

(2) Arguments must give either the position data type or joint data type.

<Character String Variable >=Mkd$(<Equation>)

<Numeric Variable>=PosCq(<Position Variables>)

4-366 Detailed Explanation of Functions

4MELFA-BASIC V

PosMid

[Function]
Obtain the middle position data when a linear interpolation is performed between two given points.

[Format]

[Reference Program]
1 P1=PosMid(P2,P3,0,0) ' The position data (including posture) of the middle point between P2

and P3 will be assigned to P1.

[Explanation]
(1) Obtain the position data of the middle point when a linear interpolation is performed between two posi-

tion data.
(2) The first argument gives the starting point of the linear interpolation, while the second argument gives

the endpoint of the linear interpolation.
(3) The third and fourth arguments correspond to the two TYPE arguments of the Mvs command.
(4) The arguments for the starting and end points must be positions that allow linear interpolation with the

specified interpolation type. For instance, an error will be generated if the structure flags of the starting
and end points are different.

(5) It is not possible to describe a function that contains an argument in <Position Variables 1>, <Position
Variables 2>,<Equation 1> and <Equation 2>. If such a function is described, an error will be generated
during execution.

PtoJ

[Function]
Converts the given position data into a joint data.

[Format]

[Reference Program]
1 J1=PtoJ(P1) ' J1 will contain the value of P1 (XYZ position variable) that has been con-

verted into joint data type.

[Explanation]
(1) Converts the position data into the joint data.
(2) Joint variables(J variable) cannot be used as the argument. When a joint variable is used, an error will

be generated.
(3) Since the return value is a joint data, an error will be generated if a position variable is used in the left-

hand side.
(4) The initial value of the target mechanism number is "1" under software version N8(SQ series) and P8(SD

series). Therefore, when mechanism number 1 is targeted, after executing the RelM command, or the
program slot is other than 1, execution of the GetM command is unnecessary. If target mechanism is
other than 1, execute the GetM command beforehand.

[Reference]
JtoP

<Position Variables>=PosMid(<Position Variables 1>, <Position Variables 2>,<Equation 1>,

<Equation 2>)

<Joint Variable>=PtoJ(<Position Variables>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-367

Rad

[Function]
Converts the unit of angle measurement from degrees (deg) into radians (rad).

[Format]

[Reference Program]
1 P1=P_Curr
2 P1.C=Rad(90)
3 Mov P1 ' Moves to P1, which is obtained by changing the C axis of the current position

to 90 degrees.

[Explanation]
(1) Converts the degree value of an equation into radian value.
(2) This can be used to assign values to the posture components (ABC) of a position variable or to execute

trigonometric functions.

[Reference]
Deg

Rdfl 1

[Function]
Returns the structure flag of the specified position using character data "R"/"L", "A"/"B", and "N"/"F".

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the structure flag will be extracted.
<Equation> Specifies which structure flag is to be extracted.

0 = "R" / "L", 1 = "A" / "B", 2 = "N" / "F"
[Reference Program]

1 P1=(100,0,100,180,0,180)(7,0) ' Since the structure flag 7 (&B111) is RAN,
2 C1$=Rdfl1(P1,1) ' C1$ will contain "A".

[Explanation]
(1) Of the structure flags in the position data specified by argument 1, the flag specified by argument 2 will

be extracted.
(2) This function extracts information from the FL1 element of position data.
(3) It is not possible to describe a function that contains an argument in <Position Variables> and

<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 2, Setfl 1, Setfl 2

<Numeric Variable>=Rad(<Equation>)

<Character String Variable >=Rdfl1(<Position Variables>, <Equation>)

4-368 Detailed Explanation of Functions

4MELFA-BASIC V

Rdfl 2

[Function]
Returns the multiple rotation information of the specified joint axis.

[Format]

[Terminology]
<Position Variables> Specifies the position variable from which the multiple rotation information is to be extracted.
<Equation> Specifies the value for the joint axis from which the multiple rotation information is to be extracted. (1

through 8)
[Reference Program]

1 P1=(100,0,100,180,0,180)(7,&H00100000) '
2 M1=Rdfl2(P1,6) ' 1 is assigned to M1.

[Explanation]
(1) Of the multiple rotation information of the position data specified by argument 1, the value for the joint

axis specified by argument 2 is extracted.
(2) The range of the return value is between -8 and 7.
(3) This function extracts information from the FL2 element of position data.
(4) Structure flag 2 (multiple rotation information) has a 32-bit structure, which contains 4 bits of information

per axis for 8 axes.
(5) When displaying in T/B and the multiple rotation is a negative value, value of -1 to -8 is converted into F

to 8 (4-bit signed hexadecimal notation) and displayed.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Equation>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Setfl 1, Setfl 2, JRC (Joint Roll Change)

<Numeric Variable>=Rdfl2(<Position Variables>, <Equation>)

<Sample display of multiple rotation information in TB> 87654321 axis
<Relationship between display and number of multiple

rotations per axis>

When multiple rotation of axis J6 is +1: FL2=00100000 -2 -1 0 +1 +2...............

When multiple rotation of axis J6 is -1: FL2=00F00000 E F 0 1 2...............

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-369

Rnd

[Function]
Generates a random number.

[Format]

[Terminology]
<Equation> Specifies the initial value of random numbers. If this value is set to 0, subsequent random numbers

will be generated without setting the initial value of random numbers.
<Numeric Variable> A value in the range of 0.0 to 1.0 will be returned.

[Reference Program]
1 DIM MRnd(10)
2 C1=Right$(C_Time,2) ' Initializes random numbers using the clock.
3 MRndBS=Cvi(C1)) ' in order to obtain different sequence of numbers.
4 MRnd(1)=Rnd(MRndBS) ' Sets the initial value of random numbers and extracts the first random

number.
5 For M1=2 TO 10 ' Obtain other nine random numbers.
6 MRnd(M1)=Rnd(0)
7 Next M1

[Explanation]
(1) Initializes random numbers using the value provided by the argument and extracts a random number.
(2) If the equation provided as the argument evaluates to 0, initialization of random numbers will not take

place and the next random number will be extracted.
(3) When the same value is used to perform initialization of random numbers, identical random number

sequence will be obtained.

Right$

[Function]
Obtains a string of the specified length starting from the right end.

[Format]

[Reference Program]
1 C1$=Right$("ABCDEFG",3) ' "EFG" is assigned to C1$.

[Explanation]
(1) Obtains a string of the specified length starting from the right end.
(2) An error will be generated if the value of the second argument is a negative value or is longer than the

first string.
(3) It is not possible to describe a function that contains an argument in <Character String> and <Equation>.

If such a function is described, an error will be generated during execution.

[Reference]
Left$, Mid$, Len

<Numeric Variable>=Rnd(<Equation>)

<Character String Variable >=Right$(<Character String>, <Equation>)

4-370 Detailed Explanation of Functions

4MELFA-BASIC V

Setfl 1

[Function]
Changes the structure flag of the specified position using a string (such as "RAN").

[Format]

[Terminology]
<Position Variables>Specifies the position variable whose structure flag is to be changed.
<Character String> Specifies the structure flag to be changed. Multiple flags can be specified.

"R" or "L": Right/Left setting.
"A" or "B": Above/Below setting.
"N" or "F": Nonflip/Flip setting.

[Reference Program]
1 Mov P1
2 P2=Setfl1(P1,"LBF")
3 Mov P2

[Explanation]
(1) Returns the position data obtained by changing the structure flags in the position data specified by argu-

ment 1 to flag values specified by argument 2.
(2) This function changes information from the FL1 element of position data. The content of the position data

given by the argument will remain unchanged.
(3) The structure flag will be specified starting from the last character in the string. Therefore, for instance, if

the string "LR" is specified, the resulting structure flag will be "L".
(4) If the flags are changed using a numerical value, set P1.FL1=7.
(5) Structure flags may have different meanings depending on the robot model. For details, please refer to

"ROBOT ARM SETUP & MAINTENANCE" for each robot.

The structure flag corresponds to 7 in the position constant (100, 0, 300, 180, 0, 180) (7, 0). The actual posi-
tion is a bit pattern.

(6) It is not possible to describe a function that contains an argument in <Position Variables> and
<Character String>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Rdfl 2, Setfl 2

<Position Variables>=Setfl1(<Position Variables>, <Character String>)

 7 = & B 0 0 0 0 0 1 1 1

1/0=N/F
1/0=A/B
1/0=R/L

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-371

Setfl 2

[Function]
Changes the multiple rotation data of the specified position.

[Format]

[Terminology]
<Position Variables> Specifies the position variable whose multiple rotation data are to be changed.
<Equation 1> Specifies the axis number for which the multiple rotation data are to be

changed. (1 through 8).
<Equation 2> Specifies the multiple rotation data value to be changed (-8 through 7).

[Reference Program]
1 Mov P1
2 P2=Setfl2(P1,6,1)
3 Mov P2

[Explanation]
(1) Returns the position data obtained by changing the position data's multiple rotation information of the

joint axis specified by equation 1 to the value specified by equation 2.
(2) This function changes information from the FL2 element of position data.
(3) The content of the position of position variables given by the argument (X, Y, Z, A, B, C, and FL1) will

remain unchanged.

(4) It is not possible to describe a function that contains an argument in <Position Variables>, <Equation 1>
and <Equation 2>. If such a function is described, an error will be generated during execution.

[Reference]
Rdfl 1, Rdfl 2, Setfl 1

<Position Variables>=Setfl2(<Position Variables>, <Equation 1>, <Equation 2>)

-900 -540 -180 0 180 540 900

...... -2
(E)

-1
(F) 0 1 2

Value of multiple
rotation data

Angle of each axis

Value of multiple rotation data

......

4-372 Detailed Explanation of Functions

4MELFA-BASIC V

SetJnt

[Function]
Sets the value to the joint variable.

[Format]

[Terminology]
<Joint Variable> Sets the value to the joint variable.
<J1 Axis>-<J8 Axis> The unit is Rad (the unit is mm for direct-driven axes).

[Reference Program]
1 J1=J_Curr
2 For M1=0 to 60 SETP 10
3 M2=J1.J3+Rad(M1)
4 J2=SetJnt(J1.J1,J1.J2,M2) ' Only for the value of the J3 axis, it is rotated by 10 degrees each

time. The same value is used for the J4 and succeeding axes.
5 Mov J2
6 Next M1
7 M0=Rad(0)
8 M90=Rad(90)
7 J3=SetJnt(M0,M0,M90,M0,M90,M0)
10 Mov J3

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the J1 axis. They can be omitted for all subsequent axes. (Argu-

ments such as SetJnt(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SetPos

[Related parameter]
AXUNT, PRGMDEG

<<Joint Variable>>=SetJnt(<J1 Axis>[,<J2 Axis>[,<J3 Axis>[,<J4 Axis>

 [,<J5 Axis>[,<J6 Axis>[,<J7 Axis>[,<J8 Axis>]]]]]]])

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-373

SetPos

[Function]
Sets the value to the Position variable

[Format]

[Terminology]
<Position Variable> Sets the value to the Position variable.
<X Axis>-<Z Axis> The unit is mm.
<A Axis>-<C Axis> The unit is Rad. (It can be switched to Deg using the PRGMDeg parameter.)
<L1 Axis>-<L2 Axis> The unit depends on "AXUNT" Parameter.

[Reference Program]
1 P1=P_Curr
2 For M1=0 to 100 SETP 10
3 M2=P1.Z+M1
4 P2=SetPos(P1.X, P1.Y, M2) ' Only for the value of the Z axis, it is rotated by 10 mm each time.

The same value is used for the A and succeeding axes.
5 Mov J2
6 Next M1

[Explanation]
(1) The value of each axis in joint variables can be changed.
(2) Variable can be described as arguments.
(3) Arguments can be omitted except for the X axis. They can be omitted for all subsequent axes. (Argu-

ments such as SetPos(10,10,,,,10) cannot be described.)
(4) In an argument, it is not allowed to describe a function with an argument. If described, an error occurs

when executed.

[Reference]
SetJnt

[Related parameter]
AXUNT, PRGMDEG

<<Position Variable>>=SetPos(<X Axis>[,<Y Axis>[,<Z Axis>

 [,<A Axis>[,<B Axis>[,<C Axis>[,<L1 Axis>[,<L2 Axis>]]]]]]])

4-374 Detailed Explanation of Functions

4MELFA-BASIC V

Sgn

[Function]
Checks the sign of the equation.

[Format]

[Reference Program]
1 M1=-12
2 M2=Sgn(M1) ' -1 is assigned to M2.

[Explanation]
(1) Checks the sign of the equation and returns the following value.

Positive value 1
0 0
Negative value -1

Sin

[Function]
Calculates the sine.

[Format]

[Reference Program]
1 M1=Sin(Rad(60)) ' 0.866025 is assigned to M1.

[Explanation]
(1) Calculates the sine to which the given equation evaluates.
(2) The range of values will be the entire range that numerical values can take.
(3) The range of the return value will be from -1 to 1.
(4) The unit of arguments is in radians.

[Reference]
Cos, Tan, Atn/Atn2

<Numeric Variable>=Sgn(<Equation>)

<Numeric Variable>=Sin(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-375

Sqr

[Function]
Calculates the square root of an equation value.

[Format]

[Reference Program]
1 M1=Sqr(2) ' 1.414214 is assigned to M1.

[Explanation]
(1) Calculates the square root of the value to which the given equation evaluates.
(2) An error will be generated if the equation given by the argument evaluates to a negative value.

Strpos

[Function]
Searches for a specified string in a string.

[Format]

[Reference Program]
1 M1=Strpos("ABCDEFG","DEF") ' 4 is assigned to M1.

[Explanation]
(1) Returns the position of the first occurrence of the string specified by argument 2 from the string specified

by argument 1.
(2) An error will be generated if the length of the argument 2 is 0.
(3) For instance, if argument 1 is "ABCDEFG" and argument 2 is "DEF", 4 will be returned.
(4) If the search string could not be found, 0 will be returned.
(5) It is not possible to describe a function that contains an argument in <Character String 1> and <Charac-

ter String 2>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=Sqr(<Equation>)

<Numeric Variable>=Strpos(<Character String 1>, <Character String 2>)

4-376 Detailed Explanation of Functions

4MELFA-BASIC V

Str$

[Function]
Converts the value of the equation into a decimal string.

[Format]

[Reference Program]
1 C1$=Str$(123) ' "123" is assigned to C1$.

[Explanation]
(1) Converts the value of the equation into a decimal string.
(2) Val is a command that performs this procedure in reverse.

[Reference]
Bin$, Hex$, Val

Tan

[Function]
Calculates the tangent.

[Format]

[Reference Program]
1 M1=Tan(Rad(60)) ' 1.732051 is assigned to M1.

[Explanation]
(1) Returns the tangent of the value to which the equation evaluates.
(2) The range of arguments will be the entire range of values that are allowed.
(3) The range of return values will be the entire range that numerical values can take.
(4) The unit of arguments is in radians.

[Reference]
Sin, Cos, Atn/Atn2

<Character String Variable >=Str$(<Equation>)

<Numeric Variable>=Tan(<Equation>)

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-377

Val

[Function]
Converts the value in the string into a numerical value.

[Format]

[Reference Program]
1 M1=Val("15")
2 M2=Val("&B1111")
3 M3=Val("&HF")

[Explanation]
(1) Converts the given character string expression string into a numerical value.
(2) Binary (&B), decimal, and hexadecimal (&H) notations can be used for the string.
(3) In the example above, M1, M2 and M3 evaluate to the same value (15).

[Reference]
Bin$, Hex$, Str$

<Numeric Variable>=Val(<Character String Expression>)

4-378 Detailed Explanation of Functions

4MELFA-BASIC V

Zone

[Function]
Checks if the specified position is within the specified area (a rectangular solid defined by two points).

[Format]

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area. (diagonal point)

Positions 1 to 3 set the XYZ coordinates variable system (P variable X, Y, Z, A, B, C, L1 and L2).

[Reference Program]
1 M1=Zone(P1,P2,P3)
2 If M1=1 Then Mov P_Safe Else End

[Explanation]
(1) This will check if position 1 is inside the rectangular solid defined by the two points, position 2 and posi-

tion 3. (The two points will become the diagonal points of the rectangular solid.) If the point is inside the
rectangular solid, 1 is returned; otherwise, 0 is returned.

(2) To check whether position 1 is inside that area, each element of position 1 (X, Y, Z, A, B, C, L1 and L2)
will be checked if it is between the values for position 2 and position 3.

(3) As for the posture angles (A, B, and C), they are checked by rotating in the positive direction from the
angle in position 2 to position 3 and by seeing if the target value is inside the swiped range.
Example) If P2.A is -100 and P3.A is +100, if P1.A is 50, the value is within the range. Similar checking
will be performed for B and C axes. (Refer to diagram below.)

(4) For components that are not checked or do not exist, if the unit is in degrees, position 2 will be set to -
360 and position 3 will be set to 360. If the unit is in millimeters, position 2 will be set to -10000 and
position 3 will be set to 10000.

(5) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2> and
<Position 3>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=Zone(<Position 1>, <Position 2>, <Position 3>)

+ -

±0°

<Position 2><Position 3>

±180°

Example) If the value passes through 0 from -90 to +90,
 the following setting is necessity.
 Sets the negative value to ABC of <position 2>.
 Sets the positive value to ABC of <position 3>.

Example) If the value passes through 180 from -90 to +90,
 the following setting is necessity.
 Sets the positive value to ABC of <position 2>.
 Sets the negative value to ABC of <position 3>.

+ -

±0°

<Position 3><Position 2>

±180°

X

Y

Z

P2 P3

P1

 4MELFA-BASIC V

 Detailed Explanation of Functions 4-379

Zone 2

[Function]
Checks if the specified position is within the specified area (Cylindrical area defined by two points).

[Format]

[Terminology]
<Position 1> The position to be checked.
<Position 2> The position of the first point that specifies the area.
<Position 3> The position of the second point that specifies the area.
<Equation> Radius of the hemisphere on both ends.

[Reference Program]
1 M1=Zone2(P1,P2,P3,50)
2 If M1=1 Then Mov P_Safe Else End

[Explanation]
(1) This will check if position 1 is inside the cylindrical area (Refer to diagram below) defined by the two

points, position 2 and position 3, and the radius represented by the equation. If the point is inside the
space, 1 is returned; otherwise, 0 is returned.

(2) This function checks whether the check position (X, Y, and Z coordinates) is within the specified area, but
does not take the posture components into consideration.

(3) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2>, <Posi-
tion 3> and <Equation>. If such a function is described, an error will be generated during execution.

<Numeric Variable>=Zone2(<Position 1>, <Position 2>, <Position 3>, <Equation>)

P2 P3

P1
r

4-380 Detailed Explanation of Functions

4MELFA-BASIC V

Zone3

[Function]
Checks if the specified position is within the specified area (The cube which consists of the three points).

[Format]

[Terminology]
<Position 1> The position to be checked

<Position 2> The position of the first point that specifies the area.

<Position 3> The position of the second point that specifies the area.

<Position 4> The position of the point of specifying the plane which constitutes the area with

<the position 2> and <the position 3>

<Equation W> Width of the cube which constitutes the area. [mm]

<Equation H> Height of the cube which constitutes the area. [mm]

<Equation L> Each depth from <the position 2> and <the position 3> of the cube which

constitutes the area. [mm]

[Reference Program]
1 M1=Zone3(P1,P2,P3,P4,100,100,50)

2 If M1=1 Then Mov P_Safe Else End

[Explanation]
1) This will check if position 1 is inside the cube area (Refer to diagram below) defined by the three

points, position 2, position 3 and position 4, and the Equation W, Equation H and Equation L.
 If the point is inside the space, 1 is returned; otherwise, 0 is returned.

2) This function checks whether the check position (X, Y, and Z coordinates) is within the specified area,
but does not take the posture components into consideration.

3) It is not possible to describe a function that contains an argument in <Position 1>, <Position 2>, <Position
3>, <Position 4>, <Equation W>, <Equation H> and <Equation L>. If such a function is described, an error
will be generated during execution.

4) If the negative value is inputted into <Equation W> and <Equation H>, the error occurs.
5) Since the specified area cannot be created if the same position or the position on the same straight line is

inputted into <Position 2>- <Position 4>, return -1, without checking.
By the negative number, <Equation L> returns -1, without checking, if the absolute value is less than the half of

the distance for <Position 2> and <Position 3>.

＜ Numeric Variable ＞＝ Ｚ ｏ ｎ ｅ ３ （<Position 1>, <Position 2>, <Position 3>, <Position 4>,

<Equation W>,<Equation H>,<Equation L>）

H

W LL
P1

P2
P3

P4

 5Functions set with parameters

 Movement parameter 5-381

5 Functions set with parameters

This controller has various parameters listed in Table 5-2. It is possible to change various functions and
default settings by changing the parameter settings.

For the parameters regarding dedicated I/O signals, refer to Page 474, "6.3 Dedicated input/output". After
changing the parameters, make sure to turn the robot controller's power OFF and then turn ON.
Parameter settings will not be in effect until the power is turned on again. For detailed operating method for
parameters, refer to Page 78, "3.14 Operation of maintenance screen".

When changing parameters, check thoroughly the function and setting values first.
Otherwise, the robot may move unexpectedly, which could result in personal injury or
property damage.

5.1 Movement parameter
These parameters set the movement range, coordinate system and the items pertaining to the hand of the
robot.

Table 5-1:List Movement parameter

No. Classification Content Reference

1 Movement parameter These parameters set the movement range, coordinate system and the items
pertaining to the hand of the robot.

Page 381

2 Signal parameter These parameters set the items pertaining to signals. Page 394

3 Operation parameter These parameters set the items pertaining to the operations of the controller, T/
B and so forth.

Page 399

4 Command parameter These parameters set the items pertaining to the robot language. Page 402

5 Communication parameter These parameters set the items pertaining to communications. Page 406

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Joint movement
range

MEJAR Real value 16 Set the overrun limit value for the joint coordinate system.
Sets the movement range for each axis. Expanding of the move-
ment range is not recommended, since there is possibility that the
robot may strike the mechanical stopper.
Set the minus and plus directions. (-J1,+J1,-J2,+J2,......-J8,+J8)
Unit:deg

Setting value for
each mechanism

XYZ movement
range

MEPAR Real value 6 Set the overrun limit value for the XYZ coordinate system.
The movement range of the robot will be limited based on XYZ
coordinate system. This can be used to prevent the robot from
striking peripheral devices during manual operation when the robot
is installed within the device.
Set the minus and plus directions. (-X,+X,-Y,+Y,-Z,+Z) Unit:mm

(-X,+X,-Y,+Y,-
Z,+Z)=
-10000,10000,
-10000,10000,
-10000,10000

Standard tool coor-
dinates

Refer to
"4.5Coordinate
system description
of the robot",
"5.6Standard Tool
Coordinates".

MEXTL Real value 6 Initial values will be set for the hand tip (control point) and the
mechanical interface (hand mounting surface). The factory default
setting is set to the mechanical interface as the control point.
Change this value if a hand is installed and the control point needs
to be changed to the hand tip.
 (This will allow posture control at the hand tip for XYZ or tool jog
operation.)
(X, Y, Z, A, B, C) Unit: mm, ABC deg.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Tool coordinate 1 to
16
Refer to
"M_Tool"

MEXTL1
 :
MEXTL16

Real value 6
each

If the M_Tool variable is substituted by 1 to 16, the tool data can be
switched using this parameter value each.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

 CAUTION

5-382 Movement parameter

5Functions set with parameters

Tool base coordi-
nates

Refer to
"4.5Coordinate
system description
of the robot",
"5.6Standard Tool
Coordinates"

MEXBS Real value 6 Sets the positional relationship between the base coordinate sys-
tem and the robot coordinate system. The factory default setting is
set so that the base coordinate system and the robot coordinate
system are identical.
This will be set when the coordinate system for the whole device is
changed. This parameter does not need to be changed very often.
This is set when the coordinate system for the whole device is to
be identical.
(X, Y, Z, A, B, C) Unit: mm, ABC deg.
Note) The value cannot be changed during program execution or

pausing.

(X,Y,Z,A,B,C) =
0.0,0.0,0.0,0.0,0.0,0
.0

Standard base
coordinates

Refer to
"4.5Coordinate
system description
of the robot"

MEXBSNO Real value 1 Sets world coordinate system by specifying a base coordinate
number (base conversion).
Displays current settings, as well.
Description of set values:
0: Designates P_NBase (system's initial value). (Because P_NBase

= (0, 0, 0, 0, 0, 0), base conversion is cleared.)
1~8: Designates a set value for work coordinate systems 1

through 8 (parameters: WK1CORD through WK8CORD).
-1: Base conversion data is specified directly by a base command

or by a reference base coordinate parameter MEXBS.
(Note: The set value "-1" is valid for read only.)

Note) The value cannot be changed during program execution or
pausing.

-1

User area

Refer to
"5.8About user-
defined area"

Specify the user definition area (maximum of 32 area) and the
action when the robot enters in the area.

AREA*CS
* is 1 to 32

Integer 1 Specify the coordinate system of the user definition area *.
0: Base coordinate system (conventional compatibility)
1: Robot coordinate system
<Notice>
This function is available at the following software versions. The
base coordinate system is always set up except the following.
SQ series: N7a or later
SD seried: P1a or later

(X,Y,Z,A,B,C)=
0.0,0.0,0.0,-360.0,-
360.0,-360.0

AREA*P1
* is 1 to 32

Real value 8 Designates position coordinates of the diagonal point 1 of the user-
defined area n and coordinates of posture data/additional axes.
Definitions are given, starting with the 1st element, to X, Y, Z, A, B,
C, L1, and L2 in the order listed.

<NOTES>
*Specify values in the coordinate system which was designated by
AREA*CS.
?*If a posture check is not to be made, set A, B and C coordinates
to -360.
*If additional axes are used, specify elements L1 and L2.
*In regard to elements X, Y, Z, L1 and L2, defined area remains
unchanged if parameter interchange is made to AREA*P2.

(X,Y,Z,A,B,C,L1,L2)
= 0.0, 0.0, 0.0,
-360.0, -360.0,
-360.0, 0, 0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Item Details Unit

X, Y, Z
elements

Specify position coordinates of the
diagonal point 1.

mm

A, B, C
elements

Specify posture area. deg

L1, L2
elements

Specify additional axis area. mm,
deg

 5Functions set with parameters

 Movement parameter 5-383

User area AREA*P2
* is 1 to 32

Real value 8 Designates position coordinates of the diagonal point 2 of the user-
defined area * and coordinates of posture data/additional axes.
Definitions are given, starting with the 1st element, to X, Y, Z, A, B,
C, L1, and L2 in the order listed.

<NOTES>
*Specify values in the coordinate system which was designated by
AREA*CS.
*If a posture check is not to be made, set A, B and C coordinates
to +360.
*If additional axes are used, specify elements L1 and L2.
*In regard to elements X, Y, Z, L1 and L2, defined area remains
unchanged if parameter interchange is made to AREA*P1.

(X,Y,Z,A,B,C,L1,L2)
= 0.0, 0.0, 0.0,
-360.0, -360.0,
-360.0, 0, 0

AREA*ME
* is 1 to 32

Integer 1 Designate the mechanism No. for which the user-defined area* is
to be validated.
The mechanism No. is 1 to 3, but normally 1 is set.
0: Invalid (Don't do the area check)
1: Mechanism 1 (usually set up)
2: Mechanism 2
3: Mechanism 3

0

AREA*AT
* is 1 to 32

Integer
1Outside of

the area

Specify desired behavior when the robot enters the user-defined
area.
0: Invalid (This function will be invalid)
1: In-zone signal output (The dedicated output and the status vari-
able output)
2: Error output.
<Details of the setting>

<NOTES>
If error output is opted for, a check is performed only in the position
area, ignoring the posture area and additional axis area.

0(Invalid)

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Item Details Unit

X, Y, Z
elements

Specify position coordinates of the
diagonal point 2.

mm

A, B, C
elements

Specify posture area. deg

L1, L2
elements

Specify additional axis area. mm,
deg

*1: Set up the signal number of the dedicated I/O by USRAREA.
*2: System status variable (M_Uar32, M_Uar)

Setting Inside of the area Outside of the area

Signal
output

The dedicated output
signal ON (*1)

The dedicated output
signal OFF

Turn on the correspon-
dence bit of the status
variable. (*2)

Turn off the correspon-
dence bit of the status
variable.

Error
output

The stop by the error
output (H2090 error
occurrence)

-

5-384 Movement parameter

5Functions set with parameters

Free plane limit

Refer to
"5.9Free plane
limit"

This is the overrun limit set on a free plane.
Create a plane with three coordinate points, and set the area that
does not include the origin as the outside-movement area. Up to
eight limits can be set using the following three types of parame-
ters.

SFC*P
* is 1 to 8

Real value 9 Designate three points for creating the plane.
X1,Y1,Z1:Origin position in the plane
X2,Y2,Z2:Position on the X-axis in the plane
X3,Y3,Z3:Position in the positive Y direction of the X-Y plane in the
plane

(X1,Y1,Z1,
X2,Y2,Z2,
X3,Y3,Z3)=0.0,0.0,
0.0,0.0,0.0,0.0,0.0,0
.0,0.0

SFC*ME
* is 1 to 8

Integer 1 Designate the mechanism No. for which the free plane limit is to be
validated.
The mechanism No. is 1 to 3, but normally 1 is set.

0

SFC*AT
* is 1 to 8

Integer 1 Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot coordinate
origin does not exist.)

0(Invalid)

Cylinder limit

*Available soft-
ware versions
and robot

S/W Ver.
SQ series: R1j or

later
SD series: S1j or

later

Robot:
RH-3SQHR/
3SDHR series

Movement can be limited in the cylinder area centering on the J1 axis.
Set the radius centering on the J1 axis as the parameter

MECAR Real value 2 Constitution of the parameter : (The radius, J2 axis limitation
angle)
Set the radius as the 1st element. Unit: mm(Valid to two digits dec-
imal)

If the radius is 0, this function does not function.
If the radius is minus value or the distance can not arrive, the
error occurs at inputting the value.

The cylinder limit makes the limitation of J2 axis operating area
The limitation angle of the J2 axis is calculated automatically and
sets as the 2nd element in the absolute value. (read only, can not
change)
* As compared with the Joint movement range parameter

(MEJAR), limitation of operation is performed in the smaller one.

Notes) This function is limited to RH-3SQHR / 3SDHR series.

0, 0

Safe point position JSAFE Real value 8 Specifies the safe point position. Robot moves to the safe point
position if the robot program executes Mov P_Safe instruction or
receives input of the SAFEPOS signal, which is an external signal.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

Mechanical stopper
origin

MORG Real value 8 Designate the mechanical stopper origin.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

User-designated
origin

USERORG Real value 8 Designate the user-designated origin position. This normally does
not need to be set.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

It varies with models.

User-designated
origin

USERORG Real value 8 Designate the user-designated origin position. This normally does
not need to be set.
(J1,J2,J3,J4,J5,J6,J7,J8) Unit:deg

(J1,J2,J3,J4,J5,J6,
 J7,J8)=
0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Radius
(Set as the
1st element)

J1 axis

J2 axis

 Cylinder area
 (Upper face figure)

J2 axis limitation angle
(Sets as the 2nd element
automatically)

 Shaft

 5Functions set with parameters

 Movement parameter 5-385

Select the function
of singular point
adjacent alarm
Refer to Page 436,
"5.19 About the sin-
gular point adjacent
alarm"

MESNGLS
W

Integer 1 Designate the valid/invalid of the singular point adjacent alarm.
(Invalid/Valid=0/1)
When this parameter is set up "VALID", this warning sound is
buzzing even if parameter: BZR (buzzer ON/OFF) is set up "OFF".

1(Valid)

Jog setting JOGJSP Real value 3 Designate the joint jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High Unit: deg.
Inching L: Feed amount when jog speed is set to Low Unit: deg.
Maximum override: Operates at OP override x maximum override.

Setting value for
each mechanism

JOGPSP Real value 3 Designate the XYZ jog and step operation speed.
(Inching H, inching L, maximum override.)
Inching H: Feed amount when jog speed is set to High
Unit: deg.
Inching L: Feed amount when jog speed is set to Low
Unit: deg.
Maximum override: Operates at OP override x maximum override.
Operation exceeding the maximum speed 250 mm/s cannot be
performed.

Setting value for
each mechanism

Jog speed limit
value

JOGSPMX Real value 1 Limit the robot movement speed during the teach mode.
Unit: mm/s
Even if a value larger than 250 is set, the maximum value will be
limited to 250.

250.0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-386 Movement parameter

5Functions set with parameters

Work coordinates

Notes) Available
software versions
T/B :

1.3 or later
SQ series:

N8 or later
SD series :

P8 or later

WKnCORD
"n" is 1 to 8

Real value 6 The work coordinates for work jog operation
(X,Y,Z,A,B,C) Unit: mm or degree

It is used as standard coordinates and work coordinate data in the

work jog.

When using it as work coordinate data, the valid axial element differ

depending on the robot type.

Refer to Page 410, "5.7 About Standard Base Coordinates".
The work coordinates defined by operation of T/B are set. How-
ever, inputting the coordinate value into this parameter can also
define work coordinates. In this case, each coordinate value of the
three teaching points for defining the work coordinates is cleared
by 0. (Parameter: WKnWO, WKnWX, WKnWY ("n" is 1-8))

Note) To manage easily, you should teach work coordinates in the

condition that not convert the base coordinates. (Base

coordinates and the world coordinate are in

agreement.)Especially, it is necessary when defining two or more

work coordinates.

(0.00, 0.00, 0.00,
0.00, 0.00, 0.00)

WKnWO
"n" is 1 to 8

Real value 3 Set the position of the work coordinates origin as a teaching posi-
tion of work coordinates. (Correspond to "WO" of the teaching
operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) Even if this coordinate value is inputted the work coordi-

nates are not defined. Carry out the definition by the teach-
ing operation of T/B.

(0.00, 0.00, 0.00)

WKnWX
"n" is 1 to 8

Real value 3 Set the position of "+X" axis of work coordinates as a teaching
position of work coordinates. (Correspond to "WX" of the teaching
operation by T/B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) Even if this coordinate value is inputted the work coordi-

nates are not defined. Carry out the definition by the teach-
ing operation of T/B.

(0.00, 0.00, 0.00)

WKnWY
"n" is 1 to 8

Real value 3 Set the position at the side of "+Y" axis on the X-Y plane of work
coordinates. (Correspond to "WY" of the teaching operation by T/
B. Refer to above figure)
(X, Y, Z) Unit: mm
Notes) Even if this coordinate value is inputted the work coordi-

nates are not defined. Carry out the definition by the teach-
ing operation of T/B.

(0.00, 0.00, 0.00)

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

+Zw

+Xw
+Yw

+Z

+Y

+X

Base coordinates

Work coordinates
WKnCORD

Teaching point: WO
WKnWO

Work

Teaching point: WX
WKnWX

Teaching point: WY
WKnWY

 5Functions set with parameters

 Movement parameter 5-387

Automatic return
setting after jog feed
at pause

Refer to
"5.10Automatic return
setting after jog feed
at pause"

RETPATH Integer 1 While running a program, if the program is paused by a stop and
then the robot is moved by a jog feed for instance, at the time of
restart, this setting makes the robot return to the position at which
the program was halted before continuing. If this function is dis-
abled, movement instructions will be carried out from the current
position until the next point. The robot does not return to the posi-
tion where the program was halted.
 0: Invalid .
 1: Return by JOINT interpolation.
 2: Return by XYZ interpolation.
Note) When returning by XYZ interpolation, carry out shorter cir-

cuit movement by 3 axis XYZ interpolation.
Note) In the circle interpolation (Mvc, Mvr, Mvr2, Mvr3) command,

this function is valid for H4 or later. Moreover, in the circle
interpolation command and the Mva command, even if set
up with 0, the operation is same as 1.

1.

The gravity direc-
tion

MEGDIR Real value 4 This parameter specifies the direction and magnitude of gravita-
tional acceleration that acts on the robot according to the installa-
tion posture for the X, Y, and Z axes of the robot coordinate
system, respectively (unit: mm/second2).
There are four elements: installation posture, gravitational acceler-
ation in the X axis direction, gravitational acceleration in the Y axis
direction, and then gravitational acceleration in the Z axis direction,
in this order from the left.

The example of the setting of gravity acceleration is shown below.
Example: If the robot is tilted 30 degrees forward (see the figure
below):
The direction gravity acceleration of X axis (Xg) = 9.8 x sin(30
degrees) = 4.9 .
The direction gravity acceleration of the Z axis (Zg) = 9.8 x cos(30
degrees) = 8.5 .
Note that the value is set to -8.5 because the direction is opposite
to the Z axis of the robot coordinate system.
The direction gravity acceleration of the Y axis (Yg) = 0.0
Therefore, the set value is (3.0, 4.9, 0.0, and -8.5)

0.0, 0.0, 0.0, 0.0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Installation
posture

Setting value (Installation posture,
gravitational acceleration in the X axis

direction, gravitational acceleration in the
Y axis direction, and then gravitational

acceleration in the Z axis direction)

On floor (0.0, 0.0, 0.0, 0.0)

Against wall (1.0, 0.0, 0.0, 0.0)

Hanging (2.0, 0.0, 0.0, 0.0)

Optional
posture*1

(3.0, ***, ***, ***)

5-388 Movement parameter

5Functions set with parameters

Hand initial state

Refer to
"5.13About default
hand status"

HANDINIT Integer 8 Set the pneumatic hand I/F output for when the power is turned
ON.
This parameter specifies the initial value when turning ON the
power to the dedicated hand signals (900’S) at the robot's tip.
To set the initial status at power ON when controlling the hand
using general-purpose I/Os (other than 900’S) (specifying a signal
other than one in 900’S by the HANDTYPE parameter), do not use
this HANDINIT parameter, but use the ORST* parameter.
The value set by the ORS* parameter becomes the initial value of
signals at power ON.

1,0,1,0,1,0,1,0

Hand type

Refer to
"5.12About the
hand type"

HAND-
TYPE

Character
string 8

Set the single/double solenoid hand type and output signal No.
(D:double solenoid, S:single solenoid).
Set the signal No. after the hand type.
When D900 is set, the signal No. 900 and 901 will be output.
In the case of D (double solenoid), please configure the setting so
that the signals do not overlap

D900,D902,D904,D
906,,,,

Hand and work-
piece conditions
(Used in optimum
acceleration/decel-
eration and impact
detection)

Refer to "5.18Hand
and Workpiece Con-
ditions (optimum
acceleration/deceler-
ation settings)"

Set the hand conditions and work conditions for when Oadl ON is set with the program.
Up to eight conditions can be set. The condition combination is selected with the LoadSet com-
mand.
Note) You should set up the hand and work-piece conditions correctly. If a setting is performed

in such a way that it falls below the mounted load actually, the life span of the mechanism
elements used in the robot may be shortened.

HNDDAT0 Real value 7 Set the initial condition of the hand. (Designate with the tool coordi-
nate system.)
Immediately after power ON, this setting value is used.
To use the impact detection function during jog operation, set the
actual hand condition before using. If it is not set, erroneous detec-
tion may occur.

(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

RV-3SD/3SDJ/3SDB/
3SDJB
3.50, 284.00, 284.00,
286.00, 0.00, 0.00,
75.00

RV-6SD/6SDL
6.00, 213.00, 213.00,
17.00, 0.00, 0.00,
130.00

RV-12SD/12SDL
12.00, 265.00, 265.00,
22.00, 0.00, 0.00,
66.00

RH-6SDH
6.00, 99.00, 99.00,
76.00, 0.00, 0.00,
38.00

RH-12SDH
12.00, 225.00, 225.00,
30.00, 0.00, 0.00,
15.00

RH-18SDH
18.00, 258.00, 258.00,
34.00, 0.00, 0.00,
17.00

Other type are
secret.

