
MELSEC iQ-R Programming Manual
(Program Design)

SAFETY PRECAUTIONS
(Read these precautions before using this product.)
Before using the Mitsubishi Electric MELSEC iQ-R series programmable controllers, please read the manuals for the product
and the relevant manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

CONDITIONS OF USE FOR THE PRODUCT
(1) MELSEC programmable controller ("the PRODUCT") shall be used in conditions;

i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;
and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the
case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO
ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT
LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the
PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY
INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION
AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the

public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality

assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator,

Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other
applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the PRODUCT in
one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific
applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe,
redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details,
please contact the Mitsubishi Electric representative in your region.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.
1

2

 • For SIL2 Process CPUs

 • For Safety CPUs

(1) Although Mitsubishi Electric has obtained the certification for Product's compliance to the international safety standards
IEC61508, IEC61511 from TUV Rheinland, this fact does not guarantee that Product will be free from any malfunction
or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or law and take
appropriate safety measures for the system in which the Product is installed or used and shall take the second or third
safety measures other than the Product. Mitsubishi Electric is not liable for damages that could have been prevented by
compliance with any applicable safety standard, regulation or law.

(2) Mitsubishi Electric prohibits the use of Products with or in any application involving, and Mitsubishi Electric shall not be
liable for a default, a liability for defect warranty, a quality assurance, negligence or other tort and a product liability in
these applications.
(a) power plants,
(b) trains, railway systems, airplanes, airline operations, other transportation systems,
(c) hospitals, medical care, dialysis and life support facilities or equipment,
(d) amusement equipments,
(e) incineration and fuel devices,
(f) handling of nuclear or hazardous materials or chemicals,
(g) mining and drilling,
(h) and other applications where the level of risk to human life, health or property are elevated.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

(1) Although Mitsubishi Electric has obtained the certification for Product's compliance to the international safety standards
IEC61508, ISO13849-1 from TUV Rheinland, this fact does not guarantee that Product will be free from any malfunction
or failure. The user of this Product shall comply with any and all applicable safety standard, regulation or law and take
appropriate safety measures for the system in which the Product is installed or used and shall take the second or third
safety measures other than the Product. Mitsubishi Electric is not liable for damages that could have been prevented by
compliance with any applicable safety standard, regulation or law.

(2) Mitsubishi Electric prohibits the use of Products with or in any application involving, and Mitsubishi Electric shall not be
liable for a default, a liability for defect warranty, a quality assurance, negligence or other tort and a product liability in
these applications.
(a) power plants,
(b) trains, railway systems, airplanes, airline operations, other transportation systems,
(c) hospitals, medical care, dialysis and life support facilities or equipment,
(d) amusement equipments,
(e) incineration and fuel devices,
(f) handling of nuclear or hazardous materials or chemicals,
(g) mining and drilling,
(h) and other applications where the level of risk to human life, health or property are elevated.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

INTRODUCTION
Thank you for purchasing the Mitsubishi Electric MELSEC iQ-R series programmable controllers.
This manual describes the program structures and data required for programming.
Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the
functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.
When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it
will not cause system control problems.
Please make sure that the end users read this manual.

Most of the information in this manual is described using labels. Devices can be used in the same way as
labels.
3

4

CONTENTS
SAFETY PRECAUTIONS .1
CONDITIONS OF USE FOR THE PRODUCT .1
INTRODUCTION. .3
RELEVANT MANUALS .6
TERMS .7
GENERIC TERMS AND ABBREVIATIONS. .8

CHAPTER 1 OVERVIEW 9

CHAPTER 2 PROGRAM CONFIGURATION 11

CHAPTER 3 PROGRAM ORGANIZATION UNITS 13
3.1 Program Blocks . 14
3.2 Functions (FUN). 15
3.3 Function Blocks (FB) . 21
3.4 Precautions . 35
3.5 When a Safety Program Is Used . 41

Safety functions (Safety FUN) . 41
Safety function blocks (Safety FB) . 43

CHAPTER 4 LABELS 45

CHAPTER 5 LADDER DIAGRAM 47
5.1 Configuration. 47

Ladder symbols . 47
Program execution order . 48
Precautions for using a function block in ladder diagram . 49

5.2 Inline ST . 50
5.3 Statements and Notes. 52

CHAPTER 6 STRUCTURED TEXT LANGUAGE 53
6.1 Configuration. 54

Delimiters. 55
Operators. 55
Control statements . 56
Constants . 66
Labels and devices . 67
Comments . 69

CHAPTER 7 FBD/LD 70
7.1 Configuration. 70

Program elements . 71
Constant . 79
Labels and devices . 79

7.2 Inline ST . 81
7.3 Program Execution Order. 83

Execution order of program elements . 83

C
O

N
TE

N
TS
CHAPTER 8 SFC PROGRAM 85
8.1 Specifications . 88
8.2 Structure. 89

Block . 90
Step . 91
Action. 104
Transition. 108

8.3 SFC Control Instructions . 118
8.4 SFC Information Devices . 120
8.5 SFC Setting . 128

CPU parameter . 128
SFC block setting . 134

8.6 SFC Program Execution Order. 135
Whole program processing . 135
SFC program processing sequence . 137

8.7 SFC Program Execution . 140
Starting and stopping the SFC program . 140
Starting and ending a block. 141
Pausing and restarting a block . 142
Activating and deactivating a step . 143
Behavior when an active step is activated. 144
Operation when a program is modified . 145
Checking SFC program operation . 151

APPENDIX 152
Appendix 1 Operations of when the MC/MCR instructions are used to control EN . 152

INDEX 158

REVISIONS. .160
WARRANTY .161
TRADEMARKS .162
5

6

RELEVANT MANUALS

e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated
tool.
e-Manual has the following features:
 • Required information can be cross-searched in multiple manuals.
 • Other manuals can be accessed from the links in the manual.
 • The hardware specifications of each part can be found from the product figures.
 • Pages that users often browse can be bookmarked.
 • Sample programs can be copied to an engineering tool.

Manual name [manual number] Description Available form
MELSEC iQ-R Programming Manual (Program Design)
[SH-081265ENG] (this manual)

Program specifications (ladder, ST, FBD/LD, and SFC
programs)

e-Manual
PDF

MELSEC iQ-R Programming Manual (CPU Module Instructions,
Standard Functions/Function Blocks)
[SH-081266ENG]

Instructions for the CPU module and standard functions/
function blocks

e-Manual
PDF

MELSEC iQ-R Programming Manual (Process Control Function Blocks/
Instructions)
[SH-081749ENG]

Standard process function blocks, tag access function blocks,
tag function blocks, and process control instructions designed
for the process control

e-Manual
PDF

GX Works3 Operating Manual
[SH-081215ENG]

System configuration, parameter settings, and online
operations of GX Works3

e-Manual
PDF

TERMS
Unless otherwise specified, this manual uses the following terms.

The following terms are used to explain systems using the SIL2 Process CPU and the Safety CPU.

Term Description
Buffer memory Memory in an intelligent function module for storing data such as setting values and monitored values.

Buffer memory in a CPU module stores setting values and monitored values of the Ethernet function and data used for
data communications among the CPU modules in a multiple CPU system.

Device A device (X, Y, M, D, or others) in a CPU module

Engineering tool A tool used for setting up programmable controllers, programming, debugging, and maintenance

GX Works3 The product name of the software package, SWnDNC-GXW3, for the MELSEC programmable controllers (The 'n'
represents a version.)

Intelligent function module A module that has functions other than input and output, such as an A/D converter module and D/A converter module

Module label A label that represents one of memory areas (I/O signals and buffer memory areas) specific to each module in a given
character string. For the module used, the engineering tool automatically generates this label, which can be used as a
global label.

Multiple CPU system A system where two to four CPU modules separately control I/O modules and intelligent function modules

POU A unit that configures a program. Units are categorized and provided in accordance with functions. Use of POUs
enables dividing the lower-layer processing in a hierarchical program into some units in accordance with processing or
functions, and creating programs for each unit.

Predefined protocol support function A function of GX Works3.
This function sets protocols appropriate to each external device and reads/writes protocol setting data.

Standard/safety shared label A label that can be used in both standard programs and safety programs. This label is used to pass data between
safety programs and standard programs.

Term Description
Safety communications Communication service that performs send/receive processing in the safety layer of the safety communication protocol

Safety control Machine control by safety programs and safety data communications. When an error occurs, the machine in operation
is securely stopped.

Safety device A device that can be used in safety programs

Safety program A program that performs safety control

Standard communications Communications other than safety communications, such as cyclic transmission and transient transmission of CC-Link
IE Field Network

Standard control Machine control by standard programs and standard data communications. Programmable controllers other than the
safety programmable controller perform only standard control. (This term is used to distinguish from safety control.)

Standard device A device (X, Y, M, D, or others) in a CPU module. (Safety devices are excluded.) This device can be used only in
standard programs. (This term is used to distinguish from a safety device.)

Standard program A program that performs sequence control. (Safety programs are excluded.) (This term is used to distinguish from a
safety program.)
7

8

GENERIC TERMS AND ABBREVIATIONS
Unless otherwise specified, this manual uses the following generic terms and abbreviations.

The following generic terms and abbreviations are used to explain systems using the SIL2 Process CPU and the Safety CPU.

Generic term and abbreviation Description
I/O module An input module, an output module, an I/O combined module, and an interrupt module

Network module Includes the following:
• Ethernet interface module
• CC-Link IE TSN master/local module
• CC-Link IE Controller Network module
• CC-Link IE Field Network master/local module
• MELSECNET/H network module
• MELSECNET/10 network module
• RnENCPU (network part)

Operand A device, such as source data (s), destination data (d), number of devices (n), and others, used as a part to configure
an instruction and a function

Generic term and abbreviation Description
Standard CPU A MELSEC iQ-R series CPU module that performs standard control (This term is used to distinguish such CPU

modules from the CPU modules that perform safety control.)

1

1 OVERVIEW
This manual describes program configurations, contents, and coding methods required for programming.
For information on creating, editing, and monitoring programs using an engineering tool, refer to the following.
 GX Works3 Operating Manual

Programming languages
With the MELSEC iQ-R series, an optimal programming language can be selected and used according to the application.

■Ladder diagram (Ladder)

For details, refer to the following.
Page 47 LADDER DIAGRAM

■Structured text language (ST)

For details, refer to the following.
Page 53 STRUCTURED TEXT LANGUAGE

Programming language Description
Ladder diagram (Ladder) A graphic language which describes ladders consisting of contacts and coils.

This language is used to describe logical ladders using symbolized contacts and coils to enable
easy-to-understand sequence control.

Structured text language (ST) A textual language used to describe programs using statements (such as IF) and operators.
Compared with the ladder diagram, this language can describe hard-to-describe operation
processing concisely and legibly, and therefore is suitable for programming complicated
arithmetic operations and comparison operations. Also, as with C, ST language can describe
syntax control such as selective branches with conditional statements and iteration statements,
and thus can describe easy-to-understand, concise programs.

Function block diagram/ladder diagram (FBD/LD) A graphic language which describes programs by connecting blocks that perform predefined
processing, variable elements, and constant elements along the flow of data and signals.
This language facilitates programming of DDC (direct digital control) processing which is difficult
to describe in ladder diagram, and improves the productivity of programs.

Sequential function chart (SFC program) SFC is a program description format in which a sequence of control operations is split into a
series of steps to enable a clear expression of each program execution sequence and execution
conditions.
1 OVERVIEW
 9

10
■Function block diagram/ladder diagram (FBD/LD)

For details, refer to the following.
Page 70 FBD/LD

■SFC program

For details, refer to the following.
Page 85 SFC PROGRAM

 • Programming in ladder is suitable for users who have knowledge and experience of sequence control and
logical ladders. Programming in ST is suitable for users who have knowledge and experience of C
programming. Programming in FBD/LD is suitable for users who perform process control. SFC program is
suitable for creating program blocks for each actual control of machines and controlling the transition of
each operation.

 • Using labels in programs can improve readability of programs, and make it easy to immigrate programs to a
system having a different module configuration.
1 OVERVIEW

2

2 PROGRAM CONFIGURATION
Using the engineering tool, multiple programs and program organization units (POUs) can be created.
Programs and POUs can be divided according to processing.
This chapter describes the program configuration.

For POUs, refer to the following.
Page 13 PROGRAM ORGANIZATION UNITS

Project
A project is a group of data (such as programs and parameters) to be executed in a CPU module.
Only one project can be written to a single CPU module.
At least one program file needs to be created in a project.

Program file
A program file is a group of programs and POUs.
A program file consists of at least one program block. ( Page 14 Program Blocks)
The following operations are performed in units of program file: changing the program execution type from the fixed scan
execution type to the standby type and writing data to the CPU module.

�

Project

Program file 2

Program block

Program file 1

Program block

Program block

FB/FUN file

Function block

Function block

Function

Function

Function
2 PROGRAM CONFIGURATION
 11

12
MEMO
2 PROGRAM CONFIGURATION

3

3 PROGRAM ORGANIZATION UNITS
There are three types of program organization units (POUs).
 • Program block
 • Function
 • Function block
Processing can be described in the programming language that suits the control performed in each POU. Processing can be
described in the ladder diagram, structured text language, or FBD/LD in a function or a function block.
Functions and function blocks are called and executed by program blocks.

A structured program is a program created by components. Processes in lower levels of hierarchical
sequence program are divided into several components according to their processing information and
functions.
Each component of a program is specified to have a high degree of independence for easy addition and
replacement.
The following are the examples of processing that would be ideal to be structured.
 • Processing which is used repeatedly in a program
 • Processing which can be separated as one function

This chapter describes two types of POUs using labels.
Devices can also be used in the program (worksheet) of each POU. For details on devices, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

Up to 32 worksheets can be created in one POU in the structured text language and FBD/LD.
Set the execution order of multiple worksheets on the "Worksheet Execution Order Setting" window of the
engineering tool. ( GX Works3 Operating Manual)

Project

Program file

POU folder

POU

Function block

POU

Program block

POU

POU

Function

Used
3 PROGRAM ORGANIZATION UNITS
 13

14
3.1 Program Blocks
A program block is a unit for making up a program.
Multiple program blocks can be created in a program file and executed in the order specified in the program file setting. If the
order is not specified in the program file setting, the program blocks are executed in ascending order of their names.
By separating program blocks for individual functions and processing, the order of programs can be changed easily and
programs can be exchanged easily.
The program of a program block is stored by each registration destination program in a program file.

Dividing into program blocks
A main routine program, subroutine program, and interrupt program can be created separately in individual program blocks.*1

*1 Subroutine programs and interrupt programs cannot be created in safety programs. Subroutine programs cannot be executed from
safety programs.

 • Create a subroutine program and interrupt program after the FEND instruction of the main routine program.
Any program after the FEND instruction is not executed as a main routine program. For example, when the
FEND instruction is used at the end of the second program block, the third program block or later runs as a
subroutine program or interrupt program.

 • To create an easy-to-understand program, use a pair of instructions, such as the FOR and NEXT
instructions or the MC and MCR instructions, within a single program block.

 • A simple program can be executed in the CPU module simply by writing the main routine in one program
block.

For details on the subroutine program and interrupt program, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

Program type Description
Main routine program A program beginning with step 0 and ending with the FEND instruction

Subroutine program A program beginning with a pointer (P) and ending with the RET instruction.
This program is executed only when it is called by a subroutine call instruction (such as the CALL and ECALL
instructions).

Interrupt program A program beginning with an interrupt pointer (I) and ending with the IRET instruction.
When an interrupt factor occurs, the interrupt program corresponding to the interrupt pointer number is executed.

Program file
Program block 1

Program block 2
3 PROGRAM ORGANIZATION UNITS
3.1 Program Blocks

3

3.2 Functions (FUN)
A function is a POU called and executed by program blocks, function blocks, and other functions.
After the processing completes, a function passes a value to the calling source. This value is called a return value.
A function always outputs the same return value, as the processing result, for the same input.
By defining simple, independent algorithms that are frequently used, functions can be reused efficiently.

Operation overview
The program of a function is stored in the FUN file and called by the calling source program when executed.

Ex.

When calling FUN1 and FUN2 from the main program, and calling FUN3 by FUN1 (Nested three times)
 to  indicate the execution flow (order).

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

FUN

FB or FUNFUN

Program
blockFunction

Function block
or
function

Program
block

� �
�

��

�

	

FUN1

FUN2

FUN3

(Program file)
Main program

(FUN file)
FUN1 program

(FUN file)
FUN2 program

(FUN file)
FUN3 program
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN) 15

16
Input variables and output variables
Input and output variables can be defined in functions. Output data which is different from the return value can be assigned to
the output variable.

Input variables are set in the VAR_INPUT class and output variables are set in the VAR_OUTPUT class.

Variables defined in the function are overwritten every time the function is called.
To hold the data in the variables, create a program by using function blocks or so that the data in the output
variable is saved in another variable.

EN and ENO
EN (enable input) and ENO (enable output) can be appended to a function to control execution processing.
 • Set a boolean variable used as an execution condition of a function to EN.
 • A function with EN is executed only when the execution condition of EN is TRUE.
 • Set a boolean variable used to output a function execution result to ENO.
The following table lists the ENO states and operation results according to the EN states.

 • Setting an output label to ENO is not always required for the program written in ladder or FBD/LD.
 • When EN/ENO is used in a standard function, the function with EN is represented by "function-name_E".

Ladder program FBD/LD program

The return value of the function is not displayed.

(1) Function name
(2) Input variable
(3) Output variable

EN ENO Operation result
TRUE (executed) TRUE Operation result output value

FALSE (not executed) FALSE Undefined value

(1)

(2)

(3)

(1)

(2)
(3)
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

Creating programs
The program of a function can be created by using the engineering tool.

[Navigation window]  [FB/FUN]  Right-click  [Add New Data]
Select "Function" for "Data Type" in "Basic Setting".

The created program is stored in the FUN file.

[CPU Parameter]  [Program Setting]  [FB/FUN File Setting]
Up to 64 created programs can be stored in one FUN file.
The rising edge execution instruction or falling edge execution instruction cannot be used in the function.
For details on program creation, refer to the following.

■Applicable devices and labels
The following table lists the devices and labels that can be used in function programs.
: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

*1 The following data types cannot be used.
Timer, retentive timer, counter, long timer, long retentive timer, and long counter

Program a function name as a label in a function to set a return value of the function. Setting function names
as labels is not necessary. The data type set in "Result Type" in the properties of the function can be used.

Item Reference
How to create function programs  GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module  MELSEC iQ-R CPU Module User's Manual (Startup)

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label *1

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Local device 

Pointer Global pointer 

Local pointer 
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN) 17

18
Labels defined by a function
The labels defined by a function are assigned in the temporary areas of the storage-target memory during execution of the
function, and the areas are freed after the processing completes.

Ex.

When calling FUN1 and FUN2 from the main program, and calling FUN3 by FUN1
( to  indicate the execution flow (order).)

The following figure shows the label assignments while the above functions are being executed.

The class of labels that can be defined in the function are VAR, VAR_CONSTANT, VAR_INPUT, and VAR_OUTPUT.

The label to be defined by a function must be initialized by a program before the first access because the label
value will be undefined.

� �
�

��

�

	

FUN1

FUN2

FUN3

(Program file)
Main program

(FUN file)
FUN1 program

(FUN file)
FUN2 program

(FUN file)
FUN3 program

� � � �

� � 	

Label area of FUN3

Main program being executed FUN1 being executed
(before FUN3 is called)

FUN3 being executed

Label area of FUN1 Label area of FUN1 Label area of FUN1

FUN1 being executed
(after FUN3 is executed)

Main program being executed FUN2 being executed

Label area of FUN2

Main program being executed

Temporary area
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

Number of steps
To call a function, the number of steps is required not only for the program itself but also for the processing that passes the
argument and return value and the processing that calls the program.

■Program
The number of steps required for a function program is the total number of instruction steps plus 22 steps. For the number of
steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

■Calling source
When calling a function, the calling source generates the processing that passes the argument and return value before and
after the call processing.

(1) Passing the argument
(2) Calling the FUN1 program
(3) Passing the return value

(1)

(2)

(3)

FUN1

FUNCall FUN1
FUN2

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

�

Program file

FUN1 program

FUN file

The call-target program is
replaced with the instruction
for calling a function.

Program block 1
(displayed)

Calling the function
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN) 19

20
 • Passing the argument
The instruction used to pass the argument differs depending on the class and data type of the argument. The following table
summarizes the instructions that can be used to pass the argument.

For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)
 • Calling the program
A total of 26 steps are required to call the program of a function.
 • EN/ENO
The following table lists the number of steps required for EN/ENO.

Argument class Data type Instruction used

Primitive data type Array type

With device
assignment

Without device
assignment

With device
assignment

Without device
assignment

VAR_INPUT
VAR_OUTPUT
Return value

Bit LD+OUT
LD+MOVB
(Either of the instruction sets is used
depending on the combination of
programming language, function, and input
argument used. For program examples,
refer to  Page 32 Calling source.)

LD+BLKMOVB

Word [unsigned]/bit string [16 bits]
Word [signed]

LD+MOV LD+BMOV

Double word [unsigned]/bit string
[32 bits]
Double word [signed]

LD+DMOV LD+BMOV

Single-precision real number LD+EMOV LD+BMOV

Double-precision real number LD+EDMOV LD+BMOV

Time LD+DMOV LD+BMOV

String LD+$MOV LD+BMOV

String [Unicode] LD+$MOV_WS LD+BMOV

Structure LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)

LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)

Item Number of steps
EN 3

ENO 2
3 PROGRAM ORGANIZATION UNITS
3.2 Functions (FUN)

3

3.3 Function Blocks (FB)
A function block is a POU called and executed by program blocks and other function blocks.

Unlike a function, a function block does not have a return value.
A function block can hold values in variables and thus can hold input states and processing results.
A function block uses the value it holds for the next processing and therefore it does not always output the same result even
with the same input value.

A function block needs to be instantiated to be used in programs.
Page 24 Instances

 • For details on standard function blocks, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)
 • For details on process control function blocks, refer to the following.
 MELSEC iQ-R Programming Manual (Process Control Function Blocks/Instructions)
 • For details on module function blocks, refer to the following.
 Function Block Reference for the module used

Ladder program FBD/LD program
(1) Instance name
(2) Function block name
(3) Output variable
(4) Input variable

FB

FBFB

Program
block

Function
block

Function
block

Program
block

(1)

(2)

(4)

(3)

(1)

(2)

(4)

(3)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 21

22
Operation overview
■Macro type function blocks
The program of a macro type function block is loaded by a calling source program along the execution flow. At the time of
program execution, the loaded program is executed in the same way as the main program.
Use a macro type function block when giving a higher priority to the processing speed of the program.

Ex.

When calling FB1_a and FB2_a from the main program, calling FB3_a by FB1_a, and calling FB3_b by FB2_a

■Subroutine type function blocks
The program of a subroutine type function block is stored in the FB file and called by the calling source program when
executed.
Use a subroutine type function block to reduce the program size.

Ex.

When calling FB1_a and FB2_a from the main program, calling FB3_a by FB1_a, and calling FB3_b by FB2_a (Nested three
times)
 to  indicate the execution flow (order).

Up to 32 subroutine type function blocks, macro type function blocks, and functions in total can be nested.

(1) The FB1 program is loaded into the main program and executed.
(2) The FB3 program called by FB1 is loaded into the FB1 program.
(3) The FB2 program is loaded into the main program and executed in the same way as the FB1 program.
(4) The FB3 program called by FB2 is loaded into the FB2 program.

(2)

(1)
FB1_a
FB1

FB2_a
FB2

(4)

(3)

(Program file)
Main program

FB1 program

Actual structure of
main program

Execution
flow

FB3 program

FB2 program

FB3 program

FB3_b
FB3

FB1_a
FB1

FB3_a
FB3

FB2_a
FB2

� �

�

�

�

�

	

�

(Program file)
Main program

(FB file)
FB1 program

(FB file)
FB2 program

(FB file)
FB3 program

Program memory

Main program

FB1 program

FB2 program

FB3 program
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

Input variables, output variables, and input/output variables
Input variables, output variables, and input/output variables need to be defined in function blocks.
A function block can output multiple operation results. It can also be set not to output operation results.

Input variables are set in the VAR_INPUT class, output variables are set in the VAR_OUTPUT class and
VAR_OUTPUT_RETAIN class, and input/output variables are set in the VAR_IN_OUT class.

Internal variables
Function blocks use internal variables. For each instance of a function block, labels are assigned to the different areas. Even
though the same label names are used, different states are held for each instance.

Ex.

The above function block starts counting when the input variables turn on and turns on the output variable when the current
value held in the internal variable reaches the set value. Even though the same function block is used, the output timings differ
because the instances A and B hold different states.
Internal variables are set in the VAR, VAR_CONSTANT and VAR_RETAIN class.

External variables and public variables
Function blocks can use external variables (global label) and public variables.
Public variables are set in the VAR_PUBLIC and VAR_PUBLIC_RETAIN class.

(1) The operation result(s) is output.
(2) No operation result is output.

_S1 Q1

RESET

IN_Bool

iTim

lCnt

CD Q

CVLOAD

PV

InstanceInstance

Instance

SR SAMPLE_FB1

CTD

(1) (2)

bLabel3 bLabel6
bLabel1

uLabel2

bLabel10

uLabel12
bLabel13

cdLabel11

uLabel12

cdLabel11

bLabel4

uLabel5

bLabel10
bLabel13

Instance A

Function block

Instance B

Function block

Contact

Set value

Contact

Set value

Current value Current value

Counting-up Counting-up
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 23

24
Instances
■Instances
An instance is a label assigned to realize a function block definition. Multiple instances can be created from one function block
definition.
An instance consists of the following items.

Ex.

Structure of instance (Example of subroutine type function block)

For the local label area and local latch label area, since the label area is secured in units of four words, three-words (padding
size) are secured in the above example.
Each area has a reserved area. The reserved area is used to add or change instances of the function block or instructions that
refer to local labels or the signal flow memory with the label assignment intact even when the program is converted or
changed online. If the area of the target data type to be added cannot be secured, all programs are required to be converted
(reassigned).

Item Description
Local label area Used to assign the local label of the function block.

Local latch label area Used to assign the latch attribute local label of the function block.

Signal flow area Used to assign the signal flow for the instruction in the function block definition.

bLabel0

bLabel0

INCP wLabel0

wLabel0
BIT
WORD

bLabel0

wLabel0

VER
VER_RETAIN

FB1 definitionFB1 definition

Ladder program (FB1)

Local label definition (FB1)

Label name Data type Class

Reserved area (FB1)
Area Size
Local label area
Local latch label area

Local label area

Local latch label area

48 words
16 words

FB1 instance structureFB1 instance structure

Padding size
3 words

Padding size
3 words

Reserved area 16 words

20 words

Reserved area 48 words

52 words

Signal flow area 4 words

For INCP

Reserved area 4 words
5 words

Another instance of FB1Another instance of FB1

Creating another
instance based on
FB1 definition
(same area size)

Local label area

Local latch label area

Signal flow area

Creating an
instance based on
FB1 definition

Signal flow area
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

Ex.

