

Mitsubishi Industrial Robot

CR750/CR751 series controller CRn-700 series controller

Tracking Function

Instruction Manual

Safety Precautions

Always read the following precautions and the separate "Safety Manual" before starting use of the robot to learn the required measures to be taken.

All teaching work must be carried out by an operator who has received special training.

(This also applies to maintenance work with the power source turned ON.)

→Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures of operating the robot, and to the measures to be taken when an error occurs or when restarting. Carry out work following this plan.

(This also applies to maintenance work with the power source turned ON.)

→Preparation of work plan

Prepare a device that allows operation to be stopped immediately during teaching work.

(This also applies to maintenance work with the power source turned ON.)

→Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress on the start switch, etc.

(This also applies to maintenance work with the power source turned ON.)

→Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator and robot.

→Installation of safety fence

Establish a set signaling method to the related operators for starting work, and follow this method.

→Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign indicating that maintenance work is in progress on the start switch, etc.

→Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other related devices, etc., and confirm that there are no errors.

→Inspection before starting work

The points of the precautions given in the separate "Safety Manual" are given below. Refer to the actual "Safety Manual" for details.

\mathbf{A}		
/! \	DAN	GER

When automatic operation of the robot is performed using multiple control devices (GOT, programmable controller, push-button switch), the interlocking of operation rights of the devices, etc. must be designed by the customer.

ACAUTION

Use the robot within the environment given in the specifications. Failure to do so could lead to faults or a drop of reliability. (Temperature, humidity, atmosphere, noise environment, etc.)

ACAUTION

Transport the robot with the designated transportation posture. Transporting the robot in a non-designated posture could lead to personal injuries or faults from dropping.

Always use the robot installed on a secure table. Use in an instable posture could lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a noise source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable. Failure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the rated load or tolerable torque. Exceeding these values could lead to alarms or faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to observe this could lead to personal injuries or damage if the object comes off or flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure the priority right for the robot control. Failure to observe this could lead to personal injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do so could lead to interference with the workpiece or peripheral devices.

!CAUTION

After editing the program, always confirm the operation with step operation before starting automatic operation. Failure to do so could lead to interference with peripheral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic operation, the door is locked or that the robot will automatically stop. Failure to do so could lead to personal injuries.

Never carry out modifications based on personal judgments, non-designated maintenance parts. Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place hands or fingers in the openings. Failure to observe this could lead to hands or fingers catching depending on the posture.

Do not stop the robot or apply emergency stop by turning the robot controller's main power OFF. If the robot controller main power is turned OFF during automatic operation, the robot accuracy could be adversely affected. Also a dropped or coasted robot arm could collide with peripheral devices.

Do not turn OFF the robot controller's main power while rewriting the robot controller's internal information, such as a program and parameter. Turning OFF the robot controller's main power during automatic operation or program/parameter writing could break the internal information of the robot controller.

Do not connect the Handy GOT when using the GOT direct connection function of this product. Failure to observe this may result in property damage or bodily injury because the Handy GOT can automatically operate the robot regardless of whether the operation rights are enabled or not.

Do not connect the Handy GOT to a programmable controller when using an iQ Platform compatible product with the CR750-Q/CR751-Q controller. Failure to observe this may result in property damage or bodily injury because the Handy GOT can automatically operate the robot regardless of whether the operation rights are enabled or not.

Do not remove the SSCNET III cable while power is supplied to the multiple CPU system or the servo amplifier. Do not look directly at light emitted from the tip of SSCNET III connectors or SSCNET III cables of the Motion CPU or the servo amplifier. Eye discomfort may be felt if exposed to the light. (Reference: SSCNET III employs a Class 1 or equivalent light source as specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

Do not remove the SSCNET III cable while power is supplied to the controller. Do not look directly at light emitted from the tip of SSCNET III connectors or SSCNET III cables. Eye discomfort may be felt if exposed to the light. (Reference: SSCNET III employs a Class 1 or equivalent light source as specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

Attach the cap to the SSCNET III connector after disconnecting the SSCNET III cable. If the cap is not attached, dirt or dust may adhere to the connector pins, resulting in deterioration connector properties, and leading to malfunction.

Make sure there are no mistakes in the wiring. Connecting differently to the way specified in the manual can result in errors, such as the emergency stop not being released. In order to prevent errors occurring, please be sure to check that all functions (such as the teaching box emergency stop, customer emergency stop, and door switch) are working properly after the wiring setup is completed.

Use the network equipments (personal computer, USB hub, LAN hub, etc) confirmed by manufacturer. The thing unsuitable for the FA environment (related with conformity, temperature or noise) exists in the equipments connected to USB. When using network equipment, measures against the noise, such as measures against EMI and the addition of the ferrite core, may be necessary. Please fully confirm the operation by customer. Guarantee and maintenance of the equipment on the market (usual office automation equipment) cannot be performed.

Revision history

Specifications No.	Details of revisions
BFP-A8664-*	First print
BFP-A8664-A	The EC Declaration of Conformity was changed.
DED 40004 B	(Correspond to the EMC directive; 2006/42/EC)
	The tracking function is realized to SQ series.
	The notes were added about physical encoder number (List 1-1) and No.9 (List 1-2).
BFP-A8664-D	CR750/CR751 series controller were added. The note was added to Trk command.
BFP-A8664-E	The explanation of vision was changed from MELFA-Vision to In-Sight Explorer for EasyBuilder. Sample program for RH-3S*HR was added. The explanation of parameter "TRPACL" and "TRPDCL" was added. "Troubleshooting" is enhanced.
BFP-A8664-F	The statement about trademark registration was added.
BFP-A8664-G	"Table 21-3 Connectors: CNENC/CNUSR Pin Assignment" was corrected.
BFP-A8664-H	The explanations about Encoder distribution unit (option) were added.
BFP-A8664-J	The high speed tracking" function was added. The function was added that each robot can share one Q173DPX.
BFP-A8664-K	The corporate logo mark of illustrations in this manual was changed.
BFP-A8664-M	Correction of errors in TrRd and TrWrt command.
	BFP-A8664-* BFP-A8664-A BFP-A8664-B BFP-A8664-C BFP-A8664-D BFP-A8664-E BFP-A8664-E BFP-A8664-F BFP-A8664-G BFP-A8664-H BFP-A8664-J BFP-A8664-K

■Preface

Thank you very much for purchasing Mitsubishi Electric Industrial Robot.

The tracking function allows robots to follow workpieces on a conveyer or transport, line up and process the workpieces without having to stop the conveyer. The conveyor tracking function is the standard function in the controller. It can use only by having the parameter "TRMODE" changed into "1."

Please be sure to read this manual carefully and understand the contents thoroughly before starting to use the equipment in order to make full use of the tracking function.

Within this manual, we have tried to describe all ways in which the equipment can be handled, including non-standard operations, to the greatest extent possible. Please avoid handling the equipment in any way not described in this manual.

Tracking function is installed as standard for the controller, and the function can be used only by changing parameter "TRMODE" from "0" to "1". However, there are different parts in the system configuration and the way of programming in the CR750-Q/CR751-Q, CRnQ-700 series and the CR750-D/CR751-D, CRnD-700 series. Please give the attention that this manual explains these differences between CR750-Q/CR751-Q, CRnQ-700 series and CR750-D/CR751-D, CRnD-700SD series.

Note that this manual is written for the following software version.

CR750-Q/CR751-Q series : Ver. R3 or later CR750-D/CR751-D series : Ver. S3 or later

CRnQ-700 series : Ver. R1 or later CRnD-700 series : Ver. P1a or later

- No part of this manual may be reproduced by any means or in any form, without prior consent from Mitsubishi.
- •The contents of this manual are subject to change without notice.
- An effort has been made to make full descriptions in this manual. However, if any discrepancies or unclear points are found, please contact your service provider.
- •The information contained in this document has been written to be accurate as much as possible. Please interpret that items not described in this document "cannot be performed." or "alarm may occur".
 - Please contact your service provider if you find any doubtful, wrong or skipped point.
- •This specifications is original.
- •The ETHERNET is a registered trademark of the Xerox Corp.
- All other company names and production names in this document are the trademarks or registered trademarks of their respective owners.

Copyright(C) 2009-2015 MITSUBISHI ELECTRIC CORPORATION

[Contents]

	Overview	
	Overview	
1.1.	What is the Tracking Function?	
1.2.	Applications	
1.3.	Contents of this manual	
1.4.	The generic name and abbreviation	
1.5.	System that can achieve	1-5
[Part 2]	System Configuration and Setting (CR750-Q/CR751-Q series, C	
	ystem Configuration	
2.1.	Components	
2.1.1.	Robot controller enclosure products	
2.1.2.	Devices Provided by Customers	
2.2.	Example of System Configuration	
2.2.1.	Configuration Example of Conveyer Tracking Systems	2-9
2.2.2.	Configuration Example of Vision Tracking Systems	
	pecification	
3.1.	Tracking Specifications and Restriction matter	
	Peration Procedure	
	connection of Equipment	
5.1.	Preparation of Equipment	
5.1.1.	Q173DPX(manual pulser input) unit specification	
5.2.	Connection of Equipment	
5.2.1.	Connection of Unit	
5.2.2.	Connection with encoder for conveyer and encoder cable	
5.2.3.	Connection of Photoelectronic Sensor	
	arameter Setting	
6.1.	Dedicated Input/Output Parameters	
6.2.	Operation Parameters	
6.3.	Tracking Parameter Setting	
6.3.1.	Robot Parameter Setting	
6.3.2.	Sequencer CPU Parameter Setting	
6.3.3.	Example of three robots' CPU sharing one Q173DPX	6-31
Part 3]	System Configuration and Setting (CR750-D/CR751-D series, C	
	ystem Configuration	
7.1.	Components	
7.1.1.	Robot controller enclosure products	
7.1.2.	Devices Provided by Customers	
7.2.	Example of System Configuration	7-39
7.2.1.	Configuration Example of Conveyer Tracking Systems	7-39
7.2.2.	Configuration Example of Vision Tracking Systems	
8. S	pecification	8-41
8.1.	Tracking Specifications and Restriction matter	
	peration Procedure	
10. C	Connection of Equipment	
10.1.	Preparation of Equipment	
10.2.	Connection of Equipment	
10.2.1.	Connection of Conveyer Encoder	
10.2.2.	Installation of encoder cable	
10.2.3.	Connection of Photoelectronic Sensor	
11. F	arameter Setting	
11.1.	Dedicated Input/Output Parameters	
11.2.	Operation Parameters	
11.3.	Tracking Parameter Setting	11-53
Part 41	Tracking Control (common function between series)	11-57

12.	Sample Robot Programs	
13.	Calibration of Conveyer and Robot Coordinate Systems ("A1" program)	13-58
13.1	Operation procedure	13-58
13.2	2. Tasks	13-60
13.3	B. Confirmation after operation	13-62
13.4	·	
14.	Calibration of Vision Coordinate and Robot Coordinate Systems ("B1" program)	
14.1		
14.2	· · · · · · · · · · · · · · · · · · ·	
14.3		
15.	Workpiece Recognition and Teaching ("C1" program)	14-72
15.1	5 5	
15.2		
16.	Teaching and Setting of Adjustment Variables ("1" Program)	
16.1	3	
16.2		
16.2.1		
16.2.2	In the case of downloading the conventional sample program	16-92
17.	Sensor Monitoring Program ("CM1" Program)	17-98
17.1		
17.2		
18.	Automatic Operation	
18.1	·	
18.2		
18.3		
18.4		
18.5		
	, 0	
19.	Maintenance of robot program	
19.1		
19.1.1		
19.1.2		19-101
19.1.3		
19.1.4	Explanation of Tracking Operation Instructions	19-103
19.2	2. Timing Diagram of Dedicated Input/Output Signals	19-135
19.2.1	. Robot Program Start Processing	19-135
20.	Troubleshooting	
20.1		20-136
20.2		
20.3		
20.3.1		
20.3.2		
20.3.3		
20.3.4	i y	
20.3.4		
20.3.6		
	U U U U U U U U U U U U U U U U U U U	
20.3.7	, , , , , , , , , , , , , , , , , , , ,	
21.	Appendix	21-146
21.1		
21.2		
21.3	1	
21.4		
21.4.1	. Conveyer tracking	21-153
21.4.2	Vision Tracking	21-159
21.5		
21.5.1		
21.5.2	, ,	
21.5.3		
21.6		

[Part 1] Overview

1. Overview

1.1. What is the Tracking Function?

The tracking function allows a robot to follow workpieces moving on a conveyer. With this function, it becomes possible to transport, line up and process workpieces without having to stop the conveyer. It also eliminates the need for mechanical fixtures and so forth required to fix workpiece positions. The features of this function are described below.

- 1) It is possible to follow lined-up workpieces moving on a conveyer while working on them (conveyer tracking making use of photo electronic sensors).
- 2) It is possible to follow workpieces that are not in a line moving on a conveyer while working on them, even in the case of different types of workpieces (vision tracking combined with vision sensors).
- 3) It is possible to follow changes of movement speed due to automatic calculation of conveyer movement speed.
- 4) Tracking function can be easily achieved by using Mitsubishi's robot command MELFA-BASIC V.
- 5) System construction is made easy by use of sample programs.

1.2. Applications

Tracking is primarily intended for applications such as the following.

(1) Transfer of processed food pallets

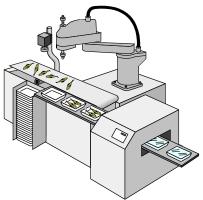


Figure 1–1 Example of Processed Food Pallet Transfer

(2) Lining up parts

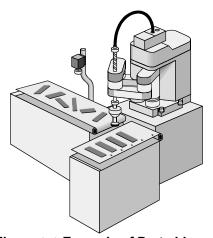


Figure 1-2 Example of Parts Lineup

(3) Assembly of small electrical products

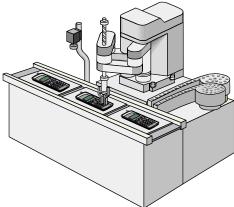


Figure 1–3 Example of Small Electrical Products Assembly

1.3. **Contents of this manual**

This manual explains the operation procedure when the customer use conveyer tracking system and vision tracking system using Mitsubishi robot. The robot model are CR750-Q/CR751-Q/CRnQ-700 series and CR750-D/CR751-D/CRnD-700 series, however there are H/W differences. Please read as following.

CR750-Q/CR751-Q/CRnQ-700 series

Part.2 System Configuration CR750-Q/CR751-Q/CRnQ-700 series (2~6) System Configuration/ system up/ Setting option parts/ Connection to encoder/ Parameter setting

Part.4 Tracking Control (12~21) Sample program/ Teaching/ Automatic operation/ Trouble shooting

CR750-D/CR751-D/CRnD-700Series

Part.3 System Configuration CR750-D/CR751-D/CRnD-700 series (7~11) System Configuration/ system up/ Setting option parts/ Connection to encoder/ Parameter setting

Part.4 Tracking Control (12~21) Sample program/ Teaching/ Automatic operation/ Trouble shooting

The generic name and abbreviation 1.4.

List 1-1 generic name and abbreviation

	List 1-1 generic name and abbreviation
Generic name and abbreviation	Contents
Tracking function	The tracking function allows a robot to follow workpieces moving on a
	conveyer. With this function, it becomes possible to transport line up
	and process workpieces without having to stop the conveyer.
Conveyer tracking	The conveyer tracking allows a robot to follow workpieces lining up on
	a conveyer. With this function, it becomes possible to transport,
	process workpieces.
Vision tracking	The vision tracking allows a robot to follow workpieces not lining up on
-	a conveyer. With this function, it becomes possible to transport line up
	and process workpieces.
Network vision sensor	The network vision sensor is an option which makes it possible to
	inspect or find the workpieces by using with robot controller and
	processing the image.
Q173DPX unit	Q173DRX unit is manual pulser input unit for motion controller. At Q
	series CPU, it is used as intelligent function unit (occupation 32
	points)
	Each encoder figure can be got by connection with 1 pc the manual
	pulser machine (MR-HDP01) or 3pcs the incremental encoder.
Physical encoder number	Physical encoder numbers a number of the encoder physically
•	allocated according to a certain rule.
	In the CR750-Q/CR751-Q/CRnQ-700 series, the number is allocated
	by arranging the encoder connected with Q173DPX unit.
	The encoder which connected with CH1 of the Q173DPX unit
	specified for parameter "ENC UNIT1" is the first, the encoder which
	connected with CH2 is the second and with CH3 is the third.
	It becomes from 4 to 6 for the Q173DPX unit specified for
	parameter"ENCUNIT2".
	It becomes from 7 to 8 for the Q173DPX unit specified for
	parameter"ENCUNIT3".
	Note) The 3rd set of Q173DPX units can use only the two channels.
Logical encoder number	The physical encoder number change to the logical encoder number
	by parameter "EXTENC". The purpose of this is to change freely
	number by the parameter for the encoder physically arranged. This
	logical encoder number is used with the instruction and the state
	variable of the robot program.
TREN signal	tracking enable signal

1.5. System that can achieve

With the tracking function of CR750-Q/CR751-Q/CRnQ-700 series, CR750-D/CR751-D/CRnD-700 series, the example of the system that can be achieved is shown as following.

List 1-2 Example of system that can be achieved by the tracking function

No.	CR750-Q	CR750-D	Example of the evetem
NO.	CR751-Q CRnQ-700	CR751-D CRnD-700	Example of the system
1	•	•	When a robot picks the workpieces moving on a conveyer, it is tracking. (transportation)
2	•	•	When a robot places workpieces which taken out from the pallet to a conveyer, it is tracking (transportation). It is also possible to hang workpieces on S character hook that moves the above of the robot.
3	•	•	A robot decorates (processing) the workpieces moving on a conveyer while tracking.
4	•	•	A robot attaches the parts (assembling) with the workpieces moving on a conveyer while tracking.
5	•	•	A robot has the vision sensor (hand eye) and it checks the workpieces moving on a conveyer. (inspection) It also can check and push the button while tracking, not the vision sensor.
6	•	•	When a robot picks the workpieces moving on a conveyer A, the tracking is done and a robot places the workpieces while tracking to marking on a conveyer B.
7	•	•	The tracking is done with an encoder of line driver (differential motion) output type.
8	•	(●) ^{Note1)}	The tracking is done with an encoder of voltage output/open collector type.
9	•	-	In case of multi CPU system, it makes possible to add max 9 pcs Q173DPX units (3 units per 1 CPU). However, in each CPU, only the two channels can be used at the 3rd set of Q173DPX units.

Note1) This system requires the Encoder distribution unit. Please refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.

[Part 2] System Configuration and Setting (CR750-Q/CR751-Q series, CRnQ-700 series)

2. System Configuration

2.1. Components

2.1.1. Robot controller enclosure products

The product structure of the tracking functional relation enclosed by the robot controller is shown in the Table 2–1.

Table 2-1 List of Configuration in the tracking functional-related product

Product name	Model name	Remark
Tracking Function INSTRUCTION MANUAL	BFP-A8664	This manual is included in instruction-manual CD-ROM attached to the product.
Sample program		Please refer to "12 Sample Robot Programs" for the sample robot program.

2.1.2. Devices Provided by Customers

When configuring the system, the customers must have certain other devices in addition to this product. The table below shows the minimum list of required devices. Note that different devices are required depending on whether conveyer tracking or vision tracking is used. Please refer to "Table 2–2 List of Devices Provided by Customers (Conveyer Tracking)" and "Table 2–3 List of Devices Provided by Customers (Vision Tracking)" for further details.

POINT

Since R5k version, Q173DPX unit can be shared with multiple robots.

Table 2–2 List of Devices Provided by Customers (Conveyer Tracking)

Name of devices to be provided by customers	Model	Quantity	Remark
Robot part			
Hand	_	1	
Hand sensor	_		Used to confirm that workpieces are gripped correctly. Provide as necessary.
Solenoid valve set Hand input cable	See the Remark column		Different models are used depending on the robot used. Check the robot version and provide as necessary.
Air hand interface	2A-RZ365 or 2A-RZ375	(1)	(CRnQ-700/CRnD-700 series controller) Provide as necessary.
Calibration jig	_		This is a jig with a sharp tip that is attached to the mechanical interface of the robot arm and used for calibration tasks. It is recommended to use the jig if high precision is required.
Encoder pulse unit	Q173DPX	More than 1	Manual pulser input unit for motion controller

Name of devices to be provided by customers	Model	Quantity	Remark
Conveyer part			
Conveyer (with encoder)	-	1	Encoder: Voltage output/open collector type Line driver output [Confirmed operation product] Omron encoder (E6B2-CWZ1X-1000 or -2000) Encoder cable (Recommended product): 2D-CBL05/2D-CBL15 [*]The Q173DPX unit supplies 5V power supply to the encoder.
Photo electronic sensor	ı		Used to synchronize tracking
24V power supply	_		+24 VDC (±10%) : For the Photo electronic sensor
Encoder distribution unit	2F-YZ581	(1)	The Encoder distribution unit is required when two or more manual pulser input units are connected to the one encoder. Provide this unit as necessary. Refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.
Personal computer part			
Personal computer RT ToolBox2 (Personal computer support software)	- 3D-11C-WINE 3D-12C-WINE	1	Please refer to the instruction manual of RT ToolBox2 for the details of the personal computer specifications.

Table 2–3 List of Devices Provided by Customers (Vision Tracking)

Table 2-3 List of Devices Frovided by Customers (Vision Tracking)					
Name of devices to be provided by customers	Model	Quantity	Remark		
Robot part					
Hand	-	1			
Hand sensor	-		Used to confirm that workpieces are gripped correctly. Provide as necessary.		
Solenoid valve set	See the Remark	1	Different models are used depending on the		
Hand input cable	column		robot used. Check the robot version and provide as necessary.		
Air hand interface	2A-RZ365 or 2A-RZ375	(1)	(CRnQ-700/CRnD-700 series controller) Provide as necessary.		
Calibration jig	_		This is a jig with a sharp tip that is attached to the mechanical interface of the robot arm and used for calibration tasks. It is recommended to use the jig if high precision is required.		
Encoder pulse unit	Q173DPX	More than	manual pulser input unit for motion controller		

2 System Configuration

Name of devices to be provided by customers	Model	Quantity	Remark			
Conveyer part						
Conveyer (with encoder)	_	1	Encoder: Voltage output/open collector type Line driver output [Confirmed operation product] Omron encoder (E6B2-CWZ1X-1000 or -2000) Encoder cable (Recommended product): 2D-CBL05/2D-CBL15 [*]The Q173DPX unit supplies 5V power supply to the encoder.			
24V power supply	-		+24 VDC (±10%) : For the Photo electronic sensor and Vision sensor			
Encoder distribution unit	2F-YZ581	(1)	The Encoder distribution unit is required when two or more manual pulser input units are connected to the one encoder. Provide this unit as necessary. Refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.			
Vision sensor part						
In-Sight 5000 series In-Sight Micro In-Sight EZ	_	1	COGNEX Vision sensor			
Lens	_		C-mount lens			
Lighting installation	_	(1)	Provide as necessary.			
Connection part						
Hub	-	1				
Ethernet cable (straight)	-	2	Between Robot controller and Hub Between Personal computer and Hub			
Personal computer part						
Personal computer	_	1	Please refer to the instruction manual of RT ToolBox2 or the instruction of the network vision sensor for details of the personal computer specifications.			
RT ToolBox2 (Personal computer support software)	3D-11C-WINE 3D-12C-WINE		Please refer to the instruction manual of RT ToolBox2 for the details of the personal computer specifications.			

2.2. Example of System Configuration

The following figure shows examples of conveyer tracking systems and vision tracking systems.

2.2.1. Configuration Example of Conveyer Tracking Systems

The following figure shows a configuration example of a system that recognizes lined-up workpieces on a conveyer passing a photo electronic sensor and follows the workpieces.

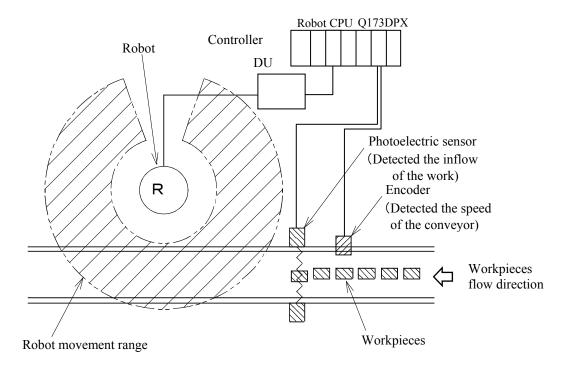


Figure 2-1 Configuration Example of Conveyer Tracking (Top View)

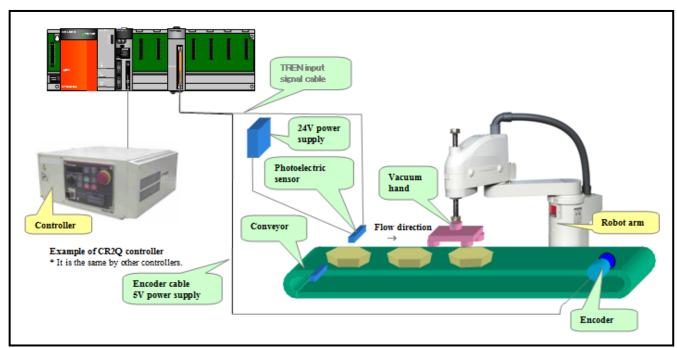


Figure 2–2 Configuration Example of Conveyer Tracking

2.2.2. Configuration Example of Vision Tracking Systems

The following figure shows a configuration example of a system that recognizes positions of workpieces that are not lined up on a conveyer with a vision sensor and follows the workpieces.

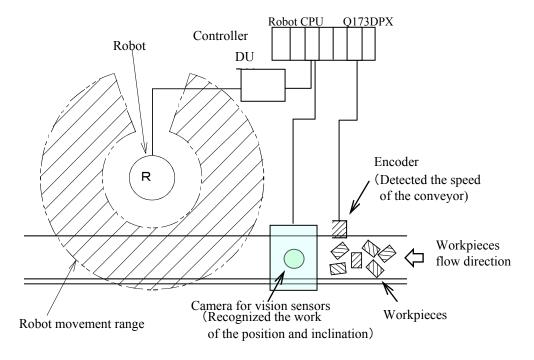


Figure 2–3 Configuration Example of Vision Tracking (Top View)

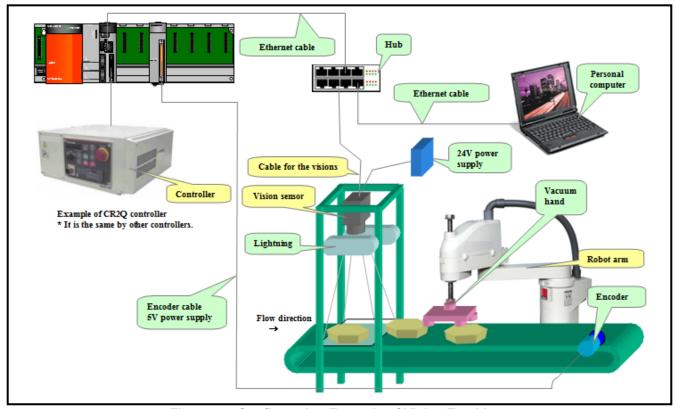


Figure 2-4 Configuration Example of Vision Tracking

3. Specification

3.1. Tracking Specifications and Restriction matter

"Table 3-1 CR750-Q/CR751-Q Series, CRnQ-700 Series Controller Tracking Function Specifications" shows the tracking specifications.

Please refer to "Standard Specifications Manual" for the specifications of the robot arm and controller to be

Table 3-1 CR750-Q/CR751-Q Series, CRnQ-700 Series Controller Tracking Function Specifications

Item		Specification and Restriction matter		
Supported	robots (*8)	RH-SQH series / RV-SQ series		
		RH-FH-Q series / RV-F-Q series		
Applicable	robot controller	CR1Q / CR2Q / CR3Q controller		
		CR750-Q/CR751-Q series controller		
Robot prog	ıram language	Load commands dedicated for the tracking function		
Conveyer	Number of	Max 8pcs (in case 1pc encoder connect to 1 pc conveyer)		
	conveyer	Encoder 3 pcs / Q173DPX unit 1pc		
	(*6)	Q173DPX unit 3pcs / system		
	Movement	Possible to support up to 300mm/s (When the robot always transport the		
	Speed (*1)	workpieces)		
		Possible to support up to 500mm/s when the interval of workpiece is wide.		
	Encoder	Output aspect : $A, \overline{A}, B, \overline{B}, Z, \overline{Z}$		
		Output form: Voltage output/open collector type (*7)		
		Line driver output (*2)		
		Resolution(pulse/rotation)): Up to 2000 (4000 and 8000 uncorrespond))		
		Confirmed operation product : Omuron E6B2-CWZ1X-1000		
		E6B2-CWZ1X-2000		
	Encoder cable	Option:		
		2D-CBL05(External I/O cable 5m)		
		2D-CBL15(External I/O cable 15m)		
	14 (12)	Conductor size: AWG#28		
Encoder u		Only Q173DPX unit		
Photoelect	ronic sensor	Used to detect workpieces positions in conveyer tracking.		
	(*3)	Output signal of sensor need to be connected to TREN terminal of		
		Q173DPX unit. (Input signal number 810~817)		
		And a momentary encoder value that the input enters is preserved in state		
76.		variable "M_EncL".		
Vision sensor(*4)		Mitsubishi's network vision sensor		
Precision a	•	Approximately ±2 mm (when the conveyer speed is approximately 300		
position (·5)	mm/s)		
		(Photoelectronic sensor recognition accuracy, vision sensor recognition		
		accuracy, robot repeatability accuracy and so on)		

- (*1) The specification values in the table should only be considered guidelines. The actual values depend on the specific operation environment, robot model, hand and other factors.
- (*2)The line driver output is a data transmission circuit in accordance with RS-422A. It enables the long-distance transmission.
- Please connect the output signal of a photoelectric sensor with the terminal TREN of the Q173DPX (*3)unit. This input can be confirmed, by the input signal 810th-817th.
- In the case of vision tracking, please refer to the instruction manual of network vision sensor. (*4)
- The precision with which workpieces can be grabbed is different from the repeatability at normal transportation due to the conveyer speed, sensor sensitivity, vision sensor recognition accuracy and other factors. The value above should only be used as a guideline.
- The encoder connected with the third channel of the Q173DPX unit specified for parameter (*6)"ENCUNIT3" cannot be used.
- Voltage output/open collector type is an output circuit with two output transistors of NPN and PNP.
- (8*) The sample program doesn't correspond to the RV-5 axis robot.
- (*9) Since R5k version, Q173DPX unit can be shared with multiple robots.

4. Operation Procedure

This chapter explains the operation procedure for constructing a conveyer tracking system and a vision tracking system using Mitsubishi Electric industrial robots CR750-Q/CR751-Q series, CRnQ-700 series.

1. Start of operation

2. Connection of Equipment Refer to "Chapter 5." It explains Q173DPX (manual pulser input) unit preparation and the connection with the encoder.

4. Sample Robot Programs······Refer to "Chapter 12." Chapter 12 explains functions related to supplemental sample programs.

5. Calibration of Conveyer and Robot Coordinate Systems ("A1" program) ······· Refer to "Chapter 13." Chapter 13 explains how to calculate the amount of robot movement per encoder pulse.

6. Calibration of Vision Coordinate and Robot Coordinate Systems ("B1" program) ··· Refer to "Chapter 14." Chapter 14 explains how to display the position of a workpiece recognized by the vision sensor in the robot coordinate system.

7. Workpiece Recognition and Teaching ("C1" program) ·················· Refer to "Chapter 15." Chapter 15 explains how to calculate the relationship between the position of a workpiece recognized by the vision sensor and the position at which the robot grabs the workpiece.

8. Teaching and Setting of Adjustment Variables ("1" Program) ······· Refer to "Chapter 16." Chapter 16 explains how to make settings such that the robot can follow workpieces moving by on a conveyer and how to teach the robot origin and transportation destination at system start-up.

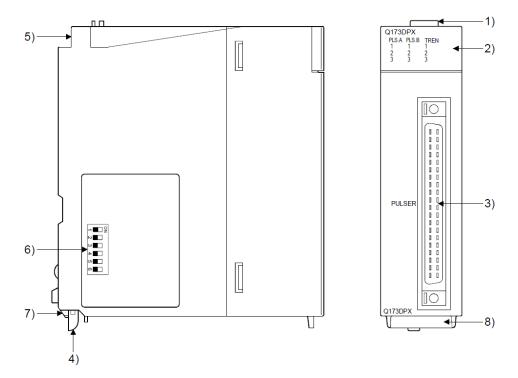
9. Automatic Operation ······ Refer to "Chapter 18." In automatic operation, the robot operates via commands from the conveyer control.

End of operation

10. Maintenance ····· Refer to "Chapter 19."

5. Connection of Equipment

This section explains how to connect each of the prepared pieces of equipment.


5.1. Preparation of Equipment

Prepare equipment by referring to "Table 2-2 List of Devices Provided by Customers (Conveyer Tracking)" to construct a conveyer tracking system and "Table 2-3 List of Devices Provided by Customers (Vision Tracking)" to construct a vision tracking system.

5.1.1. Q173DPX (manual pulser input) unit specification

Add Q173DPX unit into PLC base unit (Q3DB) when the customer use CR750-Q/CR751-Q series, CRnQ-700 series tracking function. Please refer to "Q173DCPU/Q172DCPU user's manual" about details of this unit.

(1) External and name of Q173DPX unit

No.	Name		Application			
1)	Module fixing hook	(Hook used to fix the module to the base unit. (Single-motion installation)			
			Display the input	status from the external equipment.		
			LED	Details		
2)	Mode judging LED		PLS.A 1 to 3 PLS.B 1 to 3	Display for input signal status of manual pulse generator/incremental synchronous encoder phases A, B		
		l	TREN 1 to 3	Display for signal status of tracking enable.		
		The manual pulse generator/incremental synchronous encoder phases A, B and tracking enable signal does not turn ON without setting Q173DPX in the system setting.				
3)	PULSER connector	Input connector of the Manual pulse generator/Increment synchronous encoder.		' The state of the		
4)	Module mounting lever	ι	Used to install the module to the base unit.			
5)	Module fixing screw hole	ı	Hole for the screw used to fix to the base unit (M3×12 screw : Purchase from the other supplier)			

Figure 5-1 Externals of Q173DPX unit

(2) Dip switch

By setting the dip switch, the condition of the tracking enable signal is decided.

List 5-1 Item of dip switch

No.	Name	Application			
		Dip switch 1	Detect SW1	tion set SW2 OFF	ting of TREN1 signal
		Dip switch 2	ON ON	ON OFF	TREN is detected at leading edge of TREN signal.
	Dip switches (Note-1)	'	OFF	ON	TREN is detected at trailing edge of TREN signal.
	→ ■□0		Detect	tion set	ting of TREN2 signal
	NEUZ	Dip switch 3	SW3	SW4	
	ω∎□		OFF	OFF	TREN is detected at leading
6)	■ 4		ON	ON	edge of TREN signal.
	ნ ■	Dip switch 4	ON	OFF	euge of TNLIN signal.
	(Factory default in OFF		OFF	ON	TREN is detected at trailing edge of TREN signal.
	position)		Detection setting of TREN3 signal		
	pooliion	Dip switch 5	SW5	SW6	
			OFF	OFF	TDEN is detected at leading
			ON	ON	TREN is detected at leading edge of TREN signal.
		Dip switch 6	ON	OFF	Guge of TINEIN Signal.
		DIP SWITCH 0	OFF	ON	TREN is detected at trailing edge of TREN signal.
7)	Module fixing projection Projection us		ed to fix to the base unit.		
8)	Serial number display	Display the se	rial nun	nber de	escribed on the rating plate.

(Note-1): The function is different according to the operating system software installed.

▲CAUTION

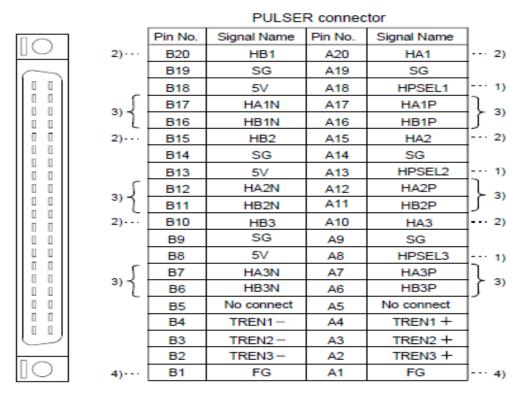
- Before touching the DIP switches, always touch grounded metal, etc. to discharge static electricity from human body. Failure to do so may cause the module to fail or malfunction.
- Do not directly touch the module's conductive parts and electronic components. Touching them could cause an operation failure or give damage to the module.

(3) Specification of hardware (a) Module specifications

Item	Specifications		
Number of I/O occupying points	32 points(I/O allocation: Intelligent, 32 points)		
Internal current consumption(5VDC)[A]	0.38		
Exterior dimensions [mm/inch]	98(H)×27.4(W)×90(D)		
Exterior dimensions [mm(inch)]	(3.86(H)×1.08(W)×3.54(D))		
Mass [kg]	0.15		

(b) Tracking enable signal input

Item	l	Specifications		
Number of input points	5	Tracking enable signal : 3 points		
Input method		Sink/Source type		
Isolation method		Photocoupler		
Rated input voltage		12/24VDC		
Rated input current		12VDC 2mA/24VDC 4mA		
O		10.2 to 26.4VDC		
Operating voltage rang	ge	(12/24VDC +10/ -15%, ripple ratio 5% or less)		
ON voltage/current		10VDC or more/2.0mA or more		
OFF voltage/current		1.8VDC or less/0.18mA or less		
Input resistance		Approx. 5.6kΩ		
Docponeo timo	OFF to ON	7.1ms		
Response time	ON to OFF			
Common terminal arrangement		1 point/common(Common contact: TREN.COM)		
Indicates to display		ON indication(LED)		

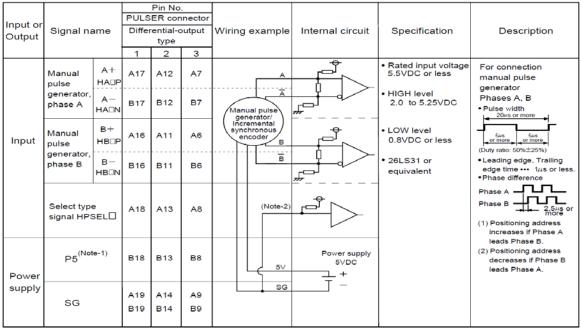

(Note): Functions are different depending on the operating system software installed.

(c) Manual pulse generator/Incremental synchronous encoder input

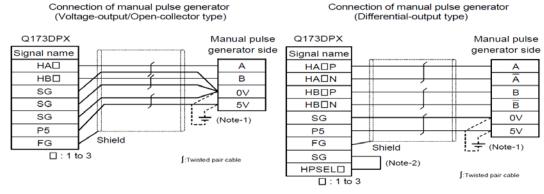
Item			Specifications		
Number of modules			3/module		
Voltage-output/		High-voltage	3.0 to 5.25VDC		
Open-collector t	ype	Low-voltage	0 to 1.0VDC		
Differential-outpo	ut type	High-voltage	2.0 to 5.25VDC		
(26LS31 or equi	valent)	Low-voltage	0 to 0.8VDC		
Input frequency			Up to 200kpps (After magnification by 4)		
Applicable types			Voltage-output type/Open-collector type (5VDC), Recommended product: MR-HDP01, Differential-output type: (26LS31 or equivalent)		
External connector type			40 pin connector		
Applicable wire	size		0.3mm ²		
Applicable conn	ector for th	e external	A6CON1 (Attachment)		
connection			A6CON2, A6CON3, A6CON4 (Optional)		
Voltage-output/ Cable length Open-collector type Differential-output type		ector type	30m (98.43ft.) (Open-collector type: 10m (32.81ft.))		

(4) Wiring

The pin layout of the Q173DPX PULSER connecter viewed from the unit is shown below.


Applicable connector model name

A6CON1 type soldering type connector FCN-361J040-AU connector (FUJITSU COMPONENT LIMITED) (Attachment) FCN-360C040-B connector cover A6CON2 type Crimp-contact type connector A6CON3 type Pressure-displacement type connector (Optional) A6CON4 type soldering type connector


Figure 5-2 Pin assignment of the PULSER connector

Interface between PULSER connecter and manual pulse generator (Differential-output type)/ Incremental synchronous encoder

Interface between Manual pulse generator (Differential-output type)/ Incremental synchronous encoder

- (Note-1): The 5V(P5)DC power supply from the Q173DPX must not be connected if a separated power supply is used as the Manual pulse generator/Incremental synchronous encoder power supply Use a 5V stabilized power supply as a separated power supply. Any other power supply may cause a failure
- (Note-2) : Connect HPSEL□ to the SG terminal if the manual pulse generator (differential-output type) /incremental synchronous encoder is used.

- (Note-1): The 5V(P5)DC power supply from the Q173DPX must not be connected if a separated power supply is used as the Manual pulse generator/Incremental synchronous encoder power supply.
 - Use a 5V stabilized power supply as a separated power supply. Any other power supply may cause a failure.
- (Note-2) : Connect HPSEL□ to the SG terminal if the manual pulse generator (differential-output type)/incremental synchronous encoder is used.

Figure 5-3 Wiring connection with rotary encoder

As above image, because DC5V voltage is output from Q173DPX unit, it makes possible to supply 5V from Q173DPX unit to rotary encoder. When 24V encoder type of power supply is used, it makes possible to use 24V output from PLC power unit.

The interface between tracking enable signal is shown follow.

This signal is used for input signal when the photoelectronic sensor is used to find workpieces so please connect output signal of photoelectronic sensor.

Interface between tracking enable signal

Input or	Signal name			Pin No. PULSER connector		Wiring example	Internal circuit	Specification	Description
Output			1	2	3			,	-
I INDUL I	Tracking	TREN□+	A4	A3	A2		-		Tracking enable signal input.
	enable	TREND-	B4	В3	B2	+ - 12V to 24VDC			

(Note): As for the connection to tracking enable (TREN□+, TREN□-), both "+" and "-" are possible.