HNDDAT*
* is 1 to 8

Real value 7 Set the initial condition of the hand. (Designate with the tool coordi-
nate system.)
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

Standard load
,0.0,0.0,0.0,0.0,0.0,
0.0

WRKDAT0 Real value 7 Set the work conditions. (Designate with the tool coordinate sys-
tem.)
Immediately after power ON, this setting value is used.
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

RV-SD/RH-SDH
series
0.0,0.0,0.0,0.0,0.0,0.0
,0.0
Other type are
secret.

WRKDAT*
* is 1 to 8

Real value 7 Set the work conditions. (Designate with the tool coordinate sys-
tem.)
(Weight, size X, size Y, Size Z, center of gravity X, center of gravity
Y, center of gravity Z) Unit: Kg, mm

0.0,0.0,0.0,0.0,0.0,0
.0,0.0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

 5Functions set with parameters

 Movement parameter 5-389

HNDHOLD*
* is 1 to 8

Integer 2 Set whether to grasp or not grasp the workpiece when HOpen (or
HClose) is executed.
(Setting for Open, setting for Close)
(No grasp/grasp = 0/1)

0,1

Maximum acceler-
ation/deceleration
setting

Refer to "5.18Hand
and Workpiece Con-
ditions (optimum
acceleration/deceler-
ation settings)"

ACCMODE Integer 1 Sets the initial value and enables/disables the optimum accelera-
tion/deceleration mode. (Invalid/Valid=0/1)

RH-SDH/RV-SD
series 1
Except the
above..............0

Optimum
acceleration/
deceleration
adjustment rate

JADL Real value 8 Set the initial value (value at power ON) of the acceleration/deceleration
adjustment rate (%) during optimum acceleration/deceleration. It is the
rate applied to the acceleration/deceleration speed calculated by optimum
acceleration/deceleration control. In the RV-SD series, high-speed
operation can be performed by setting this value to a larger value.
However, if the robot is operated continuously for a certain period of time
at high speed, overload and overheat errors may occur. Lower the setting
value if such errors occur.
In the RV-SD series, the initial values have been set so as to prevent
overload and overheat errors from occurring.
They are applied to both the deceleration and acceleration speeds.

* What is an overload error?
An overload error occurs when the load rate reaches a certain
value in order to prevent the motor from being damaged by heat
from high-speed rotation.
* What is an overheat error?
An overheat error occurs when the temperature reaches a certain
value in order to prevent the position detector from being damaged
by heat from high-speed rotation.
Note) This function is valid only in the RV-SD series.

RV-3SD/3SDJ/
3SDB/3SDJB series
100,100,100,100,
100,100,100,100
(%)

RV-6SD/12SD
50,50,50,50,
50,50,50,50(%)

RV-6SDL/12SDL
35,35,35,35,
35,35,35,35(%)

Acceleration-and-
deceleration
optimization
pattern selection
* Only RH-6SDH/
RH-6SQH/
RH-12 SDH/
RH-12SQH/
RH-20SDH/
RH-20 SQH

MAPMODE Real value 1 In RH-6SDH/12SDH / 20SDH and RH-6SQH/12SQH / 20SQH series,
choose the standard acceleration-and-deceleration rate or the high
acceleration-and-deceleration rate for the acceleration-and-deceleration
optimization function corresponding to the height of the shaft (J3 axis).
0: Standard acceleration-and-deceleration rate (initial value), 1 : High
acceleration-and-deceleration rate.

*Initial setting is the standard acceleration-and-deceleration rate,
and vibration (remains vibration to include) is suppressed to the
minimum. When this vibration does not affect the robot's
operations, the high acceleration-and-deceleration rate can be
chosen, and the robot can be operated at high speed. Refer to the
separate "standard specification" for details of the acceleration-
and-deceleration rate.

0

Optimum speed
control adjustment
coefficient

*Available soft-
ware versions

S/W Ver.
SQ series:

R5 or later
SD series:

S5 or later

OPTOVC Real value 1 Set the adjustment coefficient for the optimum speed control.
Setting range: 0.30 to 1.00

The optimum speed control is a function to use the Spd command to
designate the optimum speed for the linear and the circular arc
interpolation movements that do not specify the speed by themselves.
Increasing the setting value enables the robot to operate in high speed.
However, when the operation posture of the robot is largely changed near
the position such as a singular point, a speed overlimit error occurs easily.
In such cases, reducing the setting value suppresses the occurrence of
the speed overlimit error but lowers the operation speed of the robot.

* Speed overlimit error
The error number is H213n. (The letter "n" indicates the axis number 1 to
8.)
This error occurs when the setting value of the speed command to the
motor exceeds the permissible value.

It varies with
models.

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-390 Movement parameter

5Functions set with parameters

Choose 18kg mode
or 20kg mode
* Only

RH-20SDH85xx,
RH-20SQH85xx.

LOAD-
MODE

Real value 1 In RH-20SDH85xx/RH-20SQH85xx series, Choose 18kg mode or 20kg
mode.
0: 20kg mode (initial value), 1: 18kg mode

*When work mass including the hand is used in RH-20SDH85xx/RH-
20SQH85xx series on the conditions of 18kg or less as usual, cycle time
may differ from the conventional. In this case, the robot can be operated in
cycle time almost equivalent to the conventional RH-18SDH85xx/RH-
18SQH85xx series by changing the value of parameter: LOADMODE into
"1".

0

Speed optimiza-
tion interpolation
functional switch

*Available soft-
ware versions
and robot

S/W Ver.
SQ series: R1w or

later
SD series: S1w or

later
Robot:
RH-3SQHR/
3SDHR series

SPDOPT Integer 1 Set enable/disable of speed optimization interpolation function just
after the power supply turned on
 1: Enable
 (Enable the speed optimization interpolation function at the
power on)
 0: Disable
 (Disable the speed optimization interpolation function at the
power on)
If the value of this parameter is 1 or 0, it is possible to switch
between enabling and disabling the speed adjustment interpola-
tion function using the SpdOpt instruction in a program.
Note) This function is supported by limited models of RH-3SQHR/
3SDHR.

RH-SQHR/SDHR is
1
(Other model are 0)

Impact Detection

Note that this
parameter cannot
be used together
with the multi-
mechanism control
function.

COL Integer 3 Define whether the impact detection function can/cannot be used,
and whether it is enabled/disabled immediately after power ON.
Element 1: The impact detection function can (1)/cannot (0) be

used.
Element 2: Enable (1)/disable (0) as the initial state at automatic

operation.
Element 3: Enable (1)/disable (0)/NOERR mode (2) during jog

operation
The NOERR mode does not issue an error even if impact is
detected. It only turns off the servo. Use the NOERR mode if it is
difficult to operate because of frequently occurred errors when an
impact is detected. The specification depends on the setting for jog
operation (element 3) in cases other than program operation
(including position jump and step feed).

RV-SQ/SD series is
0,0,1

RH-SQH/SDH
series is 1,0,1

RH-SQHR/SDHR
series is 1,1,1

Detection level COLLVL Integer 8 Set the initial value of the detection level (sensitivity) of each joint
axis during automatic operation.
Setting range: 1 to 500, unit: % * If a value exceeding the setting
range is specified, the closest value allowed within the range is
used instead.

The setting varies
depending on the
model.

Detection level
during jog
operation

COLLVLJG Real value 8 Set the detection level (sensitivity) during jog operation (including
pause status) for each joint axis. Unit: %
Decrease the value to increase the detection level (sensitivity).
Increase the value if an impact detection error occurs even though
no impact is detected during jog operation.
Setting range: 1 to 500, unit: %
* If a value exceeding the setting range is specified, the closest
value allowed within the range is used instead.

The setting varies
depending on the
model.

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

 5Functions set with parameters

 Movement parameter 5-391

Selection of wrist
rotation angle (axis
A) coordinate
system

RCD Integer 1 Switch the control and display method of the wrist rotation angle
(axis A of the XYZ coordinates system) of a vertical 5-axis type
robot. This parameter is invalid for robots of other types.
2: General angle method
Control axis A such that the hand's posture is maintained if the
value of axis A is the same before and after an operation. Note that
there are cases where the hand's posture cannot be maintained
depending on the attitude of the wrist (axis B of the XYZ
coordinates system). Under normal circumstances, use this
method without changing the setting at shipment from the factory.
0/1/3 = General angle method of the E series/joint angle method/
old general angle method
These options are prepared for the compatibility with programs
(position data) created for older models (e.g., RV-E3J, RV-E5NJ).
To use programs (position data) created for older models, change
the parameter value to the same value as the RCD value specified
for the given older model.

Note that these methods are not mutually compatible; the postures
of the hand in the middle of movement and at the registered
position may be different for two different values of this parameter,
even if the robot is moving toward the same position data. Make
sure to set the same method as when the position data was
registered in order to execute the program.

2 (general angle
method)

Warm-up operation
mode setting

WUPENA Integer 1 Designate the valid/invalid of the Warm-up operation mode.
0:Invalid
1: Valid

Note: If a value other than the above is set, everything will be
disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

0(Invalid)

Warm-up operation
mode target axis

WUPAXIS Integer 1 Specify the joint axis that will be the target of control in the warm-
up operation mode by selecting bit ON or OFF in hexadecimal
(J1, J2, from the lower bits).

Bit ON: Target axis
Bit OFF: Other than target axis

A joint axis that will generate an excessive difference error when
operated at low temperature will be a target axis.
Note: If the bit of a non-existent axis is set to ON, it will not be a

target axis.
Note: If there is no target axis, the warm-up operation mode will be

disabled.
Note: For multiple mechanisms, this mode is set for each

mechanism.

RV-6SD/12SD
serires
:00111000
(J4, J5, J6 axis)

RV-3SD/3SDB
:00001110

RV-3SDJ/3SDJB
:
00000110

The type other than
the above are 0

Warm-up operation
mode control time

WUPTIME Real value 2 Specify the time to be used in the processing of warm-up operation
mode. (Valid time, resume time) Unit: min.

Valid time: Specify the time during which the robot is operated in
the warm-up operation status and at a reduced speed.
(Setting range: 0 to 60)
Resume time: Specify the time until the warm-up operation status
is set again after it has been canceled if a target axis continues to
stop. (Setting range: 1 to 1440)

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the valid time is 0 min, the warm-up operation mode will be
disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

1, 60

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-392 Movement parameter

5Functions set with parameters

Warm-up operation
override

WUPOvrd Integer 2 Perform settings pertaining to the speed in the warm-up operation
status.
(Initial value, ratio of value constant time) Unit: %

Initial value: Specify the initial value of an override (warm-up
operation override) to be applied to the operation speed when in
the warm-up operation status. (Setting range: 50 to 100)
Ratio of value constant time: Specify the duration of time during
which the override to be applied to the operation speed when in
the warm-up operation status does not change from the initial
value, using the ratio to the valid time.
(Setting range: 0 to 50)

The correspondence between the values of warm-up operation
overrides and the setting values of various elements is shown in
the figure below.

Note: If a value outside the setting range is specified, it is
processed as if the closest value in the setting range is
specified.

Note: If the initial value of an override is 100%, the warm-up
operation mode will be disabled.

Note: For multiple mechanisms, this mode is set for each
mechanism.

70, 50

Functional setting
of compliance error

CMPERR Integer 1 Setting this parameter prevents errors 2710 through 2740 (errors
that occur if the position command generated in compliance
control is abnormal) from occurring.

1: Enable error generation
0: Disable error generation

The contents of applicable errors are as follows:
2710: The displacement from the original position command is

too large.
2720: Exceeded the joint limit of the compliance command
2730: Exceeded the speed of the compliance command
2740: Coordinate conversion error of the compliance

command

If these errors occur, compliance control is not functioning
normally. It is thus necessary to re-examine the teaching position
and the program content to correct the causes of these errors.
Change this parameter value to 0 (disable error generation) only
when you can determine that doing so does not cause any
operational problem even if the current operation is not suspended
by an error.

1 (Enable error
generation)

Current limit level
for Cmp Jnt

CMPJCLL Integer 1 Change the motor current limit level of each axis in the compliance
mode (Cmp Jnt instruction) of the joint coordinate system.

Setting range: 1 (High) to 10 (Low).
While operation is performed in the compliance mode of the joint
coordinate system, if the Excessive error 1 (H096n) occurs,
increase the set value of this parameter to suppress the error.
(The set valve after the change will be applied from the next exe-
cution of Cmp Jnt instruction.)

1

Occurrence interval
of battery error

ITBATERR Integer 1 Specifies a time interval at which to generate a battery exhaustion
time error alarm
(in hours)

Setting range: 1 to 336
When a set value is less than 1, "1" is taken as being specified;
when a set value is greater than 336, "336" is taken as being
specified

24

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

100%

Value constant time

Valid time of the warm-up operation status

Warm-up
operation override

Time during
which a target

axis is operating

Initial value
(First element)

Value constant time = Valid time x
Ratio of value constant time(Second element)

 5Functions set with parameters

 Movement parameter 5-393

Synchronize time
with PLC
(CRnQ-700 only)

TIMESYNC Integer 1 Choose whether to synchronize time of the robot controller and the
PLC.

(Synchronize/ Not synchronize = 1/0)

0

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-394 Signal parameter

5Functions set with parameters

5.2 Signal parameter
These parameters set the items pertaining to signals

Table 5-2:List Signal parameter

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Dedicated I/O
signal

For the parameters of the dedicated I/O signal, refer to Page 474, "6.3
Dedicated input/output".

Stop input nor-
mal close des-
ignation

INB Integer 1 Change the dedicated input (stop) between the normal open and nor-
mal close.
(Normal open/Normal close = 0/1)
The input signal changed is shown below.
*The dedicated input signal: STOP, STOP2 *The dedicated stop input
signal for the controller: SKIP Refer to separate manual: “Standard
Specifications or Special Specifications” for details of SKIP.

0(Normal open)

Reads the pro-
gram number
from the
numerical
input when the
start signal is
input.

PST Integer 1 To select a program from the normal external input signal, set the
numerical input signal (IODATA) to the program number, establish the
number with the program select signal (PRGSEL), and start with the
START signal. If this function is enabled, the program select signal
becomes unnecessary, and when the START signal turns ON, the
program number is read from the numerical input signal (IODATA).
(Function invalid/Valid=0/1)

0(Invalid)

Robot error

output

ROBOTERR Integer 1 Set the error level that opens the EMGOUT connector robot error output

terminal.

When shipped from the factory, this setting is set so that it will open at

any error level.

For example, if the warning level is ignored and either or both a low level

or high level error occurs, set 3 to open this output terminal.

Refer to the following manual for details on the EMGOUT connector.

Instruction Manual: Refer to “External Emergency Stop Connection” for

ROBOT ARM SETUP & MAINTENANCE.

7 (Open for any

error level)

CC-Link error
release per-
mission.

E7730 Integer 1 If the controller is used without connecting CC-Link even though it is
equipped with the CC-Link option, error 7730 is generated and the
controller becomes inoperable. This error cannot be canceled under
normal circumstances, but it becomes possible to temporarily cancel
the error by using this parameter.
(Enable temporary error cancellation/disable error cancellation = 1/0)
This parameter becomes valid immediately after the value is changed
by the T/B or Personal Computer support software. It is not necessary
to turn the power supply off and on again. Note, however, that the
value of this parameter returns to 0 again (it is no longer possible to
cancel the error) when the power supply is turned off and on because
changes of the parameter value are not stored.

0 (disable error
cancellation)

Setting

Error Level

Warning Low High

0 - - -

1 - - Open

2 - Open -

3 - Open Open

4 Open - -

5 Open - Open

6 Open Open -

7 Open Open Open

 5Functions set with parameters

 Signal parameter 5-395

Output signal
reset pattern

Refer to
"5.14About the
output signal
reset pattern"

Set the operation to be taken when the general-purpose output signal
for the Clr command or dedicated input (OUTRESET) is reset. Sig-
nals are output in the pattern set here even when the power is turned
ON.
Set with a 32-bit unit for each signal using the following parame-
ters.(OFF/ON/hold=0/1/*)

ORST0 Character
string 4

Set the signal No. 0 to 31. 00000000,00000
000,00000000,00
000000

ORST32
 :
ORST8016

Character
string 4

Set the signal No. 32 to 63.
 :
Set the signal No. 8016 to 8047
Note) The output signals of 716 to 723 are used for Open or Close of
the multi-hand. And, setting of the output signals of 700 to 715 are
impossible for the system reservation area.

00000000,00000
000,00000000,00
000000
 :

Output reset at
reset

SLRSTIO Integer 1 Designate the function to carry out general-purpose output signal
reset when the program is reset.
(Invalid/Valid=0/1)

0(Invalid)

Multi CPU

quantity setting

(CRnQ-700

only)

QMLTCPUN Integer 1 At the multi CPU system, set the number of CPU units with which the

standard base unit is equipped.

2

Multi CPUn

high-speed

communication

area setting

 (CRnQ-700

only)

QMLTCPUn

n=1 to 4
Integer 4 At the multi CPU system, set the number of points performing

transmission and receipt between each CPU unit for the high speed

communication function between multi CPU nos. 1 to 4.

It is necessary to match the parameter settings for all CPUs. An error will

occur at the sequencer CPU If the parameter settings do not match, and

therefore care should be taken to ensure that the parameter settings for

each CPU match.

First element: User free area size (k points)

Range: 1 to 14 (Max. *) * The max. value will differ based on the number

of multi CPUs as shown below.

Second element: No. of auto refresh points (points)

Range: 0 to 14335

The robot CPU does not support auto refresh, and therefore the

number of points for auto refresh should always be set to 0.

Third element: System area size (K points)

Range: 1 or 2

Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)

Robot CPUs take some time to start up and therefore the current

setting of 1 (synchronous start-up) should not be changed.

1,0,1,1

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

CPU Qty Setting Range

2 0 ～ 14K points

3 0 ～ 13K points

4 0 ～ 12K points

5-396 Signal parameter

5Functions set with parameters

Multi CPU input

offset

(CRnQ-700

only)

QMLTCPUS Integer 1 At the CRnQ controller, set the robot input signal offset for the multi

CPU.

Specify an offset from G10000 in 1K word units, and read as an R/C

input from the specified shared memory. Set as required if mixing other

iQPlatform compatible CPUs (motion CPU or NCCPU) and you wish to

prevent the shared memory used at each CPU from overlapping.
Setting range: -1 to 14 (integer value)

(-1: Not use / 0 to 14 K words)

(A) By setting to -1, the offset will be automatically fixed based on the

installed slot. (Compatible with previous versions (N4a and prior).)

(B) By setting to 0 to 14, the input offset is set based on the value.

* Refer to cases (A) and (B) in "5.2.1About multi CPU input offsets

(CRnQ-700 controller only)" on the following pages.

Please note that by connecting multiple robots and setting this parameter

to the same value (anything other than -1), it is also possible to input the

same signal status from the sequencer to multiple robots almost

simultaneously.

Refer to the QCPU User’s Manual (Multi CPU System Edition)

SH(Name)-080475-F for details on the multi CPU system.

-1

Processing
mode of the
signal output
Note1)

 SYNCIO Integer 1 Specify the processing mode of signal output by M_Out/M_Outb/
M_Out8/M_Outw/M_Out16/M_Out32/M_Dout and Def Io.
Compatibility mode/High-speed mode 1/High-speed mode 2

Compatibility mode: Process by compatibility conventional, without
accelerating the renewal cycle of the signal.

High-speed mode 1: Accelerate the signal output of M_Out/M_Outb/

M_Out8/M_Outw/M_Out16/M_Out32.

High-speed mode 2: In addition to the high-speed mode 1, also

accelerate the signal output in M_Dout.

Note) This function is available at the following software versions.
SQ series: N7 edition or later
SD series: P7 edition or later

SQ series: 1
SD series: 0

Note1) This parameter makes speedy processing of the external output signal by system status variable M_Out etc.
In the program example 1 shown in the following, output signal processing of Steps 1 and 4 gets speedy.
<Program example 1>

1 M_Out(9)=1 'Turn on the output signal 9.
2 *ack_check '
3 If M_In(7)=0 Then *ack_check ' Wait until the input signal 7 turns on (interlock).
4 M_Out(9)=0 'Turn off the output signal 9.
5 End

* Reference value of speed improvement:
In the above-mentioned program example, processing time is reduced about 80%
However, the CC-Link, profibus and parallel I/O interface (card) are effective in case the command of the signal output of two
or more lines is continuing.(SD series) In the following program example 2, processing time is reduced about 75%.

<Program example 2>
1 M_Out(9)=1 'Turn on the output signal 9.
2 M_Out8(10)=&H1F '&H1F is outputted to 8-bit width from the output signal 10.
3 M_Out16(18)=&H3FFF '&H3FFF is outputted to 16-bit width from the output signal 18.
4 M_Out32(33)=&H7FFFFFFF '&H7FFFFFFF is outputted to 32-bit width from the output signal 33.
5 End

Always make interlock of signal to take synchronization. Failure to observe this could lead to cause
of malfunction by the signal transmitted incorrectly.
In addition, the "Conventional compatibility mode" is prepared for if needing the same processing
time as the conventional. The initial value of SD series is Conventional compatibility mode. However,
sure under the interlocking of the signal, because of to performance improvement, recommends use
in the High-speed mode

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

 CAUTION

 5Functions set with parameters

 Signal parameter 5-397

5.2.1 About multi CPU input offsets (CRnQ-700 controller only)
(1) Case (A)

When using no offset for input (Parameter: when QMLTCPUS = -1)

Table 5-3:CPU shared memory and robot I/O signal compatibility

Fig.5-1:CPU shared memory and robot I/O signal compatibility (Case (A))

Sequencer (word device) Robot (bit device)

Output

U3E0\G10000 to U3E0\G10511

Input

Robot CPU 　 No.1 / 10000 to 18191

U3E0\G10512 to U3E0\G11023 Robot CPU 　 No.2 / 10000 to 18191

U3E0\G11024 to U3E0\G11535 Robot CPU 　 No.3 / 10000 to 18191

Input

U3E1\G10000 to U3E1\G10511

Output

Robot CPU 　 No.1 / 10000 to 18191

U3E2\G10000 to U3E2\G10511 Robot CPU 　 No.2 / 10000 to 18191

U3E3\G10000 to U3E3\G10511 Robot CPU 　 No.3 / 10000 to 18191

Sequencer
output
robot (No.1)
0.5kwords

Robot
input

(Not used)

Robot CPU
 (No.1)

Robot CPU
 (No. 2)

Robot CPU
 (No. 3)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

10000
 ～
18191

10000
 ～
18191

10000
 ～
18191

Shared memory
(word units)

U3E0\G10000
 ～
U3E0\G10511

U3E0\G10512
 ～
U3E0\G11023

U3E0\G11024
 ～
U3E0\G11535

10000
 ～
18191

U3E1\G10000
 ～
U3E1\G10511

10000
 ～
18191

U3E2\G10000
 ～
U3E2\G10511

10000
 ～
18191

U3E3\G10000
 ～
U3E3\G10511

Sequencer

Sequencer
output
robot (No. 2)
0.5kwords
Sequencer
output
robot (No.3)
0.5kwords

(Not used)

(Not used)

(Not used)

(Not used)

(Not used)
Robot
input

Robot
input

Robot CPU
 (No.1)Sequencer

Sequencer
output
robot (No.1)
0.5kwords

(Not used) (Not used)

Robot
output

Robot I/O no.
(bit units)Shared memory

(word units)

Shared memory
(word units)

Shared memory
(word units)

Sequencer

Sequencer

Robot CPU
 (No. 2)

Robot CPU
 (No. 3)

(Not used)

(Not used)

(Not used)

(Not used)

Robot
output

Robot
output

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Sequencer
output
robot (No. 2)
0.5kwords

Sequencer
output
robot (No.3)
0.5kwords

5-398 Signal parameter

5Functions set with parameters

(2) Case (B)
When using an offset for input (Parameter: when QMLTCPUS = 0 to 14)

(*1) = (Robot CPU No.1 QMLTCPUS) * 1024

(*2) = (Robot CPU No.2 QMLTCPUS) * 1024

(*3) = (Robot CPU No.3 QMLTCPUS) * 1024

Table 5-4:CPU shared memory and robot I/O signal compatibility

Fig.5-2:CPU shared memory and robot I/O signal compatibility (Case (B))

Sequencer (word device) Robot (bit device)

Output

U3E0\G10000+(*1) to U3E0\G10511+(*1)

Input

Robot CPU 　 No.1 / 10000 to 18191

U3E0\G10000+(*2) to U3E0\G10511+(*2) Robot CPU 　 No.2 / 10000 to 18191

U3E0\G10000+(*3) to U3E0\G10511+(*3) Robot CPU 　 No.3 / 10000 to 18191

Input

 U3E1\G10000 to U3E1\G10511

Output

Robot CPU 　 No.1 / 10000 to 18191

 U3E2\G10000 to U3E2\G10511 Robot CPU 　 No.2 / 10000 to 18191

 U3E3\G10000 to U3E3\G10511 Robot CPU 　 No.3 / 10000 to 18191

10000
 ～
18191

U3E1\G10000
 ～
U3E1\G10511

10000
 ～
18191

U3E2\G10000
 ～
U3E2\G10511

10000
 ～
18191

U3E3\G10000
 ～
U3E3\G10511

10000
 ～
18191

U3E0\G10000+(*1)
 ～
U3E0\G10511+(*1)

10000
 ～
18191

U3E0\G10000+(*2)
 ～
U3E0\G10511+(*2)

10000
 ～
18191

U3E0\G10000+(*3)
 ～

U3E0\G10511+(*3)

Shared memory
(word units)

Shared memory
(word units)

Shared memory
(word units)

Shared memory
(word units)

Shared memory
(word units)

Shared memory
(word units)

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer

Sequencer
output
robot (No.1)
0.5kwords

Sequencer
output
robot (No.2)
0.5kwords

Sequencer
output
robot (No.3)
0.5kwords

Robot
input

Robot
input

Robot
input

Robot
output

Robot
output

Robot
output

Sequencer
input
robot (No.3)
0.5kwords

Sequencer
input
robot (No.3)
0.5kwords

Sequencer
input
robot (No.3)
0.5kwords

(Not used) (Not used)

(Not used) (Not used)

(Not used) (Not used)

(Not used) (Not used)

(Not used)

(Not used) (Not used)

(Not used)

Robot CPU
 (No.1)

Robot CPU
 (No.2)

Robot CPU
 (No.3)

Robot CPU
 (No.1)

Robot CPU
 (No.2)

Robot CPU
 (No.3)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

Robot I/O no.
(bit units)

 5Functions set with parameters

 Operation parameter 5-399

5.3 Operation parameter
These parameters set the items pertaining to the operations of the controller, T/B and so forth.

Table 5-5:List Operation parameter

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Buzzer ON/
OFF

BZR Integer 1 Specifies the on/off of the buzzer sound that can be heard when an
error occurs in the robot controller.
(OFF/ON=0/ÇP)

1(ON)

Program reset
operation rights

PRSTENA Integer 1 Whether or not the operation right is required for program reset
operation
 (Required/Not required = 0/1)

If operation rights are abandoned, program can be reset from any-
where. However, this is not possible under the teaching mode for
safety reasons.

0(Required)

Program reset
when key
switch is
switched

MDRST Integer 1 Program paused status is canceled when mode of the controller is
changed.
(Invalid/Valid=0/1)

0(Invalid)

Operation panel
display mode .

OPDISP Integer 1 Set up display condition of the 5-digit LED when mode of the con-
troller is changed.
0: Override display takes effect when the key switch is changed
over (initial value).
1: The current display mode is maintained even after the key switch
is changed over.

0 （Override
display）

Program selec-
tion rights set-
ting

OPPSL Integer 1 Specifies the program selection operation rights when the key
switch of the operation panel is in AUTOMATIC mode.
(External/OP=0/1)

1(OP)

RMTPSL Integer 1 Designate the program selection operation rights for the AUTO-
MATIC mode.
(External/OP=0/1)

0(External)

TB override
operation rights

OVRDTB Integer 1 Specifies whether the operation rights are required when changing
override from T/B.
(Not required/Required = 0/1)

RV-2SQ 1

Except the
above...........0

Speed setting
during mode
change

OVRDMD Integer 2 Override is set automatically when the mode is changed.
First element..........override value when the mode is automatically

changed from teaching mode
Second element.....Override value when the mode is changed from

AUTOMATIC to MANUAL.
Current status is maintained if changed to 0.

0,0

Override
change opera-
tion rights

OVRDENA Integer 1 Specifies whether the operation rights are required when changing
override from the operation panel and external device.
(Required/Not required = 0/1)

0(Required)

This parameter
switches the
access target of
a program.
Refer to Page
437, "5.20
About ROM
operation/high-
speed RAM
operation func-
tion".

ROMDRV Integer 1 The access target of a program can be switched between RAM and
ROM.

0: RAM mode. (Standard mode.)
1: ROM mode. (Special mode.)
2: High-speed RAM mode

0 (RAM mode.)

5-400 Operation parameter

5Functions set with parameters

Copy the infor-
mation on the
RAM to the
ROM
Refer to Page
437, "5.20
About ROM
operation/high-
speed RAM
operation func-
tion".

BACKUP Character
string 1

Copy the program, the parameter, the common variable, and the
error log to the ROM from the RAM.

Do not change this parameter.

SRAM->FLROM
(unchangeable)

Restore the
information on
the ROM to the
RAM.

Refer to Page
437, "5.20
About ROM
operation/high-
speed RAM
operation func-
tion".

RESTORE Character
string 1

Restore the program, the parameter, the common variable, and the
error log to the RAM from the ROM.

Do not change this parameter.

FLROM->SRAM
(unchangeable)

Maintenance
forecast

MFENA Integer 1 This sets whether maintenance forecast is enabled or disabled.
1: Enable
0: Disable

Note) This function is limited to the RV-SD/RH-SDH series. This
parameter does not take effect on models that do not support the
maintenance forecast function.

RV-SD/RH-SDH
series 1

Except the
above...........0

Maintenance
forecast execu-
tion interval

MFINTVL Integer 2 This sets the interval of collecting data for maintenance forecast.
1st element: Data collection level -- 1 (lowest) to 5 (highest)
2nd element: Forecast check execution interval (unit: hours)

1(lowest),6(hour)

Maintenance
forecast
announcement
method

MFREPO Integer 2 This sets the maintenance forecast announcement method. Set 0
in order to stop a warning or signal output.
1st element: 1: Generates a warning, 0: Does not generate a warn-

ing
2nd element: 1: Outputs a dedicated signal, 0: Does not output a

dedicated signal

1(Generates a
warning),
0 (Does not output
a signal)

Resetting
Maintenance
Forecast

Note)
When reading
this parameter
form the
teaching
pendant, enter
all parameter
names and
then read.

MFGRST Integer 1 Reset the accumulated data relating to grease in the maintenance
forecast function.
* When axes generated a warning (numbered in 7530's) that
prompts the replenishment of grease in the maintenance forecast
function and, as a result, grease was replenished, the data relating
to grease accumulated on the controller must be reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software. However,
if a personal computer cannot be readied, the accumulated data
can be reset by entering this parameter from the teaching pendant
instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

MFBRST Integer 1 Reset the accumulated data relating to the belt in the maintenance
forecast function.
* When axes generated a warning (numbered in 7540's) that
prompts the replacement of the belt in the maintenance forecast
function and, as a result, the belt was replaced, the data relating to
the belt accumulated on the controller must be reset.
Generally, a reset operation is performed on the Maintenance
Forecast screen in Personal Computer Support software. However,
if a personal computer cannot be readied, the accumulated data
can be reset by entering this parameter from the teaching pendant
instead.

0: Reset all axes.
1 to 8: Reset the
specification axis.

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

 5Functions set with parameters

 Operation parameter 5-401

Position
Restoration
Support

DJNT Real value 8 The OP correction data obtained by the Position Restoration
Support tool is input. Do not change it with any tool other than the
Position Restoration Support tool. It can only be referenced on a
dedicated parameter screen in the Personal Computer Support
software.

It varies with models.

MEXDTL Real value 6 The standard tool correction data obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL1 Real value 6 The correction data for tool number 1 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL2 Real value 6 The correction data for tool number 2 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL3 Real value 6 The correction data for tool number 3 obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDTL4 Real value 6 The correction data for tool number obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

MEXDBS Real value 6 The correction data for the base obtained by the Position
Restoration Support tool is input. Do not change it with any tool
other than the Position Restoration Support tool.

(X,Y,Z,A,B,C) =
0.0, 0.0, 0.0,
0.0, 0.0, 0.0

User message USERMSG Character
string 64

Set up the user message within the 64 characters. The program
can refer this set-up character string by C_User. And, it can display
also on the operation panel.
Although set up with the alphanumeric character, "the space " and
"," (comma), and ";" (semicolon) cannot be specified.

No Message

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-402 Command parameter

5Functions set with parameters

5.4 Command parameter
This parameter sets the items pertaining to the program execution and robot language.

Table 5-6: List Program Execution Related Parameter

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

No. of multi-
tasks

TASKMAX Integer 1 Designate the number of programs to be executed simultaneously. 8

Slot table
(Set during mul-
titask opera-
tion.)

Operation conditions for each task slot is set during multitask opera-
tions. These are set when the program is reset.

SLT*
* is 1 to 32

Character
string 4

Designate the [program name],[operation mode],[starting condi-
tions],[order of priority].

Program name: Selected program name. Use uppercase letters when
using alphabet. Lowercase characters are not recognized.

Operation mode: Continuous/1 cycle = REP/CYC
REP:The program will be executed repeatedly.
CYC:The program ends after one cycle is completed. (The program

does not end if it runs in an endless loop created by a GoTo
instruction.)

Starting conditions: Normal/Error/Always =START/Error/ALWAYS
START:This is executed by the START button on the operation panel or

by the start signal.
ALWAYS:This is executed immediately after the controller's power is

turned on. This program does not affect the status such as
startup. To edit a program whose attribute is set to ALWAYS,
first cancel the ALWAYS attribute.
A program with the ALWAYS attribute is being executed con-
tinuously and therefore cannot be edited. Change ALWAYS to
START and turn on the controller's power again to stop the
constant execution.

Error:This is executed when an error is generated. This program does
not affect the status such as startup.

Programs with ALWAYS or Error set as the starting condition cannot
execute the following movement instructions. An error will be gener-
ated if any of them is executed.
Mov,Mvs,Mvr,Mvr2,Mvr3,Mvc,Mva,
DRIVE,GetM,RelM,JRC

Order of priority: 1 to 31 (31 is the maximum)
This value shows the number of lines to be executed at a time. This has
the same meaning as the number of lines in the Priority instruction. For
instance, when two slots are used during execution, if SLT1 is set to 1
and SLT2 is set to 2, after one line of program in SLT1 is executed, two
lines of program in SLT2 is executed.
Therefore, more SLT2 programs will be executed and as a result, prior-
ity of SLT2 is higher.

"",REP,START,1

 5Functions set with parameters

 Command parameter 5-403

Program selec-
tion save

SLOTON Integer 1 This parameter specifies whether or not to store the program name in
the SLT1 parameter at program selection, as well as whether or not to
maintain the program selection status at the end of cycle operation.

(1) Enabling program name storage at program selection
 (Bit 0, enable/disable storage = 1/0)
Enable storage: The name of the current program is stored in the SLT1

parameter at program selection for slot 1. Moreover,
the program specified in the SLT1 parameter is
selected when the power supply is turned on.

Disable storage: The name of the current program is not stored in SLT1
parameter at program selection for slot 1. In the same
way as when the storage is enabled, the program spec-
ified in the SLT1 parameter is selected when the power
supply is turned on.

(2) Maintaining program at the end of cycle operation
 (Bit 1, maintain/do not maintain = 1/0)
Maintain: The status of program selection is maintained at the end

of cycle operation. The parameter value does not
become P.0000.

Do not maintain: The status of program selection is not maintained at
the end of cycle operation. The parameter value
becomes P.0000.

Setting values and operations

0: Disable storage, do not maintain
1: Enable storage, do not maintain (initial value)
2: Disable storage, maintain
3: Enable storage, maintain

1(Valid)

Setting that allows
the execution of
X** instructions
and Servo instruc-
tion in an
ALWAYS pro-
gram.
Refer to
"5.11Automatic exe-
cution of program at
power up"

ALWENA Integer 1 XRun, XLoad, XStp, XRst, Servo and Reset Err instructions become
available in a program whose SLT* parameter is set to "constantly exe-
cute" (startup condition is set to ALWAYS).

Enable/Disable = 1/0

0(Not allowed)

User base pro-
gram

Refer to
"4.4.24User-
defined external
variables"

PRGUSR Character
string 1

User base program is a program that is set when user-defined external
variables are to be used. In case of DEF number, variable declaration
instructions such as INTE and Dim are described.
If an array variable is declared in the user base program using the Dim
instruction, the same variable name must be redefined using the Dim
instruction in the program that uses the user base program. Variables
need not be redefined if the variable is not an array.

""(Non)

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-404 Command parameter

5Functions set with parameters

Continue func-
tion

CTN Integer 1 For only the program execution slot 1, the state when the power is
turned OFF is held, and the operation can be continued from the saved
state when the power is turned ON next. The saved data is the program
execution environment (override, execution step line, program vari-
ables, etc.), and the output signal state. When this function is valid, if
the robot is operated when the power is turned OFF, the robot will start
in the standby state when the power is turned ON next. To continue
operation, turn the servo power ON, and input start. (Function invalid/
Valid=0/1)

<Precautions>
(1)As for robots with axes without brakes, the arm may lower due to
gravitational weight or rotate itself when the power is turned off. Thus,
extra care is necessary when using this function.
(2)Program that can continue using the Continuity function is the one
loaded in task slot 1. Programs in task slot 2 or subsequent slots will
not continue but will restart in program reset state.
(3)The following parameters cannot be changed after this function is
enabled. Be sure to change them, if necessary, prior to enabling this
function.
SLTn, SLOTON, TASKMAX.
(4)If parameters in the slot table (SLT*) are changed after enabling this
function, the changes are not reflected in the slot table. Disable the
continue function once, turn the power supply off and then on, and then
change parameters in the slot table.

0(Invalid)

JRC command
(Multiple rota-
tion function of
axes)

Set the execution status of the JRC instruction.

JRCEXE Integer 1 Set the validity of the JRC command execution.
Execution valid/invalid = (1/0)

0(Execution
invalid)

JRCQTT Real value 8 JSet the change amount to increment or decrement with the JRC com-
mand in the order of J1, J2, J3 to J8 axes from the head element.
The setting is valid only for the user-defined axis, so the J7 and J8 axes
will be valid for the robot's additional axis, and a random axis for the
mechanism's additional axis.
The unit relies on the parameter AXUNT.

JRC execution
valid robot
0,0,0,0,0,360,0,
0 or
0,0,0,360,0,0,0,
0

JRC execution
invalid robot
0,0,0,0,0,0,0,0

JRCORG Real value 8 Set the origin coordinate value for executing the JRC O command and
setting the origin.
This setting is valid only for the user-defined axis.
The unit relies on the parameter AXUNT.

