MITSUBISHI

e

L

e
3

pah,. g

.

QnACPU
PROGRAMMING MANUAL (Fundamentals

e
o |

R
nshﬂzza?* S ZiN

g,
& gzgaé

o — /4
o 7ol

e s

et

£

S
.%.

it

T
4
e

?ng jgb_a
=

-
B P EEEa)
S oA ae
ke
BRI

=

S
2R

e
e

e

< éa-?%g

5

NAFS Y
vErseE

Mitsubishi Programmable Controller

SAFETY CAUTIONS

(Ydu must read these cautions before using the product)

In connection with the use of this product, in addition to carefully reading both this manual and the
related manuals indicated in this manual, it is also essential to pay due attention to safety and handle
the product correctly. _

The safety cautions given here apply to this product in isolation. For information on the safety of the
PC system as a whole, refer to the CPU module User's Manual.

Store this manual carefully in a place where it is accessible for reference whenever necessary, and
ferward a copy of the manual to the end user.

[System Design Precautions]

<> DANGER

« Safety circuits should be installed external to the programmable controller to
ensure that the system as a whole will continue to operate safely in the event
of an external power supply malfunction or a programmable controfier failure.
Erroneous outputs and operation could result in an accident.

1) The following circuitry should be installed outside the programmable .
controller:

Interlock circuitry for the emergency stop circuit protective circuit, and for
reciprocal operations such as forward/reverse, etc., and interlock circuitry
for upper/lower positioning limits, etc., to prevent machine damage.

2) When the programmable controller detects an abnormal condition,
processing is stopped and all outputs are switched OFF. This happens in
the following cases:

« When the power supply module’s over-current of over-voltage protection
device is activated.

« When an error (watchdog timer error, etc.) is detected at the PC CPU by
the self-diagnosis function.

Some errors, such as input/output control errors, cannot be detected by the

PC CPU, and there may be cases when all outputs are turned ON when

such errors occur. In order to ensure that the machine operates safely in

such cases, a failsafe circuit or mechanism should be provided outside the

programmable controller. Refer to the CPU module user’s manual for an

example of such a failsafe circuit.

3) Outputs may become stuck at ON or QFF due to an output module relay or
transistor failure. An external circuit should therefore be provided to
monitor output signals whose incorrect operation could cause serious
accidents.

e A circuit should be installed which permits the external power supply to be
switched ON only after the programmable controller power has been switched
ON. Accidents caused by erroneous outputs and motion couid result if the
external power supply is switched ON first.

« When a data link communication error occurs, the status shown below will be
established at the faulty station. In order to ensure that the system operates
safely at such times, an interlock circuit should be provided in the sequence
program (using the communication status information}.

Erroneous outputs and operation could resuit in an accident.

1) The data link data which existed prior to the error will be held.

2) All outputs will be switched OFF at MELSECNET (11, /B, /10) remote /O
stations. :

3} At the MELSECNET/MINI-S3 remote 11O stations, all outputs will be
switched OFF or output statuses will be held, depending on the E.C. mode
setting.

For details on procedures for checking faulty stations, and for operation

statuses when such errors occur, refer to the appropriate data link manual.

[System Design Precautions }

/\ cauTion

» Do not bundle control lines or communication wires together with main circuit
or power lines, or iay them close to these lines.
As a guide, separate the lines by a distance of at least 100 mm, ctherwise
malfunctions may occur due to noise. '

[Cautions on Mounting]

/N\ cauTion

« Use the PC in an environment that conforms to the general specifications in
the manual.
Using the PC in environments outside the ranges stated in the general
specifications will cause electric shock, fire, malfunction, or damage
to/deterioration of the product.

« Make sure that the module fixing projection on the base of the module is
properly engaged in the module fixing hote in the base unit before mounting
the module. _ :

Failure to mount the module properly will result in malfunction or failure, or in
the module falling. .

« Extension cables should be securely connected to base unit and module
connectors. Check for loose connection after installation.
A poor connection could result in contact problems and erroneous
inputs/outputs.

« Plug the memory cassette firmly into the memory cassette mounting
connector. Check for loose connection after installation.
A poor connection could result in erroneous operation.

« Plug the memory firmly into the memory socket. Check for loose connection
after installation.

A poor connection could result in erroneous operation.

[Cautions on Wiring]

<> DANGER

« Switch off the external power supply before staring installation and wiring
work.

Failure to do so could result in electrical shocks and equipment damage.

« After installation and wiring is completed, be sure to attach the terminal cover.
before switching the power ON and starting operation.
Failure to do so could result in electrical shocks.

& CAUTION

o Be sure to ground the FG and LG terminals, carrying out at least class 3
grounding work with a ground exclusive to the PC.
Otherwise there will be a danger of electric shock and malfunctions.

« Carry out wiring to the PC correctly, checking the rated volitage and terminal
arrangement of the product.
Using a power supply that does not conform to the rated voltage, or carrying
out wiring incorrectly, will cause fire or failure.

« Outputs from multipie power supply modules should not be connected in
parallel. Failure to do so could cause the power supply module to overheat,
resulting in a fire or module failure.

« Tighten the terminal screws to the stipulated torque.
Loose screws will cause short circuits, fire, or malfunctions.

o Make sure that no foreign matter such as chips or wiring offcuts gets inside
the module.
It will cause fire, failure or malfunction.

« Connectors for external connections should be crimped, pressure welded, or
soldered in the correct manner using the correct tools.
For details regarding crimping and pressure welding tools, refer to the
input/output module user's manual.
A poor connection could cause shorts, fire, and erroneous operation.

[Cautions on Startup and Maintenance]

> DANGER

« Do not touch terminals while the power is ON.
This will cause malfunctions.

« Make sure that the battery is connected properly. Do not attempt to charge or
disassemble the battery, do not heat the battery or place itin a flame, and do
not short or solder the battery.

Incorrect handling of the battery can cause battery heat generation and
ruptures which could result in fire or injury.

« Switch the power off before cleaning or re-tightening terminal screws.
Carrying out this work while the power is ON will cause failure or malfunction
of the module.

/N cauTion

« In order to ensure safe operation, read the manual carefully to acquaint
yourself with procedures for program changes, forced outputs, RUN, STOP,
and PAUSE operations, etc., while operation is in progress.

Incorrect operation could resuit in machine failure and injury.

» Do not disassemble or modify any module.
This will cause failure, matfunction, injuries, or fire.

« Switch the power OFF before mounting or removing the moduie.
Mounting or removing it with the power ON can cause tailure or malfunction of
the module. -

« When repiacing fuses, be sure to use the prescribed fuse. A fuse of the wrong
capacity could cause a fire.

[Cautions on Disposall

/A\ caution

» Dispose of this product as industrial waste.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date | *Manual Number Revision

Jun., 1996 IB {NA) 66614-A First edition

Dec., 1997 IB (NA) 66614-B Standardization of terms for the QnA series
Internal Memory - Internal RAM
{C Memory card —> Memory card
Q2AS({H)CPU(-S1) and Q4ARCPU added.

About Manuals

Sections 1.1, 1.2, 1.3, 2.2.1, 2.2.2, 2.2.3, 2.3.2, 2.3.3,
2.4,3.1.1,3.1.3,3.2,3.2.3,3.2.4,3.3.2, 41, 4.1.1, 4.2,
4.2.7, 4.2.13, 4.3.3, 4.4, 4.5, 4.7, 410, 4.13.1,5

Sections 2.6.1, 4.2.1, 4.2.10, 4.3.1
Page 3-20, 3-21

Sep., 1998 | 1B (NA) 66614-C

Contents, Section 2.2.1, 2.2.2, 2.3, 2.3.3, 2.5, 3.1.2,
3.1.8,4.1.1, 4.2.6, 4.6, 4.7, 4,13.1

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses.
Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which
may occur as a result of using the contents noted in this manual.

© 1996 Mitsubishi Electric Corporation

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-QnA Series of General Purpose Programmable
Controllers. Please read this manual carefully so that the equipment is used to its optimum.
A copy of this manual should be forwarded to the end User. :

CONTENTS

GENERAL DESCRIPTION.......ccovvannenuens Ceresasessarrasanrssanans 1-1~1-9
1.1 PrOgIamMS. .. vvueeicnaersrossaasrensssrasanasansnsansrss i 1-1
1.2 Convenient Programming Devices and Instructionscovviiciiinenn. 1—-4
1.3 Related Programming Manuals. v.eveieinnraeiiarerrn e naais 19
ONACPU FILES ... itiviirasrcnctascsanusssssasercsssansasansnnnsssss 2-1~2-16
21 QnACPU Internal RAM&MemoryCardsvevenniiinneieiiniianiionanen 2-3
20 IMtemal RAM .. .ottt irentetrnnenacitrraarec osaanttaacasssananaraane 2-4
2.2.1 Memorymap.........; .. 2-4
22,2 Formatting precautionSouveeurvreesrtaonaaanretsoneassnuiees 2-4
2.2.3 Memory capacity afterformattingcooveenini it 2-5
23 Memory Card. oireiereiaiaiir it 2-6
231 MEMOIY MAP. « e eeueansvranarsrasrsssssssanesanassasssensosaens 2-6
2.3.2 Memory capacity afterformattingcoviiieniiiiniiiiaiiia 2-7
2.3.3 Executing memory card programs (oot run) cueiia it aiiiienen 2-8
2.4 File Types & Storage Destinations of Files Managed byQnACPU..........vveenn 2-9
25 Program File Configurationo . veeve s iireimaeneniiiantiieeiaaaen. 2-11
2.6 File Operation and File Handling Precautions.ooeiiniiirnnannnanen 2-12
26.1 Fileoperationoveeeiiiiuieiieiiis ittt 2-12
26.2 Filehandlingprecautionscoeeiirieerianrenrririanrerann. 2-14
SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDITIONS 3-1~3-44
31 Sequence PrOgram......ceerreerioirnsnnnuonrenteseiinanra it 3-1
3.1.1 Mainroutine programoveeveeaerororearsrasccess e 3-4
3.1.2 Sub-routinE ProgramiS vevvearnsneesenssrsearsssastasaronaanuan. 3-5
3.4.3 INterrUPtPrograms . ..ovv v eernreruerossnnsaeracsarartecsaataas 3-8
3.2 Program Execution Conditions & Operation Processing. .. oo vvrveraennaecoorans 3-13
3.2.1 Initial eXeCUtioN Programs. ..o venrreererrenenersatanronaaaans 3-15
3.22 Scan execUtionProgramsS. .. ooeeeesrenersssnasreassssstoasasaoastan 3-17
3.2.3 Low-speed eXeCUtiON PrOGIAMS .. - o vtrernerrarnaraessenuaenannnes 3-19
3.24 Standby PrOgramS.ovvreerararsentassnrecsrstssstataaaatnas 3-25
3.3 Input/Output Processing & Responselagccovvrvrienarnnccnnernnnes 3-—-32
331 Refreshmode .. vveteeeecscnrusrsasercsssonesvnetstaanerasans 3--32
3.32 Directmode. ...ovveenverararannns @ ieeeesedemeaneaa e 3-34
3.4 Numeric Values which Can Be Used in Sequence Programs.oooeeeteevnnn 3-36
341 BIN(BINAYCOUE) .. ovvvrrervarrnrarastroronanamnneacnns R 3-38
3.4.2 HEX(Hexadecimal)ccvviueiiiuiarennnrenerainierunnernnns 3-40
3.4.3 BCD (Binary CodedDecimal)......c.cinuemrciierariennaannaninen, 3-41
244 Real NUIMDEIS o ovur v eereessrssorsstaseanastsssanaassstssssnnns 3—-42
35 Character StingData.....covvrreiiererersarnneniaesasrsieeticarioraenes 3-44

4, DEVICES.......ciivitiincaannss Neeeecssatscamssarisacsenasssannran 4-1-4-66

4.1

4.2

4.3

4.4
4.5
4.6
4.7
4.8
4.9

4.10
4.1

412

4.13

DEVICE LIS . . ittt i it et ir s st s 4—1
411 Devicelist e uu v it iee i taiaatsenenasetsrtarantasaanasanaas 4-1
4.1.2 Setfting units inthe intemal userdevice coiviveiiiiniiaiin, 4-2
temal USer DoviCes o v it ittt isrccnseantsrrsnearnensensnnescensassssns 4-4
421 IPUS (X) o ovinii i it it e eeereeaaaeaas 4-4
422 Outputs(Y)......; .. PR 4-7
428 INMEIAL T1ZYS (M). 1 v« e ereneeeenevneeeeaneeansennreanneeeee . 4=10
424 Latchrelays (L) ..oereeciiiinnnenirmaaaneeanatsarsrarananasaannss 4-11
425 ANRUNCIAIOrS (F) .. ovner it iiiiiaaeeiaraarcnssarecarasaenasan 4—-12
426 Edgerelay (V). ..ouererriiinani i eiiiaae i iiae e 4-16
427 Linkrelays (B).«voveneierenaniie ittt iiatieaaatiiaraeaan 4-18
428 Speciallinkrelays (SB)c..cooiiiiiiiiiiiiii i 4-20
42,9 Steprelays {S) vouviiiiiiieiraraiiiicr et i 4-20
4210 TIMErS (T) e v eren e iiteae it aaaa et e 4-21
4211 COUNEIS (C)u oo vt vt e iiiii i tnnaascnasastossnaaenransnonaans 4-—26
4212 Dataregisters (D) . ..o v civnene e i ean eraaeitaeesaanen 4-30
4213 Linkregisters (W) .. covuriieioien v iaiie ittt 4-31
4.2,14 Speciallinkregisters (SW) ... oo 4-33
Intermnal SystemM DeVICES . .o v vt i ieieiiiiree sttt e i e 4 -34
4.3.1 Functiondevices (FX, FY,FD} ..ot e i iiiiiia i iaaans 4-34
432 Specialrelays(SM). .. ciiiiini i e PEPIEEE 4-35
433 Specialregisters {SD)......covviiiinni it 4-36
Link Direct Devices (JIN) v vriieie i iie it i i 4-36
Special Function Module Devices (UINGE3) ..vvvviiiiiiieeneent DT 4 - 40
INdeX REgiSErS (Z) « oo v vvvvrenenasevesasnsessrtvirossasaassnasacusssnns 4-41
File Registers (R) «.vveverinoienaeereneserssteinsnaeataraststosensaccns 4-43
N 1 K () R T R R R R R R 450
POINIEIS . oot e it et ivenraeearanassasnasassssensacesetsasnsrsaseneenns 4 — 51
491 LOCAIPOIMIEIS ..ot iiiiriacinciaseieaccteaenssnnonenassnnns 4 —-51
492 COMMONPOIMEIS ..o eerenenreerrenssatssissasasnaraannasoronns 4-52
INterruPt POINEEIS (1), o oot i it ee i esoanea st 4-54
OHNEr DEVICES . . ot tvevrsenaesusrannerssvransnssssnssasetansanansnnns 4 —56
4.11.1 SFChlockdevice (BL) .o vvvvrrrenrrensnnanreneenssoonnnnansannes 4—56
4.11.2 SFCtransitiondevice (TR} . cc.viiieriereiiiiriireer et 4-58
4.11.3 Network No. designationdevice{J)cvveiriiriiiiriiaie e, 4 —-56
4.11.4 1/O No. designation device (U} e 4-57
4.11.5 Macro instruction argumentdevice (VD). ciiiiiiii it 4—58
Constantscouvierreeinriasansss P 4-59
4.12.1 Decimalconstants (K)............... e eeidesbansesseacasrreaneaas 4 -89
4.12.2 Hexadecimalconstants (H).covvvriiii i, 4-59
4123 Realnumbers (E) ccvvvvvnnenriirrnastasssissnanssasoanasannsens 4 -60
4124 Characterstring (") .. .o vvviin ettt 4—60
Convenient Uses forDevices .. .vvvieervriisnnesrrnatonrsssnasssscsassnns 4 - 61
4.13.1 Globaldevices &localdevices.vviireriniiiiriariiecanenveinanen 4 - 61
4132 Deviceinitialvaluescovriiieieriiiariniieriietitiiaeannas ...4-64

PARAMETERLISTvvvvravsucncananvanrasasasassssnsssanccacsssonas 5-1-5-6

PROCEDURE FOR WRITING PROGRAMS TOQnACPUcovvvvnrennn. 6-1~6-9
6.1 Writing Procedure For 1 Program.occeiieniaieinaiieeiesioananas 6-1
6.1.1 itemsto considerwhen creating one pProgramcvevrvivrrrsnnnnarns 6-1
6.1.2 Procedure for writing programs to the QnACPU. e 62
8.2 Procedure For Multiple Programscovivaenveinnen et 6-5
6.2.1 Items to consider when creating multlple Programs .. .o evvvereaatanrnnoas 6-5
6.2.2 Procedure for writing programs tothe QRACPU.ooviiiiint 6-7

About Manuals

The manuals related to the QnACPU are listed in the table below.