Figure 5-4 Connected composition of tracking enable signal

⚠CAUTION

- If a separate power supply is used as the manual pulse generator/incremental synchronous encoder power supply, use a 5V stabilized power supply. Any other power supply may cause a failure.
- Always wire the cables when power is off. Not doing so may damage the circuit of modules.
- Wire the cable correctly. Wrong wiring may damage the internal circuit.

5.2. **Connection of Equipment**

The connection with each equipments is explained as follow.

5.2.1. Connection of Unit

Q173DPX unit is connected to base unit (Q3 DB) or Q6 B increase base unit.

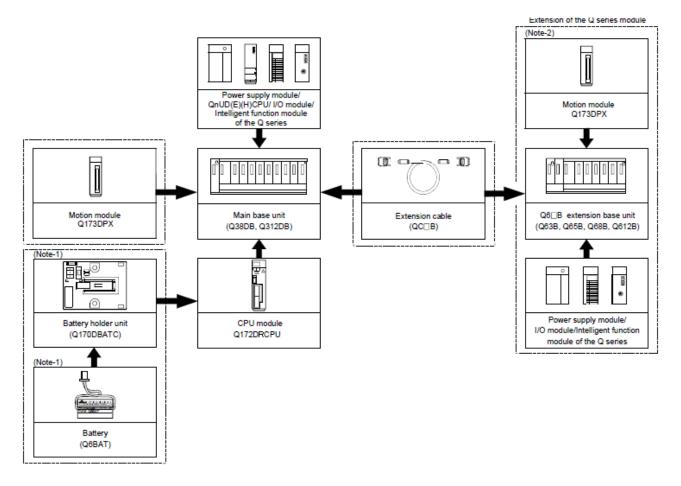


Figure 5-5 Connected composition of units

The connection robot system with Q173DPX unit is shown as follow.

List 5-2 Spec list of Q173DPX in robot system

L	ist 5-2 Spec list of Q173DPX in robot system
Item	Spec and Remark
Encoder	Incremental synchronous encoder 3pcs
Tracking input points	3points
	Three points can be input to ± TREN1-3 in the pin assignment of the unit.
	When the input of a photoelectric sensor is put, this input is used.
Slot that can be connected	Connection with the base unit Possible to install I/O slot since 3
	(Impossible to install CPU slot or I/O slot 0 to 2)
	Connection with additional base unit Possible to install all slots.
Robot CPU unit that can be	Q173DPX unit 3pcs
managed	
Robot CPU encoder that	Max 8pcs
can be managed	Impossible to use the third channel of the third Q173DPX unit.
	And impossible to use the encoder connected with the third channel of the
	unit specified for parameter「ENCUNIT3」.

5.2.2. Connection with encoder for conveyer and encoder cable

E6B2-CWZ1X (made by Omron) is used, and the wiring for the encoder and the encoder cable for the conveyer is shown in "Figure 5-2 the encoder for the conveyer and the wiring diagram of the encoder cable".

The encoder for the conveyer up to 3 pcs can be connected per Q173DP unit 1pc. The signal cables needed in case of the connection are power supply (+,-) and encoder A,B,Z each +,-, total 8 cables. Please refer to the manual of the encoder, please connect signal cable correctly. Also please ground shield line (SLD).

▲ CAUTION

 When fabricating the encoder cable, do not make incorrect connection. Wrong connection will cause runaway or explosion.

Pin assignment of the **PULSER** connector

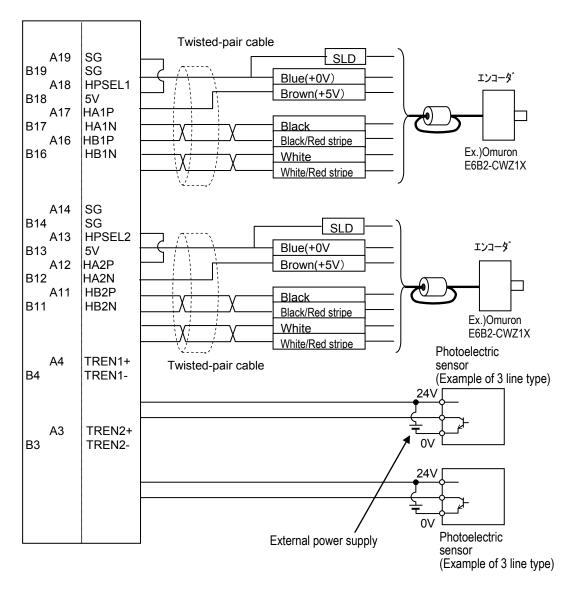


Figure 5-6 the encoder for the conveyer and the wiring diagram of the encoder cable

※Please refer to "Figure 5–2 Pin assignment of the PULSER connector" with the pin crack of the PULSER connector that arrives at the unit.

The wiring example by the thing is shown below. (Please note that the connector shape is different depending on the controller.)

Figure 5–7 Wiring example (CR75x-Q/ CRnQ-700 series controller)

5.2.3. Connection of Photoelectronic Sensor

If a photoelectronic sensor is used for detection of workpieces, connect the output signal of the photoelectronic sensor to a tracking enable signal of the Q173DPX unit.

In this section, a connection example where the photoelectronic sensor signal is connected to the tracking enable signal is shown in "

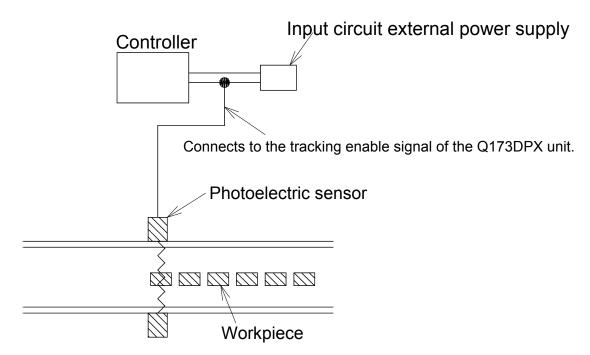


Figure 5–8 Photoelectronic Sensor Arrangement Example

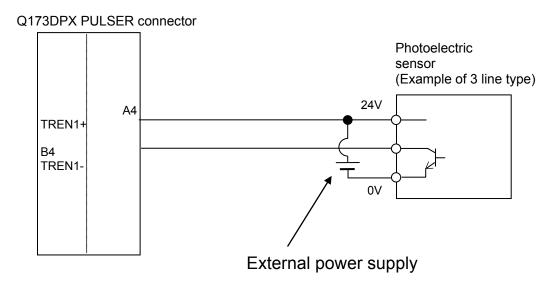


Figure 5–9 Photoelectronic Sensor Connection Example (6th General Input Signal is Used)

Note) The external power supply and photoelectric sensor must be prepared

The tracking enable signal is connected to the robot input signal as follows.

List 5-3 List with signal crack of tracking enable signal (TREN)

Encoder physics number	Connection channel CR750-Q/CR751-Q series, CRnQ-700 series	Robot Input signal number
1	1 st channel of Parameter ENCUNIT1	810
2	2 nd channel	811
3	3 rd channel	812
4	1 st channel of Parameter ENCUNIT2	813
5	2 nd channel	814
6	3 rd channel	815
7	1 st channel of Parameter ENCUNIT3	816
8	2 nd channel	817

6. Parameter Setting

This chapter explains how to set dedicated input/output signals that play the role of interface between a robot and an external device (e.g., a Programmable Logic Controller) and parameters related to the tracking function. Please refer to "Detailed Explanations of Functions and Operations" for how to set the parameters.

6.1. Dedicated Input/Output Parameters

"Table 11-1 List of Dedicated Input/Output Parameters" lists the setting items of dedicated input/output parameters used to operate the robot via instructions from an external device. Set the signal numbers according to your system using the setting values in the table as reference. It is not necessary to set these parameters if the robot operates by itself, rather than via instructions from an external device.

Table 6-1 List of Dedicated Input/Output Parameters

Input name/output name (parameter name)	Explanation	Setting Example (*1)
Stop/pausing	Input: Stop a program	10000,
(STOP) or (STOP2)	Output: Output program standby status	-1
Servo OFF/servo ON disabled	Input: Turn the servo off	10011,
(SRVOFF)	Output: Output servo ON disabled status	-1
Error reset/error occurring	Input: Cancel error status	10009,
(ERRRESET)	Output: Output error status	-1
Start/operating	Input: Start automatic operation	10006,
(START)	Output: Output program running status	1
Servo ON/turning servo ON	Input: Turn the servo on	10010,
(SRVON)	Output: Output servo on status	0
Operation right/operation right	Input: Enable/disable operation right of external signal control	10005,
enabled (IOENA)	Output: Output external signal control operation enabled status	-1
Program reset/program	Input: Initiate a program. The program execution returns to the	40000
selectable	first step.	10008 , -1
(SLOTINIT)	Output: Output a status where program No. can be changed	
General output signal reset	Input: Reset a general output signal	10015,
(OUTRESET)		-1
User specification area 1	Output an indication that the robot is in an area specified by a	10064
(USRAREA)	user	10064, 10071
	Set the start number and end number	10071

(*1) "-1" in the Setting value column means "not set."

6.2. Operation Parameters

"Table 11-2 List of Operation Parameter" lists the setting items of parameters required to operate the robot at the optimal acceleration/deceleration.

Table 6-2 List of Operation Parameter

	Table 6-2 List of Operation 1 draineter					
Parameter name	Explanation	Reference value				
Optimal acceleration/ deceleration hand data (HANDDAT1)	Specify hand weight and so on to make settings that allow optimal acceleration/deceleration operations. For example, if the hand weighs 3 kg, changing the weight setting value from 10 kg to 3 kg makes the robot movement faster. (Hand weight (kg), size (mm) X, Y, Z, gravity (mm) X, Y, Z)	(3,0,0,0,0,0,0) The setting values are different for each robot model. Use these values as reference only.				
Optimal acceleration/ deceleration workpiece data (WRKDAT1)	Specify workpiece weight and so on to make settings that allow optimum acceleration/deceleration operations. If a workpiece is grabbed via the HClose instruction, the acceleration/deceleration becomes slower. If a workpiece is released via the HOpen instruction, acceleration/deceleration becomes faster. (Workpiece weight (kg), size (mm) X, Y, Z, gravity (mm) X, Y, Z)	(1,0,0,0,0,0,0) The setting values are different for each robot model. Use these values as reference only.				

6.3. Tracking Parameter Setting

Specify to which channel of the encoder connector (CNENC) an encoder of conveyer is connected. "Table 6-3 Tracking Parameter Setting" lists the parameters to be set. Other parameters are shown in "Table 21-1 List of Tracking Parameters", make settings as required.

6.3.1. Robot Parameter Setting

After the installation of Q173DPX module and connection with the encoder are complete, use the following steps to establish robot CPU parameters.

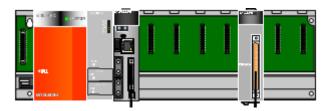
- (1) Set a parameter TRMODE to 1, validate a function of tracking.
- (2) Using parameter ENCUNT* (*=1~3), designate the slot in which Q173DPX module under the control of robot CPU is installed.
- (3) Specify the channel to which the encoder is connected using a parameter EXTENC.

Table 6-3 Tracking Parameter Setting

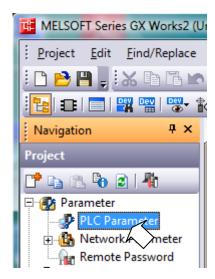
Parameter	Parameter name	Number of elements	Explanation	Value set at factory shipping
Tracking mode	TRMODE	1 integer	Enable the tracking function Please set it to "1" when you use the tracking function. 0: Disable/1: Enable	0
first Q173DPX	(*1) (*2)	2 integers	The base unit-number of the first Q173DPX unit (element 1) that robot CPU uses and slot number (element 2) are set. [Element 1] -1:No connection 0:Basic base unit 1-7:Increase base unit [Element 2] 0-11: I/O Slot number	-1,0
Second Q173DPX	(*1) (*2)	2 integers	The base unit-number of the second Q173DPX unit (element 1) that robot CPU uses and slot number (element 2) are set. [Element 1] -1:No connection 0:Basic base unit 1-7:Increase base unit [Element 2] 0-11: I/O Slot number	-1,0
third Q173DPX	ENCUNIT3 (*1) (*2)	2 integers	The base unit-number of the third Q173DPX unit (element 1) that robot CPU uses and slot number (element 2) are set. [Element 1] -1:No connection 0:Basic base unit 1-7:Increase base unit [Element 2] 0-11: I/O Slot number	-1,0

Parameter	Parameter name	Number of elements	Explanation	ion	Value set at factory shipping
Encoder number allocation	EXTENC	elements 8 integers	Set connection destinations of encoder numbers 1 to 8. Parameter elements corresponding to 1, encoder number 2, encoder from below list. In case of CR750-D/CR751-Iseries, CH1 and CH2 of slot 2, encoder for CR750-Q/CR751-Q, encoder for Connection physics (CR750-Q/CR751-Q, encoder for CRNQ-70) 1	on the connector for ond to encoder 2 encoder number 3 and CRnD-700 1 to 3 are reservation. 1 CRnQ-700 series 3 enchannel (CR751-Q, 10 series) of Parameter JNIT1 annel annel of Parameter UNIT2 annel annel of Parameter JNIT3 enannel	
Tracking Workpiece judgment distance	TRCWDST	1 integer	"M_Enc" when determining the "EXTENC" parameter. Please refer to "19.1.2 List of Variables" for the explanation "M_Enc". Please refer to "Detailed Exp Functions and Operations" for status variable. Distance to judge that the same being tracked (mm) The sensor reacts many time workpiece with the ruggedness Then, the robot controller jud workpiece is two or more piecent to sensor. To set the measure of workpiece ommended.	he setting value of the from the Status of state variable planations of or how to check the me workpiece is es when the ess passes the sensor. Iged that one ces. [mm] set to this er turning on the	5.00

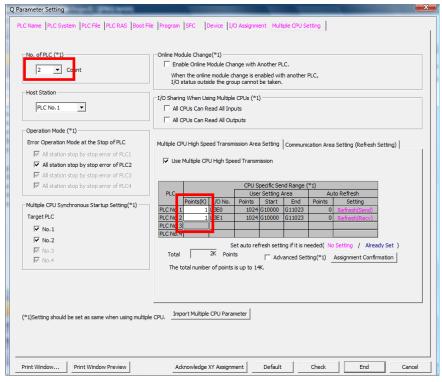
^(*1) This parameter is valid since the edition of software version R1. (*2) Since R5k version, Q173DPX unit can be shared with multiple robots.


6.3.2. Sequencer CPU Parameter Setting

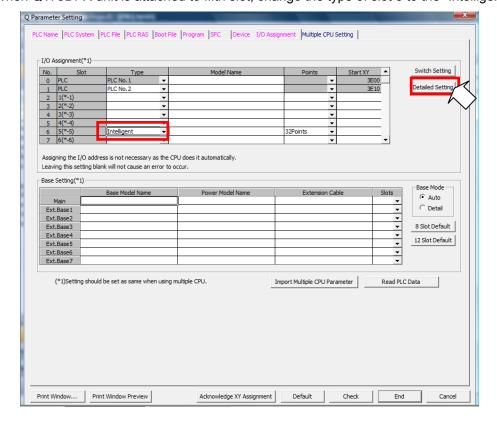
It is necessary to set multi CPU related parameters for both the sequencer CPU and robot CPU In order to use the sequencer link function.

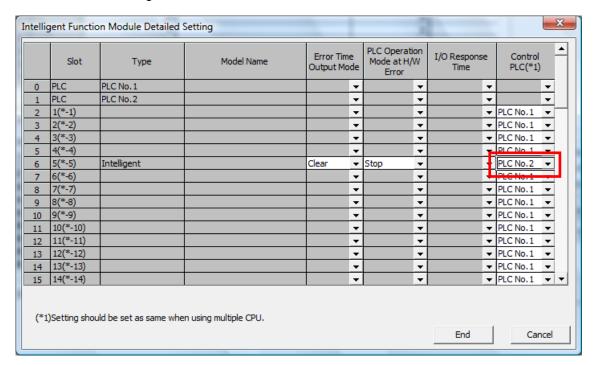

- a) Multiple CPU setting: Set the number of CPU units.
- b) I/O assignment: Select I/O units and/or Intelligent units.
- c) Control PLC setting: Set the CPU Unit numbers which control the Q173DPX unit.

The setting procedure of the parameter is as below.


The following explanation assumes the case that attached Q173DPX unit to the fifth slot of baseboard.

- (1) Execute the GX Works2 and select the project file.
- (2) Double-click the "PLC Parameter", then the "Q Parameter Setting" is displayed.


(3) Double-click the "Multiple CPU Setting"


Set the number of CPU and this system area size (K Points)

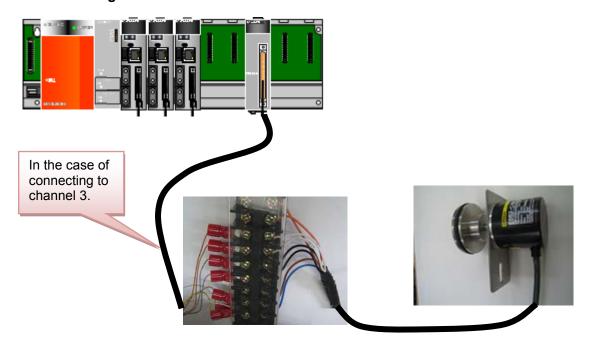
(4) Double-click the "I/O assignment"

When Q173DPX unit is attached to fifth slot, change the type of slot 5 to the "Intelligent".

(5) Click the "Detailed Setting" button.

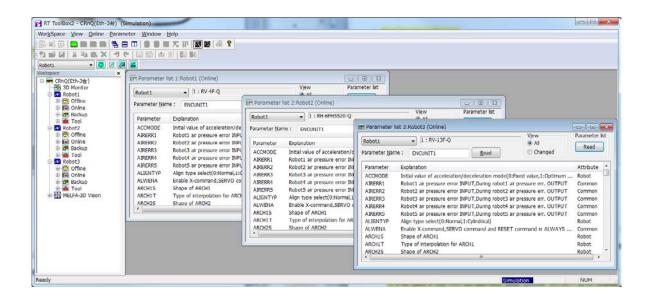
Because the robot CPU manages the Q173DPX unit, change the Control PLC of slot 5 to the "PLC No.2" (Robot CPU).

6) Click the "END" button. The Parameters are memorized into the sequencer CPU.


6.3.3. Example of three robots' CPU sharing one Q173DPX

For example, the setting of one Q173DPX ,three robots CPU, and one encoder is shown as follows.

You will be able to understand some parameters ENCUNIT* and EXTENC. [Conditions]

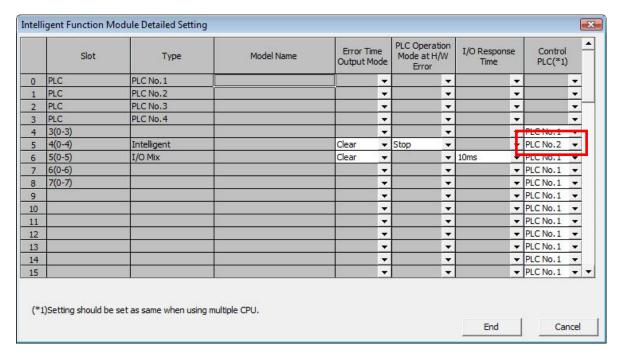

- An encoder is connected to the channel 3.
- Robot CPU1 and 2 use the parameter ENCUNIT1 and robot CPU3 uses the parameter ENCUNIT2.

Hardware configuration

Parameter setting of the robot

(1) Display the list of parameters of three robots CPU.

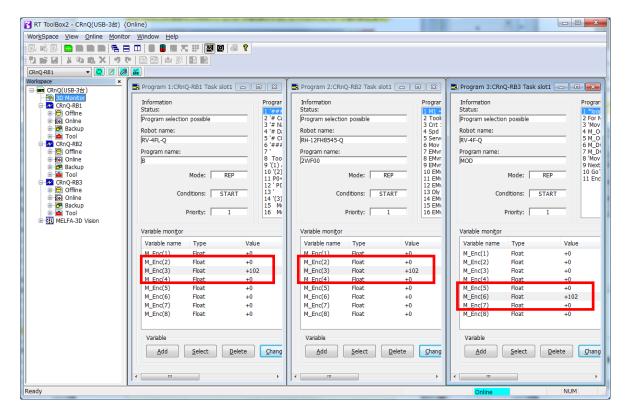
(2) In the setting of robot CPU1 and robot CPU2, specify the value of the parameter ENCUNIT1 to "0,4". Parameter edit Parameter name : ENCUNIT1 Robot#: 0 Explanation: The installation slot number of Q173DPX unit. (base number and slot number) 1:0 2:4 Print Write Close Parameter edit Parameter name: ENCUNIT1 Robot#: 0 Explanation: The installation slot number of Q173DPX unit. (base number and slot number) 1:0 2:4 Print Write Close (3) In the setting of robot CPU3, specify the value of the parameter ENCUNIT2 to "0,4". Parameter edit Parameter name : ENCUNIT1 Robot#: 0 Explanation: The installation slot number of Q173DPX unit. (base number and slot number) 1:0 2:4 Print Print Write Close (4) In the setting of each robot CPU(1 - 3), change parameter TRMODE to "1". Parameter edit Parameter name : TRMODE Robot#: 0 Explanation: tracking permission[0:disable 1:enable] 1: 1

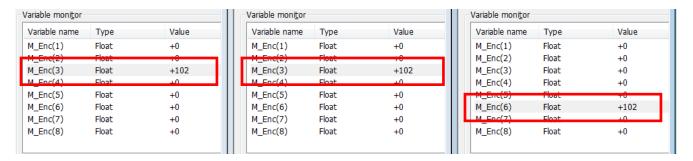

<u>W</u>rite

Close

Print Print

Parameter setting of GX Works

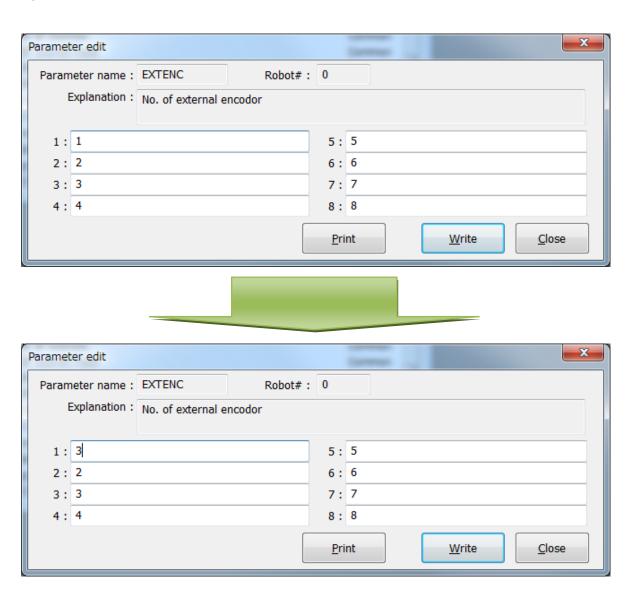

The example of the second unit (robot CPU1) controlling Q173DPX unit.



Change "Control PLC" columns to "PLC No.2" in slot 4(0-4) rows of No.5.

Monitoring the encoder value

When the encoder value is showed by variable monitor of program monitor, the encoder value changes as follows.


In this way, in the case of connection to channel 3, the data of robot CPU1 and robot CPU2 is stored in "M_Enc(3)".

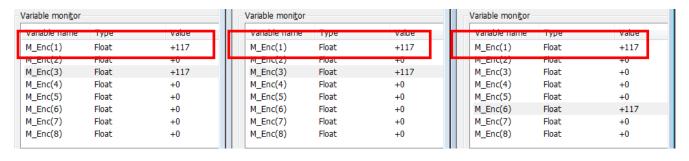
The data of robot CPU3 is stored in "M_Enc(6)" because parameter ENCUNIT2 is specified.

It is useful to change parameter EXTENC when confirming the encoder value by using "M_Enc(1)" and encoder value 1.

Common control to "M_Enc(1)" by parameter EXTENC

In the setting of the robot CPU1 and CPU2, change the first element of a parameter EXTENC into "3" from "1".

× Parameter edit Parameter name : EXTENC Robot#: 0 Explanation: No. of external encodor 1:1 5:5 2:2 6:6 3:3 7:7 4:4 8:8 Print Print Write Close × Parameter edit Parameter name: EXTENC Robot#: 0 Explanation: No. of external encodor 1:6 5:5 2:2 6:6 7:7 3:3 4:4 8:8


In the setting of the robot CPU3, changes the first element of a parameter EXTENC into "6" from "1".

If you reset a power supply and reflect the parameter value, the encoder value is displayed in M_Enc(1)" as follows.

Print

Write

Close

The following work is confirming the operation of the robot by the sample program.

Please confirm "[Part 4] Tracking Control".

[Part 3] System Configuration and Setting (CR750-D/CR751-D series, CRnD-700 series)

7. System Configuration

7.1. Components

7.1.1. Robot controller enclosure products

The product structure of the tracking functional relation enclosed by the robot controller is shown in the Table 2–1.

Table 7-1 List of Configuration in the tracking functional-related product

Product name	Model name	Remark
Tracking Function INSTRUCTION MANUAL	BFP-A8664	This manual is included in instruction-manual CD-ROM attached to the product.
Sample program	_	Please refer to "12 Sample Robot Programs" for the sample robot program.

7.1.2. Devices Provided by Customers

When configuring the system, the customers must have certain other devices in addition to this product. The table below shows the minimum list of required devices. Note that different devices are required depending on whether conveyer tracking or vision tracking is used. Please refer to "Table 2–2 List of Devices Provided by Customers (Conveyer Tracking)" and "Table 2–3 List of Devices Provided by Customers (Vision Tracking)" for further details.

Table 7–2 List of Devices Provided by Customers (Conveyer Tracking)

Name of devices to be provided by customers	Model	Quantity	Remark			
Robot part						
Hand	_	1				
Hand sensor	_		Used to confirm that workpieces are gripped correctly. Provide as necessary.			
Solenoid valve set Hand input cable	See the Remark column		Different models are used depending on the robot used. Check the robot version and provide as necessary.			
Air hand interface	2A-RZ365 or 2A-RZ375		(CRnQ-700/CRnD-700 series controller) Provide as necessary.			
Parallel I/O interface.	2D-TZ368/ 2D-TZ378	(1)	These are used to confirm the input of photoelectronic sensor.			
or Parallel I/O Unit.	or 2A-RZ361/ 2A-RZ371		[*] In the case of CR750-Q/CR751-Q/CRnQ-700, you do not need this interface or unit because the TREN signal of Q173DPX unit is used for input.			
Calibration jig	-		This is a jig with a sharp tip that is attached to the mechanical interface of the robot arm and used for calibration tasks. It is recommended to use the jig if high precision is required.			
Conveyer part						
Conveyer (with encoder)	_	1	Encoder: Line driver output [Confirmed operation product] Omron encoder (E6B2-CWZ1X-1000 or -2000) Encoder cable. Twisted-pair cable with the shield. (CRnD-700 series controller) Recommended connector for encoder input terminal: 10120-3000PE plug made by 3M 10320-52F0-008 shell made by 3M			
5V power supply	_		+5 VDC (±10%) : For the encoder			
Photoelectronic sensor	_		Used to synchronize tracking			

Name of devices to be provided by customers	Model	Quantity	Remark
24V power supply	_		+24 VDC (±10%) : For the Photoelectronic sensor
Encoder distribution unit	2F-YZ581	(1)	The Encoder distribution unit is required when two or more robot controllers are connected to the one encoder. Provide this unit as necessary. If the Encoder distribution unit is used, a 5V power source for the encoder is not necessary. Refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.
Personal computer part			
Personal computer	ı		Please refer to the instruction manual of RT
RT ToolBox2 (Personal computer support software)	3D-11C-WINE 3D-12C-WINE	1	ToolBox2 for the details of the personal computer specifications.

Table 7–3 List of Devices Provided by Customers (Vision Tracking)

Table 7–3 List of Devices Provided by Customers (Vision Tracking)					
Name of devices to be provided by customers	Model	Quantity	Remark		
Robot part					
Hand					
Папи	_	1			
Hand sensor	_		Used to confirm that workpieces are gripped correctly. Provide as necessary.		
Solenoid valve set	0 11 5 1		Different models are used depending on the robot		
Hand input cable	See the Remark column		used. Check the robot version and provide as necessary.		
Air hand interface	2A-RZ365 or 2A-RZ375	(1)	(CRnQ-700/CRnD-700 series controller) Provide as necessary.		
Calibration jig	-		This is a jig with a sharp tip that is attached to the mechanical interface of the robot arm and used for calibration tasks. It is recommended to use the jig if high precision is required.		
Conveyer part					
Conveyer (with encoder) 5V power supply	_	1	Encoder: Line driver output [Confirmed operation product] Omron encoder (E6B2-CWZ1X-1000 or -2000) Encoder cable. Twisted-pair cable with the shield. (CRnD-700 series controller) Recommended connector for encoder input terminal: 10120-3000PE plug made by 3M 10320-52F0-008 shell made by 3M +5 VDC (±10%) : For the encoder		
3v power suppry	_		+5 VDC (±10%) . For the encoder		
24V power supply	_		+24 VDC (±10%) : For the Photoelectronic sensor and Vision sensor		
Encoder distribution unit	2F-YZ581	(1)	The Encoder distribution unit is required when two or more robot controllers are connected to the one encoder. Provide this unit as necessary. If the Encoder distribution unit is used, a 5V power source for the encoder is not necessary. Refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.		

7 System Configuration

Name of devices to be provided by customers	Model	Quantity	Remark			
Vision sensor part						
In-Sight 5000 series In-Sight Micro series In-Sight EZ series	I	1	COGNEX Vision sensor			
Lens	-		C-mount lens			
Lighting installation	_	(1)	Provide as necessary.			
Connection part						
Hub	_	1				
Ethernet cable (straight)	_	2	Between Robot controller and Hub Between Personal computer and Hub			
Personal computer part						
Personal computer	-	1	Please refer to the instruction manual of RT ToolBox2 or the instruction of the network vision sensor for details of the personal computer specifications.			
RT ToolBox2 (Personal computer support software)	3D-11C-WINE 3D-12C-WINE		Please refer to the instruction manual of RT ToolBox2 for the details of the personal computer specifications.			

7.2. Example of System Configuration

The following figure shows examples of conveyer tracking systems and vision tracking systems.

7.2.1. Configuration Example of Conveyer Tracking Systems

The following figure shows a configuration example of a system that recognizes lined-up workpieces on a conveyer passing a photoelectronic sensor and follows the workpieces.

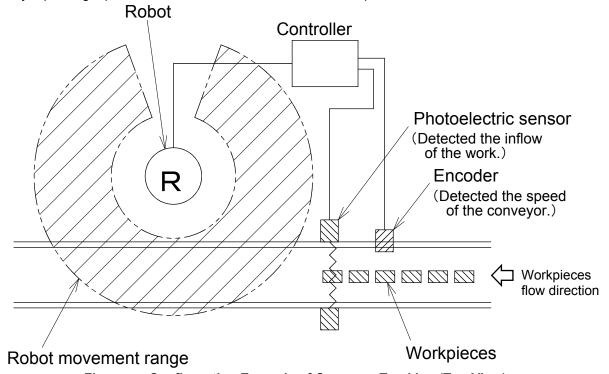


Figure 7-1 Configuration Example of Conveyer Tracking (Top View)

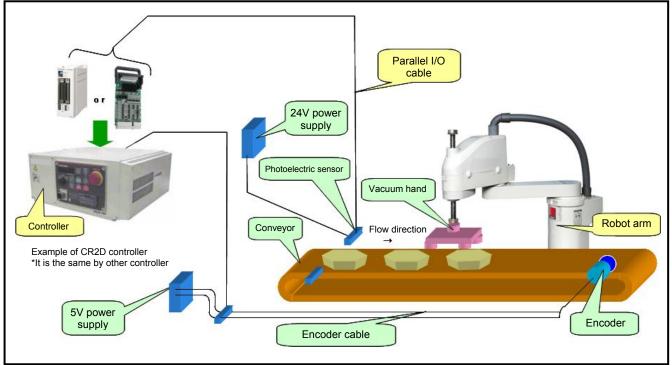
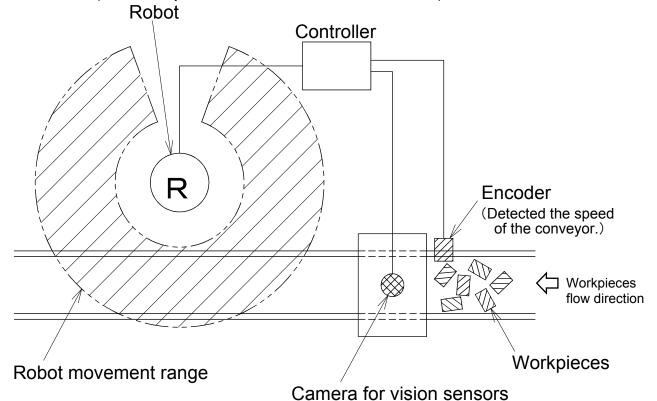



Figure 7-2 Configuration Example of Conveyer Tracking

7.2.2. Configuration Example of Vision Tracking Systems

The following figure shows a configuration example of a system that recognizes positions of workpieces that are not lined up on a conveyer with a vision sensor and follows the workpieces.

(Recognized the work of the position and inclination) Figure 7–3 Configuration Example of Vision Tracking (Top View)

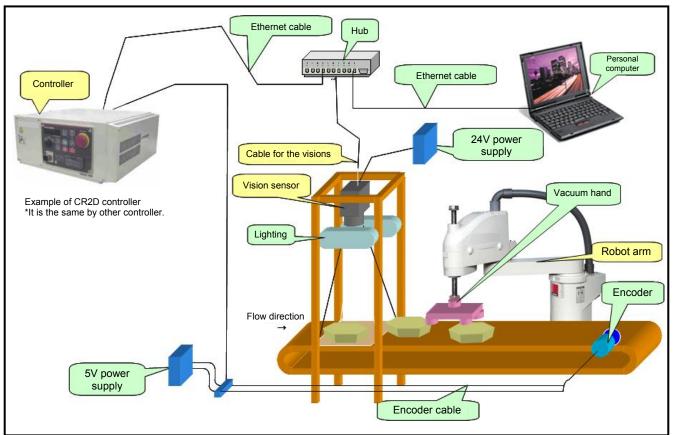


Figure 7-4 Configuration Example of Vision Tracking

8. Specification

8.1. Tracking Specifications and Restriction matter

"Table 3-1 CR750-Q/CR751-Q Series, CRnQ-700 Series Controller Tracking Function Specifications" shows the tracking specifications.

Please refer to "Standard Specifications Manual" for the specifications of the robot arm and controller to be

Table 8-1 CR750-D/CR751-D Series, CRnD-700 Series Tracking Function Specifications

	Item	Specification and Restriction matter		
Supported robots (*6)		RH-SDH series / RV-SD series RH-FH-D series / RV-F-D series		
Applicable	robot controller	CR1D/ CR2D/CR3D contoller CR750-D/CR751-D series controller		
Robot prog	gram language	Load commands dedicated for the tracking function		
Conveyer	Number of	Max 2pcs (in case 1pcs encoder connect to 1pcs conveyer)		
	conveyer	Encoder 2pcs / Robot controller 1pcs		
	,	The robot controller can correspond to two conveyers by the standard specification.		
Movement speed (*1)		Possible to support up to 300 mm/s (When the robot always transport the workpieces) Possible to support up to 500 mm/s when the interval of workpiece is wide. Possible to support two conveyers by one Robot controller.		
Encoder		Output aspect: A, A, B, B, Z, Z Output form: line driver output (*2) Highest response frequency: 100 kHz Resolution(pulse/rotation): Up to 2000 (4000 and 8000 uncorrespond) Confirmed operation product: Omron E6B2-CWZ1X-1000 E6B2-CWZ1X-2000		
	Encoder cable	Shielded twisted-pair cable Outside dimension: Maximum phi6mm Conductor size: 24AWG (0.2 mm²) Cable length: Up to 25 m		
Photoelect	ronic sensor (*3)	Used to detect workpieces positions in conveyer tracking.		
Vision sen		Mitsubishi's network vision sensor		
Precision at handling position (*5)		Approximately ±2 mm (when the conveyer speed is approximately 300 mm/s) (Photoelectronic sensor recognition accuracy, vision sensor recognition accuracy, robot repeatability accuracy and so on)		

- (*1) The specification values in the table should only be considered guidelines. The actual values depend on the specific operation environment, robot model, hand and other factors.
- (*2)The line driver output is a data transmission circuit in accordance with RS-422A. It enables the long-distance transmission.
- The output signal of a photoelectronic sensor must be connected to a general input signal (arbitrary) (*3) of the robot controller.
- (*4) In the case of vision tracking, please refer to the instruction manual of network vision sensor.
- (*5) The precision with which workpieces can be grabbed is different from the repeatability at normal transportation due to the conveyer speed, sensor sensitivity, vision sensor recognition accuracy and other factors. The value above should only be used as a guideline.
- (*6) The sample program doesn't correspond to the RV-5 axis robot.

9. Operation Procedure

This chapter explains the operation procedure for constructing a conveyer tracking system and a vision tracking system using Mitsubishi Electric industrial robots CR750-D/CR751-D series, CRnD-700 series.

1. Start of operation

Chapter 10 explains installation of option cards and connection of an encoder.

Parameter Setting Refer to "Chapter 11." Chapter 11 explains assignment of signals and setting of parameters related to tracking to allow an external device to control a robot.

Sample Robot Programs······Refer to "Chapter 12." Chapter 12 explains functions related to supplemental sample programs.

Calibration of Conveyer and Robot Coordinate Systems ("A1" program) · · · · · · Refer to "Chapter 13." Chapter 13 explains how to calculate the amount of robot movement per encoder pulse.

Calibration of Vision Coordinate and Robot Coordinate Systems ("B1" program) · · · Refer to "Chapter 14." Chapter 14 explains how to display the position of a workpiece recognized by the vision sensor in the robot coordinate system.

Workpiece Recognition and Teaching ("C1" program) ······ Refer to "Chapter 15." Chapter 15 explains how to calculate the relationship between the position of a workpiece recognized by the vision sensor and the position at which the robot grabs the workpiece.

Teaching and Setting of Adjustment Variables ("1" Program) Refer to "Chapter 16." Chapter 16 explains how to make settings such that the robot can follow workpieces moving by on a conveyer and how to teach the robot origin and transportation destination at system start-up.

Automatic Operation · · · · · Refer to "Chapter 18." In automatic operation, the robot operates via commands from the conveyer control.

End of operation

10. Maintenance ····· Refer to "Chapter 19."

11. Troubleshooting Refer to "Chapter 20."

10. Connection of Equipment

This section explains how to connect each of the prepared pieces of equipment.

10.1. Preparation of Equipment

Prepare equipment by referring to "Table 2-2 List of Devices Provided by Customers (Conveyer Tracking)" to construct a conveyer tracking system and "Table 2-3 List of Devices Provided by Customers (Vision Tracking)" to construct a vision tracking system.

10.2. Connection of Equipment

This section explains how to connect each of the prepared pieces of equipment.

10.2.1. Connection of Conveyer Encoder

Wiring of the encoder for the conveyors and the encoder cable is shown in the "Figure 10-5" (CRnD-700 series) or "Figure 10-1" (CR750-D/CR751-D series). Those shows the connection between a Expansion serial interface card connector and an encoder. (The cable uses E6B-2-CWZ1X (by OMRON).)

The a maximum of two encoders for the conveyors are connectable as standard specification. A total of 8 signal wires are required for the connection for the power supply (+ and - terminals) and the + and terminals of the differential encoders' A, B and Z phases. Refer to the instruction manual of the encoders to be used and connect the signal wires correctly. Note that shielded wires (SLD) should be connected to the ground of the controller and system.

CAUTION -

Be sure to mount ferrite cores on all encoder cables.

Be sure to mount the ferrite cores on the encoder cables at a position near the robot controller. If ferrite cores are not mounted, the robot may malfunction due to the influence of noise.

∖ CAUTION .

There is one robot controller connectable with the one encoder.

If two or more robot controllers are connected to the one encoder, the waveform of the encoder falls and the exact encoder value may be unable to be acquired. If you want to connect two or more robot controller to the one encoder, the Encoder distribution unit (model: 2F-YZ581) is required. Refer to the Encoder Distribution Unit Manual (BFP-A3300) for details.

(1)CR750-D series

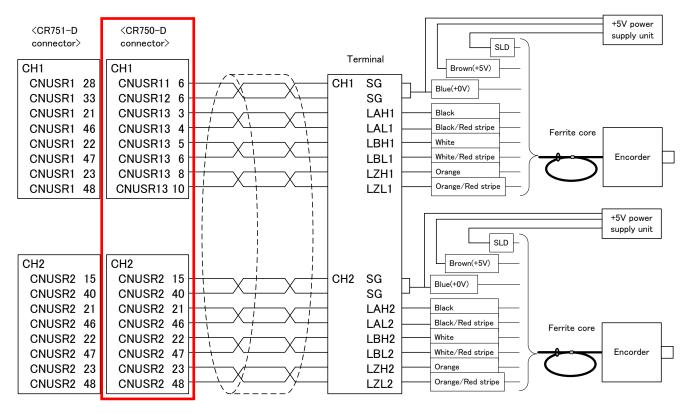


Figure 10–1 Wiring of the encoder for conveyors and encoder cable (CR750-D/CR751-D series controller)

Refer to "Table 21–3 Connectors: CNENC/CNUSR Pin Assignment" with pin assignment of connector CNUSR.

The wiring example by the thing is shown below. (Please note that the connector shape is different depending on the controller.)