0,0,0,0,0,0,0,0

Setting of addi-
tional axis

AXUNT Integer 16 Set the unit system for the additional axis.
Angle(degree)/Length(mm) = 0/1

0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0

User error set-
ting

UER1
 to UER20

Integer 1,
Character
string 3

Sets the message, cause, and method of recovery for errors from the
Error instruction. Maximum of 20 user errors can be set.
First element ... error number to set (9000 to 9299 is the available
range). The default value 9900 is not available. Change the value
before proceeding.
Second element ... Error message
Third element ... Cause
Fourth element ... Method of recovery
If a space character is included in the message, enclose the entire
message in double quotation marks ("").
Example)9000,"Time Out","No Signal","Check Button"

9900,"mes-
sage","cause","t
reat"

Unit setting for
the rotational
element of posi-
tion data

PRGMDEG Integer 1 Specifies the unit used for describing the rotational element of position
data in the robot program.
0:Rad
1:Deg
Example)M1=P1.A (Unit for this case is specified.)
(Default unit for referencing data components is radian.)
The default rotational element for the position constant (P1=(100, 0,
300, 0, 180, 0, 180) (7, 0)) is Deg. This parameter is irrelevant.

0(Rad)

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

 5Functions set with parameters

 Command parameter 5-405

Set the delay
time of the GC/
GO command
and the moving
command.

*This parameter
is valid for
using the
MOVEMAS-
TER command
only.

HANDDLY Integer 1 The delay time of hand open/close in MOVEMASTER command is the
time specified by GP command. (Default value is 0.3 sec.)
The delay time of hand open/close can be specified by this parameter.

The units of the delay time specified by GP command are 1 / 10 sec-
onds.
The units of the delay time specified with this parameter are 1 / 1000
seconds (=msec).

-1

Robot language
setting

RLNG Integer 1 Select the robot language
2:MELFA-BASIC V
1:MELFA-BASIC IV

1

Display lan-

guage Note1)

LNG Character
string 1

Set up the display language.
"JPN":Japanese
"ENG":English

The following language is changed.
(1)The display LCD of teaching pendant.
(2) Personal computer support software.
*alarm message of the robot.
*Parameter explanation list.
(3)Alarm message that read from the robot with external communica-
tion. (Standard RS232C, Extended serial I/F, Ethernet I/F)

The "JPN" is
Japanese spec-
ification.
The "ENG" is
English specifi-
cation.

Extension of
external vari-
able

PRGGBL - Sets "1" to this parameter, and turns on the controller power again, then
the capacity of each program external variable will double.
However, if a variable with the same name is being used as a user-
defined external variable, an error will occur when the power is turned
ON, and it is not possible to expand. It is necessary to correct the user
definition external variable.

1

Note1) The parameter is set up based on the order specifications before shipment.
Order to dealer when the instruction manual of the other language is necessity.
More, the caution seals that stuck on the robot arm and the controller are made based on the
language of the order specification. Use it carefully when selecting the other language.

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Parameter value Motorized hand Pneumatic hand

-1 When the status of
the hand changes,
the delay timer
specified by GP
command is taken.

The delay time specified
by the GP instruction is
stored in this parameter
when opening/closing the
hand, regardless of
whether or not the hand
status has changed.

0 No delay No delay
Value

Unit(msec)
When the status of the hand changes, the delay
timer specified with this parameter is taken.

5-406 Communication parameter

5Functions set with parameters

5.5 Communication parameter
These parameters set the items pertaining to communications

Table 5-7:List Communication parameter

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

Communication
setting

Communication environment is set for RS-232C and ethernet interface.
However, since RS-232C is used by the PC support software, parame-
ter for RS-232C normally does not need to be changed.
Refer to "5.15About the communication setting (RS-232)" for RS-232
Refer to "5.16About the communication setting (Ethernet)" for ethernet

COMDEV Character
string 8

This configures which lines will be assigned to COM1 and COM2 when
using communication lines in the Open instruction in MELFA BASIC V.
This parameter must be set if data link (used by the Open instruction) is
to be performed.
This parameter specifies the device that corresponds to COMn speci-
fied in the Open statement in the program (n is between 1 and 8).
Parameters are starting from the left COM1, COM2, ... , COM8 in that
order.
When the data link is applied by ethernet I/F, setting is necessary.
OPT11 to OPT19 are allocated. Here, RS-232C of the controller is pre-
viously allocated to COM1: .
Note)Since the communication interface is not prepared for robot CPU

of the notes CRnQ-700 series, and the drive unit, this parameter
cannot be used.

"RS232", , , , , , ,

For RS-232 CBAU232 Integer 1 Baud rate(9600,19200) 9600

CPRTY232 Integer 1 Parity bit(0: None, 1: Odd, 2: Even) 2 (Even)

CSTOP232 Integer 1 Stop bit(1,2) 2 (Stop bit)

CTERM232 Integer 1 End code(0:CR 1:CR+LF) 0 (CR)

CPRC232 Integer 1 Communication method(protocol)
0: For RT ToolBox (Non-procedure)
If data link is to be performed (Open, Print and Input instructions are
executed from the program) under this setting, the external device must
attach three characters "PRN" at the beginning when transmitting data.
1: For RT ToolBox (With procedure) PC side must also be changed.
2: For data link with the robot program
Be advised that under this setting, connection with the RT ToolBox can-
not be made.

1

RT Tool Box 2
Communication
method setting

Note) Available
software ver-
sions are as fol-
lows
SQ series:

N8 or later
SD series:

P8 or later

COMSPEC Integer 1 Specify the communication method of the robot controller and RT Tool
Box 2. (The conventional communication method / high reliability com-
munication method)

0: Conventional communication method
1: High reliability communication method

Compared with the conventional communication method, speed
is slow. However, in periphery environment where many noises
exist, it is the high reliability communication method.

* The high reliability communication method is available at the following
software versions. Even if set to the high reliability communication
method under other than these versions, communicate by the
conventional communication method.

Robot controller: SQ series is N8 or later
SD series is P8 or later

RT ToolBox2 1.5 or later

1

 5Functions set with parameters

 Communication parameter 5-407

For ethernet NETIP Character
string 1

IP address of robot controller 192.168.0.1

NETMSK Character
string 1

Sub-net-mask 255.255.255.0

NETPORT Numerical
value 10

Port No. Range 0 to 32767

For real-time external control functions,
Correspond to OPT11 to 19 of COMDEV (OPT11),

(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

10000,
10001,
10002,
10003,
10004,
10005,
10006,
10007,
10008,
10009

For ethernet

CPRCE11
CPRCE12
CPRCE13
CPRCE14
CPRCE15
CPRCE16
CPRCE17
CPRCE18
CPRCE19

Numerical
value 9

Protocol 0: No-procedure, 1: Procedure, 2: Data link
(1: Procedure has currently no function.)
When the data link is applied by ethernet I/F, setting is necessary.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

0
0
0
0
0
0
0
0
0

NETMODE Numerical
value 9

Server designation (1: Server, 0: Client)
When the data link is applied by ethernet I/F, setting is necessary.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1

NETHSTIP Numerical
value 9

The IP address of the data communication destination server.
When the data link is applied by ethernet I/F, setting is necessary.
* It is valid if specified as the client by NETMODE only.

Correspond to OPT11 to 19 of COMDEV (OPT11),
(OPT12),
(OPT13),
(OPT14),
(OPT15),
(OPT16),
(OPT17),
(OPT18),
(OPT19)

192.168.0.2 ,
192.168.0.3 ,
192.168.0.4 ,
192.168.0.5 ,
192.168.0.6 ,
192.168.0.7 ,
192.168.0.8 ,
192.168.0.9 ,
192.168.0.10

MXTTOUT Numerical
value 1

(0 to 32767)

Timeout time for executing real-time external control command
(Multiple of 7.1msec, Set -1 to disable timeout)

-1

Parameter
Parameter

name
No. of arrays

No. of characters Details explanation Factory setting

5-408 Standard Tool Coordinates

5Functions set with parameters

5.6 Standard Tool Coordinates
Tools data must be set if the robot's control point is to be set at the hand tip when the hand is installed on the
robot. The setting can be done in the following three manners.

1) Set in the MEXTL parameter.
2) Set in the robot program using the Tool instruction.
3) Set a tool number in the M_Tool variable.The values set by the MEXTL1 to 16 parameters are used as

tool data.
Refer to Page 331, " M_Tool".

The default value at the factory default setting is set to zero, where the control point is set to the mechanical
interface (flange plane).

Structure of tools data : X, Y, Z, A, B, C
X, Y and Z axis:Shift from the mechanical interface in the tool coordinate system
A axis :X-axis rotation in the tool coordinate system
B axis :Y-axis rotation in the tool coordinate system
C axis :Z-axis rotation in the tool coordinate system

<A case for a vertical 6-axis
robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0
2) Sample Tool instruction setting
1 Tool (0,0,95,0,0,0)

A 6-axis robot can take various
postures within the movement
range.

<A case for a vertical 5-axis
robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, 95, 0, 0, 0
2) Sample Tool instruction setting
1 Tool (0,0,95,0,0,0)

Only the Z-axis component is
valid for a 5-axis robot for move-
ment range reasons. Data input to
other axes will be ignored.

Zt

Yt

Xt

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ
Zr

Yr
Xr

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Tool coordinate
system after the change：Ｘｔ，Ｙｔ，Ｚｔ

Example） 95mm

Zt

Yt

Xt

A case for a vertical 6-axis robot

World coordinate system: Xw, Yw, Zw

Xw
Yw

Zw

Zt

Default tool coordinate system：Ｚｔ

Zr

Yr
Xr

Zt

 A case for a vertical 5-axis robot

Mechanical interface

Tool coordinate
system after the change：Ｚｔ

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

Example） 95mm

World coordinate system: Xw, Yw, Zw

Xw
Yw

Zw

 5Functions set with parameters

 Standard Tool Coordinates 5-409

<A case for a horizontal 4-axis robot>
1) Sample parameter setting
Parameter name: MEXTL
Value: 0, 0, -10, 0, 0, 0
2) Sample Tool instruction setting
1 Tool (0,0,-10,0,0,0)

Horizontal 4-axis robots can basically
offset using parallel shifting. Note that
the orientation of the tool coordinate
system is set up differently from that
of vertical robots.

An axis element of the tool conversion data may or may not be valid depending on the robot model.
See Table 5-8 to set the appropriate data.

Table 5-8:Valid axis elements of the tool conversion data depending on the robot model

Type
Number of

axis

An axis element of the tool conversion data Note1)

Note1) O: Valid, X: Unused. This is meaningless and ignored if set., X: The setting value is fixed to 0.
If a value other than 0 is set, operation may be adversely affected.

X Y Z A B C

RV-2SQ/2SD

RV-3SQ/3SD

RV-6SQ/6SQDL/6SD/6SDL

RV-12SQ/12SQL/12SD/12SDL

6 O O O O O O

RV-3SQJ/3SDJ 5 X X O X X X

RH-6SDH/12SDH/18SDH 4 O O O X X O

Zt

Yt
Xt

Xr
Yr

Zr

A case for a horizontal 4-axis robot

Mechanical interface

Default tool coordinate system：Ｘｔ，Ｙｔ，Ｚｔ

Robot coordinate system：Ｘｒ，Ｙｒ，ＺｒWorld coordinate system: Xw, Yw, Zw
Xw

Yw

Zw

5-410 About Standard Base Coordinates

5Functions set with parameters

5.7 About Standard Base Coordinates
The position of the world coordinate system is set to zero (0) before leaving the factory, and therefore, the

base coordinate system (robot's installation position) is in agreement with the world coordinate system
(coordinate system which is the basis for robot's current position).
By utilizing the base conversion function, you can set the origin point of the world coordinate system at a
location other than the center of the J1 axis.
Executing the base conversion function causes a change in the positional relation between the world
coordinate system and the base coordinate system, and the robot, if allowed to move to a position to which
it has been taught to move, will move to other than the position it used to. Therefore, you should maintain
positive control over relation between the base conversion and the position which the robot is taught to take
so that an effective use of the base conversion function is insured. Three methods are available for setting
the world coordinate system:

1) Specifying parameter MEXBS directly with base conversion data
2) Specifying parameter MEXBSNO with a base coordinate number
3) Executing a relevant base command under the robot program

The factory default setting value is set to zero at the base coordinate system position, which is identical to
the robot origin.
Structure of base coordinate system data: X, Y, Z, A, B, and C
X, Y and Z axis : The position of robot coordinate system from the base coordinate system origin
A axis : X-axis rotation in the world coordinate system
B axis : Y-axis rotation in the world coordinate system
C axis : Z-axis rotation in the world coordinate system

(Example)
1) Sample parameter setting
Parameter name: MEXBS
Value: 100,150,0,0,0,-30
2) Sample Base instruction setting
1 Base (100,150,0,0,0,-30)

Normally, the base coordinate system
need not be changed. If you wish to
change it, see the sample above when
configuring the system. Note that the
Base instruction within the robot pro-
gram may shift the robot to an unex-
pected position. Exercise caution when
executing the instruction.

An axis element of the base conversion data may or may not be valid depending on the robot model.
See Table 5-9 to set the appropriate data.

Table 5-9:Valid axis elements of the base conversion data depending on the robot model

Type
Number of

axis

An axis element of the base conversion data Note1)

Note1) O: Valid, X: Unused. This is meaningless and ignored if set., X: The setting value is fixed to 0.

X Y Z A B C

RV-2SQ/2SD
RV-3SQ/3SD
RV-6SQ/6SQL/6SD/6SDL
RV-12SQ/12SQL/12SD/SDL

6 O O O O O O

RV-3SQJ/3SDJ 5 O O O X X O

RH-6SDH/12SDH/18SDH 4 O O O X X O

Zr

Yr

Xr

Zb

Yb

Xb

Cr

150mm

100mm

-30°

Base coordinate system：Ｘb，Ｙb，Ｚb

Robot coordinate system：Ｘｒ，Ｙｒ，Ｚｒ

World coordinate system: Xw, Yw, Zw

Xw

Zw

Yw

Base coordinate system: Xb, Yb, Zb

Xb

Yb

Zb

 5Functions set with parameters

 About Standard Base Coordinates 5-411

Since the performance of the base conversion causes the reference for the
robot's current position to change, data taught till then becomes unusable as it is.
If the robot is inadvertently allowed to move to a position taught before the perfor-
mance of the base conversion, it can stray to an unexpected position, possibly
resulting in property damage or personal injury.
When using the base conversion function, be sure to maintain positive control
over relation between the base coordinate system subject to conversion and the
position which the robot is taught to take so that a proper robot operation and an
effective use of the base conversion function are insured.

 CAUTION

5-412 About user-defined area

5Functions set with parameters

5.8 About user-defined area
The user-defined area has the function of continuously monitoring whether or not the robot control point falls
within any position area which is specified by parameter settings. The user can choose between the option
to output the state of the robot control point being within or outside that area and the option to effect an
error-stop when the robot control point is within that area, by using dedicated input/output or state variables.
This function is instrumental in letting the robot operate in coordination of its peripherals or in avoiding inter-
ference between the robot and the peripherals, where the robot shares work space with the peripherals.
Besides position area, this function can be used for making judgment on the robot in relation to posture area
or additional axis area, as well.

This function can be used by the following parameter setting.
1) Selecting a coordinate system which serves as a reference system (parameter: AREAnCS)
2) Specifying a user-defined area (parameter: AREAnP1 and AREAnP2)
3) Specifying a mechanism to be checked (parameter: AREAnME)
4) Specifying a desired behavior when the robot enters user-defined area (parameter: AREAnAT)

The following is a detail description of the respective parameter settings.

 5Functions set with parameters

 About user-defined area 5-413

5.8.1 Selecting a coordinate system
This function, when the user proceeds with operation after changing the base coordinate system by a Base
command or the like, permits the user to choose between the option to move user-defined area concurrently
or the option to keep it fixed. This choice is accomplished by specifying by the parameter AREAnCS that the
reference coordinate system is "world coordinate system" (for moving user-defined area concurrently) or
that the same is "base coordinate system" (keeping user-defined area fixed).
If the user does not make any change to the base coordinate system, the user-defined area remains
unchanged regardless of the choice he makes.

Table 5-10:Explanation of coordinate system

Fig.5-3:Difference between "Worle coordinate system" and "Base coordinate system"

Coordinate system Description (feature)
World coordinate system When the base coordinate system is changed, the user-defined area moves concurrently. A change

occurs in the relative positional relation between the robot arm and the user-defined area.

Base coordinate system Change of base coordinate system does not cause the user-defined area to move. Relative posi-
tional relation between the robot arm and the user-defined area is stationary.
This provision helps when the user proceeds with operation after making a change to the base coor-
dinate system but wants to keep stationary relative positional relation between the robot arm and
the user-defined area.

ﾍﾞｰｽ座標系
変更

定義領域

ベース座標系

ワールド座標系

ロボット

定義領域

ベース座標系

ワールド座標系

ロボット

ﾍﾞｰｽ座標系
変更

ベース座標を変更しても、
ロボットと定義領域との
相対位置関係が変化しな い

ベース座標変更により、
ロボットと定義領域との
相対位置関係が変化する

定義領域

ワールド座標系

ベース座標系

ロボット

【ベース座標系を選択した場合】

【ワールド座標系を選択した場合】

定義領域

ワールド座標系

ベース座標系

ロボット

Definition area

Robot

Base coordinate
system

Robot

Base coordinate
systemChange the

base coordi-
nate system

 World coordinate system

 World coordinate system

Change to base coordinate
system causes a change to
relative positional relation
between the robot body and
the user-defined area

<Select the world coordinate system>

Definition area

<Select the base coordinate system>

Definition area

Robot

Base coordinate
system

World coordinate system

Change to base coordinate
system causes no change to
relative positional relation
between the robot body and
the user-defined area.

Change the
base coordi-
nate system

Definition area

Base coordinate
system

World coordinate system

Robot

5-414 About user-defined area

5Functions set with parameters

5.8.2 Setting Areas
Areas to be set include a position area, posture area, and additional axis area.
The following is a description of the steps that are followed to set these areas.

(1) Position Area
A position area for user-defined area is defined by the coordinates of a diagonal point which is determined
by the elements X, Y and Z in the parameters AREA*P1 and AREA*P2(* is 1 to 32).
The coordinate values thus determined are those which refer to the coordinate system selected by the
parameter AREA*CS(* is 1 to 32).

<NOTES>
1) If you proceed with operation after making a change to a world coordinate system by the Base com-

mand or the like and, in addition, select a "base coordinate system" from the coordinate system
options for the user-defined area, make area settings, taking note of the following points:
Coordinate values to be specified for elements X, Y and Z in the parameters AREAnP1 and
AREAnP2 must be those that were specified for the coordinate system selected in the parameter
AREAnCS.
XYZ coordinate values displayed on the T/B, RT ToolBox or the like are those that refer to the world
coordinate system. Thus, when "base coordinate system" is selected in the parameter AREAnCS,
coordinate values appearing on the display differ from those to be specified.
In this case, it is necessary to make settings either by converting the displayed coordinate values into
those for the base coordinate system or by temporarily returning the world coordinate system to its
initial state. (The base coordinate system and world coordinate system are in agreement at factory
shipping)

2) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

3) If elements X, Y and Z in the parameter AREAnP1 are interchanged with those in the parameter
AREAnP2, user-defined area remains the same.

対角点 2

ユーザ定義領域 1
対角点 1

ユーザ定義領域 2

座標系は、AREA ｎ CS で定義する。

Diagonal point 2
Diagonal
point 1User-defined area 1

User-defined area 2

Set up the coordinate system by AREAnCS

 5Functions set with parameters

 About user-defined area 5-415

(2) Posture Area
A posture area for the user-defined area is defined by specifying elements A, B and C in the parameters
AREAnP1 and AREAnP2. Set up the value based on the coordinate system selected by AREAnCS.

In the 6-axis type robot, if the current coordinate value of B axis is near the +/-90
degrees, the coordinate value of A and C axes are changed a lot by even the pos-
ture movement slightly. Sign is reversed etc.
This originates in control of the robot. Therefore, if the robot is near B axis = +/-90
degrees, since the posture area judging of A and C axis may change regardless of
the robot movements, it is not suitable. Please use this posture area judging func-
tion in robot operation which the current coordinate value of B axis does not con-
sist of near the +/-90 degrees.

<NOTES>
1) If you proceed with operation after making a change to a world coordinate system by the Base com-

mand or the like and, in addition, select a "base coordinate system" from the coordinate system
options for the user-defined area, make area settings, taking note of the following points:
Coordinate values to be specified for elements A, B and C in the parameters AREAnP1 and
AREAnP2 must be those that were specified for the coordinate system selected in the parameter
AREAnCS.
XYZ coordinate values displayed on the T/B, RT ToolBox or the like are those that refer to the world
coordinate system. Thus, when "base coordinate system" is selected in the parameter AREAnCS,
coordinate values appearing on the display differ from those to be specified.
In this case, it is necessary to make settings either by converting the displayed coordinate values into
those for the base coordinate system or by temporarily returning the world coordinate system to its
initial state. (The base coordinate system and world coordinate system are in agreement at factory
shipping)

2) Defined area differs depending on relative locations assigned to elements A, B and C in the parame-
ters AREAnP1 and AREAnP2. (See the figure below.)

3) When the posture area is not checked, A, B, and C element of AREAnP1 will be set as -360 degree,
and A, B, and C element of AREAnP2 will be set as +360 degrees.

4) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

[If the relative locations of posture elements are set for AREAnP2 > AREAnP1]

[If the relative locations of posture elements are set for AREAnP1 > AREAnP2]

(3) Additional Axis Area
The additional axis area for the user-defined area is defined by specifying elements L1 and L2 in the param-
eters AREAnP1 and AREAnP2.
When the additional axis area is defined, it is judged contained in the user-defined area when all of position
area, posture area and additional axis area are within the area.

<NOTES>
1) The elements of L1 and L2 in the parameter AREAnP1 and AREAnP2 are not affected by the coordi-

nate system that defined by the parameter AREAnCS.

 CAUTION

-180° +180°

AREAnP1 AREAnP2

姿勢定義領域Posture definition area

-180° +180°

AREAnP2 AREAnP1

姿勢定義領域Posture definition area

5-416 About user-defined area

5Functions set with parameters

2) If elements L1 and L2 in the parameter AREAnP1 are interchanged with those in the parameter
AREAnP2, user-defined area remains the same.

3) When the additional axis area is defined, it is judged contained in the user-defined area when all of
position area, posture area and additional axis area are within the area.

4) The judgments of inside or outside of the user definition area are 0.001mm and 0.001 degree unit.
Therefore, if the boundary line of the area, the judgment result may get unfixed.

5) If no additional axes (axes J7 and J8) are in use, the additional axis area need not be defined.

 5Functions set with parameters

 About user-defined area 5-417

5.8.3 Selecting mechanism to be checked
Specify the mechanism to check the user-defined area with parameter AREA*ME. Normally, specify Mecha-
nism 1 (1). When using the multi-mechanism etc, set up the corresponding mechanism number.

5.8.4 Specifying behavior within user-defined area
Specify the behavior of whether the robot is in the user-defined area area by setting of parameter AREAnAT.
The behavior prepared is shown in Table 5-11.

Table 5-11:Specifying behavior within user-defined area

5.8.5 Example of settings
For instance, in the following diagram, the following parameter setting will output the signal 10 when operat-
ing in area (1) and output the signal 11 when operating in area (2).

Settings Within user-defined area Outside user-defined area
0: Invalid System's behavior is not specified. System's behavior is not specified.

1: Signal output and
status variable set-
ting

Dedicated output signal USRAREA is turned on.
Corresponding bit of system status variable
(M_Uar32,M_Uar) is turned on.

Dedicated output signal USRAREA is turned off.
Corresponding bit of system status variable
(M_Uar32,M_Uar) is turned off.

2. Error output Error H2090 occur and the robot stops.
* In this case, checks the position area only, ignoring
posture area and additional axis area.
* To move the robot out of area, use the jog operation
by "Temporarily Reset an Error that Cannot Be Can-
celed"

-

Parameter name Meaning of the value Value
AREA1CS Selects coordinate system for Area (1). 0

AREA1P1 Position data of diagonal point 1 in Area (1): X, Y, Z,
A, B, C, L1, L2

x11, y11, z11, -360, -360, -360,0,0

AREA1P2 Position data of diagonal point 2 in Area (1): X, Y, Z,
A, B, C, L1, L2

x12, y12, z12, 360, 360, 360,0,0

AREA1ME Target mechanism number: Usually 1 1

AREA1AT Area (1) (disable/signal output/error): 0/1/2 1

AREA2CS Selects coordinate system for Area (2). 0

AREA2P1 Position data of diagonal point 1 in Area (2): X, Y, Z,
A, B, C, L1, L2

x21, y21, z21, -360, -360, -360,0,0

AREA2P2 Position data of diagonal point 2 in Area (2): X, Y, Z,
A, B, C, L1, L2

x22, y22, z22, 360, 360, 360,0,0

AREA2ME Target mechanism number: Usually 1 1

AREA2AT Area (2) (disable/signal output/error): 0/1/2 1

USRAREA Output signal: starting number, end number 10, 11

X

Y

Z

AREA1P1

(x11,y11,z11)
AREA1P2

(x12,y12,z12)
AREA2P1

(x21,y21,z21)
AREA2P2

(x22,y22,z22)

(1)
(2)

<Area (1)>
Coordinate system: World
coordinate system
Posture check is unnecessary
Mechanism 1 usage
Additional axis is unused

<Area (2)>
Coordinate system: World
coordinate system
Posture check is unnecessary
Mechanism 1 usage
Additional axis is unused

5-418 Free plane limit

5Functions set with parameters

5.9 Free plane limit
Defines any plane in the world coordinate system, determines the front or back of the plane, and generates
a free plane limit error.

As can be seen in the diagram to the left, any
plane can be defined by three points (P1, P2, and
P3), after which an evaluation of which side of the
plane it is in (the side that includes the robot ori-
gin or the other side) can be performed.
This function can be used to prevent collision with
the floor or interference with peripheral devices.
Maximum of eight planes can be monitored.
There is no limit to the plane.

After setting the parameters above, turn the controller's power ON again. This will allow the generation of
free plane limit error when it crosses the plane.

Parameter and value Explanation

SFCnP(n=1 to 8) Specifies the 3 points that define the plane.
P1 coordinates X1, Y1, and Z1: The origin of the plane
P2 coordinates X2,Y2,Z2: A position on the X axis of the plane
P3 coordinates X3,Y3,Z3: A position in the positive Y direction of the X-Y plane in the plane

SFCnME(n=1 to 3) Specifies the mechanism number to which the free plane limit applies. Usually, set up 1.
In the case of multiple mechanisms, the mechanism numbers are specified.

SFCnAT(n=1 to 8) Designate the valid/Invalid of the set free plane limit.
 0:Invalid
 1: Valid (The operable area is the robot coordinate origin side.)
-1: Valid (The operable area is the side where the robot coordinate origin does not exist.)

Ｐ１

Ｐ２

P３

 5Functions set with parameters

 Automatic return setting after jog feed at pause 5-419

5.10 Automatic return setting after jog feed at pause
This specifies the path behavior that takes place when the robot is paused during automatic operation or
during step feed operation, moved to a different position using a jog feed with T/B, and the automatic opera-
tion is resumed or the step feed operation is executed again. See the following diagram.

[Caution] If movement other than a joint jog (XYZ, tools, cylindrical, etc.) has been used when the "RET-
PATH" parameter is set to 1, joint interpolation will be used to return to the original position at the
time pause took place. Therefore, be careful not to interfere with peripheral devices.

[Caution] If the parameter "RETPATH" is set to 2 for a robot whose structure data is valid or with multiple
rotations, and the robot is moved from a suspended position by joint jog, the robot is moved to a
position different from the original structure data and/or multiple-rotation data and may become
unable to return to the suspended position. In this case, adjust the position of the robot to the sus-
pended position and resume moving the robot.

If "RETPATH=1 or 2" is set as shown in the figure below, and the robot is operated continuously (continuous
path operation) using the Cnt instruction, the robot returns to a position on the travel path from P1 to P2
instead of the suspended position. When "RETPATH=0" is set, the robot moves to the target position from
the current position.

Parameter and value Description of the operation

RETPATH=1 (Default) 1) Returns to the original position where the pause took place using joint interpolation.
2) Resumes from the line that was paused.

RETPATH=0 Resumes from the line that was paused from the position resulting after the jog operation. Therefore,
movement will take place using the interpolation method of the instruction under execution from the
current position to the next target position.

RETPATH=2 1) Return by XYZ interpolation to the interrupted position.
2) Resume the interrupted line.

RETPATH=1 or 2 RETPATH=0

Move to target
positionJog feed

Interrupt here

Resume the
automatic
execution

Return to interrupted position
RETPATH=1:JOINT interpolation

RETPATH=2:XYZ interpolation

Jog feed

Interrupt here

Move to target
position

Resume the
automatic
execution

5-420 Automatic return setting after jog feed at pause

5Functions set with parameters

P1

P2

P1

P2

RETPATH=1 or 2 RETPATH=0

Move to target
position

Jog feed

Interrupt here

Resume the
automatic
execution

Jog feed

Move to target
position

Resume the
automatic
execution

Interrupt here

 5Functions set with parameters

 Automatic execution of program at power up 5-421

5.11 Automatic execution of program at power up
The following illustrates how to automatically run a robot program when the controller's power is turned on.
However, since the robot starts operating simply by turning the power on, exercise caution upon using this
function.

Related parameters

(1) First, create an ALWAYS program and an operating program.
<Program #2, ALWAYS program>

< Program #1, operating program > (this can be any program)

(2) Set the parameter.

After the setting is complete, turn the controller's power OFF.

(3) Turn the power ON.
In the sample above, after the controller's power is turned on, when the key switch is turned to AUTOMATIC,
program #1 is executed and the robot starts its operation.

Parameter and value Description of the operation

SLT* Exmple) SLT2=2,ALWAYS,REP
Specifies the program name, start condition, and operation status. The point here is the start condition.

ALWENA 0->1
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRun and
XLoad, and also the Servo instruction.

1 ' Auto Start Sample Program
2 '
3 ' Execute Program #1 if the key switch is AUTOMATIC (O/P).
4 ' Stop the program and return the execution line to the beginning of the program if the key switch is not AUTOMAT-
IC (O/P).
5 '
6 If M_Mode<>2 And (M_Run(1)=1 Or M_Wai(1)=1) Then GoSub *MTSTOP
7 If M_Mode=2 And M_Run(1)=0 And M_Wai(1)=0 Then GoSub *MTSTART
8 If M_Mode=1 Then Hlt ' for DEBUG
9 End
10 '
11 *MTSTART
12 XRun 1,"1"
13 Rerurn
14 '
15 *MTSTOP
16 XStp 1
17 Wait M_Run(1)=0
18 XRst 1
19 Rerurn

1 'Main Program
2 Servo On
3 M_Out(8)=0
4 Mov P1
5 M_Out(8)=1
6 Mov P2
7 End
P1=(+300.00,-200.00,+200.00,+0.00,+180.00,+0.00)(6,0)
P2=(+300.00,+200.00,+200.00,+0.00,+180.00,+0.00)(6,0)

Parameter and value Description of the operation

SLT2 SLT2=2,ALWAYS,REP ’Execute program #2 in ALWAYS mode.

ALWENA 0->1
In the ALWAYS program, it is possible to execute multitask-related instructions such as XRun and
XLoad, and also the Servo instruction.

5-422 About the hand type

5Functions set with parameters

5.12 About the hand type
The factory default setting assumes that the double-solenoid type hand will be used. If the single-solenoid
type is used or if a general-purpose signal is to be used to control the robot, the HANDTYPE parameter
must be set as described below.

Table 5-12:Factory default parameter settings

Note) The default settings are D224, D226, D192 and D194 in the case of the RC-1300G series.

From the left, the values correspond to hand #1, #2, and so on. The default value is shown below.
Hand 1 = accesses signals #900 and #901
Hand 2 = accesses signals #902 and #903
Hand 3 = accesses signals #904 and #905
Hand 4 = accesses signals #906 and #907
The hand numbers 1 through 4 (or 8) will be used as the argument in the hand open/close instructions
(HOpen or HClose).

<Setting method>
When a double-solenoid type is used, 'D' must be added in front of the signal number to specify the number.
In the case of double-solenoid type, hand number will be from 1 to 4.
When a single-solenoid type is used, 'S' must be added in front of the signal number to specify the number.
In the case of single-solenoid type, hand number will be from 1 to 8.

<Example>
* Each following is the example which connected the valve of customer preparation to the general-pur-

pose output signal with external wiring.
1) To assign two hands of the double-solenoid type from the general-purpose signal #10

HANDTYPE=D10,D12, , , , ,
2) To assign three hands of the double-solenoid type from the general-purpose signal #10

HANDTYPE=S10,S11,S12, , , , ,
3) To assign hand 1 to the general-purpose signal #10 as the single-solenoid type while assigning hand

2 to the general-purpose signal #12 as the single-solenoid type
HANDTYPE=D10,S12, , , , ,

Parameter name Value

HANDTYPE D900,D902,D904,D906, , , ,

 5Functions set with parameters

 About default hand status 5-423

5.13 About default hand status
The factory default setting is shown below.

A single controller can control multiple robots. If pneumatic hand interface is to be used for each robot, the
hand output signal number is assigned in the following manner.
Mechanism #1 = #900 to #907 (This will be the case for standard configuration with one unit connected.)
Mechanism #2 = #910 to #917
Mechanism #3 = #920 to #927
When electric-powered hand interface is used, the system will use the 900's using special controls. The
users should not access the 900's directly but instead use the hand control instructions or the hand opera-
tion from T/B only. If you access the 900's, normal opening and closing of the hand will not be possible.

The default parameters are set as shown below so that all hands start as "Open" immediately after power
up.

The above describes the situation for standard configuration (one unit is connected). When multiple mecha-
nisms are used, specify the mechanism number to set the HANDINIT parameter.

If for instance hand 1 alone needs to be closed when the power is turned ON, the following should be set.
Similarly, in the case of electric-powered hand (hand number is fixed to 1), the hand will be closed when the
power is turned on if the following configuration is applied.

[Caution1] If you set the initial hand status to "Open," note that the workpiece may be dropped when the
power is turned ON.

[Caution2] This parameter specifies the initial value when turning ON the power to the dedicated hand sig-
nals (900’s) at the robot's tip.
To set the initial status at power ON when controlling the hand using general-purpose I/Os (other
than 900’s) (specifying a signal other than one in 900’s by the HANDTYPE parameter), do not use
this HANDINIT parameter, but use the ORS* parameter.
The value set by the ORS* parameter becomes the initial value of signals at power ON.

[Caution3] The RC-1300G series uses #224 to #227 and #192 to #195 for hand input signals. Use the
ORST224 and ORST192 parameters, rather than the HANDINIT parameter, to set the initial value
when the power supply is turned on.

Hand type Status
Status of output signal number

Mechanism #1 Mechanism #2 Mechanism #3

When pneumatic hand inter-
face is installed (double-sole-
noid is assumed)

Hand 1 = Open

Hand 2 =Open

Hand 3 =Open

Hand 4 =Open

900=1
901=0
902=1
903=0
904=1
905=0
906=1
907=0

910=1
911=0
912=1
913=0
914=1
915=0
916=1
917=0

920=1
921=0
922=1
923=0
924=1
925=0
926=1
927=0

When electric-powered hand
interface is installed

Hand open M_Out (9*0) through M_Out (9*7) are used by the system and therefore
unavailable to the user. If used, normal opening and closing of the hand
will not be possible.

I/F before interface installation - M_Out (9*0) through M_Out (9*7) do not function.

Parameter name Signal number Value

HANDINIT 900, 901, 902, 903, 904, 905, 906, 907 1, 0, 1, 0, 1, 0, 1, 0

Parameter name Signal number Value

HANDINIT 900, 901, 902, 903, 904, 905, 906, 907 0, 1, 1, 0, 1, 0, 1, 0, 1

5-424 About the output signal reset pattern

5Functions set with parameters

5.14 About the output signal reset pattern
The factory default setting sets all general-purpose output signals to OFF (0) at power up. The status of
general-purpose output signals after power up can be changed by changing the following parameter. Note
that this parameter also affects the general-purpose output signal reset operation (called by dedicated I/O
signals) and the reset pattern after executing the Clr instruction.

Parameter name Value (Values are all set to 0 at the factory default setting.)

R
em

ot
e

I/O

ORST0 Signal number
0----------7 8--------15 16--------23 24-------31
00000000, 00000000, 00000000, 00000000

ORST32 32------40 41------49 50-------57 58-------66 (Same as above)
00000000, 00000000, 00000000, 00000000

ORST64 00000000, 00000000, 00000000, 00000000

ORST96 00000000, 00000000, 00000000, 00000000

ORST128 00000000, 00000000, 00000000, 00000000

ORST160 00000000, 00000000, 00000000, 00000000

ORST192 00000000, 00000000, 00000000, 00000000

ORST224 00000000, 00000000, 00000000, 00000000

P
R

O
F

IB
U

S
 o

pt
io

n

ORST2000 00000000, 00000000, 00000000, 00000000

ORST2032 00000000, 00000000, 00000000, 00000000

ORST2064 00000000, 00000000, 00000000, 00000000

ORST2096 00000000, 00000000, 00000000, 00000000

ORST2128 00000000, 00000000, 00000000, 00000000

ORST2160 00000000, 00000000, 00000000, 00000000

ORST2192 00000000, 00000000, 00000000, 00000000

ORST2224 00000000, 00000000, 00000000, 00000000

ORST2256 00000000, 00000000, 00000000, 00000000

ORST2288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST5008 00000000, 00000000, 00000000, 00000000

ORST5040 00000000, 00000000, 00000000, 00000000

C
C

-L
in

k
op

tio
n

ORST6000 00000000, 00000000, 00000000, 00000000

ORST6032 00000000, 00000000, 00000000, 00000000

ORST6064 00000000, 00000000, 00000000, 00000000

ORST6096 00000000, 00000000, 00000000, 00000000

ORST6128 00000000, 00000000, 00000000, 00000000

ORST6160 00000000, 00000000, 00000000, 00000000

ORST6192 00000000, 00000000, 00000000, 00000000

ORST6224 00000000, 00000000, 00000000, 00000000

ORST6256 00000000, 00000000, 00000000, 00000000

ORST6288 00000000, 00000000, 00000000, 00000000

 : :

 : :

 : :

ORST7984 00000000, 00000000, 00000000, 00000000

ORST8016 00000000, 00000000, 00000000, 00000000

 5Functions set with parameters

 About the output signal reset pattern 5-425

The value corresponds to bits from the left.
Setting is "0", "1", or "*".
"0" = Set to off
"1" = Set to on
"*" = Maintain status with no change. (Set to off at power up.)
For instance, if you want to always turn ON immediately after power up 10138, 10139, 10140, 10160, 10161
and 10168 of the general-purpose signals, the robot should be set to the configuration shown below.

In addition to the above, to make 10148, 10143 and 10150 retain their individual on/off status upon a gen-
eral-purpose output signal reset, the robot should be set to the configuration shown below.

In the case above, general-purpose signals 10148, 10149, 10150 will start up as 0 (off) after a power up.
The setting cannot be made in such a way that will turn the signal to 1 (on) after power up and will retain the
current status upon a general-purpose output signal reset.

[Caution] When editing the parameters, do not enter an incorrect number of zeros. If the number of zeros is
incorrect, an error is generated next time the power is turned on.

P
LC

 li
nk

 N
ot

e1
)

ORST10000 Signal number
10000---10007 10008---10015 10016---10023 10024---10031

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000

ORST10032 10032---10039 10040---10047 10048---10055 10056---10063

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000

ORST10064 00000000、 00000000、 00000000、 00000000

ORST10096 00000000、 00000000、 00000000、 00000000

ORST10128

　 　 |

　 　 |

　 　 |

　 　 |

　 　 |

　 　 |

ORST18160

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

00000000、 00000000、 00000000、 00000000

Note1) PLC link is for the CRnQ Series only.