Please order those you require.

Related Manualﬂ

Manual Name

Manual Number

QnACPU Guidebook .
Aimed at people using QnACPY for the first time. Describes procedures for everything from creat-

Describes the system configuration, operation methods, etc. (Supplied with the product)

1B-66606
ing programs and writing created programs to the CPU, to debugging. (13FJ10}
Also describes how to use the QnACPU most effectively.
Q2A(S1)/Q3A/Q4ACPU User's Manual
Describes the performance, functions, and handling of the Q2ACPU(S1), Q3ACPU, and Q4ACPU, 1B-66608
and the specifications and handling of memory cards and base units. (13J821)
{Purchased separately)
Q4ARCPU User's Manual
Describes the performance, functions, handling, etc., of the Q4ARCPY, and also the specifications IB-66685
and handling of bus switching modules, system control modules, power supply module, memory {13J852)
card, and base units. (Purchased separately)
Q2AS(H)CPU(S1) User's Manual
Describes the performance, functions, handling, etc., of the Q2ASCPU, Q2ASCPU-81, QRASH- SH-3598
CPL}, and Q2ASHCPU-S1, and the specifications and handling of power supply modules, memory {BJ858)
cards and base units. (Purchased separately}
QnACPU Programming Manual (Common Instructions) IB-66615
Describes how to use sequence instructions, basic instructions, and application instructions. (13JFa7)
(Purchased separately)
QnACPU Pragramming Manual {Special Function module) IB-66616
Describes the dedicated instructions for special function modules available when using the (13JF48)
Q2ACPU(S1), Q3ACPU, and Q4ACPU. (Purchased separately)
QnACPU Programming Manual (AD57 Instructions) IB-66617
Describes the dedicated instructions for controlling an AD57{S1) type CRT controller module (13JF49)
avaitable when using the Q2ACPU(S1), Q3ACPU, or Q4ACPU. (Purchased separately) :
QnACPU Programming Manual (PID Control Instructions) IB-66618
Describes the dedicated instructions for PID control available when using the Q2ACPU(S1), (13JF50)
Q3ACPU, or Q4ACPU. (Purchased separately)
QnACPU Programming Manual (SFC) IB-66619
Describes the performance specifications, functions, programming, debugging, and error codes, for (13JF51)
SFC program. (Purchased separately)
For QnA/Q4AR MELSECNET/10 Network System Reference Manual |B-66690
Describes the general concept, specifications, and part names and settings, for MELSECNET/10. (13JF78)
(Purchased separately)
MELSECNET, MELSECNET/B Data Link System Reference Manual IB-66350
Describes the general concept, specifications, and part names and setlings, for MELSECNET (11}, (13JE70)
MELSECNET/B. . (Purchased separately)
Type SW2IVD-GPPQ GPP Function Operating Manual (Offline) IB-66774
Describes the how to create programs and print out data when using SW2IVD-GPPQ, and the of- (13J921)
fline functions of SW21VD-GPPQ such as fiie maintenance. (Supplied with the product)
Type SW21VD-GPPQ GPP Function bperating Manual (Online) IB-66775
Describas the onlineg functions of SW21VD-GPPQ, including the methods for monitoring and debug- (13J922)
ging. . : " {Supplied with the product)
Type SW2IVD-GPPQ GPP Function Operating Manual (SFC) IB-66776
Dascribes SFC functions such as SFC program editing and monitoring. (Supplied with the product) (134923)
Typs SW2IVD-GPPQ GPP Software package Operating Manual (QBTEL) \B-66777

1. GENERAL DESCRIPTION

1. GENERAL DESCRIPTION

This manual describes the required program types, the 1/O processing, the
devices, etc., when programming for the following CPU modules in the MEL-
SEC QnA series. :

* Q2AS(H)CPU(S1)

e Q2ACPU(S1)

s Q3ACPU

« Q4ACPU

« Q4ARCPU

All of the above modules are referred to generically in this manual as
“"QnACPU".

1.1 Programs
(1) Program management by memory card is possible

(a) Programs created at a peripheral device can be stored in the
QnACPU's internal RAM or memory card. Parameters, programs,
device comments, and device initial setting values can be stored in
the internal RAM and memory card. Other file register and fault
history data, etc., can be stored in the memory card only {storage in
the internal RAM is not possible. See Section 2.4). Note that device
comments ("** in figure below) stored in the internal RAM cannot be
used in the instructions of the program currently being executed.

Only parameters, programs, Device
commaents, and device initial setting —

values ¢an be written. QRACPU
Device Deviee
Parameters Programs Comments » :’r:;}‘lxoeis
Peripheral Internsl
device RAM
. Device
Device it File Foult -
Parameters Programs Comments :rr:'t:'ue!s registers mistory
memary
card
IR

1. GENERAL DESCRIPTION

= MELSEC-QnA
(b) The QnACPU processes programs which are stored in the internal
RAM. :
QnACPU
Internol RAM I Execution of program in internal RAM
Parameter
Program

Programs stored in the memory card can be executed only after they
are first read to (booted to) the QnACPU internal RAM. (Programs
to be read to the QnACPU are designhated by parameter settings, and
the boot operation is designated by a DIP switch setting at the

QnACPU.)
QnACPU
Interng! RAM Execution of program booted from the
1 Parometer memory card to the internal RAM.
i Program /
Memor'y card

Paratneter Boot

Program
I

(2) Program construction
QnACPU programs are stored in a file format in the internal RAM or
memory card. Multiple programs can therefore be stored in the internal
RAM and memory card by using different file names.
Multiple program
writing is possible
/ by using different
file names.
file name: ABC File name: ABC File nome: ABC File nome: DEF
Device
Parameter Program Comment Pregram)
Peripheral > QnACPU
device Writing from peripheral device to QnACPU.

This format permits the program creation operation to be split among
several designers, and allows program management and maintenance
to be carried out according to the process or function in question.
Moreover, revision and debugging is required only at the relevant pro-
grams when the specifications are changed.

1. GENERAL DESCRIPTION

MELSEC-QnA
(a) Example of program creation split among several designers:
QrACPU
W ety tard

igner A -

Programs Ato C
are executed in -
sequence.”

Designer B

. Y
v
]
[+
g
E)
o

Split —

agcording :: Programs Ato D
to process are executed in
content By proces o[ProgromC_| sequence.*2

1. *: See Section 3.2 for details regarding the execution sequence.

{c) Example of programs spiit according to function:

QnACPU

[Internal RAM
! / Memory card

-~
Initiol processing >
¥

N

! | The execution
segusence and

Program A

Program B

Split

according

to function Communication
content processing

L Error processing

1

Il

»| Program C

i

»i Program D

execution
conditions can
be set to
conform to
programs A to
D, *2

| —

1. *1: Programs split according to process can be further split according to function.

2. *2. See Section 3.2 for details regarding the execution sequence and exscution
conditions.

1. GENERAL DESCRIPTION
% MELSEC-QnA

1.2 Convenient Programming Devices and Instructions

The QnACPU features devices and instructions which facilitate program
creation. A few of these are described below.

(1) Flexible device designation

(a) Word device bits can be designated to serve as contacts or coils.

{For QnACPU} [For ACPU]
% bos” X0
—l { oA ¢ | b Mov | oo | xemo
MS
Switches
i Vd

The 1/0 status of b10 of DO I <\ M0 >—
b5 of DO is used ON and
as ON/OFF data OFF {1/0})

1 wov | kewo| Do |-

¥ « D05
b15 b14 b13 b12 b1 b10 b bB b7 b6 bS b4 b3 b2 bl bO

o[T T T T T A L]

L. Bit designation

Word device
designation

(b) Direct processing in 1-point units is possible within a program simply
by using direct access inputs (DXZ) and direct access outputs

(DY:3).

[For QnACPU] [For ACPU]

MO DX10] NOO36

at (o)) = HF
L (Always ON) .
Cutput to Ma036
output module _.| !——l SEG |K1x1o{ K180 |
at instruction
execution (X10 to X13 refrash)
X110 .

Read from I | | 7 Y100
input module _l ~ >_

at instruction
execution MO036

—] f—————{ sts_Jk1v100] k180 |-

(Y100 to Y103 refresh)

1. GENERAL DESCRIPTION
, MELSEC-QnA

(c) Differential contacts ({1}/-|}) eliminate the need for converting
inputs to pulses.

[For QnACPU] [For ACPL]
X0 X1 . X0
!
It [{ vio0 = H} PLS | MO |
Y100 _ Mo X1
__l — — 100 >
N at load Y100
ON at lsading
adge of X0 _|

{d) The special function module’s buffer memory can be used in the
same way as devices when programming.

[For QnACPU] [For ACPU]
x0 ’ * ’ b (1] .
f—————{ +¢ Juswi2| 00 S| fROMP| W5 | K1z | D10 | Xi
Readout of ABBAD
butfer memory’s + [D10 | DO

address 12 data

= US\G12
L Buffer memory
address desig-
nation
Special function
module desigha-
tion

QnACPU
Input (18 points)
Input (16 palnts)
input (18 polnts)
ASBAD
ASBAD
ABZDA
Output (18 points)
Qutput (18 points)

Power supply rmoduls

I—lnpuh’output Nos.: X/Y50 to X/Y&F

(e) Direct access to link devices (LX, LY, LB, LW, LSB, LSW) of MEL-
SECNET/10 network modules is possible without refresh settings.

X0 .
p————{"+¢ fiswiz] oo

Direct readout of the
No.5 network module's
"LW12" link register.

2 Y ey

B e | xJO\W12

E —l.£|E a|®

NI L A e

5g =] g Py 2|12 é ele tlnkreglster
={e2 s ;

AS|B|=E gleieisls asignation

8 E HE

£ 2ig 1]

) == ale Network No.

dosignation
Network No.5

1. GENERAL DESCRIPTION

MELSEC-QnA

(2) Edge retays simplify pulse conversion processing

{a) The use of a relay (V) that comes ON at the leading edge of the input
condition simplifies pulse processing when a contact index qualifica-
tion has been made.

[Circuit example]

X0Z1 VOZi
i
i < wozt
[Timing chart]
‘ oN
X0 OFF i | |
ON
When VO OFF r l___[_"""
Zi=0 on :
M0 OFF | | | |
I 1 sean l
) ON
X1 OFF §
Wh ON
en
Y1 OFF i
Z21=1 on
M1 OFF I !

(3) Simpler data processing

(a) Rea! numbers {floating decimal point data) and character string
constants can be used in the programming as they are.

Real Real
humber numior umbor
X0 data data data
——i oo RO
}’—- E+P‘ } £1.23 | w | no E1.23 + L E345 - —>» | FE4E8 4
Reat number ADD instruction D1 Rl
Character Character Character
—-—'{ $+P I 05 i~-51..| R10 string data string data string data
Character string data LINK instructi o5| "2 | et Dio} w2v } @
D6} "C | A + "=S1" = D11 MO | AT
DT Hur lel 012 Ilutl IIPII
[»3] RUL « D13 | " | v
D14 INUL & | "1™

[REMARK]

1. *: NUL indicates "00n" {character string END).

1. GENERAL DESCRIPTION :
MELSEC-QnA

{b) Data processing instructions such as table processing instructions,
etc., enable high-speed processing of large amounts of data.

X0
l—-—l}—{nnsp[po | ro [K2 |,.1 FIFO table FIFO table

Inseriion source Insertion RO 3 »RO 4

destination Insertion position - R1 10 R1 10

instruction for data ol 15 |/ R 20 rR2 15

insertion at table . ! a3 30 \R3 20
R4 \R4 30

(4) Easy shared use of sub-routine programs

(a) A common pointer can be used to call the same sub-routine program
from all sequence programs being executed.

Program A
Sub-routine program
! MO _: P1000 call SM400 MO
1 .
I o i} cALP [P1000H »$1000 || b————{ oV | Foo [P02
' ’ H Always
L ’ ON
MO
vov | Fo1 | FD2 |5
Program B
£1000 call
o —{ rer H
l
] F ¥ CALF[PTG00)
I |
(b) The use of sub-routine call instructions with arguments simplifies the
creation of sub-routine programs which are calied several times.
Argument designation Sub-routine program
MO (A \ PO call ‘ SM4C0 MO
. ! 1 f
o F{car] po [wo frexo] RO H .ﬂo—AT]1 F Mvov | FDo | 02 H
I———- Argument from FD2 * og‘:ays
Sub- : Argement to FD1 L)
yb-routine
program — Argument to FDO Mov l Foi l Fo2 }_
deslgnation
Argument
designation RET
M0 A, D

[N
100 |— |—{cattP] pe T w10 [kax1o0[r10 |4
(-

~ Argument from FD2 *

L———— Argument t¢ FD1

Argument to FDO

1. GENERAL DESCRIPTION

REMARK

1. The QnACPU automatically determinas the argument input/output condition.

Sub-routine program "source” data is processed as input data to the sub-rou-
tine program.

Sub-routine program "destination” data is processed as output data from the
sub-routine progran.

1. GENERAL DESCRIPTION
MELSEC-QnA

1.3 Related Programming Manuals

In addition to this manual, the 5 manuals shown below also contain informa-
tion regarding instructions used in QnACPU operation.

« QnACPU Programming Manual (Common Instructions)

» QnACPU Programming Manual (Special Function Module)
« QnACPU Programming Manual (PiD Control Instructions)
« QnACPU Programming Manual (AD57 Gommands)

« QnACPU Programming Manual (SFC)

Use this manual for information regarding QnACPU programs, devices, and
input/output processing, etc., and refer to the other manuals for information
regarding the instructions which are used.

This manual

Explains the programs, device hames,
and input/foutput processing related to
QnAGPU operation.

QRACPU QnAGPU { anAcpu QnAGPU
P g Programming " "
regramming Manual Programming Programming GnACPU
Manual (Special Manual Manual Programming
(Common P on (AD57 (PID Control Manual (SFC)
Instructions) Module) Commands) Instructions)
Explains the common Explains the instructions Explains the ADS7 Explains the instructions Explains SFC
insteuctions not described used for special function commands used for used for PID control. operation.
in the manuals shown at module (AJ71QC24 and ADS57/ADS8 control.
right. AJTIPTI2.83, elc.)
operation.

1) For Q4ARCPU, apart from the programming manual indicated above, there is
also the Q4ARCPU Programming Manual {Application PID Edition).

QnACPU FILES

2. QnACPU FILES

Parameter, program, and comment data, etc., are assigned file names and.
extension names, and are then stored in the QnACPU internal RAM or mem-
ory card.

When writing this data from a peripheral device to the QnACPU, the files to
be written are specified by their type (parameter program, comment, etc.)
rather than by their extension names.

(The peripheral device automatically assigns the appropriate extension
name for the file type which has been specified.)

The use of different file and extension names permits multiple files to be
stored in the QnACPU.

Because the QnACPU can also process a given program as one file, pro-
grams created can be managed individually according to their “designer”,
"process”, or "function" by using different program file names. Moreover,
program execution is possible for multiple programs stored at the QnACPU.
(See Chapter 3 for QnACPU program execution details.)

The QnACPU stores files in the available areas in the internal RAM and
memory card.

If the continuous available memory area is insufficient to accommodate a
file for which a writing request has occurred (from the peripheral device),
writing to the internal RAM and card will be impossible. (See Section 2.6.2)

A file name, file size, and creation date will be appended to each file.
The file list shown below is displayed at the peripheral device.

Drdve/Path :CINCPPRNIERN .
Sylt MELCD Title 2QnACPY)
- Hachine sHELOD Title sSample progran

LEPC> 528 15137 ¥
PARAN Pavamutar 338 5. 15322 S‘Imﬂlr l1ine L parameter fils
LINEL @nh Seg 1687 96-85-20 15:18 :Tranzfer linc 1 Drogran file

PilaCsd>: 2 . Fras 154566656Byteds>

The file list display items are explained below.

