MITSUBISHI
 INVERTER
 Instruction Manual

INPUT/OUTPUT COMPATIBLE UNIT TYPE FR-EPE

- Relay Output - 12-Bit Digital Input
- Extension Analogue Output

Warning symbols For your own safety please pay special attention to instructions containing these symbols:

This warning symbol indicates the presence of dangerous voltage. It informs you of high voltage conditions, situations and locations that may cause death or serious injury if you do not follow precautions.

This symbol indicates a general warning.

This warning symbol indicates an electrostatic dis. charge hazard.

NOTES inform you of situations or conditions which will damage machinery or cause additional motor-operation downtime if you do not take suggested steps to correct or address such situations or conditions.

Thank you for choosing the option unit for the Mitsubishi FREQROL

 transistorized frequency inverters.Please read this manual carefully to make optimum use of this option unit.
I/O Compatible Option Unit (FR-EPE)
This option unit is a multi-function unit designed for use with industrial machines of various I/O specifications and has the following functions:

- Relay output
- 12-bit digital input
- Extension analogue output

CONTENTS

2. INSTALLATION ... 2
3. RELAY OUTPUT ... 4
4. 12-BIT DIGITAL INPUT ... 8
5. EXTENSION ANALOGUE OUTPUT .. 13

CAUTION Since this option unit has multiple functions, the initial settings of its functions are as listed in the following table. To make the required function valid, set the corresponding parameter in accordance with the relevant page.

Function	Initial Setting	Remarks
Relay output	Relay No. 1 (RUN), relay NO. 2 (SU) and relay No. 3 (IPF/UVT) signals are output.	The factory setting of Pr. 134 is '12'. To change the relay output setting, change the setting of this parameter. (See page 5.)
12-bit digital input	Invalid	The factory setting of Pr. 104 is '9999'. (See page 10.)
Extension analogue output	(Output current (A) is output.)	The factory setting of Pr. 135 is " 2 ". To select other outputs, change the setting of this parameter. (See page 15.)

1. STRUCTURE

2. INSTALLATION

Remove the inverter cover and install the option unit with the following procedure:

2.1 Pre-Installation Checks

(1) Check the inverter type.

This option unit may only be used with the FREQROL-A200E series inverters and must not be used with any other series (e.g.A200, A100, Z and F series). If you connect forcibly, the inverter may be damaged.
(2) Make sure that the inverter input power is off. The inverter may become faulty if the option unit is installed with the input power on. (The inverter or option unit may be damaged and the inverter may display the alarm 'E. CPU'.)
(3) Check that the following accessories are supplied with the option unit:

- 1 - Instruction manual
- 2 - Mounting screws M3 $\times 14$
- 1 - Jumper (installed on the terminal block)

2.2 Installation Procedure

(1) Insert the connector of the option unit into the connector of the inverter.
(2) Securely fix the option unit to the inverter at the top and bottom with the accessory mounting screws.
If the screw holes in the option unit do not match those in the inverter, check that the connectors have fitted correctly.
(3) For the installation diagram, see page 3.

* The empty terminals, which are used inside the option, must not be used as relay terminals. Otherwise, the option unit may be damaged.

Note: Route the cables neatly in the wiring space so that when the front cover is reinstalled, the cables to the inverter control circuit terminals and option terminals are not caught between the inverter and cover.
Warning! Hazardous voltage present.
Always isolate the power from the inverter, and wait 5
minutes to ensure the charge lamp has gone out be-
fore inserting or removing this option unit, or touching
the terminals.

3. RELAY OUTPUT

This function allows three output signals to be selected optionally from among the 10 standard signals (RUN, SU, IPF/UVT, OL, FU1, FU2, RBP, THP, PRG and PU) of the inverter and to be output as relay contact (1C contact) signals.

3.1 Internal Block Dlagram

Inlomal Circuik Diagram

3.2 Terminals

Terminal Symbol	Description
1A	Normally open contact terminal for relay RA1
1B	Normally closed contact terminal for relay RA1
1C	Common terminal for contacts of relay RA1
$2 A$	Normally open contact terminal for relay RA2
$2 B$	Normally closed contact terminal for relay RA2
$2 C$	Common terminal for contacts of relay RA2
$3 A$	Normally open contact terminal for relay RA3
$3 B$	Normally closed contact terminal for relay RA3
$3 C$	Common terminal for contacts of relay RA3

*The operation of each relay depends on the output signal selected.

3.3 Adjustments

(1) Selection of output signals

Set the required value in parameter number 134 to select the output signals of relays RA1 to RA3.