Parameter name Value

ORST10128 10128---10135 10136---10143 10144---10151 10152---10159

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000.........At the factory default setting

 00000000、 00111000、 00000000、 00000000.........Setting value

ORST10160 10160---10167 10168---10175 10176---10183 10184---10191

 | | | | | | | |

 00000000、 00000000、 00000000、 00000000.........At the factory default setting

 11000000、 10000000、 00000000、 00000000.........Setting value

Parameter name Value

ORST10128 00000000、 00111000、 0000***0、 00000000

ORST10160 11000000、 10000000、 00000000、 00000000

Parameter name Value (Values are all set to 0 at the factory default setting.)

5-426 About the communication setting (RS-232)

5Functions set with parameters

5.15 About the communication setting (RS-232)
(1) Overview

The controller of CRnD series has RS-232 of the one port as standard.
Although it usually connects with the personal computer and the standard RS-232 port is used for transmis-
sion of the robot program, and debugging using RT-ToolBox of the option, it sets the parameter and can use
it for communication of the data with external equipment. Carry out communication by the commands
(Open/Close/Print/Input etc.) of the communication relation on the robot program. Call this the data link.

The controller cannot be controlled from external devices such as a PC (i.e., automatic execution or status
monitoring). If this is necessary, contact the dealer or branch from where the robot has been purchased for
further consultation.

Machine cable

Machine cable

Vision unit

Expansion serial

Expansion option

Use of PC with the support software

Standard RS-232C

Example of standard RS-232C port usage

Use of PC with the support software

Standard RS-232C

Example of expansion RS-232C port usage

 5Functions set with parameters

 About the communication setting (Ethernet) 5-427

5.16 About the communication setting (Ethernet)
In the CE Marking specification, Please use Ethernet interface by installing the line noise filter and the ferrite
core to the Ethernet cable. The line noise filter and the ferrite core are attachments.

Fig.5-4 ： Installation to the Ethernet cable of ferrite core and filter (CE Marking)

5.16.1 Details of parameters
(1) NETIP (IP address of robot controller)

The IP address of the robot controller is set. IP address is like the address of the mail.
The format of IP address is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.
For example, it is set as 192.168.0.1.
If the controller and network personal computer are directly connected to each other one-to-one, it is
allowed to set default value (a random value) but if it is connected to the local area network (LAN), IP
address must be set as instructed by the manager of customer's LAN system.
If any IP addresses are overlapped, the function will not properly operate. Therefore, take care to prevent it
from being overlapped with another during setting.
The personal computer used for communication with the robot controller must be located on the same net-
work.

(2) NETMSK (sub-net-mask)
Set the sub-net-mask of the robot controller. Among the IP addresses, the sub-net-mask is set to define the
sub-net-work.
The format of the sub-net-mask is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.
For example, it is set as 255.255.255.0 or 255.255.0.0.
As usual, it is allowed to set default value. If it is connected to the local area network (LAN), the sub-net-
mask must be set as instructed by the manager of customer's LAN system.

(3) NETPORT (port No.)
The port No. of the robot controller is set. The port No. is like the name of the mail.
For the nine elements, the port numbers are each expressed with a value.
The first element (element No. 1) is used for real-time control.
The second to ninth elements (elements No. 2 to 9) are used for the support software or data link.
Normally, the default value does not need to be changed. Make sure that the port numbers are not dupli-
cated.

(4) CRRCE11 to 19 (protocol)
When using the data link function, the setup is necessary.

The installation conditions of the ferrite
core and the line noise filter

Outside dimension of the line noise filter

①

Line noise filter(attachments)
Pass 8 times

Robot controller

500mm or less

To external equipment

Ferrite core
(attachments)
Pass twice

Note1)

100mm or less

Note 1) CR1D/CR2D: The dimension from the connector of the controller
　　 CR3D: The dimension from the controller chassis.

Ethernet cable

5-428 About the communication setting (Ethernet)

5Functions set with parameters

Sets the protocol (procedure) for communication. The protocol has three kinds of no-procedure, procedure
and data link.
0... No-procedure: The protocol is applied to use the personal computer Support Software .
1... Procedure: Reserved. (Since it is not any function, don't set it by mistake.)
2... Data link: The protocol is used to use OPEN/INPUT/PRINT commands for communication.

(5) COMDEV (Definition of devices corresponding to COM1: to 8)
When using the data link function, the setup is necessary.
Definition of device corresponding to COM1: to 8 is set. COM1: to 8 is used for OPEN command of the robot
program.
Be sure to set it only when the data link is specified on setting of the protocol (CPRCE11 to 19).
The setting values of the Ethernet interface option correspond to the port Nos. which are set at the parame-
ter NETPORT.
* In the following parameters NETOPORT (n) and COMDEV(n), n indicates the element No. of that parame-
ter.

For example, if the port No. specified at NETPORT(4) is allocated to the data link of COM:3, the following
will be applied.
COMDEV(3) = OPT13 * OPT13 is set at 3rd element of COMDEV.
CPRCE13 = 2 * Set up as a data link.

(6) NETMODE (server specification).
Set up, when using the data link function.
Set the TCP/IP communication in the data link function of the robot controller as the server or the client.
It is necessary to change with the application of the equipment connected to the robot controller.
This function corresponds to the software version H7 or later.
In the version older than H7, the robot controller operates only as a server.

(7) NETHSTIP (The IP address of the server of the data communication point).
Set up, when using the robot controller as a client by the data link function.
Specify the IP address of the partner server which the robot controller connects by the data link function.
Set up, when only set the robot controller to the client by server specification of NETMODE.

(8) MXTTOUT (Timeout setting for executing real-time external control command)
This is changed when using real-time external control command and setting the timeout time for communi-
cation with the robot controller.
Set a multiple of the approx. 7.11msec control cycle.
When the real-time external control command is executed, the timeout time during which no communication
data is received by the robot controller from the personal computer is counted up. If the count reaches the
value set in MXTTOUT, the operation will stop with the error (#7820). For example, to generate an error
when there is no communication for approx. 7 seconds, set 1000.
This setting is set to -1 (timeout disabled) as the default.

n
The device name set
up by COMDEV(n)

Port number

1 OPT11 The port number specified by NETPORT(2)

2 OPT12 The port number specified by NETPORT(3)

3 OPT13 The port number specified by NETPORT(4)

4 OPT14 The port number specified by NETPORT(5)

5 OPT15 The port number specified by NETPORT(6)

6 OPT16 The port number specified by NETPORT(7)

7 OPT17 The port number specified by NETPORT(8)

8 OPT18 The port number specified by NETPORT(9)

9 OPT19 The port number specified by NETPORT(10)

 5Functions set with parameters

 About the communication setting (Ethernet) 5-429

5.16.2 Example of setting of parameter 1 (When the Support Software is used)
The setting example to use the Support Software is shown below.

Set the parameters for the robot controller, and the network for the personal computer OS being used.

Set the robot controller parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows XP (lower left screen), Windows Vista (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

IP address of robot controller 192.168.0.20

IP address of personal computer 192.168.0.2

Port No. of robot controller 10001 10001

Parameter name to
be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10001

After 10001 (With the default value.)

5-430 About the communication setting (Ethernet)

5Functions set with parameters

5.16.3 Example of setting of parameter 2-1
(When the data link function is used: When the controller is the server)
Shows the example of the setting, when the controller is server by the data link function.

List Example of conditions 2-1

List Example of parameter changes 2-1

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows XP (lower left screen), Windows Vista (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10003

Communication line No.
Open command COM No.

COM3:

Parameter name to
be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 〃 (Default value)

CPRCE13 Before 0

After 2

COMDEV Before RS232, , , , , , ,

After RS232, , OPT13, , , , ,

 5Functions set with parameters

 About the communication setting (Ethernet) 5-431

5.16.4 Example of setting parameters 2-2
(When the data link function is used: When the controller is the client)
Shows the example of the setting, when the controller is client by the data link function.

List Example of conditions 2-2

List Example of parameter changes 2-2

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows XP (lower left screen), Windows Vista (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10003

Communication line No.
Open command COM No.

COM3:

Parameter name to
be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 〃 (Default value)

CPRCE13 Before 0

After 2

COMDEV Before RS232, , , , , , ,

After RS232, , OPT13, , , , ,

NETMODE Before 1,1,1,1,1,1,1,1,1

After 1,1,0,1,1,1,1,1,1

NETHSTIP Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,

192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,

192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

5-432 About the communication setting (Ethernet)

5Functions set with parameters

5.16.5 Example of setting parameters 3
(for using the real-time external control function)
An example of the settings for using the real-time external control function is shown below.

List Example of conditions 3

List Example of parameter changes 3

Next, set the personal computer IP address to 192.168.0.2. Set this value on the Network Properties
screen.
Windows XP (lower left screen), Windows Vista (lower right screen)

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in
network computer). Because the set-up screen differs with versions of Windows, refer to the manuals
enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting
and using the personal computer support software.

Robot controller IP address 192.168.0.20

Personal computer IP address 192.168.0.2

Robot controller port No. 10000

Parameter name to
be changed Before/after change Parameter value

NETIP Before 192.168.0.20

After 192.168.0.20 (With the default value.)

NETPORT Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 〃 (Default value)

MXTTOUT Before -1

After 〃 (Default value)

MXTCOM1 Before 192.168.0.2

After 〃 (Default value)

 5Functions set with parameters

 Connection confirmation 5-433

5.17 Connection confirmation
Before use, confirm the following items again.

Connection confirmation

5.17.1 Checking the connection with the Windows ping command
The method for checking the connection with the Windows ping command is shown below.
Start up the " MS-DOS Prompt " from the Windows " Start " - " Programs " menu, and designate the robot
controller IP address as shown below.
If the communication is normal, " Reply from ... " will appear as shown below.
If the communication is abnormal, " Request time out " will appear.

No. Confirmation item Check

1 Is the teaching pendant securely fixed?

2 Is the Ethernet cable properly connected between the controller and personal computer?

3 Is any proper Ethernet cable used?

(This cross cable is used to connect the personal computer and controller one-on-one. When

using a hub with LAN, use a straight cable.)

4 Is the parameter of the controller properly set? (Refer to 2.3 in this manual.)

5 Is the power supply of the controller turned off once after the parameter is set?

5-434 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)

5Functions set with parameters

5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
Optimum acceleration/deceleration control allows the optimum acceleration/deceleration to be performed by
LoadSet and Oadl instructions automatically in response to the load at the robot tip. The following parame-
ters must be set correctly in order to obtain the optimum acceleration/deceleration.
This parameter is also used in the impact detection function installed in the RV-SD/RH-SDH series.
When using the impact detection function during jog operation, set HNDDAT0 and WRKDAT0 correctly.

The factory default setting is as follows.

Parameter values define, from the left in order, weight, size X, Y, and Z, and center of gravity X, Y, and Z. Up
to eight hand conditions and eight workpiece conditions can be set. For the size of a hand, enter the length
of a rectangular solid that can contain a hand. Optimal acceleration/deceleration will be calculated from the
hand condition and the workpiece condition specified by a LoadSet instruction.

Parameter values that define grasping or not grasping is shown from the left for cases where the hand is
open or closed.
"0" = Set to not grasping
"1" = Set to grasping
Depending on the hand's open/close status, optimum acceleration/deceleration calculation will be per-
formed for either hand-alone condition or hand-and-workpiece condition.

The hand's open/close status can be changed by executing the HOpen/HClose instruction.

The coordinate axes used as references when setting the hand and workpiece conditions are shown below
for each robot model. The references of the coordinate axes are the same for both the hand and workpiece
conditions. Note that all the sizes are set in positive values.

Parameter Value

se
tti

ng
 th

e
ha

nd
 c

on
di

tio
ns

HNDDAT0 It varies with models.

HNDDAT1 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT2 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT3 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT4 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT5 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT6 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT7 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

HNDDAT8 Maximum load, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

se
tti

ng
 th

e
w

or
kp

ie
ce

 c
o

nd
iti

on
s WRKDAT0 It varies with models.

WRKDAT1 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT2 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT3 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT4 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT5 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT6 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT7 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

WRKDAT8 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

Parameter Value(Factory default)

HNDHOLD1 0, 1

HNDHOLD2 0, 1

HNDHOLD3 0, 1

HNDHOLD4 0, 1

HNDHOLD5 0, 1

HNDHOLD6 0, 1

HNDHOLD7 0, 1

HNDHOLD8 0, 1

 5Functions set with parameters

 Hand and Workpiece Conditions (optimum acceleration/deceleration settings) 5-435

*Vertical type

*Horizontal type

+Z

Definitions of Coordinate Axes
The tool coordinate is used for the coordinate axes.

Axes that must be set:
Only the X, Y and Z elements of the center of gravity and the X, Y
and Z elements of the size must be set.

+Y

+X

6-axis type

+Z

+X +Y

Definitions of Coordinate Axes
In the coordinate system with the tip of
the J4 axis as the origin:
Z axis: The upward direction is positive.
X axis: The direction of extension in the

arm orientation is positive.
Y axis: A right hand coordinate system

Axes that must be set:
Only the X element of the center of
gravity and the X and Y elements of the
size must be set.

5-436 About the singular point adjacent alarm

5Functions set with parameters

5.19 About the singular point adjacent alarm
When a robot having a singular point is being operated using a T/B, a singular point adjacent alarm is gen-
erated to warn the operators of the robot if the control point of the robot approaches a singular point.
Even if an alarm is generated, the robot continues to operate as long as it can perform operation unless
operation is suspended. Also, an alarm is reset automatically when the robot moves away from a singular
point. The following describes the details of the singular point adjacent alarm.

(1) Operations that generate an alarm
An alarm is generated if the control point of a robot approaches a singular point while a robot is performing
any of the following operations using the T/B.

1) Jog operation (other than in joint jog mode)
2) Step feed and step return operations
3) MS position moving operation
4) Direct execution operation

If the robot approaches a singular point by any of the operations listed above, the buzzer of the controller
keeps buzzing (continuous sound). However, the STATUS. NUMBER display on the operation panel does
not change.
Also, in the case of "[1] Jog operation (other than joint jog mode)" above, a warning is displayed on the T/B
screen together with the sound of the buzzer.

(2) Operations that do not generate an alarm
No alarm is generated when a robot is performing any of the operations listed below even if the control point
of the robot approaches a singular point.

1) Additional axis jog operation initiated in joint jog mode using the T/B
2) When the joint interpolation instruction is executed even by an operation from the T/B

(Execution of the Mov instruction, MO position moving operation)
3) When the program is running automatically
4) Jog operation using dedicated input signals (such as JOGENA and JOGM)
5) When the robot is being operated using external force by releasing the brake
6) When the robot is stationary

 5Functions set with parameters

 About ROM operation/high-speed RAM operation function 5-437

5.20 About ROM operation/high-speed RAM operation function

Because the ROM operation /high-speed RAM function has some restrictions on
program operation and data retention, please use it after thoroughly understanding
the specifications.

(1) Overview
Initially, the robot programs are saved in the RAM (SRAM) that is backed up in the battery.
By saving the robot programs in Flash ROM (FLROM), a loss of files due to the depletion of the backup bat-
tery, damage to the programs due to unexpected power shutoff (including momentary power failure) during
a file access operation, or changes or deletion of the programs and position data due to an erroneous oper-
ation.
By changing the parameter values, the access target of the programs can be switched between ROM and
RAM. Once the access target of the programs is switched to ROM, it is referred to as in or during the ROM
operation.
Table 5-13:ROM operation/high-speed RAM parameter list

Table 5-14:Relationship between the role of each memory and the ROMDRV parameter

Caution 1)"Save Parameters" and "Save Error Log" in order to save system data. The data files to be read
or written by the programs (Open/Print/Input) are included.

Caution 2)Program management operation refers to the operations, such as copying, deleting and renaming
the programs in the controller, by using the T/B and personal computer support software.

Parameter Description and value

ROMDRV Switches the access target of the programs between ROM and RAM.
0 = RAM mode (initial value)
1 = ROM mode
2 = High-speed RAM mode (high-speed RAM operation : DRAM memory is used.)

BACKUP Copies programs, parameters, common variables and error logs from the RAM area into the ROM area.
SRAM -> FLROM (fixed) * If this processing is canceled while being executed, "CANCEL" is displayed in the
value field.

RESTORE Rewrites programs, parameters, common variables and error logs in the ROM area into the RAM area.
FLROM -> SRAM (fixed) * If this processing is canceled while being executed, "CANCEL" is displayed in the
value field.

Memory
type

Feature
ROMDRVparameter

0(RAM mode) 1(ROM mode) 2(High-speed RAM mode)

DRAM High-speed execution
possible
Execution of programs
that are erased when the
power is OFF

Execution of programs
(Discard the execution result)

Execution of programs
(Discard the execution result)

SRAM Not erased by power OFF
Erased when a battery is
consumed.
Read/write enabled

Execution of programs
(Save the execution
result)
Program management
operation
Read/write system data
Read/write common
variables
Read/write programs

Read/write system data
Program management
operation
Read/write system data
Read/write common variables
Read/write programs

ROM Not erased by power OFF
Not Erased when a bat-
tery is consumed.
Read only enabled

(Program management oper-
ation disabled)

Read/write common variables
Read/write programs

5-438 About ROM operation/high-speed RAM operation function

5Functions set with parameters

Table 5-15:ROM operation/high-speed RAM operation function image

DRAM is used as execution memory during ROM operation/high-speed RAM operation; it can perform lan-
guage processing at a maximum speed of about 1.2 times faster than that of SRAM memory used for nor-
mal RAM operation. (The speed varies depending on the contents of each program.)
Note that the operations of the robot, such as program execution and step operation, can be performed sim-
ilar to RAM operations (when starting in the RAM mode); however, there are restrictions on some opera-
tions. Please refer to the following precautions.

parameter
ROMDRV

Power ON

ROM
mode (1)

RAM
mode(0)

high-speed RAM
mode (2)

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

･Target of executable programs.
･Programs to be backed up.
･Changing parameters.
･Saving error logs.
･Reading programs.
･Editing (writing) programs.
･Copying, moving and renaming programs.
･Files to be access by the OPEN instruction.
・Program Exection Area.
・Save the execution result.

・Save the execution result.

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

File System

ROM Area SRAM Area

Exection Area

DRAM Aerea
(high-speed
Execution)

SRAM Area
(Save enabled)

･Target of executable programs.
･Programs to be backed up.
･Reading programs.
　　　　　　　　　　　　　→　　　　Enble

･Editing (writing) programs.
･Copying, moving and renaming programs.
 ・rename 　　　　→　　　Error

･Changing parameters.
･Saving error logs.
･Files to be accessed by the OPEN
instruction.

 5Functions set with parameters

 About ROM operation/high-speed RAM operation function 5-439

 Precautions

* About variables
Variables may be changed by executing programs during the ROM operation/high-speed RAM operation;
however, the changed values will be discarded when the controller power is turned off. The following lists
the handling of variables during the ROM operation.

In the case of high-speed RAM operation and RAM operation, program external vari-
ables are maintained even after the power supply is turned off. Note, however, that
variable values are not maintained in the case of power off immediately after chang-
ing the setting value of the ROMDRV parameter.

* Changing variables during program execution
If the execution of a program is aborted during the ROM operation and "Variable Monitor" (refer to Page 67,
"3.13 Operating the monitor screen".) of the T/B is used, the program cannot be resumed. Although the stop
lamp stays lit, if the program is executed, the program will be executed from the first line. Be careful
because peripheral devices may interfere with the robot.

The values of variables cannot be changed by using "Variable Monitor" (refer to Page 67, "3.13 Operating
the monitor screen".) of the T/B during the ROM operation. Program Monitor (watch function) of PC support
software can be used to change the values of variables in task slots other than the editing slot.

* About programs
The target of program editing also becomes the ROM area. The programs in the controller is placed in the
protected state (protect ON), and they cannot be canceled during the ROM operation. Once the ROM oper-
ation is switched to the RAM operation, the protect information reverts to the state set during the RAM oper-
ation.
Programs may be read during the ROM operation, but they cannot be written. Similarly, programs can nei-
ther be copied nor renamed.

* About parameters
Parameters and error log files are always saved in the RAM area regardless of switching between the ROM
operation and the RAM operation. However, the RLNG parameter (for switching the robot language, refer to
Page 405, " RLNG".) cannot be changed during the ROM operation.

Variable Note1)

Note1) There are numeric value variables, character string variables, position variables and joint variables.

In ROM operation
In high-speed RAM

operation
In RAM operation

Local variable The values of local variables are
retained during program operation;
however, they will be discarded when
switching programs by the OP or
external I/O signal, as well as when
the power is turned off. The values of
variables in the program called by the
CallP instruction will be discarded
when they return to the called pro-
gram.
The values of variables in a program
called by a CallP instruction are dis-
carded upon returning to the calling
program.

The values of variables used in
a program being executed
when the power was shut down
are discarded.
They are saved when a pro-
gram is selected or a CallP
instruction finishes.

The values of variables
are retained even after
the power is turned off.
Note2)

Note2) However, if a program is rewritten by using PC support software, the values of local variables used by
programs will be discarded.

Program external variable The values of variables are retained
until the power is turned off. (They
will not be discarded by switching
programs. The contents of changes
will be discarded when the power is
turned off.)

The values of variables are
retained as they are even after
the power is shut down.

The values of variables
are retained even after
the power is turned off.

User-defined external vari-
able

The contents of changes are
discarded when the power is
shut down.

 CAUTION

5-440 About ROM operation/high-speed RAM operation function

5Functions set with parameters

* About backup
During the ROM operation, programs are backed up from the ROM area, and parameters and error log files
are backed up from the RAM area.

* About direct execution
While in the ROM operation, local variables cannot be rewritten by direct execution.

* About the continue function
While in the ROM operation, the continue function is disabled even if it is set.
The continue function saves the execution status at the time of power OFF, and starts operating from the
saved status the next time the power is turned on.

*About extension memory
When extension memory is installed or removed during the ROM operation, an error will occur. Install or
remove extension memory only after switching to the RAM operation.

* About operating times
The operating times (power ON time and remaining battery time) are updated regardless of switching
between the ROM and RAM operations.

* About production information
The production information monitor (program operation count, cycle time, etc.) of Personal Computer sup-
port software is not added or updated during the ROM operation.

(2) Procedures for switching between ROM and RAM
RAM operation,The following shows the procedures for switching ROM operation, RAM operation and high-
speed RAM operation:

For more information about the operating procedure of each of the above, see the following pages.

P o w e r O N

E n t e r B A C K U P
p a r a m e t e r

C a n c e l?

C a n c e l
p a r a m e t e r

P o w e r O F F t o O N

C h a n g e R O M D R V
p a r a m e t e r f r o m 0

t o 1

P o w e r O F F t o O N

E n d

P o w e r O N

E n t e r R E S T O R E
p a r a m e t e r

C a n c e l?

C a n c e l
p a r a m e t e r

P o w e r O F F t o O N

C h a n g e R O M D R V
p a r a m e t e r f r o m 1

t o 0

P o w e r O F F t o O N

E n d

P r o c e d u r e f o r s w i t c h i n g
f r o m R A M o p e r a t i o n t o R O M o p e r a t i o n

P r o c e d u r e f o r s w i t c h i n g
f r o m R O M o p e r a t i o n t o R A M o p e r a t i o n

Y e s

N o

Y e s

N o

M a n ip u la t e
o p e r a t i o n p a n e l

M a n ip u la t e
o p e r a t i o n p a n e l

(3) - [1]

(3) - [2] ・ ・ ・

(3) - [3]

(4) - [1]

(4) - [2] ・ ・ ・

(4) - [3]

P r o c e d u r e f o r s w i t c h i n g
f r o m R A M o p e r a t i o n t o h i g h - s p e e d

R A M o p e r a t i o n

P o w e r O N

C h a n g e R O M D R V
p a r a m e t e r f r o m

0 t o 2

P o w e r O F F t o O N

E n d

(7) - ①

P r o c e d u r e f o r s w i t c h i n g
f r o m h i g h - s p e e d R A M o p e r a t i o n t o

R A M o p e r a t i o n

P o w e r O N

C h a n g e R O M D R V
p a r a m e t e r f r o m

2 t o 0

P o w e r O F F t o O N

E n d

(7) - ②

 5Functions set with parameters

 About ROM operation/high-speed RAM operation function 5-441

(3) Switching to the ROM operation
Use the following procedure (steps [1] to [3]) to switch to the ROM operation.

[1] Prepare to copy the information in the RAM area into the ROM area.

The programs created before the RAM operation was switched
to the ROM operation are saved in the RAM area of the file sys-
tem of the controller. First, copy these programs into the ROM
area using the following procedure.
After the programs in the ROM area are cleared once, they are
copied from the RAM area.

1) Display the parameter setting screen from the
maintenance screen.

2) Enter "BACKUP" in the parameter name field, and
press the [EXE] key.

3) When "SRAM->FLROM" is displayed in the data
field, press the [EXE] key again as is.
* Do not change the content of the data field.

A self-check is performed to check whether or not
the programs are normal prior to writing them into
the ROM area. The ALWAYS program is
automatically stopped during the self-check. When
the program check is complete, the cursor moves to
the parameter name field. If any abnormality is
found during the program check, an error is output
and the date of ROM write operation is registered in
an error log.

[Cancel Operation]
 When the function key corresponding to the
"CLOSE" is pressed then data is not changed.

4) Be sure to shut off the power here. Also, be sure to
shut off the power during [Cancel Operation] in step
3) above. Copy to the ROM area is performed the
next time the power is turned on. If the power is not
shut off after the operation in step 3), data will not be
properly copied into the ROM area.

5) Turn on the power to the controller.
After the power is turned on, "OK" is displayed in
"STATUS NUMBER" on the operation panel. After
verifying that "OK" is displayed, press the [START]
button on the operation panel. (The following page
describes the detail of this operation.)

File system of the controller

ROM area RAM area

[1]

Copy

Programs
Parameters

Common
variables
Error logs

Programs
Parameters

Common
variables
Error logs

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<PARAMETER> NAME(BACKUP)
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> (BACKUP) ()
(SRAM->FLROM)

CLOSE 123

Return to RAM operation

Power shutoff

5-442 About ROM operation/high-speed RAM operation function

5Functions set with parameters

[2] Execute a copy operation by manipulating the operation panel.

[3] Change the parameter value and switch to the ROM operation.

Change the value of the ROMDRV parameter from 0 to 1.

After changing it, be sure to shut off the power, and turn it on
again.

 If switching from the RAM operation to the ROM operation is performed without
copying any program into the ROM area, there would be no program to execute, or
a program in which the corrected content has not been reflected would be executed.
Therefore, be sure to perform the program copy operation described above.

START

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

Power
ON

Approx. 8 sec.

Approx. 12 sec.

Approx. 22 sec.
STATUS NUMBER

Power
ON

The completion of writing into the ROM area is
displayed.
This display varies depending on whether or
not there is extension memory.
OK0: W hen standard memory is used
OK3: W hen 2 MB extension memory is used

W hen 2 MB extension memory is used, it takes
approximately 28 seconds longer to start up
after the power is turned on.

Approx. 12 sec.

Press the [START] button on the operation panel.
"88888" is displayed in STATUS NUMBER just like
for normal operation.

Power ON at
normal operation

Power ON after a write
operation into the ROM area

 Caution

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (0 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (1 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

 5Functions set with parameters

 About ROM operation/high-speed RAM operation function 5-443

(4) Display during the ROM operation
A dot is lit in the right edge of "STATUS NUMBER" on the operation panel during the ROM operation.

(5) Program editing during the ROM operation
It is possible to read the programs in the controller during the ROM operation; however, if a rewrite operation
is performed, an error will occur. To edit a program, cancel the ROM operation (change the value of the
ROMDRV parameter from 1 to 0, and reset the power to the controller) first, and then edit it. To switch back
to the ROM operation after the completion of program editing, be sure to perform the operation "Copy Pro-
grams to ROM Area."

STATUS NUMBER STATUS NUMBER

STATUS NUMBER STATUS NUMBER

STATUS NUMBERSTATUS NUMBER

In ROM operation In RAM operation

During override
display

During program
number display

During line number
display

A dot is lit in the right edge of the display.

5-444 About ROM operation/high-speed RAM operation function

5Functions set with parameters

(6) Switching to the RAM operation
Use the following procedure (steps [1] to [3]) to switch to the RAM operation.

[1] Prepare to write the information in the ROM area back to the RAM area.

Write the programs and parameters written into the ROM area
when the RAM operation was switched to the ROM operation
back into the RAM area.

At this point, after the information (programs, parameters, val-
ues of common variables, and error logs) in the RAM area is
cleared once, restore processing is performed from the ROM
area.

1) Display the parameter setting screen from the menu
screen.

2) Enter "RESTORE" in the parameter name field, and
press the [EXE] key.

3) When "FLROM->SRAM" is displayed in the data
field, press the [EXE] key again as is.
* Do not change the content of the data field.

Prepare to restore the information back into the
RAM area. At this point, the ALWAYS program does
not stop. When the preparation is complete, the
cursor moves to the parameter name field.

[Cancel Operation]
 When the function key corresponding to the
"CLOSE" is pressed then data is not changed.

4) in the data field, press the [EXE] key again. The
cursor moves to the parameter name field.

5) Be sure to shut off the power here. Also, be sure to
shut off the power during [Cancel Operation] in step
3) above. Copy to the RAM area is performed the
next time the power is turned on. If the power is not
shut off after the operation in step 3), data will not be
properly copied into the RAM area.

6) Turn on the power to the controller.
After the power is turned on, "OK" is displayed in
"STATUS NUMBER" on the operation panel. After
verifying that "OK" is displayed, press the [START]
button on the operation panel. (The following page
describes the detail of this operation.)

 If the information in the RAM area is restored into the ROM area, all the
contents of the parameters changed during the ROM operation, the values of
common variables, and logs of errors occurred are discarded. If any parameter
was changed during the ROM operation, change the parameter again after
switching to the RAM operation is complete.

File system of the controller

[1]

Copy

ROM area RAM area
Programs

Parameters
Common
variables
Error logs

Programs
Parameters

Common
variables
Error logs

 CAUTION

<MENU>　　 　

1.FILE/EDIT 2.RUN
3.PARAM. 4.ORIGIN/BRK
5.SET/INIT. 6.ENHANCED

CLOSE　 123

<PARAMETER> NAME(RESTORE)
 ELE()
 DATA
 (　　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> (RESTORE) ()
(FLROM->SRAM)

CLOSE 123

Return to RAM operation

Power shutoff

 5Functions set with parameters

 About ROM operation/high-speed RAM operation function 5-445

[2] Execute a restore operation by manipulating the operation panel

[3] Change the parameter value and switch to the RAM operation.

Change the value of the ROMDRV parameter from 1 to 0.

After changing it, be sure to shut off the power, and turn it on
again.

START

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

STATUS NUMBER

Power ON

Approx. 8 sec.

Approx. 12 sec.

Approx. 8 sec.
STATUS NUMBER

Power ON

The completion of restoring into the RAM area
is displayed.
This display varies depending on whether or
not there is extension memory.
OK4: W hen standard memory is used
OK7: W hen 2 MB extension memory is used

* The time required to start up after the power
is turned on is almost the same as the normal
operation, which is different from when writing
to the ROM area.

Approx. 12 sec.

Press the [START] button on the operation panel.
"88888" is displayed in STATUS NUMBER just like
for normal operation.

Power ON at
normal operation

Power ON after a write
restoring into the ROM area

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (0 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (1 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

5-446 About ROM operation/high-speed RAM operation function

5Functions set with parameters

(7) Switching to the high-speed RAM operation(DRAM operation)
Use the following procedure to switch to the high-speed RAM operation.
[1]Change the applicable parameter and switch to high-speed RAM operation (DRAM operation).

Change the value of the ROMDRV parameter from 0 to 2.

After changing it, be sure to shut off the power, and turn it on
again.

[2]Change back the parameter and return to RAM operation.

Change the value of the ROMDRV parameter from 2 to 0.

After changing it, be sure to shut off the power, and turn it on
again.

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (0 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (2 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (0 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

<PARAMETER> NAME(ROMDRV)
 ELE()
 DATA
 (2 　　　　　　　　　　　　 　　)

CLOSE 123 NextDATA Prev

 5Functions set with parameters

 Warm-Up Operation Mode 5-447

5.21 Warm-Up Operation Mode

(1) Functional Overview
The acceleration/deceleration speed and servo system of Mitsubishi robots are adjusted so that they can be
used with the optimum performance in a normal temperature environment. Therefore, if robots are operated
in a low temperature environment or after a prolonged stop, they may not exhibit the intrinsic performance
due to change in the viscosity of grease used to lubricate the parts, leading to deterioration of position accu-
racy and a servo error such as an excessive difference error. In this case, we ask you to operate robots in
actual productions after conducting a running-in operation (warm-up operation) at a low speed. To do so, a
program for warm-up operation must be prepared separately.
The warm-up operation mode is the function that operates the robot at a reduced speed immediately after
powering on the controller and gradually returns to the original speed as the operation time elapses. This
mode allows you to perform a warm-up operation easily without preparing a separate program. If an exces-
sive difference error occurs when operating the robot in a low temperature environment or after a prolonged
stop, enable the warm-up operation mode.

*To Use the Warm-Up Operation Mode
To use the warm-up operation mode, specify 1 (enable) in the WUPENA parameter and power on the con-
troller again.

Note: To use the warm-up operation mode on the robot other than the RV-SD series, it is necessary to spec-
ify a joint axis to be the target of the warm-up operation mode in the WUPAXIS parameter, other than
the WUPENA parameter. For more information, see "(2)Function Details"

*When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status (the speed is automatically reduced). In the warm-up operation status, the robot operates at a speed
lower than the specified operation speed, then gradually returns to the specified speed as the operation time
of a target axis elapses. The ratio of reducing the speed is referred to as the warm-up operation override.
When this value is 100%, the robot operates at the specified speed. In parameter setting at shipment from
the factory, the value of a warm-up operation override changes as shown in the Fig. 5-5 below according to
the operation time of a target axis.

Fig.5-5:Changes in Warm-Up Operation Override

Even in the warm-up operation status, the robot does not decrease its speed if the
MODE switch on the controller's front panel is set to "TEACH," for a jog operation or
for an operation by real-time external control (MXT instruction), and operates at the
originally specified speed.

100%

Time during which
values are constant

(30 sec)

Valid time of the warm-up operation status
(60 sec)

Warm-up operation
override

Time during
which a target

axis is operating

Initial value
(70%)

 CAUTION

5-448 Warm-Up Operation Mode

5Functions set with parameters

In the warm-up operation status, because the robot operates at a speed lower than
the originally specified speed, be sure to apply an interlock with peripheral units.

If the operating duty of the target axis is low, a servo error such as an excessive dif-
ference error may occur even when the warm-up operation mode is enabled.
In such a case, change the program, and lower the speed as well as the acceleration/
deceleration speed.

Also, when STATUS NUMBER on the controller's front panel is set to override display in the warm-up oper-
ation status, an underscore (_) is displayed in the second digit from the left so that you can confirm the
warm-up operation status.

Fig.5-6:Override Display in the Warm-Up Operation Status

When a target axis operates and the warm-up operation status is canceled, the robot operates at the speci-
fied speed. Note that the joint section cools down at a low temperature if the robot continues to stop after the
warm-up operation status is canceled. Therefore, if a target axis continues to stop for a prolonged period
(the setting value at shipment from the factory is 60 min), the warm-up operation status is set again and the
robot operates at a reduced speed.

Note 1: When powering off the controller and then powering on again, if the power-off period is short, the
temperature of the robot's joint section does not decrease too much. Therefore, when powering off
the controller and then powering on again after the warm-up operation status is canceled, if the
power-off period is short, the robot starts in the normal status instead of the warm-up operation sta-
tus.

Note 2: A target axis refers to the joint axis that is the target of control in the warm-up operation mode. It is
the joint axis specified in the WUPAXIS parameter.

 CAUTION

 CAUTION

Normal Status Warm-Up Operation Status

 5Functions set with parameters

 Warm-Up Operation Mode 5-449

(2) Function Details
1)Parameters, Dedicated I/O Signals and Status Variables of the Warm-Up Operation Mode

The following parameters, dedicated I/O signals and status variables have been added in the warm-up operation
mode. Refer to Page 381, "5.1 Movement parameter", Page 474, "6.3 Dedicated input/output" and Page 92, "4

MELFA-BASIC V" for details.

Table 5-16:Parameter List of the Warm-Up Operation Mode

Table 5-17:Dedicated I/O Signal List of Warm-Up Operation Mode

Table 5-18:Status Variable of Warm-Up Operation Mode

Parameter name Description and value

WUPENA Designate the valid/invalid of the Warm-up operation mode.
0:Invalid/ 1: Valid

WUPAXIS Specify the joint axis that will be the target of control in the warm-up operation mode by selecting bit ON or
OFF in hexadecimal (J1, J2, from the lower bits).

Bit ON: Target axis/ Bit OFF: Other than target axis

WUPTIME Specify the time (unit: min.) to be used in the processing of warm-up operation mode. Specify the valid time in
the first element, and the resume time in the second element.
Valid time: Specify the time during which the robot is operated in the warm-up operation status and at a

reduced speed. (Setting range: 0 to 60)
Resume time: Specify the time until the warm-up operation status is set again after it has been canceled if a

target axis continues to stop. (Setting range: 1 to 1440)

WUPOvrd Perform settings pertaining to the speed in the warm-up operation status. Specify the initial value in the first
element, and the value constant time in the second element. The unit is % for both.
Initial value: Specify the initial value of an override (warm-up operation override) to be applied to the operation

speed when in the warm-up operation status. (Setting range: 50 to 100)
Ratio of value constant time: Specify the duration of time during which the override to be applied to the opera-

tion speed when in the warm-up operation status does not change from the ini-
tial value, using the ratio to the valid time. (Setting range: 0 to 50)

Parameter name Class Function

MnWUPENA (n=1t o 3)
(Operation right required)

Input Enables the warm-up operation mode of each mechanism. (n: FMechanism No.)

Output Outputs that the warm-up operation mode is currently enabled. (n: FMechanism No.)

MnWUPMD(n=1 to 3) Output Outputs that the status is the warm-up operation status, and thus the robot will operate at a
reduced speed. (n: FMechanism No.)

Status variable Function

M_Wupov Returns the value of an override (warm-up operation override) to be applied to the command speed in
order to reduce the operation speed when in the warm-up operation status.

M_Wuprt Returns the time during which a target axis in the warm-up operation mode must operate to cancel the
warm-up operation status.

M_Wupst Returns the time until the warm-up operation status is set again after it has been canceled.

5-450 Warm-Up Operation Mode

5Functions set with parameters

2) To Use the Warm-Up Operation Mode
To use the warm-up operation mode, enable its function with parameters. The function can also be enabled
or disabled with a dedicated input signal.

*Specifying with a Parameter
To enable the warm-up operation mode with a parameter, set 1 in the WUPENA parameter. After changing
the parameter, the warm-up operation mode is enabled by powering on the controller again. In the following
cases, however, the warm-up operation mode will not be enabled even if 1 is set in the WUPENA parame-
ter.
• When 0 is set in the WUPAXIS parameter (a target axis in the warm-up operation mode does not exist)
• When 0 is set in the first element of the WUPTIME parameter (the warm-up operation status period is 0

min)
• When 100 is set in the first element of the WUPOvrd parameter (the speed is not decreased even in the

warm-up operation status)
When using the warm-up operation mode, change these parameters to appropriate setting values.

Note: For robots other than the RV-SD series, the setting value of the WUPAXIS parameter at shipment
from the factory has been set to 0. When using the warm-up operation mode, specify a target axis in
the warm-up operation mode (the joint axis to be the target of control in the warm-up operation mode;
for example, a joint axis that generates an excessive difference error when operating in a low temper-
ature environment).