Structure of instance for nested function block (when reserved area of FB2 is changed)

The instance of FB2 declared as a local label is secured in the local label area, local latch label area, and signal flow area of
FB1 which is the declared source.
In the above example, the capacity of the reserved areas of the FB1 instance is as follows: 48 words for local label area, 16
words for local latch label area, and 4 words for signal flow area. When an FB type local label that includes even one area
exceeding the capacity is added or an existing local label is changed to such a local label, all programs are required to be
converted (reassigned).
To add or change local labels or FB instances with the assignment intact (without converting all programs (reassigned)),
secure the enough capacity for them in the reserved area. For the reserved area setting method, refer to the following.
 GX Works3 Operating Manual

bLabel0

FB2_a

INCP wLabel0

wLabel1
FB2
WORD

bLabel0

VER
VER

bLabel1 BIT VER
bLabel2 BIT VER
wLabel0 WORD VER_RETAIN

bLabel0 BIT VER

bLabel1

bLabel2
wLabel1FB2

bLabel1

bLabel2
wLabel1

wLabel1

bLabel1
wLabel0 bLabel0

bLabel0
INC wLabel0

wLabel1 WORD VER_OUTPUT

bLabel1 BIT VER_INPUT
wLabel0 WORD VER

bLabel0 BIT VER_INPUT

bLabel1
wLabel1MOVP wLabel0

wLabel0

Ladder program (FB1)

Local label definition (FB1)

Label name Data type Class

Reserved area (FB1)
Area Size
Local label area
Local latch label area

Local label area

Local latch label area

48 words
16 words

Creating an
instance based on
FB1 definition

FB1 instance structureFB1 instance structure

Padding size
3 words

Padding size
2 words

Reserved area 4 words

Reserved area 8 words

FB2 area
12 words

Signal flow area 4 words

For INCP
Signal flow area

Reserved area 4 words

FB2 definitionFB2 definition

Ladder program (FB2)

Local label definition (FB2)

Label name Data type

Reserved area (FB2)
Area Size
Local label area
Local latch label area

8 words
4 words

Signal flow area 1 word

Padding size 1 word

Reserved area 48 words

FB1 area
64 words

Reserved area 16 words

FB1 area
24 words

FB2 area
4 words

For MOVP
Reserved area 1 word

FB2 area
2 words

FB1 area
7 words

Class

FB1 definitionFB1 definition
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 25

26
■Creating instances
A function block needs to be instantiated to be used in programs.
By creating instances, a function block can be called and executed by a program block or another function block.
Declare instances with global labels or local labels.

*1 Local labels can be declared as the local labels of a program block or function block. Local labels cannot be declared in a function.
Same function blocks can be instantiated with different names in a single POU.

Label type Instance type Class
Global label Global FB VAR_GLOBAL

Local label*1 Local FB VAR

(1) Same instances use the same internal variables.
(2) Different instances use different internal variables.

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel1

wLabel2

wLabel3

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel10

wLabel11

wLabel12

wLabel5

wLabel6

wLabel8

wLabel9wLabel7

wLabel4

wLabel4 wLabel13

(2)(1)

Instance A

Function block

Instance A

Function block

Instance B

Function block

Input variable 1

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 2

Output variable

Input variable 3 Local variable

Input variable 1

Input variable 1

Output variable

Input variable 1 Local variable

Input variable 1
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

■Capacity of instance
The capacity of each data area of an instance should be calculated as follows.
 • Capacity of local label area
Capacity of local label area of instance = Total capacity of data of local labels (except the ones with latch attribute) + Capacity
of reserved area

 • Capacity of local latch label area
Capacity of local latch label area of instances = Total capacity of data of local labels with latch attribute + Capacity of reserved
area

 • Capacity of signal flow area
In the macro type function block, the number of steps are the same as the program.
The capacity of the subroutine type function block is as follows.
Capacity of local latch label area of instances = Total capacity of data of local labels with latch attribute + Capacity of reserved
area

Set enough reserved area capacity for the data (such as instances of the function block and/or instructions
that refer to local labels or the signal flow memory) that are expected to be added or changed when the
program is converted or changed online. For the setting method, refer to the following.
 GX Works3 Operating Manual
If there is not enough space in the reserved area capacity for the data to be added by the online change
function, the function cannot be executed and all programs are required to be converted (reassigned).
In the following function blocks, the CPU module memory can be efficiently used by setting smaller value than
default to the reserved area.
 • Debugged subroutine type function block where no local label is added or changed and no program is

changed
 • Subroutine type function block that declares many instances

Item Description
Capacity of local labels (except the ones with latch
attribute)

Total capacity of the data used for local labels.
The capacity of areas to be used differs depending on the memory assignment of labels. For details on
memory assignment of labels, refer to the following.
 GX Works3 Operating Manual

Capacity of reserved area 48 words in default. Set the capacity in units of 4 words.

Item Description
Capacity of latch attribute local labels Total capacity of the data used for latch attribute local labels.

The capacity of areas to be used differs depending on the memory assignment of labels. For details on
memory assignment of labels, refer to the following.
 GX Works3 Operating Manual

Capacity of reserved area 16 words in default. Set the capacity in units of 4 words.

Item Description
Capacity of signal flow area Total capacity of the signal flow area for the instruction in the function block definition

Capacity of reserved area 4 words in default. Set the capacity in units of 1 words.
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 27

28
Setting initial values
■Initial values of local label
For the local label of a function block, an initial value can be set for each function block definition or instance.
The local label classes where initial values can be set are VAR, VAR_RETAIN, VAR_INPUT, VAR_OUTPUT,
VAR_OUTPUT_RETAIN, VAR_PUBLIC, and VAR_PUBLIC_RETAIN.

■Initial values of instance
The following table summarizes the types of the initial values of instances.

Type Description
Default initial value An initial value predefined for each data type. If an initial value is not set for the local label of a function block, the default

initial value will be used.

(1) The initial values have not been set for the local labels in the FB1 definition.
(2) The default initial values are used.

FB definition initial value An initial value that is set when the local label of a function block is defined. If this initial value has been set, the same
definition initial value will be used for all the instances.

(1) The initial values have been set for the local labels in the FB1 definition.
(2) All the instances of FB1 will be initialized by the same definition initial value.

Instance initial value An initial value that is set for an instance included in the global label and program block local label definition.

(1) The initial value can be set for each instance in the FB1 definition.

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

-
0
0
0

AAA
BBB
CCC

-
0
0
0

FB1_a

FB1_b

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Local label definition
(program block 1)

Label name Initial value

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
1111
2222
3333

-
1111
2222
3333

1111
2222
3333

BBB

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)

(1)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
3333
4444
5555

-
7777
8888
9999

1111
2222
3333

BBB

-

-

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

For function blocks, both the FB definition and instance initial values can be set.
If both initial values are set, the initial values used will take the following priority.

If two instances of a function block for which the FB definition initial value has been set are created and the
instance initial value is set for only one of them, the FB1 definition initial value will be used for the instance for
which the instance initial value has not been set and the instance initial value will be used for the other.

(1) When the instance initial value is not set, the FB definition initial value will be used.
(2) When the instance initial value is set, it will be used.

Priority Type
High


Low

Instance initial value

FB definition initial value

Default initial value

(1)

(2)

FB1

AAA
BBB
CCC

AAA
BBB
CCC

AAA

CCC

FB1_a

FB1_b

-
1111
2222
3333

-
7777
8888
9999

1111
2222
3333

BBB

-

-
3333

Label name Initial value

FB1 definition

Local label definition (FB1)

Global label definition

Label name Initial value

Label name Initial value

Local label definition
(program block 1)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 29

30
■Example
The following figure shows an example where the function block initial values are used.

EN and ENO
In the same way as a function, EN (enable input) and ENO (enable output) can also be appended to a function block to control
execution processing.
Page 16 EN and ENO
When the instance of a function to which EN/ENO has been appended is called, an actual argument must be assigned to EN.

Creating programs
The program of a function block can be created by using the engineering tool.

[Navigation window]  [FB/FUN]  Right-click  [Add New Data]
Select "Function Block" for "Data Type" in "Basic Setting".

The created program is stored in the FB file.

[CPU Parameter]  [Program Setting]  [FB/FUN File Setting]
Up to 64 created programs can be stored in one FB file.
For details on program creation, refer to the following.

■Types of program
There are two types of function blocks and the program of each function block type is stored in different ways.
 • Macro type function block
 • Subroutine type function block
For details, refer to the following.
Page 22 Operation overview
The above cannot be selected for module function blocks, standard functions, and standard function blocks.

(1) The common initial values are set for all the instances.
(2) The individual initial values can be set for each instance.
(3) If the individual initial values are not set, the common ones will be used.

Item Reference
How to create function blocks  GX Works3 Operating Manual

Number of FB/FUN files that can be written to a CPU module  MELSEC iQ-R CPU Module User's Manual (Startup)

(1)

(2)

(3)

AAA
BBB
CCC

BIT
INT
INT

TRUE
0

65535

FB1

FB1
FB1_a

FB1_b

AAA
BBB
CCC

BIT
INT
INT

FALSE
100

20000

AAA
BBB
CCC

BIT
INT
INT

FALSE
200

3500

FB1

FB1

FB1_c

AAA
BBB
CCC

BIT
INT
INT

TRUE
0

65535

FB1

[Defining FB]

[Creating instances]

Label
name Data type

Local label definition (FB1)
Initial
value

Initial value setting (FB1_a)

Initial value setting (FB1_b)

Initial value setting (FB1_c)

Setting initial value of FB definition

Setting initial value of instances

Creating
instances from
FB1

Label
name Data type Initial

value

Label
name Data type Initial

value

Label
name Data type Initial

value
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

■Inherent property setting
The following items can be set when a program of a function block is created. ( GX Works3 Operating Manual)

*1 To select this item, select "Yes" for "Use EN/ENO". However, the item cannot be used depending on the versions of the CPU module
and GX Works3 used when "Subroutine Type" is selected for "FB Type". For the versions of the CPU module and the GX Works3, refer
to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

■Applicable devices and labels
The following table lists the devices and labels that can be used by function block programs.
: Applicable, : Applicable only in instructions (Cannot be used to indicate the program step.), : Not applicable

Number of steps (Macro type function blocks)
■Calling source
When calling a macro type function block, the calling source loads the call-target program during compilation.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.
For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Item Description
Use MC/MCR to Control EN*1 For "Yes", the MC/MCR instructions are used to control EN. For "No", the CJ instruction is used to control EN.

Select "Yes" when instructions executed at the rising edge or falling edge are used in an FB. The operations of a
timer/counter and the OUT instruction used in an FB differ depending on the selected item. For details, refer to the
following.
Page 152 Operations of when the MC/MCR instructions are used to control EN

Use EN/ENO For "Yes", a function block with EN/ENO is created, and EN/ENO labels can be used in a program without
registering as local labels. For "No", a function block without EN/ENO is created.
For details on EN/ENO, refer to the following.
Page 30 EN and ENO

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label 

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Local device 

Pointer Global pointer 

Local pointer 

(1) The program is loaded in two or more call locations.

FB1

FB1_a

FB1

FB1_b

(FB1_b)

(FB1_a)

(1)

Program block 1 (displayed)

FB1 program

FB1 program

Program file
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 31

32
Number of steps (Subroutine type function blocks)
■Calling source
When calling a subroutine type function block, the calling source generates the processing that passes the argument before
and after the call processing.

(1) Passing the argument (input argument, input/output
argument)

(2) Calling the FB1 program
(3) Passing the argument (output argument, input/output

argument)(1)

(2)

(3)

FB1

FBCall FB1_a
FB1

MOV D0 XX

D0
M0

D10
M10 Y40

Y20
M0

Y20

�

FB1_a

FB1_b

Program file

FB1 program

FB file

The call-target program is
replaced with the instruction
for calling a function block.

Program block 1
(displayed)

Calling the
function block
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

 • Passing the argument
The instruction used to pass the argument differs depending on the class and data type of the argument. The following table
summarizes the instructions that can be used to pass the argument.

For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)
*1 The following figures show program examples of LD+OUT.

 Ladder (subroutine type)

 FBD/LD (subroutine type/macro type)

Argument class Data type Instruction used

Primitive data type Array type

With device
assignment

Without device
assignment

With device
assignment

Without device
assignment

VAR_INPUT
VAR_IN_OUT
VAR_OUTPUT
VAR_OUTPUT_RETAIN

Bit LD+OUT
LD+MOVB
(Either of the instruction sets is used
depending on the combination of
programming language, function, and input
argument used.*1*2)

LD+BLKMOVB

Word [unsigned]/bit string [16 bits]
Word [signed]

LD+MOV LD+BMOV

Double word [unsigned]/bit string
[32 bits]
Double word [signed]

LD+DMOV LD+BMOV

Single-precision real number LD+EMOV LD+BMOV

Double-precision real number LD+EDMOV LD+BMOV

Time LD+DMOV LD+BMOV

String LD+$MOV LD+BMOV

String [Unicode] LD+$MOV_WS LD+BMOV

Timer
Counter
Retentive timer

LD+BMOV LD+MOV LD+BMOV LD+MOV
(Passes the
argument on a per-
element basis.)

Long counter
Long retentive timer
Long timer

LD+BMOV LD+DMOV LD+BMOV LD+DMOV
(Passes the
argument on a per-
element basis.)

Structure LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)

LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB) 33

34
*2 The following figures show program examples of LD+MOVB.
 Ladder (subroutine type)

 FBD/LD (subroutine type/macro type)

 • Calling the program
A total of 10 steps are required to call the function block program.
 • EN/ENO
The following table lists the number of steps required for EN/ENO.

The number of steps may increase or decrease, depending on the following conditions.
 • The actual argument of the function block are index-modified.
 • The address specifying the device exceeds 16 bits in length.
 • Digit specification is performed.

■Program
The number of steps required for a function block program is the total number of instruction steps, like usual programs.
For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Item Number of steps
EN 3

ENO 2
3 PROGRAM ORGANIZATION UNITS
3.3 Function Blocks (FB)

3

3.4 Precautions

When a function is used
■Global pointer/local pointer/pointer type global labels
The local pointer and pointer type global labels cannot be used.
The global pointer cannot be used as the labels indicating the number of program steps.

When a function block is used
■Global pointer/local pointer/pointer type global labels
The local pointer cannot be used.
The global pointer and pointer type global labels cannot be used as the labels indicating the number of program steps.

■When the index register is used
When the index register is used in the function block program, ladder programs for saving and returning the index register
values are required to protect the values.
Setting the index register data to 0 when saving can prevent an error that could be caused by an index modification validity
check. (Whether the device number exceeds the device range or not is checked.)

Ex.

A program that saves the values in the index register Z1 and Z2 before the program execution and returns the saved values
after the program execution

Set 0 to the index register areas.

Before the program execution,
save the index register values in
index_reg_tmp.

After the program execution, return
the values saved in index_reg_tmp
to the index register.

Program execution ��
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions 35

36
■Argument of macro type function block
Except in the program of the macro type function block, use the device/label used for passing the argument instead of the
argument of the function block. An unintended value may be generated if the argument of the macro type function block is
used in other than the program of the macro type function block.

Programming language Device/label used for passing the argument Unintended value
Ladder

ST

FBD/LD
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions

3

■When a conversion error occurs in VAR_INPUT, VAR_OUTPUT, or VAR_IN_OUT in a macro
type function block

A program block that is the calling source of the function block or the function block may cause the error. In this case, check
the inputs and outputs of the program block that is the calling source of the function block and the function block.

Ex.

A conversion error (1) occurs in VAR_OUTPUT in the macro type function block (FbPou)

If no error was found in (1), check the inputs and outputs (2) of the corresponding function block in the program block that is
the calling source.

Since the output variables of the function block have been passed to the write-protected label/device, a conversion error has
occurred in the above example.

(1)

(2)
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions 37

38
■Specifying the start I/O number of intelligent function module
When accessing the buffer memory or I/O signals of the intelligent function module, specify the start I/O number using the
index register.
By receiving the start I/O number as an input variable, the same function block can be shared in multiple intelligent function
modules without changing the start I/O number.

Ex.

To access the I/O signals of the intelligent function module
Use the index register.

Ex.

To access the buffer memory of the intelligent function module
 Input the start I/O number of the target intelligent function module in the index register.
 Shift the four bits in the value to the right by using the SFR instruction, or use the quotient obtained by dividing the value by 16.

Specify the value of
i_Start_IO_NO.

Access the I/O signals by using
the index register.

[Sequence program]

[FB program]

�

�

Access the buffer memory.
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions

3

■Restrictions for module function blocks
The following describes the restrictions for the use of module function blocks.
 • Do not turn off the contact of the MC instruction when calling a module function block between the MC instruction and MCR

instruction.
 • Do not perform the jump processing that prevents module function blocks from being called by the CJ instruction, SCJ

instruction, and JMP instruction.
 • Execute a subroutine program every scan when calling a module function block in the subroutine program. Do not perform

the non-execution processing of a subroutine program by using the FCALL(P) instruction, EFCALL(P) instruction, or
XCALL instruction.

 • Do not call a module function block in an interrupt program, an initial execution type program, a fixed scan execution type
program, or an event execution type program.

 • Do not call a module function block between the FOR and NEXT instructions, in the inline ST, or the control syntax of the
structured text language (IF statement, FOR statement, and CASE statement.)

 • Do not use the program control instructions (PSTOP(P) instruction, POFF(P) instruction, and PSCAN(P) instruction) to the
program that calls a module function block.

 • Do not deactivate the step for calling a module function block when calling the function block.

■When the CPU module that controls the target module of a module function block is changed
The module function block used in the program will be deleted if the CPU module set to "Control PLC Settings" of "I/O
Assignment" in system parameters is changed to another CPU module.
Copy the program into the project of another CPU module before changing the parameter setting.
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions 39

40
■Changing operating parameters of module function blocks
Operating parameters (external variables) other than input and output labels of module function blocks can be changed on the
label setting window by using the engineering tool.
 • When the instance of a module function block is set to local label, change the parameters on the "Local Label Setting"

window.

[Navigation Window]  [Program]  execution type  program file  program block  [Local Label]
 • When the instance of a module function block is set to global label, change the parameters on the "Global Label Setting"

window.

[Navigation Window]  [Label]  [Global Label]

Ex.

Local Label Setting window

Set operating parameters in the "Initial Value" field.
3 PROGRAM ORGANIZATION UNITS
3.4 Precautions

3

3.5 When a Safety Program Is Used
A function used in a safety program is called a safety function, and a function block used in a safety program is called a safety
function block. Information not described in this section is same as that of standard functions and function blocks. ( Page
15 Functions (FUN),  Page 21 Function Blocks (FB))

Safety functions (Safety FUN)
This section describes safety functions.

Creating programs
■Applicable devices and labels
The following table lists the devices and labels that can be used in safety functions.
: Applicable, : Not applicable

*1 The following data types cannot be used.
Timer, retentive timer, counter, long timer, long retentive timer, and long counter

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label 

Standard/safety shared label 

Safety global label 

Safety local label *1

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Local device 

Safety global device 

Safety local device 

Pointer Global pointer 

Local pointer 
3 PROGRAM ORGANIZATION UNITS
3.5 When a Safety Program Is Used 41

42
Number of steps
■Passing the argument
When calling a safety function, the calling source generates the processing that passes the argument before and after the call
processing. The instruction used to pass the argument differs depending on the class and data type of the argument. The
following table summarizes the instructions that can be used to pass the argument.
: Applicable, : Not applicable

For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Argument class Data type Instruction used Availability

Primitive data type Array type

With device
assignment

Without device
assignment

With device
assignment

Without device
assignment

VAR_INPUT
VAR_OUTPUT
Return value

Bit LD+OUT LD+BLKMOVB 

Word [unsigned]/bit string [16
bits]
Word [signed]

LD+MOV LD+BMOV 

Double word [unsigned]/bit
string [32 bits]
Double word [signed]

LD+DMOV LD+BMOV 

Single-precision real number  

Double-precision real
number

 

Time LD+DMOV LD+BMOV 

String  

String [Unicode]  

Timer
Counter
Retentive timer

 

Long counter
Long retentive timer
Long timer

 

Structure LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)

LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)



3 PROGRAM ORGANIZATION UNITS
3.5 When a Safety Program Is Used

3

Safety function blocks (Safety FB)
This section describes safety function blocks.

Instances
■Structure of instance
An instance of a safety function block consists of the following items.
: Applicable, : Not applicable

Creating programs
■Applicable devices and labels
The following table lists the devices and labels that can be used in safety function blocks.
: Applicable, : Not applicable

Item Description Availability
Local label area Used to assign the local label of the function block. 

Local latch label area Used to assign the latch attribute local label of the function block. 

Signal flow area Used to assign the signal flow for the instruction in the function block definition. 

Type of device/label Availability
Label (other than the pointer type) Global label 

Local label 

Standard/safety shared label 

Safety global label 

Safety local label 

Label (pointer type) Pointer type global label 

Pointer type local label 

Device Global device 

Local device 

Safety global device 

Safety local device 

Pointer Global pointer 

Local pointer 
3 PROGRAM ORGANIZATION UNITS
3.5 When a Safety Program Is Used 43

44
Number of steps (subroutine type function blocks)
■Passing the argument
When calling a safety function block, the calling source generates the processing that passes the argument before and after
the call processing. The instruction used to pass the argument differs depending on the class and data type of the argument.
The following table summarizes the instructions that can be used to pass the argument.
: Applicable, : Not applicable

For the number of steps required for each instruction, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Argument class Data type Instruction used Availability

Primitive data type Array type

With device
assignment

Without device
assignment

With device
assignment

Without device
assignment

VAR_INPUT
VAR_IN_OUT
VAR_OUTPUT
VAR_OUTPUT_RETAIN

Bit LD+OUT LD+BLKMOVB 

Word [unsigned]/bit string [16
bits]
Word [signed]

LD+MOV LD+BMOV 

Double word [unsigned]/bit
string [32 bits]
Double word [signed]

LD+DMOV LD+BMOV 

Single-precision real number  

Double-precision real number  

Time LD+DMOV LD+BMOV 

String  

String [Unicode]  

Timer
Counter
Retentive timer

LD+BMOV LD+MOV LD+BMOV LD+MOV
(Passes the
argument on a per-
element basis.)



Long counter
Long retentive timer
Long timer

 

Structure LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)

LD+BMOV Instruction used for
each data type of
members
(Passes the
argument on a per-
member basis.)



3 PROGRAM ORGANIZATION UNITS
3.5 When a Safety Program Is Used

4

4 LABELS
A label is a variable consisting of a specified string used in I/O data or internal processing.
Using labels in programming enables creation of programs without being aware of devices and buffer memory sizes.
For this reason, a program using labels can be reused easily even in a system having a different module configuration.
For details, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)
4 LABELS
 45

46
MEMO
4 LABELS

5

5 LADDER DIAGRAM

Ladder diagram is a programming language used to describe sequence control. Each ladder consists of contacts and coils
and represents logical operations consisting of AND/OR in combinations of series and parallel.

This chapter describes the operation and specifications of the ladder diagram. For the operation method of the
engineering tool for creating a ladder program, refer to the following.
 GX Works3 Operating Manual

5.1 Configuration
The following are the programs written in ladder diagram.

Ladder symbols
The following table lists the ladder symbols that can be used for programming in ladder diagram.

(1) Ladder program consisting of a contact and a coil
(2) Ladder program configured in series
(3) Ladder program configured in parallel
(4) Ladder program using an instruction
(5) Ladder program using a standard function/function block

Item Description
Normally open contact Energized when the specified device or label is on.

Normally closed contact Energized when the specified device or label is off.

Rising edge pulse Energized on the rising edge (off to on) of the specified device or label.

Falling edge pulse Energized on the falling edge (on to off) of the specified device or label.

Negated rising edge pulse Energized when the specified device or label is off, on, or on the falling edge (on to off).

Negated falling edge pulse Energized when the specified device or label is off, on, or on the rising edge (off to on).

RnCPU RnENCPU RnSFCPU RnSFCPURnPSFCPU RnPSFCPURnPCPURnPCPU
(Standard) (Safety)(Standard) (Safety)(Redundant)(Process)

(1)

(2)

(3)

(4)

(5)
5 LADDER DIAGRAM
5.1 Configuration 47

48
Program execution order
The program is executed in order of the following numbers.

When the above program is executed, Y1 and Y2 turn on while X1 to X4 turn on or off as shown below.

Operation result rising edge
pulse conversion

Energized on the rising edge (off to on) of the operation result. De-energized while the
operation result is not on the rising edge.

Operation result falling edge
pulse conversion

Energized on the falling edge (on to off) of the operation result. De-energized while the
operation result is not on the falling edge.

Operation result inversion Inverts the previous operation results.

Coil Outputs the operation result to the specified device or label.

Instruction Executes the instruction specified in "[]".

Loopback When the number of contacts that can be created on a single ladder line is exceeded, the
ladder is looped back with loopback source and destination symbols created on it.

Function Executes a function.
• How to create functions ( GX Works3 Operating Manual)
• Standard functions ( MELSEC iQ-R Programming Manual (CPU Module Instructions,

Standard Functions/Function Blocks))

Function block Executes a function block.
• How to create function blocks ( GX Works3 Operating Manual)
• Standard function blocks ( MELSEC iQ-R Programming Manual (CPU Module

Instructions, Standard Functions/Function Blocks))
• Module function blocks ( Function Block Reference for the module used)

Item Description

Y1X1

X2

X3

X4 Y2

�

�

� �

� �

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

ON
OFF

X2

X1

X3

X4

Y1

Y2
5 LADDER DIAGRAM
5.1 Configuration

5

Precautions for using a function block in ladder diagram

Precautions for directly connecting to an FB instance from the left rail
When EN and input variables (bit type) are directly connected to the left rail in the input circuit of the FB instance, the on/off
state does not change.

To change the on/off states of EN and the input variables (bit type), use a contact or an instruction equivalent to the contact.

(1): The on/off state does not change.

(2): Contact
(3): Instruction equivalent to a contact

(1)

(2)

(3)
5 LADDER DIAGRAM
5.1 Configuration 49

50
5.2 Inline ST
The inline ST is the function used to create an inline ST box that displays an ST program in the cell of the instruction
corresponding to a coil in the ladder editor, and edit and monitor it.
This function enables to create numerical operations and character string processing easily in ladder programs.
 • Program that does not use the inline ST

 • Program that uses the inline ST

 • The inline ST cannot be used in safety programs.
 • The inline ST cannot be used in the Zoom editor of SFC programs.

Specifications
For the specifications of the ST program described to the inline ST, refer to the specifications of the ST language.
Page 53 STRUCTURED TEXT LANGUAGE
5 LADDER DIAGRAM
5.2 Inline ST

5

Precautions
 • Only one inline ST can be created on a single line of a ladder program.
 • Both a function/function block and inline ST box cannot be used on a single line of a ladder program.
 • Creating an inline ST box at the position of an instruction corresponding to a contact creates an inline ST box at the position

of an instruction corresponding to a coil.
 • Up to 20000 characters can be input in the inline ST. (A newline is counted as two characters.)
 • Using a RETURN statement in the inline ST causes the processing in the inline ST box to end, instead of the processing of

the program block.
 • When the inline ST in the program of a function is used, no function block can be called from the inline ST.
 • The inline ST uses the CJ instruction in conversion to control the operation of a program. When the contact of the inline ST

is off, the processing in the inline ST is not executed by the CJ instruction. Thus, for example, the device that turned on by
the assignment statement in the inline ST holds its output status even when the inline ST is not executed. For details on the
CJ instruction, refer to the following.

 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)
 • In the inline ST, OUT, OUTH, or other instructions which refer to the previous execution status of the signal flow memory

cannot be used.
 MELSEC iQ-R CPU Module User's Manual (Application)
5 LADDER DIAGRAM
5.2 Inline ST 51

52
5.3 Statements and Notes
Statements and notes can be used in ladder programs.