Pr. 134 setting

- 3-digit numerical value

Low-digit numeral : Indicates the output signal of relay RA3.
Middle-digit numeral : Indicates the output signal of relay RA2.
High-digit numeral: Indicates the output signal of relay RA1.
9999
The relays do not output.

Note: When the paramater unit (FR-PUO2E) is used to set the Pr. 134 value, the setting range shown on the display screen of the PU is 11 to 999 and 9899, but 0 to 10 outside this range may also be sel in Pr. 134.
(2) Definition of output signals

Set the corresponding numeral to each digit of parameter number 134 to select any of the following signals:

Set Value	Definition of Signal
0	Inverter running (RUN)
1	Up to frequency (SU)
2	Instantaneous power failure or undervoltage (IPF/UVT)
3	Overload alarm (OL)
4	Frequency detection (FU1)
5	Second frequency detection (FU2)
6	Regenerative brake prealarm (RBP)
7	Electronic thermal relay prealarm (THP)
8	Program mode operation in progress (PRG)
9	PU operation in progress (PU)

Example: When Pr. $134=012$ (initial setting), the following signals are selected and output:

RA1: Inverter running (RUN)
Since the 0 at the beginning of the interger is not displayed, the value displayed actually is 12 .

RA2: Up to frequency (SU)
RA3: Instantaneous power failure or undervoltage (IPF/UVT)

RELAY OUTPUT

3.4 Output Signal On/Off Timings

(1) Inverter running (RUN) (Set value = 0) Switched on at not less than the starting frequency, and switched off while the inverter is at a stop or the DC dynamic brake is being operated.
(2) Up to frequency (SU) (Set value $=1$)
The ON range(*) of the up to frequency signal is adjustable between 1 and 100% of the set frequency (fs) by using the "up to frequency sensitivity" parameter.

(3) Frequency detection (FU1, FU2) (Set value $=4,5$) Switched on when the output frequency exceeds the value set in the "output frequency detection parameter."
(4) Instantaneous power failure (IPF) (Set value $=2$)
For more information on the IPF sig-
 nal on/off timing, see the inverter catalogue, technical information, etc.
(5) Overload $(O L)$ (Set value $=3$) Switched on when the output current or regenerative voltage exceeds the predetermined value and the stall prevention is activated. Switched off when the output current or regenerative voltage falls below the predetermined value and the stall prevention is reset.

(6) Regenerative brake prealarm (RBP) (Set value = 6)
Output when the regenerative brake duty reaches 85% of the value set in Pr. 70.
(7) Electronic thermal relay prealarm
(THP) (Set value = 7)
Output when the accumulative electronic thermal relay value reaches 85% of the set level.

Regenerative Brake Prealarm (RBP) Signal ONOFF
Timing Chart Example

(8) Program mode operation in progress (PRG) (Set value $=8$)

Output when the program mode ($\operatorname{Pr} .75=5$) is selected.
(9) PU operation in progress (PU) (Set value = 9)
Output when the PU operation

PRG and PU Signal ONOFF Timing Chart Example mode is selected.

3.5 Instructions

(1) The same output signals can be selected for the three relays.
(2) The contacts should be used within the rated capacity to ensure long contact life and prevent them from being damaged.

3.6 Specifications

(1) Output signal type
(2) Output signals
(3) Contact capacity

1C contact output (three relays used)
One of the 10 output signals may be selected for each relay (see page 5).

230VAC 0.3A 3OVDC 0.3A

4. 12-BIT DIGITAL INPUT

This function allows a frequency to be set by BCD or binary digital input signals.

4.1 Wiring Example

(1) Relay contact signal input	(2) Open collector signal input
[BCD code]	[BCD code]

Note: 1 A microcurrent switching contact relay should be used for the relay contact signal.
2 A transistor of the following specifications should be selected for the open coliector signal:

Electrical characteristics of the transistor used

- Ic $\geq 10 \mathrm{~mA}$ - \quad Leakage current: $100 \mu \mathrm{~A}$ max.
- Vce $\geq 30 \mathrm{~V}$
- If Ic = 10 mA , the base current should be specified so that Vce voltage is 3 V max.

4.2 Terminals

Terminal Symbol	Descriptlon
0 to 11	$\begin{array}{l}\text { Digital signal input terminals (frequency reference signal terminals) } \\ \text { To input 3-digit BCD (999 max.) or 12-bit binary (FFF H max.) } \\ \text { signals using relay contact or open connector. }\end{array}$
DY.	$\begin{array}{l}\text { Data read timing input signal } \\ \text { Use when a digital signal read timing signal is required. } \\ \text { Data is only read while the DY and SD terminals are connected. } \\ \text { By disconnecting teminals DY and SD, data at the time of terminal } \\ \text { disconnection is retained. }\end{array}$
SD	$\begin{array}{l}\text { Common terminal } \\ \text { Used for data input signals and data read timing signal. }\end{array}$
PC	$\begin{array}{l}\text { External transistor common } \\ \text { When the transistor output (open collector output) of a } \\ \text { programmable controllor (PC), etc. is connected, connect the }\end{array}$
extemal power common (positive) to this terminal to prevent a fault	
occurring due to a sneak current.	