*Switching with a Dedicated Input Signal
By assigning the MnWUPENA (n = 1 to 3: mechanism number) dedicated input signal, the warm-up opera-
tion mode can be enabled or disabled without powering on the controller again. Also, the current enable/dis-
able status can be checked with the MnWUPENA (n = 1 to 3: mechanism number) dedicated output signal.

Note 1:In order for the dedicated input signal above to function, it is necessary to enable the warm-up oper-
ation mode in advance by setting the parameters described previously.

Note 2:This dedicated input signal requires the operation right of external I/O. Also, no input is accepted
during operation or jog operation.

Note 3:The enable/disable status specified by this dedicated input signal is held even after the control right
of external I/O is lost.

3) When the Warm-Up Operation Mode Is Enabled
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
In the warm-up operation status, the robot operates at a speed lower than the actual operation speed by
applying a warm-up operation override to the specified speed. The operation speed is gradually returned to
the specified speed as the operation time of a target axis elapses. When the warm-up operation status is
canceled, the robot will start operating at the specified speed.

*Initial Status Immediately After Power On
When the warm-up operation mode is enabled, powering on the controller enters the warm-up operation
status.
However, when powering off the controller and then powering on again after the warm-up operation status is
canceled, if the power-off period is short, the robot starts in the normal status instead of the warm-up opera-
tion status as the temperature of the robot's joint section has not been lowered much from power-off. To be
specific, the robot starts in the normal status if the following condition is satisfied:
Condition: The robot starts in the normal status if the time during which a target axis continues to stop from

the cancellation of the warm-up operation status to powering on is shorter than the time specified
in the second element of the WUPTIME parameter (the resume time of the warm-up operation
status).

Note that if the warm-up operation mode is switched to be enabled with the MnWUPENA (n = 1 to 3: mech-
anism number) dedicated input signal, the warm-up operation status is always set.

 5Functions set with parameters

 Warm-Up Operation Mode 5-451

*Methods to Check the Warm-Up Operation Status
Whether the current status is the warm-up operation status or normal status can be checked in the following
three methods:
• Checking with STATUS NUMBER on the controller's front panel

The current status can be checked by setting STATUS NUMBER to override display. In the warm-up oper-
ation status, an underscore (_) is displayed in the second digit from the left.

Fig.5-7:Override Display in the Warm-Up Operation Status

• Checking with a status variable
The current status can be checked by monitoring the value of the M_Wupov status variable (the value of a
warm-up operation override). In the normal status, the value of M_Wupov is set to 100%; in the warm-up
operation status, it is below 100%.

• Checking with a dedicated output signal
In the warm-up operation status, the MnWUPMD (n = 1 to 3: mechanism number) dedicated output signal is
output.

*Switching Between the Normal Status and the Warm-Up Operation Status
When in the warm-up operation status, if a target axis in the warm-up operation mode continues operating
and its operation time exceeds the valid time of the warm-up operation status, the warm-up operation status
is canceled and the normal status is set. Thereafter, if the robot continues to stop, the joint section is cooled
down in a low temperature environment. When a target axis continues to stop over an extended period of
time and the resume time of the warm-up operation status is exceeded, the normal status switches to the
warm-up operation status again.

• Canceling the warm-up operation status
If the accumulated time a target axis has operated exceeds the valid time of the warm-up operation status,
the warm-up operation status is canceled and the normal status is set. Specify the valid time of the warm-up
operation status in the first element of the WUPTIME parameter. (The setting value at shipment from the
factory is 1 min.) If a multiple number of target axes exist, the warm-up operation status is canceled when all
target axes exceed the valid time. Note that, with the M_Wuprt status variable, you can check when the
warm-up operation status will be canceled after how much more time a target axis operates.

• Switching from the normal status to the warning-up operation status
If the time during which a target axis continues to stop exceeds the resume time of the warm-up operation
status, the normal status switches to the warm-up operation status. Specify the resume time of the warm-up
operation status in the second element of the WUPTIME parameter. (The setting value at shipment from the
factory is 60 min.)
If a multiple number of target axes exist, the warm-up operation status is set when at least one of the axes
exceeds the resume time of the warm-up operation status.
Note that, with the M_Wupst status variable, you can check when the status is switched to the warm-up
operation status after how much more time a target axis continues to stop.
Note: If a target axis is not operating even when the robot is operating, it is determined that the target axis is

stopping.

Normal Status Warm-Up Operation Status

5-452 Warm-Up Operation Mode

5Functions set with parameters

The following Fig. 5-8 shows an example of a timing chart for switching from the normal status to the warm-
up operation status.

Fig.5-8:Example of Switching Between the Normal Status and the Warm-Up Operation Status

*Warm-Up Operation Override Value
An override to be applied to the operation speed in order to reduce the speed in the warm-up operation sta-
tus is referred to as the warm-up operation override. The warm-up operation override changes as shown in
the figure below according to the time during which a target axis operates, and is immediately reflected in
the operation of the robot. Specify the initial value of the warm-up operation override and the ratio of the
time during which the override does not change in relation to the valid time of the warm-up operation status
using the WUPOvrd parameter. (The initial value is 70% and the ratio is 50% (= 30 sec) in the settings at
shipment from the factory.)
These values can be checked with the M_Wupov status variable.

Fig.5-9:Changes in Warm-Up Operation Override

Normal status

Operating

Stopping

Accumulated value
of target axis

operation time

Time during which
a target axis

continues to stop

Warm-up
operation status

Valid time

Resume time

Because the accumulated
operation time reaches the valid
time, the warm-up operation
status is canceled.

Target axis
operation

Because a target axis
continues to stop for the
time specified as the
resume time, the status
changes to the warm-up
operation status again.

Time

100%

Value constant time

Valid time of the warm-up operation status

Warm-up operation
override

Time during which a
target value is operating

Initial value

Change to the warm-up operation status Cancel the warm-up operation status

・Initial value: First element of the WUPOVRD parameter
・Valid time: Second element of the WUPTIME parameter
・Value constant time: Valid time x ratio specified in the second

element of the WUPOVRD parameter

 5Functions set with parameters

 Warm-Up Operation Mode 5-453

Note that the actual override in the warm-up operation status is as follows:
• During joint interpolation operation = (operation panel (T/B) override setting value) x (program override

(Ovrd instruction)) x (joint override (JOvrd instruction)) x warm-up operation override
• During linear interpolation operation = (operation panel (T/B) override setting value) x (program override

(Ovrd instruction)) x (linear specification speed (Spd instruction)) x warm-up operation override

Note 1:If the MODE switch on the controller's front panel is set to "TEACH," or for a jog operation or an oper-
ation by real-time external control (MXT instruction), the warm-up operation override is not reflected
and the robot operates at the originally specified speed.

Note 2:In the warm-up operation status, because the robot operates at a speed lower than the originally
specified speed, be sure to apply an interlock with peripheral units.

Note 3:If a multiple number of target axes exist, the warm-up operation override is calculated using the min-
imum operation time among the target axes. If a certain target axis does not operate and the value of
the M_Wuprt status variable does not change, the value of the warm-up operation override does not
change regardless how much other target axes operate.
Also, the value may return to the initial value before reaching 100% depending on whether each tar-
get axis is operating or stopping.
For example, when the value of a warm-up operation override is larger than the initial value, if a cer-
tain target axis switches from the normal status to the warm-up operation status, the operation time
of that axis becomes the smallest (the operation time is 0 sec) and the warm-up operation override
returns to the initial value.

(3) If alarms are generated
1) An excessive difference error occurs even if operating in the warm-up operation status.
• If an error occurs when the warm-up operation override is set to the initial value, decrease the value of the

initial value (the first element of the WUPOvrd parameter).
• If an error occurs while the warm-up operation override is increasing to 100%, the valid time of the warm-

up operation status or the value constant time may be too short. Increase the value of the first element of
the WUPTIME parameter (valid time) or the second element of the WUPOvrd parameter (value constant
time ratio).

• If an error cannot be resolved after taking the above actions, change the operation program, and lower the
speed and/or the acceleration/deceleration speed.

2) An excessive difference error occurs if the warm-up operation status is canceled.
• Increase the value of the first element of the WUPTIME parameter, and extend the valid time of the warm-

up operation status.
• Check to see if the robot's load and the surrounding temperature are within the specification range.
• Check whether the target axis continues to stop for an extended period of time after the warm-up operation

status has been canceled. In such a case, decrease the value of the second element of the WUPTIME
parameter, and shorten the time until the warm-up operation status is set again.

• If an error cannot be resolved after taking the above actions, change the operation program, and reduce
the speed and/or the acceleration/deceleration speed.

3) The warm-up operation status is not canceled at all.
• Check the setting value of the WUPAXIS parameter to see if a joint section that does not operate at all is

set as a target axis in the warm-up operation mode.
• Check to see if a target axis has been stopping longer than the resume time (the second element of the

WUPTIME parameter) of the warm-up operation status.
• Check to see if an operation is continuing at an extremely low specified speed (about 3 to 5% in override

during joint interpolation). If the specified speed is low, there is no need to use the warm-up operation
mode. Thus, disable the warm-up operation mode.

5-454 About singular point passage function

5Functions set with parameters

5.22 About singular point passage function
(1) Overview of the function

Mitsubishi's robots calculate linear interpolation movement and store teaching positions as position data in
the XYZ coordinates system. In the case of a vertical 6-axis robot, for example, the position data is
expressed using coordinate values of the robot's X, Y, Z, A, B and C axes, but the robot can be in several
different postures even if the position data is the same. For this reason, the robot's position can be selected
among the possible options using the coordinate values and the structure flag (a flag indicating the posture).
However, there can be an infinite number of combinations of angles that a particular joint axis can take.
Even if the structure flag is used, at the positions where this flag is switched, it may not be possible to oper-
ate the robot with the desired position and posture (for example, in the case of a vertical 6-axis robot, axes
J4 and J6 are not uniquely determined when axis J5 is 0 degree). Such positions are called singular points,
and they cannot be reached through XYZ jog and linear interpolation-based operation. To avoid this prob-
lem in the past, the operation layout had to be designed such that no singular points would exist in the work-
ing area, or the robot had to be operated using joint interpolation if it could not avoid passing a singular
point.
The singular point passage function allows a robot to pass singular points through XYZ jog and linear inter-
polation, which helps increasing the degree of freedom for the layout design by enlarging the working area
by linear interpolation.

*Positions of singular points that can be passed
The positions of singular points that the singular point passage function allows the robot to pass are as fol-
lows.

In the case of vertical 6-axis robots

<1> Positions where axis J5 = 0 degree
In these positions, the structure flag
switches between NonFlip and Flip.

<2> Positions where the center of axis J5 coincides with the
rotation axis of axis J1

In these positions, the structure flag switches between Right
and Left.

In the case of vertical 5-axis robots

<1> Positions where the center of mechanical interface coincides with the rotation
axis of axis J1

In these positions, the structure flag switches between Right and Left.

 5Functions set with parameters

 About singular point passage function 5-455

*Operation when the singular point passage function is valid
When the singular point passage function is made valid, the robot can move from position A to position C via
position B (the position of a singular point) and vice versa through XYZ jog and linear interpolation opera-
tion. In this case, the value of the structure flag switches before and after passing position B.
If the singular point passage function is invalid (or not supported), the robot stops before moving from posi-
tion A to position B, as an error occurs. The robot stops immediately before position B in the case of XYZ jog
operation.

The robot can pass a singular point when the robot's motion path passes through the singular point. If the
motion path does not go through the singular point (passes near the singular point), the robot continues
operation without switching the value of the structure flag.
•Positions D -> E -> F: The robot's motion path passes through a singular point

(the structure flag switches before and after position E).

•Positions G -> H -> I: The robot's motion path passes near a singular point
(the structure flag is not switched).

When passing near a singular point, the robot may rotate in a wide circle as in the
case of position H in the figure above. Be sure to keep an eye on the robot and avoid
getting in the way when working near the robot, such as when teaching positions.

Position A Position B Position C

Position D Position E Position F

Position G Position H Position IPosition H

 CAUTION

5-456 About singular point passage function

5Functions set with parameters

*How to use the singular point passage function
In order to use the singular point passage function in jog operation, specify 1 (valid) for parameter FSP-
JOGMD and turn the power supply to the controller off and on again. To use the function in automatic oper-
ation, specify 2 for constant 2 in the TYPE specification of the interpolation instruction.

*Limitations
There are the following limitations to the use of the singular point passage function.

(1) The singular point passage function cannot be used if additional axes are used for multiple mecha-
nisms.

(2) The singular point passage function cannot be used if synchronization control is used for additional
axes of a robot.

(3) The singular point passage function cannot be used if the compliance mode is valid.
(4) The singular point passage function cannot be used if the collision detection function is valid.
(5) The information collection level of the maintenance forecast function must be set to level 1 (factory

setting).

(2) Singular point passage function in jog operation
In case of jog operation, the singular point passage function is specified to be valid (1) or invalid (0) by
parameter FSPJOGMD.

1) For robots that cannot use the singular point passage function, changing the setting value of parameter
FSPJOGMD has no effect; the same operation as in the past is performed (the models supporting the
singular point passage function are the RV-3SD/3SDJ/6SD/6SDL/12SD/12SDL/18SD series).

2) It is not possible to specify multiple axes to perform jog operation at the same time when passing a sin-
gular point. If it is attempted to operate an axis while another axis is operating, the operation is ignored.

3) A singular point adjacent alarm is generated if the robot comes near a singular point when performing jog
operation using a T/B. See Page 436, "5.19 About the singular point adjacent alarm".

4) The specification of parameter FSPJOGMD is reflected in jog operation via dedicated input signals as
well.

(3) Singular point passage function in position data confirmation (position jump)
The specification of parameter FSPJOGMD is also reflected in position data confirmation (position jump).

If an interpolation instruction (e.g., Mvs P1) is executed directly from T/B when param-
eter FSPJOGMD is set to 1 (valid), the robot operates with the singular point passage
function enabled even if the function is not made valid by the TYPE specification.

FSPJOGMD XYZ jog Tool jog 3-axis XYZ jog CYLINDER jog JOINT jog

0
(Factory setting)

Same as in the past Same as in the past Same as in the past Same as in the past Same as in the past

1
Singular point pas-
sage XYZ jog

Singular point pas-
sage Tool jog

Same as in the past Same as in the past Same as in the past

FSPJOGMD MO position movement MS position movement

0
(Factory setting)

Same as in the past Same as in the past

1 Same as in the past Singular point passage position movement

 CAUTION

 5Functions set with parameters

 About singular point passage function 5-457

(4) Singular point passage function in automatic operation
In order to use the singular point passage function in automatic operation, make the function valid in the
TYPE specification for each target interpolation instruction.

TYPE (Type)

[Function]
Specify the singular point passage function in the TYPE specification of an interpolation instruction. The
interpolation instructions that support this function are linear interpolation (Mvs), circular interpolation (Mvr,
Mvr2 and Mvr3).

[Format]

[Terminology]
<Constant 1> 0/1 : Short cut/detour
<Constant 2> 0/1/2 : Equivalent rotation/3-axis XYZ/singular point passage

[Reference Program]
1 Mvs P1 TYPE 0,2 ' Perform linear interpolation from the current position to P1 with the sin-

gular point passage function enabled.
2 Mvr P1,P2,P3 TYPE 0,2 ' Perform circular interpolation from P1 to P3 with the singular point pas-

sage function enabled.

[Explanation]
(1) A runtime error occurs if 2 is specified for constant 2 for robots that do not support the singular point pas-

sage function.
(2) The structure flag is not checked between the starting point and the end point if the singular point passage

function is specified. Moreover, since the structure flag of the target position cannot be identified, the move-
ment range is not checked for the target position and intermediate positions before the start of operation.

(3) If a speed is specified with the Spd instruction, the specified speed is set as the upper limit and the robot
automatically lowers the speed down to the level where a speed error does not occur near a singular point.

(4) The optimal acceleration/deceleration is not applied for interpolation instructions for which the singular
point passage function is specified; the robot operates with a fixed acceleration/deceleration. At this point, if
the acceleration time and the deceleration time are different due to the specification of the Accel instruction,
the longer time is used for both acceleration and deceleration.

(5) The specification of the Cnt instruction is not applied to interpolation instructions for which the singular
point passage function is specified; the robot operates with acceleration/deceleration enabled.

(6) If the current position and the starting point position are different when a circular interpolation instruction is
set to be executed, the robot continues to operate until the starting point using 3-axis XYZ linear interpola-
tion, even if the singular point passage function is specified in the TYPE specification.

(7) If an interpolation for which the singular point passage function is specified is paused and the operation is
resumed after jog movement, the robot moves to the position at which the operation was paused according
to parameter RETPATH. If parameter RETPATH is set to 0 (invalid: do not return to the paused position),
the structure flag is not switched unless the motion path after resuming the operation does not pass a sin-
gular point as in the figure below. Thus, the posture of the robot at the completion of interpolation may be
different from the case where the operation is not paused.

TYPE[]<Constant 1>, <Constant 2>

5-458 About singular point passage function

5Functions set with parameters

(8) If the singular point passage function is specified, the operation speed may be lowered compared to nor-
mal linear interpolation, etc. Moreover, the singular point passage function may affect the execution speed
of programs as the function involves complicated processing. Specify the singular point passage function
only for interpolation instructions where the function is required.

NonFlip

Singular point

The structure flag changes from NonFlip to
Flip as the robot passes a singular point

NonFlip

Singular point

The structure flag remains NonFlip as the
robot does not pass a singular point

Pause

Jog
Resume

 5Functions set with parameters

 About the impact detection function 5-459

5.23 About the impact detection function
(1) Overview of the function

When the robot is operated to perform various tasks, it may interfere with workpieces and peripheral devices
due to operation mistakes of operators, errors in operation programs and so on. Conventionally, in such
cases, the robot would be stopped by protection functions (such as excessive error detection) of servos that
control the motor drive of the robot to prevent damage to the robot hands and arms, workpieces and periph-
eral devices. However, because the robots operate at higher speeds and with larger motors, it becomes dif-
ficult to prevent damage solely by the servo protection functions if the load applied at interference increases.
The impact detection function detects interferences at higher sensitivity than the servo's conventional pro-
tection functions and stops the robot more quickly in order to avoid damage.

Even if the impact detection function is enabled, it is not possible to prevent injury
to operators in case they get hit by moving robots. The prescribed safety rules must
always be observed in all cases, whether the impact detection function is enabled
or disabled.

Even if the impact detection function is enabled, it is not possible to prevent dam-
age to robots, hands and workpieces due to interference with peripheral devices
completely. As a general rule, pay sufficient attention to avoid interference with
peripheral devices when operating and handling robots.

*Interference detection principle
If a robot interferes with peripheral devices, the actual position does not follow the position instruction of
each joint axis and greater torque is generated due to the feedback control of a servo. Unless the interfer-
ence is ended, the generated torque will increase further and become much larger than when there is no
interference.
The impact detection function detects interferences using such servo characteristics. First, the torque
required for each joint axis is estimated based on the current position instruction and load setting. Next, the
values are compared with the actually generated torques for each axis one by one. If the difference exceeds
the allowable range (detection level), the function judges that an interference occurred. It immediately turns
the servo off and stops the robot.

Fig.5-10:Interference detection principle

 WARNING

 CAUTION

Estimated torque

Actual torque

Torque

Time

Detect interference

Interference occurs

Allowable range + side
(detection level + side)

Allowable range - side
(detection level - side)

5-460 About the impact detection function

5Functions set with parameters

(2) Applicable models
The impact detection function is available for the following models.

Table 5-19:Models available with impact detection function

(3) Related parameters
The following parameters are related to the impact detection function. Refer to Page 381, "5.1 Movement
parameter" and Page 434, "5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration set-
tings)" for the detailed explanation of these parameters.

Table 5-20:Parameters related to the impact detection function

Available models

RV-2SQ/3SQ/3SQJ/6SQ/6SQL/12SQ/12SQL series, RH-6SQH/12SQH/18SQH/20SQH seies, RH-3SQHR
RV-2SD/3SD/3SDJ/6SD/6SDL/12SD/12SDL series, RH-6SDH/12SDH/18SDH/20SDH seies, RH-3SDHR

Prameter
name

Description and value
Setting value
at shipment

COL Define whether to enable or disable the impact detection function as well as whether it
is valid or invalid immediately after turning the power supply on.
Element 1: Specify whether to enable (1) or disable (0) the impact detection function
Element 2: Specify the initial state in program operation. Enable (1)/disable (0)
Element 3: Specify whether the function is enabled or disabled at jog operation.

Enabled (1)/disabled (0)/NOERR mode (2)

RV-SQ/SD
series
0,0,1
RH-SQH/SDH
series
1,0,1
RH-SQHR/
SDHR series
1,1,1

COLLVL Set the initial value of the detection level (sensitivity) of each joint axis at program
operation. This value is a scaling factor that amplifies the detection level standard
value prescribed in the impact detection function. The smaller the value, the higher the
detection level.
Setting range: 1 to 500, unit: %

The setting
varies depend-
ing on the
model.

COLLVLJG Set the detection level (sensitivity) of each joint axis at jog operation (including pause
status). This value is a scaling factor that amplifies the detection level standard value
prescribed in the impact detection function. The smaller the value, the higher the
detection level.
Setting range: 1 to 500, unit: %

The setting
varies depend-
ing on the
model.

HNDDAT*
* is 1 to 8

Set the hand conditions (via tool coordinates).
HNDDAT0 is employed as the initial condition immediately after turning the power sup-
ply on. (Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, center of
gravity Z) Unit: kg, mm

The setting
varies depend-
ing on the
model.

WRKDAT*
* is 1 to 8

Set the workpiece conditions (via tool coordinates).
WRKDAT0 is employed as the initial condition immediately after turning the power sup-
ply on. (Weight, size X, size Y, size Z, center of gravity X, center of gravity Y, center of
gravity Z) Unit: kg, mm

0.0, 0.0, 0.0,
0.0, 0.0, 0.0,
0.0

HNDHOLD*
* is 1 to 8

Specify whether to grab (1) or not grab (0) workpieces when the HOpen and HClose
instructions are executed.
Element 1: Specify the status when the HOpen instruction is executed.
Element 2: Specify the status when the HClose instruction is executed.

0,1

 5Functions set with parameters

 About the impact detection function 5-461

(4) How to use the impact detection function
To use the impact detection function, first specify "Enable (1)" for element 1 of the COL parameter and turn
on the power supply to the control again. Next, make settings for the impact detection function (specify to
enable/disable the function and the detection level) for jog operation and program operation, respectively.
(Refer to Page 460, "Table 5-20: Parameters related to the impact detection function" as well.)

1) How to use the function during jog operation
During jog operation, all the settings for the impact detection function are made via parameters. For this rea-
son, if settings such as enabled/disabled are changed while the power supply to the controller is turned on,
the changes are not reflected until the power supply is turned on again the next time. Table 5-21 lists param-
eters used when setting the impact detection function for jog operation.

Table 5-21:Parameters set for the impact detection function used during jog operation

*Adjustment of impact detection level
The detection level (sensitivity) at jog operation is set relatively low. If a higher detection level is required,
use the COLLVLJG parameter to adjust the level. Be sure to set the HNDDAT0 and WRKDAT0 parameters
properly as well in order to estimate the torque accurately.

*Behavior when interference is detected
If an interference with peripheral devices or similar is detected during jog operation, an error numbered in
the 1010's (the least significant digit is the axis number) is generated and the robot is stopped as the servo
is turned off. If the robot is in the NOERR mode (2 is specified for element 3 of the COL parameter), no error
is generated, but the robot stops as the servo is turned off (an error numbered in the 1010's will be recorded
in the error history, however).

*Operation after interference
If the servo is turned on while a hand or arm is in contact with peripheral devices or similar, the impact is
detected again, which may prevent the servo from being turned on. If an error occurs repeatedly when
attempting to turn the servo on, move the arm by releasing the brake once or perform jog operation by refer-
ring to Page 55, "3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled" to ensure that
there is no interference.

*Method for disabling collision detection temporarily during jog operation
Perform servo-on and jog operation while holding down the "Reset" key on the TB. Collision detection is dis-
abled as long as the key is pressed.

Prameter
name

Description and value
Setting value at

shipment

COL Define whether to enable or disable the impact detection function as well as
whether it is valid or invalid immediately after turning the power supply on.
Element 1: Enables (1) the impact detection function (enable (1)/disable (0))
Element 3: Specify whether the function is enabled or disabled at jog operation.

Enabled (1)/disabled (0)/NOERR mode (2)

RV-SQ/SD series
0,0,1
RH-SQH/SDH series
1,0,1
RH-SQHR/SDHR
series
1,1,1

COLLVLJG Set the detection level (sensitivity) of each joint axis at jog operation (including
pause status).
(Reference) In the case of RV-3SD

The initial setting is 100, 100, 100, 100, 100, 100, 100, 100.

The setting varies
depending on the
model.

HNDDAT0 Set the hand conditions (via tool coordinates).
(Reference) In the case of RV-3SD

The initial setting is 3.5,284.0,284.0,286.0,0.0,0.0,75.0.

The setting varies
depending on the
model.

WRKDAT0 Set the workpiece conditions (via tool coordinates). 0.0, 0.0, 0.0, 0.0, 0.0,
0.0, 0.0

Point
If the detection level is set too high (the setting value is too small), interference may be detected errone-
ously depending on the robot position and posture. In such cases, lower the detection level (make the
setting value larger) before using.

5-462 About the impact detection function

5Functions set with parameters

 2)How to use the function at program operation
The initial state of the impact detection function at program operation is specified by a parameter. In prac-
tice, however, the function is used by changing the setting in a program using a MELFA-BASIC V instruc-
tion. The parameters for setting the initial state and instructions related to the impact detection function are
shown in the table below. Refer to Page 166, "4.14 Detailed explanation of command words" and Page 285,
"4.15 Detailed explanation of Robot Status Variable" for the detailed explanation of the instructions.

Table 5-22:Parameters to be set for the impact detection function at program operation.

Table 5-23:MELFA-BASIC V instructions and status variables used in the impact detection function at
program operation

Prameter
name

Description and value
Setting value at

shipment

COL Define whether to enable or disable the impact detection function as well as
whether it is valid or invalid immediately after turning the power supply on.
Element 1: Enables (1) the impact detection function (enable (1)/disable (0))
Element 2: Set enable (1) as the initial state of the impact detection function at

program operation (enable (1)/disable (0)).

RV-SQ/SD series
0,0,1
RH-SQH/SDH
series
1,0,1
RH-SQHR/SDHR
series
1,1,1

COLLVL Set the detection level (sensitivity) of each joint axis at jog operation (including
pause status).
(Reference) In the case of RV-3SD

The initial setting is 100, 100, 100, 100, 100, 100, 100, 100.

The setting varies
depending on the
model.

HNDDAT*
* is 1 to 8

Set the hand conditions (via tool coordinates).
(Reference) In the case of RV-3SD

The initial setting is 3.5,284.0,284.0,286.0,0.0,0.0,75.0.

The setting varies
depending on the
model.

WRKDAT*
* is 1 to 8

Set the workpiece conditions (via tool coordinates). 0.0, 0.0, 0.0, 0.0,
0.0, 0.0, 0.0

HNDHOLD*
* is 1 to 8

Specify whether to grab (1) or not grab (0) workpieces when the HOpen and
HClose instructions are executed.

0,1

Instruction/
Status variable

Description

ColChk Enables or disables the impact detection function or specifies the NOERR mode.
Example: ColChk ON 'Enable the impact detection function.

COLLVL Specifies the detection level (sensitivity) of the impact detection function for each joint axis. This
value is a scaling factor that amplifies the detection level standard value prescribed in the impact
detection function (unit: %).
Example: COLLVL 80, 120, 120, 120, 50, 80, 'Specify the detection levels of axes J1 to J6.

LoadSet Specifies the hand and workpiece conditions. Use this instruction when the hand to be used or
workpieces to be grabbed are changed during program operation.
Example: LoadSet 1, 0 'Specify conditions of the HNDDAT1 and WRKDAT0 parameters.

J_ColMxl Returns the maximum difference value between the estimated torque and actual torque by convert-
ing it to the detection level. It is referenced when adjusting the arguments of the COLLVL instruction
(unit: %).

M_ColSts Returns 1 when an interference is detected. It is used as interrupt condition in the NOERR mode.

P_ColDir Returns the robot operation direction (operation ratios in the X, Y and Z directions) when an interfer-
ence is detected. It is used in retreat operation in the NOERR mode.

Point
If the impact detection function is enabled for the entire program, the probability of erroneous detection
becomes higher accordingly. Hence, the detection level must be lowered in order to eliminate erroneous
detection. As a result, the interference detection sensitivity may be lowered for operations for which
impact detection is required. Thus, it is a good idea to use the impact detection function only for opera-
tions that may cause interference, so that the detection sensitivity may be kept high when in use.

 5Functions set with parameters

 About the impact detection function 5-463

*Adjustment of impact detection level
Adjust the detection level (sensitivity) at program operation according to the robot operation. As a reference,
an example of adjustment procedure is shown below. be sure to set the workpiece condition and hand con-
dition properly as well in order to estimate the torque accurately.

*Behavior when interference is detected
If an interference with peripheral devices or similar is detected during program operation, an error numbered
in the 1010's (the least significant digit is the axis number) is generated and the robot is stopped as the
servo is turned off. If the robot is in the NOERR mode, no error is generated, but the robot stops as the
servo is turned off (an error numbered in the 1010's will be recorded in the error history, however).

Table 5-24:Example of detection level adjustment procedure at program operation

Step Description

1 Add the COLLVL and ColChk instructions before and after operations for which the impact detection func-
tion is used.

2 Set the detection level low (the argument of the COLLVL instruction is set to a large value such as 300) in
order to prevent erroneous detection of interference.

3 Run the program and monitor the value of J_ColMxl in the target operation. Note that the value may fluctu-
ate; repeat the target operation several times and record the J_ColMxl value each time.

4 Obtain the maximum value for each joint axis from multiple J_ColMxl values and add some margin (e.g.,
20%) to the value. Then set this value as the argument of the COLLVL instruction.

5 Set the value obtained in step 4 to the COLLVL instruction and run the program to check that no erroneous
detection occurs at the operation for which the impact detection function is used. If an interference is erro-
neously detected, gradually increase the value of the argument of the COLLVL instruction to lower the
detection level until no erroneous detection occurs.

Point
If the impact detection function is enabled, the execution time (tact time) may become longer depending
on the program. In order to reduce influence on the tact time, use the impact detection function only for
operations that may cause interference, rather than enabling the function for the entire program.

Point
When the operation speed is changed, it may become necessary to change the detection level. Operate
the robot at the actual operation speed and then adjust the detection level.

Point
If the impact detection function is used for multiple robots, it may become necessary to adjust the detec-
tion level for each robot even for the same operation, due to individual differences of robots due to differ-
ences in motor characteristics and usage environment. Note also that if there are several robot models,
the detection level must be adjusted for each robot.

5-464 About the impact detection function

5Functions set with parameters

*Program example
This program moves the robot to a retreat position by interrupt processing if an interference is detected.

1 Def Act 1,M_ColSts(1)=1 GoTo *HOME,S ' Define processing to be executed if an interference is detected
by interruption.

2 Act 1=1
3 ColLvl 80,120,120,100,80,80,, ' Set the detection level.
4 ColChk ON,NOERR ' Enable the impact detection function in the NOERR mode.
5 Mov P1
6 Mov P2 ' Jump to the interrupt processing if an interference is detected

while executing step 5 to 8.
7 Mov P3
8 Mov P4
9 ColChk OFF ' Disable the impact detection function.
10 Act 1=0
 .
 .
1000 *HOME ' Interrupt processing when an interference is detected
1001 ColChk OFF 'Disable the impact detection function.
1002 Servo On ' Turn the servo on.
1003 PESC=P_ColDir(1)*(-5) ' Calculate the retreat amount (reverse operation of approxi-

mately 5 mm).
1004 PDst=P_Fbc(1)+PESC ' Create a retreat position.
1005 Mvs PDst ' Move to the retreat position.
1006 Error 9100 ' Pause the operation by generating user-defined L-level error.
 .
 .

3) Supplement
*Collision detection function predicts an imminent collision by estimating the amounts of torque required at
respective articulated arm axes on the basis of an prevailing position command, load settings, etc. and com-
paring the values thus obtained with the torques which are actually developing.
This function, even if a real collision does not happen, will identify a collision when the robot arm receives an
external force during normal operation. For example, the robot hand may experience a drag from interfer-
ence with a piping or cabling. Depending on the amount of resultant external force, the collision detection
function judges that a collision has occurred. Check to see if the robot is not subjected to any force other
than those originating from a collision while the collision detection function is enabled.

*Distinction between jog operation and program operation
The robot operation speed and tasks are quite different at jog operation and program operation. The set-
tings for these operations are thus made independently in order to optimize the impact detection function for
each type of operation. Here, the terms "at jog operation" and "at program operation" refer to the following.

At jog operation: During jog operation or during pause of automatic operation
At program operation: During automatic operation, during step feed/

return operation or during position data check operation

 5Functions set with parameters

 About the impact detection function 5-465

When these operations are executed, the status switches as shown in Fig. 5-11.

Fig.5-11:State transition diagram illustrating switch between program operation and jog operation

Thus, if the impact detection function at jog operation is enabled, for example, then even if the impact detec-
tion is set to be disabled in program operation, the setting is switched to that at jog operation if the stop but-
ton is pressed to pause the operation and the impact detection is enabled.

*Impact detection function while servo off
The impact detection function is temporarily disabled while the servo is turned off at both jog operation and
program operation.

Impact detection function
at jog operation

Impact detection function
at program operation

Power on

End of operation
Stop input
H/L level errors occur

During jog operation
During pause of automatic operation

Operation start
Step feed/return

Position data check

During automatic operation
During step feed/return operation
During position data check operation

6-466 Types

6External input/output functions

6 External input/output functions

6.1 Types

(1) Dedicated input/outputThese are I/O signals that indicate the status of remote commands such as
robot program execution and stoppage, information during execution and the
servo power status and so on.
Assign functions to each I/O signal. Functions can be assigned either by

setting used signal numbers to each dedicated parameter (Refer to Page
474, "6.3 Dedicated input/output".) or by an emergency stop output (Refer
to Page 497, "6.6 Emergency stop input".)

(2) General-purpose input/output These signals are used for communication with the sequencer and so at the
robot program. This is used at such times as when reading positioning signals
from peripheral equipment and when checking the robot position.

(3) Hand input/outputThese are control signals for the hand and are used for reading hand open
and close instructions and information from sensors attached to the hand.
These signals can be controlled at the user program and are wired up to near
the tip of the hand. (Hand output signals are optional.)

Table 6-1:Overall I/O signal map

Item I/O signal no. Usage method

Hand input/output ９ ０ ０ to ９ ０ ７ Reference/substitution with M_In, M_Inb, M_Inw, M_Out, M_Outb,
M_Outw variables

Also possible with HOpen, HClose commands.

Example) If M_In(900) Then M_Out(900) = 1

Sequencer link input/
output

10000 to 18191 Reference/substitution with M_In, M_Inb, M_Inw, M_Out, M_Outb,

M_Outw variables
Example) If M_In(10080)=1 Then M_Out(10080) = 1

Note: It is not possible to output using M_Out, M_Outb, or M_Outw

variables for signals to which dedicated outputs have been
assigned.

 6External input/output functions

 Sequencer link I/O function 6-467

6.2 Sequencer link I/O function

This function is only valid on the CRnQ-700 Series drive unit. The QnUD(H)CPU (hereafter referred to as

sequencer CPU) and Q172DRCPU (hereafter referred to as robot CPU) use shared memory between CPUs, and
communication via a system ladder program. The shared memory “high-speed communication area between multi

CPUs *1) ” is used for communication. The robot CPU uses signal numbers from 10000 to 18191 for both input and
output signals.

6.2.1 Parameter setting
It is necessary to set multi CPU related parameters for both the sequencer CPU and robot CPU In order to use
the sequencer link function.
For the robot CPU, use RT ToolBox or a teaching box (R32TB, R56TB) to set the parameters, and for the
sequencer CPU, use GX-Developer. Refer to the operation manual for each setting tool for further details.

(1) Sequencer CPU parameter setting
Use GX-Developer to perform multi CPU parameter settings.

1) CPU quantity
At the multi CPU system, set the number of CPU units with which the standard base unit is equipped.

2) Synchronous start-up between multi CPUs
It takes the robot CPU system several seconds to start up from the time the power is turned ON. It is
therefore recommended that synchronous start-up be set (check box selected) at the multi CPU system.

3) High-speed communication area between multi-CPUs setting
Set the number of points in K word units. The robot CPU uses only 1K word or less and therefore 1K word
should be set.

A user free area and auto refresh area can be set for the high-speed communication area between multi CPUs,
however, the robot CPU (Q172DRCPU) does not support the auto refresh area, and therefore the number of
points for the auto refresh area should always be set to 0. In addition, please refer to the instructions manual of
each CPU for the setup of the CPUs other than robot CPU.

*1) Refer to the QCPU manual (QCPU User’s Manual, Multi CPU System Edition) for details of multi CPUs and the high-
speed communication area between multi CPUs.

6-468 Sequencer link I/O function

6External input/output functions

(2) Robot CPU parameter setting
Use RT ToolBox to perform multi CPU parameter settings.

Table 6-2:Robot CPU parameter settings

Note1)This function is available in SQ series software version N8 or later. Refer to separate manual: "Extended
Function Instruction (BFP-A8787)" for details.

Parameter name Details Factory setting

QMLTCPUN Multi CPU quantity setting
At the multi CPU system, set the number of CPU units with which the
standard base unit is equipped.
Range: 1 to 4

2

QMLTCPUn
 n = 1 to 4

Multi CPUn high-speed communication area setting (n = 1 to 4)
At the multi CPU system, set the number of points performing
transmission and receipt between each CPU unit for the high speed
communication function between multi CPU nos. 1 to 4.
It is necessary to match the parameter settings for all CPUs.
An error will occur at the sequencer CPU If the parameter settings do
not match, and therefore care should be taken to ensure that the
parameter settings for each CPU match.

First element: User free area size (k points)
Range: 1 to 14 (Max.)

Second element: No. of auto refresh points (points)
Range: 0 to 14335
However, the robot CPU does not support auto refresh, and therefore
the number of points for the robot CPU auto refresh are should
always be set to 0.

Third element: System area size (K points)
　Range: 1 or 2
Fourth element: Multi CPU synchronous start-up (1: Yes, 2: No)
Robot CPUs take some time to start up and therefore the current
setting of 1 (synchronous start-up) should not be changed.
Make the same settings for all CPUs.

1,0,1,1

IQMEM Note1) Select the shared memory expanded function.

The function is assigned for each bit. 1/0 = available/unavailable
0000000000000
000

IQSPEC Note1) Set up SQ series robot's function

The function is assigned for each bit.
0000000000000
001

Table 6-3:Setting range by number of CPU

CPU quantity Setting range

2 0 to 14K point

3 0 to 13K point

4 0 to 12K point

15 0
00000000 00000000
 ||...bit0:Function of shared memory expanded

 |....bit1:Function of sequencer direct execution

 bit2-15 is
unused

15 0
00000000 00000000
 |...bit0:The direction of shared memory write-in

=0: Read-out and write-in process are both
executed in order of head address to
final address

=1:Read-out process is executed in order
of head address to final address.
Write-in process is executed in order
of final address to head address.

 bit2-15 is
unused

 6External input/output functions

 Sequencer link I/O function 6-469

6.2.2 CPU shared memory and robot I/O signal compatibility
At the sequencer CPU, the CPU shared memory is accessed like U3E0\G10000. The robot CPU No.n CPU
shared memory accesses like U3En\G10000.
(n = 1 to 3, Up to a maximum of three robot CPUs can be used.)
The robot CPU I/O signal numbers are all from 10000 to 18191.
Word devices are used at the sequencer side and bit devices are used at the robot side, and therefore caution is
advised.
Please note that the CPU shared memory and robot I/O signal compatibility is as shown in the following table and
cannot be changed.