Statements
A statement is used to add a comment to a ladder block. Adding a comment makes it easy to understand the flow of
processing.
There are three types of statements: line statement, P statement, and I statement.
The line statement can be displayed in the tree of the navigation window.

■Line statement
This type of statement adds a comment to the entire ladder block.

■P statement
This type of statement adds a comment to a pointer device.

■I statement
This type of statement adds a comment to an interrupt pointer device.

Notes
A note is used to add a comment to a coil and instruction in a program.
Adding a comment makes it easy to understand the contents of the coil and instruction.

Categories of statements and notes
Statements and notes are classified into two categories: "In PLC" and "In Peripheral".

Category Type Description
In PLC • Line statement

• P statement
• I statement
• Note

Strings of the description are embedded in the program during the conversion.
One line uses (two + number of characters) step.

In Peripheral • Line statement
• P statement
• I statement
• Note

Strings of the description are not embedded in the program, but they are saved as attached
information of the program.
One line uses one step.
A text that has been entered is automatically preceded by an asterisk "*".
5 LADDER DIAGRAM
5.3 Statements and Notes

6

6 STRUCTURED TEXT LANGUAGE

ST language is defined by International Standard IEC61131-3 that defines the logic description system. ST language is a text
language with a similar grammatical structure to C. This language is suitable for programming complicated processing that
cannot be easily described by ladder diagram.

This chapter describes the operation and specifications of the structured text language. For the operation
method of the engineering tool for creating an ST program, refer to the following.
 GX Works3 Operating Manual

The ST language supports control syntax, operational expressions, function blocks (FB), and functions (FUN), and can
describe them as shown below.

Ex.

Control syntax such as selective branches by conditional statements and iteration statements

Ex.

Expression using operators (*, /, +, -, <, >, =)

Ex.

Calling function blocks that have been defined

Ex.

Calling standard functions

(*Control conveyors, Line A to C.*)
CASE Line OF

1:
Start_switch := TRUE; (*The conveyor starts.*)
2:
Start_switch := FALSE; (*The conveyor stops.*)
3:
Start_switch := TRUE; (*The conveyor stops with an alarm.*)
ELSE
Alarm_lamp := TRUE;

END_CASE;
IF Start_switch = TRUE THEN (*The conveyor starts and performs processing 100 times.*)

FOR Count := 0 TO 100 BY 1 DO
Count_No. := Count_No +1;

END_FOR;
END_IF;

D0 := D1 * D2 + D3 / D4 - D5 ;
IF D0 > D10 THEN

 D0 := D10;
END_IF;

//FB data name: LINE1_FB
//Input variable: I_Test
//Output variable: O_Test
//Input/output variable: IO_Test
//FB label name: FB1
FB1(I_Test:= D0 , O_Test => D1 ,IO_Test:= D100);

(*Convert BOOL data type to INT/DINT data type.*)
wLabel2 := BOOL_TO_INT (bLabel1);

RnCPU RnENCPU RnSFCPU RnSFCPURnPSFCPU RnPSFCPURnPCPURnPCPU
(Standard) (Safety)(Standard) (Safety)(Redundant)(Process)
6 STRUCTURED TEXT LANGUAGE
 53

54
6.1 Configuration
Programs written in ST language consist of operators and control statements.

Each statement must end with a semicolon ";".

Spaces, tabs, and line feeds can be inserted between an operator and data.

Comments can be inserted into a program. Enclose a comment statement with "(*" and "*)".

Program components
An ST program consists of the following components.

 • Write delimiters, operators, and reserved words in one-byte characters.
 • For details on the reserved words, refer to the following.
 GX Works3 Operating Manual

Item Example Reference
Delimiter ;, (,) Page 55 Delimiters

Operator +, -, <, >, = Page 55 Operators

Reserved word Control statement IF, CASE, WHILE, RETURN Page 56 Control statements

Device X0, Y10, M100, ZR0  MELSEC iQ-R CPU Module User's Manual (Application)

Data type BOOL, DWORD  MELSEC iQ-R CPU Module User's Manual (Application)

Standard function ADD, REAL_TO_STRING_E  MELSEC iQ-R Programming Manual (CPU Module
Instructions, Standard Functions/Function Blocks)

Constant 123, "abc" Page 66 Constants

Label Switch_A Page 67 Labels and devices

Comment (*Turn on.") Page 69 Comments

Other symbols One-byte space, line feed code, TAB code 

Assignment statement

Select statement

Function call statement

Function block call statement

End of the statement

Space

Tab

Linefeed

Comment
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Delimiters
ST language supports the following delimiters to make the program structure clear.

Operators
The following table lists the operators, applicable data types, and operation result data types used in ST programs.

*1 Notation of constants with "WORD#" or "DWORD#" cannot be specified. ( Page 66 Notation of constants)
*2 WSTRING data type Unicode string cannot be specified.

The following table lists the operators in descending order of priority.

 • If one expression includes multiple operators with the same priority, operation is performed in order from the leftmost
operator.

 • Up to1024 operators can be used in a single expression.

Symbol Description
() Parenthesized expression

[] Specification of array element number

. (period) Specification of structure or function block members

, (comma) Argument separation

: (colon) Device type specifier or CASE statement delimiter

; (semicolon) Termination of statement

" (double quotation mark) Notation of Unicode string

' (single quotation mark) Notation of string (ASCII, Shift JIS)

.. (two periods) Specification of integer range

Operator Applicable data type Operation result type
*, /, +, - ANY_NUM*1 ANY_NUM

<, >, <=, >=, =, <> ANY_ELEMENTARY*2 Bit

MOD ANY_INT ANY_INT

AND, &, XOR, OR, NOT ANY_BIT ANY_BIT

** ANY_REAL (base)
ANY_NUM (exponent)*1

ANY_REAL

Operator Description Example Priority
() Parenthesized expression (2+3)*(4+5) 1

Function () Function call expression CONCAT('AB','CD') 2

- Sign inversion -10 3

NOT Bit type complement NOT TRUE

** Exponentiation 3.0**4 4

* Multiplication 10*20 5

/ Division 20/10

MOD Remainder 17 MOD 10

+ Addition 1.4+2.5 6

- Subtraction 3-2

<, >, <=, >= Comparison 10>20 7

= Equality T#26h=T#1d2h 8

<> Inequality 8#15<>13

&, AND AND operation TRUE AND FALSE 9

XOR XOR operation TRUE XOR FALSE 10

OR OR operation TRUE OR FALSE 11
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 55

56
Control statements
The following table lists the control statements that can be used in ST programs.

Write control statements in one-byte characters.

Assignment statement

When using an array type label and structure label, note the data types of the left side and right side of the assignment
statement.
For array type labels, the data type and the number of elements need to be the same between the left and right sides. When
using array type labels, do not specify elements.

Ex.

intAry1:=intAry2;
For structure labels, the data type of the structure needs to be the same between the left and right sides.

Ex.

dutVar1:=dutVar2;
When the right side is the function call expression, the return value of the function is assigned to the left side. The following
table lists examples to assign the return value to the label.

Item Description Reference
Assignment statement Assignment statement Page 56 Assignment statement

Subprogram control statement Function block and function call statements Page 58 Subprogram control statements

RETURN statement

Select statement IF statement (IF THEN, IF ELSE, IF ELSIF) Page 59 Select statements

CASE statement

Iteration statement FOR statement Page 60 Iteration statements

WHILE statement

REPEAT statement

EXIT statement

Format Description Example
<Left side>:=<Right side>; This statement assigns the result of the right side expression to the label or device on the left side.

The data types of the result of the right side expression and the left side need to be the same.
intV1:=0;
intV2:=2;

Function Example
Having one input variable (example: ABS) Output1 := ABS(Input1);

Having three input variables (example: MAX) Output1 := MAX(Input1 , Input2 , Input3);

Having EN/ENO (standard functions) (example: MAX_E) Output1 := MAX_E(boolEN , boolENO , Input1 , Input2 , Input3);

Except for standard functions (example: MOV) boolENO := MOV(boolEN , Input1 , Output1);
(The execution result of the function is ENO, and the first argument (variable1) is EN.)
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

■Automatic conversion of data type
When assignment or arithmetic operational expressions between different data types is described in ST language, one data
type may be converted automatically.

Ex.

Example of automatic conversion

Type conversion is performed in assignment statements, VAR_INPUT part where input argument is passed to function blocks
and functions (including instruction, standard functions, and standard function blocks), and arithmetic operational
expressions.
To prevent data from being lost during type conversion, conversion is performed only from a smaller size data type to a larger
size data type. Type conversion is performed for the following data types among the primitive data types.

*1 When 16-bit data (word [signed] or word [unsigned]/bit string [16 bits]) is passed to the input argument of which data type is ANY_REAL,
the data is automatically converted to single-precision real number.

*2 When data (word [unsigned]/bit string [16 bits]) is passed to the input argument of which data type is ANY32, the data is automatically
converted to double word [unsigned]/bit string [32 bits].

For the data types other than the above, use the type conversion functions.
Use the type conversion functions for the following conversions as well.
 • Type conversion between integral data types with different signs
 • Type conversion between data types both of which lose data
For the precautions on assignment of the arithmetic operation result, refer to the following.
Page 61 When the result of an arithmetic operation is assigned
For the precautions on the use of devices, refer to the following.
Page 68 When performing automatic conversion of data type with devices

dintLabel1 := intLabel1;
// Assignment statement: Automatically convert the INT type variable (intLabel1) to a DINT type variable, and assign it to the DINT type variable (dintLabel1).
dintLabel1 := dintLabel2 + intLabel1;
// Arithmetic operational expression: Automatically convert the INT type variable (intLabel1) to a DINT type variable, and perform addition in DINT type.
DMOV(TRUE, wordLabel1, dwordLabel1);
// Instruction, function, and function block call statement: Automatically convert the WORD type input argument (wordLabel1) to a DWORD type variable, and
transfer the data.

Data type Description
Word [signed] When the data type is converted to the double word [signed], the value is automatically sign extended.

When the data type is converted to the single-precision real number or double-precision real number, the value is
automatically converted to the same value as the integer before conversion.*1

Word [unsigned]/bit string [16 bits] When the data type is converted to the double word [unsigned]/bit string [32 bits] or double word [signed], the value is
automatically zero extended.*2

When the data type is converted to the single-precision real number or double-precision real number, the value is
automatically converted to the same value as the integer before conversion.*1

Double word [signed] When the data type is converted to the double-precision real number, the value is automatically converted to the
same value as the integer before conversion.Double word [unsigned]/bit string [32

bits]

Single-precision real number When the data type is converted to the double-precision real number, the value is automatically converted to the
same value.
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 57

58
Subprogram control statements
■Function block call statement

The following table lists the symbols used in the arguments of the function block call statements and the expressions that can
be assigned.

The execution result of a function block is stored by specifying an output variable after the instance name with a period "." and
assigning the result to the specified variable.

■Function call statement
Function without a return value, or includes VAR_OUTPUT variable in parameters can be executed as a statement by adding
";" (semicolon) after the function call statement.

■RETURN statement

Format Description
Instance name (input variable1:=variable1,...output
variable1=>variable2,...);

Enclose the assignment statements to the input and output variables in '()' after the instance name.
When using multiple variables, delimit individual assignment statements with a comma ','.

Instance name.input variable1:=variable1;


Instance name();
Variable2:=instance name.output variable1;

List the assignment statements to input and output arguments between function block call
statements.

Type Description Symbol used Assignable expression
EN, VAR_INPUT Input variable := All expressions

ENO, VAR_OUTPUT,
VAR_OUTPUT_RETAIN

Output variable => Only variables

VAR_IN_OUT Input/output variable := Only variables

Function block FB definition Example
Having one input variable and one output variable FB name: FBADD

FB instance name: FBADD1
Input variable1: IN1
Output variable1: OUT1

FBADD1(IN1:= Input1);
Output1 := FBADD1.OUT1;

Having three input variables and two output variables FB name: FBADD
FB instance name: FBADD1
Input variable1: IN1
Input variable2: IN2
Input variable3: IN3
Output variable1: OUT1
Output variable2: OUT2

FBADD1(IN1:= Input1 ,IN2:= Input2 ,IN3:= Input3);
Output1 := FBADD1.OUT1;
Output2 := FBADD1.OUT2;

Format Description
Function name (variable1,variable2,...); Enclose arguments in "()" following the function name.

When using multiple variables, delimit them with a comma ",".

Control statement Format Description Example
■RETURN RETURN; The statement is used to terminate a program, function block, or

function during operation.
When the RETURN statement is used in a program, control jumps to
the step next to the last statement in the program.
When the RETURN statement is used in a function block, control
returns from the function block.
When the RETURN statement is used in a function, control returns
from the function.
A single RETURN statement uses one point of the pointer type label in
the system.

IF bool1 THEN
RETURN;

END_IF;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Select statements
Control
statement

Format Description Example

■IF THEN IF<boolean
expression>THEN

<statement>;
END_IF;

The statement is executed if the boolean expression (conditional
formula) is TRUE. The statement is not executed if the boolean
expression is FALSE.
Any expression can be used for the boolean expression if it returns
TRUE or FALSE as the boolean operation result of a single bit variable
expression or a complicated expression including many variables.

IF bool1 THEN
intV1 := intV1 + 1;

END_IF;

■IF...ELSE IF<boolean
expression>THEN

<statement 1>;
ELSE
<statement 2>;

END_IF;

Statement 1 is executed if the boolean expression (conditional formula)
is TRUE.
If the boolean expression is FALSE, statement 2 is executed.

IF bool1 THEN
intV3 := intV3 + 1;
ELSE
intV4 := intV4 + 1;

END_IF;

■IF...ELSIF IF<boolean expression
1>THEN

<statement 1>;
ELSIF<boolean
expression 2>THEN
<statement 2>;
ELSIF<boolean
expression 3>THEN
<statement 3>;

END_IF;

Statement 1 is executed if boolean expression 1 (conditional formula) is
TRUE. If boolean expression 1 is FALSE and boolean expression 2 is
TRUE, statement 2 is executed.
If boolean expressions 1 and 2 are FALSE and boolean expression 3 is
TRUE, statement 3 is executed.

IF bool1 THEN
intV1 := intV1 + 1;
ELSIF bool2 THEN
intV2 := intV2 + 2;
ELSIF bool3 THEN
intV3 := intV3 + 3;

END_IF;

■CASE CASE<integer
expression>OF

<selected integer 1>:
<statement 1>;
<selected integer 2>:
<statement 2>;


<selected integer n>:
<statement n>;
ELSE
<statement n+1>;

END_CASE;

The statement that has a selected integer value matching the value of
the integer expression (conditional formula) is executed, and if no
statement has a matching value, the statement following the ELSE
statement is executed.
The CASE statement can be used to execute a select statement
according to a single integer value or the integer value of the result of a
complicated expression.

CASE intV1 OF
1:
bool1 := TRUE;
2:
bool2 := TRUE;
ELSE
intV1 := intV1 + 1;

END_CASE;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 59

60
Iteration statements
Control
statement

Format Description Example

■FOR...DO FOR<iteration variable
initialization>

TO<final value>
BY<increase
expression>DO
<statement>;

END_FOR;

Data to be used as an iteration variable is initialized.
One or more statements between the DO statement and the END_FOR
statement are executed repeatedly, adding or subtracting the initialized
iteration variable according to the increase expression until the final
value is exceeded.
The iteration variable after the FOR...DO statement is completed
retains the value at the end of the processing.

FOR intV1 := 0
TO 30
BY 1 DO
intV3 := intV1 + 1;

END_FOR;

■WHILE...DO WHILE<boolean
expression>DO

<statement>;
END_WHILE;

One or more statements are executed while the boolean expression
(conditional formula) is TRUE.
The boolean expression is determined before execution of the
statement and, if it is FALSE, any statement in the DO...END_WHILE
statement is not executed. Since <boolean expression> in the WHILE
statement is only necessary to return TRUE or FALSE as the result,
any expression that can be specified in <boolean expression> of the IF
statement can be used.

WHILE intV1 = 30 DO
intV1 := intV1 + 1;

END_WHILE;

■REPEAT...UNTIL REPEAT
<statement>;
UNTIL<boolean
expression>

END_REPEAT;

One or more statements are executed while the boolean expression
(conditional formula) is FALSE.
The boolean expression is determined after execution of the statement
and, if the value is TRUE, any statement in the REPEAT...UNTIL
statement is not executed. Since <boolean expression> in the REPEAT
statement is only necessary to return TRUE or FALSE as the result,
any expression that can be specified in <boolean expression> of the IF
statement can be used.

REPEAT
intV1 := intV1 + 1;
UNTIL intV1 = 30

END_REPEAT;

■EXIT EXIT; This statement can be used only within an iteration statement to
terminate the iteration statement in the middle of processing.
When the EXIT statement is reached during execution of the iteration
loop, the iteration loop processing after the EXIT statement is not
executed. The program execution continues from the line next to the
one where the iteration statement was terminated.

FOR intV1 := 0
TO 10
BY 1 DO
IF intV1 > 10 THEN

EXIT;
END_IF;

END_FOR;
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Precautions
■When an assignment statement is used
 • Up to 255 characters can be assigned to a string. If characters are assigned exceeding the valid range, a conversion error

occurs.
 • Timer type and counter type contacts and coils cannot be used at the left side of an assignment statement.
 • Instances of function blocks cannot be used at the left side of an assignment statement. Use the input variable, output

variable, or external variable of an instance.

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used at the left side of an assignment statement or as an input argument of a
function or function block, a conversion error may occur. If an error occurs, change the assignment statement.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be
specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for
automatic conversion of data type, a conversion error may occur if the data size is not the same.

Ex.

The following is the example of rewriting.

■When the result of an arithmetic operation is assigned
When assigning the result of an arithmetic operation to a data type variable with larger data size, convert the variable of the
arithmetic operational expression to the data type of the left side in advance.

Ex.

To assign the arithmetic operation result with a data size of 16 bits (INT type) to the 32-bit data type (DINT type):

The result of the arithmetic operation will be the same data type as the input operand. For this reason, if the operation result of
varInt1*10 in the above program exceeds the INT type range (-32768 to 32767), the operation result of overflow or underflow
is assigned to varDint1.
In this case, convert the operand of the operational expression to the data type of the left side in advance.

Before change After change
M0 := S0; IF S0 THEN

M0 := TRUE;
ELSE
M0 := FALSE;

END_IF;

Before change After change
(*Conversion error because K4S0 is 16 bits and D0:UD is 32 bits*)
D0:UD := K4S0;
(*Conversion error because BL1\K4S10 is 16 bits and the second argument of
DMOV is 32 bits*)
DMOV(TRUE,BL1\K4S10,D100);

(*Assign data to the 16-bit device.*)
D0 := K4S0;
(*Specify 32-bit data for DMOV.*)
DMOV(TRUE, BL1\K8S10, D100:UD);

varDint1 := varInt1 * 10; //The varInt1 is an INT type variable, and the varDint1 is a DINT type variable.

varDint2 := INT_TO_DINT(varInt1); //An INT type variable is converted to a DINT type variable.
varDint1 := varDint2 * 10; //Multiplication is performed in DINT type, and the operation result is assigned.
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 61

62
■When a sign inversion operator is used in the arithmetic operational expression
If a sign inversion operator is used for the minimum value of each data type, the value remains unchanged.
For example, the minimum value of INT type data will be -(-32768) = -32768.
If a sign inversion operator is used for variables targeted for automatic conversion of data type, an intended operation result
may not be obtained.

Ex.

When the value of varInt1 (INT type) is -32768 and the value of varDint1 (DINT type) is 0

In this program, the value of (-varInt1) remains unchanged. Therefore, the value, -32768, is assigned to varDint2.
To use a sign inversion operator in an arithmetic operational expression, automatically convert data type before the arithmetic
operation or do not use a sign inverted operator in the program.

Ex.

When data type is automatically converted before the arithmetic operation

Ex.

When a sign inversion operator is not used

■When the data type is converted from single-precision real number to double-precision real
number

When the type conversion function, REAL_TO_LREAL, is executed, an error may occur in the conversion result.
Consequently, when the data type is automatically converted or when a function with a return value of real number type (such
as SIN function) is used as the right side of an assignment statement or an operand of arithmetic operational expression, an
intended operation result may not be obtained.

Ex.

An error occurs.

In the above program, the data type of the return value of ABS(varReal1) is single-precision real number. Since the return
value is converted to a double-precision real number and assigned to varReal1, an error occurs.
Create a program using a function with the data type same as the assignment target.

Ex.

No error occurs.

varDint2 := -varInt1 + varDint1;

varDint3 := varInt;
varDint2 := -varDint3 + varDint1;

varDint2 := varDint1 - varInt1

varReal1 := -1234.567;
varLReal1 := ABS(varReal1);

varLReal2 := -1234.567;
varLReal1 := ABS(varLReal2);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

■When a bit type label is used
Once the boolean expression (conditional formula) is established in a select or iteration statement and if a bit type label is set
to on in <statement>, the state of the label will be always on.

Ex.

Program that keeps the label status on

To prevent the label from being always on, add a program that turns off the bit type label as shown below.

Ex.

Program that avoids the label from being always on

*1 The above program can also be described as follows.
bLabel2:=bLabel1;
or
OUT(bLabel1,bLabel2);
Note however that if the OUT instruction is used in the <statement>, the program will be in the same state as a program that keeps the
label status on.

■When a timer function block or counter function block is used
In a select statement, a boolean expression (conditional formula) differs from the execution conditions of timer function blocks
or counter function blocks.

Ex.

Timer function block
Program example before change

Program example after change

Ex.

Counter function block
Program example before change

Program example after change

The above examples of programs before change cause problems because the statement related to the timer or counter is not
executed unless the select statement is established.
To operate the timer or counter on the basis of the bLabel1 condition and bLabel1 AND condition, do not use control
statements but use only function blocks.
The timer and counter can be operated by using the programs after change.

ST program Ladder program performing the processing equivalent to ST program
IF bLabel1 THEN

bLabel2 := TRUE;
END_IF;

ST program*1 Ladder program performing the processing equivalent to ST program
IF bLabel1 THEN

bLabel2 := TRUE;
ELSE
bLabel2 := FALSE;

END_IF;

IF bLabel1 THEN
 TIMER_100_FB_M_1 (Coil := bLabel2, Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);

END_IF;
(*When bLabel1 is on and bLabel2 is also on, counting starts.*)
(*When bLabel1 is on and bLabel2 is off, the counted value is cleared.*)
(*When bLabel1 is off and bLabel2 is on, counting stops. The counted value is not cleared.*)
(*When bLabel1 is off and bLabel2 is also off, counting stops. The counted value is not cleared.*)

TIMER_100_FB_M_1 (Coil := (bLabel1 & bLabel2), Preset := wLabel3, ValueIn := wLabel4 , ValueOut => wLabel5, Status => bLabel6);

IF bLabel1 THEN
 COUNTER_FB_M_1 (Coil := bLabel2, Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);

END_IF;
(*When bLabel1 is on and bLabel2 is on/off, the value is incremented by one.*)
(*When bLabel1 is off and bLabel2 is on/off, the value is not counted.*)
(*The counting operation does not depend on the on/off status of bLabel1.*)

COUNTER_FB_M_1 (Coil := (bLabel1 & bLabel2), Preset := wLabel3, ValueIn := wLabel4, ValueOut => wLabel5, Status => bLabel6);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 63

64
■When a FOR...DO statement is used
 • A structure member or array element cannot be used for the iteration variable.
 • Match the type used in the iteration variable with the types of <final value expression> and <increase expression>.
 • <Increase expression> can be omitted. If omitted, <increase expression> is assumed to be 1.
 • If 0 is assigned to <increase expression>, the portions after the FOR statement may no longer be executed or an infinite

loop may occur.
 • In the FOR...DO statement, the iteration variable count processing is performed after execution of <statement>in the FOR

statement. If the count processing is executed in such a way that it exceeds the maximum value of the iteration variable
data type or is below the minimum value, an infinite loop occurs.

■When instructions executed at the rising edge or falling edge are used
 • The following table lists the operations of when instructions executed at the rising edge or falling edge used in the IF or

CASE statement.

*1 On the falling edge (on to off), the instruction is not executed because the condition of the IF or CASE statement is not satisfied.

Ex.

When the PLS instruction (execution condition: rising edge) is used in the IF statement

Condition Operation result

Conditional
formula of IF or
CASE statement

Instruction
execution
condition (EN)

On/off
determination
result of the
instruction in the
last scan

On/off
determination
result of the
instruction

Instruction at the
rising edge

Instruction at the
falling edge

TRUE or CASE match TRUE On On Not executed Not executed

Off On Executed Not executed

FALSE On Off Not executed Executed

Off Off Not executed Not executed

TRUE or CASE
mismatch

TRUE On Off Not executed Not executed*1

Off Off Not executed Not executed

FALSE On Off Not executed Not executed*1

Off Off Not executed Not executed

IF bLabel0 THEN
PLS(bLabel1, bLabel10);

END_IF;

(1) When bLabel0 is off (the conditional formula of the IF statement is FALSE), the on/off determination result will be off. The PLS instruction is not executed.
(The bLabel10 remains off.)

(2) When bLabel0 is on (the conditional formula of the IF statement is TRUE) and bLabel1 is off (the instruction execution condition is off), the on/off
determination result will be off. The PLS instruction is not executed. (The bLabel10 remains off.)

(3) When bLabel0 is on (the conditional formula of the IF statement is TRUE) and bLabel1 is also on (the instruction execution condition is on), the on/off
determination result will be off to on (rising edge). The PLS instruction is executed. (The bLabel10 is on for one scan.)

ON

OFF

OFF

OFF

OFF

ON

(1) (2)

ON

ON

ON

(3)

On/off
determination
result

bLabel0

bLabel10

bLabel1

1 scan
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

 • To execute instructions at the rising edge or falling edge in an iteration statement (FOR, WHILE, or REPEAT statement),
use the edge relay (V) or perform index modification. In this case, one point of the edge relay (V) is used for each
instruction that uses the edge relay (V) in the system. For this reason, secure the edge relay (V) for the number of
instructions used in addition to the number of points used in the iteration statement.

Ex.

When instructions executed at the rising edge or falling edge are used in the FOR statement

■When the master control instruction is used
Operations when the master control is off will be as follows.
 • A statement in the select statement (IF or CASE statement) or iteration statement (FOR, WHILE, or REPEAT statement)

performs no processing.
 • For a statement outside the select statement or iteration statement, no processing is performed if it is an assignment

statement, and a statement itself is not executed if it is other than assignment statement.

Ex.

Statement in the select statement (IF statement)

Ex.

Statement (bit assignment statement) outside the select statement or iteration statement

Ex.

Statement (OUT instruction) outside the select statement or iteration statement

Example of using the edge relay (V) in one location
(The edge relay (V) is used up to a total of 11 points (V0 to V10 for the INC instruction).)
FOR Z0 := 0 TO 9 BY 1 DO

INC(EGP(M100Z0 , V0Z0) , D100Z0);
END_FOR;
Example of using the edge relay (V) in two locations
(The edge relay (V) is used up to a total of 22 points (V0 to V10 for the INC instruction, V11 to V21 for the DEC instruction).)
FOR Z0 := 0 TO 9 BY 1 DO

INC(EGP(M100Z0 , V0Z0) , D100Z0);
DEC(EGF(M200Z0 , V11Z0) , D200Z0);

END_FOR;

MC(M0 , N1 , M1); //Master control is off.
IF M2 THEN

M3 := M4; // M3 retains the value in the last scan because no processing is performed when the master control is off.
END_IF;
M20 := MCR(M0, N1);

MC(M0 , N1 , M1); //Master control is off.
M3 := M4; //M3 retains the value in the last scan because no processing is performed when the master control is off.
M20 := MCR(M0, N1);

MC(M0 , N1 , M1); //Master control is off.
OUT(M2, M3); //M3 turns off because the instruction is not executed when the master control is off.
M20 := MCR(M0, N1);
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 65

66
Constants

Notation of constants
In the ST program, the following notation of constant is available in addition to the standard notation.

