

MITSUBISHI TRANSISTORIZED INVERTER

TECHNICAL NOTE

No. 25

CAPACITY SELECTION FOR LIFTING OPERATION

MITSUBISHI

CONTENTS

CHAPTER 1	DEFINITION OF LIFTING OPERATION AND POINTS ABOUT CAPACI SELECTION	
1.1 Definit	ion of lifting operation	1
1.2 Points	about capacity selection	1
CHAPTER 2	SELECTION PROCEDURE	.2

CHAPTE	R 3 SELECTION PROCEDURE	5
3.1 (Calculation of load power	5
3.2	Temporary selection of motor and inverter	5
3.3	Examination of whether the motor can be started or not	5
3.4	Examination of whether low-speed and high-speed operations can be performed or not	6
3.5	Examination of whether acceleration/deceleration is possible or not	6
3.6	Examination of regenerative power (Thermal examination of the brake unit)	10
3.7	Thermal examination of the motor	12
3.8	Stopping accuracy	14

4.1	Selection example 1) <with counterweight=""></with>	15
4.2	Selection example 2) <without counterweight=""></without>	.26

APPENDICES

1)	Calculation sheets for SI system of units	.37
2)	Calculation sheets for Gravitational System of units	.49

CHAPTER 1 DEFINITION OF LIFTING OPERATION AND POINTS ABOUT CAPACITY SELECTION

1.1 Definition of Lifting Operation

Operation patterns are largely classified by operation time into constant-speed long operation and repeated short operation. The former is referred to as "continuous operation" and the latter as "cyclic operation", and lifting operation belongs to cyclic operation. A feature of lifting operations is that the load characteristic differs with the direction of rotation. That is, there are two modes: positive load (generally during lifting) and negative load (generally during lowering). For lifting operation, it is especially important to examine regenerative energy under negative load.

<Data required for selection> Technical Note No. 22 "Capacity Selection: Data Section".

- 1.2 Points about Capacity Selection
- (1) Regenerative energy must be handled. Under negative load, the motor is rotated by the load. Basically, the motor is driven (rotated at more than the synchronous speed) by the energy of the load and its power is returned to the inverter. To handle this regenerative energy, the use of a brake unit or power return converter must be examined.
- (2) Large starting torque is needed at a low frequency. To prevent the load from slipping down due to insufficient starting torque of the motor at the start of lifting (positive load), it is necessary to select the motor and inverter which provide sufficient starting torque. Particularly, the optimum inverter (open-loop) is the FR-A500 series inverter which uses advanced magnetic flux vector control to allow low-speed torque to be increased.
- (3) Mechanical safety brake is required.A mechanical safety brake must be used with the lifter to hold the load while stopped.

CHAPTER 2 SELECTION PROCEDURE

2.1 Selection Flowchart

The half-tone screen indicates the gravitational systems of units.

Symbol SI Systems of Units Gravitational Systems of Units Specifications Machine side Required power PL kW kW specifications Рм kW kW Motor capacity Ρ Number of motor poles Ν Motor speed r/min rpm Frequency f Hz Hz V Moving velocity m/min m/min W Load weight kgf kgf Machine efficiency η ____ _ Friction coefficient μ Load torque converted into the ΤL N•m kgf•m equivalent value at the motor shaft Load torque at start converted into the TLS N•m kgf•m equivalent value at the motor shaft GD²L Load GD² converted into the equivalent kgf•m² kgf•m² value at the motor shaft GD² of mechanical brake converted into GD²B kgf•m² kgf•m² the equivalent value at the motor shaft Cycle time (1 cycle) tc s s Time in each operation zone tn s s Acceleration time ta s s Deceleration time td s s Acceleration Acc m/s² m/s² Specifications Rated motor speed Νм r/min rpm used for Rated motor torque Тм N•m kgf•m examination Тмз N•m Maximum motor starting torque kgf•m Acceleration torque Та N•m kgf•m Deceleration torque Td N•m kgf•m TF % Load torque factor % Motor GD² GD^2r kgf•m kgf•m Short-time maximum torque coefficient αm Maximum starting torque coefficient αs _ _ Linear acceleration torque coefficient αa ____ ____ Brake torque coefficient (general term) β _ Heat coefficient σ _ ____ Cooling coefficient С Motor current I % % Motor equivalent current value Імс % % Regenerative Average power absorbed by the motor Wм W W power Average power returned to the inverter WINV W W Average power returned from the ma-WMECH W W chine W W Continuous permissible power of the WRC brake unit Short-time permissible power per WRS W W operation of the brake unit Stopping Stopping time tb s s Stopping distance accuracy S mm mm Stopping accuracy mm Δε mm

2.2 Specification Symbols Related to the Load and Operation Required for Selection

Table 2.1 Specification Symbol/Unit List

CHAPTER 3 SELECTION PROCEDURE

3.1 Calculation of Load Power

The general way of finding the Power required for the load (PL) is by the following formula:

$$\mathsf{P}_{\mathsf{L}} = \frac{\mathsf{W} \times \mathsf{V}}{6120 \times \eta} \; [\mathsf{kW}]$$

where

W : Load weight (moving object weight) [kgf]

V : Moving velocity

[m/min]

η : Machine efficiency

- 3.2 Temporary Selection of Motor and Inverter
- Temporary selection of motor capacity Temporarily select the motor capacity (P_M) larger than the required power (P_L).

Temporarily selected motor capacity (PM) \ge PL x αp [kW] αp : 0.5 to 2.0

When V/F control is selected or GD^2 is large, for example, it is recommended to temporarily select the coefficient of 1.0 or more as αp .

If the motor speed (N) during rated load drive is less than the rated motor speed (N $_{M}$), the motor torque cannot be utilized to the maximum and the motor capacity increases as indicated by formula (3.2):

Temporarily selected motor capacity $(P_M) \ge P_L \times \alpha p \times N_M/N$ [kW]

(2) Temporary selection of inverter capacity

Temporarily select the inverter capacity identical to the temporarily selected motor capacity.

Temporarily selected inverter capacity $(P_{INV}) \ge$ temporarily selected motor capacity (P_M) [kW]

When the acceleration torque required is expected to be greater than 1.4 times of the stationary load torque, temporarily select the inverter capacity one rank higher than the motor capacity.

3.3 Examination of Whether the Motor Can be Started or Not

As the inverter-driven motor is accelerated with the current held within the overcurrent limit (150%, 1 minute) of the inverter at start and during acceleration, the starting torque and acceleration torque are smaller than those in direct-on line starting with a commercial power supply. Especially during lifting, the motor torque must be made larger than the load torque to prevent the load from slipping down when the mechanical holding brake is released.

$$T_{MS} > T_{LS}$$

 $T_{MS} = T_M \times \alpha S \times \delta$

T_{MS} : Maximum motor starting torque

Short-time maximum motor torque × δ at the starting frequency (Refer to Technical Note No. 22.)

- αs : Maximum starting torque coefficient
- δ : Heat coefficient (Refer to Technical Note No. 22)
- TLS : Load torque at start

Under the influence of static friction, torque for starting motion in a static state is larger than the stationary load torque. Determine this value after making a full examination of the mechanical system.

Under regenerative load, make calculation by setting the machine efficiency (η) to 1 and the friction coefficient (μ) to 0 to take safety into consideration.

- 3.4 Examination of Whether Low-speed and High-Speed Operations Can Be Performed or Not
- (1) Whether low-speed operation can be performed or not

Low-speed operation is determined by the minimum frequency fmin and required stopping accuracy of the operation pattern.

When f_{min} is less than 6Hz, the lifting torque characteristic reduces remarkably and cannot be used practically. In this case, reconsider the motor capacity, machine gearbox reduction ratio, etc. so that f_{min} is within the range of 6 to 120Hz.

Operation Pattern

Suppose that f_2 (low-speed running frequency during lifting) \ge 6Hz. Low-speed operation can be performed if the following condition is satisfied:

$$T_M \times \alpha_m \times \delta > T_L$$

αm : Short-time maximum torque coefficient

T_{Lmax}: Maximum. load torque [N•m] [kgf•m]

Under regenerative load, make calculation by setting the machine efficiency (η) to 1 and the friction coefficient (μ) to 0 to take safety into consideration.

(2) Whether high-speed operation can be performed or not

When the maximum frequency is 60Hz or more, high-speed operation can be performed if the following condition is satisfied at the maximum frequency:

$$T_M \times \alpha_m > T_L$$

 α_m : Short-time maximum torque coefficient at fmax

3.5 Examination of Whether Acceleration/Deceleration Is Possible or Not

When the motor is accelerated by the inverter, there are two modes: linear acceleration and non-linear acceleration. For an application which requires one-cycle time to be kept or for a lift, use linear acceleration for examination.

Deceleration torque is defined as [-Td] since it is a negative load relative to acceleration torque. The torque required for deceleration is found by adding load torque to the deceleration torque, check whether the temporarily selected combination of motor and inverter provides sufficient brake torque or not.

(1) Acceleration time (ta)

Represents a period of time required to accelerate from a stop state to the maximum motor speed (N_{max}) (maximum moving velocity (V_{max})).

$$ta = \frac{V_{max}}{60 \times Acc} [s]$$

Note

Acceleration (Acc) indicates that velocity increases with time when an object begins to move and velocity decreases with time when that object stops. Thus, it is said there is acceleration when velocity varies with time and the magnitude of acceleration is represented by the variation of velocity per second. If this velocity increases by 9.8m per second then this acceleration is represented by G, $1G = 9.8m/s^2$.