* "DY" Terminal

When the jumper has been removed from the DY and SD terminals, the inverter does not accept the set frequency data.
Hence, the set frequency data before removal of the jumper is used even if there are changes in the input states of terminals 0 to 11.
When the DY terminal is used, remove the jumper which has been connected to the DY and SD terminals before shipment from the factory.

12-BIT DIGITAL INPUT

4.3 Adjustments

(1) Parameters

Set the following parameters before starting inverter operation.
Parameter List

Function Number	Paramoter Name		8eluing fange	mintal setting	Minimum Increment	Remarks
100	BCD input	Bias	O10 400Hz	OHz	0.01 Hz	
101		Gain	010 400H2, 0998	$60 \mathrm{H}_{2}$	0.01 Hz	
102	Binary input	Bias	0 10 400Hz	OHz	0.01 Hz	
103		Oain	$010400 \mathrm{~Hz}, 8989$	60 Hz	0.01 Hz	
104	Digital input and analog compensation input enable/disable selection		0, 1, 2, 3, 9990	9999	1	

(2) Input selection (Pr. 104)

Parameter 104 allows a digital input signal type to be selected between BCD and binary and compensation for analogue input to digital input to be selected between enable and disable.
Set 9999 in Pr. 104 to make 12-bit digital input invalid.

Digital Input Signal Type	Analogue Compensałion Input	
	Compensation disable	Compensation enable
BCD input	0	2
Binary input	1	3

- The analogue compensation input signal is input across terminals 1-5. When " 0 " (faciory setting) or " 1 " is set in Pr. 104, analogue signals are not accepted.
(3) Bias adjustment (Pr. 100)(Pr. 102)

Bias and gain are adjustable with respect to the digital input signai. Define the output frequency (set frequency when magnetic flux vector control has been selected) at the digital input of 0 .

- BCD input Set the output frequency in parameter 100.
- Binary input Set the output frequency in parameter 102.
(4) Gain adjustment (Pr. 101)(Pr. 103)

Gain may be defined in either of the following two ways:

- Setting the output frequency for the input signal of 999 (BCD) or FFF H (binary):
(The factory-set value is 60 Hz for this input signal.)

Note: Bias and gain are adjustable independently of the digital input signal. The output frequency at the digital signal of 0 is defined as bias and the output frequency at the digital signal of 999 (or FFF H) is detined as gain.

- Setting the BCD or binary value as the output frequency set value

Setting of "9999" in parameter 101 (BCD) or 103 (binary) defines the digital input value intact as the set value of the output frequency.
(The following example shows that the output frequency is set to 120 Hz at the BCD input of " 120°.)

Output trequency (Hz)

Note: When this setting method has been used, "bias" setting (parameter 100 or 102) cannot be used.
(5) Maximum output frequency

The maximum output frequency is the "gain" set value (see section (4)) when the inverter is operated by digital input signals.
To set the maximum output frequency beyond 60 Hz , change the gain with the parameter unit.
(6) Acceleration/deceleration time

The acceleration/deceleration time is the period required to reach the "acceleration/deceleration reference frequency" set in parameter 20.

12-BIT DIGITAL INPUT

4.4 Instructions and Restrictions

(1) Digital input signals are restricted as follows:

- When BCD input is selected, OA H to OF H entered are invalid (ignored) and operation is performed with previous inputs.
(2) This option unit is designed for use in the FR-A200E series inverters. It cannot be used with the other series of inverters.
(3) Installation of the digital input card (FR-EPE) (Pr. $104 \neq 9999$) changes the availability of the functions and terminals of the FR-A200E inverters as indicated in the following table:

Availability of the Inverter Terminals

Symbol	Terminal	Avallability of inverter Terminala
STF	Forwerd rotation	Valld
STR	Reverse rotation	Valid
STOP	Start sell-holding select terminal	Valld
RH, PM, FL	Mulitspend sefect terminals	Invalid (speed may be set but is innetive)
JOC/OH	Jog mode seteot or external thermal relay input ierminal	Valid
RT	Second soceloration/decelortion time select terminal	Valid
MRS	Inverter output stop terminal	Valid
RES	Resel terminal	Valid
AU	Current hout seloct ierminal	Irvalid
CS	Autometie restert atter instantaneous power faikre setect terminal	Valid (only when Pr. 57 is not 8900)
2	Frequency seting (voltage signal) ierminal	Invalid
1	Auxiliery frequency setting input (5V or 10 V) terminal	Valid when Pr. 104 is sel to 2 or 3
4	Freguency seting (current sional) terminal	Invalid