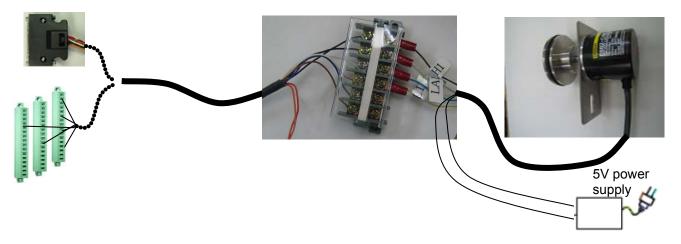


Figure 10-2 Wiring example (CR750-D series controller)

(2)CR751-D series

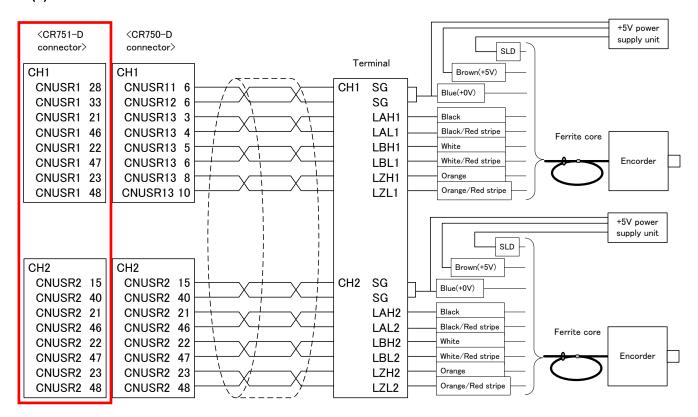


Figure 10-3 Wiring of the encoder for conveyors and encoder cable (CR750-D/CR751-D series controller)

Refer to "Table 21-3 Connectors: CNENC/CNUSR Pin Assignment" with pin assignment of connector CNUSR.

The wiring example by the thing is shown below. (Please note that the connector shape is different depending on the controller.)

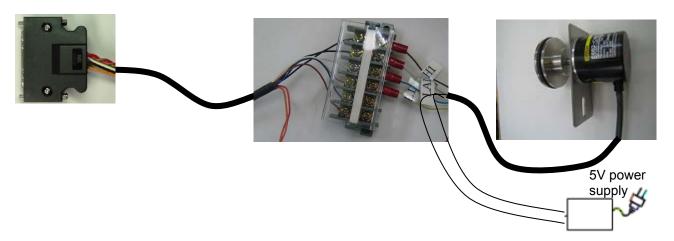


Figure 10–4 Wiring example (CR751-D series controller)

(3)CRnD-700 series

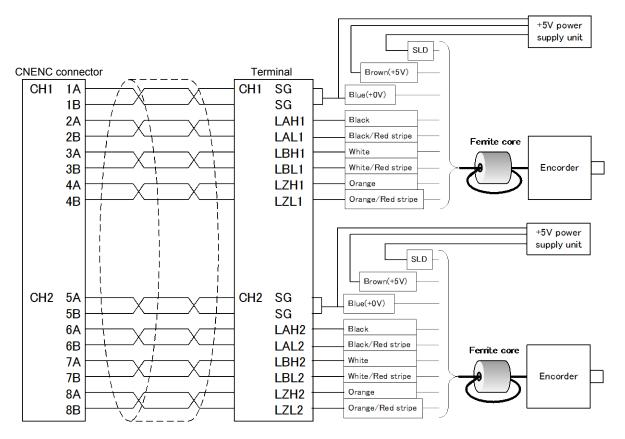


Figure 10–5 Wiring of the encoder for conveyors and encoder cable (CRnD-700 series controller)

Refer to "Table 21–3 Connectors: CNENC/CNUSR Pin Assignment" with pin assignment of connector CNENC.

The wiring example by the thing is shown below. (Please note that the connector shape is different depending on the controller.)

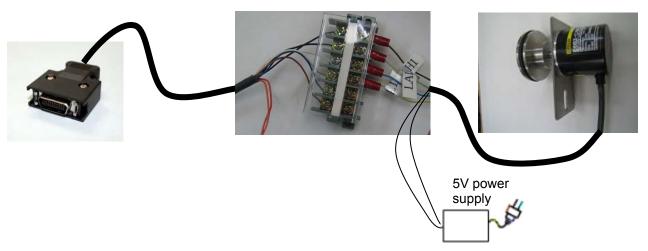


Figure 10-6 Wiring example (CRnD-700 series controller)

10.2.2. Installation of encoder cable

The installation method of the encoder cable is shown by controller to be used.

- *CR750-D series: "Figure 10-7 Installation of encoder cable (CR750-D series)"
- *CR751-D series: "Figure 10-8 Installation of encoder cable (CR751-D series)"
- *CR1D-700 series: "Figure 10-9Installation of encoder cable (CR1D-700 series)"
- *CR2D-700 series: "Figure 10-10Installation of encoder cable (CR2D-700 series)"
- *CR3D-700 series: "Figure 10-11Installation of encoder cable (CR3D-700 series)"

And, the description about the measures against the noise is shown in the figure "Figure 10-12 Example of noise measures of tracking system".

(1)CR750-D series

<CR750-D series controller (rear)>

Figure 10-7 Installation of encoder cable (CR750-D series)

(2)CR751-D series

<CR750-D series controller (front)>

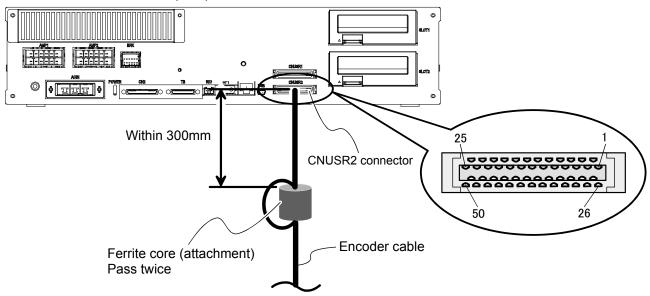


Figure 10-8 Installation of encoder cable (CR751-D series)

(3)CR1D-700 series

Connect the encoder cable to the connector of the [CNENC] display. And, the ground of the cable uses the rear cover.

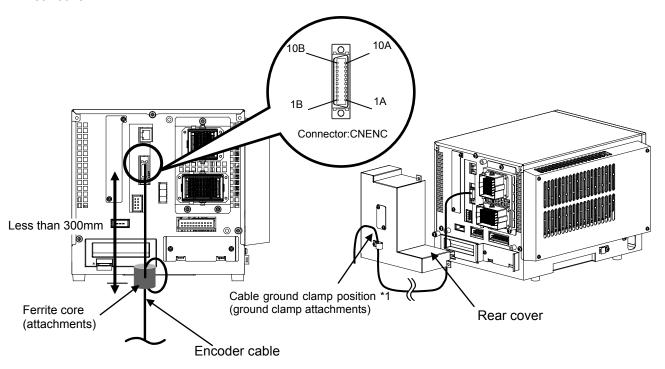


Figure 10-9 Installation of encoder cable (CR1D-700 series)

(4)CR2D-700 series

Connect the encoder cable to the connector of the [CNENC] display. And, the ground of the cable uses the rear cover.

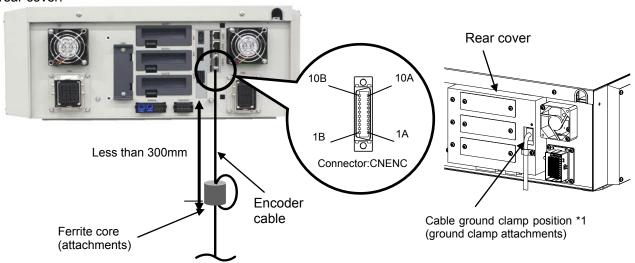


Figure 10-10 Installation of encoder cable (CR2D-700 series)

(5)CR3D-700 series

Connect the encoder cable to the connector of the [CNENC] display. And, the ground of the cable uses the rear cover.

Figure 10-11 Installation of encoder cable (CR3D-700 series)

(6)Measures against the noise

The example of noise measures of the tracking system is shown in the following.

Please implement the measures against the noise if needed in the power supply periphery section for the encoders which prepared of the customer.

- 1) Please insert AC line filter (recommendation: MXB-1210-33 * Densei-Lambda) in the AC input side cable of the power supply for the encoders.
- 2) Please insert the ferrite core (recommendation: E04SR301334 * SEIWA ELECTRIC MFG.) in the DC output side cable of the power supply for the encoders.

3) Please connect the power supply case for the encoders to the installation operator control panel, connect the earth wire to grounding or the case, and insert the ferrite core (recommendation: E04SR301334 * SEIWA ELECTRIC MFG.).

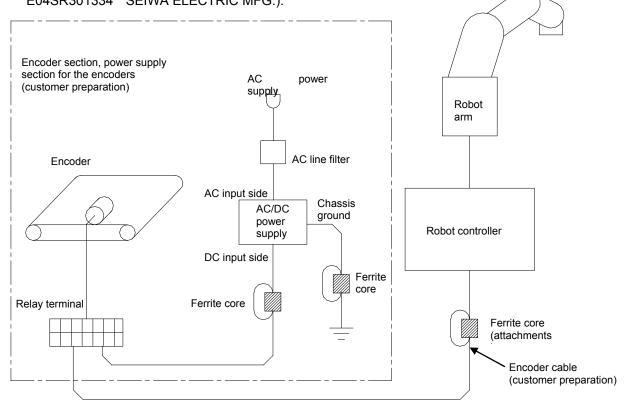
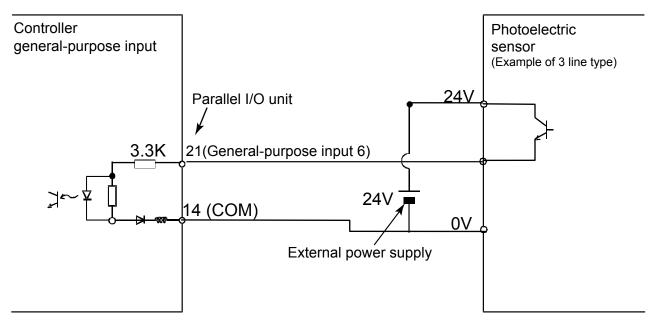


Figure 10-12 Example of noise measures of tracking system


10.2.3. Connection of Photoelectronic Sensor

If a photoelectronic sensor is used for detection of workpieces, connect the output signal of the photoelectronic sensor to a general input signal of the robot controller. Any general input signal number of the robot controller can be selected.

In this section, a connection example where the photoelectronic sensor signal is connected to the 6th general input signal is shown in "Figure 10-14 Photoelectronic Sensor Connection Example (6th General Input Signal is Used)."

Figure 10–13 Photoelectronic Sensor Arrangement Example

Note) The external power supply and photoelectric sensor must be prepared by the customer.

Note) This connection example shows the connection of the source type.

Figure 10-14 Photoelectronic Sensor Connection Example (6th General Input Signal is Used)

11. Parameter Setting

This chapter explains how to set dedicated input/output signals that play the role of interface between a robot and an external device (e.g., a Programmable Logic Controller) and parameters related to the tracking function. Please refer to "Detailed Explanations of Functions and Operations" for how to set the parameters.

11.1. Dedicated Input/Output Parameters

"Table 11-1 List of Dedicated Input/Output Parameters" lists the setting items of dedicated input/output parameters used to operate the robot via instructions from an external device. Set the signal numbers according to your system using the setting values in the table as reference. It is not necessary to set these parameters if the robot operates by itself, rather than via instructions from an external device.

Table 11-1 List of Dedicated Input/Output Parameters

Input name/output name (parameter name)	Explanation	Setting Example (*1)
Stop/pausing (STOP) or (STOP2)	Input: Stop a program Output: Output program standby status	0 , -1
Servo OFF/servo ON disabled (SRVOFF)	Input: Turn the servo off Output: Output servo ON disabled status	1 , -1
Error reset/error occurring (ERRRESET)	Input: Cancel error status Output: Output error status	2 , -1
Start/operating (START)	Input: Start automatic operation Output: Output program running status	3,1
Servo ON/turning servo ON (SRVON)	Input: Turn the servo on Output: Output servo on status	4,0
Operation right/operation right enabled (IOENA)	Input: Enable/disable operation right of external signal control Output: Output external signal control operation enabled status	5 , -1
Program reset/program selectable (SLOTINIT)	Input: Initiate a program. The program execution returns to the first step. Output: Output a status where program No. can be changed	10 , -1
General output signal reset (OUTRESET)	Input: Reset a general output signal	11 , -1
User specification area 1 (USRAREA)	Output an indication that the robot is in an area specified by a user Set the start number and end number	8,8

^{(*1) &}quot;-1" in the Setting value column means "not set."

11.2. Operation Parameters

"Table 11-2 List of Operation Parameter" lists the setting items of parameters required to operate the robot at the optimal acceleration/deceleration.

Table 11-2 List of Operation Parameter

	1450 11 2 2100 01 0 0014410111 4141110001						
Parameter name	Explanation	Reference value					
Optimal acceleration/ deceleration hand data (HANDDAT1)	Specify hand weight and so on to make settings that allow optimal acceleration/deceleration operations. For example, if the hand weighs 3 kg, changing the weight setting value from 10 kg to 3 kg makes the robot movement faster. (Hand weight (kg), size (mm) X, Y, Z, gravity (mm) X, Y, Z)	(3,0,0,0,0,0,0) The setting values are different for each robot model. Use these values as reference only.					
Optimal acceleration/ deceleration workpiece data (WRKDAT1)	Specify workpiece weight and so on to make settings that allow optimum acceleration/deceleration operations. If a workpiece is grabbed via the HClose instruction, the acceleration/deceleration becomes slower. If a workpiece is released via the HOpen instruction, acceleration/deceleration becomes faster. (Workpiece weight (kg), size (mm) X, Y, Z, gravity (mm) X, Y, Z)	(1,0,0,0,0,0,0) The setting values are different for each robot model. Use these values as reference only.					

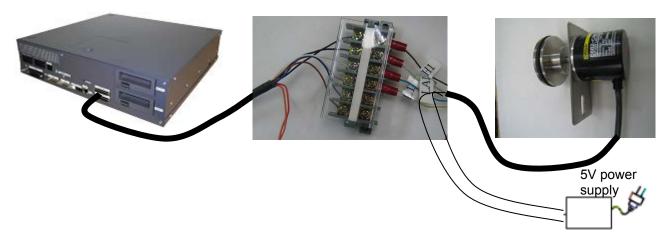
11.3. Tracking Parameter Setting

Specify to which channel of a Encoder connector(CNENC) an encoder of a conveyer is connected. "Table 11–3 Tracking Parameter Setting" lists the parameters to be set. Other parameters are shown in "Table 16-1 List of Tracking Parameters"; make settings as required.

After the connection with the encoder are complete, use the following steps to establish robot parameters.

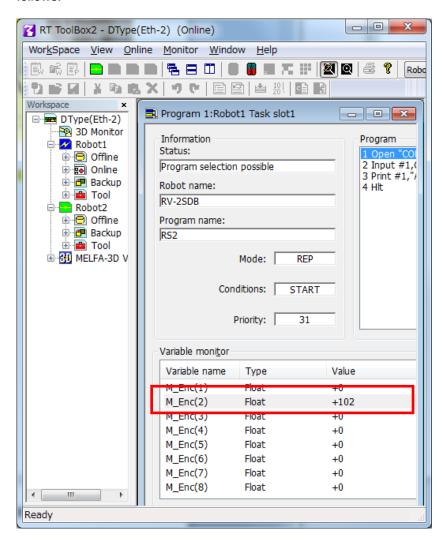
- (1) Set a parameter TRMODE to 1, validate a function of tracking.
- (2) Specify the channel to which the encoder is connected using a parameter EXTENC.

Table 11-3 Tracking Parameter Setting


Table 11–3 Tracking Parameter Setting					
Parameter	Parameter name	Number of elements	Explanation	Value set at factory shipping	
Tracking	TRMODE	1 integer	Enable the tracking function	0	
mode			Please set it to "1" when you use the tracking function.		
			0: Disable/1: Enable		
Encoder	EXTENC	8 integers	Set connection destinations on the connector for	1,2,1,2,	
number			encoder numbers 1 to 8.	1,2,1,2	
allocation			Parameter elements correspond to encoder number 1,		
			encoder number 2 encoder number 8 from the left. In addition, the encoder physics numbers 3-8 are the		
			reservation number for extension. At present, it cannot		
			be used.		
			Encoder		
			Connection physics		
			channel number		
			Standard CH1 1		
			Standard CH2 2		
			Slot1 CH1 3		
			Slot1 CH2 4 Reservation		
			Slot2 CH1 5 number for		
			Slot2 CH2 6 future		
			Slot3 CH1 7 extension		
			Slot3 CH2 8		
			The value of the encoder which wired the channel 1 in case of the standard encoder input connector [CNENC] for the robot controller is equipped with the encoder cable with initial setting, The value of the encoder which wired the channel 2 by the status variable "M_Enc (1)", "M_Enc (3)", "M_Enc (5)", and "M_Enc (7)", It can confirm by the status variable "M_Enc (2)", "M_Enc (4)", "M_Enc (6)", and "M_Enc (8)." It is convenient to check the status variable "M_Enc" when determining the setting value of the "EXTENC" parameter. Please refer to "19.1.2 List of Robot Status Variables" for the explanation of state variable "M_Enc". Please refer to "Detailed Explanations of Functions and Operations" for how to check the status variable "M_Enc."		
Tracking Workpiece judgment distance	TRCWDST	1 integer	Distance to judge that the same workpiece is being tracked (mm) The sensor reacts many times when the workpiece with the ruggedness passes the sensor. Then, the robot controller judged that one workpiece is two or more pieces. The sensor between values [mm] set to this parameter does not react after turning on the sensor.	5.00	

The example of a setting of a parameter EXTENC is shown as follow.

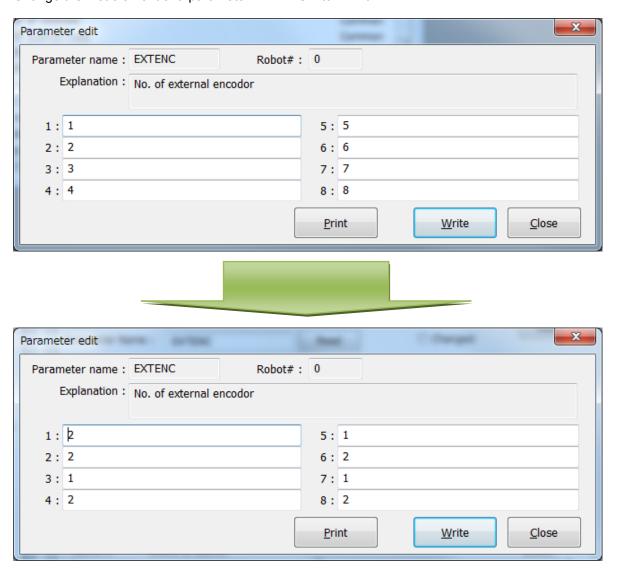
Hardware configuration


In CR750-D and a CR751-D controller, when using a common encoder cable, it is convenient to use CNUSR2 connector.

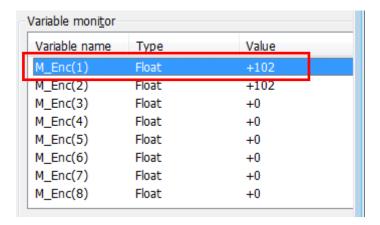

In this case, in order to connect with the channel 2 of an encoder, an encoder value will be checked using a state variable "M_Enc (2)."

Monitoring the encoder value

When the encoder value is showed by variable monitor of program monitor, the encoder value changes as follows.



In this way, in the case of connection to channel 2, the encoder data is stored in "M_Enc(2)".


It is useful to change parameter EXTENC when confirming the encoder value by using "M_Enc(1)" and encoder value 1.

Common control to "M_Enc(1)" by parameter EXTENC

Change the first element of a parameter EXTENC into "2" from "1".

If you reset a power supply and reflect the parameter value, the encoder value is displayed in M_Enc(1)" as follows.

[Part 4] Tracking Control (common function between series)

(Take note that there are some aspects which differ between CR750-Q, CR751-Q, CRnQ-700 series and CR750-D, CR751-D, CRnD-700 series.)

12. Sample Robot Programs

This chapter explains the structure of the sample robot programs.

Two types of sample robot programs are provided; for conveyer tracking and for vision tracking.

And the sample program corresponding to the high speed tracking function was added. You can use it R5k/S5k version or later.

Their program structures are shown in "Table 12-1 List of Sample Robot Programs (Conveyer Tracking)" and "Table 12–2 List of Sample Robot Programs (Vision Tracking)" respectively.

Refer to "RT ToolBox2 Robot Total Engineering Support Software Instruction Manual" for how to install programs to the robot controller.

Table 12-1 List of Sample Robot Programs (Conveyer Tracking)

			Version	
Program name	Description	Explanation	Former	High Speed
A1	system calibration program	This program matches the coordinate systems of the conveyer and robot and calculates the amount of robot movement per encoder pulse.	A4	B1 or later
C1		This program calculates the coordinates at which the robot grabs a workpiece based on the coordinates at which a sensor is activated.	A4	B1 or later
1	Operation program	This program handles transporting workpieces while following recognized workpieces. (1) Movement to the robot origin (2) Workpiece suction and transportation operation while following movement	A4	B1 or later
СМ1	Workpiece coordinate monitor program	This program monitors encoder values and stores workpiece coordinates.	A4	B1 or later

Table 12–2 List of Sample Robot Programs (Vision Tracking)

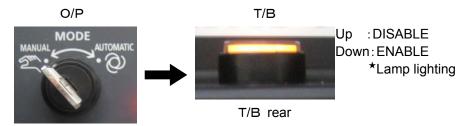
			Version	
Program name	Description	Explanation	Former	High Speed
A1	Conveyer - robot coordinate system calibration program	This program matches the coordinate systems of the conveyer and robot and calculates the amount of robot movement per encoder pulse.	A4	B1 or later
B1	Vision coordinate system – robot coordinate system calibration program	This program matches the vision coordinate system and the robot coordinate system.	A4	B1 or later
C1	Workpiece coordinate system - robot coordinate system matching program	This program calculates the coordinates at which the robot grabs a workpiece based on the coordinates at which a vision sensor has detected the workpiece.	A4	B1 or later
1	Operation program	This program handles transporting workpieces while following recognized workpieces. (1) Movement to the robot origin (2) Workpiece suction and transportation operation while following movement	A4	B1 or later
СМ1	Workpiece coordinate monitor program	This program monitors encoder values and stores workpiece coordinates.	A4	B1 or later

13. Calibration of Conveyer and Robot Coordinate Systems ("A1" program)

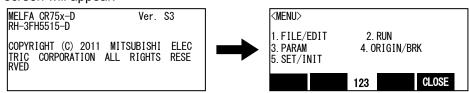
This chapter explains the tasks carried out by using "A1" program.

* "A1" program contains operations required for both conveyer tracking and vision tracking.

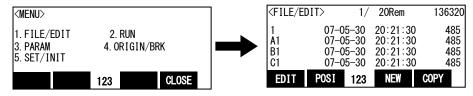
Calibration of a conveyer refers to determining the movement direction of the conveyer in the robot coordinate system and the amount of movement of the robot per encoder pulse. This amount of movement is stored in the robot's status variable "P_EncDlt."


"A1" Program performs specified tasks and automatically calculates the amount of movement of the robot per encoder pulse mentioned above.

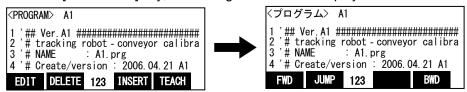
The procedures of operations specified by "A1" program and items to be confirmed after the operations are explained below.


Please refer to "Detailed Explanations of Functions and Operations" for the steps involved in each operation. Please monitor status variable "M_Enc(1)" to "M_Enc(8)" before it works, rotate the encoder, and confirm the value changes.

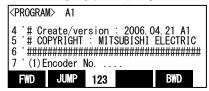
13.1. Operation procedure

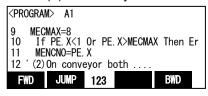

- 1) Mount a calibration jig on the mechanical interface of a robot. Connect a personal computer on which RT ToolBox2(option) is installed to the robot controller.
- 2) Set the controller mode to "MANUAL". Set the T/B to "ENABLE".

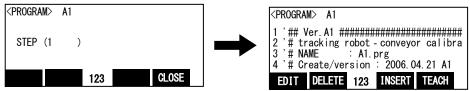
3) Press one of the keys (example, [EXE] key) while the <TITLE> screen is displayed. The <MENU> screen will appear.

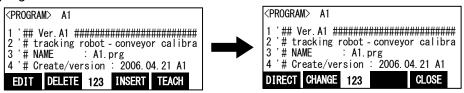


4) Select "1. FILE /EDIT" screen on the <MENU> screen.



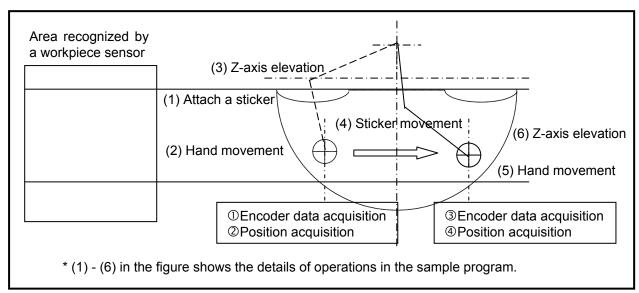
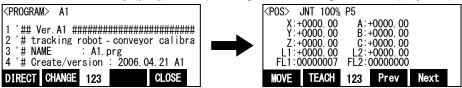

Press the [FUNCTION] key, and change the function display

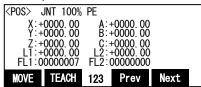

7) Press the [F1] (FWD) key and execute step feed. "(1)Encoder No" is displayed


- 8) Work according to the comment directions in the robot program.
- 9) Next " (2) On conveyor both .. Execute step feed to ".

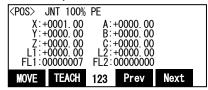
- 10) Repeat (7) (8) and execute step feed to "End."
- 11) Press the [F2] (JUMP) key and input the step number. Press the [EXE] key. Then returns to first step

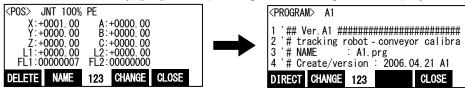
12) Press the [FUNCTION] key, and change the function display. Press the [F4] (close) key and close the program.


Figure 13–1 Conveyer and Robot Calibration Operation Diagram

13.2. Tasks


- 1) Set the encoder number to the X coordinates value of position variable: "PE."
 - (a) Press the function key ([F2]) corresponding to "the change", and display the position edit screen.


(b) The [F3] (Prev) key or the [F4] (Next) key is pressed, change the target variable, and display "PE" on the position name.

(c) X coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the encoder number into X coordinates.

(d) Press the function key ([F2]) corresponding to "the change", and display the command edit screen.

2) Attach a marking sticker on the conveyer (a sticker with an X mark is the best choice for the marking sticker).

Drive the conveyer and stop it when the marking sticker comes within the robot movement range.

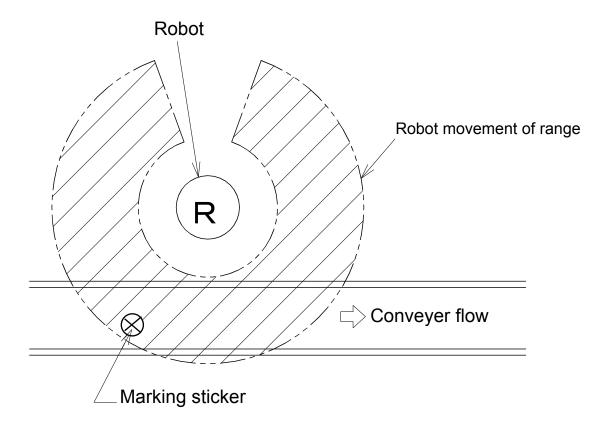


Figure 13-2 Position of Marking Sticker on Conveyer

- 3) Move the robot to the position right at the center of the marking sticker on the conveyer.
 - * With this operation, encoder data and robot position are acquired.

Move the robot to an accurate position.

Be sure to move the robot to the position exactly at the center of the marking sticker because the amount of robot movement per encoder pulse is determined by the robot positions specified for the first and second times. Moreover, pay attention to the robot height as well because this amount of movement includes changes of robot position in the Z axis direction.

- 4) Raise the robot.
- 5) Drive the conveyer and stop at a position where the marking sticker is immediately outside the robot movement range.

The marking sticker should be moved for the maximum amount of movement allowed by the robot movement range.

If the amount of movement is too small, errors in the amount of robot movement per encoder pulse will become large due to the error of the position specified for the robot.

- 6) Move the robot to the position right above the center of the marking sticker on the moved conveyer.
 - * With this operation, encoder data and robot position are acquired.
- 7) Raise the robot.
- 8) Perform step operation until "End."
 - * The amount of robot movement per encoder pulse is calculated based on this operation.

13.3. Confirmation after operation

Check the value of "P_EncDlt" using T/B.

* This value indicates the movement of each coordinate (mm) of the robot coordinate system, corresponding to the movement of the conveyer per pulse.

Example) If "0.5" is displayed for the Y coordinate only

This means that if the conveyer moves for 100 pulses, the workpiece moves 50 mm (0.5 x 100 = 50) in the +Y direction in the robot coordinate system.

When backing up, the data of "P_EncDlt" is not backed up.

Please work referring to "20.3.5 Restore backup data to another controller" when you restore data to another tracking system.

13.4. When multiple conveyers are used

Carry out the same operations as above when multiple conveyers are used as well, but pay attention to the following points.

Example) When using conveyer 2 (encoder number 2):

- (a) Enter "2" for the encoder number specified for the X coordinate of the position variable "PE" in the program.
- (b) Check the value of "P_EncDlt(2)" using RT ToolBox2 when confirming the data after operation.

Refer to "RT ToolBox2 Robot Total Engineering Support Software Instruction Manual" for how to check variable values using RT ToolBox2.

Calibration of Vision Coordinate and Robot Coordinate Systems ("B1" program)

This chapter explains the tasks carried out by using "B1" program.

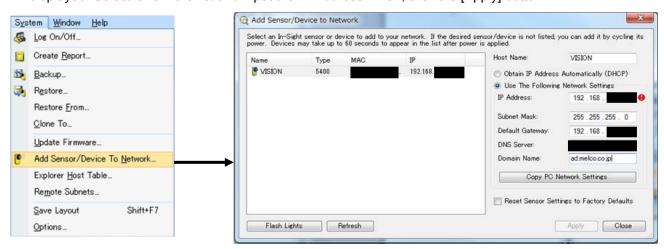
* "B1" program only contains operations required when constructing a vision tracking system. These operations are not necessary when constructing a conveyer tracking system.

Calibration of a vision sensor refers to converting the position of a workpiece recognized by the vision sensor to the corresponding position in the robot coordinate system.

This calibration operation is easily performed by the "Mitsubishi robot tool" in In-Sight Explorer. Refer to "Mitsubishi robot tool manual for EasyBuilder" for the details of this function.

"B1" program performs specified tasks and allows acquiring the workpiece coordinates recognized by the vision sensor in the robot coordinate system (position coordinates of robot movement).

The procedures of operations specified by "B1" program and items to be confirmed after the operations are explained below.

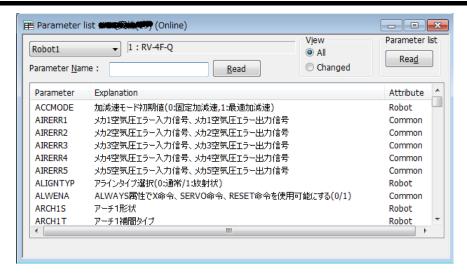

This chapter explains on the assumption that "Mitsubishi robot tool" is used.

Please refer to "Detailed Explanations of Functions and Operations" for the steps involved in each

This operation needs a Calibration sheet (Appendix 21.6Calibration sheet). Print the Calibration sheet in advance.

14.1. Operation procedure

Start In-Sight Explorer and set the IP Address of vision sensor. From the menu of In-Sight Explorer, select [System]-[Add Sensor/Device To Network...]. In the "Add Sensor/Device To Network" screen, the sensor or device which can add to the network is displayed. Select it from the list and input the IP Address. Then, click the [Apply] button.


2) To communicate the Mitsubishi robot tool and the vision sensor, set a necessary parameter by using RT ToolBox2.

A necessary parameter is three ("NETIP", "Element 9 of NETTERM", and "CTERME19").

In RT ToolBox2, select [Online]-[parameter]-[parameter list].

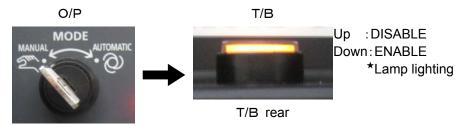
Input the following parameters to "Parameter Name" of the displayed "Parameter list" screen and change a "Setting value".

Parameter Name	Initial value	Setting value	Explanation
NETIP	Q type: 192.168.100.1	XXX.XXX.XXX	IP address of robot controller
	D type: 192.168.0.20		
NETTERM(Element 9)	0	1	The end code is added with
			communication.
CTERME19	0	1	The end code of port 10009 is
			changed to "CR+LF".

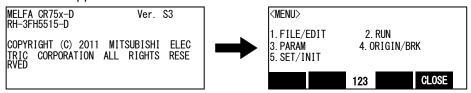
Please confirm whether the following parameters are initial values.

Parameter Name	Initial value	Explanation
NETPORT(Element 10)	10009	Port number allocated to device OPT19
CPRCE19	0	The protocol used is "Non-procedure"
NETMODE(Element 9)	1	Opens as "Server".

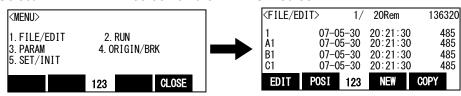
In RT ToolBox2, select [Online]-[parameter]-[Ethernet setting].

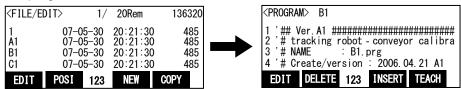

"OPT12" is selected "COM2:" that exists in "Line and Device" column on the displayed "Ethernet setting" screen. Double-click "OPT12" that exists in "Device List".

Check "Change the parameter to connect Vision", and Input IP address of the vision sensor to "IP Address:" column. Click [OK] button. And, click [write] button on "Ethernet setting" screen.



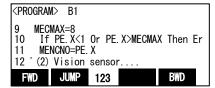
Turn on robot controller's power supply again to make the set parameter effective.

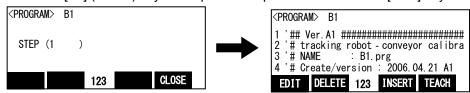

Open "B1" program using T/B.
 Set the controller mode to "MANUAL". Set the T/B to "ENABLE".

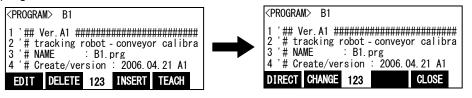

Press one of the keys (example, [EXE] key) while the <TITLE> screen is displayed. The <MENU> screen will appear.

5) Select "1. FILE /EDIT" screen on the <MENU > screen.

6) Press the arrow key, combine the cursor with the program name "B1" and press the [EXE] key. Display the creen.

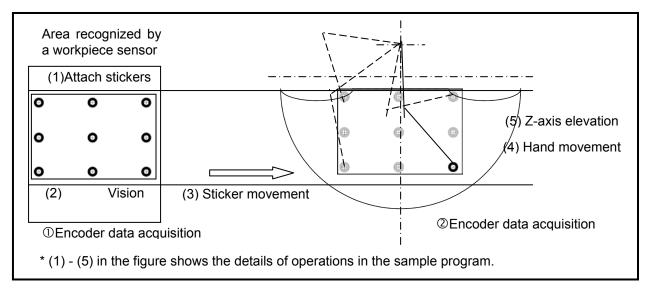
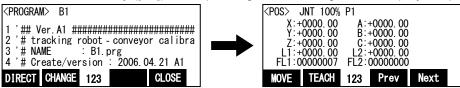

7) Press the [FUNCTION] key, and change the function display

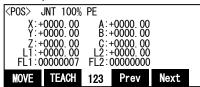

8) Press the [F1] (FWD) key and execute step feed. "(1)Encoder No" is displayed


- Work according to the comment directions in the robot program.
- 10) Next " (2) Vision sensor .. Execute step feed to ".

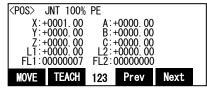
- 11) Repeat (7) (8) and execute step feed to "End."
- 12) Press the [F2] (JUMP) key and input the step number. Press the [EXE] key. Then returns to first step

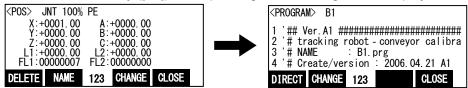
13) Press the [FUNCTION] key, and change the function display. Press the [F4] (close) key and close the program.

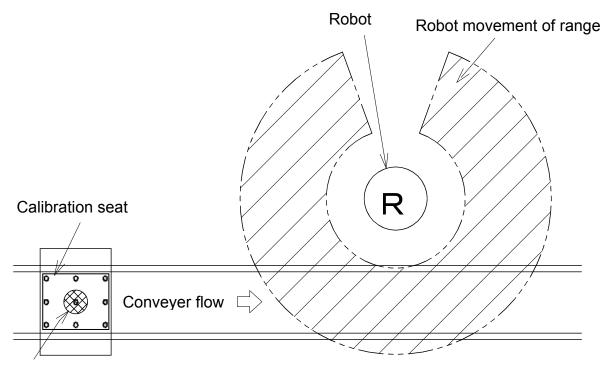




Figure 14–1 Vision Sensor and Robot Calibration Operation Procedure Diagram

14.2. Tasks


- Set the encoder number to the X coordinates value of position variable: "PE."
 - (a) Press the function key ([F2]) corresponding to "the change", and display the position edit screen.


(b) The [F3] (Prev) key or the [F4] (Next) key is pressed, change the target variable, and display "PE" on the position name.


(c) X coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the encoder number into X coordinates.

(d) Press the function key ([F2]) corresponding to "the change", and display the command edit screen.

- 2) Start In-Sight Explorer and make the vision sensor into the off-line. Select the [Live Video] of "Set Up Image" in "Application Steps" Menu and display the picture which the vision sensor picturized in real time. Refer to the manual obtained from the Cognex for operation of In-Sight Explorer.
- 3) Paste appendix calibration seat to "Mitsubishi robot tool manual for EasyBuilder" on the conveyer. Paste calibration seat within the field of vision checking the live images of In-Sight Explorer.

Camera for vision sensor

Figure 14–2 Pasting Calibration seat

4) End [Live Video] of In-Sight Explorer, and select [Inspect Part] button of "Application Steps".

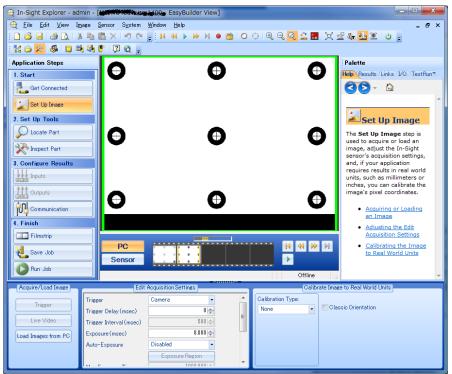


Figure 14-3 Screen of In-Sight Explorer from which calibration seat is taken picture

5) Select [Geometry Tools] - [User-Defined Point] in "Add tool".

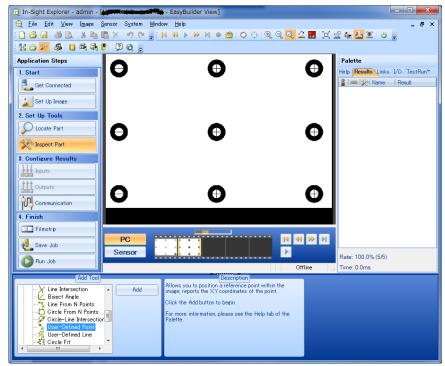
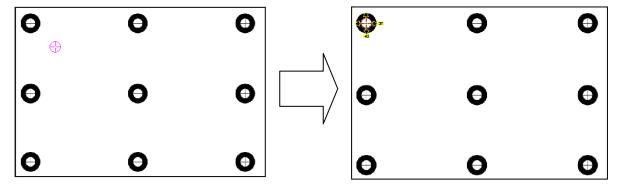
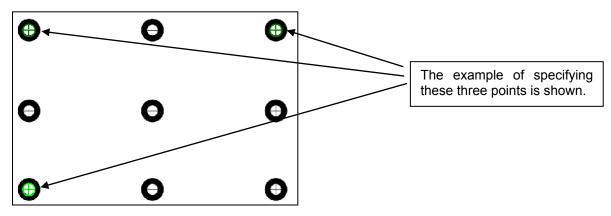
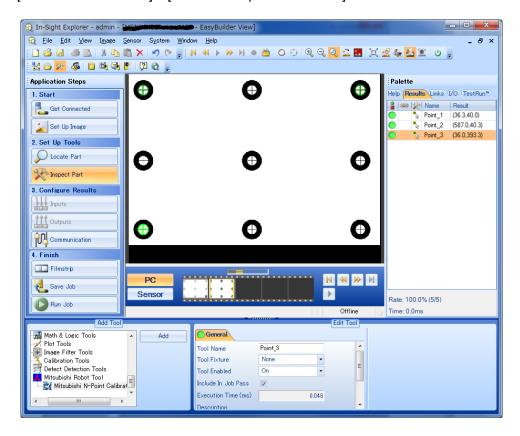
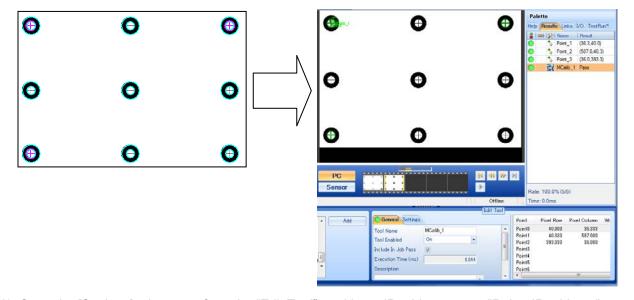
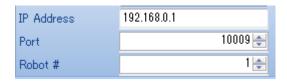




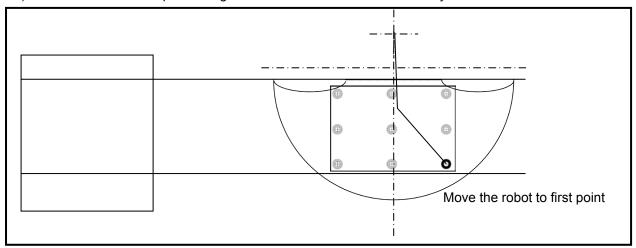
Figure 14-4 Screen of In-Sight Explorer from which calibration seat is taken picture


6) Click [Add] button. Then, the cross sign enclosed with circle on the screen is displayed. Move it to the mark of the calibration seat, and click [OK] button.