(2) Acceleration torque (Ta)

Acceleration torque (Ta) is found by the following formulas: <SI systems of units>

$$Ta = \frac{\sum GD^2 \times N_{max}}{38.2 \times ta} [N \bullet m]$$

$$Ta = \frac{\sum GD^2 \times N_{max}}{375 \times ta} [kgf \cdot m]$$

 $\sum GD^2$: Sum total of GD^2 converted into the equivalent value at the motor shaft = $GD^2_M + GD^2_B + GD^2_L$ (Motor) (Brake) (Load)

(3) Deceleration time (td)

$$td = \frac{V_{max}}{60 \times Acc} [s]$$

(4) Deceleration torque (Td)
 Deceleration torque (Td) is found by the following formulas:
 <SI systems of units>
 <Gravitational systems of units>

$$Td = \frac{\Sigma GD^2 \times N_{max}}{38.2 \times td} [N \bullet m]$$

$$Td = \frac{\Sigma GD^2 \times N_{max}}{375 \times td} [kgf \bullet m]$$

(5) Torque applied to the motor in each operation region When the operation pattern is assumed to be as shown in Fig. 3.2, find the torque applied to the motor in each of the operation regions 1) to 8).

Fig. 3.2 Operation Pattern

The torque applied to the motor in each operation region during vertical lift operation is as follows:

	Region	Torque applied to the motor [N•m]	SI systems of units [N•m] Gravitational systems of units [kgf•m]		
Lifting	1)	Taup = Ta1 + T∪up + T	frup		
	2)	$T_{LU} = T_{Uup} + Tfr_{up}$			
	3)	$T_{dup} = -T_{d1} + T_{Uup} +$	Tfrup		
	4)	$T_{LU} = T_{Uup} + Tfr_{up}$			
Lowering	5)	$T_{adn} = T_{a2} + T_{Udn} + Tfr_{dn}$			
	6)	$T_{LD} = T_{Udn} + Tfr_{dn}$			
	7)	$T_{ddn} = -T_{d2} + T_{Udn} +$	Tfr _{dn}		
	8)	$T_{LD} = T_{Udn} + Tfr_{dn}$			

Under regenerative load, calculate T_{uup} and T_{udn} with negative signs.

<SI systems of units>

Where: Unbalance torque during lifting (lowering): $T_{Uup} = (T_{Udn}) = \frac{W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [N \cdot m]$ Friction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [N \cdot m]$ Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: W Acceleration of gravity: g	_
$T_{Uup} = (T_{Udn}) = \frac{W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [N \cdot m]$ Friction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [N \cdot m]$ Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: W $T_{Uup} = (T_{Udn}) = \frac{W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [kgf \cdot m]$ $T_{Uup} = (T_{Udn}) = \frac{W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta} [kgf \cdot m]$ Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: W	
Friction torque of drive section during lifting (lowering):Friction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta}$ [N•m] Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: WFriction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta}$ [kgf•m] Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: W	
Friction torque of drive section during lifting (lowering):Friction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta}$ [N•m] Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: WFriction torque of drive section during lifting (lowering): $Tfr_{up} = (Tfr_{dn}) = \frac{\mu \times W \times g \times \Delta S \times 10^{-3}}{2 \times \pi \times \eta}$ [kgf•m] Machine efficiency of drive section: η Moving amount per motor revolution: ΔS [mm] Load weight: W	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	
Moving amount per motor revolution: ΔS [mm]Moving amount per motor revolution: ΔS [mm]Load weight: WLoad weight: W	
Load weight: W	
Acceleration of gravity: g	
Under regenerative load, make calculation by Under regenerative load, make calculation by	
setting η to 1 and μ to 0 to take safety into setting η to 1 and μ to 0 to take safety into consideration.	
Acceleration torque during lifting :Ta1 [N•m] Acceleration torque during lifting :Ta1 [kgf•m]	
Acceleration torque during lowering :Ta ₂ [N•m] Acceleration torque during lowering :Ta ₂ [kgf•m]	
Deceleration torque during lifting :Td1 [N•m] Deceleration torque during lifting :Td1 [kgf•m]	
Deceleration torque during lowering :Td ₂ [N•m] Deceleration torque during lowering :Td ₂ [kgf•m]	

< Gravitational systems of units>

(6) Whether acceleration is possible or not

Make sure that the temporarily selected motor output torque is larger than the torque required for acceleration.

The maximum torque (Ta_{max}) required for acceleration is either of Ta_{up} in region 1) and Ta_{dn} in region 5), which is larger.

Motor output torque		Torque required for acceleration
Тм × αа	>	Tamax

Linear acceleration torque coefficient αa is as follows:

Tamax

Тм

Tamax : Max. torque required for acceleration

 T_{Lmax} : Maximum value of load torque converted into the equivalent value at the motor shaft

T_M : Rated motor torque

α : Linear acceleration torque coefficient (refer to Technical Note No. 22)

Note: Regenerative acceleration is made when Ta_{up} < 0 and Ta_{dn} < 0. In this case, the maximum torque required for regeneration is judged by whether deceleration is possible or not. Hence, the judgment of whether acceleration is possible or not is not needed here.

(7) Whether deceleration is possible or not

Make sure that the brake torque developed by the temporarily selected motor-inverter combination is larger than the torque required for deceleration.

The maximum torque Td_{max} required for deceleration is either of Td_{up} in region 3 and Td_{dn} in region 7, which is smaller.

Torque needed for deceleration		Brake torque of temporarily selected motor-inverter combination
Tdmax	<	$T_{M} \times \beta_{min}$

The deceleration torque coefficient β at this time is:

- Tdmax : Maximum torque required for deceleration
- T_M : Rated motor torque
- β_{min} : Minimum value of deceleration torque coefficient (Refer to Technical Note No. 22.)
- Note: Driving deceleration is made when $Td_{up} > 0$ and $Ta_{dn} > 0$. In this case, the maximum torque required for driving is judged by whether acceleration is possible or not. Hence, the judgment of whether deceleration is possible or not is not needed here.

If the above formula cannot be satisfied, increase the braking torque of the motor-inverter combination by the following means. (Refer to Technical Note No. 22.)

- (a) Use an external brake resistor or brake unit.
- (b) Use the power return built-in inverter (FR-A201).

How to find the deceleration torque coefficient For the deceleration torque coefficient (β_{min}),	6	6	0	12	20
For the deceleration torque coefficient (β_{min}),					
select the smaller value of the torque coefficient β_2 at 6Hz and the torque coefficient β_1 at the maxi- mum operating frequency (f_{max}) in the over-60Hz β_1 region. β_2				fmax	Frequency (Hz)

3.6 Examination of Regenerative Power (Thermal Examination of Brake Unit)

(1) Regenerative power in each operation zone

Assuming that the operation pattern is as shown in Fig. 3.2, find the average regenerative power returned to the inverter (W_{INV}) during one-cycle time (tc) and make sure that the resultant value is within the power consumption limit of the brake (the continuous permissible power of the braking unit (W_{RC}) and the short-time permissible power per operation of the braking unit (W_{RS})) to determine whether the braking unit can be used thermally or not.

Torque and regenerative power (power in the negative power zone) in each operation zone during lifting operation are as follows: <SI systems of units>

Region	Regenerative Power [W]
1)	$W_1 = 0.1047 \times \frac{N_1}{2} \times T_{aup}$
2)	$W_2=0.1047\times N_1\times T_{LU}$
3)	$W_3=0.1047\times \frac{N_1+N_2}{2}\times T_{dup}$
4)	$W_4 = 0.1047 \times N_2 \times T_{LU}$
5)	$W_6 = 0.1047 \times \frac{N_1}{2} \times T_{adn}$
6)	$W_7 = 0.1047 \times N_1 \times T_{LD}$
7)	$W_8=0.1047\times \frac{N_1+N_2}{2}\times T_{ddn}$
8)	$W_{9}=0.1047\times N_{2}\times T_{LD}$

Region	Regenerative Power [W]
- 5 -	
1)	$W_1 = 1.027 \times \frac{N_1}{2} \times T_{aup}$
2)	$W_2 = 1.027 \times N_1 \times T_{LU}$
	$N_1 + N_2$

3) $W_3 = 1.027 \times \frac{N_1 + N_2}{2} \times T_{dup}$ 4) $W_4 = 1.027 \times N_2 \times T_{LU}$ 5) $W_6 = 1.027 \times \frac{N_1}{2} \times T_{adn}$

6) $W_7 = 1.027 \times N_1 \times T_{LD}$

•	
7)	$W_8 = 1.027 \times \frac{N_1 + N_2}{2} \times T_{ddn}$
8)	$W_9 = 1.027 \times N_2 \times T_{\text{LD}}$

(2) Thermal examination

Calculate the average power returned from the load [WMECH] by the following formula:

$$W_{MECH} = \frac{|\Sigma(W_n \times t_n)|}{\Sigma t_n} \quad [W]$$

(Refer to Fig. 3.2)

Note that $W_n \times t_n$ and tn are calculated for only the regions where power becomes negative. The average power returned to the inverter during one cycle (W_{INV}) is:

$$W_{INV} = W_{MECH} \times 0.9 [W]$$

Here, the average power returned to the inverter (W_{INV}) during single-cycle operation time (tc) is compared with the power absorbed by the brake resistor (W_{RC} and W_{RS}) for analysis:

WINV **x**
$$\frac{\Sigma tn}{tc}$$
 < WRC

where W_{RC}: Continuous permissible power of the brake unit (refer to Chapter 3 Braking Capability Data in Technical Note 22.)

Note that $W_n \times t_n$ and tn are calculated for only the regions where power becomes negative.

 $W_{INV} < W_{RS}$

where W_{RS} : Short-time permissible power per operation of the brake unit (refer to Chapter 3 Braking Capability Data in Technical Note 22.)

Note: Also perform the following check on the zones where the severest regenerative operation is performed (especially zones 6 and 7 in Fig. 3.2):

Wn × 0.9 < W_{RS}

where Wn : Power in the corresponding zone [W]
 WRS : Short-time permissible power at operation time (tn) in the corresponding zone [W]
 (Refer to Fig. 3.3 and Chapter 3 Braking Capability Data in Technical Note 22.)