Table 6-4:CPU shared memory and robot I/O signal compatibility

Sequencer (word device) Robot (bit device)

Output U3E0\G10000 to U3E0\G10511 Input Robot CPU 　 No.1 / 10000 to 18191

U3E0\G10512 to U3E0\G11023 Robot CPU 　 No.2 / 10000 to 18191

U3E0\G11024 to U3E0\G11535 Robot CPU 　 No.3 / 10000 to 18191

Input U3E1\G10000 to U3E1\G10511 Output Robot CPU 　 No.1 / 10000 to 18191

U3E2\G10000 to U3E2\G10511 Robot CPU 　 No.2 / 10000 to 18191

U3E3\G10000 to U3E3\G10511 Robot CPU 　 No.3 / 10000 to 18191

◇◆◇ Applicable Multi CPUs ◇◆◇
Multi CPUs are the following iQ Platform compatible CPUs and bases. (Current as of August, 2010)

For the robot CPU, use RT ToolBox or a teaching box (R32TB, R56TB) to set the parameters, for the
sequencer CPU, use GX-Developer, for the motion controller CPU, use MT Developer, and for the NC CPU,
use Remote Monitor Tool and so on. Refer to the operation manual for each setting tool for further details.

CPU type Model Remarks

Sequencer CPU Universal model QCPU
Q03UD(E)CPU，Q04UD(E)HCPU，
Q06UD(E)HCPU，Q10UD(E)HCPU，
Q13UD(E)HCPU，Q20UD(E)HCPU，
Q26UD(E)HCPU，Q50UDEHCPU，
Q100UDEHCPU

･The base which is corresponding to the
high-speed communication between
multi-CPUs.

･ The first CPU must be a sequencer CPU.

Robot CPU Q172DRCPU

Motion CPU Q172DCPU / Q173DCPU

NC CPU Q172NCCPU

Base The high-speed basic base between
multi-CPUs
Q38DB，Q312DB

The base which is corresponding to the
high-speed communication between
multi-CPUs

6-470 Sequencer link I/O function

6External input/output functions

6.2.3 Sequence ladder example
The following is an example in which the X0 “Enable robot operation permissions” button at the operation panel is
turned ON and the robot operation permissions enabled status is output to the Y20 “Robot operation permissions
enabled lamp” at the operation panel. 　 The multi CPU configuration is comprised of a sequencer QnUD(H)CPU
for the first multi CPU, and a robot Q172DRCPU for the second multi CPU.

[Explanation]

<0 to 16th row>

M100 to M131 is written to the U3E0\G10000 and U3E0\G10001 shared device memory, and this represents
the input from the sequencer to the robot. The U3E1\G10000 and U3E1\G10001 shared device memory is
read to the bit devices for M200 to M231, and this represents the output from the robot to the sequencer.

<17 to 22nd row>

By turning X0 ON, M105 turns ON and the sequencer U3E0\G10000 bit 5 corresponding to M105 turn ON.
Consequently, robot input 10005 turns ON, and the operation permissions assigned with the dedicated input
signal are enabled.

When operating permissions are enabled, robot output 10005 assigned with the dedicated output signal turns
ON, and the robot U3E1\G10000 bit 5 turns ON. Consequently, the sequencer M205 corresponding to
U3E1\G10000 bit 5 turns ON, and Y20 turns ON.

Please note that bit device M201 (U3E0\G10000 bit 1 / in other words robot output 10001) in this example
indicates controller power ON complete (A signal indicating that external input signals can be received is
output.)

Fig.6-1:Sequence ladder example

Stop input

Robot numerical
value input

Under the waiting

Robot numerical
value output

Operation rights
input

Operation
rights is robot

Opera-
tion rights
button
(robot)

Complete
of control-
ler power
ON.

Complete
of control-
ler power
ON.

Operation
rights

 6External input/output functions

 Sequencer link I/O function 6-471

6.2.4 Assignment of the dedicated I/O signal. (at factory shipping)
Assignment of the dedicated I/O signal at factory shipments is shown in Table 6-5. 　

Table 6-5:Assignment of the dedicated I/O signal. (at factory shipping)

Parameter
name

Input signal name
(*: Operation rights is necessity)

Output signal name Input Output
G device

Note1)

STOP Stop input
(assignment change is impossible)

Pausing output
10000

10000

G10000

RCREADY - Controller power ON ready - 10001

ATEXTMD - Remote mode output - 10002

TEACHMD - Teaching mode output - 10003

ATTOPMD - Teaching mode output - 10004

IOENA Operation rights input signal Operation rights output signal 10005 10005

START Start input (*) Operating output 10006 10006

STOPSTS - Stop signal input - 10007

SLOTINIT Program rese t(*) Program selection enabled output 10008 10008

ERRRESET Error reset input signal Error occurring output signal 10009 10009

SRVON Servo ON input signal (*) In servo ON output signal 10010 10010

SRVOFF Servo OFF input signal Servo ON disable output signal 10011 10011

CYCLE Cycle stop input signal In cycle stop operation output signal 10012 10012

SAFEPOS Safe point return input signal (*) In safe point return output signal 10013 10013

BATERR - Battery voltage drop - 10014

OUTRESET General-purpose output signal reset (*) - 10015 -

HLVLERR - High level error output signal - 10016

G10001

LLVLERR - Low level error output signal - 10017

CLVLERR - Warning level error output signal - 10018

EMGERR - Emergency stop output signal - 10019

PRGSEL Program selection input signal (*) - 10020 -

OVRDSEL Override selection input signal (*) - 10021 -

PRGOUT Program No. output request Program No. output signal 10022 10022

LINEOUT Line No. output request Line No. output request 10023 10023

OVRDOUT Override value request Override value output signal 10024 10024

ERROUT Error No. output request Error No. output signal 10025 10025

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

- - - - -

IODATA Numeric value input 0 Numeric value output 0 10032 10032

G10002
Numeric value input 1 Numeric value output 1 10033 10033

Numeric value input 2 Numeric value output 2 10034 10034

Numeric value input 3 Numeric value output 3 10035 10035

6-472 Sequencer link I/O function

6External input/output functions

IODATA Numeric value input 4 Numeric value output 4 10036 10036

G10002

Numeric value input 5 Numeric value output 5 10037 10037

Numeric value input 6 Numeric value output 6 10038 10038

Numeric value input 7 Numeric value output 7 10039 10039

Numeric value input 8 Numeric value output 8 10040 10040

Numeric value input 9 Numeric value output 9 10041 10041

Numeric value input 10 Numeric value output 10 10042 10042

Numeric value input 11 Numeric value output 11 10043 10043

Numeric value input 12 Numeric value output 12 10044 10044

Numeric value input 13 Numeric value output 13 10045 10045

Numeric value input 14 Numeric value output 14 10046 10046

Numeric value input 15 Numeric value output 15 10047 10047

HNDCNTL1 - Hand output signal state 900 - 10048

G10003

- Hand output signal state 901 - 10049

- Hand output signal state 902 - 10050

- Hand output signal state 903 - 10051

- Hand output signal state 904 - 10052

- Hand output signal state 905 - 10053

- Hand output signal state 906 - 10054

- Hand output signal state 907 - 10055

HNDSTS1 - Hand input signal state 900 - 10056

- Hand input signal state 901 - 10057

- Hand input signal state 902 - 10058

- Hand input signal state 903 - 10059

- Hand input signal state 904 - 10060

- Hand input signal state 905 - 10061

- Hand input signal state 906 - 10062

- Hand input signal state 907 - 10063

USRAREA - User-designated area 8-points 1 - 10064

G10004

- User-designated area 8-points 2 - 10065

- User-designated area 8-points 3 - 10066

- User-designated area 8-points 4 - 10067

- User-designated area 8-points 5 - 10068

- User-designated area 8-points 6 - 10069

- User-designated area 8-points 7 - 10070

- User-designated area 8-points 8 - 10071

Note1) The address of the multi-CPU share device. (Address seen from the sequencer CPU side)

Parameter
name

Input signal name
(*: Operation rights is necessity)

Output signal name Input Output
G device

Note1)

 6External input/output functions

 Sequencer link I/O function 6-473

6.2.5 Comparison of the I/O point of the CRnQ700 and the CRn500 series
Comparison of the I/O point with the CRn500 series (our company previous series) is shown in Table 6-6.

Table 6-6:Comparison of the I/O point

Item
CRnQ700 series CRn500 series

Sequencer link Remote I/O CC-Link (option) PROFIBUS (option)

I/O
point

Bit 8192/8192 256/256

126/126 max. 3082/3082 max.

At four-station occupancy The number sum total
of I/O data 192 words
(the input or output
data number is 122
words max.)

Register 0/0 0/0
16/16 max.
At four-station occupancy

0/0

6-474 Dedicated input/output

6External input/output functions

6.3 Dedicated input/output

The functions shown in Table 6-7 are available for the dedicated input/output signals. These are used by the
parallel input/output unit by assigning the signal No. in the parameter.
The signal No. is assigned by the signal No. used in the order of "input signal" and "output signal" in each
parameter. Refer to Page 78, "3.14 Operation of maintenance screen" for details on setting the parameters.
If a "-1" is designated for the assigned signal No., that signal will be invalidated.
The I/O parameters can be set on the T/B parameter screen or by using the maintenance tool of the PC
support software (optional). And refer to Page 492, "6.5.2 Timing chart example" for time chart.
To use the dedicated I/O signals, set the key switch on the operation panel to AUTOMATIC, and turn on the
operation rights input signal　(IOENA) beforehand.

Table 6-7:Table of dedicated input/output

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

RCREADY Input - - -1(No meaning),
10001

-1(No meaning),
-1Output Controller power ON

ready
Outputs that the power has been turned ON
and that the external input signal can be
received.

ATEXTMD Input - - -1(No meaning),

10002

-1(No meaning),
-1Output Remote mode output This output indicates that the key switch on the

operation panel is set to AUTOMATIC and
remote operation mode.
This signal must be turned ON before any con-
trol tasks using I/O signals can be performed.

TEACHMD Input - - -1(No meaning),

10003

-1(No meaning),
-1Output Teaching mode output This output indicates that the key switch on the

operation panel is set to Teaching mode.
ATTOPMD Input - - -1(No meaning),

10004

-1(No meaning),
-1Output Automatic mode output This output indicates that the key switch on the

operation panel is set to AUTOMATIC and
local operation mode.

IOENA Input Operation rights input
signal

Sets the validity of the operation rights for the
external signal control.

Level 10005,
10005

5,

3Output Operation rights output
signal

Outputs the operation rights valid state for the
external signal control.
The operation right is given when the operation
right input signal is ON, the mode switch is set
to AUTOMATIC, and there is no other device
that currently has the operation right.

START
(Operation
right required)

Input Start input This input starts a program. To start a specific
program, select the program using the pro-
gram selection signal "PRGSEL" and numeri-
cal input "IODATA," and then input the start
signal. Note that when the parameter "PST" is
enabled, the system reads the program num-
ber from the numerical input (IODATA) and
starts the corresponding program (i.e., pro-
gram selection becomes no longer necessary).
All task slots are executed during multitask
operation.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.

Edge 10006,

 10006

3,

 0Output Operating output This output indicates that a program is being
executed. During multitask operation, this sig-
nal turns ON when at least one task slot is
operating.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.

 6External input/output functions

 Dedicated input/output 6-475

STOP Input Stop input This input stops the program being executed.
(This does not apply to slots whose starting
condition is set to ALWAYS or Error.)
The stop input signal No. is fixed to 0, and can-
not be changed.
All task slots are stopped during multitask
operation.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.
Normal open and normal close may be
changed using the parameter INB.

Level 10000
(Cannot change),

10000

0(Cannot
change),

-1Output Pausing output This output indicates that the program is
paused.
Turns ON when there is not slot multitask run-
ning, and at least one slot is pausing.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.

STOP2 Input Stop input This input stops the program being executed.
(The specification is the same as for the STOP
parameter.)
Unlike the STOP parameter, signal numbers
can be changed.

Level -1,

-1

-1

-1Output Pausing output This output indicates that the program is
paused.
(The specification is the same as for the STOP
parameter.)

STOPSTS Input - - -1(No meaning),

 10007

-1(No meaning),
-1Output Stop signal input Outputs that the stop is being input. (Logical

ADD of all devices.)
SLOTINIT
(Operation
right required)

Input Program reset This input cancels the paused status of the
program and brings the executing line to the
top. Executing a program reset makes it possi-
ble to select a program.
In the multitask mode, the program reset is
applied to all task slots.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.

Edge 10008,

10008

-1,

-1Output Program selection
enabled output

Outputs that in the program selection enabled
state.
Turns ON when program are not running or
pausing.
In multitask operation, this output turns ON
when all task slots are neither operating nor
paused.
However, slots whose starting condition is set
to ALWAYS or Error via a parameter "SLT**"
will not be executed.

ERRRESET Input Error reset input signal Releases the error state. Edge 10009,

10009

2,
2Output Error occurring output

signal
Outputs that an error has occurred.

SRVON
(Operation
right required)

Input Servo ON input signal This input turns ON the servo power supply for
the robot.
With a multi-mechanism configuration, the
servo power supplies for all mechanisms will
be turned ON.

Edge 10010,

10010

4,

1Output In servo ON output sig-
nal

This output turns ON when the servo power
supply for the robot is ON. If the servo power
supply is OFF, this output also remains OFF.
With a multi-mechanism configuration, this out-
put turns ON when the servo of at least one
mechanism is ON.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

6-476 Dedicated input/output

6External input/output functions

SRVOFF Input Servo OFF input signal This input turns OFF the servo power supply
for the robot.(Applicable to all mechanisms)
The servo cannot be turned ON while this sig-
nal is being input.

Level 10011,

10011

1,

-1Output Servo ON disable out-
put signal

This output indicates a status where the servo
power supply cannot be turned ON. (Echo
back)

AUTOENA Input Automatic operation
enabled input

Disables automatic operation when inactive. If
this signal is inactive, and the AUTOMATIC
mode is entered, E5010 will occur.
This input is used to interlock the operations
via the operation panel with the I/O signals.
Use of this input is not a requirement.

Level -1,

 -1

-1,

 -1Output Automatic operation
enabled output

Outputs the automatic operation enabled state.

CYCLE Input Cycle stop input signal Starts the cycle stop. Edge 10012,
10012

-1,
-1Output In cycle stop operation

output signal
Outputs that the cycle stop is operating.
Turns OFF when the cycle stop is completed.

MELOCK
(Operation
right required)

Input Machine lock input sig-
nal

Sets/releases the machine lock state for all
mechanisms.
This can be set or released when all slots are
in the program selection state.
Signal level will be set to Level when program
selection is enabled.

Level -1,

-1

-1,

-1Output In machine lock state
output signal

Outputs the machine lock state.
This turns On when at least one mechanism is
in the machine lock state. During the machine
lock state, the robot will not move, and pro-
gram operation will be enabled.

SAFEPOS
(Operation
right required)

Input Safe point return input
signal

Requests the safe point return operation.
This signal initiates a joint interpolation move-
ment to the position set by the parameter
"JSAFE." The speed is determined by the
override setting. Be careful not to interfere with
peripheral devices.

Edge 10013,

10013

-1,

-1Output In safe point return out-
put signal

Outputs that the safe point return is taking
place.

BATERR Input - - -1(No meaning),

10014

-1(No meaning),
-1Output Battery voltage drop Outputs that the controller battery voltage is

low. The output is turned off when the control-
ler power supply is reconnected after the bat-
tery replacement.

*The cumulative time where the controller
power supply is turned off exceeds 14600
hours.
The output is turned off if the battery depletion
time is reset.

OUTRESET
(Operation
right required)

Input General-purpose out-
put signal reset

Resets the general-purpose output signal.
The operation at the input is set with parame-
ters ORST0 to ORST224.

Edge 10015,

-1(No meaning)

-1,

-1(No meaning)Output - -
HLVLERR Input - - -1(No meaning),

10016

-1(No meaning),
-1Output High level error output

signal
Outputs that a high level error is occurring.

LLVLERR Input - - -1(No meaning),

10017

-1(No meaning),
-1Output Low level error output

signal
Outputs that a low level error is occurring.

CLVLERR Input - - -1(No meaning),

10018

-1(No meaning),
-1Output Warning level error out-

put signal
Outputs that a warning level error is occurring.

EMGERR Input - - -1(No meaning),

10019

-1(No meaning),
-1Output Emergency stop output

signal
Outputs that an emergency stop is occurring.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

 6External input/output functions

 Dedicated input/output 6-477

SnSTART
(n=1 to 32)
(Operation
right required)

Input Slot n start input Starts each slot. n=1 to 32 Edge -1,
-1

-1,
-1Output Slot n in operation out-

put
Outputs the operating state for each slot. n=1
to 32

SnSTOP
(n=1 to 32)

Input Slot n stop input Outputs the operating state for each slot. n=1
to 32

Level -1,

-1

-1,
-1

Output Slot n in pausing output Outputs that each slot and program is tempo-
rarily stopped.
n=1 to 32

MnSRVOFF
(n=1 to 3)

Input Mechanism n servo
OFF input signal

This signal turns OFF the servo for each mech-
anism. n=1 to 3
The servo cannot be turned ON while this sig-
nal is being input.

Level -1,

-1

-1,

-1Output Mechanism n servo ON
disabled output signal

Outputs the servo ON disabled state. (Echo
back)

MnSRVON
(n=1 to 3)
(Operation
right required)

Input Mechanism n servo ON
input signal

Turns the servo for each mechanism ON.
n=1 to 3

Edge -1,
-1

-1,

-1Output Mechanism n in servo
ON output signal.

Turns the servo for each mechanism ON.
n=1 to 3

MnMELOCK
(n=1 to 3)
(Operation
right required)

Input Mechanism n machine
lock input signal

Sets/releases the machine lock state for each
mechanism.
n=1 to 3

Level -1,
-1

-1,
-1

Output Mechanism n in
machine lock output
signal

Outputs that the machine lock state is entered.
n=1 to 3

PRGSEL
(Operation
right required)

Input Program selection input
signal

Designates the setting value for the program
No. with numeric value input signals.
The program for slot 1 is selected. Output this
signal when at least 15 ms has elapsed follow-
ing the start of output to the numerical input
(IODATA). This signal should also be output to
the robot for at least 15 ms.

Edge 10020 -1,

Output - -
OVRDSEL
(Operation
right required)

Input Override selection input
signal

Designates the setting value for the override
with the numeric value input signals.
Output this signal when at least 15 ms has
elapsed following the start of output to the
numerical input (IODATA). This signal should
also be output to the robot for at least 15 ms.

Edge 10021 -1,

Output - -
IODATA Input Numeric value input

(Start bit number,
 end bit number)

Numerical values are read as binary values.
*Program number (Read by the PRGSEL)
 If the parameter "PST" is enabled, it is read by
the start signal.
*Override (Read by the OvrdSEL)
The bit width can be set arbitrarily. However,
the accuracy of output values cannot be guar-
anteed when they exceed the set bit width.
Output this input to the robot for at least 15 ms
before inputting the PRGSEL or other setting
signals.

Level Note2)
10032(Start bit),
10047(End bit),

10032(Start bit),
10047(End bit)

Note2)

-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Output Numeric value output
(Start bit number,
 end bit number)

Numerical values are output as binary values.
*Program number (Output by the PRGOUT),
*Override (Output by the OvrdOUT),
*Outputs the line number (output by the LINE-
OUT)
*Error number (output by the ERROUT).
The bit width can be set arbitrarily. However,
the accuracy of output values cannot be guar-
anteed when they exceed the set bit width.
Read this signal when at least 15 ms has
elapsed following the start of input of a pro-
gram number (PRGOUT) or other signal to the
robot.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

6-478 Dedicated input/output

6External input/output functions

PRGOUT Input Program No. output
request

The program number for task slot 1 is output to
the numerical output (IODATA). After the start
of inputting this signal to the robot, wait at least
15 ms before reading the numerical output
(IODATA) signal.

Edge 10022,

-1

-1,

-1Output Program No. output sig-
nal

The "program number output in progress" sta-
tus is output to the numerical output.

LINEOUT Input Line No. output request The line number for task slot 1 is output to the
numerical output (IODATA). After the start of
inputting this signal to the robot, wait at least
15 ms before reading the numerical output
(IODATA) signal.

Edge 10023,

-1

-1,

-1Output Line No. output signal The "line number output in progress" status is
output to the numerical output.

OVRDOUT Input Override value request The OP override is output to the numerical out-
put (IODATA). After the start of inputting this
signal to the robot, wait at least 15 ms before
reading the numerical output (IODATA) signal.

Edge 10024,

-1

-1,

-1Output Override value output
signal

The "override output in progress" status is out-
put to the numerical output.

ERROUT Input Error No. output request The error number is output to the numerical
output (IODATA). After the start of inputting this
signal to the robot, wait at least 15 ms before
reading the numerical output (IODATA) signal.

Edge 10025,

-1

-1,

-1
Output Error No. output signal The "error number output in progress" status is

output to the numerical output.
JOGENA
(Operation
right required)

Input Jog valid input signal Jogs the designated axis in the designated
mode.
Operation takes place while this signal is ON.

Level -1,

-1

-1,

-1Output Jog valid output signal Outputs that the jog operation is entered.
JOGM Input Jog mode input

(start No., end No.)
Designates the jog mode.
0/1/2/3/4/5 = Joint/ XYZ/ Cylindrical/ 3-axis
XYZ/ tool/Work
Notes)The work jog is available at the following

software versions.
SQ series: N8 or later
SD series: P8 or later

Level Note3)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Note3)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)
Note2)

Output Jog mode output
(start No., end No.)

Outputs the current jog mode.

JOG+ Input Jog feed plus side for 8-
axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and
J8 axes from the start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2 axes
from the start number.
CYLINDER jog mode: X, Éý, Z, A, B, C, L1 and
L2 axes from the start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6
axes from the start number.
Tool jog mode: X, Y, Z, A, B and C axes from
the start number.

jiku Note4)

-1,
-1

Note4)
-1,
-1

Output - -
JOG- Input Jog feed minus side for

8-axes
(start No., end No.)

Designates the jog operation axis.
JOINT jog mode: J1, J2, J3, J4, J5, J6, J7 and
J8 axes from the start number.
XYZ jog mode: X, Y, Z, A, B, C, L1 and L2 axes
from the start number.
CYLINDER jog mode: X, Éý, Z, A, B, C, L1 and
L2 axes from the start number.
3-axis XYZ jog mode: X, Y, Z, J4, J5 and J6
axes from the start number.
Tool jog mode: X, Y, Z, A, B and C axes from
the start number.

Level Note4)
-1,
-1

Note4)
-1,
-1

Output - -

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

 6External input/output functions

 Dedicated input/output 6-479

JOGWKNO

Notes) Avail-
able software
versions
T/B :

1.3 or later
SQ series:

N8 or later
SD series :

P8 or later

Input Work coordinates num-
ber

Specify the work coordinates number for the
standard of work jog operation with numerical
value 1 to 8.
Notes) Specify the work coordinates number

for the standard of work jog operation with
numerical value 1 to 8.
 This input signal is read with the edge
(change from off to on) of Jog valid input
signal: JOGENA. When you change the
work coordinates number, please once
change Jog valid input signal: JOGENA
from off to on.

Level Note3)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)

Note3)
-1(Start bit),
-1(End bit),

-1(Start bit),
-1(End bit)
Note2)

Output The current value inputted to the Work coordi-
nates number is outputted.

JOGNER
(Operation
right required)

Input Errors during jog opera-
tion
Temporarily ignoring
input signal

Temporarily ignores errors that cannot be reset
during jog operation.

Level -1,

-1

-1,

-1Output Errors during jog opera-
tion
Temporary ignoring out-
put signal

Outputs that the error is being ignored tempo-
rarily.
* This signal is applicable to only machine 1.

HNDCNTLn
(n=1 to 3)

Input - -
HNDCNTL1

10048(Start bit),
10055(End bit)

-1(Start bit),
-1(End bit)

Output Mechanism n hand out-
put signal state
(start No., end No.)

Outputs the hand output(n=1) 900 to 907 state.
Outputs the hand output(n=2) 910 to 917 state.
Outputs the hand output(n=3) 920 to 927 state.
Example) To output the four points from 900
through 903 to general-purpose output signals
3, 4, 5 and 6, set the HNDCNTL1 to (3, 6).

HNDstSn
(n=1 to 3)

Input - -
HNDSTS1
10056(Start bit),
10063(End bit)

-1(Start bit),
-1(End bit)

Output Mechanism n hand
input signal state
(start No., end No.)

Outputs the hand input(n=1) 900 to 907 state.
Outputs the hand input(n=2) 910 to 917 state.
Outputs the hand input(n=3) 920 to 927 state.
Example) To output the four points from 900
through 903 to general-purpose output signals
3, 4, 5 and 6, set the HNDCNTL1 to (3, 6).

HANDENA

Notes) Avail-
able software
versions
SQ series:

N8 or later
SD series :

P8 or later

Input Hand control permis-
sion input

Permit or prohibit control of the robot hand by
the external signal.
1/0 = permission / prohibition

Notes)The control of the robot's hand is avail-
able during automatic execution. The
interlocking of the robot and external
equipment, such as the sequencer, is
necessary sure because of the safety.

Level -1,

-1

-1,

-1

Output Hand control permis-
sion output

The permission condition of control of robot's
hand by the external signal is outputted.
1/0 = permission / prohibition
When the hand control permission input signal
is turned on and T/B is not available, this signal
turns on.

HANDOUT

Notes) Avail-
able software
versions
SQ series:

N8 or later
SD series :

P8 or later

Input Hand output control sig-
nal

Set up the external input-signal range for con-
trolling the robot hand.
The input signal set up here is matched in
order with the hand signal set up by parameter:
HANDTYPE
Element 1: Hand output control signal start

number
Element 2: Hand output control signal finish

number

Edge -1,

-1

-1,

-1

Output - -
HNDERRn
(n=1 to 3)

Input Mechanism n hand
error input signal

Requests the hand error occurrence.
A LOW level error (error number 30) will be
generated.

Level -1,

-1

-1,

-1Output Mechanism n hand
error output signal

Outputs that a hand error is occurring.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

6-480 Dedicated input/output

6External input/output functions

AIRERRn
(n=1 to 5)

Input Mechanism n pneu-
matic pressure error
input signal

Request the pneumatic pressure error occur-
rence.
A LOW level error (error number 31) will be
generated.

Level -1,

-1

-1,

-1Output Mechanism n pneu-
matic error output signal

Outputs that a pneumatic pressure error is
occurring.

USRAREA

Refer to Page
412, "5.8
About user-
defined area"

Input - - Note5)
10064(Start bit),
10071(End bit)

Note5)
-1(Start bit),
-1(End bit)

Output User-designated area
8-points
(start No., end No.)

Outputs that the robot is in the user-designated
area.
The output is made sequentially for areas 1, 2
and 3, as designed from the one closest to the
start number.
The area is set with parameters AREA1P1,
AREA1P2 to AREA8P1 and AREA8P2.
Setting example)
When USRAREA is used as an example:
If only area 1 is used, USRAREA: 8, 8 Setting
valid
If only area 1,2 is used, USRAREA: 8, 9 Set-
ting valid
USRAREA:-1,-1 to Setting invalid
USRAREA: 8,-1 to Setting invalid(No Error)
USRAREA:-1,8 to Setting invalid(No Error)
USRAREA:9,8 to Setting invalid(Error L6643)

MnPTEXC
(n=1 to 3)

Input - - -1(No meaning),

-1

-1,(No meaning)
Output Warning for mainte-

nance parts replace-
ment time

This output notifies that the replacement time
of maintenance parts has been reached.

Level -1

MnWUPENA
(n=1 to 3)
(Operation
right required)

Input Mechanism n warm-up
operation mode enable
input signal

Enables the warm-up operation mode of each
mechanism. (n=1 to 3)
Note: To switch the warm-up operation mode
from enable to disable or vice versa using this
input signal, it is necessary to enable the
warm-up operation mode with the WUPENA
parameter, etc. If the warm-up operation mode
has been disabled with a parameter, inputting
this input signal will not enable the mode.

Level -1,

-1

-1,

-1Output Mechanism n warm-up
operation mode output
signal

Outputs that the warm-up operation mode is
currently enabled. (n=1 to 3)

MnWUPMD
(n=1 to 3)

Input - - -1(No meaning),

-1

-1(No meaning),

-1

Output Mechanism n warm-up
operation status output
signal

Outputs that the status is the warm-up opera-
tion status, and thus the robot will operate at a
reduced speed. (n=1 to 3)

PSSLOT Input Slot number specifica-
tion

Slot number into which program storing the
position data the user wants to be outputted is
loaded is specified. (1 to 32)
*Change is available in the state input signal of
parameter:PSOUT is OFF.

Level -1 (input/starting value),
-1 (input/ending value)
6 bits in width maximum
-1 (output/starting value)
-1 (output/ending value)
6 bits in width maximumOutput Specified slot number

output
Slot number specified on the input side is out-
putted.

PSTYPE Input Position data type spec-
ification

Type of the position data which the user wants
to be outputted is specified.
[Conditions for specification]
0(OFF): Position-type variable (P1, P10 or the

like)
1(ON): Joint-type variable (J1, J10 or the like)
*Change is available in the state input signal of
parameter:PSOUT is OFF.

Level -1,-1

Output Specified position data
type output

Type of the position data specified on the input
side is outputted.
[Output information]
0(OFF): Position-type variable (P1, P10 or the

like)
1(ON): Joint-type variable (J1, J10 or the like)

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

 6External input/output functions

 Dedicated input/output 6-481

PSNUM Input Position number specifi-
cation

Position number (number of "P" or "J" variable)
for the position data the user wants to be out-
putted is specified.
0 ~ 65535 (P0 ~ P65535 or J0 ~ J65535)
Example: If you need a position data for P100,
specify the value "100," using the signal num-
ber you specified between an input/starting
number and an input/ending number.
The width which can be specified for a signal
number is 16 bits maximum, which allows you
to specify position data for up to "P66535."
However, it should be taken note that the posi-
tion variable for "P001" is not accepted.
*Change is available in the state input signal of
parameter:PSOUT is OFF.

Level -1 (input/starting value)

-1 (input/ending value)

16 bits in width maximum

-1 (output/starting value)

-1 (output/ending value)

16 bits in width maximum

Output Specified position num-
ber output

Position number specified on the input side is
outputted.

PSOUT Input Position data output
specification

Specifications are made so that specified posi-
tion number data for specified slot number is
outputted.
Position data is updated when specified signal
is turned ON. Input signal level is "level," but
position data remains un-updated whenever
the signal stays ON. Information is updated
upon the signal being turned ON.

0(OFF): Position data is not required to be out-
putted or position number is being speci-
fied.

1(ON): Position data output demanded.

Level -1,-1

Output Position data being out-
putted

Output is made to indicate that specified posi-
tion data has been outputted.
[Output information]
0(OFF): Position data not yet outputted
1(ON): Position data being outputted

PSPOS Input - - - -1 (Not significant)

-1 Output Specified position data Specified position data is outputted by using
signals consisting of 32 bits for 8 axes plus 32
bits for 2 elements (structural flags) derived
from signal numbers specified under this
parameter (320 bits are used).
The range of the setting value:
(1)CRnQ-700 series
10000 ~ 17872: Multi-CPU share device

(2)CRnD-700 series
 2000 ~ 3632: Profibus
 6000 ~ 7728: CC-Link

Unit of each component value for position data
expressed by a 32-bit signal is micrometer

(um) = 10-3 mm or 10-3 degree.
Take note that outputted data comes as a

signed integer (-231 ~ 231-1).
However, structural flags are outputted in the
form of values they carry without being con-
verted in terms of micrometer.
Position type variable: X, Y, Z, A, B, C, L1, L2,

FL1, FL2
Joint type variable: J1, J2, J3, J4, J5, J6, J7, J8

If an error occurs in slot number,
"0x7FFFFFFF" is outputted. If an error occurs
in position number, "0x80000000" is outputted.
Since the time chart and precautions are
shown in Page 496, "(5) Example of external
operation timing chart (Part 5)", refer to it.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

6-482 Dedicated input/output

6External input/output functions

Note 1) The meanings of the signal level are explained below.
Level: The designated function is validated when the signal is ON, and the function is invalidated

when the signal is OFF. Make sure the signal is turned ON for at least 15 ms.
Edge: The designated function is validated when the signal changes from the OFF to ON state, and

the function maintains the original state even when the signal returns to the OFF state. .

Note 2) Set in the order of input start No., input end No., output start No. and output end No.
When using as the input or output of an actual value, use from the start No. to the end No., and
express as a binary. The start No. indicates the low-order bit, and the end No. indicates the high-order
bit. Set only the numbers required to express the value.
For example, when using for program selection and only programs 1 to 6 are available, the expression
can be created by setting 3 bits. Up to 16 bits can be set.

Assignment examples are shown below.
Example)To set the start input signal in general-purpose input 10016, and the operating output signal

in general-purpose output 10026.
Parameter START ={10016, 10026}

Example)When setting 4 bits of numerical input to general-purpose inputs 10027 to 10030, and 5 bits
of numerical output to general-purpose outputs 10027 to 10031.
Parameter IODATA = {10027, 10030, 10027, 10031}

Note 3) Set in the order by input start No., input end No., output start No. and output end No.
Use from the start No. to the end No, and express as a binary. The start No. indicates the low-order bit,
and the end No. indicates the high-order bit. Set only the numbers required to express the value.
For example, when using only the joint mode and XYZ mode at Jog mode input, the expression can be
created by setting 1 bits.

Note 4) They are in the order of an input starting number and then an input end number. Specify the J1/X axis
for the input starting number and the J8/L2 axis for the input end number at its maximum.
For example, when using a 6-axis robot, only 6 bits need to be set.
Even if using a 4-axis robot, when using the XYZ mode, the C axis is required, so 6 bits must be set.
Up to 8 bits can be set.

TMPOUT Input Temperature output
request

The temperature inside the robot controller is
output to the numerical output (IODATA).
After the start of inputting this signal to the
robot, wait at least
15 ms before reading the numerical output
(IODATA) signal

Edge -1,-1 -1,-1

Output Temperature output sig-
nal

The "temperature output in progress" status is
output to the numerical output.

-

DOORSTS1 Input - - - -1,-1 -1,-1
Output States of the door

switch 1
Output that the status of the door switch 1 sys-
tem.

DOORSTS2 Input - - - -1,-1 -1,-1
Output States of the door

switch 2
Output that the status of the door switch 2 sys-
tem.

DOORSTS Input - - - -1,-1 -1,-1
Output States of the door

switches
Output that the logical ADD of the door switch
1 and 2 systems.
Both systems are ON, this signal is also ON.

Parameter
name

Class Name Function
Signal
level
Note1)

Factory shipment signal number.
Input, output

CRnQ CRnD

Set an interval of at least 300 ms

IODATA

PRGSEL

START

Set an interval of at least 300 ms

Example)
15ms

15ms

 6External input/output functions

 Dedicated input/output 6-483

Note 5) Set in the order of output start No. and output end No. The start number specifies area 1, while the end
number specifies area 32 in the largest configuration.
For example, setting 2 bits will suffice if only two areas are used. A maximum of 32 bits can be set.

6-484 Enable/disable status of signals

6External input/output functions

6.4 Enable/disable status of signals
Note that depending on the input signal type, the function may not occur even if the target signal is input
depending on the robot state at that time, such as during operation or when stop is input.
The relation of the robot status to the input signal validity is shown below.

Table 6-8:Validity state of dedicated input signals

Parameter
name

Name Validity of symbol on left according to robot states.

SLOTINIT Program reset

These do not function in the operation state (when START output is ON).

SAFEPOS Safe point return input

OUTRESET General-purpose output signal
reset

MnWUPENA Mechanism n warm-up operation
mode enable input

START
SnSTART
(n=1 to 32)

Start input

These function only when the external input/output has the operation rights
(when IOENA output is ON).

SLOTINIT Program reset

SRVON
MnSRVON
(n=1 to 3)

Servo ON input

MELOCK
MnMELOCK
(n=1 to 3)

Machine lock input

SAFEPOS Safe point return input

PRGSEL Program selection input

OvrdSEL Override selection input

JOGENA Jog enable input

MnWUPENA Mechanism n warm-up operation
mode enable input

START Start input

These do not function in the stop input state (when STOPSTS is ON).SAFEPOS Safe point return input

JOGENA Jog enable input

SRVON Servo ON input This does not function in the servo OFF input state.

MELOCK Machine lock input This functions only in the program selection state (when SLOTINIT output
is ON).

PRGSEL Program selection input The signal does not function during pause status (STOP output is on).

 6External input/output functions

 External signal timing chart 6-485

6.5 External signal timing chart

6.5.1 Individual timing chart of each signal

(1) RCREADY (Controller's power ON completion output)

(2) ATEXTMD (Remote mode output)

(3) TEACHMD (Teach mode output)

(4) ATTOPMD (Auto mode output)

(5) IOENA (Operation right input signal/operation right output signal)

(6) START (Start input/operating output)

(7) STOP (Stop input/aborting output)

(8) STOPSTS (Output during stop signal input)

<Output>

Power ON (RCREADY) (Indicates the status in which the controller can receive signals.)

Remote mode output
(ATEXTMD)

(Indicates when the key switch on the operation panel is "Auto (Ext)")

<Output>

(Indicates when the key switch on the operation panel is the "AUTOMATIC"
and the IOENA is on)

Teach mode output
(TEACHMD)

(Indicates when the key switch on the operation panel is "TEACH.")

<Output>

Auto mode output
(ATTOPMD)

(Indicates when the key switch on the operation panel is "Auto (Op.)")

<Output>

(Indicates when the key switch on the operation panel is the "AUTOMATIC"
and the IOENA is off)

Operation right input (IOENA)

Operation right output (IOENA)

<Intput>

<Output>

Level

When the STOP signal, or the emergency stop or other signal was input, or after
the completion of the CYCLE signal

Start input (START)

Operating output (START)

<Intput>

<Output>

30 ms or more15ms or more

When the START, SnSTART or SLOTINIT signal was input

Stop input (STOP)

Aborting output (STOP)

<Intput>

<Output>

30 ms or more15ms or more

During stop signal input
(STOPSTS)

(Indicates that the STOP is being input.)

<Output>

6-486 External signal timing chart

6External input/output functions

(9) SLOTINIT (Program reset input/program selectable output)

(10) ERRRESET (Error reset input/output during error occurrence)

(11) SRVON (Servo ON input/output during servo ON))

(12) SRVOFF (Servo OFF input/servo ON disable output)

(13) AUTOENA (Auto operation input/auto operation enable output)

(14) CYCLE (Cycle stop input/output during cycle stop operation)

When the START or SnSTART signal was input

Program reset (SLOTINIT)

Program selectable output
(SLOTINIT)

<Intput>

<Output>

30 ms or more15ms or more

Error reset input (ERRRESET)

Output during error occurrence
(ERRRESET)

<Intput>

<Output>

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Servo ON input (SRVON)

Output during servo ON (SRVON)

<Intput>

<Output>

30 ms or more15ms or more

Servo OFF input (SRVOFF)

Servo ON disable output (SRVOFF)

<Intput>

<Output>

30 ms or more15ms or more

Auto operation enable input
(AUTOENA)

Auto operation enable output
(AUTOENA)

<Intput>

<Output>

When a cycle operation is finished

Cycle stop input (CYCLE)

Output during cycle stop operation
(CYCLE)

<Intput>

<Output>

 6External input/output functions

 External signal timing chart 6-487

(15) MELOCK (Machine lock input/output during machine lock)

(16) SAFEPOS (Return to retreat point input/output during return to retreat point)

(17) BATERR (Low battery voltage output)

(18) OUTRESET (General-purpose output signal reset request input)

(19) HLVLERR (Output during high level error occurrence)

(20) LLVLERR (Output during low level error occurrence)

(21) CLVLERR (Output during warning level error occurrence)

(22) EMGERR (Output during emergency stop)

(23) SnSTART (Slot n start input/output during slot n operation)

Machine lock input (MELOCK)

Output during machine lock
(MELOCK)

<Intput>

<Output>

When returning to retreat point is complete

Return to retreat point input
(SAFEPOS)

Output during return to retreat point
(SAFEPOS)

<Intput>

<Output>

30 ms or more15ms or more

<Output>

Low battery voltage (BATERR) (Indicates that the battery voltage is low.)