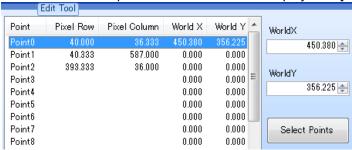

7) Specify the "User-Defined point" in three points or more repeating the above-mentioned work.


8) Select [Mitsubishi Robot Tool] - [Mitsubishi N-point calibration] in "Add Tool" column of this tool.

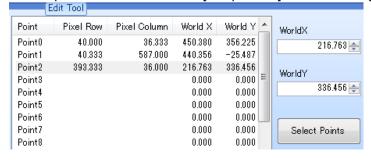
9) Click [Add] button. Select "User-Defined point" three points specified ahead from nine displayed marks. Then, Click [OK] button.



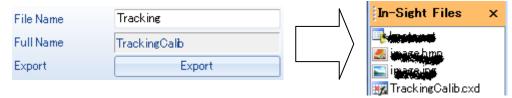
10) Open the [Settings] tab screen from the "Edit Tool", and input IP address set to "Robot IP address".


11) Make the vision sensor online.

- 12) Move the calibration seat by starting the conveyer within the robot movement range.
- 13) Move the robot to the position right above the first mark on the conveyer.



14) Click [Get position] button in "Edit Tool" column of In-Sight Explorer.


Confirm the current position of the robot was displayed in [world X] and [world Y].

15) Similarly, move the robot hand to the mark of the second point and the third point, and acquire the current position of the robot with [Get position] button of In-Sight Explorer.

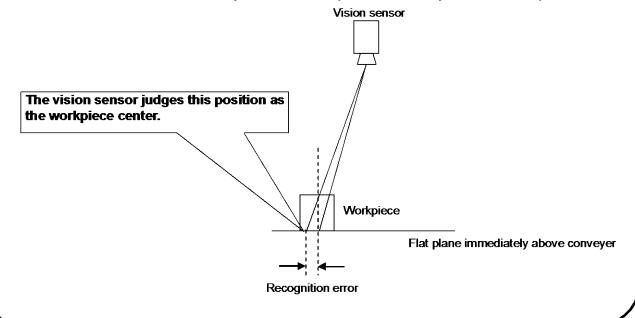
16) Input an arbitrary name to "File name" in the tool edit column of In-Sight Explorer, and click the export button. (In this example, File Name is "Tracking") And, confirm the calibration file of the specified name was made in the vision sensor.

- 17) Raise the robot.
 - * With this operation, encoder data is acquired.

14.3. Confirmation after operation

Check the value of "M_100()" using T/B.

Enter the **encoder number** in the array element.


Confirm that the differences between the encoder values acquired on the vision sensor side and the encoder values acquired on the robot side are set in "M_100()."

If precision is highly important, use four workpieces instead of marking stickers to specify 4 points at which they are grabbed.

When marking stickers are used, a vision sensor calculates the robot position on a flat plane immediately above the conveyer. If the workpiece height is large, the robot coordinate values may deviate from the actual workpiece center displayed when the center of the workpiece is recognized.

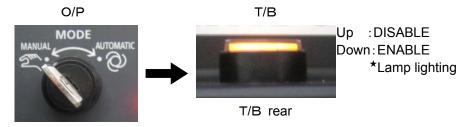
For this reason, it is recommended to calibrate the robot using workpieces in order to make sure that the robot calculates the coordinates correctly, based on a flat plane immediately above the workpieces.

15. Workpiece Recognition and Teaching ("C1" program)

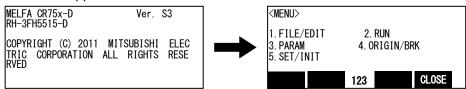
This chapter explains the tasks carried out by using "C1" program.

* "C1" program contains operations required for both conveyer tracking and vision tracking, but different operations are performed. Refers to "15.1Program for Conveyer Tracking" for operations in the case of conveyer tracking and "15.2Program for Vision Tracking" for operations in the case of vision tracking.

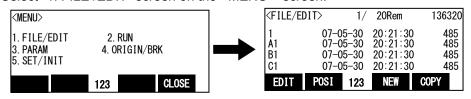
Please refer to "Detailed Explanations of Functions and Operations" for the steps involved in each operation.


15.1. Program for Conveyer Tracking

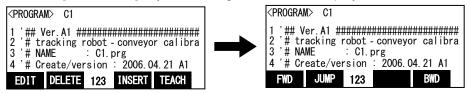
In "C1" program for conveyer tracking, encoder data at the positions where a sensor is activated and where the robot suctions a workpiece is acquired so that the robot can recognize the workpiece coordinates when the sensor is activated at later times.

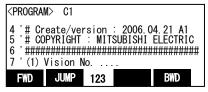

The operation procedure and items to be confirmed after operation in "C1" program for conveyer tracking are explained below.

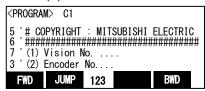
(1) Operation procedure

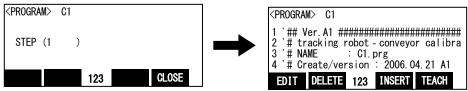

- 1) Open "C1" program using T/B.
- 2) Set the controller mode to "MANUAL". Set the T/B to "ENABLE".

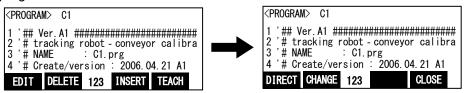
3) Press one of the keys (example, [EXE] key) while the <TITLE> screen is displayed. The <MENU> screen will appear.


4) Select "1. FILE /EDIT" screen on the <MENU > screen.


5) Press the arrow key, combine the cursor with the program name "C1" and press the [EXE] key. Display the cyrogram edit screen.

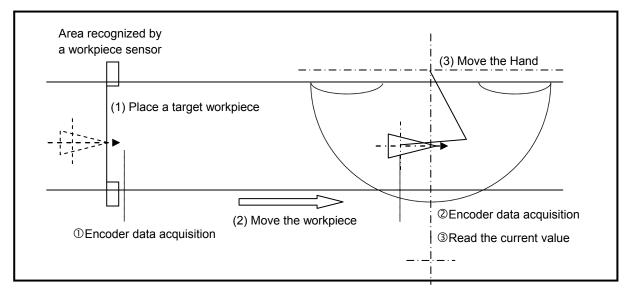

Press the [FUNCTION] key, and change the function display

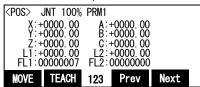

Press the [F1] (FWD) key and execute step feed. "(1)Vision No" is displayed


- 8) Work according to the comment directions in the robot program.
- 9) Next " (2) Encoder No.. Execute step feed to ".

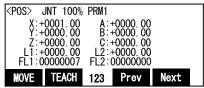
- 10) Repeat (7) (8) and execute step feed to "End."
- 11) Press the [F2] (JUMP) key and input the step number. Press the [EXE] key. Then returns to first step

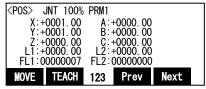
12) Press the [FUNCTION] key, and change the function display. Press the [F4] (close) key and close the program.

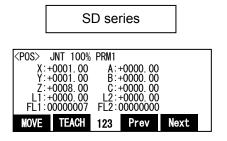


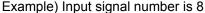

Figure 15-1 Operation for Matching Workpiece Coordinates and Robot Coordinates

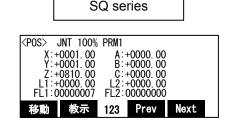
(2) Tasks


- 1) Enter the model number, encoder number and number of the sensor that monitors the workpieces in the X, Y and Z coordinates of the position variable "**PRM1**" in the program.
 - (a) Press the function key ([F2]) corresponding to "the change", and display the position edit screen.

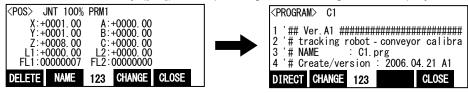

(b) The [F3] (Prev) key or the [F4] (Next) key is pressed, change the target variable, and display "PRM1" on the position name.


(c) X coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the model number into X coordinates.




(d) Y coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the encoder number into Y coordinates.

(e) Z coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the number of the sensor that monitors the workpieces into Z coordinates.



Example)Tracking enable signal number is 810.

(f) Press the function key ([F2]) corresponding to "the change", and display the command edit screen.

2) Move a workpiece to the location where the sensor is activated.

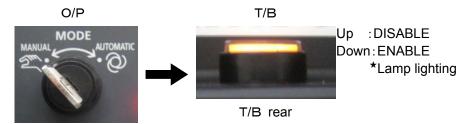
- * With this operation, encoder data is acquired.
- 3) Drive the conveyer to move the workpiece within the robot movement range.
- 4) Move the robot to the position where it suctions the workpiece.
 - * With this operation, encoder data and robot position are acquired.
- 5) Perform step operation until "End."
 - * With this operation, the robot is able to calculate the position of a workpiece as soon as the sensor is activated.

(3) Confirmation after operation

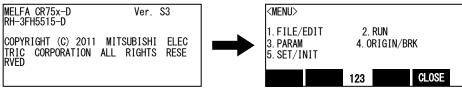
Confirm the values of "M_101()," "P_100()" and "P_102()" using T/B.

Enter **encoder numbers** in array elements.

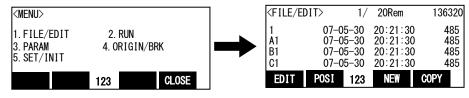
- "M_101()": Differences between the encoder values acquired at the position of the photoelectronic sensor and the encoder values acquired on the robot side.
- "P 100()": Position at which workpieces are suctioned
- "P_102()": The value of the variable "PRM1" set in step (1)


Check that each of the values above has been entered correctly.

15.2. Program for Vision Tracking

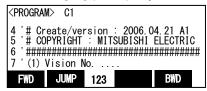

Vision tracking "C1" program acquires encoder data at the position where the vision sensor recognizes workpieces and where the robot suctions workpieces such that the robot can recognize the work coordinates recognized by the vision sensor. The following explains the operation procedure and items to confirm after operation in vision tracking "C1" program.

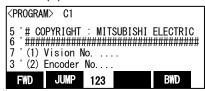
(1) Operation procedure

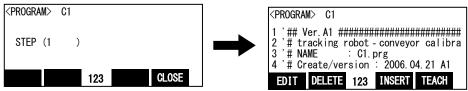

- 1) Register workpieces to be recognized by a vision sensor and create a vision program. Please refer to "In-Sight Explorer manual" for the method of making the vision program.
- Open "C1" program using T/B.
- 3) Set the controller mode to "MANUAL". Set the T/B to "ENABLE".

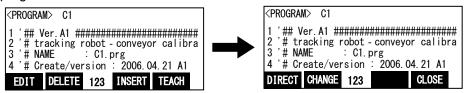
4) Press one of the keys (example, [EXE] key) while the <TITLE> screen is displayed. The <MENU> screen will appear.


5) Select "1. FILE /EDIT" screen on the <MENU > screen.


Press the arrow key, combine the cursor with the program name "C1" and press the [EXE] key. Display the cprogram edit> screen.

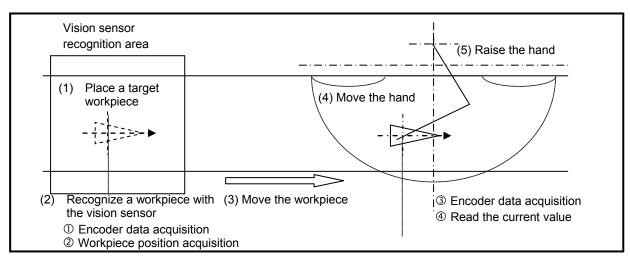
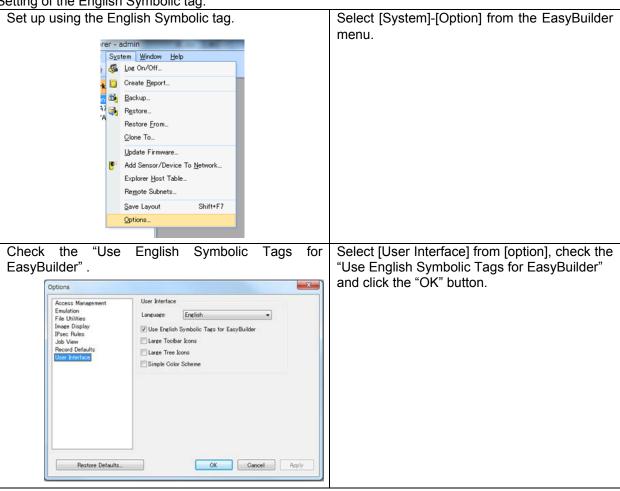

7) Press the [FUNCTION] key, and change the function display

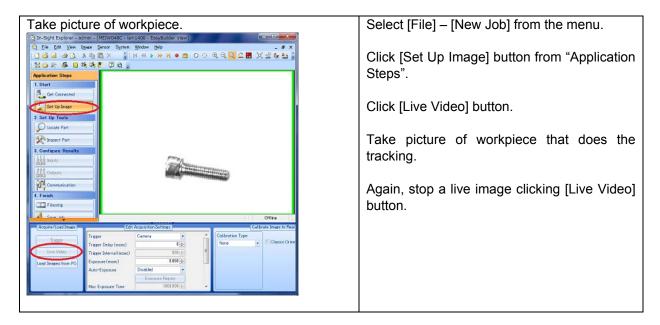

8) Press the [F1] (FWD) key and execute step feed. "(1)Vision No" is displayed

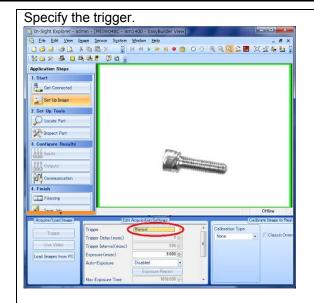

- 9) Work according to the comment directions in the robot program.
- 10) Next " (2) Encoder No.. Execute step feed to ".

- 11) Repeat (7) (8) and execute step feed to "End."
- 12) Press the [F2] (JUMP) key and input the step number. Press the [EXE] key. Then returns to first step

13) Press the [FUNCTION] key, and change the function display. Press the [F4] (close) key and close the program.


Figure 15-2 Operation for Matching Workpiece Coordinates and Robot Coordinates


(2) Tasks

Setting of the English Symbolic tag.

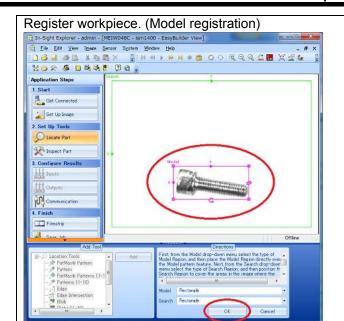
Make the vision program.

[Trigger] from "Camera" Change "Manual".

8640(The image trigger is abnormal) error occurs when the robot controller outputs the taking picture demand to the vision sensor when you do not change.

Import the calibration data.

In [Calibration type], select "Import".


In [File Name], select the Calibration file (For example, "TrackingCalib.cxd") registered when working about the B1 program.

Register workpiece. (preparation)

Click [Locate Part] from "Application Steps".

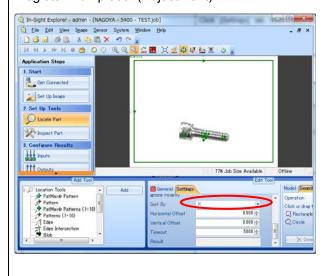

Select "PatMax Pattern(1-10)" from "Add Tool", and click [Add] button.

Move the displayed "Model" frame, enclose workpiece.

Click [OK] button in "Directions".

Register workpiece. (Adjustment)

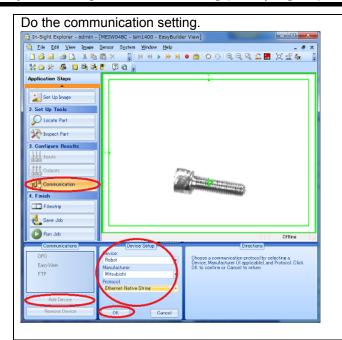
Click [Settings] tab from "Edit Tool", and change the [Rotation Tolerance] value to "180".


(The vision sensor can recognize workpiece up to ±180 degrees.)

Change the [Accept Threshold], and adjust the recognition rate of workpiece.

The default [Accept Threshold] is "50". At this stage it is enough as it is.

And change [Number To Find]"1"to"4"


Register workpiece. (Adjustment)

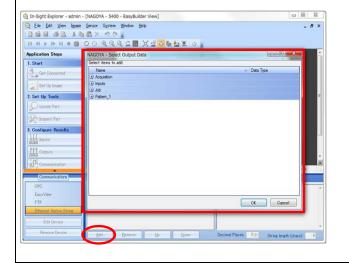
Change [Sort By] "X" or "Y".

multiple If you sort the recognized workpieces to the right direction of screen, select "X".

If you sort the recognized multiple workpieces to the left direction of screen, select "Y".

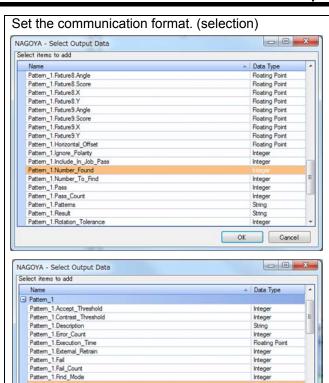
Click [Communication] from "Application Steps".

Click [Add Device] from "Communications".


Select the following from "Device Setup".

[Device:] "Robot" [Manufacturer:] "Mitsubishi"

[Protocol:] "Ethernet Native String"


Click [OK] button.

Set the communication format. (preparation)

Click [Add] button from "Format Output String".

-> "Select Output Data" screen opens.

Click [+] sign of "Pattern_1", and select it in the following order while pushing the [Ctrl]

- (1) Pattern_1.Number_Found
- (2) Pattern_1.Fixture.X
- (3) Pattern_1.Fixture.Y
- (4) Pattern_1.Fixture.Angle
- (5) Pattern_1.Fixture1.X
- (6) Pattern_1.Fixture1.Y
- (7) Pattern_1.Fixture1.Angle
- (8) Pattern 1.Fixture2.X
- (9) Pattern_1.Fixture2.Y
- (10) Pattern 1. Fixture 2. Angle
- (11) Pattern_1.Fixture3.X
- (12) Pattern_1.Fixture3.Y
- (13) Pattern_1.Fixture3.Angle

Click [OK] button.

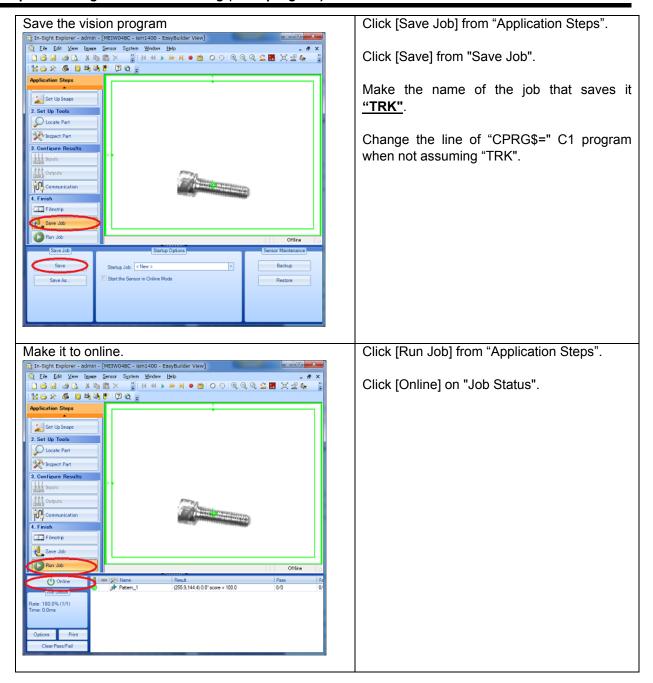
Floating Point

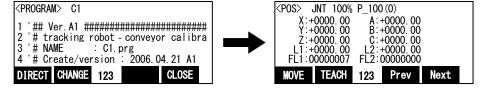
Floating Point

Floating Point OK Cancel

Pattern_1.Fixture.Score

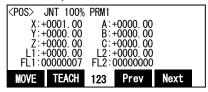
Pattern_1.Fixture1.Angle Pattern_1.Fixture1.Score Pattern_1.Fixture1.X


Pattern_1.Foture 1.Y

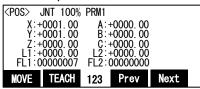

Confirm the value enclosed with a square frame.

Data sent to the robot controller is shown in a right square frame.

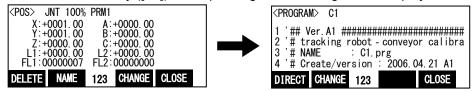
Change the value of [Decimal Places], and change the number of decimal positions of transmitted data.

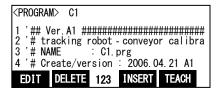


- 3) Enter the model number and encoder number in the X and Y coordinates of the position variable "**PRM1**" in the program.
 - (a) Press the function key ([F2]) corresponding to "the change", and display the position edit screen.



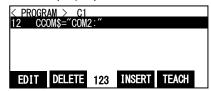
(b) The [F3] (Prev) key or the [F4] (Next) key is pressed, change the target variable, and display "PRM1" on the position name.

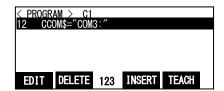

(c) X coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the model number into X coordinates.

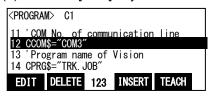

(d) Y coordinates are selected by the arrow key, press the [CLEAR] key for a long time, and delete the details. Input the encoder number into Y coordinates.

(f) Press the function key ([F2]) corresponding to "the change", and display the command edit screen.

- Start In-Sight Explorer and make the vision sensor into the off-line. Select the [Live Video] of "Set Up Image" in "Application Steps" Menu and display the picture which the vision sensor picturized on real time. Check the images and set the field of vision in the moving direction of the conveyer (mm) and the length of workpieces detected by the vision sensor (length in the moving direction of the conveyer) in the X and Y coordinates of the position variable "PRM2" in the program, respectively.
 - (a) Open the [Position data Edit] screen.
 - (b) Display "PRM2" at the position name.
 - (c) Enter the field of vision in the moving direction of the conveyer (mm) in the X coordinate.
 - (d) Enter the workpiece length detected by the vision sensor (length in the moving direction of the conveyer (mm)) in the Y coordinate.
 - (d) Return to the [Command edit] screen.
- 5) Specify a communication line to be connected with the vision sensor.
 - (a) Open the [Command edit] screen.




(b)Display the command step shown in the following


(c) Press [F1] (edit) key and specify the line opened for the robot controller may connect with the vision sensor to the variable "CCOM\$."

example) Open COM3:

(d)Press the [EXE] key and edit is fixed.

- 6) Specify a vision program to be started.
 - In the same way as in step 3), change the vision program name entered after "CPRG\$=" in the program.
- 7) Place a workpiece to be recognized within the area that the vision sensor can recognize.
- 8) Using In-Sight Explorer, place the vision sensor in the online status.
- 9) Using T/B, close the opened "C1" program once and then run the modified "C1" program automatically with the robot controller.

Note) When your controller has no operation panel, use the dedicated external signals corresponding to the following step to operate the robot.

Although the image of the operation panel is the CRnD-700 controller, the operation method is the same in other controllers.

T/B disabled

Controller enabled

Servo ON

Selection of a program number

Display of

a program number

Selection of a program number

Set the T/B [ENABLE] switch to "DISABLE".

Set the controller [MODE] switch to "AUTOMATIC".

Press the [SVO ON] key, the servo will turn ON, and the SVO ON lamp will light.

Press the [CHNG DISP] key and display "PROGRAM NO." on the STATUS NUMBER display.

Press the [UP] or the [DOWN] key and display program name"C1"

Start of automatic operation

Start

Press the [START] key.

After automatic operation, "C1" program automatically stops and the LED of the [STOP] button is turned on. Open "C1" program again with T/B. Press the [F1](FWD) key to display the subsequent operation messages.

- * With this operation, encoder data and workpiece position recognized by the vision sensor are acquired.
- 10) Rotate the conveyer forward and move a workpiece within the vision sensor recognition area into the robot movement range.
- 11) Move the robot to the position where it is able to suction the workpiece.
 - * With this operation, encoder data and robot position are acquired.
- 12) Perform step operation until "End."
 - * With this operation, the robot becomes able to recognize the position of the workpiece recognized by the vision sensor.

(3) Confirmation after operation

Check the values of the following variables using T/B.

Enter the model number for the array number.

• Value of "M_101()": Differences between encoder values when a workpiece is within the vision sensor area and when the workpiece is on the robot side

• Value of "P_102()": Data in the variable "PRM1" (model number/encoder number)

• Value of "P_103()": Data in the variable "PRM2" (recognition field of image view/workpiece size)

• Value of "C_100\$()": COM number

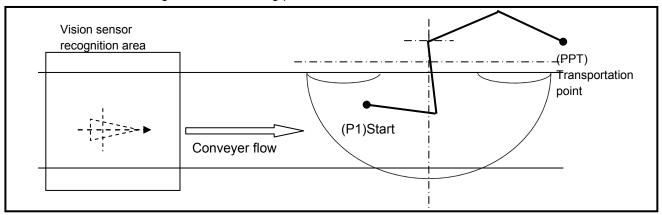
• Value of "C_101\$()": Vision program name

Confirm that each of the above values is entered.

16. Teaching and Setting of Adjustment Variables ("1" Program)

This chapter explains operations required to run "1" program.

* "1" program settings are required for both conveyer tracking and vision tracking.

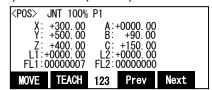

"1" program instructs the robot to follow and grab workpieces recognized by a photoelectronic sensor or vision sensor and transport the workpieces.

The teaching positions required by "1" program are explained below, along with how to set adjustment variables prepared in the program.

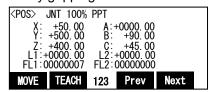
16.1. Teaching

The teaching of "Starting point position (position in which it is waited that workpiece arrives)" and "Transportation destination (position in which the held workpiece is put)" is executed.

For instance, the teaching does the following positions.



Teach the origin position and transportation destination. The following explains how to perform these operations.


- 1) Open "1" program using T/B.
- 2) Open the [Position data Edit] screen.
- 3) Display "P1" in order to set the robot origin position when the system is started.
- 4) Move the robot to the origin position and teach it the position.
- 5) Display "PPT" in order to set the transportation destination position (the location where workpieces are placed).
- 6) Move the robot to the transportation destination and teach it the position.

Confirm whether workpiece can be transported at the position in which the teaching was done.

- 7) Display "P1" at the starting point position on the [Position data Edit] screen. Turn on the servo by gripping the deadman switch.
- 8) Push F1 (MOVE) and move the robot to the position of "P1".

- 9) Move the robot to an arbitrary position (position in which workpiece flows) by the jog operation.
- 10) Display "PPT" at the transportation point position on the [Position data Edit] screen. Turn on the servo by gripping the deadman switch.

11) Move the robot to the position of "PPT" pushing F1 (MOVE).

16.2. Setting of adjustment variables in the program

16.2.1. In the case of downloading the high speed tracking sample program

The following section explains how to set adjustment variables, which are required at transportation, and details about their setting.

Please refer to separate manual "Detailed Explanations of Functions and Operations" for how to set adjustment variables.

Table 16-1 List of adjustment variables in the program (for the high speed tracking)

Variable	Variable				
name	Explanation	Setting example			
PWK	Set the model number.	When you set the model number to 1:			
	X=model number (1 to 10)	(X,Y,Z,A,B,C)=(+1,+0,+0,+0,+0,+0)			
PRI	"1" program and "CM1" program are run simultaneously (multitasking). "1" program moves the robot, and "CM1" program observes the sensor. It is possible to specify which program is processed with a higher priority, rather than performing the same amount of processing at the same time. X = Set the line numbers of "1" program to be performed (1 to 31). Y = Set the line numbers of "CM1" program to be performed (1 to 31).	When you set to run "1" program by one line and run "CM1" program by 10 lines: (X,Y,Z,A,B,C)=(+1,+10,+0,+0,+0,+0)			
PUP1	When the adsorption operation of workpiece, set the offset in the z-axis that the robot works. Offset is the amount of elevation (mm) from the position where workpiece is adsorbed. [*]Since this variable shows the distance in a tool coordinate system, the sign changes depending on a robot model.	When you raise the workpiece 50mm from the adsorption position: (Example) RV series: (X,Y,Z,A,B,C)=(+0,+0,-50,+0,+0,+0) (Example) Other than RV series: (X,Y,Z,A,B,C)=(+0,+0,+50,+0,+0,+0)			
PUP2	When the desorption operation of workpiece, set the offset in the z-axis that the robot works. Offset is the amount of elevation (mm) from the position where workpiece is desorbed. [*]Since this variable shows the distance in a tool coordinate system, the sign changes depending on a robot model.	When you raise the workpiece 70mm from the desorption position: (Example) RV series: (X,Y,Z,A,B,C)=(+0,+0,-70,+0,+0,+0) (Example) Other than RV series: (X,Y,Z,A,B,C)=(+0,+0,+70,+0,+0,+0)			
PDLY1	Set the suction time. X = Suction time (s).	When you set the suction time to 0.5 second: (X,Y,Z,A,B,C)=(+0.5,+0,+0,+0,+0,+0)			
PDLY2	Set the release time. X = Release time (s).	When you set the release time to 0.3 second: (X,Y,Z,A,B,C)=(+0.3,+0,+0,+0,+0,+0)			
POFSET	When the adsorption position shifts, the gap can be corrected. Set the correction value. [*]The direction of the correction is a direction of the hand coordinate system. Please decide the correction value after changing the job mode to "Tool", pushing the [+X] key and the [+Y] key, and confirming the operation of the robot.	When the deviation to +X direction in hand-coordinate system is 2mm, and deviation to -Y direction in hand-coordinate system is 1mm: (X,Y,Z,A,B,C)=(+2,-1,+0,+0,+0,+0)			

16 Teaching and Setting of Adjustment Variables ("1" Program)

Variable name	Explanation	Setting example		
PRNG	Set the range of motion where the robot judges workpiece to be able to follow, and the forced ending distance. (When the workpiece is in the tracking possible area, the tracking is started. But if the robot speed is low, and the conveyer speed is high, the robot follows the workpiece to out of the robot operation area.) X = The start distance of the range in which the robot can follow a workpiece :(mm) Y = The end distance of the range in which the robot can follow a workpiece :(mm) Z = The distance in which follow is canceled.	Refer to Figure 16–1 Diagram of the adjustment variables "PRNG" in the Program (for high speed tracking)]		

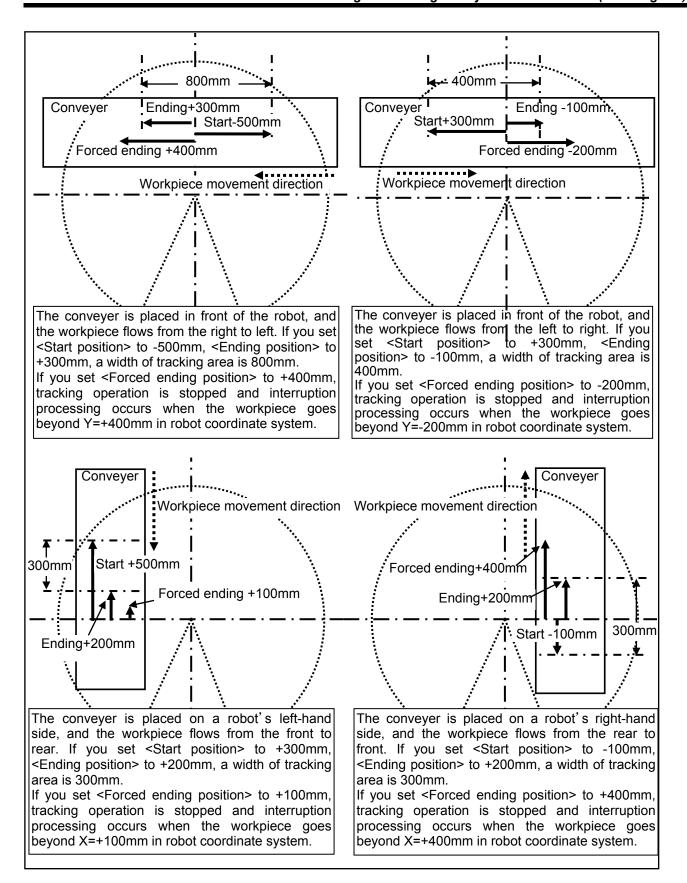


Figure 16-1 Diagram of the adjustment variables "PRNG" in the Program (for high speed tracking)

16.2.2. In the case of downloading the conventional sample program

Table 16–2 List of adjustment variables in the program

	Table 16–2 List of adjustment variables in the program				
Variable name	Explanation	Setting example			
PWK	Set the model number. X = model number (1 to 10)	When you set the model number to 1. (X, Y, Z, A, B, C) =(+1,+0,+0,+0,+0,+0)			
PRI	 "1" program and "CM1" program are run simultaneously (multitasking). "1" program moves the robot, and "CM1" program observes the sensor. It is possible to specify which program is processed with a higher priority, rather than performing the same amount of processing at the same time. X = Set the line numbers of "1" program to be performed (1 to 31). Y = Set the line numbers of "CM1" program to be performed (1 to 31). 	When you set to run "1" program by one line and run "CM1" program by 10 lines: (X, Y, Z, A, B, C) = (+1,+10,+0,+0,+0,+0)			
PUP1	When operating by the adsorption of workpiece, set the height that the robot works. Height sets the amount of elevation (mm) from the position where workpiece is adsorbed. X = Amount of elevation of the position where a robot waits until a workpiece arrives. (mm) Y = Amount of elevation from the workpiece suction position (before suctioning) (mm) Z = Amount of elevation from the workpiece suction position (after suctioning) (mm) * Since the Y and Z coordinates indicate distances in the Z direction in the tool	When the following values are set: Amount of elevation of the position where a robot waits until a workpiece arrives : 50 mm Amount of elevation from the workpiece suction position (before suctioning) : -50 mm Amount of elevation from the workpiece suction position (after suctioning) : -50 mm (X, Y, Z, A, B, C) = (+50,-50,-50,+0,+0,+0)			
	coordinate system, the sign varies depending on the robot model.				
PUP2	When operating in putting workpiece, set the height that the robot works. Height sets the amount of elevation (mm) from the position where workpiece is adsorbed. Y = Amount of elevation from the workpiece release position (before release). (mm) Z = Amount of elevation from the workpiece release position (after release). (mm) *Since these values are distances in the Z direction of the tool coordinate system, the sign varies depending on the robot model.	When the following values are set: Amount of elevation from the workpiece release position (before release) : -50 mm Amount of elevation from the workpiece release position (after release) : -50 mm (X, Y, Z, A, B, C) = (+0,-50,-50,+0,+0,+0)			
PAC1	When operating by the adsorption of workpiece, the acceleration and the deceleration when moving to the position on the workpiece are set. X = The acceleration until moving to the position on the workpiece. (1 to 100) (%) Y = The deceleration until moving to the position on the workpiece. (1 to 100) (%) *The value set by X coordinates and Y coordinates of "PAC*" is used for <acceleration ratio(%)=""> of the Accel instruction and <acceleration ratio(%)="">. The value is reduced when the speed of time when the robot vibrates and the robot is fast.</acceleration></acceleration>	When the following values are set: Acceleration until moving to the position on the workpiece. : 100% Deceleration until moving to the position on the workpiece. : 100% (X, Y, Z, A, B, C) = (+100,+100,+0,+0,+0,+0)			

PAC2	When operating by the adsorption of workpiece, the acceleration and the deceleration when moving to the workpiece suction position are set. X = The acceleration until moving to the workpiece suction position. (1 to 100) (%) Y = The deceleration until moving to the workpiece suction position. (1 to 100) (%) When operating by the adsorption of workpiece, the acceleration and the deceleration when	When the following values are set: Acceleration until moving to the workpiece suction position. : 10% Deceleration until moving to the workpiece suction position. : 20% (X, Y, Z, A, B, C) = (+10,+20,+0,+0,+0,+0) When the following values are set:
	the acceleration and the deceleration when moving toward the position on the workpiece are set. X = The acceleration until moving to the position on the workpiece. (1 to 100) (%) Y = The deceleration until moving to the position on the workpiece. (1 to 100) (%)	Acceleration until moving to the position on the workpiece. : 50% Deceleration until moving to the position on the workpiece. : 80% (X, Y, Z, A, B, C) = (+50, +80, +0, +0, +0, +0)
PAC11	When operating by the release of workpiece, the acceleration and the deceleration when moving to the position on the workpiece are set. X = The acceleration until moving to the position release position. (1 to 100) (%) Y = The deceleration until moving to the position release position. (1 to 100) (%)	When the following values are set: Acceleration until moving to the position on the workpiece : 80% Deceleration until moving to the position on the workpiece : 70% (X, Y, Z, A, B, C) = (+80,+70,+0,+0,+0,+0)
PAC12	When operating by the release of workpiece, the acceleration and the deceleration when moving to the workpiece release position are set. X = The acceleration until moving to the workpiece release position. (1 to 100) (%) Y = The deceleration until moving to the workpiece release position. (1 to 100) (%)	When the following values are set: Acceleration until moving to the workpiece release position. : 5% Deceleration until moving to the workpiece release position. : 10% (X, Y, Z, A, B, C) = (+5,+10,+0,+0,+0,+0)
PAC13	When operating by the release of workpiece, the acceleration and the deceleration when moving toward the position on the workpiece are set. X = The acceleration until moving to the position on the workpiece. (1 to 100) (%) Y = The deceleration until moving to the position on the workpiece. (1 to 100) (%)	When the following values are set: Acceleration until moving to the position on the workpiece. : 100% Deceleration until moving to the position on the workpiece. : 100% (X, Y, Z, A, B, C) = (+100,+100,+0,+0,+0)
PDLY1	Set the suction time. X: Suction time (s).	When setting 0.5 second for the sucking time: (X, Y, Z, A, B, C) = (+0.5,+0,+0,+0,+0,+0)
PDLY2	Set the release time. X: Release time (s).	When setting 0.3 second for the release time: (X, Y, Z, A, B, C) = (+0.3,+0,+0,+0,+0,+0)
POFSET	When the adsorption position shifts, the gap can be corrected. Set the correction value. * The direction of the correction is a direction of the hand coordinate system. Please decide the correction value after changing the job mode to "Tool", pushing the [+X] key and the [+Y] key, and confirming the operation of the robot.	

PTN	direction wh	ition of the rob nere the workp ollowing value		When a conveyer is placed in front of the robot and the workpiece moves from the left to right: (When in view of the robot) (X, Y, Z, A, B, C) = (+1,+0,+0,+0,+0,+0)
	Setting	Conveyer	Conveyer	The valetienship between DBNC and
	value	position	direction	The relationship between PRNG and
	1	Front	Right to Left	PTN is shown in "Figure 16–4 Diagram of Relationship between Adjustment
	2	Front	Left to Right	Variables "PRNG" and "PTN" in the
	3	Left side	Right to Left	Program".
	4	Left	Left to Right	1 10g.u
	5	Right side	Right to Left	
	6	Right side	Left to Right	
PRNG	Set range of motion where the robot judges workpiece to be able to follow. X = The start distance of the range in which the robot can follow a workpiece :(mm) Y = The end distance of the range in which the robot can follow a workpiece :(mm) Z = The distance in which follow is canceled :(mm)			The relationship between PRNG and PTN is shown in "Figure 16–4 Diagram of Relationship between Adjustment Variables "PRNG" and "PTN" in the Program".
P3HR	(For RH-3S*HR) The singular point neighborhood can be moved in RH-3S*HR at the joint operation.			(X, Y, Z, A, B, C) = (+800,+1500,+60,+0,+0,+0)
	However, when the tracking operation passes over the singular point neighborhood for straight line operation, the J1 axis accelerates rapidly and speed limit (H213x error :x= axis number) is generated. Then, the singular point neighborhood is limited to the tracking by setting this parameter. X = The Time in which the robot can move over the workpiece :(ms) Y = The Maximal speed for J3 axis :(mm/s) Z = The radius of area made singular point neighborhood :(mm)			

<Restrictions of RH-3S*HR when using the tracking function>

The RH-3S*HR cannot pass over the singular adjustment point while the tracking operation.

It is necessary to avoid singular adjustment point and place the conveyer.

As shown in Figure 16–2 or Figure 16–3, If the conveyer is installed at right under the robot, the operation range of tracking must been setting out of range of singular adjustment point.