(1) File name

" The file name consists of the file name (max. 8 chars.) and the exten-
sion (3 chars.) The QnACPU distinguishes between upper case and
lower case characters. (At the peripheral device, all characters are
converted to upper case characters.)
An extension name which corresponds to the file type designated
when the file was written in the peripheral device is automatically ap-
pended to the file name.

2. QnACPU FILES

(2)

3

#

MELSEC-QnA

Size

The file size is indicated in byte units.

Files are stored in the internal RAM in 4-byte units (1 step) and at the
memory card in 1-byte units. When calculating a file's size, please
note that at least 64 bytes (132 bytes for programs) will be added to
all user created files other than file registers,

Data & time
The date & time when the file was written from the peripheral device
to the QnACPU is indicated.

Titie
Indicates the uset file application, etc. (max. of 32 chars.)

2. GnACPU FILES

2.1 QnACPU internal RAM & Memory Cards

Designating the internal RAM & memory cards

The QnACPU features 2 types of file storage area: the internal RAM, and
the memory cards, with each memory area being assigned a drive No.”
The internal RAM is assigned drive No.0, the *CARD A" memory card is as-
signed drive Nos.1 & 2, and the “CARD B" memory card is assigned drive
Nos.3 & 4.

CARD A |

RAM area
memory card (drive No.1)

Internal RAM
__________ (drive No.0)

ROM arsa
{drive No.2)

CARDB

RAM area
memoty card {drive No.3)

ROM area
(drive No.4)

REMARK

1} *: When writing parameter data and programs, etc., from the peripheral device to
the QnACPU, the memory te which the data is written (internal RAM/memory
card) is designated by the drive number.

2. QnACPU FILES

MELSEC-QnA
2.2 Internal RAM

The memory map and memory size of the QnACPU internal RAM are de-
scribed in this section. |

POINTS’

(1) Before the QnACPU internal RAM can be used for the first time, it
must be formatted. For details regarding the internal RAM format-
ting procedure, refer to the "SWCIIVD/NX-GPPQ Type GPP
Function Software Package Operating Manual (Online)."

(2) Program files are stored in the internal RAM in 1k step units.

2.2.1 Memory map

Files are stored in the internal RAM in the following format.

Internal RAM

3

4K steps
[
\ i !
0-15k steps
(1k step units}
y
User files
parameters, ‘ L Memory size after
formatting
sequence programs, (see Section 2.2.3)
comments,
device initial values

2.2.2 Formatting precautions

The QnACPU internal RAM can only be used after being formatted at the
peripheral device.

When formatting the internal RAM, designate whether or not a system area
is to be allocated for user settings. Up to 16k steps (in 1-step units} can be
allocated for the user setting system area. -

The system area user setting data is used for communication with the serial
communication unit, and for registering monitor data from peripheral de-
vices connected to other stations in the network.

Although the designation of a user setting area speeds up monitoring from
the seria! communication unit and other network stations, it also reduces
the amount of space available for user files. '

2. QnACPU FILES

2.2:3 Memory capacity after formatting

After the internal RAM has been formatted, the internal RAM capacity
which is displayed at the peripheral device’s file list display will be as
shown below.

Table 2.1 Memory Size after Formatting

CPU Model Name Memory Capacity
Q2ACPU, '
Q2AS(H)CPU 28k steps (114688 bytes)
Q2ACPU-51,
Q2AS(H)CPU-S1 80k steps (245760 bytes)
Q3ACPU o2k steps (376832 bytes)
Q4ACPU 124k staps (507904 bytes)

2. OnACPU FILES -
' MELSEC-QnA

2.3 Memory Card

The memory map and memory capacity of the QnACPU memory card are
described in this section.

POINTSI

(1) Before the QnACPU memory card can be used for the first time, it
must be formatted by a peripheral device. Parameter data and
program files, etc., cannot be stored at the memory card until it has
been formatted. For details regarding the memory card formatting
procedure, refer to the "SWEIVD/NX-GPPQ Type GPP Function
Software Package Operating Manual (Online)."

(2) Program files are stored in the memory card in 512 bytes (128
steps)} step units.

2,3.1 Memeory map

Files are stored in the memory card in the following format.

memory card

3
This area is automatically
sacured after formatting.

User files
parameters,

sequenpe programs, Memory capacity after

comments, formatting

device initial values

2. QnACPU FILES

2.3.2 Memory capacity after formatting
After the memory card has been formatted, the memory card capacity
which is displayed at the peripheral device’s file list display will be as
shown below.

Table 2.2 Memory Size after Formatting

Memory Card Memory Capacity (k-bytes) Max. Number of Files Stored

Model Name SRAM E?PROM | Flash Memory | SRAM E2PROM | Flash Memory
QIMEM-64S 59 — — 118 — —
QIMEM-128S 123 — — 128 — —
QIMEM-256S 250.5 — — 128 — ——
QIMEM-5128 506 —_ — 128 — —
QIMEM-1MS 1016.5 — — 128 — —
QIMEM-2MS 2036.0 — — 256 — —
QIMEM-64SE . 28.5 29.0 — 57 58 —
QIMEM-128SE 58.5 © 53,0 - 117 118 —
QIMEM-256SE 122.5 123.0 — 128 128 —
QIMEM-512SE 250.0 250.5 — 128 128 —
QIMEM-1MSE 5055 506.0 — 128 128 —
QIMEM-2565R 122.5 — * 128 — 128
QIMEM-512SR 250.0 — * 128 o 128
QIMEM-1MSR 505.5 — . 128 — 128
QIMEM-2MSR 1016.0 — » 128 — 128

* Depends on the specifications of the memory card reader/
writer that does the formatting.

2. QnACPU FILES

2.3.3 Executing memory card programs (boot run)

(1) The QnACPU only processes programs which are stored in the inter-
nal RAM. Therefore, programs stored in the memory card must be
booted (read) to the internal RAM using the boot file name designated
by a parameter setting. The file designated in the parameters is
booted (read) from the memory card to the internal RAM when the

- power is turned ON or the QnACPU is reset.

[Boot fﬁle setting window]

| (Boot File Settingd __ Lahel =
Progran Type TX Sre |IX Deat
Drive ive

1 | [N < 2> £ {1
2 1C 1< 2 [1 Iy
3 |t 1< > 1 11
4 |L 1 £ > [[
s |L 1 K > (4] [
6 |L 1 K > E] [1
? |r 1€ > [4] [
g8 {C 1 £ > {1 i1l
¢ Jc 1 < > 1 11
18 |C 1 i< > L1 |]
11 |t 1K > T12 [13
12 |C 1 KK > [} (4]
tPpeu —

&
=
]
T
s
3
%
c
5
z
i
4
K
i)
i
a
s
&
s
@
2

\-—lnternal RAM drive No.
designated here

Memory card drive No.
designated here

Boot file designated here

(2) File additions from the memory card to the internal RAM, changes,
and deletions are impossible while the QnACPU is in the RUN status.
To execute these operations, STOP the QnACPU, designate the de-
sired boot file (by parameter), then switch the QnACPU to the RUN
status again.

GnACPU
Boot processing procedure
Memory caed
Internol RAM 1. Designate (by parameter
:- - "; - “; ": setting) the file to be
rogram - Fo————=-- 1 ransf .
[A P e :_ Progrom A | transferred
r-=------=21 | ===7===7= 2. Switch the QnACPU from
L ProgamB8] STOP to RUN. :
F-—-—es=== A For o= = : y
- I C 3. Designated file is trans-
IL. - _p_ro_?r_uin _C_ - 2) :_ - _m_giuin g JI ferred from the memory
card to the internal RAM.

4, Execution of the trans-
ferred file begins.

2. QnACPU FILES

2.4 File Types & Storage Destinations of Files Managed by QnACPU

(1)

File types & storage destinations of files managed by QnACPU

Files which can be stored in the internal RAM, and those which can be
stored in the memory card are determined according to the file type.

Storable files and their storage destinations are shown in Table 2.3
below.
An memory card may or may not be necessary, depending on the type
of file to be stored in the QnACPU.

Table 2.3 Files & Storage Destinations in QnACPU

Storage Drives *1 ’
ftem File Type File Name *4 Restrictions Reference
0 1 2 3 4
For Parameter e QPA O o] O o] O | 1{ile perdrive |Sections
Program gg‘g‘;;‘:;g:gram’ menerppG | 02| 02| 02| 0%} 02 Section 3
Device comment e oD (O | O O | O | O |Max.124files | Users*3
Device initial values reroerr QD O O O O Q |Max. 124 files Section 4.13
For devices | g registers weaee R | X | O] A} O | A |[Max t24files | Section 4.7
Simulation data resrenr QDS X O X O X User's *3
Local device e QDL X O X Q X |1 file per CPU Section 4.13
Sampling trace data e QTS
B |t e x o | x o | e
SFC trace data e QTR
sggfna:gs Fault history data et QFD X o X o X User's *3

1} *1: Symbols used in the above table are explained below.

Symbol

Meaning

® Must be stored.

Stored when required.

Q
X Cannot be stored.
A

When flash memory is used: File reading only (writing is impossible).
When E2PROM is used: Writing is possible by EROMWR instruction.

2) *2: QnACPU p}ocesses programs stored in drive 0 {internal RAM).

Programs stored in drives 1-4 must be booted to the internal RAM in order

to be executed.

3) *3: User's Manual of the CPU module used.

2. QnACPU FILES

MELSEC-QnA

4} *4: The filo name configuration is as follows:

=ssaraxx QPR

|—~ Extension

==+ File nhams

Sinee files are designated at the psripheral device with the file name and file type,
there is no heed to think about the extention.

The peripheral device converts the file type of the designated file to the extantion
bafore writing it to the QnACPU.

5) *5: Device comments stored at drive 0 cannot be used at the comment instructions
(LEDC, etc.) of sequence programs and SFC programs.

2. QnACPU FILES®

2.5 Program File Configuration

Program files consist of a file header, an execution program, and steps se-
cured for write during RUN.

As shown below, the size of a program stored in the QnACPU includes all
the above components.

File header
_ *Number of steps®
Execution displayed at)
program © programming *Number of steps" displayed

when writing to QnACPU
occurs {1k step units)

Steps secured
for write during
RUN

r

+ File header : The file name, file size, and file creation data, etc.,
are stored in this area.
132 bytes (33 steps) fixed.
+ Execution program : The created program is stored in this area.
: 1 step = 4 bytes.
» Steps secured for : This area is used when write during RUN that
write during RUN increases the number of steps is executed at a
peripheral device.
Default value = 500 steps (2000 bytes).
The number of steps can he changed using the
write options at the peripheral device's PC menu.

/ Default value

[Sealstop
2. 'Deuice Comment 1. Range 1.¢#> Entirg Range ’
Datail Range

2.¢ > Spacity
2. Cat Pat 1.{%> Cgl.l Fat <[321Char per Comment)
2.(> PDT Bat <Save Onlygc

CancoldN?
e Space:Select EsciCloce]

During programming at the peripheral device, the total of the file header
size and the number of execution program steps is displayed as the "num-
ber of steps used."

'[Ladder readout screen]

1t bsHanatar Zriindan S/0ptien ALt tenn
tap 3 LENSAMP Ins

slit X <48 >
IEND)

\ i "Number of steps used”
display

Program storage capacity differs depending on the memory where programs are stored.

Memory Program Capacity Unit
Internal memory 4096 bytes (1k steps)
Memory card 512 bytes

2-11

2. QnACPU FILES

2.6 File Operation and File Handling Precautions

2.6.1 File operation

Using the "online” function of the GPP peripheral device, the file operations
shown in Table 2.4 below are possible with regard to files siored in the in-
ternal RAM and memory cards.

However the availabie file operations will vary according to the presence or
absence of an entry code (registered by peripheral device), the QnACPU
*write protect” switch setting status, and the QnACPU RUN/STOP status.

Table 2.4 File Operations from Peripheral Device

Operation
File Operation Enabled/Disabled *1 Operation Description
A B c 1]
File list o | A% | o A list of files stored in memory is disptayed.
Read o | A% o o | Files are read from memory.
Write *4 A2 | A% | x | A |Files are written to memory.
Program writing during RUN status | A2 | A | x o ?‘l&%r:tn;t:’vsriting is executed during the QnACPU
Rename A2 A A | The name of a file stored in memory is changed.
Copy A | A% A | Afile stored in memory is copied.
Delete A2 | A x | A file stored in memory is deleted,
70 momoryorgaize 4 * |4 | x| x| Momon eswnichato o longercntis r
PC memory format A? | A X X | Memory formatting is executed.

1) *1: The codes (A, B, C, D) used at the "operation enabled/disabled" item in the
above table are explained below.

+ Operation enabled/disabled

Code

Description Reference

When "write prohibit® entry code is
registered at CPU

When *read/write display prohibit”

entry code is registered at CPU gso%i'?;ﬁas:‘éa‘ of the GPU
When the CPU's "system protect” {Detailed information)
switch is ON)

When a CPU RUN/STEP-RUN status is

in effect

+ symbols used in table

Symbol Description
o Execution enabled
A Executlion enabled with some restrictions
X Execution disabled

2-12

2. QnACPU FILES

2) *2: Execution of parameter and program files is only possible when the entry codes
match.

3) *3: The status is "operation disabled" (X} in the following cases:
« Parameter program + program file
* When a new file is created during the RUN status
{When the same file as the file being copied does not exist at the copy
destination)
+ When copying to drive D during the RUN status

4) *4: In order 1o secure a contiguous area for the data of a designated file, a file shift
mayoccur if the file size is increased.

5) Reading/writing to the memory card's E2PROM is possible in the same manner as
at its RAM. ‘
However the processing time is lenger when writing to the EZPROM than it is when
wiiting to the RAM.

6) File cannct be written directly from the peripheral device to the IC memory card’s
flash ROM. To do this, a memory card reader/writer set must be installed at the
GPP function peripheral davice, and writing executed via that reader/writer.

2. QnACPU FILES

2.6.2 File handling precautioné

Precautions regarding the handling QnACPU files are discussed in this sec-
tion.

(1) File contiguousness in the memory

{a) Interna! RAM and memory card files are basically arranged in a
contiguous manner.
However, following a number of file deletions and writing operations,
the amount of contiguous vacant space may be reduced to the point
where files can no longer be stored, even though the overall vacant
space is adequate.

(b) When the overall vacant space exceeds the size of the file to be
written, the "PC memory organize” function (the GPP function pe-
ripheral device online mode) can be executed to gather all the
non-contiguous vacant space into a single contiguous area.

Example 1: When writing to the QnACPU internal RAM is
impossible:
To simplify the explanation, system files and
parameters, etc., are excluded.

Pragram D Program E
writing writing
enabled disabled *1
Program A Program A Program A Program A
8k steps 8k steps 8k steps
yaekms(:g::'ze: Program B —_— Program D [Program D | {4k steps}
. s R | T rreaTe g
6k steps Write @@Naﬁantﬁ Program E § il (2K steps)
Program request writin
ProgramC | Bis for ProgramG | ue%t _ Program C
6k steps deleted. program D &k steps q 6k steps
Program E |22 %
10k steps
{4k steps)
Overalt 8k steps 14K steps 10k steps 10k steps
vacant P p
space
Contiguous
vacant 8k steps 8k steps 8k steps 8k steps
space . 6k steps 2k steps . 2K steps

1} *1: Wrlting to the internal RAM is impossible because the amount of contiguous
vacant space is only 8K steps.

2. QnACPU FILES

Example 2: When the "PC memory organize” function is executed:
When the internal RAM condition is as shown in
Example 1 on the previous page, the “PC memory
organize” function can be executed 1o secure 10k steps
of contiguous vacant space ("*" in fig. below).

Program E
writing
enabled

Program A Program A Program A
8k steps 8k steps 8k steps
&h% Program D Program D
vacant
. p
Program G QI;’gCa:;:::Dry Program C w;ﬂ?,:;m E Program C
6k steps function 6k steps 6k steps
g = executed 2 2
Program E
10K steps
Overall)
vacant 10k steps 10k steps Ok steps
space
Contiguous
vacant 8k steps’ 10k steps Ok steps
P
space

(2) Power OFF (or reset) during program operation

(a) If power is switched OFF (or a reset occurs) during a file operation
which will not cause a file shift, the memory data will not be lost.