<Intput>

General-purpose output signal reset
(OUTRESET)

(Resets the general-purpose output signal.)

30 ms or more15ms or more

<Output>

High level error output (HLVLERR) (Indicates that a high level error is occurring.)

<Output>

Low level error output (LLVLERR) (Indicates that a low level error is occurring.)

<Output>

Warning level error output
(CLVLERR)

(Indicates that a warning level error is occurring.)

<Output>

Emergency stop output (EMGERR) (Indicates that an emergency stop is occurring.)

When the STOP, SnSTOP or emergency stop signal was input

Slot n start input (SnSTART)

Output during slot n operation
(SnSTART)

<Intput>

<Output>

6-488 External signal timing chart

6External input/output functions

(24) SnSTOP (Slot n stop input/output during slot n aborting)

(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)

(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)

(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)

(28) PRGSEL (Program selection input)
* This is used together with the numeric value input (IODATA).

When the START, SnSTART or SLOTINIT signal was input

Slot n stop input (SnSTOP)

Output during slot n aborting
(SnSTOP)

<Intput>

<Output>

30 ms or more15ms or more

When the SRVON, SnSRVON or SRVON signal was input

Mechanical n servo OFF input
(MnSRVOFF)

Mechanical n servo ON disable output
(MnSRVOFF)

<Intput>

<Output>

30 ms or more15ms or more

When the SRVOFF, SnSRVOFF or emergency stop signal was input

Mechanical n servo ON input
(MnSRVON)

Output during mechanical n servo ON
(MnSRVON)

<Intput>

<Output>

30 ms or more15ms or more

Mechanical n machine lock input
(MnMELOCK)

Output during mechanical n machine
lock (MnMELOCK)

<Intput>

<Output>

Program number

When the output request of a line number, override value or
error number was input

Program number output request
(PRGOUT)

Outputting program number (PRGOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

 6External input/output functions

 External signal timing chart 6-489

(29) OvrdSEL (Override selection input)
 * This is used together with the numeric value input (IODATA).

(30) IODATA (Numeric value input/numeric value output)
* This is used together with PRGSEL, OvrdSEL, PRGOUT, LINEOUT, OvrdOUT or ERROUT.

(31) PRGOUT (Program number output request input/outputting program number)
* This is used together with the numeric value output (IODATA).

(32) LINEOUT (Line number output request input/outputting line number)
* This is used together with the numeric value output (IODATA).

(33) OvrdOUT (Override value output request/outputting override value)
* This is used together with the numeric value output (IODATA).

Override value

When the output request of a program number, line number
or error number was input

Override value output request
(OVRDOUT)

Override value output request
(OVRDOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Program number

When the output request of a line number, override value or
error number was input

Program number output request
(PRGOUT)

Outputting program number (PRGOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Line number

When the output request of a program number, override
value or error number was input

Line number output request (LINEOUT)

Outputting line number (LINEOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Override value

When the output request of a program number, line number
or error number was input

Override value output request
(OVRDOUT)

Override value output request
(OVRDOUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

6-490 External signal timing chart

6External input/output functions

(34) ERROUT (Error number output request/outputting error number)
* This is used together with the numeric value input (IODATA).

(35) JOGENA (Jog enable input/output during jog enabled)

(36) JOGM (Jog mode input/jog mode output)

(37) JOG+ (Input for 8 axes on jog feed plus side)

(38) JOG- (Input for 8 axes on jog feed minus side)

(39) HNDCNTLn (Mechanical n hand output signal status)

Error number

When the output request of a program number, override
value or line number was input

Error number output request (ERROUT)

Outputting error number (ERROUT)

<Intput>

<Output>

Numeric value output (IODATA)

30 ms or more15ms or more

Jog enable input (JOGENA)

Output during jog enabled (JOGENA)

<Intput>

<Output>

Jog mode

(Replies the setting value of the jog mode input signal with jog mode output.)

Jog mode input (JOGM)

Jog mode output (JOGM)

<Intput>

<Output>

30 ms or more

Jog mode

15ms or more

Jog operation axis8 axes on jog feed plus side (JOG+)

<Intput>

(Specify the axis that will perform jog operation in the plus direction.)

8 axes on jog feed minus side (JOG-) Jog operation axis

(Specify the axis that will perform jog operation in the minus direction.)

<Intput>

(Indicates the output signal status of the hand.)

Mechanical n hand output signal status
(HNDCNTLn)

<Output>

Hand output signal status

 6External input/output functions

 External signal timing chart 6-491

(40) HNDstSn (Mechanical n hand input signal status)

(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)

(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)

(43) USRAREA (User-specified area 8 points output)

(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up opera-
tion mode output signal)

(45) MnWUPMD (Mechanism n warm-up operation status output signal)

* If the mechanism n warm-up operation status output (MnWUPMD) is assigned together with the mecha-
nism n warm-up operation mode enable input (MnWUPENA), the timing chart is as shown below.

(Indicates the input signal status of the hand.)

Mechanical n hand input signal status
(HNDSTSn)

<Output>

Hand input signal status

Mechanical n hand error input
(HNDERRn)

Output during mechanical n hand error
occurrence (HNDERRn)

<Intput>

<Output>

Mechanical n pneumatic error input
(AIRERRn)

Outputting mechanical n pneumatic
error (AIRERRn)

<Intput>

<Output>

Within the user
specified area

User-specified area 8 points
(USRAREA)

<Output>

(Indicates that it is within the area specified by areas 1 though 8.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation mode
output signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD)

(Indicates the warm-up operation status.)

<Input>
Mechanism n warm-up operation mode enable
input signal (MnWUPENA)

<Output>
Mechanism n warm-up operation status output
signal (MnWUPMD)

When the warm-up operation status is canceled while
the warm-up operation mode is enabled

6-492 External signal timing chart

6External input/output functions

6.5.2 Timing chart example

(1) External signal operation timing chart (Part 1)

Fig.6-2:Example of external operation timing chart (Part 1)

Program reset

Program selection input signal

Cycle stop input signal

<Input>

Numeric value input

Start input

Stop input

Operation rights input signal

Error reset input signal

Program number output request

<Output>

Numeric value output

Operating status output

Waiting status output

Program selection enabled output

Cycle stop operating status output signal

Error occurring status output signal

IODATA

PRGSEL

START

STOP

IOENA

SLOTINIT

CYCLE

ERRRESET

IOENA

IODATA

START

STOP

SLOTINIT

ERRRESET

PRGOUT

CYCLE

1 2 3

1 2 3

E
rror occurring status

P
rogram

 selection

P
rogram

 start

S
top

R
estart

S
top

P
rogram

 reset

E
rror reset

C
ycle stop

P
rogram

 E
N

D

Operation rights output signal

Program No. 2 Program No. 3

P
rogram

 selection

P
rogram

 start

E
rror occurring

R
estart

P
rogram

 reset

S
top

P
rogram

 selection

P
rogram

 start

Program No. 1

 6External input/output functions

 External signal timing chart 6-493

(2) External signal operation timing chart (Part 2)
An example of timing chart the servo ON/OFF, selecting the program, selecting the override, starting and
outputting the line No., etc., with external signals is shown in Fig. 6-3.

Fig.6-3:Example of external operation timing chart (Part 2)

SRVON

Override selection input signal

Override value output request

Line number output request

Servo ON input signal

<Output>

IODATA

PRGSEL

PRGOUT

OVRDSEL

OVRDOUT

LINEOUT

START

SRVON

IODATA

IOENA

START

SLOTINIT

SRVOFF

IOENA

1 80 50 5

80 50 0 1 5 5

Program No. 1 Program No. 5

O
pera

tio
n righ

ts req
uest

S
ervo O

N

S
ervo O

F
F

O
ve

rride ou
tpu

t

O
verride selection

P
rog

ra
m

 sta
rt

P
rog

ra
m

 selection

P
rog

ra
m

 N
o. outp

ut

O
verride selection

P
rog

ra
m

 E
N

D

L
ine N

o
. o

utp
ut

P
rog

ra
m

 sta
rt

L
ine N

o
. o

utp
ut

P
rog

ra
m

 N
o. outp

ut

Program selection input signal

<Input>

Numeric value input

Program number output request

Operating status output

Program selection enabled output

Start input

Servo OFF input signal

Operation rights input signal

Numeric value output

Operation rights output signal

S
ervo O

N

P
rog

ra
m

 N
o. outp

ut

P
rog

ra
m

 selection

In servo ON
In servo OFF

6-494 External signal timing chart

6External input/output functions

(3) Example of external operation timing chart (Part 3)
An example of the timing chart for error reset, general-purpose output reset and program reset, etc., with
external signals is shown output in Fig. 6-4.

Fig.6-4:Example of external operation timing chart (Part 3)

START

SRVON

SRVOFF

ERRRESET

OUTRESET

SLOTINIT

IOENA

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

Start input

Servo ON input signal

Servo OFF input signal

Error reset input signal

General-purpose
output signal reset

Program reset

Operation rights input signal

General-purpose output

<Input>

Operation rights output signal

Emergency stop output signal

O
peration rights request

P
rogram

 start

P
rogram

 start

S
ervo O

N

S
ervo O

F
F

S
ervo O

N

S
ervo O

N

S
ervo O

N

R
estart

R
estart

E
m

ergency stop O
N

E
rror reset

E
rro

r re
set

E
rror occurrence

G
eneral-purpose output reset

P
rogram

 reset

<Output>

Operating status output

Waiting status output

Program selection enabled output

In servo ON
In servo OFF

Error occurring
status output signal

Output signal reset
following parameter
ORST

 6External input/output functions

 External signal timing chart 6-495

(4) Example of external operation timing chart (Part 4)
An example of the timing chart for jog operation, safe point return and program reset, etc., with external sig-
nals is shown in Fig. 6-5.

Fig.6-5:Example of external operation timing chart (Part 4)

<Input>

START

SLOTINIT

SRVON

IOENA

ERRRESET

JOGENA

JOGM

JOG+

JOG-

SAFEPOS

IOENA

START

SLOTINIT

STOP

SRVON

ERRRESET

EMGERR

JOGM

JOGENA

1

3

0 0

00 2

4

1 3

1

J1+ J2- Z+

Program reset

Jog enable output signal

<Output>

Recovery work

In servo ON

Jog enable input signal

Jog mode input

Jog mode output

In servo OFF

O
peration rights request

S
ervo O

N

P
rogram

 start

H
 E

rror occurrence

S
ervo O

N

Jog com
m

and J1 +

Jog com
m

and J2 -

Jog com
m

and end

Jog com
m

and Z
 +

Jog com
m

and end

S
afe point return start

S
afe point return end

P
rogram

 reset

P
rogram

 start

Start input

Servo ON input signal

Error reset input signal

Operation rights input signal

Operation rights output signal

Emergency stop output signal

Operating status output

Waiting status output

Program selection enabled output

Error occurring
status output signal

For 8 axes on the jog feed plus side

For 8 axes on the jog feed plus side

Safe point restore
input signal

E
rror re

set

6-496 External signal timing chart

6External input/output functions

(5) Example of external operation timing chart (Part 5)
Given below is a timing chart for the dedicated input/output signals.

Fig.6-6:Example of external operation timing chart (Part 5)

[Notes]
(*1) If 320 points' worth of signals, from the signal number specified under the Parameter "PSPOS", do not

exist, Error 7081 (unwritable as the parameter value falls outside the prescribed range) occurs.
(*2) If the range of signal number specified under the Parameter "PSSLOT" is greater than 6 bits, Error 7081

(unwritable as the parameter value falls outside the prescribed range) occurs.
(*3) If the range of position number specified under the Parameter "PSNUM" is greater than 16 bits, Error

7081 (unwritable as the parameter value falls outside the prescribed range) occurs.
(*4) If slot number, position data type or position number is changed in the processing of inputting position

data output specification (PSOUT), relevant command is not accepted. Turn the position data output
specification (PSOUT) input off and then back on. To determine which position is subject to data output,
check slot number output (PSSLOT), position data type output (PSTYPE), and position number output
(PSNUM).

(*5) If required program has not been loaded into the specified slot, "0x7FFFFFFF" is outputted for each of
axes associated with specified position data output (PSPOS).

(*6) If a specified position does not exist, "0x80000000" is outputted for each of axes associated with speci-
fied position data output (PSPOS).

(*7) If, in the process of outputting position data, switching takes place in regard to the program being exe-
cuted in the specified slot (CallP command, XRun command, or Parameter "PRGSEL"), "0x80000000" is
outputted for each of axes associated with specified position data output (PSPOS).

Slot number

<Input>
Slot number specificat ion (PSSLOT)

<Output>

Specified slot number output (PSSLOT)
Slot number

<Input>
Position data type specification

(PSTYPE)

<Output>

Specified position data type output
(PSTYPE)

Position number

<Input>
Position number type specification

(PSNUM)

<Output>

Specified position number
output(PSNUM） Position number

<Input>

Position data output specification
(PSOUT)

<Output>
Position data being outputted (PSOUT)

<Input>

<Output>

Specified position data (PSPOS)
Position data

 6External input/output functions

 Emergency stop input 6-497

6.6 Emergency stop input

For wiring and other aspects of the emergency stop input, refer to the separate document entitled "Controller

setup, basic operation, and maintenance."

6.6.1 Robot Behavior upon Emergency Stop Input
When an emergency stop signal is input while the robot is operating, the servo power supply is cut off by means

of hardware control. The robot's tip path and stopping position after the input of an emergency stop signal cannot

be specified. An overrun may occur depending on the robot speed or load condition of the tool.

6-498 Display unit (GOT1000 Series) connection (reference)

6External input/output functions

6.7 Display unit (GOT1000 Series) connection (reference)

By directly connecting the GOT1000 Series (GT15) display unit and CRnD-700 controller with an Ethernet cable,
I/O control (256 inputs, 256 outputs) from the GOT to the robot controller is possible.
Refer to the respective operation manuals for details on how to use the GOT1000 Series and GT Designer2 image
creation software.

Please note that the CRnQ-700 controller is not supported. Control via the sequencer CPU and multi CPU shared
memory.

In usage of the GT15/GT16 series to GOT, in the following software version of the robot controller, backup
restoration of the robot controller is possible. Refer to the instructions manual of attachment in GOT for the
details of the operation method.

<Software version>
SQ series: N8 or later
SD series: P8 or later

(1) Usage example

Fig.6-7:GOT usage example

(2) Specifications
Table 6-9:GOT usage example specifications

[Reference]
The function of direct connection with the GOT is extended under the condition that the software ver-
sion of the controller is S2b or later. (The robot's information monitor and the data setup are possible)
Refer to the "separate instruction manual / SD series GOT direct connection Extended Function (BFP-
A8849)" for details.

ＧＯＴ

START button

Ｘ０３

Ｙ００

Production qty １２３

Ｙ１０ to Ｙ１Ｆ

Robot controller

Input 3

Output 0

Output 16 to 31 (16-bit)

Executing lamp

Start input

Executing output

Ｘ１０ to Ｘ１７

 ５

Input 16 to 23 (8-bit)

 Job number input

MWORK=M_INB(16)

Production qty output (16 bit)
M_OUTW(16)=MCOUN

Job number

Item Item Item

No. of I/Os 256 inputs, 256 outputs The device names as viewed from GOT are X00 to XFF and Y00 to

YFF. (Refer to “Robot I/O and GOT assignment” described later.)

GOT connection qty １ Multiple GOT units cannot be connected to a single robot controller,

however, multiple robot controllers can be connected to a single GOT

unit.

Connection method Ethernet only UPD communication

GOT optional Ethernet communication unit

(GT15-J71E71-100) is required.

Applicable GOT GOT1000 Series

GT15 (full spec model)

Models other than GT15 (full spec model) do not support Ethernet and

thus cannot be connected.

The Transparent function using computer support software (RT

ToolBox) is not supported. (Current as of December, 2007)

Image creation

software

GT Designer2

Version 2.72A or later

Model: SW2D5C-GTD2-J (Japanese version)

Support for the English version is scheduled from April, 2008.

Upgrade to the latest version from the MELFANS Web site.

 6External input/output functions

 Display unit (GOT1000 Series) connection (reference) 6-499

(3) Connection
Connect GOT by the Ethernet cable

Fig.6-8:Connection of GOT

100BASE-T LAN cable

LAN1

GOT1000 series
＋ Ethernet communication unit

(GT15-J71E71-100)

Cross cable for direct connection
Straight cable for hub course

100BASE-T LAN cable
Cross cable for direct connection

GOT1000 series
＋ Ethernet communication unit

(GT15-J71E71-100)

LAN1

Straight cable for hub course

CR2n-700 series

R700CPUユニット

100BASE-T LAN cable

LAN1

GOT1000 series
＋ Ethernet communication unit

(GT15-J71E71-100)

Cross cable for direct connection
Straight cable for hub course

CR3n-700 series

CR1n-700 series

6-500 Display unit (GOT1000 Series) connection (reference)

6External input/output functions

(4) Settings
1) Creating new projects with image creation software
Start up the GT Designer2 image creation software at the computer. Select [Project] ? [New] from the menu and
perform settings in accordance with the messages displayed at the new project creation wizard.

Set “MELSEC-QnU, Q17nD/NC/DR, CRnD-700” for “Connection device setting”, “Expansion I/F-1 (first level)”
for “Connection I/F”, and “QJ71E71/AJ71(Q)E71, Q172nNC, CRnD-700” for “Communication driver”.

2) Performing Ethernet settings with the image creation software
Perform Ethernet settings at [Common settings] ? [Ethernet] in the GT Designer2 workspace window.

Set “?” for “Own PC”, “1” for “N/W No.”, “2” for “PC No.”, “CRnD-700” for “Model”, and “192.168.0.20” for
“IP address”.
If the robot controller parameters (IP address and GOT port no.) have been changed from the factory settings,
check the NETIP and GOTPORT robot controller parameters, and ensure that these settings match.

3) Creating screens with the image creation software
Create screens with GT Designer2.

4) Checking importing of image creation data to GOT
Connect the computer and GOT with a communication cable (USB), set “Communication setting” to “USB” at
[Communication] ? [Communication with GOT] in the GT Designer2 menu, select [Project download -> GOT],
check the import data, import to GOT, and then check the operation.

5) Assignment of I/O signal numbers
I/O numbers 0 to 255 are used at GOT.
I/O numbers 0 to 255 are common for the parallel I/O interface, parallel I/O unit, and GOT.

If the customer’s system configuration uses a parallel I/O interface or parallel I/O unit, please be aware that
importing from GOT to input signals for the part being used is ignored.

For example, if a parallel I/O interface is inserted in option slot 1, even if X00 to X1F from GOT is rewritten, this
will not be reflected to robot controller input numbers 0 to 31, and the parallel I/O interface input numbers are
reflected to robot controller input numbers 0 to 31.

Robot I/O and GOT assignment

◇◆◇ Network Settings ◇◆◇
Set the settings made at "2)Performing Ethernet settings with the image creation software" for the device
network settings.
If connecting a single robot controller to a single GOT, set the network setting for the device setting to “Own
PC”.
If connecting multiple robot controllers to a single GOT, set the network setting for the device setting to “Other
PC”, and set the network number (N/W No.) and computer number (PC No.). Please note that the CPU number
is not used and may be left as 0.

Station

Robot

controller I/O

no.

 Installing slot of

Parallel I/O interface

Station no. setting (rotary switch) of

parallel I/O unit

GOT1000

XY devices as viewed from

GOT

０ 0 to 31 Option slot １ ０ X00-X1F / Y00-Y1F

１ 32 to 63 Option slot２ １ X20-X3F / Y20-Y3F

２ 64 to 95 Option slot３ ２ X04-X5F / Y40-Y5F

３ 96 to 127 － ３ X60-X7F / Y60-Y7F

４ 128 to 159 － ４ X80-X9F / Y80-Y9F

５ 160 to 191 － ５ XA0-XBF / YA0-YBF

６ 192 to 223 － ６ XC0-XDF / YC0-YDF

７ 224 to 255 － ７ XE0-XFF / YE0-YFF

 7Appendix

 Real-time external control function Appendix-501

7 Appendix

7.1 Real-time external control function
The robot motion movement control can retrieve the position command at real-time in cycle units, and move
to the commanded position. It is also possible to monitor the input/output signals or output the signals simul-
taneously.
Using the robot language Mxt command, real-time communication (command/monitor) is carried out with
communication.

The following table lists the position command data for giving the target move position from the personal
computer to the robot for each hour of the motion operation control cycle, and the monitor data types from
the robot.
For more information about communication data, see the Page 247, " Mxt (Move External)" and Page 503,
"7.1.1 Explanation of communication data packet" in this document.

Position command data type Monitor data type

[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data

[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data
[4] Rectangular coordinate data (command value after filter processing)
[5] Joint coordinate data (command value after filter processing)
[6] Motor pulse coordinate data (after filter processing)
[7] Rectangular coordinate data (encoder feedback value)
[8] Joint coordinate data (encoder feedback value)
[9] Motor pulse coordinate data (encoder feedback value)
[10] Current command (%)
[11] Current feedback (%)

 Real-time external control packet
data * transmission/reception

CRn-500 robot controller
Robot program

E t h e r n e t Windows personal
computer application

O P E N
P R I N T #
I N P U T #

CRn-700 robot controller
Robot program

Open
Print #
Input #

 Motion movement control cycle (approx. 7.1ms)

Command value calculation

Personal computer

Robot controller

Command position
transmission/reception

Appendix-502 Real-time external control function

7Appendix

* Flow of real-time external control

Robot program end

Robot program start

Robot program start

Execute process only

when command is issued

Packet data

transmission

Application program end

Reception of packet data

Transmission of packet data

Ethernet initialization, socket

creation, etc.

Application program start

Creation of transmission

packet data

Robot program start

 Automatically

 repeated until end

 command is received

 End command received?

 Robot controller side Personal

Communication

packet data

 7Appendix

 Real-time external control function Appendix-503

7.1.1 Explanation of communication data packet
The structure of the communication data packet used with the real-time external control function is
explained in this section.
The same communication data packet for real-time external control is used for commanding the position
and for monitoring.
The contents differ when transmitting (commanding) from the personal computer to the controller and when
receiving (monitoring) from the controller to the personal computer.
Refer to the following communication data packet structure and section "5.2.2 Sample program for real-time
external control function", and create the application. The C language data type is used in the following
table.

Communication data packet

Command unsigned short
(2-byte)

Designate the validity of the real-time external command, and the

end.

0 // Real-time external command invalid

1 // Real-time external command valid

255// Real-time external command end

Transmission data type des-
ignation
SendType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the

controller, designate the type of position data transmitted from

the personal computer.

There is no data at the first transmission.

0 // No data

1 // XYZ data

2 // Joint data

3 // Motor pulse data

2) When receiving (monitoring) from the controller to the personal

computer, indicate the type of position data replied from the

controller.

0 // No data

1 // XYZ data

2 // Joint data

3 // Motor pulse data

4 // XYZ data (Position after filter process)

5 // Joint data (Position after filter process)

6 // Motor pulse data (Position after filter process)

7 // XYZ data (Encoder feedback value)

8 // Joint data (Encoder feedback value)

9 // Motor pulse data (Encoder feedback value)

10 // Current command [%]

11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

Appendix-504 Real-time external control function

7Appendix

Reply data type designation
RecvType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the

controller, designate the type of data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

2) When receiving (monitoring) from the controller to the personal

computer, indicate the type of position data replied from the

controller.

0 // No data

1 // XYZ data

2 // Joint data

3 // Motor pulse data

4 // XYZ data (Position after filter process)

5 // Joint data (Position after filter process)

6 // Motor pulse data (Position after filter process)

7 // XYZ data (Encoder feedback value)

8 // Joint data (Encoder feedback value)

9 // Motor pulse data (Encoder feedback value)

10 // Current command [%]

11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

Reservation
reserve

unsigned short
(2-byte)

Not used.

Position data
Pos / jnt / pls

POSE, JOINT or
PULSE (40-byte)
* Refer to

strdef.h in the

sample program

for details on

each data

structure.

1) When transmitting (commanding) from the personal computer to the

controller, designate the command position data transmitted from

the personal computer.

Set this to the same data type as that designated for the

transmission data type designation.

2) When receiving (monitoring) from the controller to the personal

computer, this indicates the position data replied from the

controller.

The data type is shown in SendType (= RecvType) .

The contents of data are common to command/monitor.

POSE // XYZ type [mm/rad]

JOINT // Joint type [rad]

PULSE // Motor pulse type [the pulse] or Current type [%].

Transmission input/output
signal data designation
SendIOType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the

controller, designate the data type of the input/output signal

transmitted from the personal computer.

Designate "No data" when not using this function.

2) When receiving (monitoring) from the controller to the personal

computer, this indicates the data type of the input/output signal

replied from the controller.

The contents of the data are common.

0 // No data

1 // Output signal

2 // Input signal

 7Appendix

 Real-time external control function Appendix-505

Reply input/output signal
data designation
RecvIOType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the

controller, designate the data type of the input/output signal

replied from the controller.

Designate "No data" when not using this function.

0 // No data

1 // Output signal

2 // Input signal

2) When receiving (monitoring) from the controller to the personal

computer, Not used.

Input/output signal data
BitTop
BitMask
IoData

unsigned short
unsigned short
unsigned short
(2-byte x 3)

1) When transmitting (commanding) from the personal computer to the

controller, designate the output signal data transmitted from the

personal computer.

2) When receiving (monitoring) from the controller to the personal

computer, this indicates the input/output signal data replied from

the controller.

The contents of the data are common.

BitTop; // Head bit No. of input or output signal

BitMask; // Bit mask pattern designation (valid only for

commanding)

IoData; // Input or output signal data value (for monitoring)

Output signal data value (for commanding)

* Data is 16-bit data

Timeout time counter value
Tcount

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the

controller, Not used.

2) When receiving (monitoring) from controller to personal

computer, if the timeout time parameter MXTTOUT is a value other

than -1, this indicates the No. of times communication with the

controller was not possible. When the No. of times is counted and

reaches the maximum value, the value will return to the minimum

value 0, and the count will be repeated. This is set to 0 when the

MXT command is started.

Counter value for communi-
cation data
Ccount

unsigned long
(4-byte)

1) When transmitting (commanding) from the personal computer to the

controller, Not used.

2) When receiving (monitoring) from controller to personal

computer, this indicates the No. of communication times. When the

No. of times is counted and reaches the maximum value, the value

will return to the minimum value 0, and the count will be repeated.

This is set to 0 when the MXT command is started.

Reply data-type specification
addition 1
RecvType1

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).

Don't use it for instructions.

Reservation 1
reserve1

unsigned short
(2-byte)

Not used.

Data addition 1
pos / jnt / pls

Any of POSE/
JOINT/PULSE.
(40-byte)

It is the same as data of pos/jnt/pls.

Don't use it for instructions.

Reply data-type specification
addition 2
RecvType2

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).

Don't use it for instructions.

Reservation 2
Reserve2

unsigned short
(2-byte)

Not used

Data addition 2
pos / jnt / pls

Any of POSE/
JOINT/PULSE.
(40-byte)

It is the same as data of pos/jnt/pls.

Don't use it for instructions.

Appendix-506 Real-time external control function

7Appendix

7.1.2 Sample program
This is the sample program of the Ethernet interface.

(1) Sample program of data link
 The sample program to do the data link with Microsoft Visual Basic 5.0/6.0 (hereafter written as VB) is
herein described.
The program creation is briefly introduced with the following procedure.
For details of VB operation and application producing method, refer to the instruction manual of this soft-
ware.
1) Preparation of Winsock control
2) Production of form screen
3) Program (Form1.frm)

There is the program following 2 passages. Use either according to the customer's system.
a) Program for the clients (when using the personal computer as the client and using the controller as the

server).
b) Program for the server (when using the personal computer as the server and using the controller as

the client).
* About the work of 1) 2), the client and the server are the same.

Here, VB requires either Professional Edition or Enterprise Edition. Learning Edition can not be used since
Winsock
(Windows Socket) control is not appended.

1) Preparation of Winsock control
Winsock control is added to the project.
Start-up VB, newly open standard EXE and click "component" of "project" menu, and the window will be dis-
played as follows. And, check "Microsoft Winsock Control **". (Lower left drawing ** represents the ver-
sion)
"Winsock" is added to the tool box. (Lower right drawing)

Reply data-type specification
addition 3
RecvType3

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).

Don't use it for instructions.

Reservation 3
Reserve3

unsigned short
(2-byte)

Not used.

Data addition 3
pos / jnt / pls

Any of POSE/
JOINT/PULSE.
(40-byte)

It is the same as data of pos/jnt/pls.

Don't use it for instructions.

 7Appendix

 Real-time external control function Appendix-507

2) Production of form screen
 On the form, 4 test boxes, 1 command button, 1 check box and 1 Winsock control are arranged.
 The major change points of the properties are shown below.

3) Program (Form1.frm)
VERSION 5.00
Object = "{248DD890-BB45-11CF-9ABC-0080C7E7B78D}#1.0#0"; "MSWINSCK.OCX"

Begin VB.Form Form1 'Screen setting From here
 Caption = "Data link"
 ClientHeight = 3795
 ClientLeft = 60
 ClientTop = 345
 ClientWidth = 4800
 LinkTopic = "Form1"
 ScaleHeight = 3795
 ScaleWidth = 4800
 StartUpPosition= 3 Predefined value of Windows
 Begin MSWinsockLib.Winsock Winsock1
 Left = 2040
 Top = 2040
 _ExtentX = 741
 _ExtentY = 741
 End
 Begin VB.CommandButton Command1
 Caption = "Send"
 Enabled = 0 'False
 Height = 375
 Left = 3960
 TabIndex = 6
 Top = 1080
 Width = 735
 End
 Begin VB.CheckBox Check1
 Caption = "Connection"
 Height = 375
 Left = 3960
 TabIndex = 4
 Top = 360

 Major changed points of properties

Object name Property Setting value

Form1 Caption Data link

Caption Send Command1

Enabled False

Text1 Text 192.168.0.1

Text2 Text 10003

Text3 Text

MultiLine True Text4

ScrollBars 2-Vertical

Check1 Caption Connection

Appendix-508 Real-time external control function

7Appendix

 Width = 735
 End
 Begin VB.TextBox Text4
 Height = 1815
 Left = 120
 MultiLine = -1 'True
 ScrollBars = 2 'Vertical
 TabIndex = 7
 Top = 1800
 Width = 4575
 End
 Begin VB.TextBox Text3
 Height = 375
 Left = 120
 TabIndex = 5
 Top = 1080
 Width = 3735
 End
 Begin VB.TextBox Text2
 Height = 375
 Left = 2280
 TabIndex = 3
 Text = "10003"
 Top = 360
 Width = 1575
 End
 Begin VB.TextBox Text1
 Height = 375
 Left = 120
 TabIndex = 2
 Text = "192.168.0.1"
 Top = 360
 Width = 2055
 End
 Begin VB.Label Label4
 Caption = "Receive data"
 Height = 195
 Left = 120
 TabIndex = 9
 Top = 1560
 Width = 975
 End
 Begin VB.Label Label3
 Caption = "Send data"
 Height = 195
 Left = 120
 TabIndex = 8
 Top = 840
 Width = 975
 End
 Begin VB.Label Label2
 Caption = "Port No."
 Height = 195
 Left = 2280
 TabIndex = 1
 Top = 120

 7Appendix

 Real-time external control function Appendix-509

 Width = 975
 End
 Begin VB.Label Label1
 Caption = "IP address"
 Height = 255
 Left = 120
 TabIndex = 0
 Top = 120
 Width = 1095
 End
End 'Screen setting To here

Attribute VB_Name = "Form1"
Attribute VB_GlobalNameSpace = False
Attribute VB_Creatable = False
Attribute VB_PredeclaredId = True
Attribute VB_Exposed = False

a) Program for the clients (when using the personal computer as the client and using the controller as the

server).

Option Explicit
Dim RecvData() As Byte

Private Sub Check1_Click() ' Process when the connection check button is clicked
If Check1.Value Then
 Winsock1.RemoteHost= Text1.Text
 Winsock1.RemotePort= Text2.Text
 Winsock1.Connect
Else
 Winsock1.Close
End If
End Sub

Private Sub Winsock1_Connect() ' Process when the network can be connected
 Command1.Enabled = True
End Sub

Private Sub Winsock1_Close() ' Process when the network is closed
 Check1.Value = False
End Sub

Private Sub Command1_Click() ' Process when "Transmission" command button is clicked
 Winsock1.SendData (Text3.Text)
End Sub

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long) ' Process when the received data arrives
 If bytesTotal > 0 Then
 ReDim RecvData(bytesTotal - 1)
 Call Winsock1.GetData(RecvData, , bytesTotal)
 Text4.SelStart = Len(Text4.Text)
 Text4.SelText = StrConv(RecvData, vbUnicode)
 End If
End Sub

Appendix-510 Real-time external control function

7Appendix

Private Sub Winsock1_Error(ByVal Number As Integer, _
 Description As String, ByVal Scode As Long, _
 ByVal Source As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, CancelDisplay As Boolean) ' Process when an error occurs in Window
Socket
 Check1.Value = False
 Command1.Enabled = False
 Winsock1.Close
 MsgBox " Error:" & Number & "(" & Description & ")"
End Sub

b) Program for the server (when using the personal computer as the server and using the controller as the

client).

Option Explicit
Dim RecvData() As Byte

Private Sub Form_Load()
 Text1.Enabled = False ' Make edit of the IP address impossible.
End Sub

Private Sub Check1_Click() ' Process when the connection check button is clicked
 If Check1.Value Then
 Text1.Text = Winsock1.LocalIP
 Winsock1.LocalPort = Text2.Text
 Winsock1.Listen
 Else
 Command1.Enabled = False
 Winsock1.Close
 End If
End Sub

Private Sub Winsock1_Connect()' Process when the network can be connected
 Command1.Enabled = True
End Sub

Private Sub Winsock1_Close()' Process when the network is closed
 Check1.Value = False
End Sub

Private Sub Command1_Click()' Process when "Transmission" command button is clicked
 Winsock1.SendData (Text3.Text)
End Sub

Private Sub Winsock1_ConnectionRequest(ByVal requestID As Long) ' Process when the connection
demand comes
 If Winsock1.State <> sckClosed Then Winsock1.Close
 Winsock1.Accept requestID
 Command1.Enabled = True
End Sub

Private Sub Winsock1_DataArrival(ByVal bytesTotal As Long)' Process when the received data arrives
 If bytesTotal > 0 Then

 7Appendix

 Real-time external control function Appendix-511

 ReDim RecvData(bytesTotal - 1)
 Call Winsock1.GetData(RecvData, , bytesTotal)
 Text4.SelStart = Len(Text4.Text)
 Text4.SelText = StrConv(RecvData, vbUnicode)
 Text4.Text = Text4.Text & vbCrLf
 End If
End Sub

Private Sub Winsock1_Error(ByVal Number As Integer, _
 Description As String, ByVal Scode As Long, _
 ByVal Source As String, ByVal HelpFile As String, _
 ByVal HelpContext As Long, CancelDisplay As Boolean)' Process when an error occurs in Window
Socket
 Check1.Value = False
 Command1.Enabled = False
 Winsock1.Close
 MsgBox "Error:" & Number & "(" & Description & ")"
End Sub

*Relation of Open command communication line file name COMn: and parameter COMDEV
COMDEV (1), (2), (3), (4), (5), (6), (7), (8)

*Channel name assigned to parameter COMDEV and protocol setting parameter name
OPT11 to OPT19 are assigned to (1) to (8).
The protocol is set in 2 (data link).

Communication line file name COMDEV

COM1: (1)

COM2: (2)

COM3: (3)

COM4: (4)

COM5: (5)

COM6: (6)

COM7: (7)

COM8: (8)

Channel name Protocol

Port No.*1 COMDEV

setting value
CPRCE** Setting value

10001 OPT11 CPRCE11 2

10002 OPT12 CPRCE12 2

10003 OPT13 CPRCE13 2

10004 OPT14 CPRCE14 2

10005 OPT15 CPRCE15 2

10006 OPT16 CPRCE16 2

10007 OPT17 CPRCE17 2

10008 OPT18 CPRCE18 2

10009 OPT19 CPRCE19 2

Appendix-512 Real-time external control function

7Appendix

(2) Sample program for real-time external control function
A sample program that establishes a data link using Microsoft Visual C++5.0/6.0 (hereinafter VC) is shown
below.
The procedures for creating the program are briefly explained below.
Refer to the software manuals for details on operating VC and creating the application.

1) Create new project
2) Create program sample.cpp/strdef.h

 1) Create new project
Start VC, and create a new project. Set the name to Win32 Console Application.

Using the project setting, add wsock32.lib to the object/library module.

2) Create program sample.cpp/strdef.h
Newly create the header file strdef.h and source file sample.cpp.