Note

Types of regenerative braking systems

*When the inverter capacity is small and regenerative energy is small, power is temporarily charged in the smoothing capacitor. This system is called <u>capacitor-regenerative system</u> and used for upto 0.4kW or less.

*When a medium capacity inverter is used, the current flows to a resistor where it is converted to heat. This system is called <u>resistor-regenerative system</u>. When regenerative energy increases, the resistor size increases and the influence of heat generation on the surroundings must be noted.

*When the inverter capacity is large and regenerative energy is large, regenerative power is returned to the power supply. This system is called <u>power supply-regenerative system</u>.

It is recommended to adopt this system when the continuous regenerative period is long, or a motor larger than a 15kW motor is used for a lifting operation.

- 3.7 Thermal Examination of the Motor
- (1) Operation pattern

When the frequency of starts is particularly high or long operation is performed at low speed for a lifter, find the current in each operation zone during cycle time and make sure that the average (RMS) current found by root-mean-squaring all currents is within the rated current value of the motor.

Fig. 3.4 Example of Operation Pattern

If the following formula is satisfied in Fig. 3.4, the motor can be used thermally.

$$I_{MC} = \sqrt{\frac{I_{1}^{2}t_{1} + I_{2}^{2}t_{2} + K K + In^{2}tn}{C_{1}t_{1} + C_{2}t_{2} + K K + Cntn}} < 100 [\%]$$

: Motor equivalent current value in consideration of the cooling coefficient Мс [%] I₁, I₂, ... In

: Current characteristics in operation zones t1, t2,...tn [%]

C1, C2, ... Cn : Cooling coefficients for frequencies in operation zones t1, t2,...tn Note: Make judgment at 50% when the cyclic operation mode of the vector inverter (FR-V200E) has been selected.

(2) How to find motor currents I_1, I_2, \dots In (%)

(a) Find the load torque factor in each operation zone.

	Zone Time [s]	Torque Supplied to the Load [kgf•m]	Load Torque [%]	Current Characteristic [%]	Cooling Co- efficient
During lifting	t1 t2,t4 t3	Taup = Ta1+T∪up+Tfrup TL∪ = T∪up+Tfrup Tdup = −Td1+T∪up+Tfrup	TF = TF = TF =	1 2, 4 3	$\begin{array}{c} C_1\\ C_2, C_4\\ C_3 \end{array}$
During lowering	t6 t7,t9 t8	$\begin{array}{l} T_{adn} = T_{a2} + T_{Udn} + Tfr_{dn} \\ T_{LD} = T_{Udn} + Tfr_{dn} \\ T_{ddn} = -T_{d2} + T_{Udn} + Tfr_{dn} \end{array}$	TF = TF = TF =	6 7, 9 8	C ₆ C ₇ ,C ₉ C ₈
During stop	t5,t10	T = 0	TF = 0	I5 = I10 = 0	C 5, C 10

(b) Find the load torque factor.

Load torque factor (TF) = $\frac{\text{torque supplied to the load}}{\text{rated torque of the motor (T_M)}} \times 100 [\%]$

In the constant-output region (region above the base frequency, e.g. 60 to 120Hz) of the motor, the load torque factor (TF) is as follows:

Load torque factor above the base frequency $TF = \frac{\text{torque supplied to the load}}{\text{rated torque of the motor (T_M)}} \times \frac{\text{running frequency}}{\text{base frequency}} \times 100 \,[\%]$

(c) How to find the motor current

Refer to (Motor and Brake Characteristics) in Technical Note No. 22 and find the motor current [%] corresponding to the load torque factor found in (b). If the maximum frequency is higher than the base frequency of the inverter during

acceleration/deceleration, multiply the found motor current value [%] by the current compensation coefficient ((Motor and Brake Characteristics) in Technical Note No. 22).

(3) How to find the cooling coefficients C₁, C₂, .. Cn Refer to (Motor and Brake Characteristics) in Technical Note No. 22.

Note

If the average current is nearly 100%:

When a general-purpose motor is driven by the inverter, the motor current increases (about 1.1 times) to provide the same torque as when it is driven with the commercial power supply. When the equivalent current value of the motor reaches 100%, that of the inverter-driven motor is about 110% therefore a general-purpose motor does not have thermal allowance. Hence, it is necessary to fully examine the load conditions and operation duty.

3.8 Stopping Accuracy

As all lifts have a mechanical brake for holding, stopping accuracy depends on the characteristics of the mechanical brake. Also, stopping accuracy can be improved by reducing the minimum velocity (fmin) of the inverter. However, fmin must be 6Hz or higher. Hence, the frequency at the minimum velocity (fmin) should be found from the characteristics of the mechanical brake and the required stopping accuracy as described below, and if fmin is less than 6Hz, the operating frequency range of the inverter must be reviewed.

(1) How to find the stopping distance

Fig. 3.5 Example of Speed Pattern

Generally, distance S between a stop command and a stop is found by the following formula:

$$\begin{split} S &= \big(\frac{V_{\text{min}}}{60} \times t_{01} + \frac{1}{2} \times \frac{V_{\text{min}}}{60} \times t_{11}\big) \times 10^3 \\ t_{11} &= \frac{\Sigma G D^2 \times N_{\text{min}}}{38.2 \times (T_B + T_L)} \end{split}$$

(The sign of TL is positive for driving and negative for regeneration.)

``	0	0	0	•	,
S	: Stopping distance				[mm]
V_{min}	: Velocity at low-speed f	requency (fm	in)		[m/min]
Nmin	: Motor speed at low-spe	eed frequenc	y (fmin)		[r/min]
Тв	: Braking torque of the n	nechanical b	rake		[N•m]

to1 : Operation delay time of the mechanical brake (including the delay time of the relay) [s]

(2) Stopping accuracy

Stopping accuracy is the variation range of the above stopping distance (S) and is especially affected by V_{min} , to1 and T_B. To decrease the stopping distance (S), it is effective to reduce the minimum velocity (V_{min}).

Stopping accuracy is generally found by the following formula in consideration of the variation ranges of the above factors:

Stopping accuracy $\Delta \epsilon = \pm \frac{S}{2}$ [mm]