(b) If the QnACPU battery backup is in effect, the memory data will not
be lost if the power is switched OFF (or reset occurs) during a file
operation which causes a file shift.
Files stored in the memory card will not be lost unless the memory
card is removed from the QnACPU while the power is OFF.

POlNTSI

» File size change

+ New file creation

¢ PC memory organize function

(1) The following file operations can cause a file shift:

(2) 1 a power OFF occurs during the above operations, the data up to
the power OFF will be stored in the QnACPU internal RAM, and will
be restored when power is switched ON again. A battery backup is
required in order to save internal RAM data is this manner.

2. GnACPU FILES

(3) Write during RUN when program file size is increased

(a) The QnACPU program file size is the created program space plus
the steps secured for write during RUN. When write during RUN is
executed using the peripheral device’s GPP function, the program
size should not exceed the file space secured when initial program
file writing occurred.

{b) Write during RUN is impossible if the size of an edited program
exceeds the program file space secured when initial program file
writing occurred. . ’

¢ If a file’s size is likely to be increased by write during RUN, set
the steps secured for write during RUN in'advance at the pe-
ripheral device,

» |f the QnACPU is stopped, writing is possible even if the file
size has been increased.

(4) Simultaneous access of a single fite from multiple peripheral devices

(a) The QnACPU permits a file which is being accessed by an R5-422
connected peripheral device to be accessed simultaneously by an-
other peripheral device which is connected via a network or serial
communication module,

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3. SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDITIONS

Sequence programs and SFC programs can be executed at the QnACPU.
This chapter describes the sequence program configuration and execution
conditions.

SFC programs are not described in this manual.

For details regarding SFC programs, refer to the QnACPU Programming
Manual (SFC). =~ '

3.1 Sequence Program
(1) Definition of sequence program

(a) A sequence program is created using QnACPU sequence instruc-
tions, basic instructions, and application instructions, etc.

Seguence instruction

X6 MO ' K100

il <
TO
i o >

%1 Basic instruction

[r
I (BN Kkaxo Do :|—

X41 Application instruction

——H——[FRDM H5 K6 D10 K1]—

(b) There are 3 types of sequence program: main routine programs,
sub-routine programs, and interrupt programs.
For details regarding these programs, refer to the following sec-
tions of this manual:
+ Main routine programs : Section 3.1.1
» Sub-routine programs : Section 3.1.2
« Interrupt programs : Section 3.1.3

File A

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

S MELSEC-QnA

1) For details regarding the QnACPU sequence instructions, basic instructions, and
application instructions, refer to the "QnACPU Programming Manua! {(Common
Instructions)”.

(2) Sequence program writing format

Programming for sequence programs is possible using either the relay
symbolic language (ladder mode), or the logic symbolic language (list
mode). - ‘

{a) Relay symbolic language

« The relay symbolic language is based on the relay control lad--
der.
Programming expressions are similar to the relay control se-
quence ladder.

« Relay symbolic language programming occurs in ladder biock
units.
A ladder block is the smallest unit of sequence program proc-
essing, with the ladder beginning from the left bus and ending
at the right bus.

Left bus

=1

o lr—Right bus

Ll
=8
]

Step N&.

Ladder blocks

A"t

1
[]
1
]
1
1
1
t
¥
]
]
1
1

1
1
L]

]

1

[}
[}
¥
i

]
[}
]
1
1

r
1

It
[

* X0 to X5: Indicate inputs.
Y20 10 Y24: Indicate outputs.

Fig.3.1 Ladder Block
(b) Logic symbolic language (list mode)
The logic symbolic language uses dedicated instructions instead of

the contact symbols, coil symbols, etc., used in the relay symbolic
language.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

{c) Program processing

Sequence programs are processed in order, beginning from step 0
and ending at the END instruction.

Processing of relay symbolic language ladder blocks begins from the
left bus, and proceeds from ieft to right. When one ladder block is
completed, processing proceeds downward to the next ladder block.

{Relay symbolic language] ‘ [Legic symbolic language]
Left to right i
—_— [T 2 ——C1)
B 9
'‘FERE (w0 I
o Hi——{b—y g fp——————— 710 r L m—0
M © 3 M0 = w0
2 9w - Executed In 4 OR9 —)
Top to bottom “(':)_' order, beginning| 3 &= X
X5
P fromstepoand | 3 Lo X &
ending at the 2 oM o — @
un END instruction | 3 oor via —(10)
10 [0 y 10 B {11)
* Numbers {1} - {11} indicate the processing I
order of the sequence program, Step No.

Table 3.2 Sequence Prdgram Processing

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.1.1 Main routine program
(1) Definition of main routine program

(a) A main routine program is a program which begins from step 0 and
ends at the END/FEND instruction.

(b) The main routine program execution begins from step 0 and ends at
the END/FEND instruction.

1) i only one program is being executed, processing will begin from
step 0 again after the END/FEND instruction is processed.

Step 0
D s Program execution
Main routine
program Retuins to step
0 when only one
/_ program s being
‘execuled.
END/FEND END/FDND ;
END
processing ||

2) if multiple programs are being executed, processing which oc-
curs after the END/FEND instruction varies according to the
designated execution conditions. (See item (2) below)

{2) Execution conditions for main routine programs
If multiple programs are being executed, the following four types of

execution conditions can be designated (by program settings in the
parameters) according to the application in question.

Initial execution program: See Section 3.2.1.

Scan execution program: See Section 3.2.2.

*

Low-speed execution program: See Section 3.2.3.

Standby program: See Section 3.2.4.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.1.2 Sub-routine programs

(1)

2

3)

Definition of sub-routine program

(a) A sub-routine program is a program which begins from a pointer
(P} and ends at a RET instruction.

(b) A sub-routine program is executed only when called by a CALL (P)
instruction from the main routine program.

Sub-routine program application

(a) The overall step count can be reduced by using a sub-routine pro-
gram as a program which is executed several times in one scan.

(b} The step count of a constantly executed program can be reduced by
using a sub-routine program as a program which is executed only
when a given condition is satisfied.

Sub-routine program management

Sub-routine programs are created after the main program (after FEND
instruction), and the combination of main and sub-routine programs can
be managed as one program,

Sub-routine programs can also be managed as separate, discrete pro-
grams (standby programs). (See Section 3.2.4 for details regarding
standby programs). '

(a) When created after the main program

« A sub-routine program is created between the main program’s
FEND and END instructions.

« Because there are no restrictions regarding the order in which-
sub-routine programs are created, there is no need to set the
pointers in ascending order when creating multiple sub-routine
programs.

« Either a local pointer or a common pointer may be used. *

Program A - QnACPU

Memory card/
intemal RAM

Main routine
program g Write Program A
fite

FEND

Sub-routine

program 9

Pa

P1

o
..___......_...._...{m
H
4__[;5
e
4.__[;5

Y Y Y

END

3-5

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

1) ": See Section 4.9 for details regarding local and common polinters.

MELSEC-QnA

2) See Section 4.8 for details regarding sub-routine program nesting.

(4) Using loca! devices used by the file where a sub-routine program is
stored ' _ :
it is possible to use local devices that are used by the file where a
sub-routine program is stored when executing a sub-routine program.
Whether or not such local devices are used is set by special relay
"SM776".

(a) Switching over local devices by setting ON/OFF for a special relay

SM776

OFF Executes calculation by the local devices that are used by the file
where the sub-r

e

[Operation at *SM776 : OFF" when the function version is supported or
not supporied]

File name: DEF

File name: ABC {Standby program)
X0 Execution of the sub-rou- | p1ooH |
-12 CALL tine program . R
1
H Sub-routine E
program !
L S N g [H
Read/write of the
Local devices used by the local davices Local davices used by the
file name: ABC file name: DEF

[Operation at "SM776 : ON" when the function version is supported]
File name: DEF

File name: ABC {Standby program)
X0 .
L CALLIP10D Execution of the sub-rou- | P10oH
2 < tine program LT T
- WP M i Sub-routine E
- program !
$ Read/write of the (. d
L total devices RET
£l N B
Local devices used by the _,!| Local devices used by the
file name: ABC file name; DEF

3. SEQUENCE PROGRAM CONFIGURATION &
-EXECUTION CONDITIONS '

(b) Cautions

+ If SM7786 is ON, the local device data is read when the sub-rou-
tine program is called and the local device data is saved after
the execution of the RET instruction.

Accordingly, scan time is elongated by the time as shown below
when a sub-routine program is executed once with the setting of

"SM776: ON".
o Q2ACPU(S1), : 560+ 13"
Q2ASCPU({S1) (Number of words of a local device) [us]
+ Q3ACPU 1425+ 1.0~
{Number of words of a local device) [pus]
+ Q4ACPU, :220+0.8*

Q2ASHCPU(S1) (Number of words of a local device} [us]

+ ON/OFF setting of SM776 is possible in unit of QnACPU or
Q2AS(H)CPU. ,
Setting in unit of file is not possible.

+ [f the ON/OFF setting of SM776 is changed whilie a sequence
program is executed, the control is made according to the infor-
mation after change.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.1.3 Interrupt programs
{1) Definition of interrupt program

(a) An interrupt program is a program which begins at the interrupt
pointer (13)*, and ends at the IRET instruction.’

(b) Interrupt programs are executed only when an interrupt factor oc-
curs. * . ‘

(2)' Interrupt program management

Interrupt programs are created after the main program (after the FEND
instruction), and the combination of main and sub-routine programs can
be managed as one program.

Interrupt programs can also be managed as separate, discrete programs
(standby programs). (See Section 3.2.4 for details regarding standby
programs). However, the same interrupt program pointer humber cannot
be used more than once in the program being executed by the OGnACPU.

‘(a) When created after the main program

« An interrupt program is created between the main program’s
FEND and END instructions.

+ Because there are no restrictions regarding the order in which
interrupt programs are created, there is no need to set the inter-
rupt pointers in ascending order when creating multiple inter-
rupt programs.

Program A QnACPU
h Mamory card/
. . internal RAM
Main routine Write
program \ Program A
file
FEND
Al 1 —t }—.-———<v10 >—
ekt H
Interrupt
program
9 132 (] i——<w1 b
[msr]—
128] 1z >+
~ [m H
END
o

Interrupt pointer

1) *: See Section 4.10 for details regarding interrupt factors and interrupt pointers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(3) Executing interrupt programs

(a) in order to execute an interrupt program, IMASK and El instructions -
are required to obtain permission for the interruption. *1

« If an interrupt factor occurs prior to an "interruption permitted”
status, the interrupt program for the factor in question witl be
executed when an "interruption permitted” status is established.

o If an interrupt factor occurs during a STOP/PAUSE, the interrupt
program for the factor in question will be executed when an
"interruption permitted" condition is established following a return
to the RUN status.

Interrupt program exampls Interrupt program execution
Program execution

o e,

—a K Interrupt program for
Main : . 10" activated
a4 { M routine i| == Interrupt program
program r-I ! for 129" activated
1
1
til——— »H Endof main FEND t
routine program 0
+————{ FENDH
interrupt
pH— la program
10" interrupt X
rogram 129
[IRET H preg =
Interrupt
29— H program
"129" interrupt
rogram X
[T H prog END Ny
¢—————{EnD H

Fig.3.3 Interrupt Program Execution

(b) When an interrupt factor occurs, the interrupt program with the
interrupt pointer number corresponding to that factor is executed.
However, interrupt program execution varies according to the condi-
tion at that time.

1) When multiple interruptions are designated:

When multiple interrupt programs are activated simultane-
ously, the programs will be executed in order, beginning from
the interrupt program with the highest priority interrupt pointer
number. *2

The remaining interrupt programs remain on standby unti] proc-
essing of the higher priority interrupt program is completed.

2} When an instruction is being executed:

Interruptions are prohibited during execution of instructions. if
an interrupt factor occurs during execution of an instruction,
the interrupt program will be executed after processing of the
instruction is completed.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

1) *1: For details regarding the IMASK and El instructions, refer to the *QnACPU
Programming Manual (Common Instructions)

MELSEC-QnA

2) *2: See Section 4.10 for details regarding the priority ranking of interrupt programs.

3} Interruption during a link refresh:

If an interrupt factor occurs during a link refresh operation, the
link refresh operation is suspended, and the interrupt program
is executed. .

10 me 10 ms 10 ms 1¢ ms

Interrupt factor [_l ——l —| _l _.I_

Interrupt program I I | l |
execution '

Link refresh I | I_I

execution
I-_f;-l Link refresh operation is suspended,

and the interrupt program is executsd.

Fig.3.4 Interruption during Link Refresh Operation
4} Interruption during END processing:

iy If an interrupt factor occurs during general data processing at
an END instruction, the interrupt program will be executed
after the general data processing is completed.

ii) If an interrupt factor occurs during an END instruction waiting
period during constant scanning, the interrupt program cotre-
sponding to that factor will be executed.

(c) See Section 4.6 for details regarding index register processing when
switching to an interrupt program from a scan execution program or
low-speed execution program.

| 3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(4) Program creation restrictions

{a) A device which is switched ON by a PLS instruction in an interrupt
program will remain ON until that interrupt program is executed

again.
. X0 X0
[PLS | MO | [PLS] MO |
END O WJIRETEND O END O IOJIRET END O
O oN : T
) | i
xo EE ' :
ION 1
) Y
MO QFF ‘ ¥
Swilched OFF by PLS
MO instruction
|___ Switched ON by PLS MO instruction at
X0 leading edge (OFF—ON}

(b) A "D1"status (interruption prohibited) is established during execution
of an interrupt program.
Do not execute EI/DI instructions in the interrupt program.

(c} Timers cannot be used in interrupt programs.
As timers are used at QUT T:: instructions to update present values
and switch contacts ON and OFF, the use of a timer in the interrupt
program would make a normal time count impossible.

(d} Local devices cannot be used in interrupt programs. (See Section
4.13.1.)

(5) Using local devices that are used by the file where an interrupt pro-
gram is stored
It is possible to use local devices that are used by the file where an in-
terrupt program is stored when executing an interrupt program.
Whether or not such local devices are used is set by special relay
"SM777".

(a) Switching over local devices by setting ON/OFF for a special relay

SM777

OFF Executes calculation by the locat devices that are used by the file
which was executed before the execution of the interrupt

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

Occeurrence of

interrupt

Occurrence of

interrupt

MELSEC-QnA
[Operation at "SM777 : OFF" when the function version is supported or
not supported]
- File name: DEF
File name: ABC : (Standby program)
X0
H oECcPfD | P o HE
X2 . . Tt
1 Execution of the in- ! Interrupt !
H nmm terrupt program i program i
k 1 :
1 1
] A |
] |
Read/write of the
Locat devices used by the local devices Local devices used by the
file nama: ABC file name: DEF

[Operation at "SM777 : ON" when the function version is supported]

File name: DEF

File name: ABC {Standby program}
L0
- DECP[D1] = A
X2 . i i
Execution of the H Interrupt '
L interrupt program / E program E
| e i
) e o o o i 1
$ “‘\ IRET
——————fewl S
Read/write of the
Local devices used by the focal devices L] Local devices used by the
tile name: ABC file name: DEF

{b) Cautions

It SM777 is ON, the local device data is read before the inter-
rupt program is executed and the local device data is saved af-
ter'the execution of the IRET instruction.

Accordingly, scan time is elongated by the time shown as below
when an interrupt program is executed once with the setting of
*SM777: ON".

Q2ACPU(S1), : 560+ 1.3*
Q2ASCPU(81) (Number of words of a local device) [us]

Q3ACPU 1 4254+1.07 _
{Number of words of a local device) [us]
Q4ACPU, :220+08"*

Q2ASHCPU(S1) (Number of words of a local device) [us]

ON/OFF setting of SM777 is possible in unit of QnACPU or
Q2AS({H)CPU. :
Setting in unit of file is not possible.

If the ON/OFF setting of SM777 is changed while a sequence
program is executed, the control is made according to the infor-
mation after change.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.2 Program Execution Conditions & Operation Processing

Programs executed by the QnACPU are stored in the CPU’s internal RAM,
or in memory cards,

Programs can be stored in the internal RAM or memory cards as a single
program, or they can be split into separate programs for each control func-
tion.