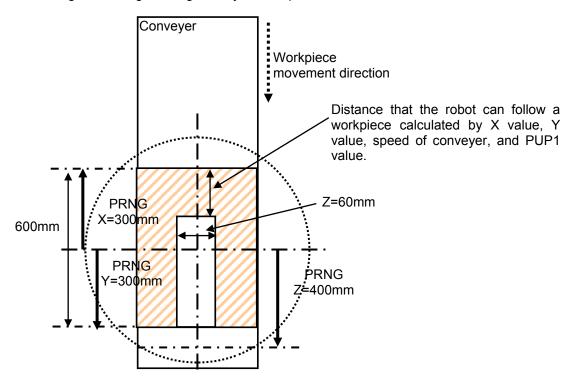


Figure 16-2 Diagram of Relationship between Adjustment Variables "PRNG" and "P3HR" in the Program

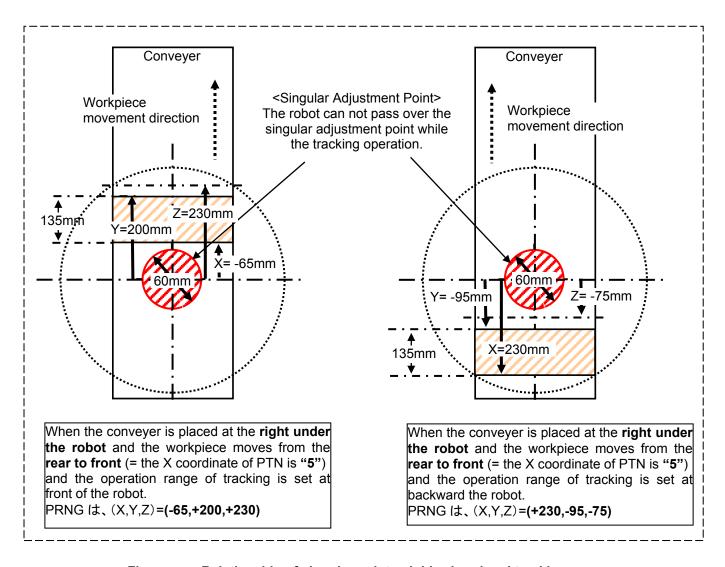


Figure 16-3 Relationship of singular point neighborhood and tracking area

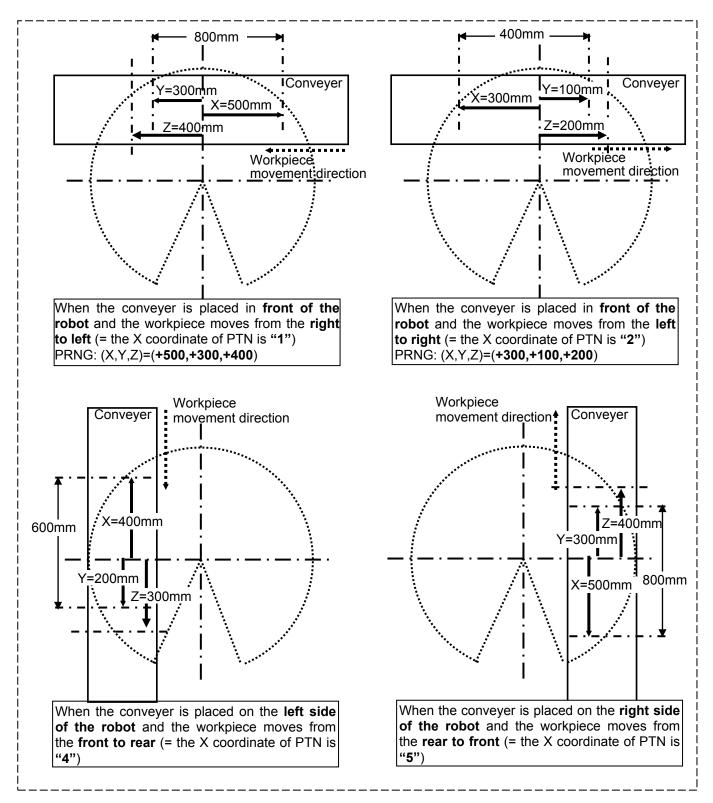


Figure 16-4 Diagram of Relationship between Adjustment Variables "PRNG" and "PTN" in the Program

17. Sensor Monitoring Program ("CM1" Program)

This chapter provides an overview of "CM1" program, which is run in parallel, when "1" program is run. Different types of "CM1" programs are used for conveyer tracking and vision tracking, and different processing is performed for them. These programs are explained in the following.

17.1. Program for Conveyer Tracking

"CM1" program calculates the workpiece coordinates in the robot coordinate system at the moment where a photoelectronic sensor is activated based on the following data acquired with "A1" program and "C1" program, and then stores the coordinates in the tracking buffer(Storage area to preserve data temporarily). <Acquired data>

- Amount of robot movement per encoder pulse (P EncDlt)
- Difference between the encoder value when a photoelectronic sensor is activated and the encoder value when teaching is performed on a robot
- Position at which the robot is taught to grab a workpiece

17.2. Program for Vision Tracking

"CM1" program converts the workpiece position recognized by the vision sensor to the corresponding coordinates in the robot coordinate system based on the following data acquired with "A1" program, "B1" program and "C1" program, and then stores the coordinates in the tracking buffer. <Acquired data>

- Amount of robot movement per encoder pulse(P EncDlt)
- Difference between the encoder value when a marking sticker is on the vision sensor side and the encoder value when the marking sticker is on the robot side
- Workpiece position recognized by the vision sensor
- Difference between the encoder value when the vision sensor recognizes a workpiece and the encoder value when teaching on the workpiece position was performed on the robot
- Position at which the robot is taught to grab a workpiece

The timing at which the vision sensor acquires images is calculated such that images of the same workpiece are taken at least once or up to twice by the following data specified in "C1" program. <Data specified in "C1" program>

- Field of view in the conveyer movement direction
- Length of workpieces detected by a vision sensor (length in the conveyer movement direction)

"1" program follows workpieces on a conveyer based on the workpiece information stored in the tracking buffer in "C" program.

"C" program performs processing until the recognized workpiece position is stored in the tracking buffer. The workpiece information stored in the tracking buffer is read by "1" program and the robot follows workpieces on the conveyer based on the information.

18. Automatic Operation

This chapter explains how to prepare the robot before starting the system.

18.1. Preparation

- 1) Check that there is no interfering object within the robot movement range.
- 2) Prepare to run the desired program.

Note) When your controller has no operation panel, use the dedicated external signals corresponding to the following step to operate the robot.

Although the image of the operation panel is the robot controller, the operation method is the same in other controllers.

T/B disabled

Controller enabled

Servo ON

Selection of a program number

Display of a program number

Selection of a program number

Set the T/B [ENABLE] switch to "DISABLE".

Set the controller [MODE] switch to "AUTOMATIC".

Press the [SVO ON] key, the servo will turn ON, and the SVO ON lamp will light.

Press the [CHNG DISP] key and display "PROGRAM NO." on the STATUS NUMBER display.

Press the [UP] or the [DOWN] key and display program name"1."

18.2. Execution

- 1)Be sure that you are ready to press the [Emergency Stop] button of T/B in the case of any unexpected movement of the robot.
- 2)Run the program from the operation panel of the robot controller.
- Note) The robot of the specification without the operation panel of the controller operates by the external signal corresponding to the following step.

Although the image of the operation panel is the robot controller, the operation method is the same in other controllers.

Start of automatic operation

Start

Press the [START] key.

18.3. At error occurrence

If the robot moves erroneously, refer to separate manual "Troubleshooting".

18.4. Ending

The robot does not move unless a sensor that monitors workpieces is activated or a vision sensor recognizes a workpiece. Stop the flow of workpieces from the upstream and press the [STOP] button of the operation panel of the robot controller. Confirm that the [STOP] lamp is turned on.

Note) The robot of the specification without the operation panel of the controller is stopped by the external signal.

18.5. Adjusting method

You can confirm the follow operation by automatic driving.

Refer to "Maintenance of robot program" in Chapter 19 when you want to adjust it.

And, refer to "In such a case (improvement example)" in Chapter 20.3.

19. Maintenance of robot program

This]chapter explains information required when maintaining the sample programs (robot program language MELFA-BASIC V and dedicated input/output signals).

19.1. MELFA-BASIC V Instructions

The lists of instructions, status variables and functions related to tracking operation are shown below. Please refer to the separate manual "Detailed Explanations of Functions and Operations" for further information about MELFA-BASIC V.

19.1.1. List of Instructions

Table 19-1 List of Instructions

Instruction name	Function	
TrBase	Specify the workpiece coordinate origin of teaching data and tracking external encoder logic number.	
TrClr	Clear the tracking data buffer.	
Trk	Declare start and end of the tracking mode.	
TrOut	Output signals from a general-purpose output and read the encoder values.	
TrRd	Read workpiece data from the tracking data buffer.	
TrWrt	Write workpiece data in the tracking data buffer.	
TrkChk	Execute the processing depending on the state of workpiece corresponding to <condition number=""> specified.</condition>	
TrkWait	Wait until workpiece corresponding to <condition number=""> specified enters to the tracking area.</condition>	
TrkMv	Execute the next processing. Validate specified interruption, Start tracking, Move to the tracking upper position by Joint interpolation movement.	

19.1.2. List of Robot Status Variables

Table 19-2 List of Robot Status Variables

Variable name	Number of arrays	Function	Attribute (*1)	Data type
M_Enc	number of encoders 1 to 8	External encoder data External encoder data can be rewritten. If this state variable does not set parameter "TRMODE" to "1", the value becomes "0".	R/W	Double-precisio n real number
M_EncL	Number of encoder 1 to 8	 The stored encoder data Possible to use from R1 and S1 0 always returns in S1. 	R/W	Double-precisio n real number
P_EncDlt	number of encoders 1 to 8	Amount of robot movement per encoder pulse *This state variable is made by sample "A1" program.	R/W	Position
M_Trbfct	buffer No. 1 to The first argument of parameter [TRBUF]	Number of data items stored in the tracking buffer	R	Integer
P_CvSpd	number of encoders 1 to 8	Conveyer speed (mm, rad/sec)	R	Position
M_EncMax	number of encoders 1 to 8	The maximum value of external encoder data	R	Double-precisio n real number
M_EncMin	number of encoders 1 to 8	The minimum value of external encoder data	R	Double-precisio n real number
M_EncSpd	number of encoders 1 to 8	External encoder speed(Unit: pulse/sec)	R	Single-precision real number
M_TrkCq	mechanism No. 1 to 3	Tracking operation status of specified mechanism 1: Tracking 0: Not tracking	R	Integer
M_TrkBuf	Condition Number 1 to 8.	Buffer Number	R/W	Integer
M_TrkStart	Condition Number 1 to 8.	Tracking Starting Distance	R/W	Single-precision real number

19 Maintenance of robot program

Variable name	Number of arrays	Function	Attribute (*1)	Data type
M_TrkEnd	Condition Number 1 to 8.	Tracking Ending Distance	R/W	Single-precision real number
M_TrkStop	Condition Number 1 to 8.	Tracking Forced Ending Distance	RW	Single-precision real number
M_TrkTime	Condition Number 1 to 8.	Timeout period of TrkWait command	RW	Single-precision real number
P_TrkBase	Condition Number 1 to 8.	Tracking Base coordinates	R/W	Position
P_TrkWork	Condition Number 1 to 8.	Workpiece position when the sensor taken out from the tracking buffer reacts.	R	Position
M_TrkEnc	Condition Number 1 to 8.	Workpiece Encoder when the sensor taken out from the tracking buffer reacts.	R	Long-precision real number
M_TrkKind	Condition Number 1 to 8.	Model number of the workpiece taken out from the tracking buffer.	R	Integer
M_TrkEncNo	Condition Number 1 to 8.	Encoder number taken out from the tracking buffer.	R	Integer
P_TrkTarget	-	The workpiece coordinate where the robot is following	R	Position
M_TrkChk	Condition Number 1 to 8.	TrkChk result	R	Integer
M_TrkMv	Condition Number 1 to 8.	Setting mode to "TrkMv"	RW	Integer
P_TrkPAcl	Condition Number 1 to 8.	Parameter [TRPACL] value	R/W	Position
P_TrkPDcl	Condition Number 1 to 8.	Parameter [TRPDCL] value	R/W	Position
M_Hnd	Hand Number 1 to 8	Hand open/close instruction and Hand open/close states. XUsed when you open or close the hand during "WthIf".	R/W	Integer

(*1)R: Only reading is possible.

R/W: Both reading and writing are possible.

19.1.3. List of Functions

Table 19-3 List of Functions

Function name	Function	Result
Poscq(<position>)</position>	Check whether the specified position is within the movement range. 1: Within the movement range 0: Outside the movement range	Integer
TrWcur(<encoder number="">, <position>,<encoder value="">)</encoder></position></encoder>	Obtain the current position of a workpiece. <number encoders="" of=""> 1 to 8</number>	Position
TrPos(<position>)</position>	Acquire the coordinate position of a workpiece being tracked. Trk On P0,P1,1,M1# PC2=TrPos(P2) PC2 above is obtained in the following manner. PC1=P1+P_EncDlt*(M_Enc-M1#) ' The current position of P1 PC2=PC1*(P_Zero/P0*P2)	Position

19.1.4. Explanation of Tracking Operation Instructions

The instructions related to tracking operations are explained in details below.

The explanations of instructions are given using the following format.

[Function] : Describes the function of an instruction.

: Describes the entry method of arguments of an instruction. [Format]

< > indicate an argument.

[] indicates that entry can be omitted.

☐ indicate that space is required.

: Describes meaning, range and so on of an argument. [Term]

: Presents statement examples. [Example]

[Explanation]: Provides detailed function descriptions and precautions.

TrBase (tracking base)

[Function]

Specify the workpiece coordinate system origin during the teaching operation and the encoder logic number of an external encoder used in tracking operation.

[Format]

TrBase □ <Reference position data> [, <Encoder logic number>]

[Terminology]

< Reference position data > (can be omitted):

Specify the origin position of position data to be followed during the tracking mode.

<Encoder logic number> (can be omitted):

This is a logic number indicating the external encoder that performs tracking operation.

1 is set when this argument is omitted.

Setting range: 1 to 8

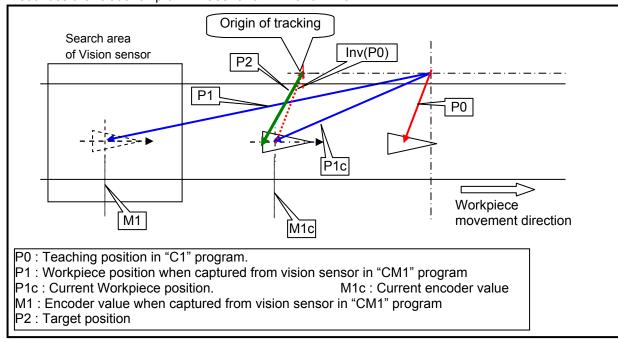
[Reference program]

1 TrBase P0 'Specify the workpiece coordinate origin at the teaching position.

2 TrRd P1,M1,MKIND 'Read the workpiece position data from the data buffer.

3 Trk On,P1,M1 'Start tracking of a workpiece whose position measured by a sensor is P1 and

encoder value at that time is M1.


4 Mvs P2 'Setting the current position of P1 as P1c, make the robot operate while following

workpieces with the target position of P1c*P_Zero/P0*P2.

5 HClose 1 'Close hand 1.

6 Trk Off 'End the tracking operation.

- Specify the workpiece coordinate system origin during the teaching operation and the logic number of an external encoder used in tracking operation.
- If an encoder logic number is omitted, the previously specified value 1 is set.
- The reference position data and encoder number are set to their initial values until they are specified by the TrBase instruction or the Trk On instruction. The initial value is P_Zero for the reference position data and 1 for the encoder number.
- Describes the relationship of "TrBase" and "Trk" and "Mvs P2".

TrClr (tracking data clear)

[Function]

Clear the tracking data buffer.

[Format]

TrClr □ [<Buffer number>]

[Terminology]

<Buffer number> (can be omitted):

Specify the number of a general-purpose output to be output. Setting range: 1 to 4 (The first argument of parameter "TRBUF")

[Reference program]

1 TrClr 1

' Clear the tracking data buffer No. 1.

2 *LOOP

3 If M In(8)=0 Then GoTo *LOOP

' Jump to *LOOP if input signal No. 8, to which a photoelectronic

sensor is connected, is OFF.

4 M1#=M_Enc(1)

' Acquire the data of encoder number 1 at the time when input

signal No. 8 is turned on and store it in M1#.

5 TrWrt P1, M1#, MK

'Write workpiece position data P1, encoder value M1# at the time an image is acquired and model number MK into the buffer.

- Clear information stored in specified tracking buffer (1 to 4).
- Execute this instruction when initializing a tracking program.

Trk (tracking function)

[Function]

After "Trk On" is executed, the robot goes into the tracking mode and operates while following the conveyer operation until "Trk Off" is executed.

[Format]

Trk \square On[,<Measurement position data>[,[<Encoder data>][,[<Reference position data>][,[<Encoder logic number>]]]]
Trk \square Off

[Terminology]

<Measurement position data> (can be omitted):

Specify the workpiece position measured by a sensor.

< Encoder data > (can be omitted):

Specify a value of an encoder installed on a conveyer when a workpiece is measured.

< Reference position data > (can be omitted):

Specify the origin position of position data to be followed during the tracking mode.

If this argument is omitted, the robot follows the conveyer using the position specified by the "TrBase" instruction as the origin.

The initial value is "PZERO".

<Encoder logic number> (can be omitted):

This is a logic number indicating the external encoder that performs tracking operation.

1 is set when this argument is omitted.

Setting range: 1 to 8

[Reference program]

1 TrBase P0 'Specify the workpiece coordinate origin at the teaching position.

2 TrRd P1,M1,MKIND 3 Trk On,P1,M1 ' Read the workpiece position data from the data buffer.

'Start tracking of a workpiece whose position measured by a sensor is P1 and

encoder value at that time is M1.

4 Mvs P2

'Setting the current position of P1 as P1c, make the robot operate while following workpieces with the target position of P1c*P_Zero/P0*P2 (P2 indicates the workpiece grabbing position).

1 Olana hand 1

5 HClose 1

' Close hand 1.

6 Trk Off 'End the tracking operation.

[Explanation]

• Specify the position relative to the position data specified by "Trk On" as show in line 20 of the statement example for the target position of the movement instruction during tracking operation.

ACAUTION

A target position that moves in the tracking is calculated based on the workpiece position when Trk On.

The H2802 error might occur when a target position doesn't exist in the robot range at the time of Trk On.

Please execute Trk Off before the movement to the target position when the error occurs. And, please execute Trk On again.

• "P_Zero/P0" in "P1c*P_Zero/P0*P2" in [Example] can be replaced with INV(P0).

CAUTION •S/W Ver.R1 or later (SQ series) ,S1 or later (SD series), CR750/CR751 series.

When HIt command is executed during tracking movement, tracking movement will be stopped (an equivalent for the Trk Off command) and execution of the program will be interrupted. In use of the multi-mechanism, tracking movement is stopped to the robot of the mechanism number got by the GetM command. When you continue tracking movement by the restart (continuation), please create the program to execute the Trk On command.

•S/W Ver. before R1 (SQ series), before S1 (SD series)

When HIt command is executed during tracking movement, execution of the program will stop, but continue the conveyor tracking movement. When you stop tracking movement, please execute the Trk Off command before executing HIt command.

TrOut (reading tracking output signal and encoder value)

[Function]

Read a tracking output value specified by a general-purpose output and read the value of an external encoder synchronously with the output.

[Format]

```
TrOut □ <Output number>, <Encoder 1 value read variable> [ , [<Encoder 2 value read variable>]
                         [, [<Encoder 3 value read variable>] [, [<Encoder 4 value read variable>]
                         [, [<Encoder 5 value read variable>] [, [<Encoder 6 value read variable>]
                         [, [<Encoder 7 value read variable>] [, [<Encoder 8 value read variable>] ]]]]]]]]
```

[Terminology]

<Output number> (cannot be omitted):

Specify the number of a general-purpose output to be output.

<Encoder n value read variable> (can be omitted):

Specify a double-precision value variable in which read values of an external encoder are stored. Note) n is a value in the range from 1 to 8.

[Reference program]

```
1 *LOOP1
```

2 If M In(10) <> 1 GoTo *LOOP1 ' Check whether a photoelectronic sensor is activated.

3 TrOut 20, M1#, M2#

'Output from general-purpose output No. 20 and store the value of external encoder No.1 in M1#, and store the value of external encoder No.2 in M2# synchronously with the output.

4 *LOOP2

5 If M In(21) <> 1 GoTo *LOOP2 ' Wait until the signal (general-purpose input No.21) which shows

acquiring image from the vision sensor is turned on.

6 M Out(20)=0

Turn off the No.20 general-purpose output.

- This instruction is used when triggering the vision sensor that calculates positions of workpieces to be tracked.
- It is possible to know the position where workpiece images are acquired by obtaining the external encoder values synchronously with the output.
- The general-purpose output signal specified <Output number> is maintained. Therefore, please turn off the signal by using the M Out state variable when you confirm acquiring of the vision sensor.

TrRd (reading tracking data)

[Function]

Read position data for tracking operation, encoder data and so on from the data buffer.

[Format]

TrRd □ <Position data> [, <Encoder data>] [, [<Model number>] [, [<Buffer number>] [, <Encoder number>]]]]

[Terminology]

<Position data> (cannot be omitted):

Specify a variable that contains workpiece positions read from the buffer.

< Encoder data > (can be omitted):

Specify a variable that contains encoder values read from the buffer.

<Model number> (can be omitted):

Specify a variable that contains model numbers read from the buffer.

<Buffer number> (can be omitted):

Specify a number of a buffer from which data is read.

1 is set if the argument is omitted.

Setting range: 1 to 4(The first argument of parameter [TRBUF])

<Encoder number> (can be omitted):

Specify a variable that contains values of external encoder numbers read from the buffer.

[Reference program]

(1) Tracking operation program

1 TrBase P0 'Specify the workpiece coordinate origin at the teaching position.

2 TrRd P1,M1,MK 'Read the workpiece position data from the data buffer.

3 Trk On,P1,M1 'Start tracking of a workpiece whose measured position is P1 and encoder value

at the time of measurement is M1.

4 Mvs P2 'Setting the current position of P1 as P1c, make the robot operate while following

workpieces with the target position of P1c*P_Zero/P0*P2.

5 HClose 1 'Close hand 1.

6 Trk Off 'End the tracking operation.

(2) Sensor data reception program

1 *LOOP

photoelectronic sensor is connected, is OFF.

3 M1#=M_Enc(1) 'Acquire data of encoder number 1 at the time when input

signal No. 8 is turned on and store it in M1#.

4 TrWrt P1, M1#,MK 'Write workpiece position data P1, encoder value M1# at the time an image is acquired and model number MK in the buffer.

- Read the workpiece position (robot coordinates), encoder value, model number and encoder number stored by the TrWrt instruction from the specified buffer.
- If the TrRd instruction is executed when no data is stored in the specified buffer, Error 2540(There is no read data) occurs.

TrWrt (writing tracking data)

[Function]

Write position data for tracking operation, encoder data and so on in the data buffer.

TrWrt □ <Position data> [, <Encoder data>] [, [<Model number>] [, [<Buffer number>] [, <Encoder number>] [

[Terminology]

<Position data> (cannot be omitted):

Specify the workpiece position measured by a sensor.

<Encoder data> (can be omitted):

Specify the value of an encoder mounted on a conveyer at the time a workpiece is measured.

The encoder value acquired in the M_Enc() state variable and the TrOut instruction is specified usually.

<Model number> (can be omitted):

Specify the model number of workpieces.

Setting range: 1 to 65535 <Buffer number> (can be omitted): Specify a data buffer number. 1 is set if the argument is omitted.

Setting range: 1 to 4(The first argument of parameter [TRBUF])

<Encoder number> (can be omitted):

Specify an external encoder number.

The same number as the buffer number is set if the argument is omitted.

Setting range: 1 to 8

[Reference program]

(1) Tracking operation program

1 TrBase P0 'Specify the workpiece coordinate origin at the teaching position.

2 TrRd P1,M1,MKIND 'Read the workpiece position data from the data buffer.

3 Trk On,P1,M1 'Start tracking of a workpiece whose measured position is P1 and encoder

value at the time of measurement is M1.

'Setting the current position of P1 as P1c, make the robot operate while 4 Mvs P2

following workpieces with the target position of P1c*P Zero/P0*P2.

5 HClose 1 Close hand 1.

6 Trk Off ' End the tracking operation.

(2) Sensor data reception program

1 *LOOP

2 If M In(8)=0 Then GoTo *LOOP ' Jump to +LOOP if input signal No. 8, to which a

photoelectronic sensor is connected, is OFF.

3 M1#=M Enc(1) ' Acquire data of encoder number 1 at the time when input

signal No. 8 is turned on and store it in M1#.

4 TrWrt P1, M1#, MK 'Write workpiece position data P1, encoder value M1# at the time an image is acquired and model number MK in the buffer.

- This function stores the workpiece position (robot coordinates) at the time when a sensor recognizes a workpiece, encoder value, model number and encoder number in the specified buffer.
- · Arguments other than the workpiece position (robot coordinates) can be omitted. If any of the arguments are omitted, the robot operates while following changes of position data.
- Workpieces within the same workpiece judgment distance set in the "TRCWDST" parameter are regarded as the same workpiece. Even if the data is written twice in the buffer with the TrWrt instruction. only one data set is stored in the buffer. For this reason, data for one workpiece only is read with the TrRd instruction even if images of the same workpiece are acquired twice with a vision sensor.

TrkChk (Tracking check function)

[Function]

Execute the processing depending on the state of workpiece corresponding to <Condition number> specified.

[Format]

TrkChk □ <Condition number>, <Starting position>, [<Waiting position>], <Branch destination>

[Terminology]

<Condition number [Integer]>

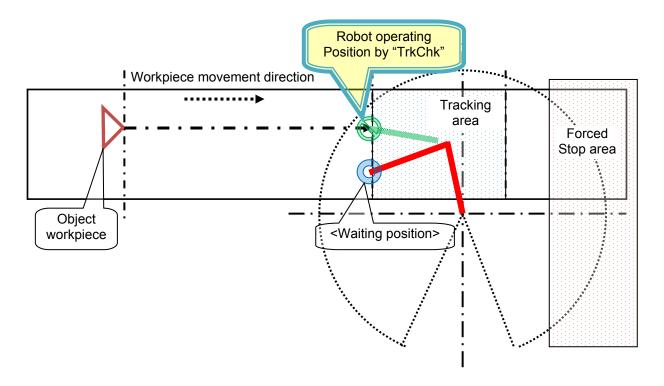
Specify the condition number correspond to tracking.

Range: 1 - 8

<Starting position [Position]>

When there is no workpiece in tracking buffer(no workpiece on the conveyor), specify the starting position to which robot moves at the beginning of the system. Mainly, specify the starting position as the system to which robot moves at the beginning of the system.

<Waiting position [Position]> : (can be omitted.)


Specify the waiting position until workpiece enters a tracking possible area.

In the case of vision tracking, a robot moves to the position which has grasped the position through which workpiece flows and changed the value of X and C coordinates, or Y and C coordinates from the value of X and Y of a state variable "P EncDlt" to the specified <Waiting position>.

(*)It is effective for X or Y coordinates in "P_EncDIt", it does not support Z-coordinates.

If you omit <Waiting position>, even if workpiece flows, the robot does not move.

By omitting <Waiting position>, you can move to the fixed position. And you can move to the arranged position by using state variable "P TrkTarget".

<Branch destination [label]>

Specify the label name that jumps when specified workpiece can be followed.

[Reference program1]

*LBFCHK

.

TrkChk 1, P1, PWAIT, *LTRST 'No workpiece->P1/ Wait for the workpiece->PWAIT/

Tracking possible->Jump to "LTRST".

If M_TrkChk(1) <= 1 Then GoTo *LBFCHK '0:No workpiece / 1: Workpiece passed over

->"LBFCHK".

TrkWait *LBFCHK 'Wait for the workpiece / Jump to "LBFCHK" at the timeout.

[Reference program 2] : Omission pattern of <Waiting position> and the pattern of move to arbitrary

waiting position

*LBFCHK

.

TrkChk 1, P1, , *LTRST 'No workpiece->P1/ No processing/

Tracking possible->Jump to "LBFCHK".

If M_TrkChk(1) <= 1 Then GoTo *LBFCHK

'0:No workpiece / 1: Workpiece passed

over->"LBFCHK".

PWAIT = P1 'Base on P1.

PWAIT.X = P_TrkTarget.X 'Adjust X coordinates to the same position as workpiece.

PWAIT.C = P_TrkTarget.C 'Adjust C coordinates to the same angle as workpiece.

Mov PWAIT 'Move to PWAIT.

TrkWait *LBFCHK 'Wait for the workpiece / Jump to "LBFCHK" at the timeout.

[Explanation]

(1) Workpiece information is taken out of the tracking buffer of state variable "M_TrkBuf" corresponding to <condition number >.The position of the workpiece is checked by using the range specified for robot state variable "M TrkStart" and "M TrkEnd".

(*)It is effective for X or Y coordinates, it does not support for the state change of the workpiece in else coordinates systems.

The checked result is stored in robot state variable "M_TrkChk".

(2) Workpiece information which is taken out of the specified tracking buffer is in state variable "P TrkWork",

"M_TrkEnc", "M_TrkKind" and "M_TrkEncNo" when "TrkChk" is executed.

(3) Execute the following processings according to the execution result of this command.

M_TrkChk value	Execution result	Processing	Robot operation
0	No workpiece in the tracking buffer.	Execute the process that move to specified <starting position="">.</starting>	Robot move from current position to <starting position="">.</starting>
1	There is workpiece information in the tracking buffer. And the workpiece has passed the area specified by state variable "M_TrkStart" and "M_TrkEnd".	No processing.	Robot does not move.
2	There is workpiece information in the tracking buffer. And the workpiece exists in front of the area specified by state variable "M_TrkStart" and "M_TrkEnd".	Confirm the workpiece position. Change the position data of specified <waiting position="">. Move to the position.</waiting>	Robot moves from the current position to the position to which the workpiece flows.
3	There is workpiece information in the tracking buffer. And the workpiece exists in the area specified by state variable "M_TrkStart" and "M_TrkEnd".	Jump to the specified <branch destination="">.</branch>	Robot does not move.

(4) If state variable "M_TrkBuf" is not specified when "TrkChk" is executed, buffer number is assumed to be

19 Maintenance of robot program

"1".

- (5) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110_99000 (Argument value range over) error to occur.
- (6) If you appoint the label which does not exist as "Branch destination", error 3600_0000 (Jump destination does not exist) occurs.

TrkWait (Tracking wait function)

Wait until workpiece correspond to appointed <Condition number> enters to the tracking area.

[Format]

TrkWait □ < Branch destination >

[Terminology]

<Branch destination [label]> :(can be omitted.)

Even if the time specified as the state variable "M TrkTime" passes, when the specified work piece does not go into tracking area, specify the label name to jump.

If < Branch destination > is omitted, the timeout does not occur, and workpiece information is written into the tracking buffer by "TrWrt", waits until the workpiece enters to the tracking possible area.

[Reference program]

M TrkTime(1) = 30

'The timeout period is 30 seconds.

TrkChk 1, P1, PWAIT, *LTRST

'No workpiece->P1/ Wait for the workpiece->PWAIT/ Tracking possible->Jump to "LTRST".

If M TrkChk(1) <= 1 Then GoTo *LBFCHK

'0:No workpiece / 1: Workpiece passed

over->"LBFCHK". TrkWait *LBFCHK

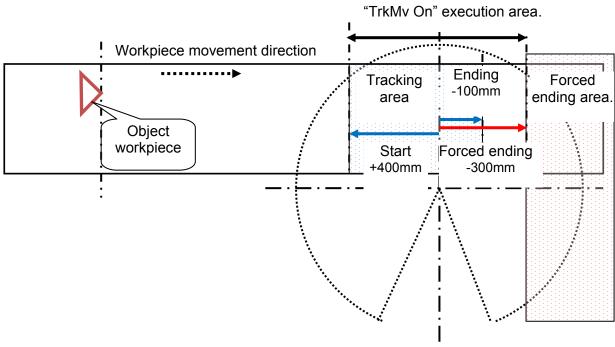
' Wait for the workpiece / Jump to

"LBFCHK" at the timeout.

- (1) Take workpiece information out of "TrkChk", wait until the workpiece enters to the range specified for state variable "M TrkStart" and "M TrkEnd".
- (2) When work piece passes away by discontinuation etc., the following work piece information is taken out from a tracking buffer, and it waits until the work piece goes into the range specified as a state variable "M TrkStart" and "M TrkEnd."
- (3) If specified workpiece does not enter to the tracking area when the time specified for state variable "M_TrkTime" is exceeded at waiting time, jump to <Branch destination>.
- (4) When robot state variable "M_TrkBuf" is not executed, the buffer number is assumed to be "1".
- (5) If <Branch destination> is omitted or state "M_TrkTime" is "0.00", the timeout does not occur, and workpiece information is written in into the tracking buffer by "TrWrt", waits until the workpiece enters to the tracking possible area.
- (6) If you appoint the label which does not exist as <Branch destination>, error 3600 00000 (Jump destination does not exist) occurs.

TrkMv (Tracking movement function)

[Function]


Execute the next processing. Validate specified interruption, Start tracking, Move to the tracking upper position by Joint interpolation movement.

[Format]

TrkMv □ On , <Tracking upper position> [, <Interrupt number> , <Branch destination>]
TrkMv □ Off

For example, expression by conventional robot program is the following.

TrkMv	PGETUP = P_TrkBase * (0,0,+25,0,0,0)	TrkMv Off
	•••	
	TrkMv On, PGETUP, 1, *SAct	
Conventional	Def Act 1, P_TrkTarget.Y < M_TrkStop(1) GoTo *SAct	Act 1 = 0
command	Act 1 = 1	Trk Off
	Trk On,P_TrkWork,M_TrkEnc,P_TrkBase,M_TrkEncNo	
	Mov PGETUP	
Explanation	When the workpiece current position("P_TrkTarget")	Stop the interrupt monitoring
	enters to the forced ending area specified by	started by "TrkMv on", end
	"M_TrkStop", start the interruption processing that	tracking.
	jumps to *SAct".	_
	And start tracking, move to the tracking upper position.	

[Terminology]

<Tracking upper position [position]>

Specify the tracking upper position to follow. (Example: PGT * PGUP1)

<Interrupt number [Integer]> : (can be omitted.)

Specify the interrupt number checks the following.

•When tracking, does the workpiece reach <Forced Ending Distance > specified for robot state variable $M_TrkStop()$?

Range: 1 – 8

<Branch Destination [Label]> :(can be omitted.)

Specify the jumping label name when specified workpiece reach <Forced Ending Distance >.

```
[Reference program]
    M_TrkBuf(1) = 1
                             ' <Buffer number> is "1".
    M TrkStart(1) = 300
                             ' <Starting Distance> is "300".
    M_TrkEnd(1) = 100
                             ' < Ending Distance > is "100".
                             ' < Forced Ending Distance > is "-200".
    M TrkStop(1) = -200
                             'PTBASE variable is P 100(1) variable.
    PTBASE=P 100(1)
    PGT=PTBASE
                            ' PGT variable is PTBASE variable.
    P TrkBase(1) = PTBASE 'P TrkBase(1) variable is PTBASE variable.
    '/// Tracking buffer check ///
    *LBFCHK
    TrkChk 1, P1, PWAIT, *LTRST
                                              'No workpiece->P1/ Wait for the workpiece->PWAIT/
                                              Tracking possible->Jump to "LTRST".
    If M TrkChk(1) <= 1 Then GoTo *LBFCHK
                                              '0:No workpiece / 1: Workpiece passed over->"LBFCHK".
    TrkWait *LBFCHK
                                              'Wait for the workpiece / Jump to "LBFCHK" at the timeout.
    '/// Start tracking operation ///
    *LTRST
    TrkMv On, PGTUP, 1, *S91STOP
                                              'Start the interrupt check->Trk On->Move to the tracking upper
                                              position / In the case of exceeding the distance specified by
                                              "M TrkStop"-Trk Off→Jump to "S91STOP"
    adsorption / Release / assembly etc.
    TrkMv Off
                                              'Stop the interrupt check -> Trk Off
```

[Explanation]

- (1) In the case of "TrkMv On", if the workpiece position exceed the distance specified by "M_TrkStop", execute the interrupt processing that jump to label specified for <Branch destination> by using <Interrupt number>.
- (2) After the starting of the above interrupt monitoring, start tracking on upper position.
- (3) In the case of "TrkMv Off", stop the interrupt monitoring specified in "TrkMv On", stop tracking.
- (4) <Position data>, <Encoder data>, <Reference position data>, <Encoder number> which is necessary for conventional "Trk On" uses the data in the tracking buffer correspond to <Condition number> specified by "TrkChk" (Buffer number specified by state variable "M_Trkbuf") and the data specified by state variable "P TrkBase".
- (5) The data in the tracking buffer is confirmed by state variable "P_TrkWork", "M_TrkEnc", "M_TrkKind" and "M_TrkEncNo".
- (6) When there is no work piece in back from the starting position of tracking area and this command is executed, L2580 (Workpiece isn't in tracking area) error occurs.
- (7) If you omit <Interrupt number> and <Branch destination>, the interrupt processing does not become effective. But you can specify another interrupt processing by using "Def MoTrg" and "Def Act".
- (8) If you appoint the label which does not exist as "Branch destination", error 3600 00000(Jump destination does not exist) occurs.

```
[Reference program using "Def MoTrg"]
    Def MoTrg 1, ((P_Fbc.X >= 300) AND (P_Fbc.Y >= 500))
    Def Act 1, M_MoTrg(1) = 1 Goto *S91STOP
    '/// Tracking buffer check ///
    *LBFCHK
    TrkChk 1, P1, PWAIT, *LTRST
                                       'No workpiece->P1/ Wait for the workpiece->PWAIT/
                                                      Tracking possible-> Jump to "LBFCHK".
    If M TrkChk(1) <= 1 Then Goto *LBFCHK
                                                 'No workpiece/Workpiece passed over-> *LBFCHK
    TrkWait *LBFCHK
                                           'Wait the workpiece / Jump to "LBFCHK" at the timeout.
    '/// Start tracking ///
    *LTRST
    Act 1 = 1
    SetMoTrg 1
    TrkMv On, PGTUP
                                        'Cnt 1->move to the upper position->Trk On-> Move to the tracking
                                        upper position / In the case of exceeding the distance specified by
```

···· adsorption / Release / assembly etc. ····

"M_TrkStop", Trk Off->Jump to "S91STOP".

19 Maintenance of robot program

TrkMv Off

'Stop the interrupt check -> Trk Off

Act 1 = 0SetMoTrg 0

[Explanation of the reference program using "Def MoTrg"]

- A) If the X-coordinates of the current position is below 300mm, and the Y-coordinates of the current position Is above 500,turn on "M_MoTrg" by using "Def MoTrg".
- B) Appoint that the interrupt processing occurs when "M_MoTrg" is turned on by using "Def Act".
- C) You can validate the function of "Def MoTrg" by using "SetMoTrg" command.
 D) You can validate the interrupt processing of "Def Act" by using Act command.

M EncL (Latched Encoder data)

[Function]

At the instant of receipt of a TREN signal for Q17EDPX module, a stored encoder data is read. Also, 0 is written to clear the stored encoder data to zero.

[Format]

Example) <numeric variable="">=M_EncL[(<logic encoder="" number="">)]</logic></numeric>	referencing
M_EncL[(<logic encoder="" number="">)]=<constants></constants></logic>	writing

[Terminology]

<Numeric variable>

Specify the numerical variable to substitute.

<Logic encoder number> (can be omitted)

Specify the value of an logic encoder number

<Constants>

Specify the stored encoder data to initial value(zero or other).

[Reference program]

1 MENC1#=M EncL(1) At logic encoder number 1, assign encoder data stored at the time of receipt

of a TREN signal to the variable MENC1#.

2 MENC2#=M EncL(M1%) At a logic encoder number specified in the variable M1%, assign encoder

data stored at the time of receipt of a TREN signal to the variable MENC2#.

Write work position data P1, encoder value M EncL(1) present at the time 3 TrWrt P1, M EncL(1), MK

of receipt of a TREN signal and work category number MK onto the buffer 1

for tracking.

Use latched data to clear the encoder to zero as it is not required until next 4 M EncL(1)=0

latched data is used.

[Explanation]

(1) Stored encoder value corresponding to the encoder number specified for <logical encoder number> is acquired.

Encoder value is stored in memory at a low-to-high or high-to-low transition of TREN signal which has been specified with a DIP switch on Q17EDPX module.

Encoder value thus acquired is written onto the buffer for tracking by using a TrWrk command so as to perform tracking operations.

- (2) As encoder value is in double-precision real number, specify <Numerical variable> with a variable which is of double-precision real-number type.
- (3) You can omit the step to specify <Logic encoder number> . When it is omitted, logic encoder number will be treated as "1."
- (4) Number which you can enter to specify <Logic encoder number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
 - * If a number having a decimal part is entered, the fraction of 0.5 or over will be counted as one and the rest will be cut away.
- (5) As latched encoder data represents a value present at a low-to-high or high-to-low transition of TREN signal, you should check input corresponding to input number in 810 to 817 range which has been assigned to TREN signal when reading it out.
- (6) You can clear the encoder to zero by typing "0" after having used latched encoder data. This step may be performed as a precaution against using previously latched data.

M TrkBuf

[Function]

Specify and refer to the tracking buffer number to use.

[Format]

[Writing]

Example) M TrkBuf(<Condition number>) = <Value>

[Referencing]

Example) <Numeric variable> = M_TrkBuf(<Condition number>)

[Terminology]

<Condition number> Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

<Value> Specify the tracking buffer number.

Setting range: 1 ~ the first argument of parameter "TRBUF".

The initial value of "TRBUF" is 2, the maximum value of "TRBUF" is 8.

<Numeric variable> Return the specified tracking buffer number.

[Reference program]

M_TrkBuf(1) = 1 'The tracking buffer corresponding to the condition number 1 uses

number 1.

.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece in the tracking buffer which is specified.