CHAPTER 4 SPECIFIC SELECTION EXAMPLES

(1) \ c (2) F	nine Conditions Required for Exa	amination			
(2) F	Voltage and frequency				
. ,	of the power supply	[V]	50 [Hz]		
(3) (Required power	PL (When unknown, refer 2.2.)	<i>5.45</i> [kW]		
• •	Operating speed range of the motor	N _{min} 180 to	N _{max} 1800 [r/min]		
(4) 1	Number of motor poles	4 P			
(5) (Operating frequency range	f _{min} 6 to	o f _{max} 60 [Hz]		
(6) V	Weight of the drive section	W			
((a) Lift case's own weight	WT	2200 [kgf]		
((b) Lifter load during lifting	WLup	3000 [kgf]		
((c) Lifter load during lowering	WLdn	2200 [kgf]		
((d) Counterweight	Wc	4500 [kgf]		
((e) Chain weight	Wсн	350 [kgf]		
((f) Chain eccentric load	Wcs	300 [kgf]		
((g) Pulley average diameter	Ds	0.48 [m]		
	(h) Pulley-rope friction coefficient	μ	0.085		
(7) L	Lifting velocity	Vmin 3 to Vmax	30 [m/min]		
(8) N	Machine efficiency of the drive section	η	0.9		
(9) L	Load torque converted into the e	equivalent value at the motor shaft			
. ,	(a) Load torque during lifting	' T∟∪ (When unknown, refer 2.1.)	53.6 [N•m]		
		TLD (When unknown, refer 2.1.)	<i>—26.1</i> [N•m]		
,	Hence, make the following calculation on the assumption that maximum torque				
	J	$T_{Lmax} = 53.6 [N \bullet m].$			
(10) L	Load GD ² converted into the equ	uivalent value at the motor shaft			
	(a) GD^2 of the lift table	GD^2wT (When unknown, refer 2.1.)	0.0620 [kgf•m²]		
	(b) Lifter load during lifting	GD ² _{WLUP} (When unknown, refer 2.1.)	0.0845 [kgf•m ²]		
,	(c) Lifter load during lowering	GD ² wLdn (When unknown, refer 2.1.)	0.0845 [kgf•m ²]		
	(d) GD^2 of the counterweight	GD ² wc (When unknown, refer 2.1.)	0.1268 [kgf•m ²]		
,	(e) GD^2 wLdn of chain weight	GD^2 _{WLdn} (When unknown, refer 2.1.)	0.0099 [kgf•m²]		
```	(f) $GD^2$ of the mechanical brak		0.15 [kgf•m ² ]		
,		uivalent value at the motor shaft during li			
	= 0.0620 + 0.084	,,,			
	= 0.2832		[kgf•m²]		
٦		uivalent value at the motor shaft during $\log 1 + GD^2_{WCH}$			
	= 0.0620 + 0.084				
	= 0.2832		[kgf•m ² ]		





(5) Calculation of load torque converted into the equivalent value at the motor shaft (TL) (a) During lifting  $(W_T + W_{Lup}) \ge W_C: W_{up} = (W_T + W_{Lup} + W_{CS}) - W_C$ = (2200 + 3000 + 300) - 4500 = 1000 [kgf]  $(W_T + W_{Lup}) < W_C: W_{up} = (W_T + W_{Lup}) - (W_C + W_{CS})$ [kgf] = • When  $W_{up} \ge 0$  $T_{LU} = T_{Uup} + Tfr_{up}$  $\frac{W_{up} \times g \times \Delta S \times 10^{-3}}{\mu} \times Wa_{up} \times g \times \Delta S \times 10^{-3}$ =  $2 \times \pi \times \eta$  $2 \times \pi \times \eta$  $1000 \times 9.8 \times 16.7 \times 10^{-3}$  $0.085 \times 10000 \times 9.8 \times 16.7 \times 10^{-3}$ = +  $2 \times \pi \times 0.9$  $2 \times \pi \times 0.9$ 29.0 + 24.6 53.6 = = [N•m] • When W_{up} < 0 (To take safety into consideration, make calculation by setting the machine efficiency (n) to 1 and the friction coefficient ( $\mu$ ) to 0.)  $T_{LU} = T_{Uup} \times \eta^2 + Tfr_{up}$  $W_{up} \times 9.8 \times \Delta S \times 10^{-3}$  $0 \times Wa_{up} \times 9.8 \times \Delta S \times 10^{-3}$  $\times 1^{2} +$ =  $2 \times \pi \times$  $2 \times \pi \times$  $\times 1^{2} + 0 =$ [N•m] = where, Tuup : Unbalance torque during lifting [N•m] Tfrup : Friction torque of drive section during lifting [N•m] Waup: Total weight during lifting (WT + WLup + WCs + Wc) [kgf]



2.2 Se	2.2 Selection of motor capacity				
(1) Required power of the load					
	$P_{L} = \frac{W \times V}{\frac{6120 \times h}{}} $ (W is larger of  W _{up}   and  W _{dn}  )				
	$= \boxed{\begin{array}{c} 1000 \times 30 \\ 6120 \times 0.9 \end{array}} = \boxed{5.45} [kW]$				
(2)	Temporary selection of motor capacity (P _M )				
	$P_{M} = \alpha p \times P_{L} (\alpha p = 0.5 \text{ to } 2.0)$ $= 1.0 \times 5.45 = 5.45 \text{ [kW]} \Rightarrow \text{Select} 11 \text{ [kW]}.$				
(3)	GD ² of the motor, etc.				
(0)	Motor $GD^2_{M} = $ [kgf•m ² ] (For the 11kW 4P motor)				
(4)	GD ² _B of the mechanical brake				
	Motor $GD_B^2 = 0.15$ [kgf•m ² ] Note that the brake is the NB- <u>15C</u> .				
	Total $GD^{2}_{up}$ converted into the equivalent value at the motor shaft during lifting $GD^{2}_{up} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Lup} = 0.28 + 0.15 + 0.2832$				
	$GD^{2}_{up} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Lup} = 0.28 + 0.15 + 0.2832$ $= 0.7132  [kgf•m^{2}]$				
	Total $GD^{2}_{dn}$ converted into the equivalent value at the motor shaft during lowering				
	$GD^{2}_{dn} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Ldn} = 0.28 + 0.15 + 0.2832$				
	= 0.7132 [kgf•m²]				
2.3 Te	emporary selection of inverter capacity				
(1)	Rated torque (T _M ) of the temporarily selected motor (60Hz rating basis)				
	$T_{M} = \frac{9550 \times P_{M}}{N_{H}} = \frac{9550 \times 11}{1800} = 58.36$ [N•m]				
	$T_{M} = \frac{3600 \times 10^{10}}{N_{M}} = \frac{3600 \times 11^{10}}{1800} = 58.36 $ [N•m]				
(2)	Temporary selection of the inverter capacity				
	According to the motor capacity, select the FR-A520-11K.				
(3)	Determination of the torque type				
	According to the motor and inverter temporarily selected, the torque type is <u>15A1</u> with reference to Technical Note No. 22. (Advanced magnetic flux vector control)				
	Maximum starting torque coefficient $\alpha_s = 1.5$				
	Linear acceleration torque coefficient $\alpha_a = 1.4$				
	Hot coefficient $\sigma = 0.94$				
(4)					
	According to $f = \frac{\text{motor speed} \times \text{number of motor poles}}{120}$				
	Frequency corresponding to the maximum speed				
	$f_{max} = \frac{N_{max} \times P}{100} = \frac{1800 \times 4}{100} = 60 $ [Hz]				
	Frequency corresponding to the minimum speed				
	$f_{\min} = \frac{N_{\min} \times P}{120} = \frac{180 \times 4}{120} = 6$ [Hz]				



(6) Torque required for acceleration and deceleration (a) Torque coefficient required for acceleration during rising ( $\alpha$ ) Ta_{max} = 70.4 1.21 = Тм 58.36 Tamax is either of Taup in region 1 and Tadn in region 5, which is larger. Note that regenerative acceleration is made when  $Ta_{up} < 0$  and  $Ta_{dn} < 0$ . In this case, the maximum torque required for regeneration is judged by whether deceleration is possible or not. Hence, the judgment of whether acceleration is possible or not is not needed here. Analysis of whether acceleration is possible or not OK 1.4 0.94 1.21  $\alpha_a \times \sigma =$  $\times$  $> \alpha =$  α_a: Linear acceleration torque coefficient
 δ: Heat coefficient (refer to Technical Note No. 22.) (b) Torque coefficient required for deceleration during lowering ( $\beta$ ) _ |Td max| _ 42.9 0.74 = [ Тм 58.36 Td_{max} is either of Td_{up} in region 3 and Td_{dn} in region 7, which is smaller. Note that driving deceleration is made when  $Td_{up} > 0$  and  $Td_{dn} > 0$ . In this case, the maximum torque required for driving is judged by whether acceleration is possible or not. Hence, the judgment of whether deceleration is possible or not is not needed here. (c) Temporary selection of the brake unit FR-BU-15K The torque type of the is 10B <Refer to the braking capability data in Technical Note No. 22.> Analysis of whether deceleration is possible or not OK 0.74 1.0  $> \beta =$  $\beta_{min} =$  $\beta_{min}$ : Brake torque coefficient (minimum value)



	Calculati					
•	WMECH=	return Σ(W	ed from the load [ $W_{MECH}$		te Wn and tn only in	7000(5)(6)(7)(8)
	Wмесн=	= 1 (Σ	Ctn where powe	r is negative.	the win and in only in	zone 5), 6), 7), 6)
		(-8	376)×2+(-4919)×3.2	+ (-4447) × 1.8 + (-4	492)×1	
	=		$376) \times 2 + (-4919) \times 3.2$	3	= 324	9 [W]
•	Power	return	ed to the inverter			
			$\times 0.9 = 3249 \times 0.1$	9 = 2924	[W]	
(4) 8	Short-tim BU-15	•	nissible power per oper	-		= <u>5400</u> [W] chnical Note No. 22.)
	Judgm	ent of	short-time permissible	power		
V	Vinv =	292	24 < Wrs = 540	0		OK
			ontinuous average rege			
V	$V_{INV} \times \frac{t_1}{2}$	+ t ₂ + t _c	$\frac{+t_n}{+t_n} = 2924 \times \frac{8}{24}$	= 97.5 [W]		
(	t₁ to tր is	the su	um total of times when p	bower is negative in	operation zones 1) to	o 8))