This permits the programming procedure to be split up among several pro-
gram designers who can design separate programs for each operation.

Control by

a single program Control by

multiple programs

Program A
[il - S
, Control , Control
' content A , content A
i o4
’ J
U
Y .
Program B
|]
: Controt ' Control i Sep_iarate programs
! content B ' content B registered for each
Lo e 5 control item
1 i
1 i
1 1
t 3
] 1
] 1
U U
Y Y
Program n
[l]
i Contro!] . Control
: content n H content n
b e e = - o

When an cperation is split up into muliipie programs, an "execution type"
setting must be designated in the program settings in the parameters.
The QnACPU executes each of the "execution type” programs in their set-
ting order.

There are 4 execution types: initial executton scan execution, low-speed
execution, and standby.

s Initial execution : This program type is executed once only at
power ON, or when STOP-RUN switching
occurs. (See Section 3.2.1)

+ Scan execution : This program type is executed once per scan,
beginning from the scan which follows
execution of the initial execution program.
(See Section 3.2.2)

» Low-speed execution: This program type is executed only when a
constant scan setting is made or when a time is
set for execution of low-speed execution type
programs.

s When a constant scan setting is made, the
program is executed during the surplus time of a
scan execution type program.

+ When a time for execution of low-speed
execution type programs is set, the program is
executed during this set time.

(See Section 3.2.3.)

o Standby type : This program is executed only when its
execution is requested. (See Section 3.2.4)

3-13

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

[Program setting window])

%

L KT AT FRT AT
L P P P P P Y
A et At A ot At bt ik
AMAAAARRANAA
Rl VA LV IV LYV

A
"

g

|

Execution conditions designated here

]

File name of execution program
designated here

The program operation steps which occur at power ON or STOP-RUN
switching are shown below.

Peower ON, or STOP-RUN
awitching

Executed once only at

Initial [[| --mmmmmmmmm e power ON or STOP-RUN
e;;c;:gcmn switching

|
l

END processing
[I *
I [
Sean — Standby - --- Executed only when requested
execulion axecution
program program

|

Executed only when a
tow-speed ||| -----mmmm e *constant scan® or "low-speed
execution exacution program execution

program time period" is designated.

|
POINT|

(1) Designation of all execution types is not required at the QnACPU.*
Initial execution, low-speed execution, and standby type programs
indicated by an asterisk are used as required.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

3.2.1 [Initial execution programs

)

(2)

3)

Definition
{a) An initial execution program is executed once only at power ON, or
when STOP-RUN switching occurs.

{b) This program’s execution type is designated as "initial” in the pro-
gram settings parameters.

{c} In the same manner as the initial processing for the special function
module, the initial execution program is executed only once, and is
not required in subsequent scans.

Control by a single program When initial execution program is used

Program A

=== —-====-==- a ~

] 1 . .

| Initial program | Initial execution

! ! pregram . s

bommmemmmne e 4 Operation split into

_ an initial execution

p B program and a scan

Fmmmmmm——————— - rogram execution program

]
iPrograrn executed ! » | Scan execution
L at each scan R program

Using multiple initial execution programs

When multiple initial execution programs are used, they are executed
one by one in ascending number order (program settings parameter
setting).

END processing
END processing occurs when all initial execution programs are com-

pleted, and the scan execution program is then executed from the next
scan.

(Power ON or STOP-RUN)
switching

Initial execution
program A

| Initial execution 1 scan L Executed in *program settings®

program B - ascending number order

¥

Initial execution
program n

I END processing

! Scan execution !
) program \

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

POINT|

1) *: Instructions with "completion devices" cannot be used in initial
execution programs.

(4) initial scan time
(a) This is the execution time period for initial execution programs.

If multiple initial execution programs are used, this is the execution time
period in which all those programs are executed.

(b) The QnACPU measures the initial scan time and stores the result in
special registers (8D522, §D523). *1

The initial scan time can therefore be checked by monitoring the SD522
and SD523 special registers.

sps22 | [spszs |

. Initial scan times of 1 ms or less
are stored here (unit: us)

Initial scan times of 1 ms or more
stored here {unit: 1 ms)

If the SD522 value is "3", and the SD523 value is "400", the initial scan
time is 3.4 ms.

(5) Initial execution time monitor

The execution period of the initial execution program can be monitored
by this timer (there is no timer defauit setting).

If such monitoring is desired, designate the timer setting in a 10 ms to
2000 ms range at the PC RAS settings parameter. (Setting unit: 10 ms)
If the execution time of the initia! execution program exceeds this timer
setting, a "WDT ERROR" occurs, and QnACPU operation is stopped.

POINTSI

{1) *1: The accuracy of the initial scan time stored at the special
registers is + 0.1 ms,
The initial scan time count will continue even if a watchdog
time reset instruction (WDT) is executed at the sequence
program.

(2) When a monitor timer setting is designated for the initial executlon
time, there will be a 10 ms error in the count value.
Therefore, a monitor timer setting (1) of 10 ms will result in a "WDT
ERROR?" if the initial scan time is in the following range:
10 ms <t < 20 ms,

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

3.2.2 Scan execution programs
(1) Definition

(a) Scan execution programs are executed once per scan, beginning
from the scan which follows execution of the initial execution pro-
gram.

(b) This program’s execution type is designated as "scan" in the pro-
gram settings parameters.

(2) Executing multiple scan execution programs.

When multiple scan execution programs are used, they are executed one
by one, in ascending number order (program settings parameter setting).

(3) END processing

END processing occurs when all scan execution programs are com-
pleted, and execution the begins again from the first scan n execution
program.

END processing (general data processing, link refresh) is possible after
each of the programs by designating a COM instruction at the end of the
scan execution programs.

STOP — RUN,
power ON = RUN
]L ist scan ._i 2nd scan . 3rd scan | Ath scan
END processing 1
: £
1
Initial execution program]
0 EnND 0 END 0 END

Scan execution program A

0 END 0 END 0
Scan execution program B ’

0 END, o END,
Scan execution program C

Scan time

(4) Constant scan setting *1

When constant scanning is designated, the scan execution program is
executed at each designated constant scan period.

1) *1:The “constant scan" function executes the scan type program repeatedily at
regular intervals. For details, refer to the User's Manual of the CPU module used.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

POINT|

1) See Section 4.6 for details regarding index register processing
when an interrupt program is ‘executed while a scan execution
program is in progress.

(5) Scantime

e The "scan time" is the total time required for scan type program’
execution and END processing.
If multiple scan execution programs are used, the "scan time" is the
total time required to execute all the programs.

e The scan time "present value", "minimum value*, and "maximum
value" are measured at the QnACPU, and the resuits are stored in
special registers (8§D520, AS521, SD524-SD527). *

The initial scan time can therefore be checked by monitoring the
SD520, SD521, SD524-8D527 special registers.

Present value SD520 $D521
Minimum vaiue SD524 SD525
Maximum value sD526 sD527
|_ Scan times of 1 ms or less

are stored here (units: ps)

Scan times of 1 ms or more
stored here (units: 1 ms)

i the 8SD520 value is “3", and the SD521 value is "400", the initial
scan time is 3.4 ms.

(6) WDT (Watchdog timer)

This is the timer which monitors the scan time, and its default setting i
200 ms. '
This WDT setting can be designated in a 10 ms to 2000 ms range in the
PC RAS settings parameters. (Setting units: 10 ms)

If a low-speed execution program is used, a WDT setting value should
be designated which is greater than the scan time plus the execution
time of the low-speed execution program.

If the scan time (execution time for scan execution program + low-speed
execution program) exceeds the WDT setting value, a *"WDT ERROR*
occurs, and QnACPU operation is stopped.

POINTSl

(1) *1: The accuracy of the scan time stored at the special registers is
+ 0.1 ms. :
The scan time count will continue even if a watchdog time reset
instruction (WDT) is executed at the sequence program.

{2) The WDT measurement error is 10 ms.
Therefore, a WDT setting (t) of 10 ms will result in a *“‘WDT ERROR"
if the scan time is in the following range: 10 ms < t < 20 ms,

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

3.2.3 Low-speed execution programs

(1)

@

3

Definition

(a) Low-speed execution programs are executed only during “constant
scanning surplus time" or during the period designated for low-speed
execution program execution.

» For a constant scan time with enhanced control accuracy, desig-
nate a constant scan time setting at the PC RAS parameters.
{Setting range: 5-2000 ms, setting units: 5 ms)

* To secure execution time for low-speed execution programs at
each scan, designate a low-speed execution program execution
time setting in the PC RAS parameters. (Setting range: 1-2000
ms, setting units: 1 ms)

+ In order to execute a low-speed execution program, one of the
above settings ("constant scan time " or "low-speed execution
program execution time") must be designated.

(b) The execution type of the low-speed execution program is desig-
“nated as "low-speed" in the program settings parameters.

(c) The low-speed execution program type is used for programs which
do not require execution in each scan, for example programs for
printer output.

Executing multiple low-speed execution programs

When multiple low-speed execution programs are used, they are exe-
cuted one by one, in ascending number order (program settings parame- -
ter setting).

Low-speed execution program execution time at 1 scan

(a} If all the low-speed execution program operation is completed within
one scan and there is surplus time, the processing executed after
that depends on the setting status of special register SM330 and the
execution condition for low-speed execution type programs.

» Asynchronous method (SM330 = OFF)
: Method in which low-speed execution type program opera
tion is continued in the surplus time.
s Synchronous method (SM330 = ON) _
: Method in which even if there is surplus time, low-speed
execution program operation is not continued, and opera-
tion starts again from the next scan.

Operation method
for low-speed execu-
tion type programs

SM330 Execution condition for low-speed execution type programs

setting
status When "constant scan time" Is set

When "low-speed executlion program
execution time" is set

The low-speed execution type The low-spegd execution type program is
Asynchronous method | OFF program is re-executed . re-executed -.

Constant scan waiting time is Scan execution type program operation.
Synchronous method | ON generated 2, is started 4.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS
MELSEC-QnA

1 I a "constant scan time has been designated, the low-speed
program will be executed during the constant scan’s surplus
time.

Therefore, the low-speed execution program’s execution time
varies from scan to scan.

As the low-speed execution program will not be executed at all
if the constant scan’s surplus time is 2 ms or less, a “constant
scan time" setting should be des:gnated which provides a sur-
plus time of more than 2 ms.

*2 If a "low-speed execution program execution time" has been
designated, the low-speed execution program will be executed
in accordance with that time setting. Therefore, the scan time
will vary from scan to scan.

*3 If a "constant scan time" has been designhated, the surplus
time after completion of low-speed END processing is waiting
time, and execution of a scan execution type program starts
when the constant scan time has elapsed.

Constant scan waiting time
= (constant scan setting time) — (scan time)

— (low-speed scan time)
This means that the scan time is constant in each scan.
However, if the surplus time after the constant scan is less
than 2 ms, low-speed execution type programs cannot be exe-
cuted. If using a low-speed execution type program, set the
constant scan time so that the surplus time is 2 ms or longer.

*4 |f a "low-speed execution program execution time" has been
designated, scan execution type program operation is started
ignoring the surplus time after completion of low-speed END
processing.

Surplus time in low-speed program execution time

(ignored)

= (Set time for low-speed program execution time)
— {low-speed scan time)
This means that the scan time differs in each scan.

(b) If a low-speed execution program cannot be processed within con-
stant scan surplus time or within the low-speed execution program
execution time, program execution is temporarily stopped and the
remainder of the program is executed in the next scan,

POINTS |

(1) See Section 4.6 for details regarding index register processing
when switching from a scan execution program to a low-speed exe-
cution program occurs.

'(2) See Section 4.6 for details regarding index register processing
when an interrupt program, -is executed while a low-speed execu-
tion program is in progress.

(8) The "low-speed execution program execution time" setting should
be such that the [scan time] + [low-speed execution program execu-
tion time] sum is less than the WDT setling value,

(4) The COM instruction cannot be used in low-speed programs.

3-20

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

- Asynchronous Method —-----mmmmmmm oo e e e e 2
(1) "Constant scan time"® setting

The low-speed execution program operation which occurs under the following conditions is
illustrated below. -

+ Constant scan time 1 60ms

» Total scan execution program time 140 ms to 50 ms

+ Execution time of low-speed execution program A : 10 ms

« Execution time of low-speed execution program B : 30 ms

+« END processing : 0 ms (0 ms is used to simplify the iltustration)

s Low-speed END processing : ; 0 ms {0 ms is used to simplify the iliustration)
END END END END END
processing procassing pre L} pr 9 p 1]

o] O
l 1
| |
] i
] 1
1 I
Scan execution program f é 1
1
[}
: jio ms 10 m 5 ms % ms
Low-speed execution program A | 4"
1
1
]
i
1
1
1
]

%
%_E{ms 15 ms 5 ms5 ms 20 ms 5 ms
HH H
i :
I 1
I 1
o

Low-speed execution program B

low-speed scan
time {130 ms)

low-speed END low-speed END
processing processing

(2) "Low-speed execution program execution time" setting
The low-speed execution program operation which occurs under the following conditions is iflustrated

below.
+ Low-speed execution program execution time : 30 ms
+ Total scan execution program time : 40 ms to 50 ms
» .Execution time of low-speed execution program A: 10 ms
» Execution time of low-speed execution program B: 30 ms
+ END processing : 0 ms (0 ms is used to simplify the illustration)
+ Low-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END END END END END
PFOGTSIHQ PPOCISSIHQ processing procassing procassing
o 40 15 185 255 335(ms)
L I T N N N T O N O LU O N TN 35 O N O D N O N N AN N N (O LN |
Il|l||lll!llilllll|'llllI;l'lllllllIHI
1] 1 1] t
I 1] 1 ¥
1 1 [] 1
40 ms | | 45ms Oms 40 ms 50 ms
1 1 1]

Scan execution program

Low-speed exacution program A

Low-speed exacution program B !

-speed scan | [ow-speed scan
time (80 ms) — time (80 ms)
13

low-speed scan
time {125 ms)

@n{s 7 10 msig 20 ms 30 ms L
P—! H - F—
j fow

—r)

low-speed END - low-spesd END [ow-speed END
processing processing processing

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

r- Synchronous method LTI PR a
(1) “Constant scan time® setting

The Iow-spéed execution program operation which occurs under the following conditions is
ilustrated below.

+ Constant scan time : 60 ms
+ Total scan execution program time : 40 ms to 50 ms
» Execution time of low-speed execution program A : 10 ms
+ Execution time of low-speed execution program B : 30 ms .
« END processing : 0 ms (0 ms is used to simplify the illustration)
+ Low-speed END processing : 0 ms (0 ms is used to simplify the Hlustration)
END END END END END END
processing processing processing processing processing processing
Y ¥ l Y 4
180 ;120 P 180 v 240 1 300 1 {ms)
§ IS I NN N NN AN DN NN AN LI RUUR N N NN (NN NN SN NN N N AN NN N (N N AN N N AN (N SN SN B N |
I I R | [LA 1 | LR [i l T 11 | T i | | T I I
1) 1
| | [l 1 k] 1 1 ']
1 1] 1 k 1 ! 1 1t 1
i 40ms 1 ! 45ms 1 40ms)) 4Dms ;g S0ms 30 40ms g
Scan execution program || | |]} 1 ! 1 F 1

Low-speed execution program A

Low-speed execution program B

i‘l_[)}ms 15 ms 5 ms %ms 10 ms 10 ms
- i)

low-speed scan time {165 ms) fow-speed scan time (185 ms)

e et e T T
L7
L3

i

low-speed END low-speed END
processing processing

T

(2) "Low-speed execution program execution time* setting
The low-speed execution program operation which occurs under the following conditions is itlustrated

below.