- (1) Specify the tracking buffer number used in tracking command "TrkChk", "TrkWait", "TrkMv".
- (2) You can confirm the specified tracking buffer number by referencing "M_TrkBuf".
- (3) If the tracking buffer number is not specified by using "M_TrkBuf" before executing "TrkChk" command, tracking number will be treated as "1".
- (4) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (5) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (6) Number which you can enter to specify <Value> is an integer in the range of "1" to " the first argument of parameter "TRBUF" ". Entering anything else causes L3110 (Argument value range over) error to occur.

M TrkStart

[Function]

Specify and refer to the starting position of range in which it is possible to execute the tracking. Starting position specifies the coordinates from the reference point (coordinate value"0.00") in the world coordinates system.

[Format]

```
[Writing]
 Example ) M TrkStart(<Condition number>) = <Value>
[Referencing]
 Example ) <Numeric variable> = M_TrkStart(<Condition number>)
```

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

Specify the starting position (mm) of range in which it is possible to execute the tracking... Starting position is the coordinates from the reference point (coordinate value"0.00") in the world coordinates system.

Setting range : 0.00 ∼ (Robot operation range)

Unit : mm

< Numeric variable > Return the starting position of range in which it is possible to execute the tracking...

[Reference program]

M TrkBuf(1) = 1'Tracking buffer corresponding to the condition number 1 uses number 1. M TrkStart(1) = 300'Starting position of range in which it is possible to execute the tracking corresponding to condition number 1 is 300mm.

' Check the workpiece of the specified tracking buffer. TrkChk 1, P1, PWAIT, *LTRST

- (1) Specify the starting position of range in which it is possible to execute the tracking used in tracking command "TrkChk""TrkWait".
- (2) You can confirm the specified starting position of range in which it is possible to execute the tracking by referencing "M TrkStart".
- (3) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

M TrkEnd

[Function]

Specify and refer to the ending position of range in which it is possible to execute the tracking.. Ending position specifies the coordinates from the reference point (coordinate value"0.00") in the world coordinates system.

[Format]

[Writing]

Example) M TrkEnd(<Condition number>) = <Value>

[Referencing]

Example) <Numeric variable> = M TrkEnd(<Condition number>)

[Terminology]

< Condition Number > Specify the condition number corresponding to tracking.

Setting range : 1 ∼ 8

< Value > Specify the ending position (mm) of range in which it is possible to execute the tracking...

Ending position is the coordinates from the reference point (coordinate value"0.00")

in the world coordinates system.

Setting range : 0.00 ∼ (Robot operation range)

Unit: mm

< Numeric Variable > Return end position of range in which it is possible to execute the tracking..

[Reference program]

M_TrkBuf(1) = 1 'Tracking buffer corresponding to the condition number 1 uses number 1.

M_TrkStart(1) = 300 'Starting position of range in which it is possible to execute the tracking

corresponding to the condition number 1 is 300mm.

M_TrkEnd(1) = -100 'End position of range in which it is possible to execute the tracking

corresponding to the condition number 1 is -100mm.

.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer

- (1) Specify the ending position of range in which it is possible to execute the tracking used in tracking command "TrkChk""TrkWait".
- (2) You can confirm the specified ending position of range in which it is possible to execute the tracking by referencing "M_TrkEnd".
- (3) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

M TrkStop

[Function]

Specify and refer to forced ending position of range in which it is possible to execute the tracking.. Forced ending position specifies the coordinates from the reference point(coordinate value"0.00") In the world coordinates system.

[Format]

```
[Writing]
 Example ) M TrkStop(<Condition number>) = <Value>
```

[Referencing]

Example) <Numeric variable> = M TrkStop(<Condition number>)

[Terminology]

< Condition Number > Specify the condition number corresponding to tracking.

Setting range : 1 ∼ 8

<Value> Specify the forced ending position(mm) of range in which it is possible to execute the tracking.. Forced ending position is the coordinates from the reference point(coordinate value"0.00")

in the world coordinates system.

Setting range: 0.00 ~ (Robot operation range)

Unit : mm

< Numeric Variable > Return forced ending position of range in which it is possible to execute the tracking...

[Reference program]

$M_TrkBuf(1) = 1$	'Tracking buffer corresponding to the condition number 1 uses number 1.
M_TrkStart(1) = 300	'Starting position of range in which it is possible to execute the tracking corresponding to condition number 1 is 300mm.
M_TrkEnd(1) = -100	' End position of range in which it is possible to execute the tracking corresponding to condition number 1 is -100mm.
$M_{TrkStop(1)} = -200$	' Forced ending position of range in which it is possible to execute the tracking corresponding to condition number 1 is -200mm.

TrkChk 1, P1, PWAIT, *LTRST' Check the work of the specified tracking buffer

- (1) Specify the forced ending position of range in which it is possible to execute the tracking used in tracking command "TrkChk""TrkWait".
- (2) You can confirm the specified forced ending position of range in which it is possible to execute the tracking by referencing "M TrkStop".
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

M TrkTime

[Function]

Specify and refer to the timeout value for "TrkWait" command.

[Format]

[Writing]

Example) M TrkTime(<Condition number>) = <Value>

[Referencing]

Example) <Numeric variable> = M TrkTime(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

<Value> Specify the timeout time waits until the workpiece enters to range in which it is possible to

execute the tracking..

Setting range : 0.00 ~ Unit : second

< Numeric Variable > Return specified tracking buffer number.

[Reference program]

 $M_TrkTime(1) = 30$ 'Set the timeout time to 30 second.

.

TrkChk 1, P1, PWAIT, *LTRST 'No workpiece->P1/ Waits for the workpiece->PWAIT/Workpiece can

be followed by tracking->*LTRST

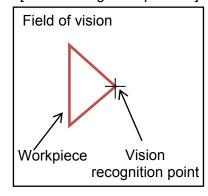
If M_TrkChk(1) <= 1 Then GoTo *LBFCHK '0:No workpiece/1:Workpiece passed over->

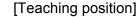
Jump to *LBFCHK.

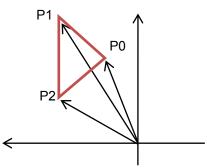
TrkWait *LBFCHK 'Waits until workpiece enters to the tracking area

- (1) Specify the timeout time used in tracking command "TrkWait".
- (2) You can confirm the specified timeout time by referencing "M_TrkStop".
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

P TrkBase


[Function]

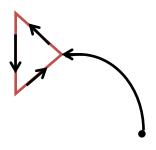

Specify and refer to the origin (For example, the position which a vision sensor outputs) of the workpiece to be followed.


Specify the position data (For example, the position which a vision sensor outputs) used as the reference point when you teach the movement path on the workpiece, as described below

The robot moves to the relative position correspond to this reference point by the movement instruction during the tracking.

[Vision recognition position]

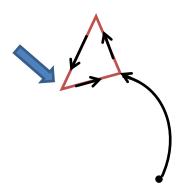
[Robot program]


P TrkBase(1)=P0 P1 Mvs P2 Mvs Mvs PΩ

TrkMv Off

Teach three position P0,P1,P2

[Robot operation]


While following...

[Structure]

Regard the position outputted by vision as P0 by "P TrkBase(1)=P", "TrkBase P0" Follow "Mvs P1", "Mvs P2" as the reference position from P0.

If the workpiece Declines, P0 Inclines too, and P1,P2 declines correspond to P0.

For example, when you only absorb the workpiece (do not operate along the external form of the workpiece), you may appoint the position specified when you teach the position which absorb the workpiece (for example, "PTeach")as "P_TrkBase",and appoint the above "PTeach" as movement instruction that moves during "TrkOn~TrkMv Off" (Mov PTeach).

[Format]

[Writing]

Example) P TrkBase(<Condition number>) = <Position data>

[Referencing]

Example) <Position variable> = P_TrkBase(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

<Position data> Specify the base position of the tracking.

<Position variable> Return the base coordinates of the specified tracking.

[Reference program]

PTBASE=P_100(1) 'Create the base position of the tracking.

PGT=PTBASE 'Create the hold position.
P_TrkBase(1) = PTBASE 'Specify the tracking base.

*LTRST

TrkMv On, PGTUP, 1, *S91STOP 'Start the interrupt processing->Trk On->Move to the tracking upper position

- (1) Specify the workpiece coordinate system origin used in tracking command "TrkMv".
- (2) You can confirm the workpiece coordinate system origin by referencing "P_TrkBase".
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

P TrkWork

[Function]

Refer to the workpiece position read from the tracking buffer when "TrkChk", "TrkWait" command is executed.

[Format]

```
[Referencing]
```

Example) < Position type variable > = P TrkWork(< Condition number >)

[Terminology]

< Condition Number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

<Position variable>

Return the workpiece position read from the tracking buffer corresponding to the specified condition number.

[Reference program]

 $M_TrkBuf(1) = 1$

'Tracking buffer corresponding to the condition number 1 uses number 1.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer.

 $PWrk = P_TrkWork(1)$

'Substitute the workpiece position read from the tracking buffer 1.

- (1) You can confirm the workpiece position read from the tracking buffer when "TrkChk", "TrkWait" command is executed.
- (2) If there is no data in the tracking buffer, the data will be cleared.
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (5) If you execute the writing to "P TrkWork", L3210 (This variable is write protected) error occurs.

M TrkEnc

[Function]

Refer to the encoder value read from the tracking buffer when the "TrkChk", "TrkWait" command is executed.

[Format]

[Referencing]

Example) <Numeric variable> = M TrkEnc(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

< Numeric variable > Return the encoder value (pulse) read from the tracking buffer correspond to the specified condition number.

[Reference program]

M_TrkBuf(1) = 1 'Tracking buffer corresponding to the condition number 1 uses number 1.

.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer.

.

MEnc& = M_TrkEnc(1) Substitute the workpiece position read from the tracking buffer 1.

- (1) You can confirm the encoder value read from the tracking buffer when the "TrkChk", "TrkWait" command is executed.
- (2) If there is no data in the tracking buffer, the data will be cleared.
- (3) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (5) If you execute the writing to "M_TrkEnc", L3210 (This variable is write protected) error occurs.

M TrkKind

[Function]

Refer to the model number read from the tracking buffer when "TrkChk", "TrkWait" command is executed.

[Format]

```
[Referencing]
```

Example) <Numeric variable> = M_TrkKind(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

< Numeric variable > Return the model number read from the tracking buffer correspond to the specified

condition number.

[Reference program]

 $M_TrkBuf(1) = 1$

'Tracking buffer corresponding to the condition number 1 uses number 1.

TrkChk 1, P1, PWAIT, *LTRST ' Check the workpiece of the specified tracking buffer.

MKind = M TrkKind(1)

'Substitute the model number read from the tracking buffer 1.

- (1) You can confirm the model number read from the tracking buffer when "TrkChk", "TrkWait" command is executed.
- (2) If there is no data in the tracking buffer, the data will be cleared.
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (5) If you execute the writing to "M_TrkKind", L3210 (This variable is write protected) error occurs.

M TrkEncNo

[Function]

Refer to the encoder number read from the tracking buffer when "TrkChk", "TrkWait" command is executed.

[Format]

[Referencing]

Example) <Numeric variable> = M_TrkEncNo(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.
Setting range : 1 ~ 8

< Numeric variable > Return the encoder number read from the tracking buffer correspond to the specified condition number.

[Reference program]

M_TrkBuf(1) = 1 'Tracking buffer corresponding to the condition number 1 uses number 1.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer.

MEncNo = M TrkEncNo(1) 'Substitute the encoder number read from the tracking buffer 1.

- (1) You can confirm the encoder number read from the tracking buffer when "TrkChk", "TrkWait" command is executed.
- (2) If there is no data in the tracking buffer, the data will be cleared.
- (3) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (5) If you execute the writing to "M_TrkEncNo", L3210 (This variable is write protected) error occurs.

P TrkTarget

[Function]

Refer to the information ("P_TrkWork", "M_TrkEnc") read from the tracking buffer when "TrkChk", "TrkWait" command is executed, and the current workpiece position calculated by the state variable "P_EncDlt".

[Format]

```
[Referencing]
Example ) < Position variable > = P TrkTarget()
```

[Terminology]

<Position variable> Return the information (P_TrkWork, M_TrkEnc) read from the tracking buffer when "TrkChk", "TrkWait" command is executed, and the current workpiece position calculated from the state variable "P_EncDlt".

[Reference program]

```
M_TrkBuf(1) = 1
                              'Tracking buffer corresponding to the condition number 1 uses number 1.
TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer.
PWrkNow = P TrkTarget
                              ' Substitute the current workpiece position.
```

- (1) You can confirm the current workpiece position by referencing the information read from the tracking buffer when "TrkChk", "TrkWait" command is executed.
- (2) If you execute the writing to "M TrkTarget", L3210 (This variable is write protected) error occurs.

M TrkChk

[Function]

Refer to the workpiece state read from the tracking buffer when "TrkChk", "TrkWait" command is executed.

[Format]

[Referencing]

Example) <Numeric variable> = M_TrkChk(<Condition number>)

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.
Setting range : 1 ~ 8

< Numeric variable > Return the workpiece state read from the tracking buffer when "TrkChk", "TrkWait" command is executed.

[Reference program]

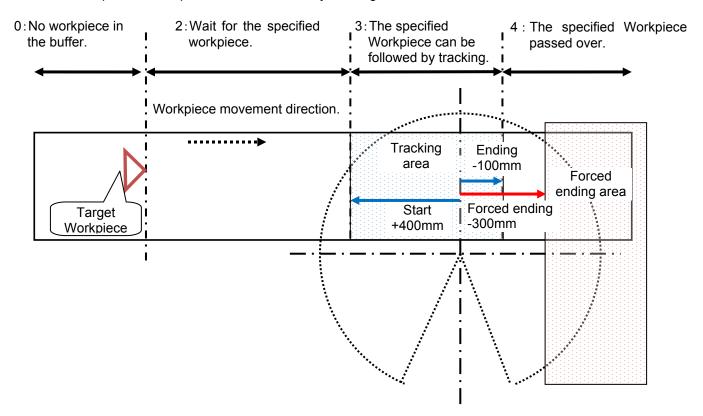
 $M_TrkBuf(1) = 1$

'Tracking buffer corresponding to the condition number 1 uses number 1.

.

TrkChk 1, P1, PWAIT, *LTRST 'Check the workpiece of the specified tracking buffer.

If M_TrkChk(1) <= 1 Then GoTo *LBFCHK '0:No Workpiece/ 1: Workpiece passed over->Jump to "LBFCHK".


[Explanation of the return value]

0 : No workpiece in the buffer.

1 : The specified workpiece passed over.

2 : Wait for the specified workpiece.

3 : The specified workpiece can be followed by tracking.

- (1) You can confirm the workpiece state read from the tracking buffer when "TrkChk", "TrkWait" command is executed..
- (2) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (3) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (4) When you execute the writing to "M TrkChk", L3210 (This variable is write protected) error occurs.

P TrkPAcI

[Function]

Change the tracking acceleration coefficient of the parameter "TRPACL" temporarily.

[Format]

```
[Writing]
Example ) P_TrkPAcl(<Condition number>) = <Position data>
[Referencing]
Example ) <Position variable> = P_TrkPAcl(<Condition number>)
```

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting range : 1 ∼ 8

<Position data> Specify the tracking acceleration coefficient.

Setting area: For each component, 0.10 ~ 10.0

<Position variable> Return the specified tracking acceleration coefficient.

[Reference program]

```
P_TrkPAcl(1) = (0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0) 'Specify the tracking acceleration coefficient. P_TrkPDcl(1) = (0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0) 'Specify the tracking deceleration coefficient. ....
```

TrkMv On, PGTUP, 1, *S91STOP 'Start the interrupt processing->Trk On-> Move to the tracking upper position

- (1) Specify the tracking acceleration coefficient used in tracking command "TrkMv".
- (2) You can confirm the tracking acceleration coefficient by referencing "P TrkPAcl".
- (3) You can omit the step to specify <Condition number>.When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

P TrkPDcl

[Function]

Change the tracking deceleration coefficient of the parameter "TRPDCL" temporarily.

[Format]

```
[Writing]
 Example ) P TrkPDcl(<Condition number>) = <Position data>
[Referencing]
 Example ) <Position variable> = P_TrkPDcl(<Condition number>)
```

[Terminology]

< Condition number > Specify the condition number corresponding to the tracking.

Setting area : 1 ∼ 8

<Position data> Specify the tracking deceleration coefficient.

Setting area: For each component, 0.1~10.0

<Position variable> Return the specified tracking deceleration coefficient

[Reference program]

```
P_TrkPAcl(1) = (0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0) 'Specify the tracking acceleration coefficient.
P_TrkPDcl(1) = (0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0) 'Specify the tracking deceleration coefficient.
```

TrkMv On, PGTUP, 1, *S91STOP 'Start the interrupt processing->Trk On-> Move to the tracking upper position

- (1) Specify the tracking deceleration coefficient used in tracking command "TrkMv".
- (2) You can confirm the tracking deceleration coefficient by referencing "P TrkPDcl".
- (3) You can omit the step to specify <Condition number>. When it is omitted, condition number will be treated as "1."
- (4) Number which you can enter to specify <Condition number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.

M Hnd

[Function]

Set and refer to the hand open/close states corresponding to the specified <Hand number>.

[Format]

```
[Writing]
```

Example) M Hnd(<Hand number>) = <Value>

[Referencing]

Example) <Numeric variable> = M_Hnd(<Hand number>)

[Terminology]

< Hand number > Specify the hand number : (cannot be omitted).

Setting area : 1 ∼ 8

<Value> Describe the hand open/close states by numeric variable, constants, or numeric operation expression.

0 : Hand close1 : Hand open

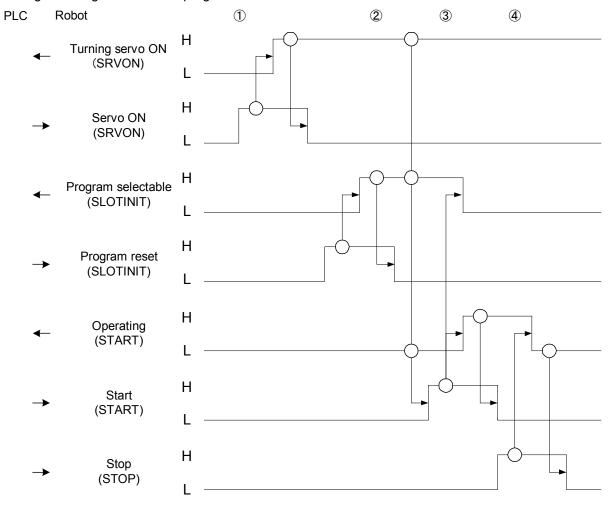
< Numeric Variable > Specify the numeric variable which stores the hand open/close states.

-1 : Undefined hand0 : Hand close1 : Hand open

[Reference program]

1 Mov P1, 50 ' Move 50mm to Z direction in the tool coordinates system of P1 by Joint interpolation movement.

2 Mvs P1 WthIf M_Ratio > 50, M_Hnd(1) = 0 'Close the hand of the hand number 1 if it comes to 50% of distance of the purpose position during the movement to P1.


3 *Label : If M_Hnd(1) = 1 Then GoTo *Label 'Wait until the hand of the hand number 1 closes.

- (1) Change and refer to the hand open/close states.
- (2) Writing to "M Hnd" is treated as the processing equal to the HOpen instruction /HClose instruction.
- (3) You can make a statement on <Additional condition>/<Processing> of accompanying instruction to the operation instruction.
- (4) Initial value just after the power supply obeys the setting value of the parameter "HANDTYPE" or "HANDINIT" (Output signal number 900~907),or "ORS***" (General-purpose output signal).
- (5) If you appoint the hand number which is not specified by the parameter "HANDTYPE", it becomes no processing at the time of writing, and -1 (Undefined hand) returns at the time of reading.
- (6) If the hand of specified < hand number> is Double solenoid (D) setting, and output signal state is neither hand open(&B01) nor hand close(\$B10), return 1(hand open).
- (7) You can omit the step to specify <Hand number>.When it is omitted, L3110 (Argument value range over) error occurs.
- (8) Number which you can enter to specify <Hand number> is an integer in the range of "1" to "8." Entering anything else causes L3110 (Argument value range over) error to occur.
- (9) Number which you can enter to specify <Value> is an integer "0" or "1". Entering anything else causes L3110 (Argument value range over) error to occur.
- (10) If you write "M_Hnd" by using the task slot which does not acquire a machine control rights, error L3280 (Cannot execute without GETM) occurs.
- (11) If you read "M_Hnd" by using the task slot which does not acquire a machine control rights, return the robot hand open/close states of machine number 1.
- (12) It is impossible to use for the electric hand with many functions made in TAIYO company. Please refer to the explanation of "Usage of the electric hand with many functions".
- (13) "M_Hnd" does not correspond to the hand macro.

19.2. Timing Diagram of Dedicated Input/Output Signals

19.2.1. Robot Program Start Processing

The signal timing when a robot program is started from an external device is shown below.

- ① PLC sets "servo ON H" when it detects "turning servo ON L." The robot turns the servo power supply on and sets "turning servo ON H." PLC acknowledges "turning servo ON H" and sets "servo ON L."
- ② PLC sets "program reset H" upon receiving "program selectable L." The robot returns to the beginning of the program and sets "program selectable H" when the program becomes ready to be started. PLC sets "program reset L" when it detects "program selectable H."
- 3 PLC acknowledges "turning servo ON H," "program selectable H" and "operating L" and sets "start H." The robot sets "program selectable L" and "operating H" when it detects "start H." PLC confirms "operating H" and sets "start L."
- ④ If a stop signal is input, the following processing is performed. Upon receiving "stop H" from PLC, the robot sets "operating L."

20. Troubleshooting

This section explains causes of error occurrence and actions to be taken.

20.1. Occurrence of Error Numbers in the Range from 9000 to 9999

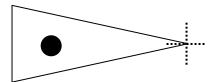
This section describes causes of errors that may occur while starting a program and how to handle them.

Table 20-1 List of Errors in Sample Programs

Table 20–1 List of Errors in Sample Programs						
Error number	Error description	Causes and actions				
9100	Communication error	 [Causes] The network vision sensor and the robot cannot be connected by the "C1" program or the robot cannot log on the vision sensor. [Actions] 1) Check the Ethernet cable which connects the robot with the network vision sensor. 				
9101	Encoder number out of range	 [Causes] The encoder number specified in "A1" program to "C1" program is "0" or "9" or larger. [Actions] 1) Check the X coordinate of the position variable "PE" in the programs. 				
9102	Model number out of range	 [Causes] The model number specified in "C1" program is "0" or "10" or larger. [Actions] 1) Check the X coordinate of the position variable "PRM1" in "C1" program. 2) If there are more than 11 models, change "MWKMAX=10" line in "C1" program. 				
9110	Position accuracy out of range	 [Causes] The workpiece position calculated by operations in "A1" program to "C1" program is very different from the theoretical value. The example is shown in (*1). [Actions] Check the X and Y coordinate of the position variable "PVTR" in "CM1" program. These values represent the difference from the theoretical value. If the difference stored in "PVTR" is large, run "A1" program to "C1" program again. Please add the value of positional variable "PCHK" in the 'CM1' program when the hand offsets from time when the calibration was executed and add the amount of the offset. Check that the X and Y coordinates of the position variable "PCHK" in "CM1" program are not "0." If they are "0," change the difference from the theoretical value to an allowable value. 				
9199	Program error	[Causes] A return value cannot be created by the *S50WKPOS function of "1" program. [Actions] 1) Check the reason why "MY50STS" of the *S50WKPOS function in "1" program does not change from"0".				

(*1) About the factor that the L9110 error occurs

Positional variable "PVTR" in 'CM1' program is calculated based on the setting of the A1-C1 program.


The calculation result is a difference between the position of [+] mark set with the vision sensor and the position taught by the 'C1' program.

And, the L9110 error occurs when the difference exceeds the numerical value specified for positional variable "PCHK".

Therefore, there is a possibility that the L9110 error occurs in the following cases.

[a] The position taught by the 'C1' program shifts to [+] mark specified with the vision sensor.

For instance, when the vision sensor output the triangular top, ● sign was taught in the 'C1' program. In this case, the difference is recognized as a gap.

[b] There is a difference to the flange and each hand of the robot in the gap for the multi hand.

The calibration executed by using the 'B1' program, the calibration treatment device is used.

It is installed in the flange of the robot. The position that the vision sensor output becomes the flange position of the robot.

However, when teaching by the 'C1' program, the gap is caused there to use and to teach the hand.

[c] In the setting of 'A1' - 'C1' program, some mistakes are found.

"P_EncDlt()" (the amount of the movement of the robot per a pulse) in the 'A1' program is an unexpected value.

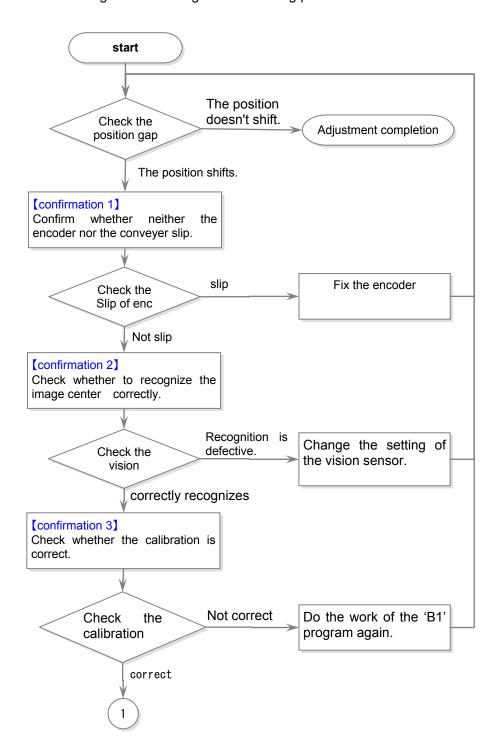
Or, in the 'B1' program, the direction of three points specified by the calibration was different or it was the inputting error of coordinates.

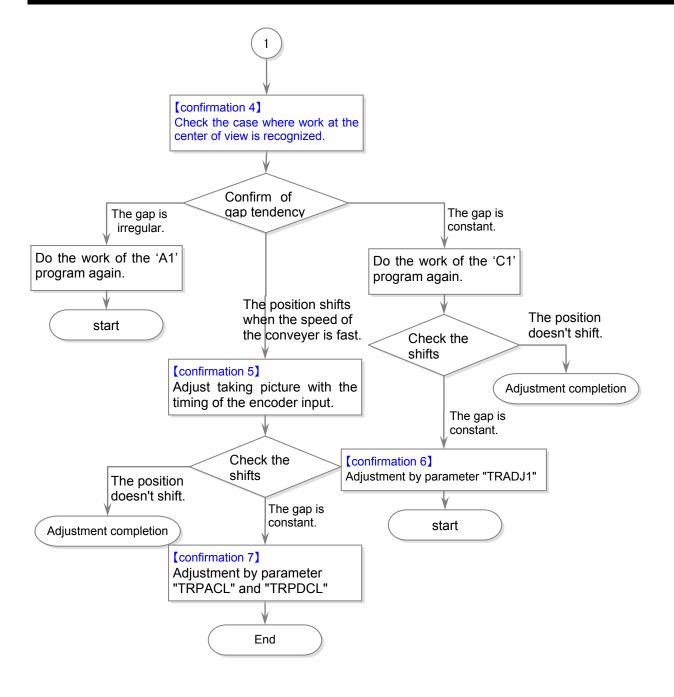
20.2. Occurrence of Other Errors

Table 20-2 List of Tracking relation Errors

Table 20–2 List of Tracking relation Errors							
Error number	Error description	Causes and actions					
L2500	Tracking encoder data error	[Causes] The data of the tracking encoder is abnormal. (The amount of the change is 1.9 times or more.) [Actions] 1) Check the conveyor rotates at the fixed velocity. 2) Check the connection of the encoder. 3) Check the earth of the earth wire.					
L2510	Tracking parameter reverses	[Causes] Tracking parameter[EXCRGMN] and [EXCRGMX] Setting value reverses [Actions] 1) Check the value of [ENCRGMX] and [ENCRGMN] parameters.					
L2520	Tracking parameter is range over	[Causes] The set value is outside the range parameter [TRBUF]. The first argument is 1 to 8, and the second argument is 1 to 64. [Actions] 1) Check the value of [TRBUF] parameter.					
L2530	There is no area where data is written	[Causes] The data of the size or more of the buffer in which the TrWrt command was continuously set to the second argument of parameter [TRBUF] was written. [Actions] 1) Check the execution count of the TrWrt command is correct. 2) Check the value of the second argument of parameter [TRBUF] is correct. 3) Check that the X and Y coordinates of the position variable "PCHK" in "CM1" program are not "0." If they are "0," change the difference from the theoretical value to an allowable value.					
L2540	There is no read data	 [Causes] The TrRd command was executed in state the data is not written in tracking buffer. [Actions] Execute the TrRd command after confirming whether the buffer has the data with the state variable [M_Trbfct]. Confirm whether the buffer number specified by the buffer number specified in TrWrt command and the TrRd command is in agreement. 					
L2560	Illegal parameter of Tracking	[Causes] The value set as the parameter [EXTENC] is outside the range. The ranges are 1-8. [Actions] Please confirm the value set to Parameter [EXTENC]. Please confirm whether the Q173DPX unit is installed in the slot specified for parameter "ENCUNITn" (n=1-3). Please confirm whether slot 0-2 of a basic base is not specified by setting the parameter. Please confirm whether the setting of "Management CPU" that exists in "I/O unit and intelligent function unit details setting" of the parameter of the sequencer and specification of parameter "ENCUNITn" (n=1-3) are corresponding. There is a possibility Q173DPX is not robot CPU management.					
L2570	Installation slot error.	[Causes] Q173DPX is installed in slot 0-2 of a basic base. [Actions] Slot 0-2 of the basic base is basically only for CPU. Please install Q173DPX since slot3.					

Error number	Error description	Causes and actions
L2580	No workpiece in the tracking area.	[Causes] There is no workpiece in the tracking buffer or "TrkMv On" command is executed Before the workpiece enters to the tracking area. [Actions] Execute "TrkMv On" command when the workpiece is in the tracking area.
L3982	Cannot be used (singular point)	[Causes] 1) This robot does not correspond to the singular point function 2) Cmp command is executed 3) A synchronous addition axis control is effective 4) Tracking mode is effective 5) Pre-fetch execution is effective 6) This robot is a setting of the multi mechanism 7) ColChk On command is executed [Actions] 1) Check the argument of Type specification 2) Invalidate a compliance mode (execute Cmp Off) 3) Invalidate a synchronous addition axis control 4) Invalidate a tracking mode (execute Trk Off) 5) Invalidate a pre-fetch execution 6) Do not use the function of passage singular point 7) Invalidate a collision detection (execute ColChk Off)
L6632	Input TREN signal cannot be written	[Causes] During the actual signal input mode, external output signal 810 to 817 (TREN signal) cannot be written. [Actions] 1) Use an real input signal (TREN signal)


Please refer to separate manual "Troubleshooting".


20.3. In such a case (improvement example)

Explain the improvement example, when building the tracking system using the sample robot program.

20.3.1. The adsorption position shifts.

When the place that shifts from the specified adsorption position has been adsorbed, the cause is investigated according to the following procedures.

[confirmation 1]

- 1) Stop the conveyer.
- 2) Confirm the disk installed in the rotary encoder has come in contact with the conveyer.
- 3) Confirm whether the disk installed in the encoder rotates when the conveyer is made to work.

[confirmation 2]

- 1) Stop the conveyer.
- 2) Put workpiece on the center of the vision view.
- 3) In In-Sight Explorer(EasyBuilder), click the "Set Up Image" from the "Application Steps". And, set "Calibration Type" displayed in the lower right of the screen to "None".
- 4) Confirm workpiece is recognized by starting the job, and the recognition result (pixel level) is correct.
 - (example)
 - When the center of view is recognized, the result of (320,240) is displayed when pixels are 640×480 vision sensors.
- 5) Arrange workpieces on four corners.
- 6) Confirm whether the workpieces put on four corners of the image is recognized similar and correctly.

[confirmation 3]

- 1) Stop the conveyer.
- 2) Put workpiece on the center of the vision view.
- 3) In In-Sight Explorer(EasyBuilder), click the "Set Up Image" from the "Application Steps".

Set "Calibration Type" displayed in the lower right of the screen to "Import".

Specify the file that exported when the calibration is done to "File Name".

4) Confirm workpiece is recognized by starting the job, and the recognition result (robot coordinate) is correct.

(example)

(+0, +0) is displayed as a recognition result when assuming that the robot coordinates are set as follows when the calibration is done by using the calibration seat, and using a o sign in four corners.

(the first point xy) (the second point xy)(the third point xy)(the fourth point xy)

= (+100,+100), (+100,-100), (-100,+100), and (-100,-100)

- 5) Arrange workpieces on four corners.
- 6) Confirm whether the workpieces put on four corners of the image is recognized similar and correctly.

The recognition result becomes (+100,+100), (+100,-100), (-100,+100), and (-100,-100).

[confirmation 4]

- 1) Stop the conveyer.
- 2) Put workpiece on the center of the vision view.
- 3) Change X coordinates of PDLY1 in '1' program to a big value like the "10" second etc.
- 4) Start '1' program, and start the conveyer in low-speed.
- 5) Stop the conveyer because it keeps following during the "10" second in the place where the robot moved to the adsorption position. And, stop '1' program.
- 6) Confirm whether the position in which the robot adsorbs workpiece is correct.
- 7) Confirm the tendency to a positional gap repeating this work several times.

[confirmation 5]

- 1) Stop the conveyer.
- 2) Start the '1' program, and start the conveyer in the speed that you want.
- 3) Flow workpiece.
- 4) Stop the conveyer because it keeps following during the "10" second in the place where the robot moved to the adsorption position. And, stop '1' program.
- 5) Confirm the position in which the robot adsorbs workpiece.
 - <The position shifts in shape to adsorb the rear side of work >

Please adjust < delay time of NvTrg command used because of the 'CM1' program >.

Please adjust the encoder value specified by the TrWrt command as < delay time > "0" when the adjustment by < delay time of NvTrg command > is difficult.

For instance, the 'CM1' program is changed as follows and the numerical value (for instance, following "500") is adjusted.

MENCDATA#=MTR1#+500

TrWrt PRW, MENCDATA#, MWKNO,1,MENCNO

[confirmation 6]

1) Change parameter "TRADJ1", and adjust a positional gap.

[confirmation 7]

1) Change parameter "TRPACL" and "TRPDCL" to make the follow speed of the tracking fast.

Note it though the load factor of each axis of the robot goes up.

Confirm the state of the load of each axis by "Load factor monitor" of RT ToolBox2.

20.3.2. Make adsorption and release of the work speedy

In the tracking system, adsorption confirmation of the work may be unnecessary. In that case, processing of adsorption and release can be made speedy by the following methods.

(1) Adjust adsorption time and release time.

Adjust the adjustment variable "PDLY1", and the value of X coordinates of "PDLY2" of the program 1. Refer to "Table 16–2 List of adjustment variables in " for the adjustment method.

20.3.3. Make movement of the robot speedy.

Adjust the following setting to make movement of the robot speedy.

(1) Adjust the acceleration and the deceleration time for the tracking by using the parameter.

Acceleration and the deceleration of the follow operation can be done fast by reducing the

value of each element of parameter "TRPACL" and "TRPDCL". (example)

For the robot of the RH type (X,Y,Z,A,B,C) = (0.2, 0.2, 1.0, 1.0, 1.0, 1.0): X and Y are changed.

For the robot of the RV type (X,Y,Z,A,B,C) = (0.2, 0.2, 0.2, 1.0, 1.0, 1.0) : X, Y, and Z are changed.

(2) Adjustment of the optimal acceleration-and-deceleration setting

Set mass, size, and center of gravity of the hand installed in the robot as the parameter "HNDDAT1." And, set mass, size, and center of gravity of the work as the parameter "WRKDAT1."

By this setting, the robot can move with the optimal acceleration and deceleration and speed. Refer to "Table 11–2 List of Operation Parameter" for setting method.

(3) Adjustment of carrying height

By making low distance at adsorption and release of robot, the moving distance decreases and motion time can be shortened as a result. Refer to the adjustment variable of "PUP1" and "PUP2" in the "Table 16–2 List of adjustment variables in " for change of rise distance.

20.3.4. The robot is too speedy and drops the work.

Since the robot's acceleration and deceleration is speedy, drop the work, adjustment is necessary. Refer to the adjustment variable of <code>「PAC1」</code> to <code>「PAC3」</code> and <code>「PAC11」</code> to <code>「PAC13」</code> in the "Table 16–2 List of adjustment variables in " for the adjustment method of the acceleration and deceleration.

20.3.5. Restore backup data to another controller

The status variable "P EncDlt" is not saved in the backup data from tracking system robot controller.

To generate the value of "P_EncDit", execute the "P_EncDit(MENCNO) =PY10ENC" command of "Program A" by step forward. (Moving distance per one pulse)

20.3.6. Circle movement in tracking.

Screw fastening and decoration on the work, etc are available in the tracking system. Here, explain the example which draws the circle on the basis of the adsorption position.

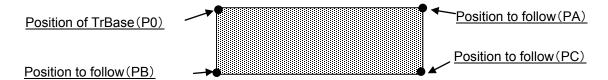
<Conditions>

POF1=(+50,+50,0,0,0,0,0,0)(0,0).....Relative distance to pass position from adsorption position.

POF2=(0,+100,0,0,0,0,0,0)(0,0)......Relative distance to end position from adsorption position *Create PGT1 (pass point) and PGT2 (end point) from the relative distance.

The example of program change of the above <conditions> is shown in the following.

	Before sample program change		After sample program change
81	Trk On,PBPOS,MBENC#,PTBASE · · ·	81	Trk On,PBPOS,MBENC#,PTBASE • • •
82	Mov PGT,PUP1.Y Type 0,0	82	Mov PGT,PUP1.Y Type 0,0
83	Accel PAC2.X,PAC2.Y	83	POF1=(+50,+50,0,0,0,0,0,0)(0,0) '
84	Mvs PGT	84	POF2=(0,+100,0,0,0,0,0)(0,0) '
85	HClose 1	85	PGT1=PGT*POF1 'Pass position
		86	PGT2=PGT*POF2 'End position
		87	Accel PAC2.X,PAC2.Y
		88	Mvs PGT
		89	Mvr PGT,PGT1,PGT2 ' Circle movement
		90	HClose 1


^{*}The adsorption position taught by Program C is the starting point of the circle.

^{*}The offset from the adsorption position of pass and end position of circle decided as follows.

^{*}Use the Mvr command (circle command) and move on the circle of PGT->PGT1 ->PGT2.

20.3.7. Draw the square while doing the tracking.

Here, explain the example which draws the outline of the following square workpiece on the basis of the adsorption position.

The robot traces the outline of workpiece clockwise based on the position specified that the following programs are executed by the TrBase instruction.

- 1 TrBase P0
- ' Specify the workpiece coordinate origin at the teaching position.
- 2 TrRd P1,M1,MKIND
- 'Read the workpiece position data from the data buffer.
- 3 Trk On,P1,M1
- 'Start tracking of a workpiece whose position measured by a sensor is P1 and encoder value at that time is M1.

- 4 Cnt 0
- 5 Mov P0, +20 ← Please specify -20 for RV robot though RH(SCARA) robot is +20.
- 6 Mvs P0
- 7 Mvs PA
- 8 Mvs PB
- 9 Mvs PC
- 10 Mvs PC, +20 ← Please specify -20 for RV robot though RH(SCARA) robot is +20.
- 11 Trk Off 'End the tracking operation.

21. Appendix

This appendix provides a list of parameters related to tracking and describes Expansion serial interface connector pin assignment as well as sample programs for conveyer tracking and vision tracking.

21.1. List of Parameters Related to Tracking

Table 21-1 List of Parameters Related to Tracking

		Number	St of Farameters Neiated to Tracking	0 111
	Parameter N			Setting value
Parameter		of	Description	at factory
	name	elements		
Tracking buffer	TRBUF	2 integers	Number of tracking buffers and their sizes (KB) <buffer number=""> Specify the number of buffers where the tracking data is stored. Mainly the tracking data for each conveyors is saved at the buffer. Change the set value, when the conveyor for tracking is increased. However, if the value is enlarged, the memory area where the tracking data is saved will be secured. Be careful because the program number which can be saved decreases. Setting range: 1 to 8 <buffer size=""> Specify the size in which the tracking data is preserved. Change this element when there is larger tracking data saved by TrWrt command than reading by TrRd command. Be careful because the memory is secured like the above-mentioned [Buffer number].</buffer></buffer>	shipment 2,64
			Setting range: 1 to 200	
Minimum external encoder value	ENCRGMN	8 integers	The minimum external encoder data value (pulse) The range of the encoder value which can be acquired in state variable "M_Enc" (minimum value side)	0,0,0,0,0,0,0
Maximum external encoder value	ENCRGMX	8 integers	The maximum external encoder data value (pulse) The range of the encoder value which can be acquired in state variable "M_Enc" (maximum value side)	10000000, 10000000, 10000000, 10000000, 10000000, 10000000, 10000000,
Tracking buffer	TRBUF	2 integers	Number of tracking buffers and their sizes (KB) <buffer number=""> Specify the number of buffers where the tracking data is stored. Setting range: 1 to 8 <buffer size=""> Specify the size in which the tracking data is preserved. Setting range: 1 to 64</buffer></buffer>	4 , 64

Parameter	Parameter name	Number of elements	Description	Setting value at factory shipment
Tracking adjustment coefficient 1	TRADJ1	8 real numbers (X,Y,Z, A,B,C, L1,L2)	Tracking adjustment coefficient 1 Set the amount of delay converted to the conveyer speed. Convert to 100 mm/s. Example) • If the delay is 2 mm when the conveyer speed is 50 mm/s: Setting value = 4.0 (2 / 50 * 100) • If the advance is 1 mm when the conveyer speed is 50 mm/s: Setting value = -2.0 (-1 / 50 * 100)	0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00
Tracking acceleration	TRPACL	8 real numbers (X,Y,Z, A,B,C, L1,L2)	Tracking acceleration. Acceleration during execution of tracking movement.	1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
Tracking deceleration	TRPDCL	8 real numbers (X,Y,Z, A,B,C, L1,L2)	Tracking deceleration. Deceleration during execution of tracking movement.	1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0

21.2. Shine of changing parameter

When the tracking function is used, the parameter need to be changed depends on operation phase. List of the parameter is shown as follow.