(6) (	Continuo	us per	missible power	WRC (refer to Te	chnical Note No. 22)	= <u>1200</u> [W]
	Judgm	ent of	continuous permissible	power		
V	$V_{\rm INV} \times \frac{t}{t}$	=	97.5 < Wrc =	1200		OK
	LC					
(7) (	Checking		hort-time permissible po	ower in the continuo	ous regenerative oper	ration zone
	Vn × 0.9 For Wrs		2924 < WRS (for 8 seconds, refer to Techn		00	
			nether the Motor Can Be	-		
(1) F	kequirec	moto	r torque, load torque fac			
	Zone		Torque Supplied to the Load	Load Torque Factor [%]	Current Characteristic [%]	Cooling Coefficient
During	t1	Taup	$= T_{a1} + T_{LU}$ $= 70.4$	TF = 120.6	l1 = 119	C1 = 0.76
rising	t2	TLU	= 53.6	TF = 120.0	11 = 113 12 = 93	C1 = 0.70 C2 = 1.0
	t4			TF = 91.8	14 = 93	C4 = 0.4
	t3	Tdup	$= -T_{d1} + T_{LU}$ $= 36.8$	TF = 63.1	l3 = 73	C3 = 0.80
During	t ₆	Tadn	= T _{a2} + T _{LD}		13 = 73	
falling		aun	= -9.3	TF = 15.9	16 = 44	C6 = 0.76
	t7	Tld	= -26.1		17 = 59	C7 = 1.0
	t9 t8	Tata	$= -T_{d2} + T_{LD}$	TF = 44.7	19 = 59	C9 = 0.4
	to	i uun	= -42.9	TF = 73.5	18 = 79	C8 = 0.80
	Note	: Moto	or torque used is the abo	ove calculated value	9.	

(2) Motor equivalent current value (IMC)	
$I_{MC} = \sqrt{\frac{I_{1}^{2} \times t_{1} + I_{2}^{2} \times t_{2} \dots + I_{n}^{2} \times t_{n}}{C_{1} \times t_{1} + C_{2} \times t_{2} + \dots + C_{n} \times t_{n}}}$	
$= \sqrt{\frac{(119^2 \times 2 + 93^2 \times 3.2 + 73^2 \times 1.8 + 93^2 \times 1) + (44^2 \times 2 + 59^2 \times 3.2 + 79^2 \times 1.8 + 59^2 \times 1)}{(0.76 \times 2 + 1.0 \times 3.2 + 0.8 \times 1.8 + 0.4 \times 1 + 0.4 \times 4) + (0.76 \times 2 + 1.0 \times 3.2 + 0.8 \times 1.8 + 0.4 \times 1 + 0.4 \times 4)}}$	
$= \sqrt{(0.76 \times 2 + 1.0 \times 3.2 + 0.8 \times 1.8 + 0.4 \times 1 + 0.4 \times 4) + (0.76 \times 2 + 1.0 \times 3.2 + 0.8 \times 1.8 + 0.4 \times 1 + 0.4 \times 4)}$	
$= \sqrt{\frac{74240 + 29726}{8.16 + 8.16}} = \frac{322.4}{4.04} = \boxed{79.8} < 100\%$	
2.8 Examination of Stopping Accuracy	
(1) Characteristics of the brake	
According to Technical Note No. 22, the characteristics of the mechanical brake NB-15C are:	
• Rated braking torque : $T_B = 147$ [N•m]	
• Delay time (independent off) : $t_{01} = 0.025$ [s]	
• Brake $GD^2$ : $GD^2_B$ = 0.15 [kgf•m ² ]	
(2) Stopping accuracy when the motor running at a slow speed (creep speed), and is brought to a stone Stopping time (tb) = $t_{01} + t_{11}$ = $t_{01} + \frac{(GDL^2 + GDM^2 + GDB^2) \times Nmin}{38.2 \times (TB + TL)}$	p
0.7132×180	
$= 0.025 + 38.2 \times (147 - 26.1)$	
= 0.025 + 0.028	
= 0.053 [s] where,	
(Stopping time during lowering) T∟: Load torque during lifting (T∟∪) : Load torque during lowering (T∟⊃)	
Stopping distance (S) = $S_{01} + S_{11} = (t_{01} \times \frac{V_{min}}{60} + t_{11} \times \frac{V_{min}}{60} \times \frac{1}{2}) \times 10^3$	
$= ( \begin{array}{ccc} 60 & 60 & 2' \\ \hline 0.025 \times 3/60 & + \end{array} \begin{array}{c} 0.028 \times 3/60 \times 1/2 \\ \hline 0.028 \times 3/60 \times 1/2 \end{array} ) \times 10^{3}$	
= 1.950  [mm]	
Guideline of stopping accuracy ( $\Delta \epsilon$ ) = ±S/2 = 1.950/2 = ± 0.98 [mm]	
2.9 Determination of the Models	
According to the above examination results, the recommended models are as follows:	
Motor : 11kW 4P	
Inverter : FR-A520-11K	
(Control system: Advanced magnetic flux vector control)	
Braking unit : BU-15K	

#### 4.2 Selection Example 2) <Without counterweight>

1.	1. Machine Conditions Required for Examination						
	(1)	Voltage and frequency of the power supply		<i>220</i> [V]	60 [Hz]		
	(2)		When unknown, refe	er 2.2.)	<i>4.36</i> [kW]		
	(3)	Operating speed range Nmir of the motor		<i>180</i> t	o N _{max} 1800 [rpm]		
	(4)		4 P				
	(5)	•		6	to f _{max} 60 [Hz]		
	(6)				· ·		
	( )	(a) Lift table own weight WT			400 [kgf]		
		(b) Lifter load during lifting WL	0		[kgf]		
		(c) Lifter load during lowering WL	1		[kgf]		
		(d) Counterweight Wc			[kgf]		
		(e) Chain weight Wc	I		[kgf]		
		(f) Chain eccentric load Wcs			[kgf]		
		(g) Pulley average diameter Ds			[ 0 ]		
		<ul> <li>(h) Pulley-rope friction μ</li> <li>coefficient</li> </ul>			0.09		
	(7)		3	to V _{max}	30 [m/min]		
	(8)	<b>e</b> ,			0.9		
	(0)	of the drive section					
	(9)	Load torque converted into the equiv	alent value at the m	otor shaft			
		(a) Load torque during lifting TLU (When unknown, refer 2.1.) 2.573 [kgf•m]					
		(b) Load torque during lowering $T_{LD}$	(When unknown, r	refer 2.1.)	<i>−1.699</i> [kgf•m]		
	Hence, make the following calculation on the assumption that maximum torque						
		TLm	_x = <u>2.573</u> [k	kgf∙m].			
	(10)	0) Load GD ² converted into the equivale	ent value at the moto	or shaft			
		(a) $GD^2$ of the lift table	GD ² wt (When unk	known, refer 2.	1.) 0.0113 [kgf•m²]		
		(b) Lifter load during lifting	GD ² wLup (When unk	known, refer 2.	1.) 0.0070 [kgf•m²]		
		(c) Lifter load during lowering	GD ² wLdn (When unk	nown, refer 2.	1.) [kgf•m²]		
		(d) GD ² of the counterweight	GD ² wc (When unk	nown, refer 2.	1.) [kgf•m²]		
		(e) Chain weight	GD ² wcн (When unk	known, refer 2.	1.) 0.0056 [kgf•m²]		
		(f) $GD^2$ of the mechanical brake	GD ² B, etc.		0.062 [kgf•m²]		
	Total load GD ² converted into the equivalent value at the motor shaft GD ² Lup = {GD ² wт + GD ² wLup + GD ² wc + GD ² wсн }						
		= 0.0113 + 0.0070	+ +	0.0056			
		= 0.02248		[kgf•m²]			
		Total load converted into the equival = $\{GD^2wT + GD^2wLdn + GD^2wC + G$		or shaft during	lowering GD ² Ldn		
		= 0.0113 + 0 + + 0.0056					
		= 0.0169  [kgf•m ² ]					





(5) Calculation of load torque converted into the equivalent value at the motor shaft (TL) (a) During lifting  $(W_T + W_{Lup}) \ge W_C: W_{up} = (W_T + W_{Lup} + W_CS) - W_C$ (400 + 250 + 150 ) - 0 800 = [kgf] =  $(W_T + W_{Lup}) < W_C: W_{up} = (W_T + W_{Lup}) - (W_C + W_{CS})$ [kgf] = • When  $W_{up} \ge 0$  $T_{LU} = T_{Uup} + Tfr_{up}$  $\frac{W_{up} \times \Delta S \times 10^{-3}}{\mu \times Wa_{up} \times \Delta S \times 10^{-3}} + \frac{\mu \times Wa_{up} \times \Delta S \times 10^{-3}}{\mu \times Wa_{up} \times \Delta S \times 10^{-3}}$ =  $2 \times \pi \times \eta$  $2 \times \pi \times \eta$  $800 \times 16.7 \times 10^{-3}$  $0.09 \times 800 \times 16.7 \times 10^{-3}$ = +  $2 \times \pi \times 0.9$  $2 \times \pi \times 0.9$ 2.36 + 0.213 2.573 [kgf•m] = = • When W_{up} < 0 (To take safety into consideration, make calculations by setting the machine efficiency (n) to 1 and the friction coefficient ( $\mu$ ) to 0.)  $T_{LU} = T_{Uup} \times \eta^2 + Tfr_{up}$ 







2.2 Se	2.2 Selection of motor capacity				
(1)					
	$P_{L} = \frac{W \times V}{6120 \times \eta}  (W \text{ is larger of }  W_{up}  \text{ and }  W_{dn} )$				
	$= \boxed{\frac{800 \times 30}{6120 \times 0.9}} = \boxed{4.36} [kW]$				
(2)	Temporary selection of motor capacity (P _M )				
	$P_{M} = \alpha p \times P_{L} \ (\alpha p = 0.5 \text{ to } 2.0)$				
	$= 1.5 \times 4.36 = 6.54  [kW] \Rightarrow \text{Select} 7.5  [kW].$				
(3)	GD ² of the motor, etc.				
	Motor $GD_{M}^{2} = 0.16$ [kgf•m ² ] (For the 7.5kW 4P motor)				
(4)	GD ² B of the mechanical brake				
	$GD_{B}^{2} = 0.062$ [kgf•m ² ] Note that the brake is the NB- 7.5C.				
	Total $GD^{2}_{up}$ converted into the equivalent value at the motor shaft during lifting is:				
	$GD^{2} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Lup} = 0.16 + 0.062 + 0.0239$				
	$= \underbrace{0.2459}_{\text{[kgf•m^2]}}$ Total GD ² _{dn} converted into the equivalent value at the motor shaft during lowering is:				
	$GD^{2}_{dn} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Ldn} = 0.16 + 0.062 + 0.0169$				
	= 0.2389 [kgf•m ² ]				
2.3 Te	emporary selection of inverter capacity				
	Rated torque ( $T_M$ ) of the temporarily selected motor (60Hz rating basis)				
( )					
	$T_{M} = \frac{974 \times P_{M}}{N_{M}} = \begin{vmatrix} 974 \times 7.5 \\ 1800 \end{vmatrix} = \boxed{4.06} [kgf \cdot m]$				
(2)	Temporary selection of the inverter capacity				
(2)	According to the motor capacity, select the $FR-A520-7.5K$ .				
(2)					