+ Low-speed execution program execution time : 30 ms

+ Total scan execution program time : 40 ms to 50 ms

» Execution time of low-spesd execution program A: 10 ms

+ Execution time of low-speed execution program B : 30 ms

+ END processing : 0 ms (0 ms is used to simplify the illustration)

+ ‘Low-speed END processing : 0 ms (0 ms is used to simplify the illustration)
END EN END END END
processing P ing p ing pr ing pr ing

|

15

[X
o —
[
[

[=]
Lo
[=
-
in
[
w
N

(ms)

3

w
S~
3

D e
o

40 ms 45 ms 40 ms 50 ms

| N

0]
&{s 10 ms 20 ms
H |

40 ms

Scan exacution program

ot~ ---4-

-

Low-speed execution program A

-
@A

3
“n

-J -.-—-on——.__-_-——__uu

Low-speed execution program B H —
. 1 1
low-spoed scan H fow-speed scan !
time (125 ms) | time (120 ms) |
[]
low-speed END low-spesd END
processing processing

e e e et e e e e L e e e e e e e e e e L L Y T e e e

[N

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA
(4) END processing
Low-speed END processing occurs after all the low-speed execution.

programs have been executed. Low-speed processing includes the fol-
lowing items:

Low-speed execution program special relay/special register setting.

Low-speed execution program write during RUN,

Low-speed scan time measurement.

Low-speed execution program watchdog timer resetting.

When low-speed END processing is completed, exscution of the low-
speed execution programs begins again from the first program.

POINT|

(1} During execution of low-speed execution programs, the "constant
scan” time may deviate by the amount of the [maximum instruction
processing time] + [low-speed END processing time].

(5) Low-speed scan time

{a) The "low-speed scan time" is the total time required for low-speed
axecution program execution and low-speed END processing.
If multiple low-speed execution programs are used, the "low-speed
scan time" is the total time required to execute all the programs, plus
the low-speed END processing time.

(b) The low-speed scan time is measured by the QnACPU, and the result
is stored in special registers (SD528-8SD535}). *1
The low-speed scan time can therefore be checked by monitoring
the SD528-8D535 special registers.

Present value §D528 - sDs29
fnitial value $D530 sD531
Minimum value SDs32 SD533
Maximum value SD534 8D535

l— Scan times of 1 ms or less

are stored here {units; ps)

Scan times of 1 ms or more
stored here {units: 1 ms)

If the SD528 value is "50", and the SD528 value is "400", the
low-speed scan time is 50.4 ms. :

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

(6) Low-speed execution time monitor

The execution period of the low-speed execution program can be moni-
tored by this timer (there is no timer default setting). If such monitoring
is desired, designate the timer setting in a 10 ms to 2000 ms range at
the PC RAS settings in the parameter mode (Setting units: 10 ms)

If the execution time of the low-speed execution program exceeds this
timer setting, a "PRG TIME OVER" error occurs (QnACPU operation is
not stopped). :

PO!NTSI

(1) *1: The accuracy of the scan time stored at the special registers is
+ 0.1 ms.
The scan time count will continue even if a watchdog time reset
instruction (WDT) is executed in the sequence program.

(2) The low-speed execution time measurement occurs at low-speed
END processing. Therefore a PRG TIME OVER error will occur if
the low-speed execution monitor time (t) is designated as *100 ms*,
and the measured low-speed scan time (at low-speed END process-
ing) exceeds 100 ms.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.2.4 Standby programs; |

(1) Definition

(a) Standby programs are programs which are executed only when
requested.

(b) Standby programs are used for the following applications.
1} Placing ;Srograms in the library

Sub-routine and interrupt programs are converted to standby

programs which are managed separately from the main pro-
gram.

2) Changing the program setup

Main routine programs are registered as standby programs,
with required programs then being converted to scan execu-
tion programs for execution. Programs which are not required
are converted to standby programs.

(2)- Placing programs in the library
(a) Placing programs in the library

1) This application is used to manage sub-routine and interrupt
programs separately from the main routine program.
Multiple sub-routine and interrupt programs can be created for
a single standby program.

Scan execution program Scan exscution program

Main routine - . Main routine
program program
P100 Sub-routing
program Standby program
10 Interrupt \ P00 Sub-routine
program _ program
D Interrupt
program

2) When standby program execution is completed, processing re-
turns to the program which was active before the standby pro- -
gram was executed. '

The operation which occurs when a standby program’s sub-rou-
tine and interrupt programs are executed is shown below.

CALL P100
instruction Interrupt factor
END executed END occurrence END

processing pracessing 1 processing
Scan execution program — e } * i — *
P100

Sub-routine program —

I} IRET
Interrupt program —

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA

POlNTS|

(1) Because present value updating and contact ON/OFF switching
occurs at the OUT T instruction, timers cannot be used in standby
programs.

(2) Use common pointers to convert a sub-routine program to a
_standby program. If local pointers are used, execution of the
standby program will be impossible. For details regarding common
and local pointers, See Section 4.9.1. '

(b) Gathering sub-routine programs into a single program

1) Create the sub-routine programs in order, beginning from step
0 of the standby program. An END instruction is required at
the end of the sub-routine program.

2) Because there are no restrictions regarding the creation se-
quence of sub-routine programs, the pointer numbers need not
be assigned in ascending order when creating multiple sub-rou-
tine programs.

3) Use only common pointers. *
Sub-routine programs with common pointers can be called
from all programs executed by the QnACPU.

Program A OnACPU
Memary card/

Main routine Write Jinternal RAM

program L Pro%ram

Program B {standby programy) Prcgram

L
.._Enzr
Fs08 | et
.—_{m
s | |2
L [

END

Write

2 Y Y Y 7Y

Use common pointers. *
{Sub-routine programs need not be created in
ascending order.)

4) When local devices are used in sub-routine programs, opera-
tion is carried out in accordance with the local device values at
the origin of the sub-routine call (program in which the
CALL/ECALL instruction is executed).

Local device values are not stored or reset before or after exe-
cuting the sub-routine program of a standby program.

1) ": See Section 4.9.2 for details regarding common pointers.

3-26

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS
MELSEC-QnA

(c) Gathering interrupt programs into a single program

1) Create the interrupt programs in order, beginning from step 0
of the standby program. An END instruction is required at the
end of the interrupt program,

2) Because there are no restrictions regarding the creation se-
quence of interrupt programs, the pointer numbers need not be
assigned in ascending order when creating multiple interrupt
programs.

Program A CaACPY

Memory card/
internat RAM
Main routine

program Write Program

Program B {standby program) | Pro%ram

r
LRET

132 —| i—<‘m

Sy
| RET

"2 -—[}——-———-;-<Y12

r
~ LRE'I

interrupt program <

DY Y Y

END

Usa interrupt pointers, *
(interrupt programs need not be created in ascending order.)

1) *: See Section 4.10 for details regarding interrupt pointers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(3) Changing the program setup

(a) This function can be used to create and execute programs for all
systems.
Programs designated by parameter setting as "standby” programs
can be converted to scan execution programs and executed in a
sequence program.
The fo!lowmg instructions are used by the QnACPU to convert a
program’s type:

1) PSCAN: Converts a standby program to a scan execution

program.
2} PLOW : Converts a standby program to a low-speed execution
program.
3) PSTOP : Converts a scan execution program or low-speed exe-
cution program to a standby program.
4) POFF : Converts a scan execution program or low-speed exe-
cution program to a standby program.
(Switching to the standby program takes place after
output is turned OFF.}
Executed
instruction PSCAN PSTOP POFF PLOW
Execution typ€ '
before change
. No change - remains Output turned OFF in
Scan execution type scan type execution. | g o oo onan next scan.
type y Becomes standby type Becomes low
- . : from the next scan after -
Initial execution type Becomes scan that. speed type.
execution type. No change - remains
Standby type standby %yp e. No processing.
. ’ Low-speed type
:'°w'3peedt.°xe9"t'°" Low-spoed exacution | execution is stopped,
Low- d ti S%ge ea)iis-cge‘:?:nises type execution is. and output is turned No change -
tow speed executlon e ocution trme | Stopped: becomes QFF in the next scan, remains low-
ype from the next scgg standby type from Becomes standby type speed type.
EO tion tep 0 next scan. from the next scan after
{Execution from step 0} that.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

When MO switches ON, the
ABC program is converted
from a standby program to
a scan execution program.

When M1 switches ON, the
ABC program is converted

from a scan execution pro-
gram to a standby program.

(b) The following methods can be used to convert a program which is to
be executed.

1) Selecting the program to be executed from a
single management program:

Using a constantly executed scan execution program as the
management program, a standby program which conforms to
the designated conditions is converted to a scan execution
program and is executed.

Scan execution programs which are not required can be
converted to standby programs.

The operation which occurs when "ABC", "DEF", "GHI", and
"JKL" standby programs (at a single management program)
are converted is illustrated below.

Scan executlion program
(management program)

MO
___-{]-—{PSCAN “ABC" :l— » The PSCAN instruction is used

to convert the ABC program to
a scan execulion program.

M1
___I l l PSTOP “ASC" } » The PSTOP instruction is used

v to convert the ABC program to
' a standby program.
P pSCaN “DEF
| M e 3
1]
1 1
« — L
SR ER H
T '
]
Vo '
] 1 1
1 1
] 1
1]
[1
¥y ¥
Standby Standby grlggitg g:g;:iab“y:
rogram rogram
P :AQBC P :DgEF :GHI JKL

EXECUTION CONDITIONS
MELSEC-QnA

2) Converting the scan execution program being executed to an-
other type of program:

» For the scan execution program being executed, the next
program to be executed is converted from a standby program
to a scan execution program.

¢ In the illustration below, the ABC and GH! programs are des-
ignated as scan execution programs, and DEF is designated
as a standby program. The illustration shows the operation
which occurs when the ABC and DEF program types are
converted when the conditions are satisfied.

[Before execution of PSCAN and PSTOP instructions]

Scan execution program : ABC

= The PSCAN instruction is used to
convert the designated program (DEF)
to a scan execution program.

* The PSTOP instruction is used to
convert the designated program (ABC)
to a standby program.

Standby program : DEF Scan execution program ; GHI

PSCAN “CHI"

PSIOP "DEF"

"MQ" is switched ON

[After execution of PSCAN and PSTOP instructions]

Standby program : ABC

PRCAN “DEF!

PSTOP “ABC"

Scan execution program : DEF Scan execution program : GHI

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(c) As program execution type conversions by PSCAN and PSTOP
instructions occur at the END processing, such conversions are
impossibie during program execution.

When different execution types have been set for the same program
in the same scan, the execution type will be that specified by the
execution switching command that was executed last.

: END END END
Execution processing processing processing
program -—"GHI" l "ABC" "GHIM I NGHI - “DEE".. SGHI
name : : PP I |] | |]

T f 1 1
\ PSTOP "ABC*

"DEF" converted
to scan execution

executed program

. . *ABC* converted
PSCAN "DEF to standby execu-
executed tion program

1) *: The order of GH] and DEF program execution is determined by the program settings
parameters. ‘

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.3 Input/Output Processing & Response Lag

The QnACPU features a refresh type input/output processing format in
which a batch communication with the input/output module occurs at END
processing. ,

A direct communication format is also possible by using direct access inputs
/outputs at the sequence program to enable direct communication with the
input/foutput module when the sequence program instructions are executed.
For details regarding direct inputs and direct outputs, refer to Sections

4.2.1 and 4.2.2, respectively. '

3.3.1 Refresh mode

{1) Definition
With the refresh mode, batch communication with the input/output
modules occurs at END processing.

(a) Batch reading of the input module ON/OFF information is executed
in the QnACPU'’s internal input data memory when END processing
occurs. This ON/OFF data (in the input data memory) is then used
for processing which occurs when a sequence program is executed.

(b} The processing result of the output (Y) sequence program is output
to the QnACPU’s internal output data memory, and batch output of
the ON/OFF data (in output data memory) to the ouiput module is
executed when END processing occurs.

OnACPY
CPU (operation processing araa) *
. At input
(3 iﬂ%l;iéx) ?‘:";5?:;'3' refrash tnput | s
xg memory input area (1 module
= | I———
{1) At input Area for com
refresh munication
with input
4! moedule
J “ 2 —"'—'—F dat At ?utpul
or data refrash Output N
Y22 mamory —(
g 5) output {¥) 2 module N

¢ Input refresh:
Input information is read in a batch {{1)) from the input module at END processing, and is
stored in the input (X) data memory by an OR operation in the peripheral device input area.

» Qutput refres1h:
Data in the output (Y) data memory is output in a batch ((2)) to the output module at END
processing. .

« When an input contact instruction has been executed:
Input information is read ((3)) from the input (X} data memory, and a sequence program is
executed. . '

» When an output contact instruction has been executed:

Output information is read ((4)) from the output (Y) data memory, and a sequence program is
executed.

e When an output OUT instruction has been executed:
The sequence program operation result ((5)) is stored in the output (Y) data memory.

Fig.3.5 Input/Output Information Flow at Refresh Mode

1} *1: See Section 3.3.2, item 1).
2) *2: See Section 3.3.2, item 2).

3-32

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(2) Response lag

" Qutput response lags of up to 2 scans can result from input module
changes. (See Fig. 3.6)

Ladder examplesl

' put ON in response to an X5 input

%5 L. . .
w!—i. (e)_l Ladder for switching the Y5E out
ON.

| Fastest possible YSE ON I

Input refresh Input refresh Qutput refresh

L, ‘:)55 END /0

ool i
External _f..._l E % :
contact fou! i
OFF 1
o ——l H
QnACPU ion
devices OFF
Y5t 1
Y
OFF I

External load

Lag time 1

(minimum of 1 scan)

The fastest possible YSE ON occurs if the external contact is switched
ON immediately prior to the refresh operation. X5 then switches ON at
the input refresh, Y5E at step 56 switches ON, and the externai load
switches ON at the output refresh following execution of the END
instruction. In this case, the time lag between the external contact ON
and the external load ON is 1 scan.

Slowest possible YSE ON |
.]npu{ refrash Input refresh Qutput refresh
o 0 Jo 56 [:Y) 10
hd 1
External orrl— H
contact i
1oy
=
'y
QnACPU o
devices CFF
o
OFF |
Extemal load
Delay time

- {maximum of 2 scans)

The slowest possible YSE ON occurs if the external contact is switched
ON immediately after the refresh operation. X5 then switches ON at
the next input refresh, Y5E at step 56 switches ON, and the external
load switches ON at the output refresh following execution of the END
instruction.

In this case, the time lag between the external contact ON and the
external load ON is 2 scans.

Fig.3.6 Output "Y" Change In Response to Input "X" Change
3-33

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.3.2 Direct mode
{1) Definition

In the direct mode the communication with the input/output modules is
performed when executing sequence program instructions.

With QnACPU, direct mode 1/O processing can be executed by using
direct access inputs (DX) and direct access outputs (DY),

QraCPU
! CPU (operation processing area) "1 '
. 1)
Peripheral {
@ o | dovice o
() Input (X) input area
data
DX0 memory
4 2
°""f° Ou:dputt A\ Qutput
e ata

m“\) > (5) . | memory module

e When an input contact instruction has been executed:
An OR operation is executed for the input module’s input informa-
tion ((1)) and the peripheral device input area’s input information
((2)), and the result is stored in the input (X) data memory. This
data is then used as input information {(3)) at sequence program
execution.

+ When an output contact instruction has been executed:
Output information ((4)) is read from the output (Y) data memory,
and a sequence program is executed.

e When an output OUT instruction has been executed:
The sequence program's operation result ((5)}) is output to the out-
put moduie, and is stored in the output (Y) data memory.

Fig.3.7 Input/Output Information Flow at Direct Mode

1) *1: The peripheral device input area can be switched ON and OFF by the following:

+ Test operation by peripheral device.

o A link refresh by the MELSECNET {/B) data link system.

* A network refresh by the MELSECNET /10 network system.
« Writing from a serial communication module.

2) *2: The output (Y) data memory can be switched ON and OFF by the following:

» Test operation by peripheral device.

« A link refresh by the MELSECNET (/B) data link system.

« A network refresh by the MELSECNET /10 network system.
« Writing from the serial communication moduie.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

- {2) Response lag

Qutput response lags of up to 1 scan can result from input module
changes. (See Fig. 3.8)

Ladder examples|

oxs ' . Ladder for switching the DYSE |
Ssl—l} { OY5E)-l output ON in response to an DX5
input ON.

[Fastest possible DYSE ON |

The fastest possible DYSE output ON occurs if the DX5 input is
switched ON immediately prior to the step 55 operation. If DX5 is ON
when step 55's LDDX5 is executed, DY5E will switch ON within that
scan.