List 21-2 List of the user shine of changing parameter

	List 21-2 List of the user shine of changing parameter									
No.	Operation phase	Mo CR750-Q CR751-Q CRnQ-700	CR750-D CR751-D CRnD-700	Parameter name	Example	Explanation				
1	Power on Setting origin JOG operation	_	_	_	_					
2	Attach option Connection with peripherals	•	_	ENCUNIT1 ENCUNIT2 ENCUNIT3	0, 5 -1, 0 -1, 0	It is set to have installed Q173DPX unit into 5 I/O slot of the base unit. By setting it, incremental three encoders connected with Q173DPX unit are recognized physical encoder number 1 to 3.				
3		•	•	TRMODE	1	It makes tracking function valid. By being valid, incremental encoder value can be got.				
4	In case of robot programming	•	•	EXTENC	1, 2, 3, 1, 2, 3, 1, 2	About EXTENC, because initial value is 1,2,1,2,1,2,1,2, physical encoder number 1 and 2 are allocated to logic encoder(physical encoder number3) number 1 to 8. At this time, the encoder connected with CH3 of Q173DPX unit is not allocated to logic encoder number. So by changing this parameter to 1,2,3,1,2,3,1,2, the encoder of CH3 is allocated to logic encoder number 3 and 6. Also it is possible in following case. 3 pcs encoder are connected with Q173DPX unit and attach each encoder to conveyer 1 to 3. If conveyer1 connect to encoder3, conveyer 3 connect to encoder 1, it is not effective to change encoder, so by changing this parameter to 3,2,1,3,2,1,1,2, encoder attached with conveyer 1 becomes logic encoder1.				

		Model					
No.	Operation phase	CR750-Q CR751-Q CRnQ-700	CR750-D CR751-D CRnD-700	Parameter name	Example	Explanation	
5	In case of system debag	•	•	TRCWDST	20.0	In case of vision tracking, if there is a workpiece not recognized well by vision sensor, it might reply over one recognition results to one workpiece. In this case, it makes possible to get only one recognition result excluding the results with the distance which is shorter than the distance set by this parameter. For example, it is recognized that 3 vision sensors exist for 1 workpieces. This one workpiece is got and another 2 workpieces are not got because the distance of result is shorter than it set 20mm.	
6	In case of system debug	•	•	TRADJ1	+0.00, +4.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00,	It is possible to adjust the gap by using this parameter when this gap is caused every time in the same direction when the tracking operates. For example, the speed of conveyer is 50mm/s and there is +2mm gap (+Y direction) +2mm, Set value = 4.0 (2 / 50 * 100) +4.0 is set to the second element that shows Y coordinates.	
7		•	•	TRBUF	3, 100	When three kinds of workpieces flow respectively on the three conveyers for one robot controller, three tracking buffers where workpiece information is preserved are needed. In this case, the first element of this parameter is changed to three. Moreover, when TrWrt command is frequently executed and TrRd command is slow, workpiece information collects in the tracking buffer. Because the error occurs when 64 workpieces information or more on an initial value collects, it is necessary to increase the number in which work information is preserved. Then, the second element of this parameter is changed to 100.	

21 Appendix

	Model		_			
No.	Operation phase	CR750-Q CR751-Q CRnQ-700	CR750-D CR751-D CRnD-700	Parameter name	Example	Explanation
8	Others	•	•	ENCRGMN	0,0,0,0, 0,0,0,0	This parameter is a parameter that sets the range of the value
9		•	•	ENCRGMX	10000000, 10000000, 10000000, 10000000, 10000000, 10000000, 100000000	of state variable M_Enc. M_Enc becomes the range of 0-100000000, and next to 100000000, it becomes 0 encoder rotates in case of an initial value. Though this range is changed by this parameter, tracking sample program is made on the assumption that it is used within this range, so do not change this parameter.

21.3. Expansion serial interface Connector Pin Assignment

(CR750-D/CR751-D, CRnD-700 series controller)

"Figure 21–1 Connector Arrangement" shows the connector arrangement and "Table 21–3 Connectors: CNENC/CNUSR Pin Assignment" shows pin assignment of each connector.

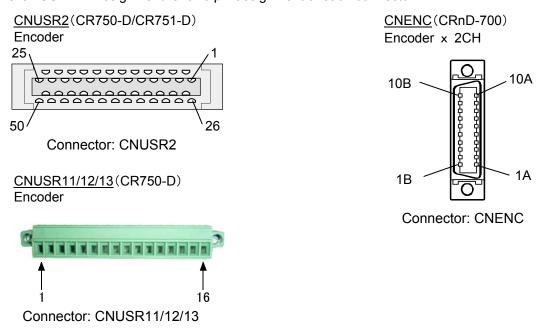
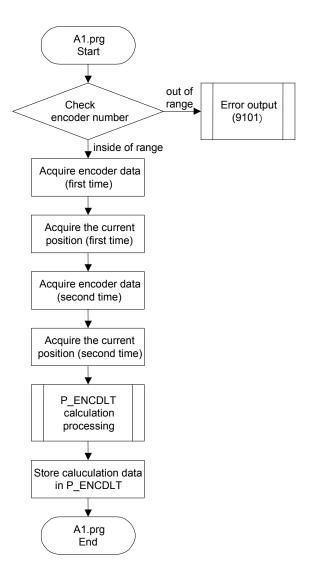
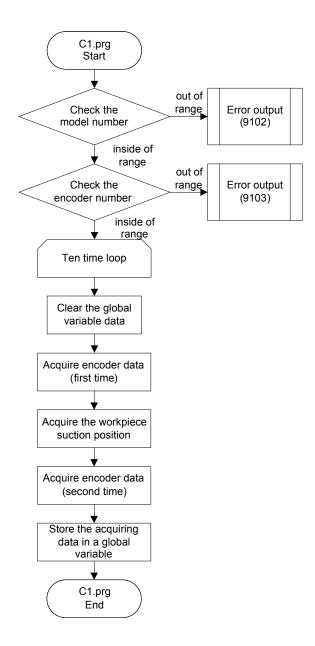


Figure 21–1 Connector Arrangement

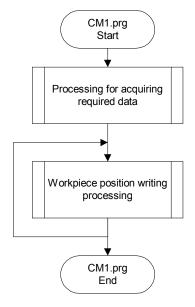
Table 21-3 Connectors: CNENC/CNUSR Pin Assignment

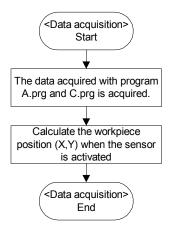

	Pin NO.	bie 21–3 Connec	tors. Cr	NENC/CNUSR Pin Assignment		
			o			
CRnD-700 controller (CNENC)	CR751-D controller	me – Pin name CR750-D controller	Signal name	Explanation	Input/output	Remark
1A	CNUSR1-28	CNUSR11-6	SG	Control power supply 0 V	GND	
2A	CNUSR1-21	CNUSR13-3	LAH1	+ terminal of differential encoder A-phase signal	Input	
3A	CNUSR1-22	CNUSR13-5	LBH1	+ terminal of differential encoder B-phase signal	Input	CH1
4A	CNUSR1-23	CNUSR13-8	LZH1	+ terminal of differential encoder Z-phase signal	Input	
5A	CNUSR1-33	CNUSR12-6	SG	Control power supply 0 V	GND	
6A	CNUSR2-21	CNUSR2-21	LAH2	+ terminal of differential encoder A-phase signal	Input	
7A	CNUSR2-22	CNUSR2-22	LBH2	+ terminal of differential encoder B-phase signal	Input	CH2
8A	CNUSR2-23	CNUSR2-23	LAH2	+ terminal of differential encoder Z-phase signal	Input	
9A	-	-	-	Empty	_	
10A	-	-	-	Empty	_	
1B	CNUSR2-15	CNUSR2-15	SG	Control power supply 0 V	GND	
2B	CNUSR1-46	CNUSR13-4	LAL1	- terminal of differential encoder A-phase signal	Input	
3B	CNUSR1-47	CNUSR13-6	LBL1	- terminal of differential encoder B-phase signal	Input	CH1
4B	CNUSR1-48	CNUSR13-10	LZL1	- terminal of differential encoder Z-phase signal	Input	
5B	CNUSR2-40	CNUSR2-40	SG	Control power supply 0 V	GND	
6B	CNUSR2-46	CNUSR2-46	LAL2	- terminal of differential encoder A-phase signal	Input	
7B	CNUSR2-47	CNUSR2-47	LBL2	- terminal of differential encoder B-phase signal	Input	CH2
8B	CNUSR2-48	CNUSR2-48	LZL2	- terminal of differential encoder Z-phase signal	Input	
9B	-	-	-	Empty	_	
10B	-	-	-	Empty	_	

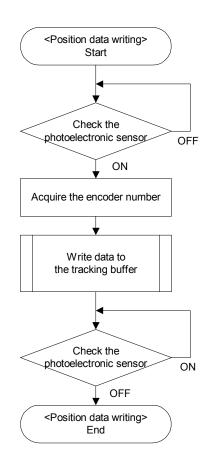
21.4. Chart of sample program

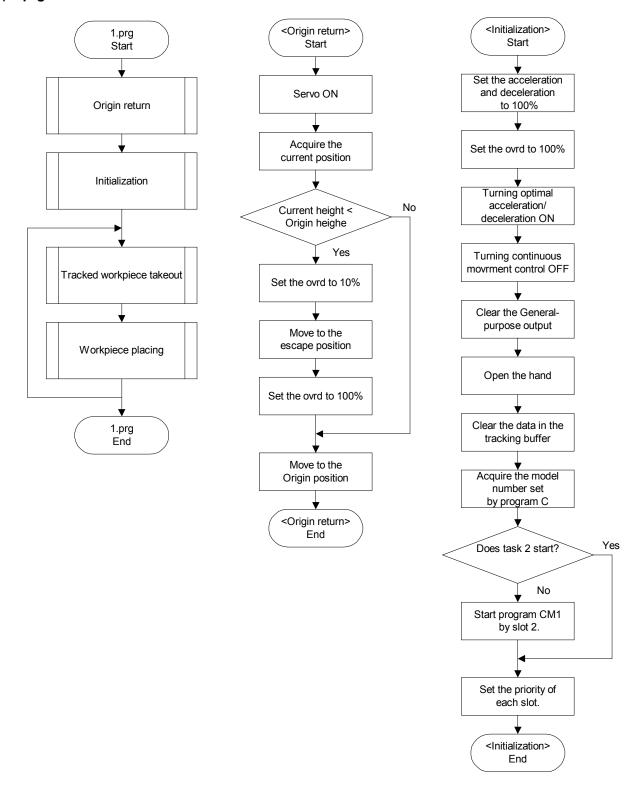

The chart of the sample program is shown below.

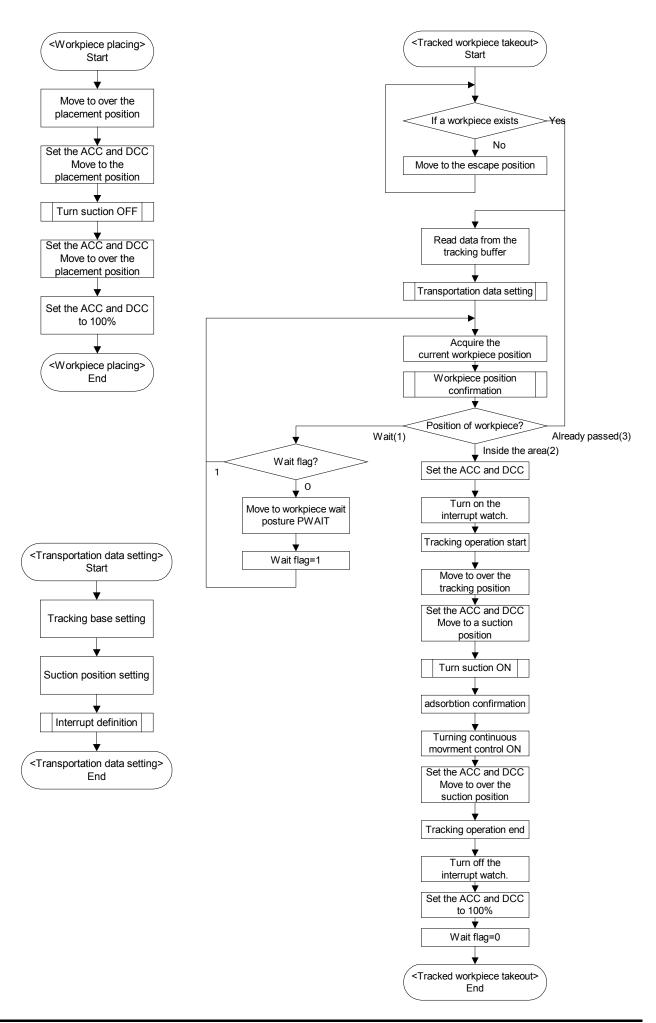
21.4.1. Conveyer tracking

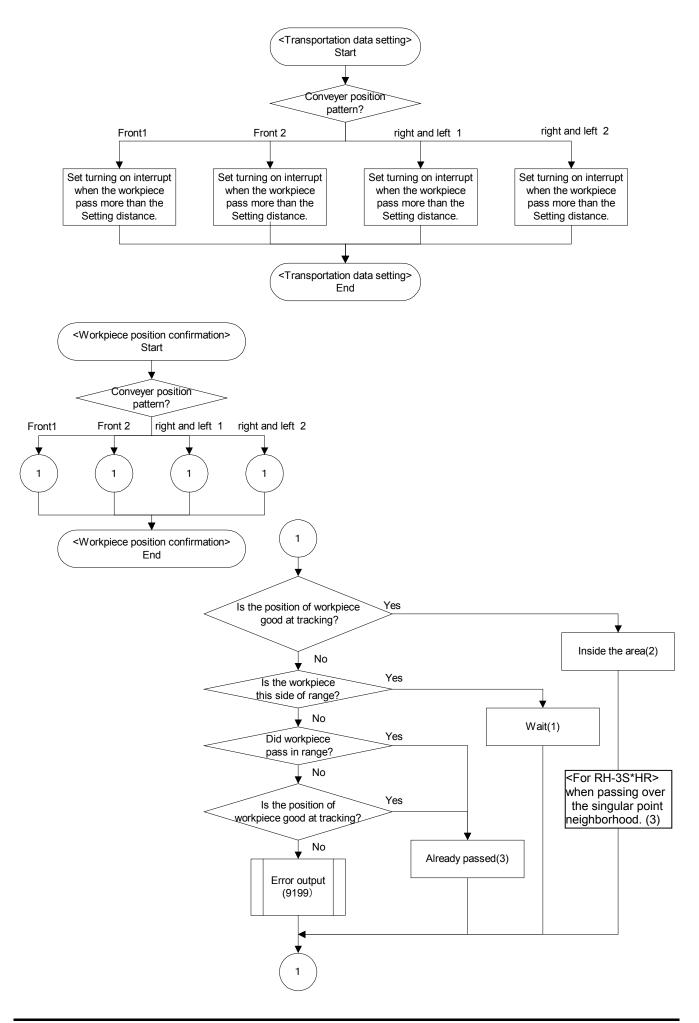

(1) A1.prg



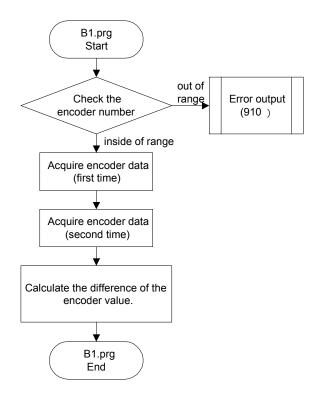

(2) C1.prg


(3) CM1.prg

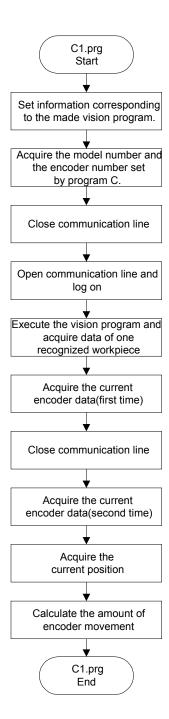




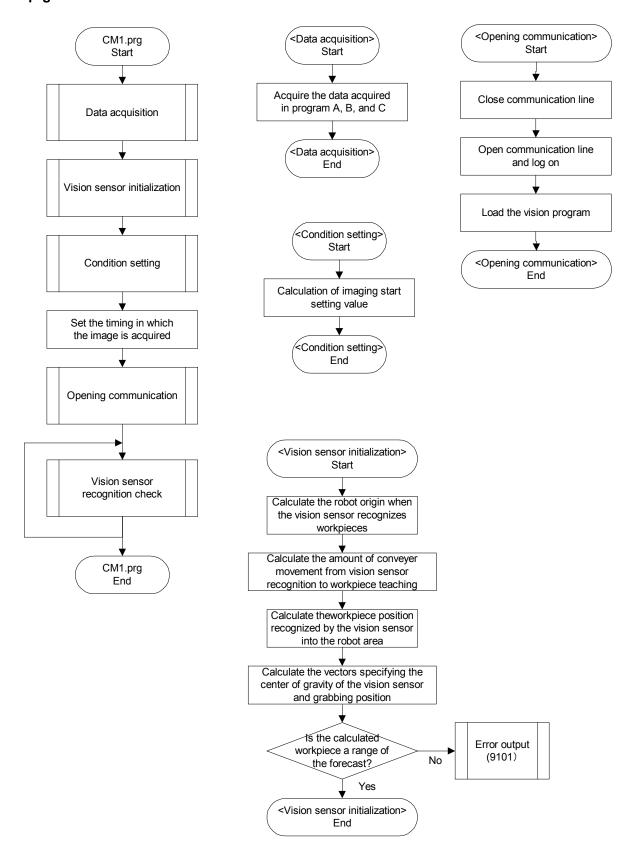
(4) 1.prg

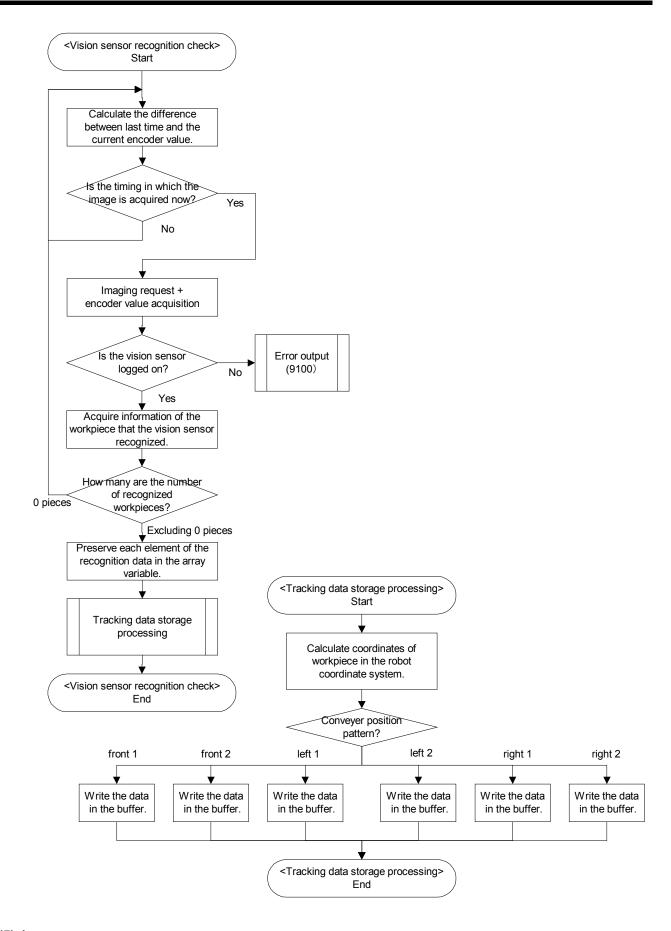


21.4.2. Vision Tracking


(1) A1.prg

The same program as the conveyer tracking.


(2) B1.prg



(3) C.prg

(4) CM1.prg

(5) 1.prg

The same program as the conveyer tracking.

21.5. Sample Programs

21.5.1. Conveyer Tracking

(1) A1.Prg

```
2 '# Program for calibration between tracking robot and conveyer
3 '# Program type: A1.prg
4 '# Date of creation/version: 2012.07.31 A3
5 '# COPYRIGHT: MITSUBISHI ELECTRIC CORPORATION.
7 '(1) Register an encoder number to the X coordinate of the "PE" variable/
8 'Check the setting value
   MECMAX=8
                                                'The maximum encoder number value (for checking)
9
    If PE.X<1 Or PE.X>MECMAX Then Error 9101
10
                                               'Encoder number out of range
     MENCNO=PE.X
                                                 'Acquire the encoder number
11
12 '(2) Attach a marking sticker on the conveyer upstream side/
13 '(3) Move the robot to the position right at the center of the attached sticker/
     MX10EC1#=M_Enc(MENCNO)
                                                    'Acquire encoder data (first time)
15
    PX10PS1=P_Zero
                                                'Set all elements to ZERO
16
    PX10PS1=P_Fbc(1)
                                                'Acquire the current position (first time)
17 '(4) Raise the robot/
18 '(5) Move the sticker in the forward direction of the conveyer/
19 '(6) Move the robot to the position right at the center of the moved sticker/
    MX10EC2#=M Enc(MENCNO)
                                                    'Acquire encoder data (second time)
21
     PX10PS2=P Zero
                                                'Set all elements to ZERO
    PX10PS2=P Fbc(1)
                                                'Acquire the current position (second time)
23 '(7) Raise the robot/
24 '(8) Perform step operation until END/
    GoSub *S10ENC
                                                'P ENCDLT calculation processing
25
                                                  'Store data in P_ENCDLT
    P EncDlt(MENCNO)=PY10ENC
26
27 End
28 '
29 '#### Processing for obtaining P ENCDLT #####
30
      'MX10EC1: Encoder data 1
31
      'MX10EC2: Encoder data 2
32
      'PX10PS1: Position 1
      'PX10PS2: Position 2
33
34
     'PY10ENC: P_ENCDLT value
35 *S10ENC
36
    M10ED#=MX10EC2#-MX10EC1#
37
    If M10ED#>80000000.0# Then M10ED#=M10ED#-1000000000.0#
38
    If M10ED#<-800000000.0# Then M10ED#=M10ED#+1000000000.0#
39
    PY10ENC.X=(PX10PS2.X-PX10PS1.X)/M10ED#
40
    PY10ENC.Y=(PX10PS2.Y-PX10PS1.Y)/M10ED#
    PY10ENC.Z=(PX10PS2.Z-PX10PS1.Z)/M10ED#
41
    PY10ENC.A=(PX10PS2.A-PX10PS1.A)/M10ED#
42
43
    PY10ENC.B=(PX10PS2.B-PX10PS1.B)/M10ED#
    PY10ENC.C=(PX10PS2.C-PX10PS1.C)/M10ED#
44
    PY10ENC.L1=(PX10PS2.L1-PX10PS1.L1)/M10ED#
45
     PY10ENC.L2=(PX10PS2.L2-PX10PS1.L2)/M10ED#
46
47 Return
48'
49 'This program "computes how much a robot moves per 1 pulse and stores the result in P ENCDLT."
PE=(+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PX10PS1=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PX10PS2=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PY10ENC=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
```

(2) C1.Prg

```
2 '# Conveyer tracking, workpiece suction position registration program
3 '# Program type: C1.prg
4 '# Date of creation/version: 2012.07.31 A3
5 '# COPYRIGHT: MITSUBISHI ELECTRIC CORPORATION.
7 '(1) Register a model number in the X coordinate of the "PRM1" variable/
8 '(2) Register an encoder number in the Y coordinate of the "PRM1" variable/
9 '(3) Register the number of the sensor that monitors workpieces in the Z coordinate of the "PRM1"
variable /
10 'Check the conditions set in the "PRM1" variable
11
     MWKMAX=10
                                                        'The maximum model number value (for
checking)
     MECMAX=8
                                                      'The maximum encoder number value (for
12
checking)
     MWKNO=PRM1.X
                                                      'Acquire a model number
13
                                                      'Acquire an encoder number
14
     MENCNO=PRM1.Y
15
     If MWKNO<1 Or MWKNO>MWKMAX Then Error 9102
                                                        'Model number out of range
     If MENCNO<1 Or MENCNO>MECMAX Then Error 9101 'Encoder number out of range
16
17
     For M1=1 To 10
                                                 'Clear the information
18
       P_100(M1)=P_Zero
                                                   'A variable that stores workpiece positions
       P 102(M1)=P Zero
                                                   'A variable that stores operation conditions
19
       M 101#(M1)=0
                                                   'A variable that stores encoder value differences
20
21
     Next M1
22 '(4) Move a workpiece to the position where the photoelectronic sensor is activated/
     ME1#=M Enc(MENCNO)
                                                      'Acquire encoder data (first time)
24 '(5) Move a workpiece on the conveyer into the robot operation area/
25 '(6) Move the robot to the suction position/
     ME2#=M Enc(MENCNO)
26
                                                      'Acquire encoder data (second time)
     P 100(MWKNO)=P Fbc(1)
                                                         'Acquire the workpiece suction position
27
(current position)
28 '(7) Perform step operation until END/
     MED#=ME2#-ME1#
                                                     'Calculate the difference of the encoder value.
30
     If MED# > 800000000.0# Then MED# = MED#-1000000000.0#
     If MED# < -800000000.0# Then MED# = MED#+1000000000.0#
31
32 '
     M_101#(MWKNO)=MED#
33
                                                      'Store the amount of encoder movement in
a global variable
     P 102(MWKNO).X=PRM1.Y
                                                      'Store encoder numbers in a global variable
     P 102(MWKNO).Y=PRM1.Z
35
                                                      'Store the sensor number in a global variable
36 End
37 '
38 'This program is "the relation between the position at which the sensor is reacted and the position at
39 'the robot absorbs workpieces.
PRM1=(+1.00,+1.00,+810.00,+0.00,+0.00,+0.00,+0.00,+0.00)(,)
```

(3) CM1.Prg (for the conventional tracking)

2 '# Conveyer tracking, sensor monitoring program

3 '# Program type: CM1.prg

4 '# Date of creation/version: 2012.07.31 A3

5 '# COPYRIGHT : MITSUBISHI ELECTRIC CORPORATION.

7 '

8 '#### Main processing #####

9 *S00MAIN

10 GoSub *S10DTGET 'Processing for acquiring required data

11 *LOOP

12 GoSub *S20WRITE 'Workpiece position writing processing

13 GoTo *LOOP

14 End

15 '#### Data acquisition processing #####

16 *S10DTGET

17 'Acquire the suction position, amount of encoder movement and encoder number set with program C

18 MWKNO=M 09# 'Acquire model number

19 M10ED#=M_101#(MWKNO) 'Amount of encoder movement

20 MENCNO=P_102(MWKNO).X 'Encoder number 21 MSNS=P_102(MWKNO).Y 'Sensor number

22 'Calculate the workpiece position (X,Y) when the sensor is activated

23 PWPOS=P 100(MWKNO)-P EncDlt(MENCNO)*M10ED#

24 Return

25 '#### Position data writing processing #####

26 *S20WRITE

27 If M_In(MSNS)=0 Then GoTo *S20WRITE 'Wait for a workpiece to activate the photoelectronic sensor

CR750-Q/CR751-Q series, CRnQ-700 series controller

28 MENC#=M EncL(MENCNO) 'Encoder number

CR750-D/CR751-D series, CRnD-700 series controller

28 MENC#=M Enc(MENCNO) 'Encoder number

(Note)

The command is deferent between iQ Platform controller (CR750-Q/CR751-Q series, CRnQ-700 series) and stand alone type controller (CR750-D/CR751-D series, CRnD-700 series).

In the CR750-Q/CR751-Q series, CRnQ-700 series series, it is necessary to use the latch encoder data (M_ENCL) after confirmation with an input signal.

29 TrWrt PWPOS,MENC#,MWKNO,1,MENCNO 'Write data (workpiece position and encoder value) to the tracking buffer

30 *L20WAIT

31 If M_In(MSNS)=1 Then GoTo *L20WAIT

32 Return

(4) 1.Prg (for the high speed tracking)

```
2 '# Conveyer tracking, robot operation program
3 '# Program type: 1.prg
4 '# Date of creation/version: 2014.07.18 B1
5 '# MITSUBISHI ELECTRIC CORPORATION.
7 '
8 '### Main processing ###
9 *S00MAIN
10
     GoSub *S90HOME
                                                       'Origin return processing
     GoSub *S10INIT
11
                                                    'Initialization processing
12 *LBFCHK
     TrkChk 1, P1, PWAIT, *LTRST
13
                                                    'Check the workpiece position
14
     If M_TrkChk(1) <= 1 Then GoTo *LBFCHK
                                                    '0:No workpiece / 1:Workpiece passed
15
     TrkWait *LBFCHK
                                                     'Wait the workpiece
16 *LTRST
17
     Cnt 1,0,0
                                                   'Specify the positioning movement
                                                         'Interrupt start + Tracking start + Move to
18
     TrkMv On, PGTUP, 1, *S91STOP
PGTUP
19
     HClose 1
                                                    'Turn suction ON
20
     Mov PGT Type 0,0
                                                    'Move to a suction position
     Dly PDLY1.X
21
                                                    'Suction wait
                                                   'Specify a smooth movement
22
     Cnt 1
     Mov PGTUP Type 0,0
23
                                                     'Move to upper position
24
     TrkMv Off
                                                   'Interrupt end + Tracking end
25
     Mov PPTUP
                                                      'Move to over the placement position
26
     Cnt 1,0,0
                                                   'Specify the positioning movement
27
                                                    'Move to the placement position
     Mov PPT Type 0,0
28
                                                    'Turn suction OFF
     HOpen 1
29
     Dly PDLY2.X
                                                    'Release wait
30
     Cnt 1
                                                   'Specify a smooth movement
31
     Mov PPTUP Type 0,0
                                                     'Move to over the placement position
32
     GoTo *LBFCHK
                                                      'To the next workpiece
33 End
34 '
35 '### Initialization processing ###
36 *S10INIT
37 '/// Speed related ///
    Accel 100,100
38
                                                   'Acceleration/deceleration setting
39
                                                    'Speed setting
     Ovrd 100
40
                                                   'Optimal acceleration/deceleration specification
     Loadset 1,1
41
     OAdl On
                                                    Turning optimal acceleration/deceleration ON
42
     Clr 1
                                                   'Clear the output signals
                                                    'Turn suction OFF
43
     HOpen 1
44 '/// Initial value setting ///
     TrClr 1
                                                  'Clear tracking buffer 1
46 '/// Movement condition setting ///
     P TrkPAcl(1) = (+0.200, +0.200, +0.200, +1.000, +1.000, +1.000, +1.000, +1.000) 'Tracking acceleration
47
setting
48
     P TrkPDcl(1) = (+0.200, +0.200, +0.200, +1.000, +1.000, +1.000, +1.000, +1.000) 'Tracking deceleration
setting
49
     M TrkBuf(1) = 1
                                                   'Buffer Number
                                                    'Tracking area Start position
50
     M TrkStart(1) = PRNG.X
     M TrkEnd(1) = PRNG.Y
                                                     'Tracking area End position
51
52
     M_{TrkStop}(1) = PRNG.Z
                                                     'Tracking Compulsory end position
     M_TrkTime(1) = 60
53
                                                    'Timeout Time
54
     PTBASE = P_100(PWK.X)
                                                       'Create reference position
55
     P_TrkBase(1) = PTBASE
                                                     'Tracking base position
56
     PGT = PTBASE * POFSET
                                                       'Suction position setting
```

```
57
     PGTUP = PGT * PUP1
                                                        'Upper position
58
     PPTUP = PPT * PUP2
                                                       'over the placement position
59 '/// Multitask startup ///
     M 09#=PWK.X
                                                        'Model number specification
61
     If M Run(2)=0 Then
                                                     'Confirmation of conveyer 1 multitasking
62
       XRun 2,"CM1",1
                                                      'Multitasking setting
63
                                                      'Wait the task start
       Wait M_Run(2)=1
64
     EndIf
65
                                                  'Priority setting of Slot1
     Priority PRI.X,1
66
     Priority PRI.Y,2
                                                  'Priority setting of Slot2
67 Return
68'
69 '### Origin return processing ###
70 *S90HOME
71
     Servo On
                                                      'Servo ON
72
     P90CURR=P Fbc(1)
                                                        'Acquire the current position
73
     If P90CURR.Z<P1.Z Then
                                                      'If the current height is below the origin
74
       Ovrd 10
75
       P90ESC=P90CURR
                                                         'Create an escape position
       P90ESC.Z=P1.Z
76
77
       Mvs P90ESC
                                                       'Move to the escape position
78
       Ovrd 100
79
     EndIf
80
     Mov P1
                                                      'Move to the origin
81 Return
83 '### Tracking interruption processing ###
84 *S91STOP
85
     TrkMv Off
                                                     'Tracking operation end
86
     HOpen 1
                                                      'Turn suction OFF
     P91P=P Fbc(1)
87
                                                      'Acquire the current position
88
     P91P.Z=P1.Z
89
     Mvs P91P Type 0,0
                                                      'Raise
     Mov P1
                                                      'Return to the origin once
90
91
     Act 1 = -1
                                                   'Interrupt processing end
92
     GoTo *LBFCHK
93 '
P1=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PWAIT=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PGTUP=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PGT=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PDLY1=(+0.300,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PPTUP=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PPT=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PDLY2=(+0.200,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PRNG=(+400.000,+200.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PTBASE=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PWK = (+1.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)
POFSET=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PUP1=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0.0)
PUP2=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
PRI=(+1.000,+1.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
P90CURR=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
P90ESC=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
P91P=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(,)
```

(5) 1.Prg

```
2 '# Conveyer tracking, robot operation program
3 '# Program type: 1.prg
4 '# Date of creation/version: 2012.07.31 A3
5 '# MITSUBISHI ELECTRIC CORPORATION.
7 '
8 '### Main processing ###
9 *S00MAIN
     GoSub *S90HOME
                                                      'Origin return processing
     GoSub *S10INIT
                                                   'Initialization processing
11
12 *LOOP
     GoSub *S20TRGET
                                                     'Tracked workpiece takeout processing
13
14
     GoSub *S30WKPUT
                                                      'Workpiece placing processing
15
     GoTo *LOOP
16 End
17'
18 '### Initialization processing ###
19 *S10INIT
20 '/// Speed related ///
21
     Accel 100,100
                                                  'Acceleration/deceleration setting
    Ovrd 100
                                                   'Speed setting
22
                                                  'Optimal acceleration/deceleration specification
23
    Loadset 1,1
24
     OAdl On
                                                   'Turning optimal acceleration/deceleration ON
25
     Cnt 0
26
     Clr 1
27
     HOpen 1
28 '/// Initial value setting ///
29
     TrClr 1
                                                 'Clear tracking buffer 1
30
     MWAIT1=0
                                                    'Clear workpiece wait flag 1
31 '/// Multitask startup ///
     M 09#=PWK.X
                                                     'Model number specification
33
     If M Run(2)=0 Then
                                                   'Confirmation of conveyer 1 multitasking
       XRun 2,"CM1",1
                                                   'Multitasking setting
34
35
       Wait M_Run(2)=1
36
     EndIf
37
     Priority PRI.X,1
     Priority PRI.Y,2
38
39 Return
40'
41 '### Tracked workpiece takeout processing ###
42 *S20TRGET
43 '/// Tracking buffer check ///
44 *LBFCHK
45
     If M_Trbfct(1)>=1 Then GoTo *LREAD
                                                   'If a workpiece exists
                                                   'Move to the pull-off location
46
     Mov P1
     MWAIT1=0
47
     GoTo *LBFCHK
49 '/// Workpiece data acquisition ///
50 *LREAD
51
     TrRd PBPOS,MBENC#,MBWK%,1,MBENCNO%
                                                            'Read data from the tracking buffer
     GoSub *S40DTSET
                                                     'Transportation data setting
53 '/// Workpiece position confirmation ///
54 *LNEXT
55
     PX50CUR=TrWcur(MBENCNO%,PBPOS,MBENC#)
                                                            'Acquire the current workpiece position
     MX50ST=PRNG.X
56
                                                      'Start distance of the range where the robot can
follow a workpiece
```