(3)	Determination of the torque type According to the motor and inverter temporarily selected, the torque type is 15A0 with				
	According to the motor and inverter temporarily selected, the torque type is <u>15A0</u> with reference to Technical Note No. 22. (V/F control large boost)				
	Maximum starting torque coefficient $\alpha_s = 1.1$				
	Linear acceleration torque coefficient $\alpha_a = 1.1$				
	Hot coefficient $\sigma = 0.85$				
(4)	Operating frequency range of the temporarily selected inverter				
( )	According to $f = \frac{\text{motor speed} \times \text{number of motor poles}}{1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +$				
	120 Frequency corresponding to the maximum speed				
	$f_{max} = \frac{N_{max} \times P}{120} = \frac{1800 \times 4}{120} = 60 $ [Hz]				
	Frequency corresponding to the minimum speed				
	$f_{\min} = \frac{N_{\min} \times P}{120} = \frac{180 \times 4}{120} = 6 $ [Hz]				



(6	,	que required for acceleration and deceleration Torque coefficient required for acceleration during lifting ( $\alpha$ )
		$=\frac{\mathrm{Ta}_{\mathrm{max}}}{\mathrm{T}_{\mathrm{M}}}=\left \frac{3.753}{4.06}\right =\boxed{0.924}$
		Ta _{max} is either of Ta _{up} in region 1 and Ta _{dn} in region 5, which is larger. Note that regenerative acceleration is made when Ta _{up} < 0 and Ta _{dn} < 0. In this case, the maximum torque required for regeneration is judged by whether deceleration is possible or not. Hence, the judgment of whether acceleration is possible or not is not needed here.
		Analysis of whether acceleration is possible or not
		$\alpha_a \times \sigma = $ 1.1 $\times$ 0.85 $> \alpha = $ 0.924 OK
		$\alpha$ a: Linear acceleration torque coefficient (torque boost large) $\delta$ : Heat coefficient (refer to Technical Note No. 22.)
	(b)	Torque coefficient required for deceleration during lowering ( $\beta$ ) = $\frac{ \text{Td}_{max} }{\text{T}_{M}} = \left[\frac{2.610}{4.06}\right] = \underline{0.643}$
		$Td_{max}$ is either of $Td_{up}$ in region 3 and $Td_{dn}$ in region 7, which is smaller. Note that driving deceleration is made when $Td_{up} > 0$ and $Td_{dn} > 0$ . In this case, the maximum torque required for driving is judged by whether acceleration is possible or not. Hence, the judgment of whether deceleration is possible or not is not needed here.
	(c)	Temporary selection of the brake unit
		The torque type of the FR-ABR-7.5K is 10B . <refer 22.="" braking="" capability="" data="" in="" no.="" note="" technical="" the="" to=""></refer>
		Judgment of whether deceleration can be made or not
		$\beta_{\text{min}} = \boxed{1.0} > \beta = \boxed{0.643}$
		$\beta_{min}$ : Brake torque coefficient (minimum value)



	<ul> <li>3) Calculation of power</li> <li>• Power returned from the load [Wmech]</li> </ul>								
	$W_{\text{MECH}} = \frac{\left  \Sigma(W_n \times t_n) \right }{\Sigma t_n}$ From zones 1) to 8), calculate W _n and t _n only in the zones where power is negative.								
	$ (-292) \times 1.0 + (-2705) \times 5.1 + (-2654) \times 0.9 + (-270) \times 1.0 $								
	$= \frac{\left  (-292) \times 1.0 + (-2705) \times 5.1 + (-2654) \times 0.9 + (-270) \times 1.0 \right }{1.0 + 5.1 + 0.9 + 1.0} = 2093  [W]$								
•	Power returned to the inverter								
	$W_{INV} = W_{MECH} \times 0.9 = 2093 \times 0.9 = 1884$ [W]								
(4) 5	) Short-time permissible power per operation of the braking unit $W_{RS} = 16500$ [W] FR-BU-15K (8 seconds) (For $W_{RS}$ , refer to Technical Note No. 22.)								
	Analys	is of short-time permissible p	ower						
V		1884 < W _{RS} = 165	00		OK				
• •	-	the continuous average rege	•						
V	$W_{INV} \times \frac{t_{1}}{}$	$\frac{+t_2+\Lambda+t_n}{t_c} = 1884 \times \frac{1.0}{1}$	<u>+ 5.1 + 0.9 + 1.0</u> 24	- = <u>628</u> [	[W]				
		the sum total of times when p			o 8))				
(6) (	Continuo	us permissible power	WRC (refer to Te	chnical Note No. 22)	= <u>990</u> [W]				
	Analysi	is of continuous permissible p	oower						
V	$N_{\rm INV}  imes rac{{ m t}}{{ m t_c}}$	= <u>628</u> < Wrc =	990		OK				
(7) (	Checking	g the short-time permissible po	ower in the continuo	ous regenerative oper	ation zone				
		= <u>1884</u> < W _{RS} (for 8 during 8 seconds, for to Tech	,	00					
2.7 Exa	mination	of Whether the Motor Can B	e Used Thermally						
(1) F	Required	I motor torque, load torque fac	ctor and current cha	racteristic (%)					
	Zone	Torque Supplied to the Load	Load Torque Factor [%]	Current Characteristic [%]	Cooling Coefficient				
During rising	t1	$\begin{array}{rcl} T_{au} &= T_{a1} + T_{LU} \\ p &= & 3.753 \end{array}$	TF = 92.4	l1 = 94	C1 = 0.76				
naing	t2	$T_{LU} = 2.573$		12 = 72	C2 = 1.0				
	t4		TF = 63.4	14 = 72	C4 = 0.4				
	t3	$\begin{array}{rcl} T_{du} & = -T_{d1} + T_{LU} \\ _{p} & = \end{array} \\ \hline 1.393 \end{array}$	TF = 34.3	l3 = 59	C3 = 0.80				
During falling	t ₆	$\begin{array}{rcl} T_{ad} &= T_{a2} + T_{LD} \\ n &= -0.316 \end{array}$	TF = 7.8	l6 = 51	C6 = 0.76				
, surg	t7	$T_{LD} = -1.463$		17 = 60	C7 = 1.0				
	t9 t8	$T_{dd} = -T_{d2} + T_{LD}$	TF = <u>36.0</u>	19 = 60	C9 = <u>0.4</u>				
		n = -2.610	TF = 64.2	18 = 74	C8 = 0.80				
	Note: Motor torque used is the above calculated value.								



			CALCULATION SHEETS <si systems<="" th=""><th>s of Units&gt;</th></si>	s of Units>
1.	Mad	chine Conditions Required for Ex	amination	
	(1)	Voltage and frequency of the power supply	[V]	][Hz]
	(2)	Required power	P∟ (When unknown, refer 2.2.)	[kW]
	(3)	Operating speed range of the motor	Nmin to Nmax	[r/min]
	(4)	Number of motor poles	P	
	(5)	Operating frequency range	fmin to fmax	] [Hz]
	(6)	Weight of the drive section	W	
		(a) Lift table's own weight	WT	[kgf]
		(b) Lifter load during lifting	WLup	[kgf]
		(c) Lifter load during lowering	WLdn	[kgf]
		(d) Counterweight	Wc	[kgf]
		(e) Chain weight	Wcн	[kgf]
		(f) Chain eccentric load	Wcs	[kgf]
		(g) Pulley average diameter	Ds	] [m]
		(h) Pulley-rope friction coefficient	μ	
	(7)	Lifting velocity	Vmin to Vmax	[m/min]
	(8)	Machine efficiency of the drive section	η	]
	(9)	Load torque converted into the	equivalent value at the motor shaft	
		(a) Load torque during lifting	TLU (When unknown, refer 2.1.)	[N•m]
		(b) Load torque during lowering	g TLD (When unknown, refer 2.1.)	[N•m]
		Hence, make the following	calculation on the assumption that maximum torque	
			T _{Lmax} = [N•m].	
	(10)	) Load GD ² converted into the eq	uivalent value at the motor shaft	
		(a) GD ² of the lift case	GD ² wt (When unknown, refer 2.1.)	[kgf•m²]
		(b) Lifter load during lifting	GD ² _{WLup} (When unknown, refer 2.1.)	[kgf•m²]
		(c) Lifter load during lowering	GD ² _{WLdn} (When unknown, refer 2.1.)	[kgf•m²]
		(d) GD ² of the counterweightG	D ² wc (When unknown, refer 2.1.)	[kgf•m²]
		(e) Chain weight	GD ² wcH (When unknown, refer 2.1.)	[kgf•m²]
		(f) GD ² of the mechanical brak	ke GD ² _B , etc.	[kgf•m²]
		Total load converted into the eq = $\{GD^2wT + GD^2wLup + GD^2w\}$	uivalent value at the motor shaft during lifting $GD^{2}_{Lup}$ c + $GD^{2}_{WCH}$	
		=+	++	
		=	[kgf•m²]	
		Total load converted into the eq = $\{GD^2wT + GD^2wLdn + GD^2w\}$	uivalent value at the motor shaft during lowering $GD^{2}_{Ldn}$ c + $GD^{2}_{WCH}$	
		=+	+ +	
		=	[kgf•m²]	









2.2 Selection of motor capacity						
(1)	Required power of the load $P_{L} = \frac{W \times V}{6120 \times \eta}$ (W is larger of  W_{up}  and  W_{dn} )					
	= =[kW]					
(2)	Temporary selection of motor capacity (P _M ) $P_M = \alpha p \times P_L \ (\alpha p = 0.5 \text{ to } 2.0)$ $= \boxed{\qquad} \times \boxed{\qquad} = \boxed{\qquad} [kW] \Rightarrow \text{Select} \boxed{\qquad} [kW].$					
(3)	$GD^2$ of the motor, etc.					
(3)	Motor $GD^2_M = $ [kgf•m ² ] (For the kW P motor)					
(4)	$ \begin{array}{l} GD^2{}_B \text{ of the mechanical brake} \\ Motor GD^2{}_B = \boxed{[kgf{\bullet}m^2]} & Note that the brake is the NB-  \\ Total GD^2{}_{up} \text{ converted into the equivalent value at the motor shaft during lifting is:} \\ GD^2{}_{up} = GD^2{}_M + GD^2{}_B + GD^2{}_{Lup} =  \\ = \boxed{[kgf{\bullet}m^2]} \\ Total GD^2{}_{dn} \text{ converted into the equivalent value at the motor shaft during lowering is:} \\ GD^2{}_{dn} = GD^2{}_M + GD^2{}_B + GD^2{}_{Ldn} =  \\ = \boxed{[kgf{\bullet}m^2]} \\ \end{array} $					