*1 Notation of constants are not case-sensitive. Notation of constants with K, H, or E cannot be used simultaneously.
*2 ANY_NUM of operand for arithmetic operator, ANY_NUM of arguments for a function call statement, function block call statement, and

function call expression, use the notation of constants with "UINT#" or "UDINT#". For the notation of constants with "WORD#" or
"DWORD#", an error occurs during the conversion because the data type is recognized as a bit string.

For the notations of constants other than the above, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

In the notation of binary, octal, decimal, hexadecimal, and real numbers, the numbers can be separated using
an underscore "_" to make programs easy to see. The binary number notation of double word [unsigned] can
be described as follows.
UDINT#2#1100_1100_1100_1100
The numerical value separation using an underscore "_" is ignored in program processing.

Applicable data type Type Notation*1 Example
Bit Boolean Add "BOOL#" before the boolean value to be used. BOOL#1, BOOL#0

BOOL#TRUE, BOOL#FALSE

Word [unsigned]/bit string [16
bits]

Binary Add "UINT#2#" or "WORD#2#" before a binary number.*2 UINT#2#10101010
WORD#2#10101010

Octal Add "UINT#8#" or "WORD#8#" before an octal number.*2 UINT#8#3370
WORD#8#3370

Decimal Add "UINT#" or "WORD#" before a decimal number.*2 UINT#123
WORD#123

Hexadecimal Add "UINT#16#" or "WORD#16#" before a hexadecimal number.*2 UINT#16#FF
WORD#16#FF

Double word [unsigned]/bit
string [32 bits]

Binary Add "UDINT#2#" or "DWORD#2#" before a binary number.*2 UDINT#2#1100110011001100
DWORD#2#1100110011001100

Octal Add "UDINT#8#" or "DWORD#8#" before an octal number.*2 UDINT#8#33703370
DWORD#8#33703370

Decimal Add "UDINT#" or "DWORD#" before a decimal number.*2 UDINT#456789
DWORD#456789

Hexadecimal Add "UDINT#16#" or "DWORD#16#" before a hexadecimal
number.*2

UDINT#16#FFFF
DWORD#16#FFFF

Word [signed] Binary Add "INT#2#" before a binary number. INT#2#01010101

Octal Add "INT#8#" before an octal number. INT#8#3370

Decimal Add "INT#" before a decimal number. INT#-123

Hexadecimal Add "INT#16#" before a hexadecimal number. INT#16#1F

Double word [signed] Binary Add "DINT#2#" before a binary number. DINT#2#0011001100110011

Octal Add "DINT#8#" before an octal number. DINT#8#33703370

Decimal Add "DINT#" before a decimal number. DINT#-456789

Hexadecimal Add "DINT#16#" before a hexadecimal number. DINT#16#1F1F

Single-precision real number Real number Add "REAL#" before a real number. REAL#2.34

Real number
(exponential
notation)

REAL#1.0E6

Double-precision real
number

Real number Add "LREAL#" before a real number. LREAL#-2.34

Real number
(exponential
notation)

LREAL#1.001E16

String STRING Enclose a string (ASCII, Shift JIS) in single quotation marks ('). 'ABC'

String [Unicode] WSTRING Enclose a Unicode string in double quotation marks ("). "ABC"
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Labels and devices

Specification method
Labels and devices can be directly described on ST programs. Labels and devices can be used for the left or right side of an
expression or as an argument or return value of a standard function/function block.
For details on labels and devices, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

■Notation of devices with a type specifier
A word device can be used as any data type by adding a device type specifier to its name.

The following devices can use a device type specifier.
 • Data register (D)
 • Link register (W)
 • Link direct device (J\W)
 • Module access device (U\G)
 • CPU buffer memory access device (U3E\G/U3E\HG)
 • File register (R/ZR)
 • Refresh data register (RD)
A device type specifier cannot be added to a digit-specified or indirect specified device.

■Device specification method
Devices can be specified in the following methods.
 • Index modification
 • Bit specification
 • Digit specification
 • Indirect specification
For details, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Device specifier Data type Example Description of example
None Generic data type ANY16.

Word [signed], when only devices are used in such as an arithmetic
operational expression.
However, when it is specified as a device without a type specifier in a
FUN/FB argument, it becomes a argument-defined data type.

D0 D0 without a type specifier

:U Word [unsigned]/bit string [16 bits] D0:U D0 specified as the word [unsigned]/bit
string [16 bits]

:D Double word [signed] D0:D D0 and D1 specified as the double word
[signed]

:UD Double word [unsigned]/bit string [32 bits] D0:UD D0 and D1 specified as the double word
[unsigned]/bit string [32 bits]

:E Single-precision real number D0:E D0 and D1 specified as the single-precision
real number

:ED Double-precision real number D0:ED D0, D1, D2, and D3 specified as the
double-precision real number
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 67

68
Precautions
 • The pointer type cannot be used in ST programs.
 • When the timer, counter, or retentive timer device is used as current value, the data type will be the word [unsigned]/bit

string [16 bits]. When the long timer, long counter, or long retentive timer device is used as current value, the data type will
be the double word [unsigned]/bit string [32 bits].

 • When performing assignment using digit specification, match the data type between the left and right sides.

Ex.

D0:=K5X0;
In this example, a program error occurs because K5X0 is the double word type and D0 is the word type.
 • If the right side is greater than the left side when performing assignment using digit specification, data is transferred to

within the range of the number of applicable points of the left side.

Ex.

K5X0:=2#1011_1101_1111_0111_0011_0001;
In this example, K5X0 has 20 applicable points and therefore 1101_1111_0111_0011_0001 (20 digits) is assigned to K5X0.
 • When using the current value (such as TNn) of the counter (C), timer (T), or retentive timer (ST) as a type other than the

word [unsigned]/bit string [16 bits], or when using the current value (such as LTNn) of the long counter (LC), long timer (LT),
or long retentive timer (LST) as a type other than the double word [unsigned]/bit string [32 bits], use the type conversion
functions.

Ex.

varInt:=WORD_TO_INT(T0);(*A type conversion function is used.*)
 • If a coil (TC, STC, LTC, LSTC, CC, or LCC) of timer or counter devices is used at the right side of an assignment statement

or as an input argument of a function or function block, it operates as a contact (TS, STS, LTS, LSTS, CS, or LCS).
 • To use a coil of the timer or counter as an input argument, use a timer type label or counter type label.

Ex.

Timer device and timer type label
M1 := TC0; (*Assign a value of the contact (TS0) to M1.*)
M2 := INV(TC1); (*Assign the inversion result of the contact (TS1) to M2.*)
M1 := tLabel0.C; (*Assign a value of the coil of the timer type label, tLabel0, to M1.*)
M2 := INV(tLabel1.C); (*Assign the inversion result of the coil of the timer type label, tLabel0, to M1.*)

■When performing automatic conversion of data type with devices
Add a device type specifier when using a word device in a data type other than word [signed]. (Page 67 Notation of
devices with a type specifier)

Ex.

When transferring the values of D2 and D3 to dwordLabel1, a double word [unsigned] label
//Example of when adding a device type specifier and transferring the values in a correct data type
dwordLabel1 := D2:UD;
//Since the data type of D2: UD (D2 with a device type specifier) is double word [unsigned], the values of D2 and D3 are transferred to dwordLabel1.

//Example of an unintended transfer result
dwordLabel1 := D2;
//Since the data type of D2 without a device type specifier is word [signed], the data type is automatically converted into double word [unsigned] and data is
transferred to dwordLabel1.
//Therefore, the value of D3 is not transferred but only the value of D2 is transferred.
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration

6

Comments
The following table lists the comments that can be used in ST programs.

Do not write a comment containing an end symbol in a multiple-line comment.

Type Symbol Description Example
Single-line comment // The portion from the start symbol "//" to the end of the line is regarded

as a comment.
//comment

Multiple-line comment (**) The portion from the start symbol "(*" to the end symbol "*)" is regarded
as a comment.
A line feed can be inserted in a comment.

■No line feed
(*comment*)
■With a line feed
(*line-1 comment
line-2 comment*)

/**/ The portion from the start symbol "/*" to the end symbol "*/" is regarded
as a comment.
A line feed can be inserted in a comment.

■No line feed
/*comment*/
■With a line feed
/*line-1 comment
line-2 comment*/
6 STRUCTURED TEXT LANGUAGE
6.1 Configuration 69

70
7 FBD/LD

FBD/LD (function block diagram/ladder diagram) is a graphic language which describes programs by connecting blocks that
perform predefined processing, variable elements, and constant elements along the flow of data and signals.

 • This chapter describes the operation and specifications of the FBD/LD. For the operation method of the
engineering tool for creating an FBD/LD program, refer to the following.

 GX Works3 Operating Manual
 • A program can be easily created through placing and connecting FB elements of process control function

blocks which can be used with the Process CPU. A wide variety of provided function blocks for the process
control simplifies the programming. When process control function blocks are used with the Process CPU,
refer to the following.

 MELSEC iQ-R Programming Manual (Process Control Function Blocks/Instructions)

7.1 Configuration
The following are the programs written in FBD/LD.

In FBD/LD programs, data flows from the output point of a function block, function, variable (label or device), or constant to the
input point of another function block or variable.

(1) Worksheet
(2) LD element
(3) FBD element
(4) Common element
(5) Connection point
(6) Connection line

RnCPU RnENCPU RnSFCPU RnSFCPURnPSFCPU RnPSFCPURnPCPURnPCPU
(Standard) (Safety)(Standard) (Safety)(Redundant)(Process)

(3)

(2)

(1)

(4)

(6)

(5)
7 FBD/LD
7.1 Configuration

7

Program elements

FBD elements
The following table lists FBD elements consisting an FBD/LD program.

■Data type of constant elements
The data type of the value input to a constant is not determined when the value is input. It is determined when the constant
element is connected to another FBD element with a connection line. The data type will be the same as that of the connected
FBD element.

Ex.

When the constant value is 1
The possible data types are BOOL, WORD, DWORD, INT, DINT, REAL, and LREAL, but the data type of the input value
cannot be determined at this point. The data type is determined when the constant is connected to another FBD element.

■Automatic conversion of data type
If the data types differ between connected elements, one data type may be converted automatically.
To prevent data from being lost during type conversion, conversion is performed only from a smaller size data type to a larger
size data type. The data type automatic conversion processing in FBD/LD is same as that in ST language. For details, refer to
the following.
Page 57 Automatic conversion of data type

Item Description
Variable Stores a value. A specific data type is assigned to each variable, and only data of the assigned

data type are stored.
Labels and devices can be specified as a variable.

Constant Outputs a specified value.

Function (FUN) Executes a function.
• How to create functions ( GX Works3 Operating Manual)
• Standard functions ( MELSEC iQ-R Programming Manual (CPU Module Instructions,

Standard Functions/Function Blocks))

Function block (FB) Executes a function block.
• How to create function blocks ( GX Works3 Operating Manual)
• Standard function blocks ( MELSEC iQ-R Programming Manual (CPU Module Instructions,

Standard Functions/Function Blocks))
• Module function blocks ( Function Block Reference for the module used)

(1) The data type has not been determined.
(2) INT data type
(3) INT data type

(1)

(2) (3)
7 FBD/LD
7.1 Configuration 71

72
■Input/output points of a function
 • Connect all input points of a function with another element.
 • The data type is assigned to each input variable and output variable of a function. Match the data type of an element

connected to the input point or output point with that of the input variable or output variable.

■Precautions for connecting the output variables of the function with EN and function block
with EN to another element

When ENO of the function with EN and function block with EN are FALSE (not executed), the program operation differs
depending on the element connected.

Unintended operation may occur if the output variable of the function block with EN is directly connected to the input variable
of other functions or function blocks.
To prevent an undefined value from being used, refer to either of the following examples for the connection.

Ex.

Connect elements so that the function with EN or function block with EN is the connection destination. Connect ENO
(connection source) to EN (connection destination) as well.

Ex.

Connect elements using the SEL (selection function) so that the last value is input if ENO is FALSE.

Element connected Program operation when ENO of the function with EN and function block with EN are FALSE (not
executed)

• Function
• Function block

The values of the input variables connected to the output variables of the function with EN and function block with EN
are undefined.

Coil The values of the coils connected to the output variables of the function with EN and function block with EN are FALSE.
When inverse coils are connected, the values are TRUE.

Other than above The values of the elements connected to the output variables of the function with EN and function block with EN are not
changed. (The last values are input.)
7 FBD/LD
7.1 Configuration

7

■When the step relay (S) or SFC block device (BL) is used
If the step relay (S) or SFC block device (BL) is used as a variable element, a conversion error may occur. If an error occurs,
change the variable element to a contact element.

Ex.

The following is the example of rewriting.

In addition, to use the digit-specified step relay (S) or the step relay with block specification (BL\S), the data size must be
specified correctly. Since the step relay (S) and the step relay with block specification (BL\S) are not targeted for auto data
type conversion, a conversion error may occur if the data size are not the same.

Ex.

The following is the example of rewriting.

Before change After change

Before change After change
7 FBD/LD
7.1 Configuration 73

74
LD elements
The following table lists the LD elements that can be used in FBD/LD programs.

■AND operation and OR operation of contact elements
At each contact, an AND operation or OR operation is performed depending on the connection status, and the operation
result is output.
 • Series connection (1): An AND operation is performed with the previous operation result.
 • Parallel connection (2): An OR operation is performed with the previous operation result.

Item Description
Left rail A start point of ladder program.

The output of the left rail is always on.

Normally open contact Energized when the specified device or label is on.

Normally closed contact Energized when the specified device or label is off.

Rising edge pulse Energized on the rising edge (off to on) of the specified device or label.

Falling edge pulse Energized on the falling edge (on to off) of the specified device or label.

Negated rising edge pulse Energized when the specified device or label is off, on, or on the falling edge (on to off).

Negated falling edge pulse Energized when the specified device or label is off, on, or on the rising edge (off to on).

Coil Outputs the operation result to the specified device or label.

Inverse coil When the operation result turns off, the specified device or label turns on.

Set coil When the operation result turns on, the specified device or label turns on.
The device or label keeps on state even after the operation result turns off.

Reset coil When the operation result turns on, the specified device or label turns off.
If the operation result is off, the status of the device or label does not change.

(1) Contact connected in series
(2) Contact connected in parallel

(1)

(2)

()
7 FBD/LD
7.1 Configuration

7

■When another program element is connected to a connection point of coil for output
When another program element is connected to a connection point of coil for output in series, the operation is the same as
that of the parallel connection.

Item Description
Program example

Operation at the above example
7 FBD/LD
7.1 Configuration 75

76
Common elements
The following table lists the common elements that can be used in FBD/LD programs.

*1 These elements cannot be used in the Zoom editor of SFC programs.

■Jump element
 • If the timer whose coil is on is jumped, the time cannot be measured correctly.
 • A jump label can be located before the jump element in the program sequence. If located, create a program so that the

watchdog timer setting value is not exceeded. (How to exit from a loop must be considered.)
 • Specify a pointer type local label for a jump element and a jump label. The structure members cannot be used.
 • The CJ, SCJ, and JMP instructions (for pointer branch) cannot be used. Use a jump element when jump processing is

required.
 • Processing cannot be jumped to/from the outside of the program block.

*1 Branching by using the BREAK instruction is included.

Item Description
Jump*1 Jumps the execution processing to a jump element. Processing between this element and a jump

label is not performed.
Whether to perform jump processing or not is controlled by inputting on/off information to the
element.
On: Jump processing performed
Off: Jump processing not performed

Jump label*1 A jump destination of a jump element in the same program. When the jump processing is
performed, the program continues from the processing located after the jump label.

Connector Used as a substitute for a connection line.
Processing moves to a connector element used as a pair.
One or more input connectors can be used as a pair of one output connector.

Return*1 Stops the execution processing after this element. Use the element not to execute the program,
functions, and function blocks after the element.
Whether to perform return processing or not is controlled by inputting on/off information to the
element.
On: Return processing performed
Off: Return processing not performed

Comment Used to write a comment.

Inline ST*1 Displays an ST program in the FBD/LD editor.
Double-clicking an inserted inline ST element displays the ST editor for editing or monitoring an ST
program.
For details, refer to the following.
 Page 81 Inline ST

Jump related operation Availability
Jumping to the outside of the program block*1 Not supported

Jumping from the outside of the program block*1 Not supported

Calling a subroutine program Supported

Being called as a subroutine program Not supported
7 FBD/LD
7.1 Configuration

7

■Return element
 • The operation of a return element differs depending on the POU (program, function, or function block) used.

 • If a return element is used in a macro type function block, do not allocate multiple function block elements with the same FB
instance name.

■Connector element
A connector element is used to place the program within the area to be displayed in the FBD/LD editor or to be printed.

POU used Description
Program Execution of the program is stopped.

Function Execution of the function is stopped, and processing returns to the step next to the instruction that called the function.

Function block Execution of the function block is stopped, and processing returns to the step next to the instruction that called the
function block.
7 FBD/LD
7.1 Configuration 77

78
Connection line
A connection line is a line that connects the end points of FBD element, LD element, and common element.
When connected, the value is passed from the left end to the right end of the line. The data types of the program elements
connected must be identical, or support automatic data type conversion.

Connection point
A connection point is an end point of FBD element, LD element, and common element for connecting them to create an FBD/
LD program.
The left-side end point is for input, and the right-side end point is for output.

When connected, the connection point is hidden.

■I/O point inversion
The input value to a program element or the output value from a program element can be inverted at the connection point.
The connection point where the value is inverted (FALSE to TRUE or TRUE to FALSE) is displayed with a black circle.

The value of the following data types can be inverted: BOOL, WORD, DWORD, ANY_BIT, and ANY_BOOL.

Item Connection point for input Connection point for output
Contact

Coil

Variable

Constant 

Function

The return value of the function is not displayed.

Function block
7 FBD/LD
7.1 Configuration

7

Constant

Notation of constants
The following table lists the notations of strings in FBD/LD programs.

For the notations of constants other than the above, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

Labels and devices

Specification method
Labels and devices can be directly described on FBD/LD programs. Labels and devices can be used as an input point or
output point of a program element and an argument or return value of a standard function/function block.
For details on labels and devices, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

■Notation of devices with a type specifier
A word device can be used as any data type by adding a device type specifier to its name.
The device type specifiers and applicable devices are the same as those for ST programs. For details, refer to the following.
Page 67 Notation of devices with a type specifier
If the data type of a word device is not specified, it will be determined by the device type.

Data type Notation Example
String STRING Enclose a string (ASCII, Shift JIS) in single quotation marks (').

String [Unicode] WSTRING Enclose a Unicode string in double quotation marks (").

Word device Data type
Current value of the timer (TN), current value of the retentive timer (STN), current value of the
counter (CN)

WORD

Current value of the long timer (LTN), current value of the long retentive timer (LSTN), current
value of the long counter (LCN)

DWORD

Long index register (LZ) DINT

Other than above ANY16
7 FBD/LD
7.1 Configuration 79

80
Precautions
■When labels are used
 • Local devices cannot be used as an array index. To use local devices as an array index, assign the target device to another

device, and specify the assigned device.

■When performing automatic conversion of data type with devices
Add a device type specifier when using a word device in a data type other than word [signed]. ( Page 79 Notation of
devices with a type specifier)

Ex.

When the values of D2 and D3 are transferred to dwordLabel1, a double word [unsigned] label

■When a timer or counter is used
 • If a coil (TC, STC, LTC, LSTC, CC, or LCC) of timer and counter devices is used as an input of variable, function or function

block, it operates as a contact (TS, STS, LTS, LSTS, CS, LCS).
 • To use a coil of timer or counter as an input, use a timer type or counter type label.

Ex.

Timer device and timer type label

Example of when adding a device type specifier and
transferring the values in a correct data type

Example of an unintended transfer result

Since the data type of D2:UD (D2 with a device type specifier) is double word
[unsigned], the values of D2 and D3 are transferred to dwordLabel1.

Since the data type of D2 without a device type specifier is word [signed], the
data type is automatically converted into double word [unsigned] and data is
transferred to dwordLabel1.
Therefore, the value of D3 is not transferred but only the value of D2 is
transferred.

Assign a value of the contact (TS0) to M1.

Assign the inversion result of the contact (TS1) to M2.

Assign a value of the coil of the timer type label, tLabel0, to M1.

Assign the inversion result of the coil of the timer type label, tLabel1, to M2.
7 FBD/LD
7.1 Configuration

7

7.2 Inline ST
The inline ST is the function used to create an inline ST element that displays an ST program in the FBD/LD editor, and edit
and monitor it.
This function enables to create complex numerical operations and character string processing easily in FBD/LD programs.
 • Program that does not use the inline ST

 • Program that uses the inline ST

 • The inline ST cannot be used in the Zoom editor of SFC programs.

Specifications
Double-clicking an inserted inline ST element displays the ST editor for editing or monitoring an ST program.
For the specifications of the ST program described to the inline ST, refer to the specifications of the ST language.
Page 53 STRUCTURED TEXT LANGUAGE
7 FBD/LD
7.2 Inline ST 81

82
Precautions
 • Up to 64 inline ST elements can be inserted into a single POU of an FBD/LD program.
 • Using a RETURN statement in the inline ST causes the processing in the inline ST element to end, instead of the

processing of the program block.
 • Since inline ST elements have no connection points, an inline ST element inserted into an FBD/LD program is executed

every scan.
7 FBD/LD
7.2 Inline ST

7

7.3 Program Execution Order
Execution order of program elements
The execution order of program elements in the FBD/LD editor is determined by the location and connecting status.

(1) Program elements are executed from left to right.
(2) Program elements are executed from top to bottom.
The execution order is displayed under each program element. After the program is converted, the determined execution
order is displayed.

(1)

(2)
7 FBD/LD
7.3 Program Execution Order 83

84
Precautions
For a program that uses functions, do not directly connect the return value of a function and an input variable of another
function, but connect a variable element between them.

Ex.

When the variable element (1) is connected between the return value and input variable

Connecting the return value of a function and the input variable of another function directly may lead an execution order to an
unintended one.

Ex.

An unintended execution order

Since both the output variable (3) that comes from another program element and the return value (2) of the program element arranged on the left are connected
as inputs of the program element arranged on the right, the execution order has changed.

(1)

(2)

(3)
7 FBD/LD
7.3 Program Execution Order

8

8 SFC PROGRAM

SFC is a program description format in which a sequence of control operations is split into a series of steps to enable a clear
expression of each program execution sequence and execution conditions.

This chapter describes the operations and specifications of SFC programs. For details on the information not
described in this chapter, refer to the following.
 GX Works3 Operating Manual
 MELSEC iQ-R CPU Module User's Manual (Application)

Check the versions of the CPU module and the engineering tool before using SFC programs. For the versions
of the CPU module and the engineering tool, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

RnCPU RnENCPU RnSFCPU RnSFCPURnPSFCPU RnPSFCPURnPCPURnPCPU
(Standard) (Safety)(Standard) (Safety)(Redundant)(Process)
8 SFC PROGRAM
 85

86
The SFC program consists of steps that represent units of operations in a series of machine operations.
In each step, the actual detailed control is programmed.

An SFC program starts at an initial step, executes an action of the next step in due order every time the relevant transition
becomes TRUE, and ends a series of operations at an end step.

X7

Y25

Y22

SM400

M0

X4

T0

M1

X6

Y22

X5

X3

Y20X0 X1

Y21

X2
TRAN

TRAN

PLS M0

SET

RST

Y23

Y23

SET Y24

T0OUT K20

Y25

TRAN

M1

Y24

PLS

RST

Y20

TRAN

SM400

SM400

Machining operation
flowchart

Start processing 1 operation unit

Pallet check and
clamping operation 1 operation unit

Unclamping
operation and
workpiece unloading

1 operation unit

Hole making
operation 1 operation unit

End processing 1 operation unit

Workpiece unloading
confirmation

Unclamp confirmation
Conveyer start

Drill up

Drill down

Drill down endpoint

Drill rotation

Pallet clamping

Conveyer start

Pallet unclamping

Drill up endpoint

Clamp confirmation

Always ON

Always ON

Always ON

Start switch
Workpiece
detection

Pallet detection

SFC diagram Ladder diagram of the action or transition of each step
8 SFC PROGRAM

8

It is possible to correspond the controls of the entire facility, mechanical devices of each station, and all machines to the
blocks and steps of the SFC program on a one-to-one basis.

Step transition
control unit for
overall process

Station 1
control unit

Station 2
control unit

Station 3
control unit

Transfer machine

Overall process
(SFC program)

Step transition control unit for
overall process (Block 0)

Station 3 control unit
(Block 3)

Station 1 control unit
(Block 1)

Station 2 control unit
(Block 2)

Transfer machine start
(Initial step)

End (End step)

Station 3 start
(Block 3 start)

Station 2 start
(Block 2 start)

Station 1 start
(Block 1 start)

Start
(Initial step)

Pallet clamping
(Step 1)

Hole making
(Step 2)

(End step)

Start
(Initial step)

Start
(Initial step)

Pallet clamping
(Step 1)

Tapping
(Step 2)

Pallet unclamping
(Step 3)

(End step)

Pallet clamping
(Step 1)

Workpiece unloading
(Step 2)

Pallet unclamping
(Step 3)

(End step)

Repeated

Pallet unclamping
(Step 3)
8 SFC PROGRAM
 87

88
8.1 Specifications
This section lists the performance specifications related to SFC Programs.

*1 For the online change (SFC block), refer to the following.
Page 147 Online change (SFC block)
Before using the online change (SFC block), check the versions of the CPU module and the engineering tool used. ( MELSEC iQ-R
CPU Module User's Manual (Application))

For the processing time of the SFC program, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

Item Specifications
Number of device points
(SFC)

Step relay (S) R00CPU, R01CPU, R02CPU: 8192 points maximum
CPU modules other than the above: 16384 points maximum

SFC block
device (BL)

R00CPU, R01CPU, R02CPU: 128 points
CPU modules other than the above: 320 points

SFC transition
device (TR)

0 point

Number of executable SFC programs 1

Number of blocks R00CPU, R01CPU, R02CPU: 128 blocks maximum
CPU modules other than the above: 320 blocks maximum

Number of SFC steps R00CPU, R01CPU, R02CPU: 1024 steps maximum for all blocks in total, 128 steps for one block alone
CPU modules other than the above: 16384 steps maximum for all blocks in total, 512 steps for one block alone

Step No. R00CPU, R01CPU, R02CPU: 0 to 127 per block
CPU modules other than the above: 0 to 511 per block

Number of branches 32 branches maximum

Number of simultaneously active steps R00CPU, R01CPU, R02CPU: 1024 steps maximum for all blocks in total, 128 steps for one block alone
CPU modules other than the above: 1280 steps maximum for all blocks in total, 256 steps for one block alone

Number of initial steps 32 steps maximum per block

Number of actions 4 actions maximum per step

Number of sequential
steps

Action About 32K sequential steps per block
(No restriction on the number per SFC step)

Transition Only one per ladder block

Number of online change (SFC block)
target blocks

1*1
8 SFC PROGRAM
8.1 Specifications

8

8.2 Structure

Basic operation
An SFC program starts at an initial step, executes the next step every time the relevant transition becomes TRUE, and ends a
series of operations at an end step.