(4) When parameter 104 has been set to 2 or 3, an input of 0 to 5 V (or 0 to 10V) to inverter terminal 1 from an external variable resistor allows the inverter fitted with the FR-EPE card to operate at the frequency of the BCD input from the FR-EPE plus the compensation input from terminal 1. When the BCD and compensation inputs are used for different operations, e.g. the variable resistor input is used for manual operation and the BCD input for automatic operation, set the BCD input to "0" for the manual operation.

4.5 Specifications

- Digital input signal types 3-digit BCD or 12-bit binary
- Digital input signal selection By the parameter unit
- input current

5mA (24VDC) per circuit

- Input form

Contact signal or open collector input

- Adjustment functions
(1) Bias and gain
(2) Analogue compensation input (set using the parameter unit)

5. EXTENSION ANALOGUE OUTPUT

This function allows any of 16 signals, such as output frequency or output current, to be selected, output as an analogue signal and indicated by an ammeter or a voltmeter connected to the terminals of the FR-EPE.
This function also allows different or same signals to be output simultaneously from the voltage output terminal (LMO) and current output terminal (LM1).

5.1 Wiring Example

Connect a voltmeter or an ammeter as shown below.

Note: The cable length of the voltmeter or ammeter must be within 10 m .

5.2 Terminals

Symbol	Terminal	Description
LMO	Voltage output terminal	Connect a DC voltmeter (10VDC).
LM1	Current output terminal	Connect a DC ammeter (1mADC).
LM2	Common terminal	Common terminal for LM0 and LM1.

EXTENSION ANALOGUE OUTPUT

5.3 Adjustments

Set the following parameters before starting inverter operation:

Function Number	Function Name	Solling Range	Minloum merament	Factory setling	Remarke
135	Analogue output signel selection	1 to 21	1	2	4, 15, 16, 10 and 20 must not be sel.
136	Sotting for zero analogue output	0 to 100\%	0.1\%	0\%	
137	Sotting for maximum - nalogue output	0 to 100\%	0.1\%	100\%	
146	Voltagetarrem selection for analogue output signal	0,1	1	0	
147	Analogue meler vohage oulpul selection	1 to 21	1	2	4, 15, 16, 19 and 20 must not be set.
148	Sotting for zero analogue moler voltage output	0 to 100\%	0.1\%	0\%	
149	Setting for mmaximurn analogue meler voltage output	0 to 100\%	0.1\%	100\%	

[Adjustment procedures]

(1) Setting the voltage/current selection for analogue output signal [Pr. 146] Use Pr. 146 to seiect whether the same or different signals are output from the voltage output terminal (LMO) and current output terminal (LM1).

VohegwCurrent Selection for Analogue Output Signal [Pr. 140]	Deacripllon		Parameters for selling	Parameter 10P Acjustment
Set value = 0 (fectory setting)	The seme seleet aignele are output from the voltage output terminal (LMO) and current output terminal (LM1).	LMO	Pr. 135: Select the output signal. Pr. 136: Output signal value for zero output Pr. 137: Output signal value for maximum oulput	Pr. 901
		LM1		
Set value = 1	Difiorant seloet signals are ounpur from the vollege output terminal (LMO) and curremt output torminal (LM1).	LMO	Pr. 147: Scleot the output signal. Pr. 148: Output signal value for zero output Pr. 149: Output signal value for maximum oulput	Pr. 900
		LM1	Pr. 135: Seloct the outpur signal. Pr. 136: Output signea value for zero output Pr. 137: Output signal value for maximum oulput	Pr. 901

(2) Analogue output signal selection [Pr. 135] [Pr. 147]

Select any of the following analogue signals output from terminals LMO and LM1.
To output the same signals from LMO and LM1 (Pr. 146=0), select the analogue signal from the following table and set the corresponding signal number in parameter 135. (The Pr. 147 setting is ignored.)
To output different signals from LMO and LM1 (Pr. 146=1), set the signal number of LMO in Pr. 147 and that of LM1 in Pr. 135.