	2.3 Temporary selection of inverter capacity (1) Rated torque (T _M ) of the temporarily selected motor (60Hz rating basis) $T_{M} = \frac{9550 \times P_{M}}{N_{M}} = \boxed{\qquad} = \boxed{\qquad} [N \cdot m]$					
(2)	Temporary selection of the inverter capacity According to the motor capacity, select the FR-					
(3)	Determination of the torque type According to the motor and inverter temporarily selected, the torque type is with reference to Technical Note No. 22. (Magnetic flux vector control) Maximum starting torque coefficient $\alpha_s =$ Linear acceleration torque coefficient $\alpha_a =$ Heat coefficient $\sigma =$					
(4)	Operating frequency range of the temporarily selected inverter According to $f = \frac{\text{motor speed} \times \text{number of motor poles}}{120}$ Frequency corresponding to the maximum speed					
	$f_{max} = \frac{N_{max} \times P}{120} = $ $Frequency corresponding to the minimum speed f_{min} = \frac{N_{min} \times P}{120} =  Frequency =  Frequenc$					



2.5 W	hether Accel	eration/De	eceleration is Possible or Not	
(1)		•	uring lifting (Ta ₁ ) $ \frac{D^2_{B} \times N_{max}}{t_a} = \boxed{ = \boxed{ = } } $	[N•m]
(2)		•	uring lifting (Td ₁ ) $ \frac{D^2_B \times N_{max}}{t_d} = \boxed{ = \boxed{ = } } $	[N•m]
(3)		•	uring lowering (Ta ₂ ) $D^{2}_{B}$ × N _{max} = = = =	[N•m]
	$=\frac{(GD^2_{Ldn} + )}{(DD^2_{Ldn} + )}$	GD ² м + G 38.2 ×	uring lowering (Td ₂ ) $D^{2}_{B} \times N_{max}$ $t_{d} =$ =	[N•m]
		Region	Torque applied to the motor [N•m]	
	Lifting	1)	$T_{aup} = T_{a1} + T_{LU} = $	
		2)	TLU =	
		3)	$T_{dup} = -T_{d1} + T_{LU} = $	
		4)	TLU =	
	Lowering	5)	$T_{adn} = T_{a2} + T_{LD} = $	
		6)	T _{LD} =	
		7)	$T_{ddn} = -T_{a2} + T_{LD} =$	
		8)		

(6)	Tor	que required for acceleration and deceleration
	(a)	Torque coefficient required for acceleration during rising ( $\alpha$ )
		= $\frac{Ta_{max}}{T_{M}}$ =
		Тм
		Tamax is either of Taup in region 1 and Tadn in region 5, which is larger.
		Note that regenerative acceleration is made when $Ta_{up} < 0$ and $Ta_{dn} < 0$ . In this case, the
		maximum torque required for regenerative acceleration is judged by whether deceleration is possible or not. Hence, the judgment of whether acceleration is possible or not is not needed
		here.
		Analysis of whether acceleration is possible or not
		$\alpha_a \times \sigma =$ $\qquad \qquad \qquad$
		$\alpha_a$ : Linear acceleration torque coefficient (torque boost large)
		$\sigma$ : Heat coefficient (refer to Technical Note No. 22.)
	(b)	Torque coefficient required for deceleration during falling ( $\beta$ )
		$=\frac{ Td_{max} }{T_{M}} = \boxed{\qquad} = \boxed{\qquad}$
		Td _{max} is either of Td _{up} in region 3 and Td _{dn} in region 7, which is smaller.
		Note that driving deceleration is made when $Td_{up} > 0$ and $Td_{dn} > 0$ . In this case, the maximum
		torque required for driving deceleration is judged by whether acceleration is possible or not. Hence, the judgment of whether deceleration is possible or not is not needed here.
	(c)	Temporary selection of the brake unit
		The torque type of the is
		<refer 22.="" braking="" capability="" data="" in="" no.="" note="" technical="" the="" to=""></refer>
		Analysis of whether deceleration is possible or not
		$\beta_{min} = $ > $\beta = $ NG
		$\beta_{min}$ : Brake torque coefficient (minimum value)



(3)	(3) Calculation of power • Power returned from the load [W _{MECH} ] $W_{MECH} = \frac{ \Sigma(W_n \times t_n) }{\Sigma t_n}$ From zones 1) to 8), calculate W _n and t _n only in the zones where power								
	Σtn is negative.								
	Power returned to the inverter								
	WINV =	Wмесн × 0.9 =	=	[W]					
(4)	4) Short-time permissible power per operation of the braking unit $W_{RS} = $ [W] (For $W_{RS}$ , refer to the Technical Note No. 22.)								
	Analys	sis of short-time permissible p	oower		OK				
	WINV =	< Wrs =			NG				
(5)	Checking	g the continuous average rege	enerative power						
	$W_{INV}  imes rac{t_1}{2}$	$\frac{+t_2+\Lambda+t_n}{t_c} = \times$		- =	[W]				
		the sum total of times when			o 8))				
(6)	Continuo	ous permissible power	WRC (refer to Te	echnical Note No. 22	) = [[W]				
(-)	[	is of continuous permissible	]						
		· · · · · · · · · · · · · · · · · · ·			NG				
	tc	= < Wrc =							
(7)		g the short-time permissible p		ous regenerative ope	ration zone				
	(For Wrs		seconds) = hnical Note No. 22.)						
27 Ev	amination	n of Whether the Motor Can B	e l leed Thermally						
		d motor torque, load torque fa	-	aracteristic (%)					
		Torque Supplied	Load Torque	Current	Cooling				
	Zone	to the Load	Factor [%]	Characteristic [%]	Coefficient				
During	g tı	$\begin{array}{cc} T_{au} &= T_{a1} + T_{LU} \\ p &= \end{array}$	TF =	l1 =	C1 =				
	t2			12 =	C2 =				
	t4		TF =	14 =	C4 =				
	t3	$\begin{array}{ccc} T_{du} &= -T_{d1} + T_{LU} \\ P &= \end{array}$	TF =	13 =	C3 =				
During	g t ₆	$T_{ad} = T_{a2} - T_{LD}$							
falling		n =	TF =	l6 =	C6 =				
	t7 t9		TF =	I7 = I9 =	C7 = C9 =				
	ts	$T_{dd} = -T_{d2} + T_{LD}$							
		n =	TF =	18 =	C8 =				
	Note: Motor torque used is the above calculated value.								

(2) Motor equivalent current value Imc
$I_{MC} = \sqrt{\frac{I_{1}^{2} \times t_{1} + I_{2}^{2} \times t_{2} \dots + I_{n}^{2} \times t_{n}}{C_{1} \times t_{1} + C_{2} \times t_{2} + \dots + C_{n} \times t_{n}}}$
=
2.8 Examination of Stopping Accuracy
(1) Characteristics of the brake
According to Technical Note No. 22, the characteristics of the mechanical brake are:
• Rated braking torque : T _B = [N•m]
• Delay time (independent off) : to1 = [[s]
• Brake $GD^2$ : $GD^2_B$ = [kgf•m ² ]
(2) Stopping accuracy when the motor is running at a slow speed (creep speed), and is brought to a stop Stopping time ( $t_b$ ) = $t_{01} + t_{11}$
$= t_{01} + \frac{(GDL^2 + GDM^2 + GDB^2) \times N_{min}}{38.2 \times (T_B + T_L)}$
38.2 × (Тв + Ть)
=+
= [s] where, TL : Load torque during rising (TLU) : Load torque during falling (TLD)
Stopping distance (S) = $S_{01} + S_{11} = (t_{01} \times \frac{V_{min}}{60} + t_{11} \times \frac{V_{min}}{60} \times \frac{1}{2}) \times 10^3$
$= (  +  ) \times 10^{3}$
= [mm]
Guideline of stopping accuracy ( $\Delta \epsilon$ ) = ±S/2 = /2 = ± [mm]
2.9 Determination of the Models
According to the above examination results, the recommended models are as follows:
Motor : kW P Inverter : FR- (Control system: ) Braking unit :

			CALCULATION SHEETS < Gravitational System	<u>s of Units&gt;</u>				
1. N	1. Machine Conditions Required for Examination							
(*		Voltage and frequency [V] [Hz] of the power supply						
(2	2) Re	equired power	PL (When unknown, refer 2.2.)	[kW]				
(:		perating speed range the motor	Nmin to Nmax	[rpm]				
(4	4) Nu	Imber of motor poles	P					
(!	5) Op	perating frequency range	fmin to fmax	[Hz]				
(6	6) W	eight of the drive section	W					
	(a)	Lift table's own weight	WT	[kgf]				
	(b)	Lifter load during lifting	WLup	[kgf]				
	(C)	Lifter load during lowering	WLdn	[kgf]				
	(d)	Counterweight	Wc	[kgf]				
	(e)	Chain weight	Wcн	[kgf]				
	(f)	Chain eccentric load	Wcs	[kgf]				
	(g)	Pulley average diameter	Ds	[m]				
	(h)	Pulley-rope friction coefficient	μ					
(7	7) Lif	ting velocity	Vmin to Vmax	[m/min]				
(8	,	achine efficiency the drive section	η					
(9	9) Lo	ad torque converted into the	equivalent value at the motor shaft					
,		Load torque during lifting	TL∪ (When unknown, refer 2.1.)	[kgf•m]				
	(b)			[kgf•m]				
		Hence, make the following	calculation on the assumption that maximum torque					
			T _{Lmax} = [kgf•m].					
(*	10) Lo	ad GD ² converted into the eq	uivalent value at the motor shaft					
	(a)	GD ² of the lift case	GD ² wt (When unknown, refer 2.1.)	[kgf•m ² ]				
	(b)	GD ² of the lift load	GD ² _{WL} (When unknown, refer 2.1.)	[kgf•m²]				
	(c)	Lifter load during lowering	GD ² _{Wdn} (When unknown, refer 2.1.)	[kgf•m²]				