57	MX50ED=PRNG.Y	'End distance of the range where the robot can
	a workpiece	Conveyor position nottern number
58	MX50PAT=PTN.X	'Conveyer position pattern number
	GoSub *S50WKPOS	'Workpiece position confirmation processing
	If MY50STS=3 Then GoTo *LBFCHK	'Already passed. Go to the next workpiece
61	If MY50STS=2 Then GoTo *LTRST	'Operable: start tracking
62	If MWAIT1=1 Then GoTo *LNEXT	'Wait for incoming workpieces
	To standby position ///	
64	PWAIT=P1	'Change to workpiece wait posture
	Select PTN.X	'Conveyer position pattern number
66	Case 1 To 2	When the conveyer is the front of the robot
67	PWAIT.X=PX50CUR.X	'X coordinates of the robot are matched to
work		
68	Case 3 To 6	
69	PWAIT.Y=PX50CUR.Y	'Y coordinates of the robot are matched to
work		
70	End Select	
71	PWAIT.Z=PX50CUR.Z+PUP1.X	
72	PWAIT.C=PX50CUR.C	
73	Mov PWAIT	'Move to workpiece wait posture PWAIT
74	MWAIT1=1	'Set workpiece wait flag
75	GoTo *LNEXT	
76 '///	Start tracking operation ///	
77 *L	TRST	
78	Accel PAC1.X,PAC1.Y	
79	Cnt 1,0,0	
80	Act 1=1	'Monitor the robot following workpieces too far
81	Trk On,PBPOS,MBENC#,PTBASE,MBENCNO%	'Tracking operation start setting
82	Mov PGT,PUP1.Y Type 0,0	'Move to tracking midair position
83	Accel PAC2.X,PAC2.Y	
84	Mov PGT Type 0,0	'Move to a suction position
85	GoSub *S85CLOSE	'Turn suction ON
86	MX80ENA=PHND.X	'Check instruction
87	MX80SIG=PHND.Y	'Check signal number
88	MX80SEC=PDLY1.X	'Check second number(s)
89	GoSub *S80CWON	'adsorbtion confirmation
90	Cnt 1	
	Accel PAC3.X,PAC3.Y	
92	Mov PGT,PUP1.Z Type 0,0	'Move to tracking midair position
93	- · · · · · · · · · · · · · · · · · · ·	'Tracking operation end setting
	Act 1=0	Traditing operation and dotting
	Accel 100,100	
96	MWAIT1 = 0	
97 Re		
98'	, turri	
	## Workpiece placing processing ###	
	S30WKPUT	
101	Accel PAC11.X,PAC11.Y	
102	Mov PPT,PUP2.Y	'Move to over the placement position
102	Accel PAC12.X,PAC12.Y	Move to over the placement position
103	Cnt 1,0,0	
104	Mov PPT Type 0,0	'Move to the placement position
106	GoSub *S86OPEN	'Move to the placement position 'Turn suction OFF
107	MX81ENA=PHND.X	'Check instruction
108	MX81SIG=PHND.Z	'Check signal number
109	MX81SEC=PDLY2.X	'Check second number(s)
110	GoSub *S81CWOFF	'Release confirmation
111	Cnt 1	
112	Accel PAC13.X,PAC13.Y	Indexes to expend the enterest of the enterest
113	Mov PPT,PUP2.Z Type 0,0	'Move to over the placement position

```
Accel 100,100
114
115 Return
116'
117 '### Transportation data setting processing ###
118 *S40DTSET
      PTBASE=P 100(PWK.X)
                                                        'Create reference position
119
120
      TrBase PTBASE, MBENCNO%
                                                          'Tracking base setting
                                                          'Suction position setting
121
      PGT=PTBASE*POFSET
122
      GoSub *S46ACSET
                                                       'Interrupt definition
123 Return
124 '
125 '### Interrupt definition processing 1 ###
126 *S46ACSET
      Select PTN.X
127
                                                    'Conveyer position pattern number
128
      Case 1 'Front right -> left
129
        MSTP1=PRNG.Z
                                                        'Following stop distance
130
        Def Act 1,P_Fbc(1).Y>MSTP1 GoTo *S91STOP
                                                       'To *S91STOP if followed far long
131
        Break
132
      Case 2 'Front left -> right
        MSTP1=-PRNG.Z
133
134
        Def Act 1,P_Fbc(1).Y<MSTP1 GoTo *S91STOP
135
        Break
136
      Case 3 'Left side rear -> front
137
      Case 5 'Right side rear -> front
        MSTP1=PRNG.Z
138
139
        Def Act 1,P_Fbc(1).X>MSTP1 GoTo *S91STOP
140
        Break
141
      Case 4 'Left side front -> rear
      Case 6 'Right side front -> rear
142
143
        MSTP1=-PRNG.Z
144
        Def Act 1,P_Fbc(1).X<MSTP1 GoTo *S91STOP
145
        Break
146
      End Select
147 Return
148'
149 '### Workpiece position confirmation processing ###
       'PX50CUR:Current workpiece position
       'MX50ST:Tracking start range
151
152
       'MX50ED:Tracking end range
       'MX50PAT:Conveyer position pattern number
153
       'MY50STS:Result (1: Wait/2: Start tracking/3: Next workpiece)
154
155 *S50WKPOS
      MY50STS=0
156
                                                       'Clear return value
157
      Select MX50PAT
                                                      'Conveyer pattern
158
     Case 1 'Front right -> left
159
        M50STT=-MX50ST
                                                        'The start side has a negative value
160
        M50END=MX50ED
161
        If PosCq(PX50CUR)=1 And PX50CUR.Y>=M50STT And PX50CUR.Y<=M50END Then
162
          MY50STS=2
                                                       'Tracking possible
163
        Else 'If tracking not possible
164
          If PX50CUR.Y<0 Then MY50STS=1
                                                        'Wait
165
          If PX50CUR.Y>M50END Then MY50STS=3
                                                         'Move onto the next workpiece
166
          If PosCq(PX50CUR)=0 And PX50CUR.Y>=M50STT And PX50CUR.Y<=M50END Then
MY50STS=3 'Outside the movement range
        EndIf
167
168
        Break
169
      Case 2 'Front left -> right
170
        M50STT=MX50ST
171
        M50END=-MX50ED
                                                        'The end side has a negative value
172
        If PosCq(PX50CUR)=1 And PX50CUR.Y<=M50STT And PX50CUR.Y>=M50END Then
```

```
173
          MY50STS=2
                                                      'Tracking possible
174
        Else 'If tracking not possible
175
          If PX50CUR.Y>0 Then MY50STS=1
                                                      'Wait
176
          If PX50CUR.Y<0 Then MY50STS=3
                                                      'Move onto the next workpiece
177
          If PosCq(PX50CUR)=0 And PX50CUR.Y<=M50STT And PX50CUR.Y>=M50END Then
MY50STS=3 'Outside the movement range
178
        EndIf
179
        Break
180
      Case 3 'Left side rear -> front
      Case 5 'Right side rear -> front
181
182
        M50STT=-MX50ST
                                                      'The start side has a negative value
183
        M50END=MX50ED
184
        If PosCq(PX50CUR)=1 And PX50CUR.X>=M50STT And PX50CUR.X<=M50END Then
185
          MY50STS=2
                                                      'Tracking possible
        Else 'If tracking not possible
186
187
          If PX50CUR.X<0 Then MY50STS=1
                                                      'Wait
          If PX50CUR.X>0 Then MY50STS=3
188
                                                      'Move onto the next workpiece
          If PosCg(PX50CUR)=0 And PX50CUR.X>=M50STT And PX50CUR.X<=M50END Then
MY50STS=3 'Outside the movement range
190
        EndIf
191
        Break
192
      Case 4 'Left side front -> rear
193
     Case 6 'Right side front -> rear
194
        M50STT=MX50ST
195
        M50END=-MX50ED
                                                       'The end side has a negative value
        If PosCg(PX50CUR)=1 And PX50CUR.X<=M50STT And PX50CUR.X>=M50END Then
196
197
          MY50STS=2
                                                      'Tracking possible
198
        Else 'If tracking not possible
199
          If PX50CUR.X>0 Then MY50STS=1
                                                      'Wait
200
          If PX50CUR.X<0 Then MY50STS=3
                                                      'Move onto the next workpiece
          If PosCq(PX50CUR)=0 And PX50CUR.X<=M50STT And PX50CUR.X>=M50END Then
201
MY50STS=3 'Outside the movement range
202
        EndIf
203
        Break
      End Select
204
205
      If MY50STS=0 Then Error 9199
                                                   'Program modification required
206 Return
207'
208 '### Origin return processing ###
209 *S90HOME
                                                    'Servo ON
210 Servo On
211
      P90CURR=P Fbc(1)
                                                      'Acquire the current position
212 If P90CURR.Z<P1.Z Then
                                                    'If the current height is below the origin
213
        Ovrd 10
        P90ESC=P90CURR
214
                                                       'Create an escape position
215
        P90ESC.Z=P1.Z
216
        Mvs P90ESC
                                                     'Move to the escape position
217
        Ovrd 100
218
      EndIf
      Mov P1
219
                                                    'Move to the origin
220 Return
222 '### Tracking interruption processing ###
223 *S91STOP
     Act 1=0
224
225
     Trk Off
226
      GoSub *S86OPEN
                                                      'Release suction
227
      P91P=P_Fbc(1)
                                                    'Acquire the current position
228
      P91P.Z=P1.Z
229
      Mvs P91P Type 0,0
                                                    'Raise
```

```
Mov P1
230
                                                     'Return to the origin once
231
      GoTo *LBFCHK
232'
233 '#### Suction of substrates #####
234 *S85CLOSE
                                                    'Turn suction ON
235
      HClose 1
236 Return
237 '##### Suction/release of substrates #####
238 *S860PEN
      HOpen 1
                                                     'Turn suction OFF
239
240 Return
241'
242 '#### Turning on the signal is waited for #####
      'MX80ENA:ENABLE/DISABLE of check(1/0)
244
      'MX80SIG:Check signal number
245
      'MX80SEC:Check second number(S)
      'MY80SKP:OK/TIMEOUT(1/0)
246
247 *S80CWON
248
     If MX80ENA=1 Then
                                                      'If the signal check is ENABLE
249
        M Timer(1)=0
250
        MY80SKP=0
251
        MX80SEC=MX80SEC * 1000
                                                         'Second -> Millisecond
252 *L80LOP
253
        If (M Timer(1)>MX80SEC) Or (MY80SKP<>0) Then *L80END
254
          If M In(MX80SIG)=1 Then MY80SKP=1
                                                       'If the signal specified is turned on
255
        GoTo *L80LOP
256
                                                    'If the signal check is DISABLE
      Fise
257
        Dly MX80SEC
                                                      'Wait at the specified check time
258
        MY80SKP=1
                                                       'OK
259
      EndIf
260 *L80END
261 Return
262 '
263 '##### Turning off the signal is waited for #####
      'MX81ENA:ENABLE/DISABLE of check(1/0)
264
265
      'MX81SIG:Check signal number
266
      'MX81SEC:Check second number(S)
267
      'MY81SKP:OK/TIMEOUT(1/0)
268 *S81CWOFF
269
      If MX81ENA=1 Then
                                                      'If the signal check is ENABLE
270
        M Timer(1)=0
271
        MY81SKP=0
        MX81SEC=MX81SEC * 1000
                                                         'Second -> Millisecond
272
273 *L81LOP
274
        If (M_Timer(1)>MX81SEC) Or (MY81SKP<>0) Then *L81END
          If M In(MX81SIG)=0 Then MY81SKP=1
                                                       'If the signal specified is turned off
275
        GoTo *L81LOP
276
277
                                                    'If the signal check is DISABLE
      Else
                                                      'Wait at the specified check time
278
        Dly MX80SEC
        MY81SKP=1 'OK
279
280
      EndIf
281 *L81END
282 Return
PWK = (+1.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00)(0,0)
PRI=(+1.00,+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
P1=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PBPOS=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PX50CUR=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PRNG=(+300.00,+200.00,+400.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PTN=(+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
```

PWAIT=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)PUP1=(+50.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)PAC1=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PTBASE=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PGT=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)PAC2=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PHND=(+0.00,+900.00,+900.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0.0) PDLY1=(+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PAC3=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PAC11=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PPT=(+0.00.+0.00.+0.00.+0.00.+0.00.+0.00.+0.00.+0.00)(0.0) PUP2=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)PAC12=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0.0) PDLY2=(+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) PAC13=(+100.00,+100.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) POFSET=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) P90CURR=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) P90ESC=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0) P91P=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)

21.5.2. Vision Tracking

(1) A1.Prg

The same program as the conveyer tracking.

PE=(+1.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)

(2) B1.Prg

27 End

```
2 '# Network vision tracking, calibration between robot and vision sensor
3 '# Program type
                     : B1.prg
4 '# Date of creation : 2012.07.31 A3
5 '# COPYRIGHT: MITSUBISHI ELECTRIC CORPORATION.
7 '(1) Register an encoder number to the X coordinate of the "PE" variable/
8 'Check the setting value
    MECMAX=8
9
                                                      'The maximum encoder number value (for
checking)
     If PE.X<1 Or PE.X>MECMAX Then Error 9101
10
                                                'Encoder number out of range
     MENCNO=PE.X
                                                  'Acquire the encoder number
11
12 '(2) Place the calibration sheet within the vision sensor recognition area/
13 '(3) Check that the calibration sheet positions are correct by looking at vision images/
     ME1#=M Enc(MENCNO)
                                                   'Acquire encoder data (first time)
15 '(4) Specify the mark in three points or more by using "Mitsubishi Robot Tool" on "In-Sight Explorer"/
16 '(5) Move the calibration sheet until they are within the robot operation area/
17 '(6) Move the robot hand to the position right at the center of mark 1/
18 '(7) Acquire the robot present position by using "In-Sight Explorer"/
19 '(8) Acquire the position of the robot in three points or more repeating work/
20 '(9) Click the Export button. Then, the calibration data can be made/
21 '(10) Raise the robot arm/
22
     ME2#=M Enc(MENCNO)
                                                   'Acquire encoder data (second time)
23
     MED#=ME1#-ME2#
                                                   'Calculate the difference of the encoder value.
24
     If MED# > 800000000.0# Then MED# = MED#-1000000000.0#
25
     If MED# < -800000000.0# Then MED# = MED#+1000000000.0#
26
     M 100#(MENCNO)=MED#
```

(3) C1.Prg

```
2 '# Network vision tracking, workpiece suction position registration program
3 '# Program type
                              : C1.prg
4 '# Date of creation/version : 2012.07.31 A3
5 '# COPYRIGHT: MITSUBISHI ELECTRIC CORPORATION.
7 '(1) Store a model number in the X coordinate of the "PRM1" variable/
8 '(2) Store an encoder number in the Y coordinate of the "PRM1" variable/
9 '(3) Check live images and register the length in the movement direction to the X coordinate of the "PRM2"
10 '(4) Store the workpiece length in the Y coordinate of the "PRM2" variable/
11 '(5) Enter the COM port number to be opened for communication after "CCOM$=" in the following line/
     CCOM$="COM2:"
                                                'Set the number of the port to be opened
13 '(6) Enter the vision program name after "CPRG$=" in the following line/
     CPRG$="TRK.JOB"
                                                'Set the vision program name
15 '(7) Place workpieces to be tracked in locations recognizable by the vision sensor/
16 '(8) Place the vision sensor in the "online" status/
17 '(9) When the program stops, open program C1 with T/B/
     MWKNO=PRM1.X
                                                 'Acquire the model number
     MENCNO=PRM1.Y
                                                 'Acquire the encoder number
20 'Establish a communication line with the vision sensor via the opened port
                                              'Close communication line
21
     NVClose
22
     NVOpen CCOM$ As #1
                                                'Open communication line and log on
23
     Wait M NvOpen(1)=1
                                              'Wait to log on to the vision sensor
     EBRead #1,"",MNUM,PVS1,PVS2,PVS3,PVS4
24
                                                'Acquire data of one recognized workpiece
25
                                                 'Acquire data of the first recognized workpiece
     P 101(MWKNO)=PVS1
26
     ME1#=M Enc(MENCNO)
                                                  'Acquire encoder data 1
27
     NVClose #1
28 HIt
29 '(10) Move a workpiece on the conveyer until it gets within the robot operation area/
30 '(11) Move the robot to the suction position/
     ME2#=M_Enc(MENCNO)
31
                                                  'Acquire encoder data 2
32
     P_100(MWKNO)=P_Fbc(1)
                                                'Acquire position 1
33 '(12) Perform step operation until END/
     MED#=ME2#-ME1#
                                                 'Calculate the amount of encoder movement
34
     If MED# > 80000000.0# Then MED# = MED#-1000000000.0#
35
36
     If MED# < -800000000.0# Then MED# = MED#+1000000000.0#
37
     M 101#(MWKNO)=MED#
                                                  'Amount of encoder movement
       _102(MWKNO)=PRM1
38
                                                 'Encoder number
39
     P_103(MWKNO)=PRM2
                                                 'Image size and workpiece size
     C_100$(MWKNO)=CCOM$
                                                  'COM port number
40
     C_101$(MWKNO)=CPRG$
41
                                                  'Vision program name
42 End
43'
44 'This program is "the relation between the workpiece position recognized by the network vision sensor and
45 ' the position at which the robot suctions workpieces.
PRM1 = (+1.00, +1.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00)(0,0)
PVS1=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVS2=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVS3=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVS4=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PRM2 = (+170.00, +30.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00)(0,0)
```

(4) CM1.Prg

```
2 '# Conveyer tracking, communication processing between robot and vision sensor
3 '# Program type
                    : VS communication program
4 '# Date of creation/version: 2012.07.31 A3
5 '# COPYRIGHT: MITSUBISHI ELECTRIC CORPORATION.
7
    Dim MX(4),MY(4),MT(4),PVS(4)
                                           'X/Y/C/buffer
8'
9 '#### Main processing #####
10 *S00MAIN
     GoSub *S10DTGET
11
                                             'Data acquisition processing
     GoSub *S20VSINI
                                            'VS initialization processing
12
     GoSub *S30CONST
                                             'Condition setting
13
14'
15
     MEP# = M Enc(MENCNO) + MEI# + 100
16
     GoSub *S70VOPEN
                                             'Vision sensor line open + vision program load processing
17 *L00 00
18
     GoSub *S40CHKS
                                             'VS recognition check processing
19
     GoTo *L00 00
20 End
21 '
22 '#### Data acquisition processing #####
23 *S10DTGET
     MWKNO=M_09#
                                               'Model number
24
25
     MENCNO=P 102(MWKNO).Y
                                                'Encoder number
26
     MVSL=P 103(MWKNO).X
                                               'VS screen size longitudinal distance
27
     MWKL=P_103(MWKNO).Y
                                               'Workpiece size longitudinal distance
28'
29
     PTEACH=P_100(MWKNO)
                                                'Position taught to the robot
     PVSWRK=P_101(MWKNO)
30
                                                'Position recognized by VS
     CCOM$=C 100$(MWKNO)
31
                                                'COM port number
     CPRG$=C_101$(MWKNO)
32
                                                'Vision program name
33 Return
34 '
35 '#### Opening communication line #####
36 *S70VOPEN
37
     NVClose
                                           'Close communication line
38
     NVOpen CCOM$ As #1
                                              'Open communication line and log on
39
                                            'Wait for line connection
     Wait M NvOpen(1)=1
     NVLoad #1,CPRG$
40
                                             'Load the vision program
41 Return
42'
43 '#### VS initialization processing #####
44 *S20VSINI
45 'Move from the robot coordinate axis (P ZERO position) to the robot origin when the vision sensor
recognizes workpieces
     MED1#=M_100#(MENCNO)
                                                'Amount of conveyer movement at calibration between
vision sensor and robot
     PRBORG=P_EncDlt(MENCNO)*MED1#
                                                   'Robot origin when the vision sensor recognizes
47
workpieces
48 'Return a workpiece recognized by the vision sensor to the position taught to the robot
     MED2#=M 101#(MWKNO)
                                                 'Amount of conveyer movement from vision sensor
recognition to workpiece teaching
    PBACK=P_EncDlt(MENCNO)*MED2#
51 'Calculate the position of the workpiece that the vision sensor in the robot area recognized.
     PWKPOS=PRBORG+PVSWRK+PBACK
                                                       'Workpiece position recognized by the vision
sensor into the robot area
    PVTR=(P Zero/PWKPOS)*PTEACH
                                                'Vectors specifying the center of gravity of the vision
sensor and grabbing position
     If PVTR.X<-PCHK.X Or PVTR.X>PCHK.X Then Error 9110 'The calculation result is greatly different
from the theory value.
```

If PVTR.Y<-PCHK.Y Or PVTR.Y>PCHK.Y Then Error 9110

```
56 Return
57 '
58 '#### Condition setting #####
59 *S30CONST
    MDX = P\_EncDlt(MENCNO).X
                                               'Amount of movement per pulse (X)
     MDY = P EncDlt(MENCNO).Y
61
                                               'Amount of movement per pulse (Y)
     MDZ = P EncDlt(MENCNO).Z
                                               'Amount of movement per pulse (Z)
62
     MD = Sqr(MDX^2+MDY^2+MDZ^2)
                                                'Calculation of the amount of movement per pulse
                                                'Calculation of imaging start setting value
     MEI#=Abs((MVSL-MWKL)/MD)
65 Return
66'
67 '##### VS recognition check processing #####
68 *S40CHKS
69 *LVSCMD
70 *LWAIT
     MEC# = M Enc(MENCNO)
71
72
     MEM#=MEC#-MEP#
                                                  'Subtract the previous encoder pulse value from the
current position of the encoder
     If MEM# > 80000000.0# Then MEM# = MEM#-1000000000.0#
73
74
     If MEM# < -800000000.0# Then MEM# = MEM#+1000000000.0#
75
     If Abs(MEM#) > MEI# GoTo *LVSTRG
                                               'Comparison between the amount of encoder movement
and the camera startup setting value
76
     Dly 0.01
77
     GoTo *LWAIT
78 *LVSTRG
79
     MEP#=MEC#
                                               'Set the encoder pulse current position to the previous
value
      NVTrg #1, 5, MTR1#,MTR2#,MTR3#,MTR4#,MTR5#,MTR6#,MTR7#,MTR8#
                                                                                 'Imaging request +
encoder value acquisition
81 'Acquisition of recognition data
     If M NvOpen(1)<>1 Then Error 9100
                                            'Communication error
     EBRead #1,"",MNUM,PVS(1),PVS(2),PVS(3),PVS(4) 'Imaging request
83
     If MNUM=0 Then GoTo *LVSCMD
                                               'If no workpieces are recognized
84
     If MNUM>4 Then MNUM=4
85
                                               'Set the maximum number (4)
     For M1=1 To MNUM
                                              'Repeat for the number of workpieces recognized
86
87
       MX(M1)=PVS(M1).X
                                              'Data acquisition
88
       MY(M1)=PVS(M1).Y
       MT(M1)=PVS(M1).C
89
90
     Next M1
     GoSub *S60WRDAT
91
                                               'Tracking data storage processing
92 Return
93'
94 '#### Tracking data storage processing #####
95 *S60WRDAT
96
     For M1=1 To MNUM
                                                   'Perform processing for the number of workpieces
recognized
       PSW=P Zero
97
       PSW=PRBORG
98
                                                'Virtually move the robot close to the vision sensor
99
       PSW.X=PSW.X+MX(M1)
                                                'Create the grabbing position
        PSW.Y=PSW.Y+MY(M1)
100
101
        PSW.C=PSW.C+MT(M1)
        PRW=P Zero
102
        PRW=PSW*PVTR
                                                'Compensate for the error in the calculation value
103
        PRW.FL1=P_100(MWKNO).FL1
PRW.FL2=P_100(MWKNO).FL2
104
105
106
        Select MENCNO
107
        Case 1
108
          TrWrt PRW, MTR1#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
encoder number
109
          Break
110
        Case 2
          TrWrt PRW, MTR2#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
111
encoder number
112
          Break
```

113

Case 3

```
114
          TrWrt PRW, MTR3#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
encoder number
115
          Break
116
        Case 4
          TrWrt PRW, MTR4#, MWKNO,1,MENCNO
                                                   'Position, encoder value, model number, buffer number,
117
encoder number
118
          Break
119
        Case 5
                                                   'Position, encoder value, model number, buffer number,
120
          TrWrt PRW, MTR5#, MWKNO,1,MENCNO
encoder number
121
          Break
122
        Case 6
123
          TrWrt PRW, MTR6#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
encoder number
124
          Break
125
        Case 7
126
          TrWrt PRW, MTR7#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
encoder number
127
          Break
128
        Case 8
129
          TrWrt PRW, MTR8#, MWKNO,1,MENCNO 'Position, encoder value, model number, buffer number,
encoder number
130
          Break
131
        End Select
132
      Next M1
133
      Return
PVS(1)=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVS(2)=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0.0)
PVS(3)=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0.0)
PVS(4)=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PTEACH=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVSWRK=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PRBORG=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0.0)
PBACK=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PWKPOS=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PVTR=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PCHK=(+100.00.+100.00.+0.00.+0.00.+0.00.+0.00.+0.00.+0.00)(0.0)
PSW=(+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00,+0.00)(0,0)
PRW = (+0.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00, +0.00)(0,0)
```

(5) 1.Prg

The same program as the conveyer tracking.

21.5.3. For RH-3S*HR

(1) 1.Prg

54 55

GoTo *LBFCHK

```
2 '# Conveyer tracking, robot operation program(for RH-3SDHR)
3 '# Program type: 1.prg
4 '# Date of creation/version: 2012.07.31 A3
5 '# MITSUBISHI ELECTRIC CORPORATION.
7'
8 '### Main processing ###
9 *S00MAIN
    GoSub *S90HOME
                                                      'Origin return processing
     GoSub *S10INIT
                                                   'Initialization processing
11
12 *LOOP
     GoSub *S20TRGET
                                                     'Tracked workpiece takeout processing
13
     GoSub *S30WKPUT
                                                      'Workpiece placing processing
14
     GoTo *LOOP
15
16 End
17'
18 '### Initialization processing ###
19 *S10INIT
20 '/// Speed related ///
21
    Accel 100,100
                                                  'Acceleration/deceleration setting
22
     Ovrd 100
                                                  'Speed setting
23
                                                  'Optimal acceleration/deceleration specification
     Loadset 1,1
                                                   'Turning optimal acceleration/deceleration ON
24
     OAdl On
25
     Cnt 0
26
     Clr 1
27
     HOpen 1
28 '/// Initial value setting ///
29
     TrClr 1
                                                 'Clear tracking buffer 1
30
     MWAIT1=0
                                                    'Clear workpiece wait flag 1
31 '/// The processing to singular point of
                                      RH-3S*HR ///
32 MTUPPOS=P3HR.X
                                        'Move time to midair position(measurement time that the slowest
J1 axis rotated from -225 to 225 degrees)
33
    MTWKPOS=1000 * PUP1.Y / P3HR.Y 'Move time to suction position(calculation from speed and move
amount of J3)
34
     MTWKUP=1000 * PUP1.Z / P3HR.Y
                                         'Move time to midair position(calculation from speed and move
amount of J3)
     MTRSTT=MTUPPOS
                                         'Move time to midair position
     MTREND=MTUPPOS + MTWKPOS + (PDLY1.X * 1000) + MTWKUP 'Necessary time for tracking before
it passes over singular point
37 '/// The processing to singular point of RH-3S*HR ///
38 '/// Multitask startup ///
39
     M 09#=PWK.X
                                                     'Model number specification
     If M Run(2)=0 Then
40
                                                  'Confirmation of conveyer 1 multitasking
       XRun 2, "CM1", 1
41
                                                   'Multitasking setting
42
       Wait M_Run(2)=1
43
     EndIf
     Priority PRI.X,1
44
45
     Priority PRI.Y,2
46 Return
47'
48 '### Tracked workpiece takeout processing ###
49 *S20TRGET
50 '/// Tracking buffer check ///
51 *LBFCHK
     If M Trbfct(1)>=1 Then GoTo *LREAD
                                                  'If a workpiece exists
52
     Mov P1
                                                   'Move to the pull-off location
53
     MWAIT1=0
```

- 1			
		Workpiece data acquisition ///	
		READ TrRd PBPOS,MBENC#,MBWK%,1,MBENCNO%	'Read data from the tracking buffer
		GoSub *S40DTSET	'Transportation data setting
		Workpiece position confirmation ///	·
		NEXT PX50CUR=TrWcur(MBENCNO%,PBPOS,MBEN0	C#) 'Acquire the current workpiece position
	63	MX50ST=PRNG.X	'Start distance of the range where the robot can
		a workpiece	-
	64	MX50ED=PRNG.Y	'End distance of the range where the robot can
		a workpiece MX50PAT=PTN.X	'Conveyer position pattern number
		GoSub *S50WKPOS	'Workpiece position confirmation processing
		If MY50STS=3 Then GoTo *LBFCHK	'Already passed. Go to the next workpiece
		If MY50STS=2 Then GoTo *LTRST If MWAIT1=1 Then GoTo *LNEXT	'Operable: start tracking 'Wait for incoming workpieces
		To standby position ///	Walt for incoming workploods
		PWAIT=P1	'Change to workpiece wait posture
		Select PTN.X Case 1 To 2	'Conveyer position pattern number 'When the conveyer is the front of the robot
	74	PWAIT.X=PX50CUR.X	'X coordinates of the robot are matched to
	workp		
	75 76	Case 3 To 6 PWAIT.Y=PX50CUR.Y	'Y coordinates of the robot are matched to
	workp		1 cooldinates of the lobot are matched to
	77	End Select	
		PWAIT.Z=PX50CUR.Z+PUP1.X	
		PWAIT.C=PX50CUR.C Mov PWAIT	'Move to workpiece wait posture PWAIT
		MWAIT1=1	'Set workpiece wait flag
		GoTo *LNEXT	
	83 '/// 84 *L	Start tracking operation ///	
		Accel PAC1.X,PAC1.Y	
	86	Cnt 1,0,0	
	87 88	Act 1=1 Tek On DRDOS MRENC# DTDASE MRENCNOV	'Monitor the robot following workpieces too far
	89	Trk On,PBPOS,MBENC#,PTBASE,MBENCNO% Mov PGT,PUP1.Y Type 0,0	'Tracking operation start setting 'Move to tracking midair position
	90	Accel PAC2.X,PAC2.Y	•
	91	Mov PGT Type 0,0	'Move to a suction position
	92 93	GoSub *S85CLOSE MX80ENA=PHND.X	'Turn suction ON 'Check instruction
	94	MX80SIG=PHND.Y	'Check signal number
	95	MX80SEC=PDLY1.X	'Check second number(s)
	96 97	GoSub *S80CWON Cnt 1	'absorption confirmation
	98	Accel PAC3.X,PAC3.Y	
	99	Mov PGT,PUP1.Z Type 0,0	'Move to tracking midair position
	100	Trk Off	'Tracking operation end setting
	101 102	Act 1=0 Accel 100,100	
	103	MWAIT1 = 0	
		Return	
	105 '	### Workpiece placing processing ###	
		S30WKPUT	
	108	Accel PAC11.X,PAC11.Y	
	109 110	Mov PPT,PUP2.Y	'Move to over the placement position
	110	Accel PAC12.X,PAC12.Y Cnt 1,0,0	
	112	Mov PPT Type 0,0	'Move to the placement position
	113	GoSub *S860PEN	'Turn suction OFF
	114 115	MX81ENA=PHND.X MX81SIG=PHND.Z	'Check instruction 'Check signal number
	116	MX81SEC=PDLY2.X	'Check second number(s)

```
117
      GoSub *S81CWOFF
                                                        'Release confirmation
118
      Cnt 1
      Accel PAC13.X,PAC13.Y
119
120
      Mov PPT,PUP2.Z Type 0,0
                                                      'Move to over the placement position
121
      Accel 100,100
122 Return
123 '
124 '### Transportation data setting processing ###
125 *S40DTSET
126
      PTBASE=P 100(PWK.X)
                                                         'Create reference position
127
      TrBase PTBASE.MBENCNO%
                                                           'Tracking base setting
128
      PGT=PTBASE*POFSET
                                                          'Suction position setting
129
      GoSub *S46ACSET
                                                        'Interrupt definition
130 Return
131'
132 '### Interrupt definition processing 1 ###
133 *S46ACSET
      Select PTN.X
134
                                                     'Conveyer position pattern number
135
      Case 1 'Front right -> left
136
        MSTP1=PRNG.Z
                                                        'Following stop distance
137
                                                        'To *S91STOP if followed far long
        Def Act 1,P_Fbc(1).Y>MSTP1 GoTo *S91STOP
138
        Break
139
      Case 2 'Front left -> right
140
        MSTP1=-PRNG.Z
141
        Def Act 1,P Fbc(1).Y<MSTP1 GoTo *S91STOP
142
        Break
143
      Case 3 'Left side rear -> front
144
      Case 5 'Right side rear -> front
145
        MSTP1=PRNG.Z
146
        Def Act 1,P_Fbc(1).X>MSTP1 GoTo *S91STOP
147
        Break
148
      Case 4 'Left side front -> rear
      Case 6 'Right side front -> rear
149
        MSTP1=-PRNG.Z
150
151
        Def Act 1,P_Fbc(1).X<MSTP1 GoTo *S91STOP
152
153
      End Select
154 Return
155'
156 '### Workpiece position confirmation processing ###
157
       'PX50CUR:Current workpiece position
158
       'MX50ST:Tracking start range
       'MX50ED:Tracking end range
159
160
       'MX50PAT:Conveyer position pattern number
161
       'MY50STS:Result (1: Wait/2: Start tracking/3: Next workpiece)
162 *S50WKPOS
      MY50STS=0
163
                                                       'Clear return value
164 '/// The processing to singular point of RH-3S*HR ///
165
      P50FWCUR=PX50CUR * Inv(P Tool) 'Position of workpiece in flange
166
      PTRST=P Zero
      PTRED=P Zero
167
168 '/// The processing to singular point of RH-3S*HR ///
      Select MX50PAT
                                                      'Conveyer pattern
169
170
      Case 1 'Front right -> left
171
        M50STT=-MX50ST
                                                        'The start side has a negative value
172
        M50END=MX50ED
        If PosCq(PX50CUR)=1 And PX50CUR.Y>=M50STT And PX50CUR.Y<=M50END Then
173
          MY50STS=2
                                                       'Tracking possible
174
175 '/// The processing to singular point of RH-3S*HR ///
          PTRST.Y = P_CvSpd(MBENCNO%).Y * MTRSTT / 1000
176
          PTRST = PTRST + P50FWCUR
177
                                                                'Position when beginning to follow as for
workpiece.
          PTRED.Y = P_CvSpd(MBENCNO%).Y * MTREND / 1000
178
179
          PTRED = PTRED + P50FWCUR
                                                                 'Position when having finished following
as for workpiece.
```

```
180
          If (PTRST.X > -P3HR.Z And PTRST.X < P3HR.Z) Then 'case the singular point area
181
            If (PTRST.Y < -P3HR.Z And PTRED.Y < -P3HR.Z) Then MY50STS=2 'The position of the work
peace is OK from the singular point if previous.
182
             If (PTRED.Y > -P3HR.Z And PTRED.Y < P3HR.Z) Then MY50STS=3 'If the tracking end
position is singular point neighborhood, it is NG.
183
             If (PTRST.Y > -P3HR.Z And PTRST.Y < P3HR.Z) Then MY50STS=3 'If the tracking start
position is singular point neighborhood, it is NG.
184
            If (PTRST.Y > P3HR.Z And PTRED.Y > P3HR.Z) Then MY50STS=3
                                                                              'It is NG if passing over
the singular point.
185
          EndIf
186 '/// The processing to singular point of RH-3S*HR ///
187
        Else 'If tracking not possible
          If PX50CUR.Y<0 Then MY50STS=1
                                                       'Wait
188
189
          If PX50CUR.Y>M50END Then MY50STS=3
                                                         'Move onto the next workpiece
190
               If PosCq(PX50CUR)=0 And PX50CUR.Y>=M50STT And PX50CUR.Y<=M50END Then
MY50STS=3 'Outside the movement range
191
        EndIf
192
        Break
193
      Case 2 'Front left -> right
194
        M50STT=MX50ST
195
        M50END=-MX50ED
                                                       'The end side has a negative value
196
        If PosCq(PX50CUR)=1 And PX50CUR.Y<=M50STT And PX50CUR.Y>=M50END Then
197
          MY50STS=2
                                                      'Tracking possible
198 '/// The processing to singular point of RH-3S*HR ///
199
          PTRST.Y = P CvSpd(MBENCNO%).Y * MTRSTT / 1000
200
          PTRST = PTRST + P50FWCUR
                                                              'Position when beginning to follow as for
workpiece.
201
          PTRED.Y = P CvSpd(MBENCNO%).Y * MTREND / 1000
202
          PTRED = PTRED + P50FWCUR
                                                               'Position when having finished following
as for workpiece.
          If (PTRST.X > -P3HR.Z And PTRST.X < P3HR.Z) Then 'case the singular point area
203
204
            If (PTRST.Y > P3HR.Z And PTRED.Y > P3HR.Z) Then MY50STS=2 'The position of the work
peace is OK from the singular point if previous.
             If (PTRED.Y > -P3HR.Z And PTRED.Y < P3HR.Z) Then MY50STS=3 'If the tracking end
205
position is singular point neighborhood, it is NG.
206
             If (PTRST.Y > -P3HR.Z And PTRST.Y < P3HR.Z) Then MY50STS=3 'If the tracking start
position is singular point neighborhood, it is NG.
207
            If (PTRST.Y < -P3HR.Z And PTRED.Y < -P3HR.Z) Then MY50STS=3
                                                                              'It is NG if passing over
the singular point.
208
          EndIf
209 '/// The processing to singular point of RH-3S*HR ///
210
        Else 'If tracking not possible
211
          If PX50CUR.Y>0 Then MY50STS=1
                                                       'Wait
          If PX50CUR.Y<0 Then MY50STS=3
212
                                                      'Move onto the next workpiece
               If PosCq(PX50CUR)=0 And PX50CUR.Y<=M50STT And PX50CUR.Y>=M50END Then
MY50STS=3 'Outside the movement range
214
        EndIf
215
        Break
216
      Case 3 'Left side rear -> front
217
      Case 5 'Right side rear -> front
218
        M50STT=-MX50ST
                                                       'The start side has a negative value
219
        M50END=MX50ED
220
        If PosCq(PX50CUR)=1 And PX50CUR.X>=M50STT And PX50CUR.X<=M50END Then
          MY50STS=2
                                                      'Tracking possible
222 '/// The processing to singular point of RH-3S*HR ///
223
          PTRST.X = P CvSpd(MBENCNO%).X * MTRSTT / 1000
224
          PTRST = PTRST + P50FWCUR
                                                              'Position when beginning to follow as for
workpiece.
225
          PTRED.X = P_CvSpd(MBENCNO%).X * MTREND / 1000
          PTRED = PTRED + P50FWCUR
226
                                                               'Position when having finished following
as for workpiece.
227
          If (PTRST.Y > -P3HR.Z And PTRST.Y < P3HR.Z) Then 'case the singular point area
228
            If (PTRST.X < -P3HR.Z And PTRED.X < -P3HR.Z) Then MY50STS=2 'The position of the work
peace is OK from the singular point if previous.
229
             If (PTRED.X > -P3HR.Z And PTRED.X < P3HR.Z) Then MY50STS=3 'If the tracking end
```

```
position is singular point neighborhood, it is NG.
230
             If (PTRST.X > -P3HR.Z And PTRST.X < P3HR.Z) Then MY50STS=3 'If the tracking start
position is singular point neighborhood, it is NG.
231
            If (PTRST.X > P3HR.Z And PTRED.X > P3HR.Z) Then MY50STS=3
                                                                               'It is NG if passing over
the singular point.
232
          EndIf
233 '/// The processing to singular point of RH-3S*HR ///
234
        Else 'If tracking not possible
          If PX50CUR.X<0 Then MY50STS=1
235
                                                       'Wait
          If PX50CUR.X>0 Then MY50STS=3
236
                                                       'Move onto the next workpiece
               If PosCq(PX50CUR)=0 And PX50CUR.X>=M50STT And PX50CUR.X<=M50END Then
237
MY50STS=3 'Outside the movement range
        EndIf
238
239
        Break
240
      Case 4 'Left side front -> rear
241
      Case 6 'Right side front -> rear
242
        M50STT=MX50ST
243
        M50END=-MX50ED
                                                        'The end side has a negative value
        If PosCq(PX50CUR)=1 And PX50CUR.X<=M50STT And PX50CUR.X>=M50END Then
244
245
          MY50STS=2
                                                      'Tracking possible
246 '/// The processing to singular point of RH-3S*HR ///
          PTRST.X = P CvSpd(MBENCNO%).X * MTRSTT / 1000
247
248
          PTRST = PTRST + P50FWCUR
                                                               'Position when beginning to follow as for
workpiece.
249
          PTRED.X = P CvSpd(MBENCNO%).X * MTREND / 1000
250
          PTRED = PTRED + P50FWCUR
                                                                'Position when having finished following
as for workpiece.
          If (PTRST.Y > -P3HR.Z And PTRST.Y < P3HR.Z) Then 'case the singular point area
251
            If (PTRST.X > P3HR.Z And PTRED.X > P3HR.Z) Then MY50STS=2 'The position of the work
252
peace is OK from the singular point if previous.
             If (PTRED.X > -P3HR.Z And PTRED.X < P3HR.Z) Then MY50STS=3 'If the tracking end
253
position is singular point neighborhood, it is NG.
             If (PTRST.X > -P3HR.Z And PTRST.X < P3HR.Z) Then MY50STS=3 'If the tracking start
254
position is singular point neighborhood, it is NG.
            If (PTRST.X < -P3HR.Z And PTRED.X < -P3HR.Z) Then MY50STS=3
255
                                                                               'It is NG if passing over
the singular point.
256
          EndIf
257 '/// The processing to singular point of RH-3S*HR ///
258
        Else 'If tracking not possible
259
          If PX50CUR.X>0 Then MY50STS=1
                                                       'Wait
260
          If PX50CUR.X<0 Then MY50STS=3
                                                       'Move onto the next workpiece
261
               If PosCq(PX50CUR)=0 And PX50CUR.X<=M50STT And PX50CUR.X>=M50END Then
MY50STS=3 'Outside the movement range
262
        EndIf
263
        Break
264
      End Select
      P50TRST=PTRST '/// The processing to singular point of RH-3S*HR ///
265
      P50TRED=PTRED '/// The processing to singular point of RH-3S*HR ///
266
267
      If MY50STS=0 Then Error 9199
                                                    'Program modification required
268 Return
269'
270 '### Origin return processing ###
271 *S90HOME
272
      Servo On
                                                    'Servo ON
273
      P90CURR=P_Fbc(1)
                                                       'Acquire the current position
274
      If P90CURR.Z<P1.Z Then
                                                     'If the current height is below the origin
275
        Ovrd 10
276
        P90ESC=P90CURR
                                                        'Create an escape position
277
        P90ESC.Z=P1.Z
278
        Mvs P90ESC
                                                      'Move to the escape position
        Ovrd 100
279
280
      EndIf
281
      Mov P1
                                                     'Move to the origin
282 Return
```

283 '

```
284 '### Tracking interruption processing ###
285 *S91STOP
286
     Act 1=0
287
      Trk Off
288
     GoSub *S86OPEN
                                                       'Release suction
289
      P91P=P Fbc(1)
                                                      'Acquire the current position
290
      P91P.Z=P1.Z
291
      Mvs P91P Type 0,0
292
      Mov P1
                                                     'Return to the origin once
293
      GoTo *LBFCHK
294 '
295 '##### Suction of substrates #####
296 *S85CLOSE
297
                                                    'Turn suction ON
      HClose 1
298 Return
299 '##### Suction/release of substrates #####
300 *S860PEN
      HOpen 1
                                                     'Turn suction OFF
301
302 Return
303'
304 '##### Turning on the signal is waited for #####
305
      'MX80ENA:ENABLE/DISABLE of check(1/0)
306
      'MX80SIG:Check signal number
307
      'MX80SEC:Check second number(S)
308
      'MY80SKP:OK/TIMEOUT(1/0)
309 *S80CWON
310
      If MX80ENA=1 Then
                                                      'If the signal check is ENABLE
311
        M Timer(1)=0
312
        MY80SKP=0
313
        MX80SEC=MX80SEC * 1000
                                                         'Second -> Millisecond
314 *L80LOP
        If (M_Timer(1)>MX80SEC) Or (MY80SKP<>0) Then *L80END
315
          If M In(MX80SIG)=1 Then MY80SKP=1
                                                       'If the signal specified is turned on
316
        GoTo *L80LOP
317
318
      Else
                                                    'If the signal check is DISABLE
319
        DIv MX80SEC
                                                      'Wait at the specified check time
320
        MY80SKP=1
                                                       'OK
321
      EndIf
322 *L80END
323 Return
324 '
325 '##### Turning off the signal is waited for #####
      'MX81ENA:ENABLE/DISABLE of check(1/0)
326
327
      'MX81SIG:Check signal number
328
      'MX81SEC:Check second number(S)
329
      'MY81SKP:OK/TIMEOUT(1/0)
330 *S81CWOFF
331
      If MX81ENA=1 Then
                                                      'If the signal check is ENABLE
332
        M Timer(1)=0
        MY81SKP=0
333
334
        MX81SEC=MX81SEC * 1000
                                                         'Second -> Millisecond
335 *L81LOP
        If (M Timer(1)>MX81SEC) Or (MY81SKP<>0) Then *L81END
336
337
          If M In(MX81SIG)=0 Then MY81SKP=1
                                                       'If the signal specified is turned off
338
        GoTo *L81LOP
339
      Else
                                                    'If the signal check is DISABLE
340
        Dly MX80SEC
                                                      'Wait at the specified check time
341
        MY81SKP=1 'OK
342
      EndIf
343 *L81END
344 Return
P3HR=(+800.000,+1500.000,+60.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PUP1=(+50.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PDLY1=(+1.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)
PWK = (+1.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)
```

PRI=(+1.000,+1.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) P1=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)PBPOS=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PX50CUR=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PRNG=(+300.000,+200.000,+400.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PTN=(+1.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)PWAIT=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PAC1=(+100.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)PTBASE=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PGT=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0.0) PAC2=(+100.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PHND = (+0.000, +900.000, +900.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)PAC3=(+100.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PAC11=(+100.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0)PPT = (+0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)PUP2 = (+0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)PAC12=(+100.000,+100.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0.0) PDLY2=(+1.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PAC13 = (+100.000, +100.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000, +0.000)(0,0)POFSET=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0.0) P50FWCUR=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PTRST=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) PTRED=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) P50TRST=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)(0,0) P50TRED=(0.000,0.000,0.000,0.000,0.000,0.000,0.000,0.000)(0,0) P90CURR=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) P90ESC=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0,0) P91P=(+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000,+0.000)(0.0)

21.6. Calibration sheet

This is a calibration sheet. Please use this sheet in your calibration work.

Enlarge or reduce it as necessary to match the size of the field of vision of the image.

When changing the size of the sheet, or calibrating in more points, you can photocopy the sheet.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS: 5-1-14, YADA-MINAMI, HIGASHI-KU NAGOYA 461-8670, JAPAN

Authorised representative: MITSUBISHI ELECTRIC EUROPE B.V. GERMANY Gothaer Str. 8, 40880 Ratingen / P.O. Box 1548, 40835 Ratingen, Germany