 • Up to 4 actions can be created in one step. When multiple actions are created, they are executed in order
from the top. ( Page 104 Action)

 • The operation of the initial step and normal step can be changed by adding the attribute. ( Page 92 Step
types)

(1) Initial step
(2) Action
(3) Transition
(4) Normal step
(5) Normal step
(6) End step

1. When starting a block, the initial step (1) is activated first and then the action (2) is executed. After execution of the
action (2), the program checks whether the next transition (3) has become TRUE.

2. The program executes only the action (2) until the transition (3) becomes TRUE. When the transition (3) becomes
TRUE, the program ends the action (2), deactivates the initial step (1), and activates the next normal step (4).

3. After execution of the action of the normal step (4), the program checks whether the next transition has become TRUE.
If the next transition does not become TRUE, the program repeats the execution of the action of the normal step (4).

4. When the transition becomes TRUE, the program ends the action, deactivates the step (4), and activates the next step
(5).

5. Every time the transition becomes TRUE, the program activates the next step and ends the block when it finally
activates the end step (6).

(1)

(4)

(3)

(2)

(5)

(6)
8 SFC PROGRAM
8.2 Structure 89

90
Block
A block is a unit showing a series of operation consisting of steps and transitions.

For the maximum number of blocks that can be created in an SFC program, refer to the following.
Page 88 Specifications
A block begins with an initial step, a step and a transition are connected alternately, and ends with an end step or jump
sequence.
A block has an either state of active or inactive.
 • Active: The block has an active step.
 • Inactive: All steps in the block are inactive.
When the block state changes from inactive to active, the initial step becomes active to start sequential processing. (
Page 137 Block execution sequence)

 • Setting CPU parameters enables only block 0 to be started automatically when the SFC program starts. In
this case, when the end step is activated and the block 0 is finished, the block 0 is automatically restarted
and execution of steps is started again from the initial step. ( Page 131 Start condition setting)

 • If a start request is issued to a step in an inactive block by using the SET instruction (activating a step), the
block is activated to execute processing from the specified step.

Block0 Block1 Block2
8 SFC PROGRAM
8.2 Structure

8

Step
A step is the basic unit for comprising a block.

For the maximum number of steps that can be created per block, refer to the following.
Page 88 Specifications
Steps have the following characteristics.
 • When the step becomes active, the related action is executed.
 • A step No. is assigned to each step. Step No. is used to monitor a specific step being executed or forcibly start or stop the

step by using the SFC control instruction. ( Page 102 Assigning the step relay (S) areas to steps)
 • Each step name and No. are unique within each block. (Each cannot be a blank.)

The step name, step No., attribute, and attribute target can be changed from the "Step Properties" window.
Select a step and select [Edit]  [Properties] in the menu. The "Step Properties" window is displayed. ( GX
Works3 Operating Manual)

(1) Step name
(2) Step No.
(3) Attribute
(4) Attribute target

(1)

(3)

(2)

(4)
8 SFC PROGRAM
8.2 Structure 91

92
Step types
The following table lists the types of steps.

The following table lists the attributes of steps.

 • The type of a step can be changed by changing the setting of "Type" in the "Step Properties" window.
 • For the reset step [R], block start step (with END check) [BC], or block start step (without END check) [BS],

specify a step name or a block No. in "Attribute Target" in the property window.
For the setting method, refer to the following.
 GX Works3 Operating Manual

Item Description
Initial step A step that indicates the beginning of a block.

While this type of step is active, the transition following the step is
always checked, and when the transition becomes TRUE, the
next step becomes active.
Attributes of SC, SE, ST, and R can be added.
This step can also be used as a step without an action.

Normal step A basic step used to comprise a block.
While this type of step is active, the transition following the step is
always checked, and when the transition becomes TRUE, the
next step becomes active.
Attributes of SC, SE, ST, R, BC, and BS can be added.
This step can also be used as a step without an action.

End step A step that ends a block.
An action cannot be created.

Attribute Item Description
SC Coil HOLD step [SC] A step that holds the outputs of a coil that has been turned on by

the action even after the active state transitions.

SE Operation HOLD step
(without transition check) [SE]

A step which continues the operation of the action even after the
active state transitions.
After the transition becomes TRUE and the next step is activated,
the transition is not checked.

ST Operation HOLD step (with
transition check) [ST]

A step which continues the operation of the action even after the
active state transitions.
Even after the transition becomes TRUE and the next step is
activated the transition is checked repeatedly.

R Reset step [R] A step that deactivates the specified step.

BC Block start step (with END
check) [BC]

A step that activates the specified block.
When the specified block becomes inactive and the transition
becomes TRUE, the active state transitions to the next step.
An action cannot be created.

BS Block start step (without END
check) [BS]

A step that activates the specified block.
When the transition becomes TRUE, the active state transitions
to the next step.
An action cannot be created.
8 SFC PROGRAM
8.2 Structure

8

Normal step (without attribute)
Normal step is a basic step used to comprise a block.
While this type of step is active, the transition following the step is always checked, and when the transition becomes TRUE,
the next step becomes active.
The output status of the action of a step, when a transition to the next step occurs, varies depending on the instruction used.

■Step without action
A step without an action can also be used as a waiting step.
 • While a step is active, the transition is always checked and, when the transition becomes TRUE, the next step becomes

active.
 • This type of step works as a normal step if an action is added to it.

Item Description Example
When the OUT
instruction is used
(Other than the
OUT C instruction)

When a transition to the next step occurs and the
relevant step becomes inactive, the output by using the
OUT instruction turns off automatically.
Similarly, the timer also clears the current value and
turns off the contact.
However, the select statement of structured text
language or the output by using the OUT instruction
which is repeatedly using within the statement does not
turn off automatically.

When the transition (2) becomes TRUE while Y0 is turned on by using the
OUT instruction triggered by the action of step (1), Y0 is automatically turned
off.

When the OUT C
instruction is used

If the execution condition of the counter in the action is
already on when the transition becomes TRUE and
activate the step, the counter is incremented by 1.
When a transition to the next step occurs before reset
instructions of the counter is executed, the present
value of the counter and the ON state of the contact is
held even if the step becomes inactive.
To reset the counter, use the RST instruction in another
step.

If X10 is already on while step (1) is active, counter C0 counts once when
execution proceeds to step (3) after the transition (2) becomes TRUE.

When the SET,
basic, or application
instruction is used

If a transition to the next step occurs and the step
becomes inactive, the ON state or the data stored in the
device/label is held.
To turn off the ON device/label or clear the data stored
in the device/label, use the RST instruction in another
step.

When Y0 is turned on by using the SET instruction triggered by the action in
step (1), the ON state will be held even when the transition (3) becomes
TRUE and a transition to step (4) occurs.

When the PLS
instruction or
instructions
executed at the
rising edge is used

Even when the contact of the execution condition is
always on, the instruction is executed every time the
step changes from inactive to active.

Even when the contact of the execution condition is on (1), the PLS
instruction is executed every time the step (2) becomes active.

X1 Y0
(1)

(2)

(1)

(3)

(2)

K10
X10

OUT C0

(1)

(3)
(2)

(4)

X2
SET Y0

(2)

(1)
ON

PLS Y0
8 SFC PROGRAM
8.2 Structure 93

94
Initial step
The initial step represents the beginning of a block. Up to 32 initial steps per block can be described. ( Page 88
Specifications) When there are more than one initial step, the convergence enabled is only a selective convergence. Execute
the initial steps in the same way as executing other steps.

■Active steps at block START
When multi-initial steps are used, the active steps change depending on the starting method as described below.

■Transition processing performed when multi-initial steps become active

If steps are selectively connected in the block that has more than one active initial steps, the step immediately after the
convergence becomes active when any of the transition conditions immediately before the convergence is satisfied. In the
above program example, step 8 (S8) becomes active when any of transition conditions t4 to t7 is satisfied. When the step
immediately after the convergence (S8 in the above program example) becomes active and another transition condition
immediately before the convergence (any of t4 to t7 in the above program example) is satisfied, the step immediately after the
convergence becomes active again.

■Operation of the initial steps with step attributes
An attribute of SC (coil HOLD step), SE (operation HOLD step (without transition check)), ST (operation HOLD step (with
transition check)), or R (reset step) can be added to the initial step. When an attribute is added, the operation other than
automatic activation when block is started is the same as the operation of other steps. This step can also be used without an
action.

Operation of active step Method
All initial steps become active. When a start is made using the block start step

When a start is made using the block START instruction of the SFC control instructions

When a forced start is made using the block start/end bit of the SFC information devices

When block 0 is started using the auto-start setting of block 0

Only the specified step becomes active. When any of the initial steps is specified using the step control instruction of the SFC control
instructions
8 SFC PROGRAM
8.2 Structure

8

Coil HOLD step [SC]
Coil HOLD step [SC] is a step that holds the outputs of a coil that has been turned on by the action even after the active state
transitions.

No operation in the action is performed after a transition becomes TRUE and the next step is activated. Therefore, the coil
output status will remain unchanged even if the input condition in the action is changed.

■Timing of when coil output turns off
The coil output holding ON state is turned off in the coil HOLD step [SC] after transition when:

■Operation when the block is paused or restarted
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

Y10 (1) that has been turned on by using the OUT instruction remains on (3) even when the transition (2) becomes TRUE.

• The end step of a block is executed (other than the case where SM327 is on).
• A block is forcibly terminated by using the RST instruction (Ending a block).
• A step is reset by using the RST instruction (Deactivating a step).
• The device specified as the block START/END bit of the SFC information devices is reset.
• A reset step [R] for resetting the coil HOLD step [SC] becomes active.
• SM321 (SFC program start/stop) is turned off.
• The coil is reset by the program.
• The stop instruction is executed with the output mode at block stop set off.
• S999 is specified at a reset step [R] within a block.

(2) (1)
Y10

Y10

ON

(3)
ON

ON
8 SFC PROGRAM
8.2 Structure 95

96
Operation HOLD step (without transition check) [SE]
Operation HOLD step (without transition check) [SE] is a step which continues the operation of the action even after the active
state transitions.
This step continues the operation in the action even after a transition becomes TRUE and the next step is activated.
Therefore, when the input condition changes, the coil status also changes.
After the transition becomes TRUE and the next step is activated, the transition is not checked and the transition to the next
step does not occur.

■Deactivation timing
An operation HOLD step (without transition check) [SE] becomes inactive when:

■Operation when the block is paused or restarted
Operation when the block is paused or restart depends on the combination of SM325 (Output mode at block stop), block stop
mode bit setting of SFC information device, and step hold status. ( Page 132 Operation when the block is paused or
restarted)

When step (2) is activated, step (1) holds the operation.
While holding the operation, the transition is not checked but the action (3)
is kept executed.
In this case, Y10 turns on or off accordingly as X0 turns on or off.

• The end step of a block is executed.
• A block is forcibly terminated by using the RST instruction (Ending a block).
• A step is reset by using the RST instruction (Deactivating a step).
• The device specified as the block START/END bit of the SFC information devices is reset.
• A reset step [R] for resetting the operation HOLD step (without transition check) [SE] becomes active.
• SM321 (SFC program start/stop) is turned off.
• S999 is specified at a reset step [R] within a block.

(3)(1)

(2)

X0 Y10
8 SFC PROGRAM
8.2 Structure

8

Operation HOLD step (with transition check) [ST]
Operation HOLD step (with transition check) [ST] is a step which continues the operation of the action even after the active
state transitions.
This step continues the operation in the action even after a transition becomes TRUE and the next step is activated.
Therefore, when the input condition changes, the coil status also changes.
Even after the transition becomes TRUE and the next step is activated the transition is checked repeatedly. When the
transition becomes TRUE again, the operation in the action is continued while activating the next step again.

■Deactivation timing
An operation HOLD step (with transition check) [ST] becomes inactive when:

■Operation when the block is paused or restarted
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

■Precautions
 • For the operation HOLD step (with transition check) [ST], the next step is activated every scan while the transition

immediate after the operation HOLD step becomes TRUE. To prevent transition every scan, use instructions executed on
the rising edge such as the PLS instruction for the transition.

 • When SM328 (Clear processing mode when the sequence reaches the end step) is on, prevent the transition immediately
after the operation HOLD step (with transition check) [ST] from becoming always TRUE. Otherwise, the next step is kept
activating and holding no operation, therefore the block cannot be ended.

When step (2) is activated, step (1) holds the operation.
The action (3) is kept executed the same as a normal active step while
the step holds the operation.
In this case, Y10 turns on or off accordingly as X0 turns on or off.
The transition is also checked and, when the transition becomes TRUE,
the next step becomes active.

• The end step of a block is executed.
• A block is forcibly terminated by using the RST instruction (Ending a block).
• A step is reset by using the RST instruction (Deactivating a step).
• The device specified as the block start/end bit of the SFC information devices is reset.
• A reset step [R] for resetting the operation HOLD step (with transition check) [ST] becomes active.
• SM321 (SFC program start/stop) is turned off.
• S999 is specified at a reset step [R] within a block.

By setting the start of rising edge pulse operation as the transition, step (1) is
activated during only one scan caused when X0 is turned on.
Even when step (2) is activated and becomes inactive, step (1) is not activated
unless X0 is turned off and on again.

(3)(1)

(2)

X0 Y10

(1)

(2)

X0
TRAN
8 SFC PROGRAM
8.2 Structure 97

98
Reset step [R]
Reset step [R] is a step that deactivates the specified step.
 • The reset step [R] deactivates the specified step in the current block before execution of the action every scan. Except for

resetting the specified step, the reset step is the same as a normal step (without step attributes).
 • When the specified step No. is S999, the HOLD steps [SC, SE, ST] that hold operations in the current block are all

deactivated. In this case, only the HOLD steps [SC, SE, ST] that hold operations can be deactivated. However, any
operation HOLD step [SE, ST] is not deactivated when operating with the state that does not hold an operation.

 • The current step No. cannot be specified as specified step No.

Block start step (with END check) [BC]
Block start step (with END check) [BC] is a step that activates the specified block.
When the specified block becomes inactive and the transition becomes TRUE, the active state transitions to the next step.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an
already started block is performed follows the operation setting applicable to the block double start. ( Page 134 Act at
block multi-activated)
Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
 • An action cannot be created to the block start step (with end check) [BC].
 • The block start step (with END check) [BC] cannot be created immediately before convergence of a parallel convergence.

To create the step immediately before the convergence of a parallel convergence, use a block start step (without END
check) [BS].

When this step is activated, the block start step (with END check) [BC] starts block (BL1).
No processing is performed until the execution of the start destination block (BL1) ends and
becomes inactive and the transition (2) is not checked.
When the execution of block (BL1) ends and becomes inactive, only the transition (2) check
is performed and, when the condition becomes TRUE, the transition to the next step occurs.(1)

BL1

(2)
8 SFC PROGRAM
8.2 Structure

8

Block start step (without END check) [BS]
Block start step (without END check) [BS] is a step that activates the specified block.
When the transition becomes TRUE, the active state transitions to the next step.

The operation to be performed if multiple attempts to start one block are performed simultaneously or if an attempt to start an
already started block is performed follows the operation setting applicable to the block double start. ( Page 134 Act at
block multi-activated)
Only one block can be specified. To start multiple blocks simultaneously, use parallel branches and multiple block start steps.

■Precautions
 • An action cannot be created to the block start step (without END check) [BS].

After this step starts block (BL1), only the transition (2) is
checked and, when the transition becomes TRUE, execution
proceeds to the next step without waiting for the start destination
block to end.

(1)

(2)
X0

TRAN

BL1
8 SFC PROGRAM
8.2 Structure 99

10
End step
End step is a step that ends a block.
 • When the active state transitions to the end step and no active step exists other than steps that hold operations in the block,

all the HOLD steps [SC, SE, ST] that hold operations in the block are deactivated and the block is ended.
 • When a block contains any active steps other than steps that hold operations in a block, the following processing is

performed depending on the status of SM328 (Clear processing mode when the sequence reaches the end step).

 • When clear processing is performed, the coil outputs turned on by using the OUT instruction are all turned off. However, for
the coil output of the HOLD steps [SC, SE, ST] that hold operations, the following processing is performed depending on
the status of SM327 (Output mode at execution of the end step).

 • The following shows how to restart the block once ended.

Status of SM328 Description
Off (default) Clear processing is performed.

The active steps remaining in the block are all terminated forcibly to end the block.

On Clear processing is not performed.
The execution of the block is continued as is and the block is not ended.

Status of SM327 Description
Off (default) All the HOLD steps [SC, SE, ST] that hold operations are turned off.

On All the outputs of the HOLD steps [SC, SE, ST] that hold operations are held.
The setting of SM327 is valid for only the HOLD steps [SC, SE, ST] that hold operation. All the outputs
of the HOLD steps [SC, SE, ST] that do not hold operations and the transition does not become TRUE
are turned off. Also, when SM327 is on, the steps become inactive.
However, when a forced end is performed such as by the block end instruction, the coil outputs of all
steps are turned off.

Item Description
Block 0 The start condition of block 0 is set to

"Auto-start block 0" in the SFC setting
of parameters.

The initial step is automatically activated again and processing is executed repeatedly.

The start condition of block 0 is set to
"Do not auto-start block 0" in the SFC
setting of parameters.

The block is restarted when a start request is issued for the specified block in the following methods.
• The block start step is activated by another block.
• The SET (Starting a block) instruction is executed.
• The block START/END bit of the SFC information device is turned on.All blocks other than block 0
0 8 SFC PROGRAM
8.2 Structure

8

■Precautions
 • An action cannot be created to the end step.
 • The setting of SM327 (Output mode at execution of the end step) is valid only when the end step becomes active. When a

forced termination is performed such as by using the RST instruction (Ending a block), the coil outputs of all steps are
turned off.

 • If the HOLD steps [SC, SE, ST] holding operations remain when the end step becomes active, those steps [SC, SE, ST] are
deactivated even though SM328 (Clear processing mode when the sequence reaches the end step) is on. If turning off the
coil outputs of the HOLD steps [SC, SE, ST] that hold operations is not required, turn on SM327. The following figure shows
the operational relationships between SM328 and HOLD steps [SC, SE, ST].

 • If a block is started at the block start step when SM328 is on, execution returns to the source as soon as there are no active
step that does not hold the operation in the block.

 • Prevent the transition after the operation HOLD step (with transition check) [ST] from becoming always TRUE. When the
transition immediately after the operation HOLD step (with transition check) [ST] always becomes TRUE, the next step is
kept active and, therefore, the block can no longer be ended when SM328 is on.

Multiple end steps can be created in the SFC diagram.
To do so, select a step in the selection branch and select [Edit]  [Modify]  [End Step/Jump] from the menu.

When a normal active step remains or when a HOLD step [SC,
SE, ST] whose transition has not become TRUE remains (the
step does not hold an operation)

When an active step that holds an operation remains

• When SM328 is off, the block is ended by clearing the step.
• When SM328 is on, processing is continued without clearing the step.

• The block is ended by clearing the step regardless of the setting of SM328.
8 SFC PROGRAM
8.2 Structure 101

10
Assigning the step relay (S) areas to steps
The step relay is a device corresponding to each step in the SFC program. It is on when the relevant step is active (including
stop and hold state), and is off when the relevant step is inactive.
Step relays are assigned as follows.
 • Step relays are assigned sequentially in order of block No. starting from block 0 in an SFC program and in order of step No.

within a block.
 • No step relay is assigned to any non-existing block No.
 • Similarly, no step relay is assigned to any missing step No. within a block. The relevant bit is always off.
 • All bits after the step relays assigned in the last block are off.

Ex.

The following example shows the step relay assignments of the following block configuration.

Any step No. can be assigned to each step (except end step).
 • Assign step numbers in ascending order wherever possible because any missing step No. will decrease the

maximum number of steps that can be created.
 • The step No. other than step No.0 (S0) cannot be used for the initial step of the top line and left end.

Block0: The largest step No. is 8, and step No. 3 and 6 are missing.
Block1: Missing
Block2: The largest step No. is 12, and step No. 3 is missing.
Block3 and after: Missing

(1) Stored data
(2) Step numbers in a block
(3) All 0s for missing blocks

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

S6 S5 S4 S2 S1 S0 S8 S7 S5 S4 S2 S1 S0

0 0 0 0 0 0 0 0 0 0

0 0 0

Block0Block2

(1)

(2)

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

S12 S11 S9S10 S8 S7

Block2(3)

(1)

(2)

S15 to S0

S31 to S16
2 8 SFC PROGRAM
8.2 Structure

8

Step No. 0 is assigned to the first initial step in a block.
For the step No. that can be used per block, refer to the following.
Page 88 Specifications
Any step No. exceeding the upper limit cannot be assigned. Any step No. must be unique within a block. Same step numbers
can be used between different blocks.
To specify a step relay in another block, use the following format.

Ex.

Specifying step No. 23 in block No. 12

■Precautions
 • Even if "Output Mode at Block Stop" of the SFC setting is off, the step relay is on when the step is stopped the operation.

Program type Device
notation

Description

SFC program In the same block S23 The block name can be omitted when specifying a step in the same block

Other than block 12 BL12\S23 Specify the target block No. and step No.

Sequence program other
than SFC program

Specifying the current target
block

S23 The block name can be omitted when specifying a step in the target block

Specifying a block different
from the current target block

BL12\S23 Specify the target block No. and step No.
8 SFC PROGRAM
8.2 Structure 103

10
Action
An action is a program which is executed while a step is active.

*1 N indicates that the action is executed while a step is active. Nothing but N can be set.
When the step becomes active, the action is executed every scan. When the step becomes inactive, the action is ended and
not executed until next time the step becomes active.
Up to 4 actions can be created in one step. When multiple actions are created, they are executed in order from the top.
Detailed expression of an action can be created in ladder diagrams, ST language, or FBD/LD. In ladder diagrams, the
description method can be switched between detailed expression and MELSAP-L (instruction format). ( Page 105 Action
in MELSAP-L (instruction format))

For details on detailed expression or labels/devices, refer to the following.
 GX Works3 Operating Manual

(1) Action name
(2) Qualifier*1

(3) Detailed expression of the action
(4) Action label/device

(3)

(4)

(1)

(2)
4 8 SFC PROGRAM
8.2 Structure

8

Action in MELSAP-L (instruction format)
In MELSAP-L (instruction format), instructions for actions are described in text format in a SFC diagram.

To switch from detailed expression in ladder diagrams to MELSAP-L (instruction format), select [View] 
[Switch Ladder Display]  [MELSAP-L (Instruction Format)] from the menu. ( GX Works3 Operating
Manual)

For actions in MELSAP-L (instruction format), instructions and coils to output are described without contacts to be input
conditions of each instruction.
In MELSAP-L (instruction format), programs are described in the following format.
: Applicable label/device, Kn: Setting value of timer/counter

*1 Specify a long timer or a long counter in the same way.
*2 Some instructions cannot be used. ( Page 106 Instructions that cannot be used)

To describe multiple instructions, delimit them by a comma (,). When using the IMASK or NOPLF instruction, describe them in
the end of the action.

Item MELSAP-L (instruction format) Example
Coil output (OUT instruction) o oY0

Setting devices (SET instruction) s sM0

Resetting devices (RST instruction) r rM0

Low-speed timer (OUT T instruction)*1 o Kn oT0 K100

High-speed timer (OUTH T instruction) h Kn hT1 K10

Counter (OUT C instruction)*1 o Kn oC0 K10

Instructions other than listed above*2 Describe instructions in the same way as in ladder
diagrams.

MOV D10 D120
8 SFC PROGRAM
8.2 Structure 105

10
Instructions that cannot be used
Some instructions cannot be used in actions. The following table lists the instructions that cannot be used.

*1 This instruction can be used in a function or a function block in the action.

Create a contact to be input condition of each instruction in the ladder of detailed expression.

■Restrictions
The following table lists the restrictions on individual programming languages used to create an action.

Classification Instruction symbol
Master control instruction MC*1

MCR*1

Termination instruction FEND

END

Program branch instruction CJ*1

SCJ*1

JMP*1

GOEND

Program execution control instruction IRET

Structure creation instruction BREAK*1

RET

Creating a dummy transition condition TRAN

Language Description
Ladder diagram Detailed expression A pointer and an interrupt pointer cannot be input in the pointer input area.

■Functions/function blocks that cannot be used
• Function/function block that includes an instruction that cannot be used in an action
• Function/function block that includes a pointer
• A macro type function block for which "Use MC/MCR to Control EN" is set to "Yes" and "Use EN/ENO" is set

to "No"

MELSAP-L (instruction
format)

The instructions corresponding to contacts (including comparison operation instructions such as LD<), the
NOP, MPS, MRD, and MPP instructions, pointers, interrupt pointers, functions, and function blocks cannot be
described.

Structured text language Page 53 STRUCTURED TEXT LANGUAGE

FBD/LD Page 70 FBD/LD
6 8 SFC PROGRAM
8.2 Structure

8

Precautions
 • The step operation is almost the same as the following circuit.

 • If the CALL instruction is used to issue a subroutine call in an action of the step, the output of the call destination is not
turned off even when the step becomes inactive after the transition becomes TRUE. To turn off the output of the call
destination when the step becomes inactive after the transition becomes TRUE, write the FCALL instruction after the CALL
instruction or use the XCALL instruction. When using a subroutine call in an action of the step, using the XCALL instruction
can reduce the number of steps.

 • Even when the input condition in the action is always on, it is assumed to be off when the action is inactive. Therefore,
immediately after the step becomes active, the instruction is executed when the output is turned on. For example, when the
input condition is set to be always on by using the instructions executed at the rising edge such as the PLS or INCP
instruction, the instruction is executed every time the step becomes active.

 • The device that turned on by the OUT C instruction, the SET instruction, a basic instruction, or an application instruction in
the action is not turned off even when the step is deactivated and the action is ended. To turn off the device, execute the
RST instruction separately.

 • With the PLS or PLF instruction, the specified device is normally turned on for only one scan and thereafter becomes off.
However, the specified device holds the ON state if it is turned on at the same time when the transition of the coil HOLD
step [SC] becomes TRUE. In this case, it is turned off by changing the condition to the one where the coil output of the coil
HOLD step [SC] turns off or activating the step again. For the conditions where the coil output turns off, refer to the
following.

Page 95 Timing of when coil output turns off
 • If the step is deactivated and the action is ended while the input condition of the PLF instruction is on, the specified device

remains on.
 • When the transition becomes TRUE in the coil HOLD step [SC] or the step is stopped by SM325 (Output mode at block

stop) which is set to hold, operation may not be performed just holding the coil output. This case means the non-execution
status, and therefore the operation of each instruction at the time of operation resumption depends on the execution
condition before the no-execution status is entered.

 • When a program which cannot be described in MELSAP-L (instruction format) is created in detailed expression in ladder
diagrams and switched to MELSAP-L (instruction format), the program will be displayed "????????". When the definition of
the label used in a program is deleted, the program will be also displayed in the same way. To check and modify the
program, switch to detailed expression.

 • When a program which has been created in MELSAP-L (instruction format) is switched to detailed expression in ladder
diagrams, a contact SM400 (Always ON) will be added as an execution condition of an instruction.

(1)Input condition of each instruction
(2)Contact (on when active, off when inactive) indicating the step status

MELSAP-L (instruction format) Detailed expression in ladder diagrams

(1)

(2)

(1)

Action
8 SFC PROGRAM
8.2 Structure 107

10
Transition
A transition is the basic unit for comprising a block and transfers the active state to the next step when the condition becomes
TRUE.