This condition represents the minimum time lag between the DXS input
ON and the DY5E output ON.

[Slowest possible DYSE ON |

[OUT DTSE |
o 4 N 0 !
1 e
I l — T
ON
OFF
oX5 —[
on
OFF |
DYSE
- l Delay time |

r(maxlmum of 1 scan)1

The slowest possible DY5E output ON occurs if the DX5 input is
switched ON immediately after the step 55 operation. In this case, the .
DYS5E output will switch ON draing the next scan.

This condition represents the maximum time lag (1 scan) between the
DX5 input ON and the DY5E output ON.

Fig. 3.8 Output “Y" Change in Response to Input “"X" Change

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4 Numeric Values which Can Be Used in Sequence Programs

Numeric and alphabetic data are expressed by "0" (OFF) and “1* {ON) nu-
merals in the QnACPU.

This method of expression is called "binary code” (BIN).

The hexadecimal (HEX) expressidbn method in which BIN data are ex-
pressed in 4-bit units, and the BCD (binary coded decnmal) express:on
method are also possub!e for the QnACPU.

The numeric expressions for the BIN, HEX, BCD, and Decimal (DEC) nota-
tions are shown in Table 3.1 below.

Table 3.1 BIN, HEX, BCD, and Decimal Numeric Expressions

HEX BCD
DEC {Decimal) {Hexadecimal) BIN (Binary) {Binary Coded Decimal)

0 o] 0 | 0
1 1 | 1 ! 1
2 2 10 10
3 3 : 11 : 11

. . | |

;) i j
. . | 1.
‘9 9 |1001 | 1001
10 A l1010 1!0000
11 B 1011 1 0001
12 C 1100 110010
13 D 11101 10011
14 E 1110 1,0100
15 F 1111 10101
16 10 110000 110110
17 11 110001 110111
- 3 | : i -

| |

| _ [
47 oF :1 111 1ooto1 11

Single precision floating decimal point real numbers may also be used.
(See Section 3.4.4)

.3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(1) External numeric inputs to QnACPU

When designating numeric settings for the QnACPU from an external .
source (digital switch, etc.), a BCD (binary coded decimal) setting can
be designated which is the same as a decimal setting.

However, because the BCD method involves BIN expressions being
processed in the same manner as decimal expressions, the QnACPU
operation based on such values will be different from the operation
specified by the designated value.

A BIN instruction is therefore prowded for the QnACPU to convert BCD
input data to the BIN data which is used by the QnACPU.-

A program which converts numeric data to BIN data can be created at
the sequence program in order to allow numeric settings to be desig-
nated from an external source without regard to the corresponding BIN
vaiues.

QraCPU

[Numeric data designation]

Digital switch L p———{ B K}xo oo H
73|, \
:]] 2 BCD input

XF to X0 8

_| |__—-| BCD D5 K4Y30:|—

Fig. 3.9 Digital Switch Data input to QnACPU
(2) External numeric outputs from QnACPU

A digital display can be used to display numeric data which is output
from the QnACPU. However, because the QnACPU uses BIN data, it
cannot be displayed at the digital display as is. A BCD instruction is
therefore provided for the QnACPU to convert the BIN data to BCD data.
A program which converts BIN data to BCD data can be created at the
sequence program in order to display the output data in a manner
identical to decimal data.

QraCPY

[Numeric data designation]

i_—_[BINP K4X0 DO Digital display
(517131 /]

e YIF to Y30

'_———| BCO DS K4Y3D
%\ BCD cutput

\—— BIN data

Fig.3.10 Digital Display of Data from QnACPU

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4.1 BIN (Binary Code)
(1)_ Binary code

In binary code, numeric values are expressed by numerals “0" (OFF) and
"1" (ON) numerals. When counting in the decimal system, a carry to the
"tens” column occurs following 9 (8-9-10). In the binary system,. this
carry occurs following 1 (0-1-10). The binary "10" therefore represents
the decimal "2". Binary values and their respective decimal values are
shown in Fig.3.2 below.

Table 3.2 Binary and Decimal Numeric
Value Comparison -

DEC (Decimat) BIN (Binary)
0 0000
1 0001 —__]
Car
2 0010 . v
3 0011
I Carry
4 0100
S 0101
& 0110
7 ot
| Carry
8 1000
9 1001
10 1010
11 ' 1011

(2) Binary numeric expression
QnACPU registers (data registers, link registers, etc.) consist of 16 bits,
with a *2™ value is allocated to each of the register bits.
The most significant bit (initial bit) is used to discriminate between
"positive” and "negative”. |
1. When most significant bit is "0"...Positive
2. When most significant bit is "1"...Negative

The numeric expressions for the QnACPU registers are shown in
Fig.3.11 below.

Most signiticant bit (for positivelnegativa'discrim‘malion)
Bit name —— b15 bl4 b33 b12 b11 10 bY bB b7 b6 bS b4 b3 b2 bt bo

o g% 1 su - 2 2 o o o 23 27 2! ol
B 1l 1]] il 1} [" 1] 1 o n Il 0
Decimal value -32768163843192400620481024 512 256 128 €4 32 16 8 4 2 1

|—' "Negative value” when most significant bit is "1".

Fig.3.11 Numeric Expressions for QnACPU Registers

3-38

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

(a) Usable numeric data for QnACPU

As shown in Fig.3.11, the numeric expression range is -32768 to '
32767. Therefore, numeric data within this range can be stored in
the QnACPU registers.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4.2 HEX(Hexadecimal)
(1) Hexadecimal notation

in the hexadecimal system, 4 bits of binary data are expressed by 1 digit.
4 bits of binary data can express 16 values (0-15). .

In the hexadecimal system, values from 0 to 15 are expressed by 1 digit.
This is accomplished by using alphabetic characters following "9", with
a carry occurring after "F", as follows:

A comparison of binary, hexadecimal, and decimal numeric expressions
is shown in Table 3.3 below.

Table 3.3 Comparison of BIN, HEX, & DEC
-Numeric Expressions

HEX .
DEC {Decimal) (Hexadecimal) BIN (Binary)
0 0 I o
1 1 | 1
2 2 | 10
3 3 ;M
.) i
- . !
: : b
9 9 11001
10 A 11010
11 B 1011
12 c l1100
13 D 11101
14 E [1110
15 F 1111
16 10 1l o000 — _lcany
17 11 1l coo1
- . i
1
|
;) | .
47 2F 10,1111

(2) Hexadecimal numeric expression

QnACPU registers (data registers, link registers, etc.) consist of 16 bits.
Therefore, as expressed in hexadecimal code, the numeric value range
which can be stored is 0 to FFFFH.

3. SEQUENCE PROGRAM CONFIGURATION &

EXECUTION CONDITIONS

3.4.3 BCD (Binary Coded Decimal)
(1) BCD notation

BCD numeric expressions are binary expressions with a carry format
identical to that of the decimal system.

As with the hexadecimal system, BCD expressions are the equivaient of
4 binary bits, although the BCD system does not use the A-F alphabetic
characters.

A comparison of binary, BCD, and decimal numeric expressions is
shown in Table 3.4 below.

Table 3.4 Comparison of Binary, BCD,
and Decimal Numeric Expressions

DEC (Decimal) BIN (Binary) (Binary oo, Decimal)
0 0 I o
1 b | 1
2 10 10
3 11 I 44
4 100 . I 100
5 101 {101
6 110 | 110
7 11 111
8 1000 11000
9 1001 1001
10 1010 1:0000 —Jcamy
11 1011 110001
12 1100 1!0010

(2) QnACPU registers (data registers, link registers, etc.) consist of 16
bits. Therefore, as expressed in BCD code, the range of numeric val-
ues to be stored is 0-8989.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

3.4.4 Real numbers

(1) Real numbers
Real numbers are single precision floating decimal point data.

(2) internal expression of floating decimal point data
The QnACPU's internal expression of received floating decimal point
real number data is explained below.
Floating decimal point data is expressed as shown below, using 2 word
devices.

1. [Mantissa] x 2 (characteristic)

The bit configuration used for internal expression of floating decimal point
data is shown and explained below.

L st rrif it S il q

b31 B30 - b23 b22 - B16 b1S — b0
. N)

b23-h30 b0-b22 Mantissa
Characteristic

b31 Mantissa code

+ Mantissa code: The mantissa code is expressed at b31 as follows.
0: Positive
1: Negative

« Characteristic: The "n" of "2n" is expressed in various ways at
b23-b30, depending on the b23-b30 BIN value.

b23-b30 | FEw | FEw | Fou | ((| 8w | 80 | 7Fn | 7Ex | o2« | otn | oou

Not Not
n used 127 126 « 2 1 0 -1 « -125 =126 used

« Mantissa: For a binary value of 1.XXXXXX..., the "XXXXXX"
' portion of the value is expressed at b0-b22 (23 bits).

POINTSI

« The monitor function for periphera! devices permits monitoring the
data on floating decimal point of the QnACPU. ‘

» For a "0" value, "0" wilt be indicated at all the b0-b31 bits.

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

« Calculation examples are shown below (the nnnnn "X" indicates an X-
system data expression)

(1) Storing "10"
(10)10 — (1010)2 - (1.01000..... xfj’)z
Mantissa code: Positive —» 0
Characteristic : 3 — 82H — (10000010)2
Mantissa : {010 00000 00000 00000 00000)2

The data expression will therefore be 41200000H, as shown below.

Code Characteristic Mantissa
010000010 01000000000000000000000
[N J N\ FIRY A4 Je J L N J N i
[S
4 1 2 0 0 0 0 0

(2) Storing "0.75"
(0.75)10 = (0.11)2 = (1.100,... x 27')2
Mantissa code: Positive — 0
Characteristic : -1 — 7EH — (01111110)2
Mantissa : (100 00000 00000 00000 00000)2

The data expression will therefore be 3F400000H, as shown below.

Code Characteristic Mantissa
001111110 100000060000000000000000

N 2 2\))\ J

[e R N I

3 F 4 0 0 0 0 0

At the binary system, the porticn of the value following the decimal point is calculated as

follows:
0.1 1 0 1
This bit Thisbit This bit Thisbit
expresses 271 expresses 2 expresses 2'3 expresses 27

(0.1101)2 = 271422424 = 0.5+0.25+0.125=(0.875)10 -

3. SEQUENCE PROGRAM CONFIGURATION &
EXECUTION CONDITIONS

MELSEC-QnA
3.5 Character String Data
{1) Character String Data

The QnACPU uses ASCI| code data.

(2) ASCIl code character strings

ASCll code character strings are shown in the Table below. "OOH" (NUL
code) is used at the end of a character string.

o 0 0 0 0 0 0 0
0 0 6 0 1 1 1 1
0 0 1 1 0 0 1 1
E _ — 0 1 0 1 o 1 0 1
l b8 I b7] b6 | BS | b4 | b3 | b2 | b1 | 0 1 2 3 4 5 6 7
o { 0| o 0 0 |NUL sp)| o { @ | P ‘ p
0 0 0 1 1 1 1 A Q a q
0 0 1 o 2 . 2 B R b r
0 0 1 1 3 # 3 C S | ¢ s
] 1 0 0 4 $ 4 D T d t
] 1] 1 5 % 5 E u e u
0 1 1 0 6 & 6 F v f v
0 1 1 i 7 ' 7 G w g w
1 0] 0 8 { 8 H X h X
1 0] 1 8) 9 l Y i y
1 0 1] A - J z i z
1 0 1 1 B + H K i k {
1 1 0 0 c . < L A | !
1 1 0 1 D - = M 1 m]
1 1 1 o E > N A n -
1 1 1 1 F / ? o) _ o

4. DEVICES

4. DEVICES
41 Device List
4.1.1 Device list
The names and data ranges of devices which can be used in the QnACPU are
shown in Table 4.1 below.
Table 4.1 Device List
Detault Values
Parameter
Class Type Device Name Numbor of Designated R;::’ﬁ::“
Points Range Used Setting Range
I 8192 poi X0 to X1FFF 4.2,
nput points (o] Fixed 1
Qutput 8192 points YO to Y1FFF 422
Internal relay 8192 points ‘| MO to M8191 4.2.3
Latch relay 8192 points LO to L8191 4.2.4
Bit devices Annunciator 2048 points | FO to F2047 425
Edge relay 2048 points VO to V2047 4.2.6
Internal 3 S0 to 8511 per
user Step relay 8192 points block 4.2.9
i s Ch ibl
devices Link special relay® | 2048 points | SBO to SBTFF | ianange Possible [e
Link retay 8192 points |BO to BIFFF less. * 4.2.7
Timer"! 2048 points T0 to T2047 4210
Retentive timer ! 0 points (STO to ST2047) -
Gounter ' 1024 points CO to G1023 4.2.11
Word devices
Data register 12288 points DO to D12287 4.2.12
Link register 8192 points WO to WiFFF 4.2.13
Link special .
register 2048 points SWO to SW7FF 4.3.14
Function input 5 points FX0 to FX4 4.3.1
Internal | Bit devices Function output |5 points FYO to FY4 4341
System Special relay 2048 points | SMO to SM2047 | Impossible 432
d i i DO to FD4 3.
Word devices Function register |5 points F O] 4.3.1
Special register 2048 points SDO0 to SD2047 4.3.3
—_ p JnX0 to
Link input 8192 points JX1FFF
Jr\YO to
Link output 8192 points
Bit device MY 1FFF
Link Link rel g192points |IMBoto
direct ink relay po JMBIFFF Impossible 4.4
devices
Link special relay }512 points jmgg?;g
) Link register 8192 points jm‘x?;gr_.
Word device ImSWo 1
Link special . n o
register 512 points JMSWIFF
Special
::“233;’3" Word device Buffer register 16384 points Sﬁxg?égas Impossible 4.5
device

4, DEVICES

‘ . Default Values Parameter
Class Type Device Name Number of Designated Hg'eirt?:":e
Points Range Used Setting Range

Index Word device {Index register 16 points Z0 to 215 Impossible 4.6

register . .

File . - . . 0 to 1024 k points

register Word device File register 0 points (1 k units) 4.7

Nesting - Nesting 15 poinis NO to N14 impossible 4.8
Pointe 4096 points PO to P4095 .

Pointers _ r po Impossible 4.9
Interrupt pointer 48 points 10 1o 147 4.10
SFC block 320 points BLO to BL319 4.11.1

Bit devices .

SFC transition .

Other device 512 points TRO to TR511 Impossible 4.11.2
Network No. 256 points J1to J2E5 4.11.3
1/0 No. Uo to UFF 4.11.4
Decimal
constants K-2147483648-K2147483647 4.1?.1
Hexadecimal

constants constants HO to HFFFFFFFF 4.12.1
Real number
constants E +£1.17549-38 to E & 3.40282+38 4.12.3
Character string . " waomt
constants ABC", "123 4,12.4

1) "1: For the timer, retentive timer, and counter, bit devices are used for the *number
of points™ and the “coil*, and the word device is used for the "present value®.

2) *2: The actual number of usable poinis varies according the the special module.
For details regarding the buffer memory’s "number of points®, refer to the Special

Function Module Manuat.

3) "8: Inputs, outputs, step relays, link special relays, link spacial registers remain at

their default values, which cannot be changed.

4.1.2 Setting units in the internal user device

For all QnACPU internal user devices other than the input (X), output (Y), and
step relay (8) devices, the number of points used can be changed within a
28.8 k word range by the "device setting" parameters. The items to consider
when making such changes are discussed below.

{1) Setting range
(a) The number of device points is designated in 16-point unit.

(b) A maximum of 32 k points can be designated for one type of device.
‘The maximum total number of points for the internal relay, latch
relay, annunciator, edge relay, link relay, timer, retentive timer, and
counter, is 64 k points. 1 points is calculated as 2 points (1 for coil,

1 for contact) for the timer, retentive timer, and counter.

4. DEVICES

(2) Memory size (Bit device size)

(a) For bit devices:
For bit devices, 16 points are calculated as 1 word.

. (M+L+F+B+SB total number of points)
{(Word device size) = (Word)

16

(b) For timer {T) retentive timer (ST), and Counter (C):
For the timer, retentive timer, and counter, 16 points are calculated
as 18 words.