<Notes at compiling>
Use the setup of the alignment compiler option of the structure member with the 8 bytes of initial value. After
new creation of the project of Visual C++, if the setup is used with initial value, there is no problem. Refer to
the help of Visual C++ for details.

a)Header file strdef.h

//**
// Real-time control sample program
// Communication packet data structure definition header file
//**
// strdef.h

/***/
/*Joint coordinate system (Set unused axis to 0)*/
/*Refer to the instruction manual enclosed */
/*with each robot for details on each element. */
/***/

 7Appendix

 Real-time external control function Appendix-513

typedef struct{
 float j1;//J1 axis angle (radian)
 float j2;//J2 axis angle (radian)
 float j3;//J3 axis angle (radian)
 float j4;//J4 axis angle (radian)
 float j5;//J5 axis angle (radian)
 float j6;//J6 axis angle (radian)
 float j7;//Additional axis 1 (J7 axis angle) (radian)
 float j8;//Additional axis 2 (J8 axis angle) (radian)
} JOINT;

/***/
/*XYZ coordinate system (Set unused axis to 0)*/
/*Refer to the instruction manual enclosed */
/*with each robot for details on each element. */
/***/
typedef struct{
 float x;//X axis coordinate value (mm)
 float y;// Y axis coordinate value (mm)
 float z;// Z axis coordinate value (mm)
 float a;// A axis coordinate value (radian)
 float b;// B axis coordinate value (radian)
 float c;// C axis coordinate value (radian)
 float l1;// Additional axis 1 (mm or radian)
 float l2;// Additional axis 2 (mm or radian)
} WORLD;

typedef struct{
 WORLD w;
 unsigned int sflg1;//Structural flag 1
 unsigned int sflg2;//Structural flag 2
} POSE;

/***/
/*Pulse coordinate system (Set unused axis to 0)*/
/*These coordinates express each joint*/
/*with a motor pulse value. */
/***/
typedef struct{
 long p1;//Motor 1 axis
 long p2;// Motor 2 axis
 long p3;// Motor 3 axis
 long p4;// Motor 4 axis
 long p5;// Motor 5 axis
 long p6;// Motor 6 axis
 long p7;//Additional axis 1 (Motor 7 axis)
 long p8;//Additional axis 2 (Motor 8 axis)
} PULSE;

/**/
/*Real-time function communication data packet */
/**/
typedef struct enet_rtcmd_str {
 unsigned short Command;//Command

Appendix-514 Real-time external control function

7Appendix

#define MXT_CMD_NULL0//Real-time external command invalid
#define MXT_CMD_MOVE1// Real-time external command valid
#define MXT_CMD_END255//Real-time external command end

 unsigned short SendType;//Command data type designation
 unsigned short RecvType;//Monitor data type designation
//////////// Command or monitor data type ///
#define MXT_TYP_NULL0//No data
//For the command and monitor ////////////////////
#define MXT_TYP_POSE1//XYZ data
#define MXT_TYP_JOINT2//Joint data
#define MXT_TYP_PULSE3 //pulse data
///////////// For position related monitor ///
#define MXT_TYP_FPOSE4// XYZ data (after filter process)
#define MXT_TYP_FJOINT5// Joint data (after filter process)
#define MXT_TYP_FPULSE6// Pulse data (after filter process)
#define MXT_TYP_FB_POSE7// XYZ data (Encoder feedback value)
#define MXT_TYP_FB_JOINT8// Joint data (Encoder feedback value)
#define MXT_TYP_FB_PULSE9// Pulse data (Encoder feedback value)
//For current related monitors ////////////////////
#define MXT_TYP_CMDCUR10//Electric current command
#define MXT_TYP_FBKCUR11//Electric current feedback

 unsigned short reserve;// Reserved
 union rtdata {//Command data
 POSE pos;//XYZ type [mm/rad]
 JOINT jnt;//Joint type [rad]
 PULSE pls;//Pulse type [pls]
long lng1[8];//Integer type [% / non-unit]
 } dat;

 unsigned short SendIOType;// Send input/output signal data designation
 unsigned short RecvIOType;// Return input/output signal data designation
#define MXT_IO_NULL0//No data
#define MXT_IO_OUT1//Output signal
#define MXT_IO_IN2//Input signal

 unsigned short BitTop;// Head bit No.
 unsigned short BitMask;// Transmission bit mask pattern designation (0x0001-0xffff)
 unsigned short IoData;// Input/output signal data (0x0000-0xffff)

 unsigned short TCount;// Timeout time counter value
 unsigned long CCount;// Transmission data counter value

 unsigned short RecvType1;// Reply data-type specification 1 .
 unsigned short reserve1;// Reserved 1
 union rtdata1 { // Monitor data 1 .
 POSE pos1;// XYZ type [mm/rad] .
 JOINT jnt1;// JOINT type [mm/rad] .
 PULSE pls1; // PULSE type [mm/rad] .
 long lng1[8]; // Integer type [% / non-unit] .
 } dat1;
 unsigned short RecvType2;// Reply data-type specification 2 .
 unsigned short reserve2;// Reserved 2
 union rtdata2 {//Monitor data 2 .
 POSE pos2;// XYZ type [mm/rad] .

 7Appendix

 Real-time external control function Appendix-515

 JOINT jnt2; // JOINT type [mm/rad] .
 PULSE pls2; // PULSE type [mm/rad] or Integer type [% / non-unit].
 long lng2[8];// Integer type [% / non-unit] .
 } dat2;
 unsigned short RecvType3;// Reply data-type specification 3 .
 unsigned short reserve3; // Reserved 3
 union rtdata3 {// Monitor data 3 .
 POSE pos3;// XYZ type [mm/rad] .
 JOINT jnt3;// JOINT type [mm/rad] .
 PULSE pls3;// PULSE type [mm/rad] or Integer type [% / non-unit].
 long lng3[8];// Integer type [% / non-unit] .
 } dat3;

} MXTCMD;

b)Source file sample.cpp
// sample.cpp

#include <windows.h>
#include <iostream.h>
#include <winsock.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <math.h>
#include "strdef.h"
#define NO_FLAGS_SET 0
#define MAXBUFLEN 512

INT main(VOID)
{
 WSADATA Data;
 SOCKADDR_IN destSockAddr;
 SOCKET destSocket;
 unsigned long destAddr;
 int status;
 int numsnt;
 int numrcv;
 char sendText[MAXBUFLEN];
 char recvText[MAXBUFLEN];
 char dst_ip_address[MAXBUFLEN];
 unsigned short port;
 char msg[MAXBUFLEN];
 char buf[MAXBUFLEN];
 char type, type_mon[4];
 unsigned short IOSendType;// Send input/output signal data designation
 unsigned short IORecvType;// Reply input/output signal data designation
 unsigned short IOBitTop=0;
 unsigned short IOBitMask=0xffff;
 unsigned short IOBitData=0;

 cout << " Input connection destination IP address (192.168.0.1) ->";
 cin.getline(dst_ip_address, MAXBUFLEN);
 if(dst_ip_address[0]==0) strcpy(dst_ip_address, "192.168.0.1");

 cout << " Input connection destination port No. (10000) -> ";

Appendix-516 Real-time external control function

7Appendix

 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) port=atoi(msg);
 else port=10000;

 cout << " Use input/output signal?([Y] / [N])-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0 && (msg[0]=='Y' || msg[0]=='y')) {
 cout << "What is target? Input signal/output signal([I]nput / [O]utput)-> ";
 cin.getline(msg, MAXBUFLEN);
 switch(msg[0]) {
 case 'O':// Set target to output signal
 case 'o':
 IOSendType = MXT_IO_OUT;
 IORecvType = MXT_IO_OUT;
 break;
 case 'I':// Set target to input signal
 case 'i':
 default:
 IOSendType = MXT_IO_NULL;
 IORecvType = MXT_IO_IN;
 break;
 }

 cout << " Input head bit No. (0 to 32767)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) IOBitTop = atoi(msg);
 else IOBitTop = 0;

 if(IOSendType==MXT_IO_OUT) { // Only for output signal
 cout << "Input bit mask pattern for output as hexadecimal (0000 to FFFF)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitMask);
 else IOBitMask = 0;
 cout << "Input bit data for output as hexadecimal (0000 to FFFF)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitData);
 else IOBitData = 0;
 }
 }
cout <<" --- Input the data type of command. --- \n";
cout <<"[0: None / 1: XYZ / 2:JOINT / 3: PULSE]\n".;
cout <<" -- please input the number -- [0] - [3]->";
 cin.getline(msg, MAXBUFLEN);
 type = atoi(msg);

 for(int k=0; k<4; k++) {
 sprintf (msg," --- input the data type of monitor (%d-th) --- \n", k); .
 cout << msg;
 cout << "[0: None]\n";
 cout << "[1: XYZ / 2:JOINT / 3: PULSE] Command value \n";
 cout << "[4: XYZ/ 5: JOINT/ 6: PULSE] Command value after the filter process \n";
 cout << "[7: XYZ/ 5:JOINT/ 6:PULSE] Feedback value. \n";
 cout << "[10: Electric current value / 11: Electric current feedback] ... Electric current value. \n";
 cout << "Input the numeral [0] to [11] -> ";
 cin.getline(msg, MAXBUFLEN);
 type_mon[k] = atoi(msg);

 7Appendix

 Real-time external control function Appendix-517

 }
 sprintf(msg, "IP=%s / PORT=%d / Send Type=%d / Monitor Type0/1/2/3=%d/%d/%d/%d"
, dst_ip_address, port , type
, type_mon[0], type_mon[1], type_mon[2], type_mon[3]);
 cout << msg << endl;

 cout << "[Enter]= End / [d]= Monitor data display";
 cout << "[z/x]= Increment/decrement first command data transmitted by the delta amount. ";

 cout << " Is it all right? [Enter] / [Ctrl+C] ";
 cin.getline(msg, MAXBUFLEN);

// Windows Socket DLL initialization
 status=WSAStartup(MAKEWORD(1, 1), &Data);
 if (status != 0)
 cerr << "ERROR: WSAStartup unsuccessful" << endl;

// IP address, port, etc., setting
 memset(&destSockAddr, 0, sizeof(destSockAddr));
 destAddr=inet_addr(dst_ip_address);
 memcpy(&destSockAddr.sin_addr, &destAddr, sizeof(destAddr));
 destSockAddr.sin_port=htons(port);
 destSockAddr.sin_family=AF_INET;

// Socket creation
 destSocket=socket(AF_INET, SOCK_DGRAM, 0);
 if (destSocket == INVALID_SOCKET) {
 cerr << "ERROR: socket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }

 MXTCMD MXTsend;
 MXTCMD MXTrecv;
 JOINT jnt_now;
 POSE pos_now;
 PULSE pls_now;

 unsigned long counter = 0;
 int loop = 1;
 int disp = 0;
 int disp_data = 0;
 int ch;
 float delta=(float)0.0;
 long ratio=1;
 int retry;
 fd_set SockSet;// Socket group used with select
 timeval sTimeOut;// For timeout setting

 memset(&MXTsend, 0, sizeof(MXTsend));
 memset(&jnt_now, 0, sizeof(JOINT));
 memset(&pos_now, 0, sizeof(POSE));
 memset(&pls_now, 0, sizeof(PULSE));

Appendix-518 Real-time external control function

7Appendix

 while(loop) {

 memset(&MXTsend, 0, sizeof(MXTsend));
 memset(&MXTrecv, 0, sizeof(MXTrecv));

// Transmission data creation
 if(loop==1) {// Only first time
 MXTsend.Command = MXT_CMD_NULL;
 MXTsend.SendType = MXT_TYP_NULL;
 MXTsend.RecvType = type;
 MXTsend.SendIOType = MXT_IO_NULL;
 MXTsend.RecvIOType = IOSendType;
 MXTsend.CCount = counter = 0;
 }
 else {// Second and following times
 MXTsend.Command = MXT_CMD_MOVE;
 MXTsend.SendType = type;
 MXTsend.RecvType = type*_mon[0];
 MXTsend.RecvType1= type_mon[1];
 MXTsend.RecvType2= type_mon[2];
 MXTsend.RecvType3= type_mon[3];

 switch(type) {
 case MXT_TYP_JOINT:
 memcpy(&MXTsend.dat.jnt, &jnt_now, sizeof(JOINT));
 MXTsend.dat.jnt.j1 += (float)(delta*ratio*3.141592/180.0);
 break;
 case MXT_TYP_POSE:
 memcpy(&MXTsend.dat.pos, &pos_now, sizeof(POSE));
 MXTsend.dat.pos.w.x += (delta*ratio);
 break;
 case MXT_TYP_PULSE:
 memcpy(&MXTsend.dat.pls, &pls_now, sizeof(PULSE));
 MXTsend.dat.pls.p1 += (long)((delta*ratio)*10);
 break;
 default:
 break;
 }
 MXTsend.SendIOType = IOSendType;
 MXTsend.RecvIOType = IORecvType;
 MXTsend.BitTop = IOBitTop;
 MXTsend.BitMask =IOBitMask;
 MXTsend.IoData = IOBitData;
 MXTsend.CCount = counter;
 }

// Keyboard input
// [Enter]=End / [d]= Display the monitor data, or none / [0/1/2/3]= Change of monitor data display
// [z/x]=Increment/decrement first command data transmitted by the delta amount
while(kbhit()!=0) {
 ch=getch();
 switch(ch) {
 case 0x0d:
 MXTsend.Command = MXT_CMD_END;
 loop = 0;
 break;

 7Appendix

 Real-time external control function Appendix-519

 case 'Z':
 case 'z':
 delta += (float)0.1;
 break;
 case 'X':
 case 'x':
 delta -= (float)0.1;
 break;
 case 'C':
 case 'c':
 delta = (float)0.0;
 break;
 case 'd':
 disp = ~disp;
 break;
 case '0': case '1': case '2': case '3':
 disp_data = ch - '0';
 break;
 }
 }

 memset(sendText, 0, MAXBUFLEN);
 memcpy(sendText, &MXTsend, sizeof(MXTsend));
 if(disp) {
 sprintf(buf, "Send (%ld):",counter);
 cout << buf << endl;
 }
numsnt=sendto(destSocket, sendText, sizeof(MXTCMD), NO_FLAGS_SET
, (LPSOCKADDR) &destSockAddr, sizeof(destSockAddr));
 if (numsnt != sizeof(MXTCMD)) {
 cerr << "ERROR: sendto unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }

 memset(recvText, 0, MAXBUFLEN);

 retry = 1;// No. of reception retries
 while(retry) {
 FD_ZERO(&SockSet);// SockSet initialization
 FD_SET(destSocket, &SockSet);// Socket registration
 sTimeOut.tv_sec = 1;// Transmission timeout setting (sec)
 sTimeOut.tv_usec = 0;// (u sec)
 status = select(0, &SockSet, (fd_set *)NULL, (fd_set *)NULL, &sTimeOut);
 if(status == SOCKET_ERROR) {
 return(1);
 }
// If it receives by the time-out
 if((status > 0) && (FD_ISSET(destSocket, &SockSet) != 0)) {
 numrcv=recvfrom(destSocket, recvText, MAXBUFLEN, NO_FLAGS_SET, NULL, NULL);
 if (numrcv == SOCKET_ERROR) {

Appendix-520 Real-time external control function

7Appendix

 cerr << "ERROR: recvfrom unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }
 memcpy(&MXTrecv, recvText, sizeof(MXTrecv));
 char str[10];
 if(MXTrecv.SendIOType==MXT_IO_IN)
 sprintf(str,"IN%04x", MXTrecv.IoData);
 else if(MXTrecv.SendIOType==MXT_IO_OUT)
 sprintf(str,"OT%04x", MXTrecv.IoData);
 else sprintf(str,"------");

 int DispType;
 void *DispData;

 switch(disp_data) {
 case 0:
 DispType = MXTrecv.RecvType;
 DispData = &MXTrecv.dat;
 break;
 case 1:
 DispType = MXTrecv.RecvType1;
 DispData = &MXTrecv.dat1;
 break;
 case 2:
 DispType = MXTrecv.RecvType2;
 DispData = &MXTrecv.dat2;
 break;
 case 3:
 DispType = MXTrecv.RecvType3;
 DispData = &MXTrecv.dat3;
 break;
 default:
 break;
 }

 switch(DispType) {
 case MXT_TYP_JOINT:
 case MXT_TYP_FJOINT:
 case MXT_TYP_FB_JOINT:
 if(loop==1) {
 memcpy(&jnt_now, DispData, sizeof(JOINT));
 loop = 2;
 }
 if(disp) {
 JOINT *j=(JOINT*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(JOINT)=%d\n
%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,j->j1, j->j2, j->j3 ,j->j4, j->j5, j->j6, j->j7, j->j8, str);
 cout << buf << endl;

 7Appendix

 Real-time external control function Appendix-521

 }
 break;
 case MXT_TYP_POSE:
 case MXT_TYP_FPOSE:
 case MXT_TYP_FB_POSE:
 if(loop==1) {
 memcpy(&pos_now, &MXTrecv.dat.pos, sizeof(POSE));
 loop = 2;
 }
 if(disp) {
 POSE *p=(POSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(POSE)=%d\n
%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f, %04x,%04x (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,p->w.x, p->w.y, p->w.z, p->w.a, p->w.b, p->w.c
, p->sflg1, p->sflg2, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_PULSE:
 case MXT_TYP_FPULSE:
 case MXT_TYP_FB_PULSE:
 case MXT_TYP_CMDCUR:
 case MXT_TYP_FBKCUR:
 if(loop==1) {
 memcpy(&pls_now, &MXTrecv.dat.pls, sizeof(PULSE));
 loop = 2;
 }
 if(disp) {
 PULSE *l=(PULSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d Type(PULSE/OTHER)=%d\n
%ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,l->p1, l->p2, l->p3, l->p4, l->p5, l->p6, l->p7, l->p8, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_NULL:
 if(loop==1) {
 loop = 2;
 }
 if(disp) {
 sprintf(buf, "Receive (%ld): TCount=%d Type(NULL)=%d\n (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount, DispType, str);
 cout << buf << endl;
 }
 break;
 default:
 cout << "Bad data type.\n" << endl;
 break;
 }
 counter++;// Count up only when communication is successful
 retry=0;// Leave reception loop
 }
 else { // Reception timeout
 cout << "... Receive Timeout! <Push [Enter] to stop the program>" << endl;

Appendix-522 Real-time external control function

7Appendix

 retry--;// No. of retries subtraction
 if(retry==0) loop=0; // End program if No. of retries is 0
 }
 } /* while(retry) */
 } /* while(loop) */

 // End
 cout << "/// End /// ";
 sprintf(buf, "counter = %ld", counter);
 cout << buf << endl;

//Close socket
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;

 return 0;
}

 7Appendix

 Configuration flag Appendix-523

7.2 Configuration flag
The configuration flag indicates the robot posture.
For the 6-axis type robot, the robot hand end is saved with the position data configured of X, Y, Z, A, B and
C. However, even with the same position data, there are several postures that the robot can change to. The
posture is expressed by this configuration flag, and the posture is saved with FL1 in the position constant (X,
Y, Z, A, B, C) (FL1, FL2).
The types of configuration flags are shown below.

*For vertical multi-joint type robot
(1) Right/Left

P is center of flange in comparison with the plane through the J1 axis vertical to the ground.
Q is center of J5 axis rotation in comparison with the plane through the J1 axis vertical to the ground.

Fig.7-1:Configuration flag (Right/Left)

(2) ABOVE/BELOW
Q is center of J5 axis rotation in comparison with the plane through both the J3 and the J2 axis.

Fig.7-2:Configuration flag (ABOVE/BELOW)

5-axis type 6-axis type

LEFT RIGHT LEFT

Ｐ

LEFT RIGHT LEFT

Ｑ

J1 axis
Rotation center

J1 axis
Rotation center

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = Right/Left
Note) "&B" is shows the binary

Ｑ

ABOVE

BELOW

5-axis type 6-axis type

Ｑ

ABOVE

BELOW

J2 axis
Rotation center

J3 axis
Rotation center

J3 axis
Rotation center

J2 axis
Rotation center

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = ABOVE/BELOW
Note) "&B" is shows the binary

Appendix-524 Configuration flag

7Appendix

(3) NONFLIP/FLIP (6-axis robot only.)
This means in which side the J6 axis is in comparison with the plane through both the J4 and the J5 axis.

Fig.7-3 ： Configuration flag (NONFLIP/FLIP)

FLIP

NON FILIP

J4 axis

J6 axis flange surface

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = NONFLIP/FLIP
Note) "&B" is shows the binary

 7Appendix

 Configuration flag Appendix-525

*For horizontal multi-joint type robot
(1) Right/Left

Indicates the location of the end axis relative to the line that passes through both the rotational center of the
J1 axis and the rotational center of the J2 axis.

Fig.7-4:Configuration flag (Right/Left)

RIGHT

LEFT

FL1(Flag1)
&B 0 0 0 0 0 0 0 0

 ↑
1/0 = Right/Left
Note) "&B" is shows the binary

Appendix-526 Configuration flag

7Appendix

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 5-1-14, YADA-MINAMI, HIGASHI-KU NAGOYA 461-8670, JAPAN

Authorised representative:
MITSUBISHI ELECTRIC EUROPE B.V. GERMANY
Gothaer Str. 8, 40880 Ratingen / P.O. Box 1548, 40835 Ratingen, Germany

Jan., 2015 MEE Printed in Japan on recycled paper. Specifications are subject to change without notice.

	1 Before starting use
	1.1 Using the instruction manuals
	1.1.1 The details of each instruction manuals
	1.1.2 Terminological definition
	1.1.3 Symbols used in instruction manual

	1.2 Safety Precautions
	1.2.1 Precautions given in the separate Safety Manual

	2 Explanation of functions
	2.1 Operation panel (O/P) functions
	(1) Description of the operation panel button
	(2) Description of the STATUS NUMBER
	(3) Robot type resetting

	2.2 Teaching pendant (T/B) functions
	(1) Function of each key
	2.2.1 Operation rights

	2.3 Functions Related to Movement and Control

	3 Explanation of operation methods
	3.1 Operation of the teaching pendant menu screens
	(1) Screen tree
	(2) Input of the number/character
	(3) Selecting a menu

	3.2 Jog Feed (Overview)
	3.2.1 Types of jog feed
	3.2.2 Speed of jog feed
	3.2.3 JOINT jog
	3.2.4 XYZ jog
	3.2.5 TOOL jog
	3.2.6 3-axis XYZ jog
	3.2.7 CYLNDER jog
	3.2.8 WORK jog
	3.2.9 Switching Tool Data
	3.2.10 Changing the world coordinate (specifies the base coordinate number)
	3.2.11 Impact Detection during Jog Operation
	(1) Impact Detection Level Adjustment during Jog Operation

	3.3 Opening/Closing the Hands
	3.4 Aligning the Hand
	3.5 Programming
	3.5.1 Creating a program
	(1) Opening the program edit screen
	(2) Creating a program
	(3) Completion of program creation and saving programs
	(4) Correcting a program
	(5) Registering the current position data
	(6) Deletion of the position variable
	(7) Confirming the position data (Position jump)
	(8) Correcting the MDI (Manual Data Input)

	3.6 Debugging
	(1) Step feed
	(2) Step return
	(3) Step feed in another slot
	(4) Step jump

	3.7 Automatic operation
	(1) Setting the operation speed
	(2) Selecting the program No.
	(3) Starting automatic operation
	(4) Stopping
	(5) Resuming automatic operation from stopped state
	(6) Resetting the program

	3.8 Turning the servo ON/OFF
	3.9 Error reset operation
	3.10 Operation to Temporarily Reset an Error that Cannot Be Canceled
	3.11 Operating the program control screen
	(1) Program list display
	(2) Copying programs
	(3) Name change of the program (Rename)
	(4) Deleting a program (Delete)
	(5) Protection of the program (Protect)
	(6) Select the program

	3.12 Operation of operating screen
	3.12.1 Display of the execution line
	(1) Select the confirmation menu
	(2) Step feed
	(3) Step jump
	(4) Step feed in another slot
	(5) Finishing of the confirmation screen.

	3.12.2 Test operation
	(1) Select the test operation

	3.13 Operating the monitor screen
	(1) Input signal monitor
	(2) Output signal monitor
	(3) Input register monitor
	(4) Output register monitor
	(5) Variable monitor
	(6) Error history

	3.14 Operation of maintenance screen
	3.15 Operation of the origin and the brake screen
	(1) Origin
	(2) Brake

	3.16 Operation of setup / initialization screen
	(1) Initialize the program
	(2) Initialize the parameter
	(3) Initialize the battery
	(4) Operation
	(5) Time setup
	(6) Version

	3.17 ENHANCED
	(1) SQ DIRECT
	(2) WORK COORD

	3.18 Operation of the initial-setting screen
	(1) Set the display language
	(2) Adjustment of contrast

	4 MELFA-BASIC V
	4.1 MELFA-BASIC V functions
	4.1.1 Robot operation control
	(1) Joint interpolation movement
	(2) Linear interpolation movement
	(3) Circular interpolation movement
	(4) Continuous movement
	(5) Acceleration/deceleration time and speed control
	(6) Confirming that the target position is reached
	(7) High path accuracy control
	(8) Hand and tool control

	4.1.2 Pallet operation
	4.1.3 Program control
	(1) Unconditional branching, conditional branching, waiting
	(2) Repetition
	(3) Interrupt
	(4) Subroutine
	(5) Timer
	(6) Stopping

	4.1.4 Inputting and outputting external signals
	(1) Input signals
	(2) Output signals

	4.1.5 Communication
	4.1.6 Expressions and operations
	(1) List of operator
	(2) Relative calculation of position data (multiplication)
	(3) Relative calculation of position data (Addition)

	4.1.7 Appended statement

	4.2 The difference between MELFA-BASIC V and MELFA-BASIC IV
	4.2.1 About MELFA-BASIC V
	4.2.2 The feature of MELFA-BASIC V
	4.2.3 Comparison with MELFA-BASIC IV

	4.3 Multitask function
	4.3.1 What is multitasking?
	4.3.2 Executing a multitask
	4.3.3 Operation state of each slot
	4.3.4 Precautions for creating multitask program
	(1) Relationship between number of tasks and processing time
	(2) Specification of the maximum number of programs executed concurrently
	(3) How to pass data between programs via external variables
	(4) Confirmation of operating status of programs via robot status variables
	(5) The program that operates the robot is basically executed in slot 1.
	(6) How to perform the initialization processing via constantly executed programs

	4.3.5 Precautions for using a multitask program
	(1) Starting the multitask
	(2) Display of operation status

	4.3.6 Example of using multitask
	(1) Robot work details.
	(2) Procedures to multitask execution

	4.3.7 Program capacity
	(1) Program save area
	(2) Program edit area
	(3) Program execution area

	4.4 Detailed specifications of MELFA-BASIC V
	(1) Program name
	(2) Command statement
	(3) Variable
	4.4.1 Statement
	4.4.2 Appended statement
	4.4.3 Step
	4.4.4 Step No.
	4.4.5 Label
	4.4.6 Types of characters that can be used in program
	4.4.7 Characters having special meanings
	(1) Uppercase and lowercase identification
	(2) Underscore (_)
	(3) Apostrophe (')
	(4) Asterisk (*)
	(5) Comma (,)
	(6) Period (.)
	(7) Space

	4.4.8 Data type
	4.4.9 Constants
	4.4.10 Numeric value constants
	(1) Decimal number
	(2) Hexadecimal number
	(3) Binary number
	(4) Types of constant

	4.4.11 Character string constants
	4.4.12 Position constants
	(1) Coordinate, posture and additional axis data types and meanings
	(2) Meaning of structure flag data type and meanings

	4.4.13 Joint constants
	(1) Axis data format and meanings

	4.4.14 Angle value
	4.4.15 Variables
	4.4.16 Numeric value variables
	4.4.17 Character string variables
	4.4.18 Position variables
	4.4.19 Joint variables
	4.4.20 Input/output variables
	4.4.21 Array variables
	4.4.22 External variables
	4.4.23 Program external variables
	4.4.24 User-defined external variables
	4.4.25 Creating User Base Programs

	4.5 Coordinate system description of the robot
	4.5.1 About the robot's coordinate system
	4.5.2 About base conversion
	4.5.3 About position data
	4.5.4 About tool coordinate system (mechanical interface coordinate system)
	(1) Mechanical interface coordinate system
	(2) Tool coordinate system
	(3) Effects of use of tool coordinate system

	4.6 Robot status variables
	4.7 Logic numbers
	4.8 Functions
	(1) User-defined functions
	(2) Built-in functions

	4.9 List of Instructions
	(1) Instructions related to movement control
	(2) Instructions related to program control
	(3) Definition instructions
	(4) Multi-task related
	(5) Others

	4.10 Operators
	4.11 Priority level of operations
	4.12 Depth of program's control structure
	4.13 Reserved words
	4.14 Detailed explanation of command words
	4.14.1 How to read the described items
	4.14.2 Explanation of each command word
	Accel (Accelerate)
	Act (Act)
	Base (Base)
	CallP (Call P)
	ChrSrch (Character search)
	Close (Close)
	Clr (Clear)
	Cmp Jnt (Compliance Joint)
	Cmp Pos (Compliance Posture)
	Cmp Tool (Compliance Tool)
	Cmp Off (Compliance OFF)
	CmpG (Compliance Gain)
	Cnt (Continuous)
	ColChk (Col Check)
	ColLvl (Col Level)
	Com On/Com Off/Com Stop (Communication ON/OFF/STOP)
	Def Act (Define act)
	Def Arch (Define arch)
	Def Char (Define Character)
	Def FN (Define function)
	Def Inte/Def Long/Def Float/Def Double (Define Integer/Long/Float/Double)
	Def IO (Define IO)
	Def Jnt (Define Joint)
	Def Plt (Define pallet)
	Def Pos (Define Position)
	Dim (Dim)
	Dly (Delay)
	End (End)
	Error (error)
	Fine (Fine)
	Fine J (Fine Joint)
	Fine P (Fine Pause)
	For - Next (For-next)
	FPrm (FPRM)
	GetM (Get Mechanism)
	GoSub (Return)(Go Subroutine)
	GoTo (Go To)
	Hlt (Halt)
	HOpen / HClose (Hand Open/Hand Close)
	If...Then...Else...EndIf (If Then Else)
	Input (Input)
	JOvrd (J Override)
	JRC (Joint Roll Change)
	Loadset (Load Set)
	Mov (Move)
	Mva (Move Arch)
	Mvc (Move C)
	Mvr (Move R)
	Mvr2 (Move R2)
	Mvr3 (Move R 3)
	Mvs (Move S)
	Mv Tune (Move Tune)
	Mxt (Move External)
	Oadl (Optimal Acceleration)
	On Com GoSub (ON Communication Go Subroutine)
	On ... GoSub (ON Go Subroutine)
	On ... GoTo (On Go To)
	Open (Open)
	Ovrd (Override)
	Plt (Pallet)
	Prec (Precision)
	Print (Print)
	Priority (Priority)
	RelM (Release Mechanism)
	Rem (Remarks)
	Reset Err (Reset Error)
	Return (Return)
	Select Case (Select Case)
	Servo (Servo)
	Skip (Skip)
	Spd (Speed)
	SpdOpt (Speed Optimize)
	Title (Title)
	Tool(Tool)
	Torq (Torque)
	Wait (Wait)
	While-WEnd (While End)
	Wth (With)
	WthIf (With If)
	XClr (X Clear)
	XLoad (X Load)
	XRst (X Reset)
	XRun (X Run)
	XStp (X Stop)
	Substitute
	(Label)

	4.15 Detailed explanation of Robot Status Variable
	4.15.1 How to Read Described items
	4.15.2 Explanation of Each Robot Status Variable
	C_Com
	C_Date
	C_Maker
	C_Mecha
	C_Prg
	C_Time
	C_User
	J_Curr
	J_ColMxl
	J_ECurr
	J_Fbc/J_AmpFbc
	J_Origin
	M_Acl/M_DAcl/M_NAcl/M_NDAcl/M_AclSts
	M_BsNo
	M_BrkCq
	M_BTime
	M_CmpDst
	M_CmpLmt
	M_ColSts
	M_Cstp
	M_Cys
	M_DIn/M_DOut
	M_DIn32
	M_DOut32
	M_ErCode
	M_Err/M_ErrLvl/M_Errno
	M_Exp
	M_Fbd
	M_G
	M_HndCq
	M_In/M_Inb/M_In8/M_Inw/M_In16
	M_In32
	M_JOvrd/M_NJovrd/M_OPovrd/M_Ovrd/M_NOvrd
	M_LdFact
	M_Line
	M_Mode
	M_On/M_Off
	M_Open
	M_Out/M_Outb/M_Out8/M_Outw/M_Out16
	M_Out32
	M_PI
	M_Psa
	M_Ratio
	M_RDst
	M_Run
	M_SetAdl
	M_SkipCq
	M_Spd/M_NSpd/M_RSpd
	M_Svo
	M_Timer
	M_Tool
	M_Uar
	M_Uar32
	M_Wai
	M_Wupov
	M_Wuprt
	M_Wupst
	P_Base/P_NBase
	P_ColDir
	P_Curr
	P_Fbc
	P_Safe
	P_Tool/P_NTool
	P_WkCord
	P_Zero

	4.16 Detailed Explanation of Functions
	4.16.1 How to Read Described items
	4.16.2 Explanation of Each Function
	Abs
	Align
	Asc
	Atn/Atn2
	Bin$
	CalArc
	Chr$
	Cint
	CkSum
	Cos
	Cvi
	Cvs
	Cvd
	Deg
	Dist
	Exp
	Fix
	Fram
	Hex$
	Int
	Inv
	JtoP
	Left$
	Len
	Ln
	Log
	Max
	Mid$
	Min
	Mirror$
	Mki$
	Mks$
	Mkd$
	PosCq
	PosMid
	PtoJ
	Rad
	Rdfl 1
	Rdfl 2
	Rnd
	Right$
	Setfl 1
	Setfl 2
	SetJnt
	SetPos
	Sgn
	Sin
	Sqr
	Strpos
	Str$
	Tan
	Val
	Zone
	Zone 2
	Zone3

	5 Functions set with parameters
	5.1 Movement parameter
	5.2 Signal parameter
	5.2.1 About multi CPU input offsets (CRnQ-700 controller only)
	(1) Case (A)
	(2) Case (B)

	5.3 Operation parameter
	5.4 Command parameter
	5.5 Communication parameter
	5.6 Standard Tool Coordinates
	5.7 About Standard Base Coordinates
	5.8 About user-defined area
	5.8.1 Selecting a coordinate system
	5.8.2 Setting Areas
	(1) Position Area
	(2) Posture Area
	(3) Additional Axis Area

	5.8.3 Selecting mechanism to be checked
	5.8.4 Specifying behavior within user-defined area
	5.8.5 Example of settings

	5.9 Free plane limit
	5.10 Automatic return setting after jog feed at pause
	5.11 Automatic execution of program at power up
	(1) First, create an ALWAYS program and an operating program.
	(2) Set the parameter.
	(3) Turn the power ON.

	5.12 About the hand type
	5.13 About default hand status
	5.14 About the output signal reset pattern
	5.15 About the communication setting (RS-232)
	(1) Overview

	5.16 About the communication setting (Ethernet)
	5.16.1 Details of parameters
	(1) NETIP (IP address of robot controller)
	(2) NETMSK (sub-net-mask)
	(3) NETPORT (port No.)
	(4) CRRCE11 to 19 (protocol)
	(5) COMDEV (Definition of devices corresponding to COM1: to 8)
	(6) NETMODE (server specification).
	(7) NETHSTIP (The IP address of the server of the data communication point).
	(8) MXTTOUT (Timeout setting for executing real-time external control command)

	5.16.2 Example of setting of parameter 1 (When the Support Software is used)
	5.16.3 Example of setting of parameter 2-1
	5.16.4 Example of setting parameters 2-2
	5.16.5 Example of setting parameters 3

	5.17 Connection confirmation
	5.17.1 Checking the connection with the Windows ping command

	5.18 Hand and Workpiece Conditions (optimum acceleration/deceleration settings)
	5.19 About the singular point adjacent alarm
	(1) Operations that generate an alarm
	(2) Operations that do not generate an alarm

	5.20 About ROM operation/high-speed RAM operation function
	(1) Overview
	(2) Procedures for switching between ROM and RAM
	(3) Switching to the ROM operation
	(4) Display during the ROM operation
	(5) Program editing during the ROM operation
	(6) Switching to the RAM operation
	(7) Switching to the high-speed RAM operation(DRAM operation)

	5.21 Warm-Up Operation Mode
	(1) Functional Overview
	(2) Function Details
	(3) If alarms are generated

	5.22 About singular point passage function
	(1) Overview of the function
	(2) Singular point passage function in jog operation
	(3) Singular point passage function in position data confirmation (position jump)
	(4) Singular point passage function in automatic operation
	TYPE (Type)

	5.23 About the impact detection function
	(1) Overview of the function
	(2) Applicable models
	(3) Related parameters
	(4) How to use the impact detection function

	6 External input/output functions
	6.1 Types
	6.2 Sequencer link I/O function
	6.2.1 Parameter setting
	(1) Sequencer CPU parameter setting
	(2) Robot CPU parameter setting

	6.2.2 CPU shared memory and robot I/O signal compatibility
	6.2.3 Sequence ladder example
	6.2.4 Assignment of the dedicated I/O signal. (at factory shipping)
	6.2.5 Comparison of the I/O point of the CRnQ700 and the CRn500 series

	6.3 Dedicated input/output
	6.4 Enable/disable status of signals
	6.5 External signal timing chart
	6.5.1 Individual timing chart of each signal
	(1) RCREADY (Controller's power ON completion output)
	(2) ATEXTMD (Remote mode output)
	(3) TEACHMD (Teach mode output)
	(4) ATTOPMD (Auto mode output)
	(5) IOENA (Operation right input signal/operation right output signal)
	(6) START (Start input/operating output)
	(7) STOP (Stop input/aborting output)
	(8) STOPSTS (Output during stop signal input)
	(9) SLOTINIT (Program reset input/program selectable output)
	(10) ERRRESET (Error reset input/output during error occurrence)
	(11) SRVON (Servo ON input/output during servo ON))
	(12) SRVOFF (Servo OFF input/servo ON disable output)
	(13) AUTOENA (Auto operation input/auto operation enable output)
	(14) CYCLE (Cycle stop input/output during cycle stop operation)
	(15) MELOCK (Machine lock input/output during machine lock)
	(16) SAFEPOS (Return to retreat point input/output during return to retreat point)
	(17) BATERR (Low battery voltage output)
	(18) OUTRESET (General-purpose output signal reset request input)
	(19) HLVLERR (Output during high level error occurrence)
	(20) LLVLERR (Output during low level error occurrence)
	(21) CLVLERR (Output during warning level error occurrence)
	(22) EMGERR (Output during emergency stop)
	(23) SnSTART (Slot n start input/output during slot n operation)
	(24) SnSTOP (Slot n stop input/output during slot n aborting)
	(25) MnSRVOFF (Mechanical n servo OFF input/mechanical n servo ON disable output)
	(26) MnSRVON (Mechanical n servo ON input/output during mechanical n servo ON)
	(27) MnMELOCK (Mechanical n machine lock input/output during mechanical n machine lock)
	(28) PRGSEL (Program selection input) * This is used together with the numeric value input (IODATA).
	(29) OvrdSEL (Override selection input) * This is used together with the numeric value input (IODATA).
	(30) IODATA (Numeric value input/numeric value output) * This is used together with PRGSEL, OvrdSEL, PRGOUT, LINEOUT, OvrdOUT or ERROUT.
	(31) PRGOUT (Program number output request input/outputting program number) * This is used together with the numeric value output (IODATA).
	(32) LINEOUT (Line number output request input/outputting line number) * This is used together with the numeric value output (IODATA).
	(33) OvrdOUT (Override value output request/outputting override value) * This is used together with the numeric value output (IODATA).
	(34) ERROUT (Error number output request/outputting error number) * This is used together with the numeric value input (IODATA).
	(35) JOGENA (Jog enable input/output during jog enabled)
	(36) JOGM (Jog mode input/jog mode output)
	(37) JOG+ (Input for 8 axes on jog feed plus side)
	(38) JOG- (Input for 8 axes on jog feed minus side)
	(39) HNDCNTLn (Mechanical n hand output signal status)
	(40) HNDstSn (Mechanical n hand input signal status)
	(41) HNDERRn (Mechanical n hand error input signal/output during mechanical n hand error occurrence)
	(42) AIRERRn (Mechanical n pneumatic error input signal/outputting mechanical n pneumatic error)
	(43) USRAREA (User-specified area 8 points output)
	(44) MnWUPENA (Mechanism n warm-up operation mode enable input signal/ Mechanism n warm-up operation mode output signal)
	(45) MnWUPMD (Mechanism n warm-up operation status output signal)

	6.5.2 Timing chart example
	(1) External signal operation timing chart (Part 1)
	(2) External signal operation timing chart (Part 2)
	(3) Example of external operation timing chart (Part 3)
	(4) Example of external operation timing chart (Part 4)
	(5) Example of external operation timing chart (Part 5)

	6.6 Emergency stop input
	6.6.1 Robot Behavior upon Emergency Stop Input

	6.7 Display unit (GOT1000 Series) connection (reference)
	(1) Usage example
	(2) Specifications
	(3) Connection
	(4) Settings

	7 Appendix
	7.1 Real-time external control function
	7.1.1 Explanation of communication data packet
	7.1.2 Sample program
	(1) Sample program of data link
	(2) Sample program for real-time external control function

	7.2 Configuration flag
	(1) Right/Left
	(2) ABOVE/BELOW
	(3) NONFLIP/FLIP (6-axis robot only.)
	(1) Right/Left