	(d)	GD ² of the counterweight	GD ² wc (When unknown, refer 2.1.)	[kgf•m²]				
	(e)	Chain weight	GD ² wcH (When unknown, refer 2.1.)	[kgf•m ² ]				
	(f)	GD ² of the mechanical brak	ke GD ² _B , etc.	[kgf•m²]				
	Тс	tal load converted into the eq = {GD ² wT + GD ² wLup + GD ² w	uivalent value at the motor shaft during lifting GD ² Lup с + GD ² wсн}					
		= +	+ + +					
		=	[kgf•m²]					
	Тс	tal load converted into the eq = $\{GD^2wT + GD^2wLdn + GD^2w\}$	puivalent value at the motor shaft during lowering $GD^{2}_{Ldn}$					
		= +	+ + +					
		=	· ·					
			L					

### <Gravitational Systems of Units>









2.2 Se	2.2 Selection of motor capacity						
(1)	(1) Required power of the load						
	$P_{L} = \frac{W \times V}{6120 \times \eta}  (W \text{ is larger of }  W_{up}  \text{ and }  W_{dn} )$						
	= [kW]						
(2)	Temporary selection of motor capacity (PM)						
(2)	$P_M = \alpha p \times P_L \ (\alpha p = 0.5 \text{ to } 2.0)$						
	$= $ [kW] $\Rightarrow$ Select [kW].						
(3)	GD ² of the motor, etc.						
	Motor $GD_{M}^{2} = $ [kgf•m ² ] (For the kW P motor)						
(4)	GD ² ^B of the mechanical brake						
	$GD_{B}^{2} = $ [kgf•m ² ] Note that the brake is the NB						
	Total $GD^2_{up}$ converted into the equivalent value at the motor shaft during lifting is:						
	$GD^{2}_{up} = GD^{2}_{M} + GD^{2}_{B} + GD^{2}_{Lup} = + + + + + + + + + + + + + + + + + + $						
	Total GD ² dn converted into the equivalent value at the motor shaft during lowering is:						
	$GD^2$ dn = $GD^2$ M + $GD^2$ B + $GD^2$ Ldn = + + +						
	= [kgf•m²]						
2.3 Te	emporary selection of inverter capacity						
(1)	Rated torque $(T_M)$ of the temporarily selected motor (60Hz rating basis)						
	$T_{M} = \frac{974 \times P_{M}}{N_{M}} = $ [kgf•m]						
(2)	Temporary selection of the inverter capacity						
	According to the motor capacity, select the FR-						
(3)	Determination of the torque type						
	According to the motor and inverter temporarily selected, the torque type is with reference to Technical Note No. 22.						
	Maximum starting torque coefficient $\alpha_s =$						
	Linear acceleration torque coefficient $\alpha_a =$						
	Heat coefficient $\sigma =$						
(4)	Operating frequency range of the temporarily selected inverter						
	According to $f = \frac{(motor speed \times number of motor poles)}{120}$						
	Frequency corresponding to the maximum speed						
	$f_{max} = \frac{N_{max} \times P}{120} =$ [Hz]						
	Frequency corresponding to the minimum speed						
	$f_{\min} = \frac{N_{\min} \times P}{120} = $ [Hz]						

#### <Gravitational Systems of Units >



## <Gravitational Systems of Units>

2.5 Whether Acceleration/Deceleration is Possible or Not						
(1)		•	$\frac{\text{during lifting (Ta_1)}}{\text{ta}} = \boxed{\qquad} \qquad $			
(2)		•	$\frac{during lifting (Td_1)}{t_d} = $ [kgf•m]			
(3)			$\frac{\text{during lowering (Ta_2)}}{\text{t}_a} = \boxed{\qquad} \qquad $			
	$=\frac{(GD^2_{Ldn} + $	GD ² м + G 375 ×	during lowering (Td ₂ ) $\frac{\partial D^2 B \times N_{max}}{d d} = $ [kgf•m] e motor in each region			
		Region	Torgue applied to the motor [kgf•m]			
	Lifting	1)	$T_{aup} = T_{a1} + T_{LU} = $			
		2)				
		3)	$T_{dup} = -T_{d1} + T_{LU} = $			
		4)				
	Lowering	5)	Tadn = Ta2 + TLD = =			
		6)	TLD =			
		7)	$T_{ddn} = -T_{a2} + T_{LD} =$			
		8)				

<ul> <li>(6) Torque required for acceleration and deceleration</li> <li>(a) Torque coefficient required for acceleration during lifting (α)</li> </ul>
$=\frac{Ta_{max}}{T_{M}} = \boxed{\qquad}$
Ta _{max} is either of Ta _{up} in region 1 and Ta _{dn} in region 5, which is larger. Note that regenerative acceleration is made when Ta _{up} > 0 and Ta _{dn} > 0. In this case, the maximum torque required for regenerative acceleration is judged by whether deceleration is possible or not. Hence, the judgment of whether acceleration is possible or not is not needed here.
Analysis of whether acceleration is possible or notOK NG $\alpha_a \times \sigma = $ $\times$ $> \alpha =$ $\alpha_a$ : Linear acceleration torque coefficient $\sigma$ : Heat coefficient (refer to Technical Note No. 22.)OK NG
(b) Torque coefficient required for deceleration during lowering ( $\beta$ ) = $\frac{ Td_{max} }{T_M} = $
Td _{max} is either of Td _{up} in region 3 and Td _{dn} in region 7, which is smaller. Note that driving deceleration is made when Td _{up} < 0 and Td _{dn} < 0. In this case, the maximum torque required for driving deceleration is judged by whether acceleration is possible or not. Hence, the judgment of whether deceleration is possible or not is not needed here.
(c) Temporary selection of the brake unit
The torque type of the is <refer 22.="" braking="" capability="" data="" in="" no.="" note="" technical="" the="" to=""></refer>
Analysis of whether deceleration is possible or not       OK $\beta_{min} =$ > $\beta =$
$\beta_{min}$ : Brake torque coefficient (minimum value)



	(3) Calculation of power • Power returned from the load [W _{MECH} ] $W_{MECH} = \frac{ \Sigma(W_n \times t_n) }{\Sigma t_n}$ From zones 1) to 8), calculate W _n and t _n only in the zones where power is negative.								
	=		= [	[W]					
	Power returned to the inverter								
	WINV =	Wмесн × 0.9 =	=	[W]					
(4)	) Short-time permissible power per operation of the braking unit $W_{RS} = $ [W] (For $W_{RS}$ , refer to Technical Note No. 22.)								
	Analys	is of short-time permissible p	ower		OK				
,	WINV =	< Wrs =			NG				
	-	the continuous average rege							
,	$W_{INV} \times \frac{t_{1}}{}$	$\frac{t_{2}+\Lambda+t_{n}}{t_{c}} = \times$		- =	[W]				
		the sum total of times when p			o 8))				
(6)	Continuo	us permissible power	WRC (refer to Te	echnical Note No. 22)	= [[W]				
		s of continuous permissible p		,	OK				
,		= < W _{RC} =			NG				
	tc								
	-	the short-time permissible per		ous regenerative oper	ation zone				
		= < W _{RS} (for for seconds, refer to Tech	seconds) = nnical Note No. 22.)						
27 Exa	mination	of Whether the Motor Can Be	e Lised Thermally						
		motor torque, load torque fac	-	racteristic (%)					
	7	Torque Supplied	Load Torque	Current	Cooling				
	Zone	to the Load	Factor [%]	Characteristic [%]	Coefficient				
During rising	t1	$T_{au} = T_{a1} + T_{LU}$	TF =	l1 =	C1 =				
Ŭ	t2			l2 =	C2 =				
	t4		TF =	4 =	C4 =				
	t3	$\begin{array}{ccc} T_{du} &= -T_{d1} + T_{LU} \\ p &= \end{array}$	TF =	13 =	C3 =				
During	t ₆	$T_{ad} = T_{a2} + T_{LD}$							
falling		n =	TF =	16 =	C6 =				
	t7 t9		TF =	I7 = I9 =	C7 = C9 =				
	ts	$T_{dd} = -T_{d2} + T_{LD}$							
		n =	TF =	18 =	C8 =				
Note: Motor torque used is the above calculated value.									

(2) Motor equivalent current value (IMC)
$I_{MC} = \sqrt{\frac{I_{1}^{2} \times t_{1} + I_{2}^{2} \times t_{2} \dots + I_{n}^{2} \times t_{n}}{C_{1} \times t_{1} + C_{2} \times t_{2} + \dots + C_{n} \times t_{n}}}$
$N_{$
=
ν
= 100%
γ
2.8 Examination of Stopping Accuracy
(1) Characteristics of the brake
According to Technical Note No. 22, the characteristics of the mechanical brake are:
Rated braking torque     : T
• Delay time (independent off) : to1 = [s]
• Brake $GD^2$ : $GD^2_B$ = [kgf•m ² ]
(2) Stopping accuracy when the motor is running at a slow speed (creep speed), and is brought to a
stop
Stopping time (t _b ) $= t_{01} + t_{11}$
$= t_{01} + \frac{(GDL^2 + GDM^2 + GDB^2) \times N_{min}}{375 \times (T_B + T_L)}$
375×(Ів+ІL)
=+
= [s] where,
T∟: Load torque during lifting (T∟υ) : Load torque during lowering (T∟⊳)
Stopping distance (S) = S ₀₁ + S ₁₁ = (t ₀₁ × $\frac{V_{min}}{60}$ + t ₁₁ × $\frac{V_{min}}{60}$ × $\frac{1}{2}$ ) × 10 ³ = () × 10 ³
Stopping distance (S) = So1 + S11 = $(t_{01} \times \frac{v_{min}}{60} + t_{11} \times \frac{v_{min}}{60} \times \frac{1}{2}) \times 10^3$
$=($ $+$ $) \times 10^{3}$
= [mm]
Guideline of stopping accuracy ( $\Delta \epsilon$ ) = ±S/2 = /2 = ± [mm]
2.9 Determination of the Models
According to the above examination results, the recommended models are as follows:
Motor : kW P
Inverter : FR- (Control system: )
Braking unit :