Detailed expression of a transition can be created in ladder diagrams, ST language, or FBD/LD. In ladder diagrams, the
description method can be switched between detailed expression and MELSAP-L (instruction format). ( Page 116
Transition in MELSAP-L (instruction format))

(1) Transition name
(2) Transition No.
(3) Detailed expression of transition ( Page 114 Detailed expression of transitions)
(4) Direct expression of a transition ( Page 117 Direct expression of transitions)
(5) Transition label/device (Page 117 Transition label/device)

(3)
(1)

(2)

(5)

(4)
8 8 SFC PROGRAM
8.2 Structure

8

Transition types
The following table lists the types of transition.

For the operation of transition to the step which is already activated, refer to the following.
Page 144 Behavior when an active step is activated

Item Description
Series sequence When the transition becomes TRUE, the active state transitions from the

preceding step to the subsequent step.

Selective sequence
(divergence/convergence)

Divergence: A step branches to multiple transitions, and only the step in the line
where the transition becomes TRUE first is activated.
Convergence: The next step is activated when the transition immediately before
convergence, which is in the line where the transition becomes TRUE first,
becomes TRUE.

Simultaneous sequence
(divergence/convergence)

Divergence: All the steps branched from one step are activated simultaneously.
Convergence: When all the steps immediately before convergence are activated
and the common transition becomes TRUE, the active state transitions to the
next step.

Jump sequence When the transition becomes TRUE, the active state transitions to the specified
step in the same block.
8 SFC PROGRAM
8.2 Structure 109

11
Series sequence
When the transition becomes TRUE, the active state transitions from the preceding step to the subsequent step.

Selective sequence (divergence/convergence)
A step branches to multiple transitions, and only the step in the line where the transition becomes TRUE first is activated. The
next step is activated when the transition immediately before convergence, which is in the line where the transition becomes
TRUE first, becomes TRUE.

When the transition (2) becomes TRUE while the step (1) is active, the step (1) is deactivated and the step (3) is
activated.

Item Description
Divergence When the step (1) is active, the step (4) or (5) is activated depending on which of the

transition (2) and transition (3) becomes TRUE first.
The step (1) becomes inactive. However, if it is a HOLD step [SC, SE, ST], the step
holds the coil output or action according to its attribute.
• If multiple transitions become TRUE simultaneously, the condition to the left will

take precedence.
• Subsequent processing will proceed from step to step in the selected column until

another convergence occurs.

Convergence When the transition (1) or transition (2) on the activated branch becomes TRUE, the
step (5) is activated.
The activated step (3) or step (4) becomes inactive. However, if it is a HOLD step
[SC, SE, ST], the step holds the coil output or action according to its attribute.

(2)

(1)

(3)

(2) (3)

(1)

(4) (5)

(1) (2)

(3) (4)

(5)
0 8 SFC PROGRAM
8.2 Structure

8

 • The selective sequence allows branching to up to 32 transition.
 • If multiple transitions become TRUE simultaneously, the condition to the left will take precedence.

 • An SFC diagram in which the numbers of branches and convergences of a selective sequence do not match can also be
created. However, in an SFC diagram, a selection branch and parallel convergence or a parallel branch and selective
convergence cannot be combined.

 • In a selective transition, a convergence can be omitted by a jump transition or end transition.

The above program can be created by changing the step other than those at the left end of selective branches
to the end step and changing the end step at the left end of the selective branch to a jump sequence.
For the operation method for changing steps, refer to the following.
 GX Works3 Operating Manual

If transition (1) and (2) become TRUE simultaneously, the action of step
(3) will be executed.

When transition (2) becomes TRUE during action of step (1), step (3) and step (4) are sequentially executed. When the transition
(5) becomes TRUE, a jump sequence to step (1) occurs.

(1) (2)

(3)

(1)

(2)

(3)

(4)

(5)
8 SFC PROGRAM
8.2 Structure 111

11
Simultaneous sequence (divergence/convergence)
All the steps branched from one step are activated simultaneously. When all the steps immediately before convergence are
activated and the common transition becomes TRUE, the active state transitions to the next step.

 • The simultaneous sequence allows transitions to up to 32 steps.
 • If another block is started by the simultaneous sequence, the START source block and START destination block will be

executed simultaneously.
 • A simultaneous convergence is always performed after a simultaneous branch.

■Precautions
 • When the steps connected by a convergence include HOLD steps [SC, SE, ST] that hold operations, the operation is

performed as follows.

 • In the simultaneous convergence, a block start step (with END check) [BC] cannot be created immediately before the
convergence. Use a block start step (without END check) [BS].

Item Description
Divergence When the transition (2) becomes TRUE while the step (1) is active, both of the step

(3) and step (4) are activated at the same time.
The step (1) becomes inactive. However, if it is a HOLD step [SC, SE, ST], the step
holds the coil output or action according to its attribute.
Processing will proceed to step (7) when transition (5) becomes TRUE, and to step
(8) when transition (6) becomes TRUE.

Convergence When the transition (3) and transition (4) become TRUE while the step (1) and step
(2) are active, the step (5) and step (6) are activated.
After the step (5) and step (6) immediately before the convergence become active,
the transition (7) is checked and then becomes TRUE, the step (8) is activated.
The step (5) and step (6) become inactive. However, if it is a HOLD step [SC, SE,
ST], the step holds the coil output or action according to its attribute.

Item Description
Coil HOLD step [SC] A transition to the next step does not occur the same as an inactive step.

Operation HOLD step (without transition
check) [SE]

Operation HOLD step (with transition
check) [ST]

A transitions to the next step occurs if another connected step is active.

(1)

(2)

(3)

(7)

(5)

(4)

(8)

(6)

(1)

(3)

(5)

(8)

(7)

(6)

(2)

(4)
2 8 SFC PROGRAM
8.2 Structure

8

Jump sequence
When the transition becomes TRUE, the active state transitions to the specified step in the same block.

 • There are no restrictions regarding the number of jump sequences.
 • A jump sequence in the simultaneous sequence is possible only in the same branch. A jump sequence to another branch

within a simultaneous branch, a jump sequence for exiting from a simultaneous branch, or a jump sequence to a
simultaneous branch from outside a simultaneous branch cannot be created.

Ex.

Example of jump sequence that can be specified in the simultaneous branch

■Precautions
Under the following conditions, a step cannot be specified as the destination of jump sequence.
 • When a step at the position escaping from a simultaneous sequence is specified
 • When a step at the position entering a simultaneous sequence is specified
 • When a step immediately before the preceding transition is specified
 • When current step is specified

When the transition (2) becomes TRUE while the step (1) is active, the step (3) is activated.
The step (1) becomes inactive. However, if it is a HOLD step [SC, SE, ST], the step holds the coil output
or action according to its attribute.

(1)

(2)

(3)
8 SFC PROGRAM
8.2 Structure 113

11
Detailed expression of transitions
Create detailed expression of transitions in the Zoom editor. The condition can be created in following programming
languages.

 • The detailed expression of the same transition can be used for multiple transitions.
 • The created detailed expression of a transition can be checked from the Zoom list. ( GX Works3

Operating Manual)

Type Description
Ladder
diagram

Detailed
expression

Used to create a transition program consisting of a contact circuit and the TRAN instruction (Creating a dummy transition condition)
in a single circuit block. The transition becomes TRUE when the TRAN instruction is executed.

■Restrictions
• The inline ST cannot be used.
• Only a TRAN instruction can be input to the coil.

MELSAP-L
(instruction
format)

Page 116 Transition in MELSAP-L (instruction format)

Structured text language Used to create the following transition program.
■Method of writing a TRAN function (Creating a dummy transition condition) call statement

TRAN(bLabel1 & bLabel2);
//The transition becomes TRUE when the Boolean expression of the input argument is true.

■Method of writing an assignment statement of Boolean expression for reserved word "TRAN"
TRAN := bLabel1 & bLabel2;
//The transition becomes TRUE when the Boolean expression of the right-hand side is true.

■Method of writing an assignment statement of Boolean expression for the transition name
Transition1 := bLabel1 & bLabel2;
//Transition1 indicates the transition name input on the SFC editor. The transition becomes TRUE when the Boolean expression
of the right-hand side is true.

FBD/LD Used to create a transition program ending with the TRAN instruction (Creating a dummy transition condition) in a single FBD
network block.

■Restrictions
• The inline ST cannot be used.
• Only one TRAN instruction can be used.
• A program to be assigned to the device/label cannot be created.
• Coil, function block, function (except some), jump, jump label, and return program elements cannot be used.

For the available instructions other than TRAN, refer to the following.
Page 115 Usable instructions
4 8 SFC PROGRAM
8.2 Structure

8

■Usable instructions
The following table lists the instructions that can be used in transition programs.

*1 The EGP and EGF instructions cannot be used in a transition program created in ST or FBD/LD.
*2 The LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, and TRAN instructions cannot be used in a transition program created in MELSAP-L

(instruction format).

Classification Instruction symbol
Contact instruction LD, LDI, AND, ANI, OR, ORI

LDP, LDF, ANDP, ANDF, ORP, ORF

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI*2

Association instruction ANB, ORB

INV

MEP, MEF

EGP, EGF*1

Comparison operation instruction LD, LD_U, AND, AND_U, OR, OR_U

LDD, LDD_U, ANDD, ANDD_U, ORD, ORD_U

Real number instruction LDE, ANDE, ORE

LDED, ANDED, ORED

Character string processing instruction LD$, AND$, OR$

Creating a dummy transition condition TRAN*2
8 SFC PROGRAM
8.2 Structure 115

11
Transition in MELSAP-L (instruction format)
In MELSAP-L (instruction format), transitions are described in text format in a SFC diagram.

To switch from detailed expression in ladder diagrams to MELSAP-L (instruction format), select [View] 
[Switch Ladder Display]  [MELSAP-L (Instruction Format)] from the menu. ( GX Works3 Operating
Manual)

In MELSAP-L (instruction format), transitions are described using the instructions corresponding to contacts. If a Boolean
expression of a transition is TRUE, the transition becomes TRUE.
In MELSAP-L (instruction format), programs are described in the following format.
: applicable label/device

When "&" and "|" are used in a single expression, "&" takes a priority. Use "()" to alter priorities.

Item MELSAP-L (instruction format) Example
Normally open contact (LD instruction) a aX0

Normally closed contact (LDI instruction) b bX1

Rising edge pulse (LDP instruction) p pM2

Falling edge pulse (LDF instruction) f fM3

Inverting the operation result (INV
instruction)

& INV aM0 & INV

Converting the operation result into a pulse
(rising edge) (MEP instruction)

& MEP aM1 & MEP

Converting the operation result into a pulse
(falling edge) (MEF instruction)

& MEF aM2 & MEF

Converting the edge relay operation result
into a pulse (rising edge) (EGP instruction)

& EGP  aM3 & EGP V0

Converting the edge relay operation result
into a pulse (falling edge) (EGF instruction)

& EGF  aM4 & EGF V1

Comparison operation instruction
corresponding to contacts

Describe instructions in the same way as in ladder diagrams.
The following comparison operation instructions can be used.
Comparing 16-bit binary data (signed): <, <=, <>, =, >, >=
Comparing 32-bit binary data (signed): D<, D<=, D<>, D=, D>, D>=
Comparing single-precision real numbers: E<, E<=, E<>, E=, E>, E>=
Comparing double-precision real numbers: ED<, ED<=, ED<>, ED=, ED>, ED>=
Comparing 16-bit binary data (unsigned): <_U, <=_U, <>_U, =_U, >_U, >=_U
Comparing 32-bit binary data (unsigned): D<_U, D<=_U, D<>_U, D=_U, D>_U, D>=_U
Comparing string data: $<, $<=, $<>, $=, $>, $>=

< D10 D20

Parallel connection (OR) | aX0 l aM0

Series connection (AND) & aX0 & aM0

Parentheses () (aX0 l aM0) & aX1
6 8 SFC PROGRAM
8.2 Structure

8

Direct expression of transitions
The transition which transfers an active state to the next step can be created directly on the SFC diagram. A contact of FBD/
LD element is connected to it.

Coil, function block, function, jump, jump label, and return elements cannot be used.

Select a transition and select [Edit]  [Modify]  [Direct Expression for Transition] from the menu. This can
connect the FBD/LD element to the left side of the transition. ( GX Works3 Operating Manual)

Transition label/device
Bit type label, bit device or Boolean value can be specified as a condition which transfer an active state to the next step.

Select a transition name, select [Edit]  [Modify]  [Name] from the menu, and input the bit type label, bit
device, or Boolean value to be specified. ( GX Works3 Operating Manual)

■Precautions
 • When a device (T, ST, LT, LST, C, LC) of timer or counter is used as a transition, the device operates as a contact (TS, STS,

LTS, LSTS, CS, LCS). Also, when a coil (TC, STC, LTC, LSTC, CC, LCC) of timer or counter is used, the coil operates as a
contact.

 • To use a coil of timer or counter for transition, use a timer type or counter type label.

Ex.

Timer device and timer type label

Bit type label Bit device Boolean value

When the contact (TS0) is on, the transition becomes TRUE.

When the contact (TS1) is off, the transition becomes TRUE.

When the coil of the timer type label (tLabel0) is on, the transition becomes TRUE.

When the coil of the timer type label (tLabel1) is off, the transition becomes TRUE.
8 SFC PROGRAM
8.2 Structure 117

11
8.3 SFC Control Instructions
SFC control instructions are used to check a block or step operation status (active/inactive), or to execute a forced start, end
or others. If SFC control instructions are used, SFC programs can be controlled from the actions of sequence programs and
SFC programs.

Instruction List
The following table lists the SFC control instructions.

*1 When using in a sequence program, block 0 is the target block. When using in a SFC program, current block is the target block.
For details on the SFC control instructions, refer to the following.
 MELSEC iQ-R Programming Manual (CPU Module Instructions, Standard Functions/Function Blocks)

Instruction name Instruction symbol Processing
Checking the status of a step LD, LDI, AND, ANI, OR, ORI [S]*1 Checks whether a specified step is active or inactive.

LD, LDI, AND, ANI, OR, ORI [BL\S]

Checking the status of a block LD, LDI, AND, ANI, OR, ORI [BL] Checks whether a specified block is active or inactive.

Batch-reading the status of
steps

MOV(P) [K4S]*1 Batch-reads (in units of 16-bit binary data) the status (active or inactive)
of steps in a specified block, and stores the read data in a specified
device.

MOV(P) [BL\K4S]

DMOV(P) [K8S]*1 Batch-reads (in units of 32-bit binary data) the status (active or inactive)
of steps in a specified block, and stores the read data in a specified
device.

DMOV(P) [BL\K8S]

BMOV(P) [K4S]*1 Batch-reads (in units of the specified number of words starting from a
specified step) the status (active or inactive) of steps in a specified
block.

BMOV(P) [BL\K4S]

Starting a block SET [BL] Activates a specified block and executes a step sequence starting from
an initial step.

Ending a block RST [BL] Deactivates a specified block.

Pausing a block PAUSE [BL] Temporarily stops a step sequence in a specified block.

Restarting a block RSTART [BL] Releases the temporary stop and restarts the sequence from the step
where the sequence was stopped in the specified block.

Activating a step SET [S]*1 Activates a specified step.

SET [BL\S]

Deactivating a step RST [S]*1 Deactivates the specified step.

RST [BL\S]

Switching a block BRSET Specifies a target block No. of SFC control instruction.
8 8 SFC PROGRAM
8.3 SFC Control Instructions

8

■Precautions
 • Do not use the SFC control instructions in interrupt programs.
 • Execute the SFC control instruction only when SM321 (SFC program start/stop) is on.

Index modification
The step relays and SFC block devices specified by SFC control instructions can be index-modified.

The step relays and SFC block devices can be specified within the following range, including the case of index modification.

For details on index modification, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

Device Index modification target part
SZ Step relay

BL\SZ Step of step relay with block specification

BLZ\S Block of step relay with block specification

BLZ\SZ Block and step of step relay with block specification

BLZ SFC block device

Device Range
S R00CPU, R01CPU, R02CPU: 0 to 8191

CPU modules other than the above: 0 to 16383
(The maximum value is set by a CPU parameter)

BL\S BL R00CPU, R01CPU, R02CPU: 0 to 127
CPU modules other than the above: 0 to 319

S R00CPU, R01CPU, R02CPU: 0 to 127
CPU modules other than the above: 0 to 511

BL R00CPU, R01CPU, R02CPU: 0 to 127
CPU modules other than the above: 0 to 319
8 SFC PROGRAM
8.3 SFC Control Instructions 119

12
8.4 SFC Information Devices
SFC information device is the device or label which operates the forced start/termination and pause/restart direction to a
block, check of the status of transition and the number of active steps, or direction of continuous transition operation of a
transition.
SFC information device is set every blocks.

[Navigation window]  [Program]  SFC program fileproperties of block to be set

Window

Displayed items

Not only global devices and local devices but also global labels or local labels can be specified for SFC information devices.
Indirect specification, digit specification, and index modification (Z, LZ) cannot be performed.

The settings of SFC information device are required only when an SFC information device is used. If such
device is not used, the settings of SFC information device are not required.

Item Description Available data

Device Data type (label)
Block START/END Bit Sets the device or label to check whether the block is active.

Setting the bit to on can start the block and setting it to off can end the block.
Bit: Y, M, L, F, V, B
Word: Bit
specification of D, W,
RD

Bool, Boolean array,
INT bit specification,
Word bit
specification

Step Transition Bit Sets the device or label to check whether the transition of the step being executed
becomes TRUE.
This bit turns on when the transition to the next step becomes TRUE after
execution of the action of each step.

Block PAUSE/RESTART
Bit

Sets the device or label to pause or restart an active block.
Setting the bit to on stops the block at the step in execution and setting it to off
restarts executing the block from the step where the block was stopped previously.

Block Stop Mode Bit Sets the device or label that decides the timing for stopping a block.
Setting the bit to on stops the block after transition of each step and setting it to off
stops all steps immediately.

Continuous Transition Bit Sets the device or label that decides the continuous transition action when the
transition becomes TRUE.
Setting the bit to on enables continuous transition and accordingly the action of the
next step is executed in the same scan. Setting the bit to off disables continuous
transition and accordingly one step is executed every scan.

Number of Active Steps
Register

Sets the device or label in which the number of currently active steps of a block is
to be stored.

D, W, R, ZR, RD INT, WORD
0 8 SFC PROGRAM
8.4 SFC Information Devices

8

Block START/END bit
This bit is a device or label to check whether the block is active.
Setting the bit to on can start the block and setting it to off can end the block.
If a program to start a block is not available or because the START/END of a block can also be controlled from the engineering
tool, this device or label can be used for debugging or test operation in units of block.
 • When the set block starts, the block START/END bit is automatically turned on. While the set block is active, the block

START/END bit stays on.
 • When the set block becomes inactive, the block START/END bit is automatically turned off. While the set block is inactive,

the block START/END bit stays off.

Ex.

M0 is specified in the block START/END bit of Block 1 (BL1).

 • When the block START/END bit is turned on while the set block is inactive, the block is started independently.
 • When the block START/END bit is turned off while the set block is active, the block is ended.
The block START/END bit can also be turned on or off by the test operation of the engineering tool. ( GX Works3
Operating Manual)
When the block START/END bit is turned off to make the set block inactive, processing will occur as follows:

By changing the current value of BL or BL\S from watch window of the engineering tool, the status of a
block (START/END) or a step (active/inactive) can be changed.
Also, the status of the specified step (active/inactive) is changed from the menu [Debug]  [Control SFC
Steps]. ( GX Works3 Operating Manual)

(1) Block 1 (BL1) starts and M0 turns on.
(2) Block 1 becomes inactive and M1 turns off.

• Execution of the set block is stopped and the outputs of the step being executed are all turned off. However, the devices turned on by using the SET
instruction will not be turned off.

• If another block has been started by a block start step in the set block, the set block ends but the start destination block will remain active and continue
processing.

BL1

(1)

(1)

M0

(2)

(2)
8 SFC PROGRAM
8.4 SFC Information Devices 121

12
■Precautions
 • The following table shows the restart operation after the set block is deactivated.

 • When the SFC program ends, all block START/END bits that have been set in the SFC information devices are turned off.
However, only when a resume start is enabled with the resume start setting, all block START/END bits are restored when
the SFC program starts.

Set block Description
Block 0 When the start conditions setting of is

"Auto-start block 0" in the SFC setting of
the CPU parameter.

Operation is restarted from the initial step following end step processing.

When the start conditions setting of is "Do
not auto-start block 0" in the SFC setting of
the CPU parameter.

The block is deactivated after end step processing, and processing is restarted from the initial step
when another start request occurs for that block.

Other than block 0
2 8 SFC PROGRAM
8.4 SFC Information Devices

8

Step transition bit
This bit is a device or label to check whether the transition of the step being executed becomes TRUE.
This bit turns on when the transition to the next step becomes TRUE after execution of the action of each step.
 A step transition bit which is on is automatically turned off when processing of the specified block is performed again.

Ex.

M1 is specified in the step transition bit of Block0

If the continuous transition bit is turned on and set to "Continuous transition", the step transition bit will remain on during the
action of the next step after the transition becomes TRUE. It will also remain on following the execution of multiple steps, even
if the transition becomes FALSE. In these cases, the step transition bit will be turned off when the specified block is executed
in the next scan.

When multiple active steps exist in the block, the step transition bit turns on when one of the transition becomes TRUE.

■Precautions
 • When the end step is executed, the step transition bit of the block is turned on. The step transition bit remains on until the

block is reactivated next.
 • The step transition bit is not turned off when the SFC program starts or ends.

If transition (2) becomes TRUE after execution of step
(1), M1 is on during execution of another block.
M1 is turned off at the time of Block0 processing in the
next scan.
If transition (4) does not become TRUE after execution
of step (3), M1 stays off.
If transition (4) becomes TRUE, M1 is on during
execution of another block.
If transition (6) does not become TRUE after execution
of step (5), M1 stays off.

If transition (2) becomes TRUE after execution of step (1), M1 is turned on.
Even if transition (4) does not become TRUE, M1 stays on.
M1 is turned off at the time of Block0 processing in the next scan.

(1)

(2)=ON

(3)

(4)=OFF (4)=ON

(5)

(6)=OFF

(1)

(2)

(3)

(4)

(5)

(6)

Block0

M1

1 scan 1 scan 1 scan

(1)

(2)=ON

(4)=OFF

M1

1 scan
8 SFC PROGRAM
8.4 SFC Information Devices 123

12
Block PAUSE/RESTART bit
This bit is a device or label to pause or restart an active block.
Setting the bit to on stops the block at the step in execution and setting it to off restarts executing the block from the step
where the block was stopped previously.

 • If another block has been started by a block start step, turning on the block PAUSE/RESTART bit stops the specified block,
but the start destination block will remain active and continue processing. To stop the start destination block at the same
time, the start destination's block PAUSE/RESTART bit must also be turned off.

 • When the block PAUSE/RESTART bit specified in an inactive block is turned on, the block does not operate in inactive state
and is put in the stopped state immediately when it becomes active.

 • Even after the specified block is forcibly terminated, the state of the block PAUSE/RESTART bit remains held. If the block is
forcibly terminated while it is stopped and the status of the block PAUSE/RESTART bit is not changed, the block is put in
stopped state immediately after the restart.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

■Precautions
 • The block PAUSE/RESTART bit is not turned off when the SFC program starts or ends.

Block stop mode bit
This bit is a device or label that determines the timing for stopping a block.
Setting the bit to on stops the block after transition of each step and setting it to off stops all steps immediately.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

■Precautions
 • The block stop mode bit is not turned off when the SFC program starts or ends.

Setting Description
OFFON When this bit is turned on, the specified block stops at the step being executed.

ONOFF When this bit is turned off, the specified block restarts execution from the action of the step that has been stopped
previously.
• An operation HOLD step (without transition check) [SE] or an operation HOLD step (with transition check) [ST]

which has been stopped in operation hold state is restarted with the state in effect.
• The coil HOLD step [SC] cannot be restarted in hold state since the step is deactivated when it stops with the coil

output is set to off (SM325 is off). If the step stops with the coil output hold setting (SM325 is on), it keeps the hold
state even after it restarts.

Setting Description
Off (immediate stop) The block is put in stopped state immediately when a stop request is issued.

On (stop after transition) When a stop request is issued, the block is stopped after the transition for the step being executed becomes TRUE
and a transition occurs.
The action of the step is not executed after the transition.
When the block has multiple active steps, the steps are stopped in order from the one for which the transition
becomes TRUE.
A step that holds an operation stops immediately after a stop request is issued regardless of the setting of the block
stop mode bit.
4 8 SFC PROGRAM
8.4 SFC Information Devices

8

Continuous transition bit
This bit is a device or label that determines the continuous transition action when the transition becomes TRUE.
Setting the bit to on enables continuous transition and accordingly the action of the next step is executed in the same scan.
Setting the bit to OFF disables continuous transition and accordingly one step is executed every scan.

Ex.

The continuous transition bit of an SFC information device is specified.

 • When the continuous transition bit is set, a continuous transition is disabled while the set bit device is off and is enabled
when the bit device is on, regardless of the on/off state of SM323 (All-blocks continuous transition status). When the
continuous transition bit is not set, a continuous transition is disabled while SM323 is off and is enabled when it is on. (
Page 139 Continuous transition ON/OFF operation)

 • SM324 (Continuous transition disable flag) is turned on automatically by the system at SFC program execution, but is off
during continuous transition. Use of SM324 under the AND condition in a transition disables a continuous transition.

Setting Description
Off (no continuous transition) When the transition becomes TRUE, the action of the transition destination step is executed in the next scan.

On (continuous transition) When the transition becomes TRUE, the action of the transition destination step is executed within the same scan.
When the transition of the steps become TRUE continuously, the actions are executed within the same scan until the
transition becomes FALSE or reaches the end step.

Scan Description
Scan 1 After execution of the sequence program (1), steps (2) to (5) of the SFC program are executed continuously.

Scan 2 and after After execution of the sequence program (1), the action of step (2) is executed until the transition (6) becomes TRUE.

When M0 is on, one scan causes continuous transitions from steps (1) to (3).
Since SM324 is added as the AND condition to the transition (4), the transition (4) after execution of step (3)
does not become TRUE.
In the next scan, SM324 is turned on after step (3) and therefore a transition to step (5) occurs within the scan.

(2)

(3)

(4)

(5)

(6)

(1) (2) (3) (4) (5) (1) (5)END
processing

1 scan

(1)

M0

M0

SM324M0

M0

(2)

(3)

(5)

(4)
8 SFC PROGRAM
8.4 SFC Information Devices 125

12
■Precautions
 • If the continuous transition bit is turned on, execution of actions (from a transition becoming TRUE to destination step)

takes priority over the other processing. This can shorten a takt time. In this case, however, the operations of the other
blocks and sequence program may become slower.

 • The continuous transition bit is not turned off when the SFC program starts or ends.
 • When a jump transition or selective convergence causes the active state to transition from multiple steps to one step, the

action of one step may be executed twice in a single scan.

 • If the transition after the step becomes TRUE with the setting of "Continuous transition", a step is started or ended within
one scan. In this case, since the END processing has not been executed, the input/output refresh of coil output by using the
OUT instruction in the action is not reflected and therefore other programs cannot detect ON of the coil. In the case of
output (Y), for example, output (Y) is not output while END processing is unexecuted and other programs cannot detect
output (Y) ON. Accordingly, ON of the step relay cannot be detected, either. To reflect the I/O refresh of the OUT instruction,
create a program so that one step is executed in multiple scans.