Output Signal List

Signal Number	Definition of Output Signal	Full-Scale Value
1	Output frequency (Hz)	Value set in Pr. 55
2	Output current (A)	Value set in Pr. 56
3	Output voltage (V)	400 V or 800V
5	Frequency set value (Hz)	Value set in Pr. 55
6	Running speed	Value converted from the Pr. 55 value by the Pr. 37 value
7	Motor torque (\%)*	(Rated torque of applied motor) $\times 2$
8	Converter output voltage (V)	400 V or 800V
9	Regenerative brake duty (\%)	Value set in Pr. 70
10	Electronic overcurrent protection load factor (\%)	Quercurrent protection level
11	Output current peak value (A)	Value set in Pr. 56
12	Converter output voltage peak value (V)	400V or 800V
13	Input power (kW)	(Rated power of inverter) $\times 2$
14	Output power (kW)	(Rated power of inverter) $\times 2$
17	Load meter (\%)	Value set in Pr. 56
18	Motor excitation current (A)	Value set in Pr. 56
21	Reference voltage output	Full-scale voltage or current is output to terminal LMO or LM1.

[^0]
EXTENSION ANALOGUE OUTPUT

(3) Meter calibration (Pr. 135, Pr.147, Pr.900, Pr. 901, [7], [A] keys)

1) Outputting the same select signals from terminals LMO and LM1

2) Outputting different select signals from terminals LMO and LM1

Nole: At the beginning of pressing the (VMA] key, the meter deflection changes slowly. Hence, it ean be used for fine adjustrmen. Hold down the key to change the deffection faster.
(4) Analogue signal adjustment [Pr. 136, Pr. 137, Pr. 148, Pr. 149]

To provide the output signal in the form of a $0-10 \mathrm{VDC}$ or 0.1 mADC analog output signal (output signal for meter), set the zero analogue output (meter zero) and maximum analogue output (full-scale) points as shown below in accordance with the following table:

Pr. 146 Setting	Output Signals	Paramotera for Soting			Parameter for Adfustment
(factory seding)	Same signals from LMO and LMI	LMO	Pr. 136:	Output aignal value for zamo output	
		LM1	Pr. 137:	Output signal value for maximum octput	
1	Offerent aignats from LMO and LMI	LMO	$\begin{aligned} & \text { Pr. 148: } \\ & \text { Pr.140: } \end{aligned}$	Outpul signal value lor zero ouput Output signal vakue for maximum output	Pr. 900
		LM1	Pr. 136: Pr. 137:	Outpul signal value for zero output Output signal value for maximum output	Pr. 901

EXTENSION ANALOGUE OUTPUT

5.4 Instructions

(1) A voltmeter having smaller internal impedance (or an ammeter having larger internal impedance) than the value indicated in the Specifications (Section 5.5) may not deflect to full-scale and may not be calibrated.
(2) This option is factory-set to provide full-scale output 10VDC and 1 mADC meters. Hence, a voltmeter (7VDC or less) or an ammeter (0.7mADC or less) with a small full-scale value may be damaged accidentally during calibration. When calibrating a meter having a small full-scale value, first set the output of terminal AMO (AM1) to the minimum without connecting the meter, then connect and calibrate the meter.
(3) If calibration is made without 21 (reference voltage output) set in Pr. 135, the AM terminal of the inverter is calibrated.
To make calibration for the extension analogue output, 21 must be set in Pr. 135. After the end of the calibration, select the output signal.

5.5 Speciflcations

(1) Output signals

Voltage output (across terminals LMO-LM2) 0 to 10VDC
Current output (across terminais LM1-LM2) 0 to 1 mADC
(2) Output resolution

Voltage output 3mV
Current output $1 \mu \mathrm{~A}$
(3) Display accuracy (reference value)
$\pm 10 \%$ of the full-scale output value.
Depends on output signal types.
(4) Meters used

- Voltmeter

DC voltmeter full-scale 10 V (internal impedance $10 \mathrm{k} \Omega$ or more)

- Ammeter

DC ammeter full-scale 1 mA (intemal impedance 800Ω or less)

- Cable length

Max. 10m
(5) Output signal types

One of the following signals can be selected and displayed (output):
inverter output current (motor current), output frequency, output voltage, frequency set value, running speed, motor torque*, converter output voltage, regenerative brake duty, electronic overcurrent protection load factor, output current peak value, converter voltage peak value, input power, output power, load meter, motor excitation current and reference voltage output.

- The FR-A100 series inverters cannot output this signal.

REVISIONS

- The manual number is given on the boltom left of the back cover.

[^0]: - The motor torque is only valid when magnetic flux vector control has been selected in the inverter.
 The rated torque of the applied motor is calculated from the settings of the magnetic flux vector control parameters (Pr. 80, 81).