 • When creating a program that uses a jump sequence for looping, eliminate continuous transitions or prevent all transitions
in the loop from becoming TRUE during execution. If all transitions in the loop become TRUE during execution with
continuous transitions enabled, an infinite loop occurs in a single scan.

When the setting is "Continuous transition", step (1) is executed twice in a single scan.

When the transition (1) and (2) become TRUE, the following is executed in one scan.
• The action of step (3) is executed.
• As the transition (1) becomes TRUE, the action of step (3) is turned off.
• Step (3) becomes inactive and step (4) becomes active.
• As continuous transitions are enabled, the action of step (4) is executed.
• As the transition (2) becomes TRUE, the action of step (4) is turned off.
• Step (4) becomes inactive and step (5) becomes active.
• As continuous transitions are enabled, the action of step (5) is executed.
• As the transition (6) does not become TRUE, the action of step (5) is not turned off.

(1)

(4)

(5)

(3)

(2)

(6)

(1)
6 8 SFC PROGRAM
8.4 SFC Information Devices

8

Number of Active Steps Register
This register is a device or label in which the number of active steps of a block is to be stored.
The number of active steps stored in the number of active steps register includes the following steps.
 • Normal active step
 • Coil HOLD step [SC] that holds the operation
 • Operation HOLD step (with transition check) [ST] that holds the operation
 • Operation HOLD step (without transition check) [SE] that holds the operation
 • Steps that stop each operation

■Precautions
 • When a block ends, the number of active steps register becomes 0.
 • The register does not become 0 when the SFC program ends but becomes 0 when the program starts.
8 SFC PROGRAM
8.4 SFC Information Devices 127

12
8.5 SFC Setting
Set start conditions and others of SFC program in CPU parameter or SFC block setting.

CPU parameter
The following table lists the SFC settings.

Keep the certain number of step relay (S) points before using the SFC program. (Default number of step relay
(S) points is 0.)
Set the number of step relay (S) points in units of 1024 points in [CPU Parameter]  [Memory/Device Setting]
 [Device/Label Memory Area Setting]  [Device Setting]. ( Page 88 Specifications)

Type Item Description
SFC Setting SFC Program Start Mode Setting Set whether to start with initial status (Initial Start) or to start holding the previous

execution status (Resume Start) at the start-up of SFC program.

Start Conditions Setting Set whether to automatically start and activate block 0 or to keep it inactive until a start
request is issued, when starting the SFC program.

Output Mode Setting at Block Stop Set whether to turn off the coil output or to hold it when stopping a block.
8 8 SFC PROGRAM
8.5 SFC Setting

8

SFC program start mode setting
Set whether to start with initial status (Initial Start) or to start holding the previous execution status (Resume Start) at the start-
up of SFC program.

[CPU Parameter]  [SFC Setting]  [SFC Program Start Mode Setting]

Window

Displayed items

Whether to start an SFC program with initial status or the previous execution status is determined by the combination of the
SFC program start mode setting and the SM322 (SFC program start mode) status.

*1 The initial status of SM322 is determined when the operating status of the CPU module is changed from STOP to RUN according to the
setting of the SFC program start mode.

*2 When the Resume Start is set for the SFC program start mode, a program is resumed unless there is any change before and after
program writing.

*3 The on/off state of an action is determined according to the setting of "Output Mode at STOP to RUN" of parameter setting.
*4 Depending on the timing, a program cannot be resumed and starts with initial status.

Setting Description
Initial Start
(default)

The program is started after the active state at a previous stop is cleared.
The operation after a start is performed according to the start condition setting of the SFC setting. ( Page 131 Start
condition setting)

Resume Start The program starts while holding the active state at a previous stop.

Operation SFC program start mode setting: Initial Start SFC program start mode setting: Resume
Start

SM322: OFF
(Initial status)*1

SM322: ON
(When the setting is
changed)

SM322: ON
(Initial status)*1

SM322: OFF
(When the setting is
changed)

(1) SM321 is turned off and on. Initial Start Resume Start Initial Start

(2) CPU module is powered off and
on.

Resume Start/Initial Start*4

(3) SM321 is turned on and off, or
CPU module is powered off and
on after changing the operating
status from RUN to STOP.

Resume Start

(4) CPU module is reset and the
operating status is changed to
RUN.

Resume Start/Initial Start*4

(5) SM321 is turned on and off, or
CPU module is reset and the
operating status is changed to
RUN after RUN to STOP.

Resume Start

(6) Operating status is changed from
STOP to RUN.

Resume Start*3

(7) Operating status is STOP, write a
program, and the status is
changed to RUN.

Initial Start*2
8 SFC PROGRAM
8.5 SFC Setting 129

13
■Precautions
 • When a program is resumed, the SFC program stop position is held but the status of the label or device used for an action

is not held. Therefore, if labels or devices are required to be held to start with previous status, set them to be latched.
 • When a program is resumed with conditions other than the ones ((1), (3), (5) in the table) where the coil output of the coil

HOLD step [SC] is turned off, the coil HOLD step [SC] that holds the operation is restarted but the output is not turned on.
To continue the output, set the labels and devices required to be held to be latched. The on/off state of the output at the
time of changing STOP to RUN is determined according to the setting of "Output Mode Setting at STOP to RUN" of CPU
parameter setting. ( MELSEC iQ-R CPU Module User's Manual (Application))

 • At power-off or reset, the intelligent function module is initialized. To resume a program, creating an initial program for the
intelligent function module in the block which is always active or in a sequence program is recommended.

 • At power-off or reset, labels and devices are also cleared. When the SFC information device is set, the values are held only
when latch setting is performed.

 • Depending on the timing, a program may not be resumed after power-off or reset. If a program is started with initial status
while the start mode is set to Resume Start, an event indicates that a program cannot be resumed is stored in the event
history. To resume a program without fail, turn off SM321 or switch the operating status of the CPU module from RUN to
STOP, and then power off or reset the CPU module.
0 8 SFC PROGRAM
8.5 SFC Setting

8

Start condition setting
Set whether to automatically start and activate block 0 or to keep it inactive until a start request is issued, when starting the
SFC program.

[CPU parameter]  [SFC Setting]  [Start Conditions Setting]

Window

Displayed items

Use the start condition setting when it is desired to specify the start block at the start of SFC program according to the product
type.
"Auto-start block 0" is useful when block 0 is used as described below.
 • Management block
 • Preprocessing block
 • Continuous monitoring block

■Precautions
 • To execute the SFC program when "Do not auto-start block 0" is set, execute the SET instruction (Starting a block) from the

sequence program or turn on the block START/END bit that is set in the SFC information device.
 • When "Auto-start block 0" is set, be sure to create block 0.

Output mode setting at block stop
Set whether to turn off the coil output or to hold it when stopping a block.

[CPU parameter]  [SFC Setting]  [Output Mode Setting at Block Stop]

Window

Displayed items

 • The settings made are reflected to the initial value of SM325 (Output mode at block stop) at power-on, reset, or switching
from STOP to RUN, and follow the settings of SM325 when the SFC program operates. CPU parameter settings are
ignored.

Setting Description

At SFC Program START At the end of block 0
Auto-start block 0
(default)

Block 0 is started automatically and starts execution from its
initial step.

Block 0 is restarted automatically and restarts execution from
its initial step.

Do not auto-start block 0 Block 0 is activated by a start request resulting from the SET
(Starting a block) instruction or a block start step, in the same
manner as other blocks.

Block 0 is not restarted automatically and remains inactive
until another start request is issued.

Setting Description
Turn OFF
(default)

Coil output is turned off.

Keep ON Coil output is held in the state immediately before stop.
8 SFC PROGRAM
8.5 SFC Setting 131

13
■Operation when the block is paused or restarted
Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status.
The following table lists the operations at block PAUSE/RESTART.

■Precautions
 • When the block specified with the LD instruction (Checking the status of a block) has stopped, the coil output is turned on.

Also, when the step specified with the LD instruction (Checking the status of a step) has stopped, the coil output is turned
on.

 • If the block is started while the PAUSE/RESTART bit of the SFC information device is on, the initial step stops before it
becomes active. If the SET instruction (Activating a step) is executed for an inactive block, the specified step stops before it
becomes active.

 • When SM325 (Output mode at block step) is on, the block can be stopped while holding the coil output. Even when SM325
is turned on and off in stopped state, the state of the coil output does not change. When a block restart request is issued,
the coil output restarts while keeping the hold state.

 • If the block is stopped when SM325 is on, the coil HOLD step [SC] in the hold state keeps its state even after restart but the
step operation does not restart. To make the coil HOLD step [SC] inactive, execute the RST instruction (Deactivating a
step).

 • When a stop request is issued in the action to the block, the step being executed currently is executed until it ends, and
then the stop request is executed. Therefore, when the block stop mode bit is off (immediate stop), the step being executed
does not stop even if a stop request is issued within the step. If the block stop mode bit is changed to on (stop after
transition) afterwards in the same step, a stop request is executed in stop mode after transition.

Output mode
setting at block
stop

Setting of block
stop mode bit

Operation

Active step other than step
that holds operation
(including SC, SE, and ST
whose transition does not
become TRUE)

Step that holds operation

Coil HOLD step
[SC]

Operation HOLD
step (without
transition check)
[SE]

Operation HOLD
step (with
transition check)
[ST]

SM325=OFF
(coil output OFF)

OFF or no setting
(immediate stop)

Immediately after a stop request
is made, the coil output of the
action is turned off and the block
is stopped. The status remains
active.

Immediately after a
stop request is made,
the coil output of the
action is turned off and
the block is
deactivated.

Immediately after a stop request is made, the
coil output of the action is turned off and the
block is stopped. The status remains active.

On
(stop after transition)

After the transition becomes
TRUE, step end processing is
performed and simultaneously the
transition destination step
becomes active and the block is
stopped before execution of the
action.

SM325=ON
(coil output held)

OFF or no setting
(immediate stop)

Immediately after a stop request
is made, the block is stopped with
the coil output of the action being
held. The status remains active.

Immediately after a stop request is made, the block is stopped with the
coil output of the action being held. The status remains active.

On
(stop after transition)

Normal operation is performed
until the transition becomes
TRUE. After the transition
becomes TRUE, step end
processing is performed and
simultaneously the transition
destination step becomes active
and the block is stopped before
execution of the action.

At restart Returns to normal operation. Coil output is off:
Becomes inactive and
restart is disabled
Coil output is held:
Restarts with the hold
state

Restarts the execution
of the action in a
HOLD status.

In the hold status, the
action is restarted and
the transition is also
checked.
2 8 SFC PROGRAM
8.5 SFC Setting

8

Ex.

M100 is the block stop mode bit and M101 is the block PAUSE/RESART bit.

 • If the RST instruction (Deactivating a step) is executed while the block is stopped, the specified step relay is turned off.
However, the monitor of the engineering tool keeps showing the active status and changes to inactive when the block is
restarted. The same is also true when the instruction is executed while the block is stopped by turning on SM325 (holding
the coil output when the block is stopped), but the coil output is not turned off.

 • The SET instruction (Activating a step) is executed immediately even while the block is stopped and the specified step relay
is turned on. The display on the monitor of the engineering tool also shows the active status. However, the action is
executed only after the block is restarted.

Ex.

Block PAUSE/RESTART when the RST instruction (Deactivating a step) is used

 • If the block stop mode bit (stop after transition mode) is turned off while a step in a state that is waiting to stop operation
after transition exists, the step remains in that state. To immediately stop after clearing this state, restart the block and issue
a stop request again while the block stop mode bit is off.

 • When the step transition destination is an end step in stop after transition mode, end step processing is executed and
therefore the step is not put in the stopped state.

 • To check that a stop request has been issued, monitor the block list display of the engineering tool or monitor the bit that
has been set in the block PAUSE/RESTART bit. However, whether the step is in stop state or operating to wait to stop
cannot be checked from the monitor of the engineering tool.

 • The stop after transition state can be cleared by turning off the block PAUSE/RESTART bit or executing the RESTART
instruction before the transition becomes TRUE. If a restart request is issued while steps that is already stopped and steps
that is waiting to stop operations coexist, the former starts and the latter continues the operation. The stop request is
cleared.

If M0 is turned on during execution of the above action, the PAUSE instruction is executed and the block PAUSE/RESTART bit (M101) of Block0 is turned on but
the execution continues to the end of the action, so Y0 is turned on.
When M2 is on, the block stop mode bit is turned on even after execution of the PAUSE instruction and, after the actions are all executed, a stop request is
executed in stop mode after transition.

(1) When M0 is turned on, block 0 is stopped.
(2) When M1 is turned on, a termination request is executed for step No. 0 and BL0\S0 of the step relay is turned

off but step No. 0 is left active on the monitor of the engineering tool.
(3) BL0\S0 is turned off, so Y0 is also turned off.
(4) When M2 is turned on while M0 and M1 are off, block 0 restarts and step No. 0 ends.

Block0

M101 Y0

M0
BL0PAUSE

M2
M100SET

SM400
M100RST

Y0

M1
RST

M2
BL0RSTART

M0
BL0PAUSE

BL0\S0

BL0\S0
8 SFC PROGRAM
8.5 SFC Setting 133

13
SFC block setting

Act at block multi-activated
Set the operation mode to stop the operation of the CPU module when a start request is issued by the block start step (with
end check) [BC] or block start step (without end check) [BS] for an already active block. For the setting range, set the range of
the block to be stopped.

[Navigation window]  [Program]  Properties of SFC program file to be set

Window

Displayed items

■Precautions
 • When the SET instruction (Activating a block) is executed for the block that is already active, the start request is ignored

and the processing of the SFC program is continued as is.
 • If an attempt to transition to an active block start step is made, the activation of the block start step is ignored. The block is

not executed again from the initial step.

(1) Set the range of the block to be stopped.

Setting Description
No setting
(default)

Standby CPU module operation continues, and standby until the start destination block becomes inactive while the
transition becomes TRUE.
When the start destination block is deactivated, the block is reactivated.
If a transition in standby state, the previous step is deactivated, the output is switched OFF, and the action
will not be executed.

Block stop range is set. Stop An error results.

(1)

BL1
4 8 SFC PROGRAM
8.5 SFC Setting

8

8.6 SFC Program Execution Order
Whole program processing

Execution type that can be specified
This section shows whether the execution type of SFC program can be specified.

■Precautions
When no scan execution type SFC program exists (only standby type program), do not execute an SFC control instruction
and monitoring for an SFC program.

Execution Type Specification
enable/disable

Remarks

Initial execution type program  

Scan execution type program  Only one SFC program can be executed.

Standby type program  By specifying an SFC program by using the PSCAN(P) instruction, the execution type can be
changed to the scan execution type.

Event execution type program  

Fixed scan execution type
program

 

CPU module: RUN

Initial execution
type program

Scan execution
type program

Standby type
program

Event execution
type program

Fixed scan
execution type
program

Execute using
an interrupt.

Execute only when required.

Type that can be specified as
an SFC program
8 SFC PROGRAM
8.6 SFC Program Execution Order 135

13
Changing the execution type by an instruction
The execution type of a program can be changed by using a program control instruction.
The following table lists program control instructions with regard to whether an SFC program can be specified.

*1 An SFC program cannot be specified in the Process CPU (redundant mode).

■Precautions
 • Do not execute the PSCAN(P) instruction when a file is read/written from/to the CPU module or the data logging function is

used. If executed, the scan time may extend several hundred milliseconds.
 • When the SFC program start mode is set to the resume start, if a new SFC program (a different SFC program from the one

most recently run) is run by using the PSCAN(P) instruction, the new SFC program is run by the initial start. In this case,
"SFC program continuous start not possible" (event code: 0430) is saved in the event history.

Instruction symbol Specification
enable/disable

Remarks

PSCAN(P) *1 Changes the execution type of the specified SFC program to the scan execution type.
If this instruction is executed with another SFC program specified while an scan execution type
SFC program already exists, an error occurs.

PSTOP(P)  If this instruction is executed for an SFC program, an error results.

POFF(P) *1 Executes end processing of all blocks in the next scan and changes the execution type of the
specified SFC program to the standby type in the following scan.

Scan execution type
program

Standby type
program

PSCAN
instruction

POFF
instruction
6 8 SFC PROGRAM
8.6 SFC Program Execution Order

8

SFC program processing sequence

Block execution sequence
While the SFC program is running, the actions of each step are executed sequentially starting from the initial step of an active
block.
An SFC program containing multiple blocks checks the state (active/inactive) of the blocks in ascending order of block
numbers(block 0  block 1  block 2).
An active block executes the actions of active steps in the block.
An inactive block checks for existence of a start request. If a start request exists, the block is activated and the active steps in
the block are executed.

Only block 0 can be started automatically when the block 0 autostart is specified in the start condition setting of the SFC
setting. With this setting, even when block 0 reaches the end step and becomes inactive, it is started again in the next scan.
( Page 131 Start condition setting)
A request for END, PAUSE, RESTART of a block is processed immediately before execution processing in the block.

Processing is performed in the following order.
(1) Processing of block 0 (BL0)
(2) Execution of the step in block 0 (BL0)
(3) Processing of block 1 (BL1)
(4) Execution of the initial step of block 1 (BL1)
(5) Processing of the next block

BL0 BL1
(1) (3)

(4)

(2)

(5)
8 SFC PROGRAM
8.6 SFC Program Execution Order 137

13
Step execution sequence
In the SFC program, the actions of all active steps are processed within one scan.

When the action of each step is finished, whether the transition to the next step becomes TRUE or not is checked.
 • When the transition has not become TRUE: The action of the same step is executed again in the next scan.
 • When the transition has become TRUE: The outputs of the executed actions by using the OUT instruction are all turned off.

When the next scan is executed, the action of the next step is executed. The step executed previously is deactivated and
the action becomes inactive.

Even when the transition becomes TRUE, if coil HOLD step [SC] is set in the step attribute, the step is not deactivated but
performs processing according to the attribute. ( Page 95 Coil HOLD step [SC])

Ex.

The continuous transition bit of an SFC information device is not specified.

(1) Execution of sequence program
(2) Execution of action
(3) Checking the transition to the next step

(FALSE)
(4) END processing
(5) Checking the transition to the next step (TRUE)
(6) The next action is executed.

Scan Description
Scan 1 Step (1) is activated and the action (2) is executed.

Scan 2 Step (3) is activated and the action (4) is executed.

Scan 3 Step (5) is activated and the action (6) is executed.

Scan 4 Step (7) is activated and the action (8) is executed.

Scan 5 and after Step (7) is active until the transition (9) becomes TRUE, and the action (8) is executed.

All the active steps in the
block are executed within
a single scan.

(1) (2) (3) (4) (1) (2) (5) (1) (6)(4)

STOP→RUN
(SM321=ON)

1 scan 1 scan 1 scan

(1) (2)

(3) (4)

(5) (6)

(7)

(9)

(8)
8 8 SFC PROGRAM
8.6 SFC Program Execution Order

8

■Precautions
 • As a step for which the transition becomes TRUE at the first execution is deactivated in a single scan, the I/O refresh of coil

output is not reflected and therefore other programs cannot detect that the coil output is on. To reflect the I/O refresh, create
a program so that one step is executed in multiple scans.

 • The actions of active steps in a block are executed simultaneously (within the same scan). For this reason, do not create
SFC programs which depend on the execution sequence of actions.

Continuous transition ON/OFF operation
There are two types of transitions in SFC program: "Continuous transition" and "No continuous transition".
The setting of the type (Continuous transition or No continuous transition) is determined by the settings of the continuous
transition bit of the SFC information device and SM323 (All-blocks continuous transition status).

The takt time can be shortened by setting "Continuous transition". This resolves the problem of waiting time
from when the transition becomes TRUE until the action of the transition destination step is executed.
However, when "Continuous transition" is set, the operations of the other blocks and sequence program may
become slower.

The execution sequence of actions (1), (2), and (3) are undefined.

Continuous
transition bit

SM323 Description

No setting Off No continuous
transition

When the transition becomes TRUE, the action of the transition destination step is executed in the
next scan.

On Continuous
transition

When the transition becomes TRUE, the action of the transition destination step is executed within
the same scan.
When the transitions of the steps become TRUE continuously, the actions are executed within the
same scan until the transition becomes FALSE or the end step is reached.

Off On or off No continuous
transition

When the transition becomes TRUE, the action of the transition destination step is executed in the
next scan.

On On or off Continuous
transition

When the transition becomes TRUE, the action of the transition destination step is executed within
the same scan.
When the transitions of the steps become TRUE continuously, the actions are executed within the
same scan until the transition becomes FALSE or the end step is reached.

(1) (3)

(2)
8 SFC PROGRAM
8.6 SFC Program Execution Order 139

14
8.7 SFC Program Execution
Starting and stopping the SFC program
The SFC program can be started and stopped by either of the following methods.
 • CPU parameter
 • Starting and stopping the program by the special relay (SM321)
 • Starting and stopping the program by using instructions

CPU parameter
Set "Auto-start block 0" to "Start Conditions Setting" in the CPU parameter. Block 0 of the SFC program starts automatically
when the CPU module is powered on or reset, or the operating status is changed from STOP to RUN. ( Page 131 Start
condition setting)

Starting and stopping the program by the special relay (SM321)
SM321 (SFC program start/stop) automatically turns on at execution of the SFC program. Once executed, the start/stop
status is controlled by SM321.
 • The program execution can be stopped by turning off SM321.
 • The program execution can be restarted by turning on SM321.

The resume start of the SFC program can be set in the CPU parameter ("SFC Program Start Mode Setting").
( Page 129 SFC program start mode setting)

Starting and stopping the program by using instructions
The SFC program is started and stopped by using the program control instructions. ( Page 136 Changing the execution
type by an instruction)
 • The standby type SFC program is started by using the PSCAN instruction. The program execution type changes from the

standby type to the scan execution type.
 • Outputs are turned off and the SFC program is stopped by the POFF instruction. The program execution type changes from

the scan execution type to the standby type.
0 8 SFC PROGRAM
8.7 SFC Program Execution

8

Starting and ending a block

Starting a block
A block in the SFC program can be started by either of the following methods.

Ending a block
A block in the SFC program can be ended by either of the following methods.

Item Method Remarks Reference
CPU parameter
(auto start, only for block 0)

Set "Auto-start block 0" to "Start Conditions Setting" in
the CPU parameter. When the SFC program is executed,
block 0 starts automatically and processing is performed
sequentially from the initial step.

This method is used to use block 0
as a control block, preprocessing
block, or continuous monitoring
block.

Page 131 Start
condition setting

Block start step Start another block by using a block start step [BC or BS]
in a block.

This method is effective when the
control sequence is clear.

Page 98 Block
start step (with END
check) [BC]
Page 99 Block
start step (without END
check) [BS]

SFC control instruction Start the block specified by the SFC control instruction
used in the action of the SFC program or in another
sequence program.
• Use the SET [BL] (Starting a block) instruction to

execute the program from the initial step of the
specified block.

• Use the SET [S/BL\S] (Activating a step)
instruction to execute the program from the specified
step of the specified block.

This method is effective to restart
the error processing block or
execute interrupt processing.

Page 118 SFC
Control Instructions

SFC information device Start the specified block by turning on the block START/
END bit set to each block.

This method is effective for
debugging (in units of blocks) and
test operation because blocks can
be restarted even from external
devices.

Page 121 Block
START/END bit

Engineering tool Start the specified block by turning on the SFC block
device.

This method is effective for
debugging and test operation.

 GX Works3
Operating Manual

Item Method Remarks Reference
End step Execute the end step in a block. Processing is stopped

and the block becomes inactive.
This method is effective to stop
operation by stopping a cycle in
automatic operation.

Page 100 End
step

SFC control instruction End and deactivate the block specified by the RST [BL]
(Ending a block) instruction used in the action of the SFC
program or in another sequence program.
(The block ends when all the active steps in the specified
block are deactivated by using the RST [BL\S]
(Ending a block) instruction.)

This method is effective to end
processing regardless of the
operation status, such as an
emergency stop.

Page 118 SFC
Control Instructions

SFC information device End the specified block by turning off the block START/
END bit set to each block.

This method is effective for
debugging (in units of blocks) and
test operation because blocks can
be ended even from external
devices.

Page 121 Block
START/END bit

Engineering tool End the specified block by turning off the SFC block
device.

This method is effective for
debugging and test operation.

 GX Works3
Operating Manual
8 SFC PROGRAM
8.7 SFC Program Execution 141

14
Pausing and restarting a block

Pausing a block
The specified block in the SFC program being executed can be paused by either of the following methods.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

Restarting a block
The paused block in the SFC program can be restarted by either of the following methods.

Operation when the block is paused or restart depends on the combination of the SM325 (Output mode at block stop) status,
block stop mode bit setting of the SFC information device, and step hold status. ( Page 132 Operation when the block is
paused or restarted)

Item Method Remarks Reference
SFC control instruction Pause the block specified by the PAUSE [BL] (Pausing

a block) instruction used in the action of the SFC
program or in another sequence program.

This method is effective to clear the
error by temporarily stopping the
machine and operating it manually.

Page 118 SFC
Control Instructions

SFC information device Pause the specified block by turning on the block
PAUSE/RESTART bit set to each block.

This method is effective for
debugging and test operation
because blocks can be paused
even from external devices.

Page 124 Block
PAUSE/RESTART bit

Item Method Remarks Reference
SFC control instruction Restart the block specified by the RSTART [BL]

(Restarting a block) instruction used in the action of
blocks other than the paused block in the SFC program
or in another sequence program.

This method is effective in operating
the machine automatically again
after it is stopped temporarily and
operated manually.

Page 118 SFC
Control Instructions

SFC information device Restart the specified block by turning off the block
PAUSE/RESTART bit set to each block.

This method is effective for
debugging (in units of blocks) and
test operation because blocks can
be restarted even from external
devices.

Page 124 Block
PAUSE/RESTART bit
2 8 SFC PROGRAM
8.7 SFC Program Execution

8

Activating and deactivating a step

Activating a step
A step in the SFC program can be activated by either of the following methods.

Deactivating a step
A step in the SFC program can be deactivated by either of the following methods.

Item Method Remarks Reference
Transition condition The transition is checked at the end of the step. If it is

TRUE, the next step is automatically activated.
 Page 108

Transition

SFC control instruction Activate the step specified by the SET [S/BL\S]
(Activating a step) instruction used in the action of the
SFC program or in another sequence program.

 Page 118 SFC
Control Instructions

Engineering tool • Activate the specified step by turning on the step relay.
• Activate the selected step from the menu [Debug] 

[Control SFC Steps].

This method is effective for
debugging and test operation.

 GX Works3
Operating Manual

Item Method Remarks Reference
Transition condition The transition is checked at the end of the step. If it is

TRUE, the current step is automatically deactivated.
 Page 108

Transition

Reset step [R] Activating this step deactivates the step specified for
attribute target.

This method is effective to
deactivate HOLD steps [SC, SE,
ST] when the sequence for error
processing is selected in the
selection branch.

Page 98 Reset
step [R]

SFC control instruction Deactivate the step specified by the RST [S/BL\S]
(Deactivating a step) instruction used in the action of the
SFC program or in another sequence program.

When all the active steps in the
specified block are deactivated by
using the RST instruction, the block
also ends.

Page 118 SFC
Control Instructions

Engineering tool • Deactivate the specified step by turning off the step
relay.

• Deactivate the selected step from the menu [Debug] 
[Control SFC Steps].

This method is effective for
debugging and test operation.

 GX Works3
Operating Manual
8 SFC PROGRAM
8.7 SFC Program Execution 143

14
Behavior when an active step is activated
When an active step is activated, the step behaves as follows.

Series sequence

Selective sequence
■Divergence
Transitions are checked from left to right. If the step connected to the transition having a TRUE value is active, the steps
behave in the same way as in the series sequence. After the first TRUE path is taken, transitions are no longer checked.

■Convergence
The steps behave in the same way as in the series sequence.

Simultaneous sequence
■Divergence
If any one of the steps in divergence of the simultaneous sequence is active, all steps below the transition become active in
the next scan.

■Convergence
All steps above the transition become inactive. The HOLD steps [SC, SE, ST] hold operations.

When the transition (2) becomes TRUE, the step (1) becomes inactive.

When the transition (2) becomes TRUE, the step (1) becomes
inactive.

When the transition (1) becomes
TRUE, the steps (2) to (5) become
active in the next scan.

(1)

(2)

(1)

(2)

(1)

(2)
(3)

(4) (5)
4 8 SFC PROGRAM
8.7 SFC Program Execution

8

Operation when a program is modified
To change an SFC program, use the following functions.
 • Write to the programmable controller
 • Online change
 • Online change (SFC block)*1

The following table lists changes that can be made to SFC programs by executing each function above.

*1 For the online change (SFC block), refer to the following.
Page 147 Online change (SFC block)
Before using the online change (SFC block), check the versions of the CPU module and the engineering tool used. ( MELSEC iQ-R
CPU Module User's Manual (Application))

When data is written to the programmable controller
The SFC program operates as follows.

Values of devices and labels used in all programs will be as follows depending on the setting of SM326 (SFC device/label
clear mode).

*1 The setting of SM326 is valid only when an SFC program exists after data is written to the programmable controller. It is also valid when
a program file or a parameter file (except the safety program file, safety FB file, and safety parameter file) is written to the programmable
controller. It will be invalid when only the common device comment file, device memory file, or device initial value file is written.

*2 Even when the device is not latched, data is not cleared.

In the case where SM326 is off (Device/label clear) and an SFC program exists when the operating status of
the CPU module is changed from STOP to RUN after writing a program or a parameter, the device memory
and the signal flow memory of the program have been cleared before starting the operation.
For the Safety CPU, however, safety devices, safety labels, standard/safety shared labels, and the signal flow
memory of the safety program have not been cleared before starting the operation, while standard devices,
standard labels, and the signal flow memory of the standard program have been cleared, even in the case
where SM326 is off and an SFC program exists when the operating status of the CPU module is changed
from STOP to RUN after writing standard a program or a parameter.

Change type Write to the programmable
controller

Online change Online change
(SFC block)*1

STOP/PAUSE RUN
SFC program addition    

SFC block addition/deletion    

SFC block
change

SFC diagram
change

Step/transition condition
addition/deletion

   

Transition condition (branch/
convergence/jump) change

   

Step attribute change    

Change in SFC
diagram

Operation output program
change

   

Transition program change    

Block information change    

SM322 (SFC program start mode) Program modification status

Modified Not modified
Off: Initial start Initial start Initial start

On: Resumption Initial start Resumption

SM326 (SFC device/label clear mode)*1 Description
Off The values in devices (including the refresh data register (RD), and excluding the file register

(R/ZR*2) and the step relay (S)), labels (including module labels and excluding latched labels),
and the signal flow memory are cleared before execution of SFC programs.

On The values in devices (excluding the step relay (S)), labels, and the signal flow memory are
held before execution of SFC programs.
8 SFC PROGRAM
8.7 SFC Program Execution 145

14
■When the operating status is changed from STOP to RUN
If the operating status of the CPU module is changed from RUN to STOP during execution of an SFC program, device values
and active/inactive state of the SFC program immediately before the stop are held and restored after the operating status is
changed back to RUN. The resume start is performed regardless of the CPU parameter setting ("SFC Program Start Mode
Setting").
If any of the sequence program file (including an SFC program), FB file, or parameter file (such as CPU parameter file and
system parameter file) is written to the CPU module while it is in the STOP state, the SFC program will be executed initially
when the operating status is changed back to RUN. Note that the resume start may be performed if there is no change in the
SFC program before and after writing the program file. ( Page 129 SFC program start mode setting)
The values in devices, labels, and the signal flow memory vary depending on the status of SM326 (SFC device/label clear
mode).

■Precautions
 • After an SFC program is modified by writing data to the programmable controller, reset the CPU module, and execute the

SFC program.
 • If "Resume Start" is set to "SFC Program Start Mode Setting" in the CPU parameter, turn off SM322 (SFC program start

mode) first, and modify the program by writing data to the programmable controller. Thereafter, initial-start the SFC program
and then turn on SM322 (resume start) again.

When online change is executed
After an SFC program is modified by online change, the resume start is performed regardless of the CPU parameter setting
("SFC Program Start Mode Setting").

■Precautions
After data are written to the programmable controller in the STOP state, an SFC program cannot be changed online until the
operating status of the CPU module is changed to RUN. Run the CPU module before changing an SFC program online.
6 8 SFC PROGRAM
8.7 SFC Program Execution

8

Online change (SFC block)

An SFC program can be changed in units of blocks. Since an SFC program can be changed online in units of blocks with the
active state held, efficiency of debugging and maintenance of SFC programs will be improved.

With the Process CPU (redundant mode), when an SFC block of the own system (control system) is changed
online, the change is reflected in the other system (standby system). (Online program change for redundancy)

Before using the online change (SFC block), check the versions of the CPU module and the engineering tool
used.
For the versions of the CPU module and the engineering tool, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

• Check the versions of the CPU module and engineering tool. ( MELSEC iQ-R CPU Module User's Manual (Application))

(1) SFC programs (except active steps) that are in active blocks can be changed.

RnCPU RnENCPU RnSFCPU RnSFCPURnPSFCPU RnPSFCPURnPCPURnPCPU
(Standard) (Safety)(Standard) (Safety)(Redundant)(Process)

(1)

Block 100

Block 319

Block 200

Block 0

Initial N

N

Action 0

Action 1

Transition 0

Transition 1

End step

Step 0

Initial N

N

Action 0

Action 1

Transition 0

Transition 1

End step

Step 0

N

N

Action 0

Action 1

Transition 0

Transition 1

End step

Step 0

N Action 2

Transition 2

Step 1

Initial N

N

Action 0

Action 1

Transition 0

Transition 1

End step

Step 0

Block 100

Block 319

Block 200

Block 0

Initial

Added

Inactive block or step

Active block or step

After changeBefore change
8 SFC PROGRAM
8.7 SFC Program Execution 147

14
■Available execution type
The online change (inactive SFC block) can be executed to a scan execution type program (cannot be executed to a standby
type program).

■Online change (SFC block) while SM321 (Start/stop SFC program) is off
While SM321 (Start/stop SFC program) is off, the online change (inactive block) can be executed regardless of a target block
status immediately before SM321 turns off. Note that online change (SFC block) while SM321 is off always starts in initial start
mode, regardless of the following setting.
 • SFC Program Start Mode Setting (Resume Start) in the CPU parameter (Page 129 SFC program start mode setting)
 • SM322 (SFC program start mode)

■Target block of change
Execute the online change (SFC block) each time a block is changed. The online change (SFC block) cannot be executed
when two or more SFC blocks are changed.

■Changing/adding/deleting a block
The following table describes available operations (changing, adding, or deleting a block) in the online change (SFC block).

In the STOP or PAUSE status, an active step holds its active state. Therefore, when deleting, changing
attribute, or changing step numbers of the active step, inactivate the step that maintains the active state
before the online change (SFC block).

■Area to be overwritten
The ladder in the added/changed steps or transitions and added/changed action or transitions in a target block are
overwritten. The last execution information of the rising instruction and falling instruction for the ladder in added/changed
action and transition is initialized.

■Changing the execution type of a program during the online change (SFC block)
The execution type of a program file for which the online change (SFC block) is being executed cannot be changed by using
the program control instructions (the POFF and PSCAN instructions). If the instructions are executed, they result in non
processing.

■Checking execution status
Execution status of the online change (SFC block) can be checked in SM329 (Online change (SFC block) status flag) and
SD329 (Online change (SFC block) target block number). ( MELSEC iQ-R CPU Module User's Manual (Application))

Operation Description

When the target block is inactive When the target block is active
Changing a block • An existing SFC block program in the CPU module can be

changed.
• An SFC information device set in a target SFC block can be

changed.

• An existing SFC block program in the CPU module can be
changed. However, deleting, attribute change, and
changing step number of the active step cannot be
performed.

• An SFC information device set in a target SFC block can be
changed.

Adding a block • An SFC block can be added to an SFC program in the CPU
module.

• An SFC information device can be added to a target SFC
block.



Deleting a block • A specified SFC block can be deleted from an SFC
program in the CPU module.

• An SFC information device set in a target SFC block can be
deleted.

• When a target block is not in an SFC program in the CPU
module, deleting a block cannot be performed.

An active SFC block cannot be deleted.
8 8 SFC PROGRAM
8.7 SFC Program Execution

8

■Reserved area for online change
Secure reserved area for online change in the CPU module by the amount to be added/changed through the online change
(SFC block). When the amount of data added/changed through the function exceeds the reserved area for online change, the
reserved area setting can be revised as long as the program memory has enough free space.
For details on the reserved area for online change, refer to the following.
 MELSEC iQ-R CPU Module User's Manual (Application)

■Online change (SFC block) during the boot operation
When the online change (SFC block) is executed while booting from an SD memory card, the corresponding files on the
booting SD memory card can also be changed.

■Operation when a target block or step is attempted to be activated during the online change
(SFC block)

A block and step targeted for the online change (SFC block) are not activated even if they are attempted to be activated while
the online change (SFC block) is being executed. The following table describes operations depending on block or step start
methods.

*1 This indicates the following activation methods: Changing values of BL and BL\S on the watch window or the device/buffer
memory batch monitoring window and selecting an item in Control SFC steps under Debug.

Start method (activation method) Operation at block or step start
Auto-start by the CPU parameter setting The block or step is not activated until the online change (SFC block) is completed. The

block or step is automatically activated after the online change (SFC block) is completed.

Block start step (without END check) • A target block is not activated but waits until the online change (SFC block) is
completed. Even when a transition following a step is TRUE, the next step does not
become active.

• A target block is activated after the online change (SFC block) is completed. When a
transition is TRUE, the next step becomes active.

Block start step (with END check) • A target block is not activated but waits until the online change (SFC block) is
completed.

• A target block is activated after the online change (SFC block) is completed. When the
block ends and a transition following a step is TRUE, the next step becomes active.

SFC control instructions (SET BL, SET S, SET BL\S
instructions)

A target block is not activated. If an instruction contact remains on, the target block is
activated after the online change (SFC block) is completed.

SFC information device (start by the block start/end bit) A target block is not activated even when the block start/end bit turns on. When the block
start/end bit is on, the target block is activated after the online change (SFC block) is
completed. (The system does not activate the target block until the online change (SFC
block) is completed.)

Block start by the engineering tool*1 A target block is not activated. A request is ignored. (The system does not activate the
target block until the online change (SFC block) is completed.)

Step start by the transition condition (activate) • Due to the previous transition becoming TRUE, a target step is not activated until the
online change (SFC block) is completed. (The state is not activated but waits.)

• After the online change (SFC block) is completed, when a transition is TRUE, the state
is activated.
8 SFC PROGRAM
8.7 SFC Program Execution 149

15
■Precautions
 • Do not power off or reset the CPU module while the online change (SFC block) (including transfer of data to the program

memory) is being executed. If doing so, write the data to the programmable controller.
 • The online change (SFC block) and the following operations from the engineering tool cannot be executed simultaneously.

 • When deleting the OUT instruction (coil) which is not necessary for control, be sure to check that the OUT instruction is off
before deleting it. If the OUT instruction is deleted without turning it off in advance, the output will be retained.

 • If a subroutine-type FB is called within the changed ladder block, information of the last execution, such as instructions
executed at the rising edge or falling edge within the FB definition of the called subroutine-type FB, is not initialized.

 • When the online change (SFC block) is executed, the start-up of an interrupt program may be delayed. Therefore, when the
execution time is monitored (Error Detections Setting of the CPU parameter) for the interrupt program that uses the inter-
module synchronous interrupt (I44) and multiple CPU synchronous interrupt (I45), an error may be detected in the CPU
module. (MELSEC iQ-R CPU Module User's Manual (Application))

 • Some sections are not targeted for the scan monitoring while the online change (SFC block) is being executed, and
therefore a WDT error may not be detected even though the scan time set in the scan time monitoring time (WDT) setting is
exceeded.

 • When an instruction is executed during the online change (SFC block) and an error is detected, a step number stored as
the error location information is the one in a program being written. The step number after the completion of writing is not
stored.

 • The online change (SFC block) cannot be executed in the following cases.

 • To perform online change (SFC block) for the active block, use SM329 (Online change (SFC block) status flag) or SD329
(Online change (SFC block) target block number) to interlock so that the active step transition does not become TRUE. If
the transition to the target step becomes TRUE during the online change (SFC block), the state is not activated but waits.
After the online change (SFC block) is completed, when a transition is TRUE, the target step is activated. When a step
transition bit is set, the bit does not turn on in the waiting state.

• Online change (ladder block)
• Write to the programmable controller (excluding device, local device, global label, or local label data)
• Memory initialization

• A target program file is not registered in the corresponding parameter.
• The number of SFC steps exceeds the number of step relay points set in the device setting of the CPU parameter.
• Operating status of the CPU module is switched to STOP and data are written to a specified program or a parameter in the programmable controller.

(The function cannot be executed until the operating status of the CPU module is back to RUN.)
• Program execution error (error code: 3204H) has been detected.
0 8 SFC PROGRAM
8.7 SFC Program Execution

8

 • When performing online change (SFC block) including step movement across the active step, perform the following
procedure.

When the step  is skipped and the procedure is performed in order of , the online change (SFC block) may not
be executed.

Checking SFC program operation
Use the following functions of the engineering tool to check SFC program operation.
 • Monitor
 • Watch
 • Device/buffer memory batch monitor
 • Control SFC steps
 • SFC block list
 • SFC all blocks batch monitor
 • Active step monitor
 • SFC activated step monitor

For details on each functions and operation check methods, refer to the following.
 GX Works3 Operating Manual

 Cut the step to be moved.
 Execute the online change (SFC block).
 Paste the cut step to the desired position.
 Execute the online change (SFC block) again.

Before edit After edit

�

�

�

�

8 SFC PROGRAM
8.7 SFC Program Execution 151

15
APPENDIX
Appendix 1 Operations of when the MC/MCR

instructions are used to control EN
The following table lists operations of instructions, devices, and labels used in a function block when "Use MC/MCR to Control
EN" is enabled in the inherent property setting of the function block.

*1 Instructions specified in the coil side apply.

When "Yes" is selected for "Use MC/MCR to Control EN", do not use the MC/MCR instructions while the
function block is being executed. If the MC/MCR instructions are used, the EN control may not operate
properly.

Instruction/device/label used in a function
block

Operation of Instruction/device/label used in a function block

When "Yes" is selected for "Use MC/
MCR to Control EN"

When "No" is selected for "Use MC/MCR
to Control EN"

Instructions executed at the rising edge or falling
edge (PLS, instructions for conversion to pulses
(P)*1)

The next time EN is turned on, the instruction is
executed if the condition contact is TRUE.

The next time EN is turned on, the instruction may
not be executed even though the condition contact is
TRUE.

Timer (low-speed/high-speed), long timer The count value becomes 0 and the both coil
and contact turn off.

The state of devices remains unchanged.

Retentive timer (low-speed/high-speed), long
retentive timer, counter, long counter

The coil turns off, but the current count value
and the current state of the contact remain
unchanged.

The state of devices remains unchanged.

Devices specified as the device part of the OUT
instruction

The devices are forcibly turned off. The state of devices remains unchanged.
2 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

A

Instructions executed at the rising/falling edge
The following describes operations of instructions executed at the rising/falling edge.

Ex.

A subroutine-type FB using an instruction executed at the rising edge

■When "Yes" is selected for "Use MC/MCR to Control EN"
When EN is turned on, the instruction is executed if the condition contact is TRUE ((1) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
When EN is turned off, operations of the instruction differ depending on the condition contact status ((1) in the following
figure).

Sc: Scan
 EN is turned on. (User operation)
 IN is turned on. (User operation)
 The MOVP instruction is executed. (CPU module operation)
 EN is turned off. (User operation)
 The MOVP instruction is executed. (CPU module operation)

Sc: Scan
 EN is turned on. (User operation)
 IN is turned on. (User operation)
 The MOVP instruction is executed. (CPU module operation)
 EN is turned off. (User operation)
 The MOVP instruction is executed when the condition contact is FALSE immediately before EN is turned off at . (CPU module operation) (The MOVP
instruction is not executed when the condition contact is TRUE immediately before EN is turned off at .)

IN ENO

OUT

EN

IN

MOVP

END

IN

EN

MOVP

(1)

Sc

�

�

�

�

�

IN

EN

MOVP

(1)

Sc

�

�

�

�

�

APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN 153

15
Timer (low-speed/high-speed) and long timer
The following describes operations of the timer (low-speed/high-speed) and long timer.

Ex.

A subroutine-type FB using a low-speed timer

■When "Yes" is selected for "Use MC/MCR to Control EN"
The count value becomes 0 ((1) in the following figure). The coil turns off ((2) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current count value and the current state of the coil remain unchanged. ((1) in the following figure).

Sc: Scan
T0(Count): T0 (count value)
T0(Coil): T0 (coil)
 EN is turned off. (User operation)
 The coil turns off and the timer value and the count value are cleared. (CPU module operation)

Sc: Scan
T0(Count): T0 (count value)
T0(Coil): T0 (coil)
 EN is turned off. (User operation)
 The values remain unchanged. (CPU module operation)

SM400 ENOEN
OUT T0 K3

END

T0(Count)

EN

T0(Coil)

(1)

(2)

Sc

�

�

�

0 1 2 23 0 1

T0(Count)

EN

T0(Coil)

(1)

(1)

Sc

�

�

�

0 1 2 33 3 3
4 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

A

Retentive timer (low-/high-speed), long retentive timer, counter, and long counter
The following describes operations of the retentive timer (low-speed/high-speed), long retentive timer, counter, and long
counter.

Ex.

A subroutine-type FB using a low-speed retentive timer

■When "Yes" is selected for "Use MC/MCR to Control EN"
The current count value remain unchanged. ((1) in the following figure). The coil turns off ((2) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current count value and the current state of the coil remain unchanged. ((1) in the following figure).

Sc: Scan
ST0(Count): T0 (count value)
ST0(Coil): T0 (coil)
 EN is turned off. (User operation)
 The coil turns off, but the current count value and the current state of the contact remain unchanged. (CPU module operation)

Sc: Scan
ST0(Count): T0 (count value)
ST0(Coil): T0 (coil)
 EN is turned off. (User operation)
 The values remain unchanged. (CPU module operation)

SM400 ENOEN
OUT ST0 K3

END

ST0(Count)

EN

ST0(Coil)

(1)

(2)

Sc

�

�

�

0 1 2 33 3 3

ST0(Count)

EN

ST0(Coil)

(1)

Sc

�

�

0 1 2 33 3 3

(1)
�

APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN 155

15
Devices specified as the device part of the OUT instruction
The following describes operations of devices specified as the device part of the OUT instruction.

Ex.

A subroutine-type FB using M0 for the device part of the OUT instruction.

■When "Yes" is selected for "Use MC/MCR to Control EN"
M0 is forcibly turned off ((1) in the following figure).

■When "No" is selected for "Use MC/MCR to Control EN"
The current state of M0 remains unchanged ((1) in the following figure).

Sc: Scan
 EN is turned off. (User operation)
 The coil turns off. (CPU module operation)

Sc: Scan
 EN is turned off. (User operation)
 The state of coil remains unchanged. (CPU module operation)

SM400 ENOEN M0

END

M0

EN

(1)

Sc

�

�

M0

EN

Sc

�

(1) �
6 APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN

A

MEMO
APPX
Appendix 1 Operations of when the MC/MCR instructions are used to control EN 157

15
INDEX

Symbols
- . 55
* . 55
**. 55
/ . 55
&. 55
+ . 55
< . 55
<= . 55
<> . 55
= . 55
> . 55
>= . 55

A
AND . 55
ASCII. 66,79
Assignment statement . 56

B
BC. 92
Block PAUSE/RESTART Bit. 120
Block start step (with END check) 92
Block start step (without END check). 92
Block START/END Bit 120
Block Stop Mode Bit . 120
BS. 92
Buffer memory . 7

C
CASE . 59
Coil HOLD step. 92
Continuous Transition Bit 120
Conversion of data type 57,71

D
Detailed expression. 108
Device . 7
Direct expression . 108

E
EN. 16,30
End step . 92
ENO . 16,30
EXIT . 60
External variable . 23

F
FB file . 22,30
FBD/LD . 9
FOR...DO. 60,64
FUN file . 15,17
Function (FUN) . 13,15
Function block (FB) . 13,21
Function block call statement 58

Function call statement .58

I
IF THEN .59
IF...ELSE. .59
IF...ELSIF .59
Initial step .92
Input variable . 16,23
Input/output variable .23
Instance .24
Internal variable .23
Interrupt program .14

J
Jump sequence .109

L
Label/device. .108
Ladder diagram . 9,47

M
Macro type function block 22,31
Main routine program .14
MOD .55

N
Normal step .92
NOT .55
Note .52
Number of Active Steps Register120
Number of steps .19

O
Online change (SFC block) 147
Operation HOLD step (with transition check)92
Operation HOLD step (without transition check) . . .92
OR .55
Output Mode Setting at Block Stop128
Output variable. 16,23

P
Program .11,17,30
Program Block .14
Program file .11
Programming language .9
Project. .11

R
R .92
REPEAT...UNTIL .60
Reserved word .54
Reset step .92
RETURN .58
8

I

S
Safety communications . 7
Safety control . 7
Safety device . 7
Safety function (Safety FUN) 41
Safety function block (Safety FB) 43
Safety program. 7
SC. 92
SE. 92
Selective sequence (divergence/convergence). . 109
Series sequence . 109
SFC program . 9
SFC Program Start Mode Setting 128
Shift JIS . 66,79
Simultaneous sequence (divergence/convergence)
. 109
ST. 92
Standard communications 7
Standard control . 7
Standard CPU . 8
Standard device . 7
Standard program . 7
Start Conditions Setting 128
Statement . 52
Step Transition Bit. 120
STRING. 66,79
String. 66,79
String [Unicode] . 66,79
Structured text (ST). 9
Subroutine program . 14
Subroutine type function block 22,32

T
Transition name . 108
Transition No . 108
Type specifier . 67,79

U
Unicode . 66

W
WHILE...DO . 60
WSTRING . 66,79

X
XOR . 55
159

160

REVISIONS
*The manual number is given on the bottom left of the back cover.

Japanese manual number: SH-081225-P

 2014 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description
June 2014 SH(NA)-081265ENG-A First edition

February 2015 SH(NA)-081265ENG-B ■Added or modified parts
Chapter 1, Section 4.7, 6.1, Chapter 7

August 2015 SH(NA)-081265ENG-C ■Added or modified parts
CONDITIONS OF USE FOR THE PRODUCT, TERMS, Chapter 1, Section 2.1, 3.1, 3.2, 3.3, 3.4, 4.3,
4.8, 6.1, Chapter 8, WARRANTY

January 2016 SH(NA)-081265ENG-D ■Added or modified parts
Section 8.1, 8.2

August 2016 SH(NA)-081265ENG-E ■Added or modified parts
Chapter 2, Section 3.1, 3.4, Chapter 5, 6, 7, 8

October 2016 SH(NA)-081265ENG-F ■Added or modified parts
Chapter 8

January 2017 SH(NA)-081265ENG-G ■Added or modified parts
RELEVANT MANUALS, Section 3.3, 4.2, 6.1, Chapter 7

June 2017 SH(NA)-081265ENG-H ■Added or modified parts
Chapter 7, Section 8.4, 8.7, Appendix 1

October 2017 SH(NA)-081265ENG-I ■Added or modified parts
CONDITIONS OF USE FOR THE PRODUCT, TERMS, Section 3.3, Chapter 4, 5, 6, 7, 8, Section
8.1, 8.2, 8.3, 8.5, 8.7

April 2018 SH(NA)-081265ENG-J ■Added or modified parts
RELEVANT MANUALS, TERMS, Chapter 1, Section 3.1, 3.2, 3.3, 3.4, 3.5, 5.1, 5.2, 5.3, Chapter 6,
Section 6.1, Chapter 7, Section 7.1, 7.2, 8.1, 8.3, 8.4, 8.7

October 2018 SH(NA)-081265ENG-K ■Added or modified parts
Chapter 8

May 2019 SH(NA)-081265ENG-L ■Added or modified parts
TERMS, GENERIC TERMS AND ABBREVIATIONS, Section 8.7

October 2019 SH(NA)-081265ENG-M ■Added or modified parts
Section 3.2, 3.3, 3.5, 7.1

April 2020 SH(NA)-081265ENG-N ■Added or modified parts
Section 3.4, 5.2

October 2021 SH(NA)-081265ENG-O ■Added or modified parts
Section 7.2, Chapter 8, Section 8.7

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot
be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

161

WARRANTY
Please confirm the following product warranty details before using this product.
1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing
on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which

follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the
product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused

by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions

or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by
industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and

compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

162

TRADEMARKS
The company names, system names and product names mentioned in this manual are either registered trademarks or
trademarks of their respective companies.
In some cases, trademark symbols such as '' or '' are not specified in this manual.

SH(NA)-081265ENG-O

SH(NA)-081265ENG-O(2110)
MODEL: R-P-PS-E

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14 , YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	GENERIC TERMS AND ABBREVIATIONS
	1 OVERVIEW
	2 PROGRAM CONFIGURATION
	3 PROGRAM ORGANIZATION UNITS
	3.1 Program Blocks
	3.2 Functions (FUN)
	3.3 Function Blocks (FB)
	3.4 Precautions
	3.5 When a Safety Program Is Used
	Safety functions (Safety FUN)
	Safety function blocks (Safety FB)

	4 LABELS
	5 LADDER DIAGRAM
	5.1 Configuration
	Ladder symbols
	Program execution order
	Precautions for using a function block in ladder diagram

	5.2 Inline ST
	5.3 Statements and Notes

	6 STRUCTURED TEXT LANGUAGE
	6.1 Configuration
	Delimiters
	Operators
	Control statements
	Constants
	Labels and devices
	Comments

	7 FBD/LD
	7.1 Configuration
	Program elements
	Constant
	Labels and devices

	7.2 Inline ST
	7.3 Program Execution Order
	Execution order of program elements

	8 SFC PROGRAM
	8.1 Specifications
	8.2 Structure
	Block
	Step
	Action
	Transition

	8.3 SFC Control Instructions
	8.4 SFC Information Devices
	8.5 SFC Setting
	CPU parameter
	SFC block setting

	8.6 SFC Program Execution Order
	Whole program processing
	SFC program processing sequence

	8.7 SFC Program Execution
	Starting and stopping the SFC program
	Starting and ending a block
	Pausing and restarting a block
	Activating and deactivating a step
	Behavior when an active step is activated
	Operation when a program is modified
	Checking SFC program operation

	APPENDIX
	Appendix 1 Operations of when the MC/MCR instructions are used to control EN

	INDEX
	REVISIONS
	WARRANTY
	TRADEMARKS