(T,ST,C total number of points)

(Timer, retentive, counter size) = 16 x18 (Words)

{c) For word devices:
For data registers (D), link registers (W), and special link registers
(SW), 16 points are calculated as 16 words. '

(D,W,SW total number of points)

(Word device size) = 16 x16 (Words)

[Device setting screen]

Imlw
Device S*ﬂ Rad| Dovices able CrL Koy isable C/L Koy
Input Relay i6 8K
Output Re ¥ |16 8K
nternal Relay| M |18 |I -S)EI
Latch Relay L. e I 1 £ 1-I 1
Link Rolay B |16 {f ~ 8X] 4 I-f 1 L -1 |
dator P |ie |t 2K1 4 =L 11r -1 1
Link Sp_Felay | 8B (16 2K
tdge Relay ¢ 10 L 2X1 4 1-L 1] 1-L 1
Step Relay g8 He 8K
Iimey T |18 | 2X1 | 4 1-L 1 L 1-f]
ficunlt Timer ST |18 |E aK3 £ -1 31¢£ 3-f 1
Cs ¢ (18 |[1K1 1 1-E 3 E -f 1
Data Register D {18 L 12K) L 1-€ 11I 1-L 1
Link Register ¥ |16 I 8X1 f -t FI 8 -1 3
Link Sp Reg 16 2

\—— Default values

"Number of points" can be changed at devices
where a "number of points® value is shown in
brackets.

4. DEVICES

MELSEC-QnA

.42 Internal User Devices

Internal user devices can be used for various user applications.
The "number of usabie points® setting is designated in advance (default value)
for internal user devices. However, this setting can be changed within a 28.8k
word range by a peripheral device parameter setting.

[See Section 4.1 for details regarding the internal user device default]
value and the setting range which can be designated by parameter seiting

POINTI

(1) When an internal user device's "number of usable points® setting s
changed, files which were created under the previous setting cannot
be used as they are. In order to use these files, the foliowing
operation is required after changing the "number of usable points"
setting: '

+ The sequence program

s The SFC program

The sequence program and SFC program must be read from the
QnACPU to the peripheral device, and then they must be written
back to the QnACPU again.

4.2.1 Inputs (X)
| (1) Definition
(a) Inputs are commands or data transmitied to the QnACPU from a

peripheral device by push-button switches, selector switches, limit
switches, digital switches, etc,

Push-button switch

@)

Selsctor switch

Digital switch

PEE

(b) The input point is the Xn virtual relay inside the QnACPU, with the
program using the Xn’s N/O contact or N/C contact.

Input (X)

Sequence
operation

Virtual relay - __1
PB1
\ X[:
oo @ Hi

O—
5 5 D H O
O_

Sequence

XF

Hix

|
N

|
Yo - Y
Input tadder (external device) Program

~

Fig.4.1 Inputs (X)
4-4

4. DEVICES

MELSEC-QnA

{c) There are no restrictions regarding the number of Xn N/O contacts
and N/C contacts used in a program.

0
- " H—3f or20
No restrictions regarding B0 X1 X2
the quantity used. A " o
|

Fig.4.2 input (x) Used in Program

(2) Reading the inputs

(a) There are 2 types of input: “refresh inputs” and "direct access
inputs"”.

1) Refresh inputs are ON/OFF data read from the input module
using the refresh mode. *1
These inputs are indicated as "XI2" in the sequence program,
For example, a "100" input becomes "X100".

2) Direct access inputs are ON/OFF data read from the input module
using the direct mode. *2
These inputs are indicated as "DX{" in the sequence program.
For example, a "100" input becomes *"DX100".

(b} The same input number can be designated for a refresh input and a
direct access input. :
if used as a refresh input after being used as a direct access input,
operation will be based on the ON/OFF data read at the direct access

input.
Operation is based on the
/ ONIOFI‘f data read at the direct
NG - access input.
ml (¥io >
Direct access input
Ve i s inpu
DX0
| S
P Operation is based on the
0 ON/OFF data read at the END
I [Y processing input refresh.
— | : {1z >+

Fig.4.3 Refresh Input & Direct Access Input

1) *1: See Section 3.3.1 for details regarding the refresh mode.

2) "2: See Section 3.3.2 for details regarding the direct mode.

4. DEVICES

MELSEC-QnA

POINTl

‘(1) Direct access inputs can only be used in one point units.
They cannot be specified with digit designation.
s LD DXO Can be used
s MOV K4DX0 DO ———Cannot be used

—I—— Digit designation for direct access

inputs’is not possible.

{c) Differences between refresh inputs & direct access inputs

With direct access inputs, the input module is directly accessed by
the executed instruction, and the processing speed is therefore
slower than that for refresh inputs.

Moreover, direct access inputs can only be used for inputs used with
the input module and special function module (modules installed at
base unit and extension base unit). The refresh and direct input
differences are shown in Table 4.2 below.

Table 4.2 Differences between Refresh Inputs & Direct Access Inputs

Item Refresh Input Direct Access Input

Processing spead 0.07510 0.2 ps Approx. 10 ps

Input modute installed at base/
extension base unit

Inputs of special function module ; :
installed at base/extension base Usable Jsable,
unit

Inputs of 1/0 link module installed
at base/extension base unit

Inputs used at MELSECNET/10
network system

Inputs used at MELSECNET (II/B) Fys3 Unusable
data link

Inputs used at

MELSECNET/MINI-S3 link .

4. DEVICES

4.2.2 Outputs (Y)
(1} Definition
(a) Outputs are program control results which are output to external

destinations (solenoid, electromagnetic switch, signal lamp, digital
display, etc.).

Signal lamp
. L,
'/OQ\'
Output (Y) Digital display

Sequence ::> I

operation I

Contractor

=

{b) Outputs occur at one N/O contact or its equivalent.

()] There are no restrictions regarding the number of output Yn N/O
contacts and N/C contacts used in a program.

Progr ble - .
con?r:lgna /A No restrictians to the quantity used

- R T . Load
e /] i

E; (Y20 »—1 mi M51
Y20 [, . :
B |
! X1 Y20 X2 H
| i , oo |]
i Y20 X3 !
— o2 |
L . — _

A VAN J
h i hd
Program Out ladder (external device)

Fig.4.4 Output (Y) Operation

(2) Using outputs as internal relays (M)
“Y* inputs corresponding o vacant slots and slots where input mod-.
ules are installed can serve as internal relays (M).

Power supply medule
QnACPU
Input module
Input module
Output module
Output modute
Output module

{

QuUT r\\’;l\
L Fquivalent to
internal relay

4. DEVICES

(3) Output method

(a) There are 2 types of output:"refresh outputs” and "direct access
outputs®.

1) Refresh outputs are ON/OFF data which is output to the output
module using the refresh mode. *1
These outputs are indicated as "YI" in the sequence program.
For example, a "100" input becomes "Y100°".

2) Direct access outputs are ON/OFF data which is output to the
* output module using the direct mode. *2
These outputs are indicated as "DY::" in the sequence program.
For example, a "100" input becomes "DY100".

(b) Differences between refresh outputs & direct access outputs

With direct access outputs, the output module is directly accessed
by executing an instruction, and the processing speed is therefore
slower than that for refresh outputs.

Moreover, direct access outputs can only be used for outputs used
with the output module and special function module {modules in-
stalled at base unit and extension base unit). The refresh and direct
output differences are shown in Table 4.3 below.

Table 4.3 Differences between Refresh Outputs & Direct Access Outputs

Item : Refresh Output Direct Access Ouibut

Processing speed 0.075 to 0.02 ps

OQutput module installed at
base/extension base unit

Approx. 10 ps

Outputs of special function
module instafied at. '
basel/extension base unit

Outputs of /O link module
installed at base/extension
base unit

Outputs'used at
MELSECNET/0 network
systam

Outputs used at MELSECNET
(11/B) data link

Qutputs used at
MELSECNET/MINI-S3 link

1} *1: See Section 3.3.1 for details regarding the refresh mode.

2) *2: See Section 3.3.2 for details regarding the diract mode.

4. DEVICES
MELSEC-QnA

POINT|

(1) Direct access outputs can only be used in one point units.
They cannot be specified with digit designation.
« OUT DY10 Can be used
« MOV DO KA4Y1 Cannot be used

_—,I— Digit designation for direct access
outputs is not possible.

4. DEVICES

4.2.3 Internal relays (M)
(1) Definition

(a) Internal relays are auxiliary relays which cannot be latched by the
programmable controller’s internal latch (memory backup).

All internal relays are switched OFF at the following times:
- When power is switched from OFF to ON.

- When a QnACPU reset occurs.

- When a QnACPU latch clear operation is executed.

(b) There are no restrictions regarding the number of contacts (N/O
contacts, N/C contacts) used in the program.

No restrictions regarding the quantity used.
MO switches ON at X0 OFF — ON

SET MO } The internal relay (M0) ON can only be used
for internal QnACPU processing, and cannot
K20 be output extarnally.
g
— | / / 10 >
<Y2° >— MO ON/OFF information is output from the
/ output module to an external destination.
X1 MO
) oo >
X2 uol ‘ ,
mimsl (w2047 >

Fig.4.5 Internal Relay

(2) Procedure for external outputs

(a) Outputs (Y) are used to output sequence program operation results
to an external destination.

(b} Link relays (B) are used to output ON/OFF information from MEL-
SECNETH0 to another station.

1) Latch relays (L) should be used when a latch {memory backup) is required.
See Soction 4.2.4 for details regarding latch relays.

4. DEVICES

4.2.4 Latchrelays (L)

(1)

Definition

{a) Latch relays are auxiliary relays which can be latched by the pro-
grammable controller’s internal latich (memory backup).
Latch relay operation results (ONIOFF information) are saved even
in the following cases:
- When power is switched from OFF to ON
- When a QnACPU reset occurs,
The latch is backed up by the QnACPU battery.

(b} Latch relays can be switched OFF by the RUN/STOP key at the
QnACPU. However, a laich relay cannot be switched OFF by
RUN/STOP key opetation if latch clear has been made ineffective
for that latch relay in the device settings parameters.

For details regarding the setting for making latch clear ineffective,
refer to the User's Manual of the CPU module used.

{c) There are no restrictions regarding the number of contacts (NfO
contacts, N/C contacts) used in the program.

7 output externally,
— | / / (o) P i4
{¥20 - L0 ON/OFF information is output from the out-
put module to an external destination.
Xt Lo ‘
g
HH) Cuon 3
X2 LOl y
— | < 12047 3

No restrictions regarding the quantity used.

LO switches ON at X0 OFF— ON.

ST 10 H The latch relay (LO) ON can only be used for
internal QnACPU processing, and cannot be
K20 output externally. processing, and cannot be

(2)

Fig.4.6 Latch Relay

Procedure for external outputs

(a) Outputs (Y) are used to output sequence program operation resuits
to an external destination.

(b) Link relays (B)' are used to output ON/OFF information from MEL-
SECNET/10 to another station.

1) Internal relays (M) should be used when a latch (memory backup) is not required. -
See Section 4.2.3 for details regarding internal relays.

4. DEVICE

4.2.5 Annunciators (F)
(1) Definition

(2) Annunciators are devices used by the user in fault detection pro-
grams.

{b) When annunciators switch ON, a special relay switches ON, and
the Nos. and quantity of annunciators which switched ON are
stored at the special registers.

e Special relay : SM62 Switches ON if even one
annunciator switches ON,
» Special register : SD62 No. of first annunciater which
switched ON is stored here.
:8DB3 s The number (quantity) of

annunciators which are ON
is stored here.
: 8D64 to SD79 ... Annunciator Nos, are
stored in the order in which
they switched ON.
(The same annunciator No. is
‘ stored at SD62 and SD64.)
The annunciator No. stored at SD62 is also registered in the "fault
history area”.

{c) The use of annunciators in the fault detection program permits the
user to check for the presence/absence of fault and to check the
fault content (annunciator No.), by monitoring the special relay
and special registers.

--- ExXample ----=------"-"-----cm et mmm e e e e m e

" A
1 [}
i\ The program which outputs the No. of the ON annunciator (F5} is shown below. '
3
: 3
t 3
, {Fault detection program) X
]
: ¥ X110 ;
]
' s = -
: “‘|"" SMe62]! OFF = ON :
i]
. SME2 : sDe2 05 :
1
BCOP 5SD62 K4Y20
' I_—[H sDs3 01 ;
t 1
: l : sDed| 05 |
: Qutput of annunciator No. :
' which switched ON sSDes 4] '
1 1
' Annunciator ON detection :
1]
' sSD79 0 :
L] 1
1 1
e e e o e e e e e e e e e e e e e e mnmm e ——— . ————— J

4. DEVICE

(2) Annunciator ON procédure

(a) Annunciator ON procedure Annunciator operation can be
controlled by the SET FiZ and QUT FU: instructions.

1)} The SET Fi: instruction switches the annunciator ON at the
leading edge (OFF->0ON) of the input condition, and keeps the
annunciator ON when the input condition switches OFF. Incases
where many annunciators are used, the OUT FII instruction can
be used to speed up the scan time.

2} Although the OUT FII instruction can switch the annunciator ON
and OFF according to the input condition ON/OFF operation, itis
executed in each scan.

PO[NTI

(1) if switched ON by any method other than the SET FiZ and OUT Fi:
instructions, the annunciator functions in the same way as the
internal relay. '
(Does not switch ON at SM62, and annunciator Nos. are not
stored at SD62, SD64 to SD79.)

Moreover, even if an annunciator is switched OFF by the OUT F
L2 instruction, the special relay and special register content is not
changed. Therefore, an RST Fil instruction or LEDR instruction
is required. (See item (3) below,"annunciator OFF procedure &
processing content")

{b) Processing at annunciator ON
1) Data stored at special registers (SD62 to SD79)

' a) Nos. of annunciators which switched ON are stored in order
at SD64 to SD79.

b) The annunciator No. which was stored at SD64 is stored at
Sbé2. '

¢) *1" is added to the SD6&3 value.

SET F50 SET F25 SET F2047

|
sSD62 0
sDea | o :
sDed4| © .]
SDE5| o 0 SOhN
' SDes| o 0 0 |— % Up to 16 annunciator
. Nos. can be stored.

SD6B7] 0 4]

] .) ; : : ; :
sp7e | o 0 o | o |

4-13

4. DEVICE

2) Processing at QnACPU

a) Q2ACPU(-81), “USER" LED at CPU front is ON.
Q2AS(H)CPU(-S1)

b} Q3BACPU, Q4ACPU, . . . The annunciator No. stored at 8D62
Q4ARCPU is displayed on the LED display
(CPU front).

{3) Annunciator OFF procedure & processing content

(a) Annunciator OFF procedure
An annunciator can be switched OFF by the RST Fi: and LEDR in-
structions.

1) An annunciator No. which has been switched ON by the
SET Fi: instruction can be switched OFF by the RST F:: instruc-
tion. ' '
2) The LEDR instruction is used to switch OFF the annunciator Nos.
stored at SD862 and SD64.
3) An annunciator No. which has been switched ON by the
OUT Fo instruction is switched OFF when the OUT F.: instruction
is switched OFF,
However, if an annunciator is switched OFF by the
OUT Fi3 instruction, the “processing at annunciator OFF" (item
(b) below) does not occur.
Execute the §ST Fi and LEDR instructions after the annunciator
has been switched OFF by the QUT F.: instruction.

1) To switch OFF only the annunciators stored at SD62 and SD64:

Fault detection program (annunciator ON
program)

Display reset input

|

SD62 and SDE4
annunciators OFF

[LEDR :|—

2} To switch OFF all annunciators which are ON:

Fault detection program
{annunciator ON programy}

Display resst input

M1

SME2

__|H/|’——; RST W1

PLS MO }
uo suss) Display reset command (MOQ)
ON program
A s w0
M1 M2
4 G
Program which switches OFF
all annunciators which are ON
[w= H

Display reset command OFF
program

4. DEVICE

MELSEC-QnA

1) The BKRST instruction can be used to switch OFF a specified annunciater No. range.
For details regarding the BKRST instruction, fefer to the QnACPU Programming
Manual (Common Instructions).

{b) Processing at annunciator OFF

1) Special régister (SD62 to SD79) data operation at LEDR
instruction

a) Annunciator No. stored at SD64 is deleted, and annunciator
Nos. stored at subsequent registers (SD65 to SD79) are
moved up to fill the vacant space.

b} The annunciator No. stored at SD64 is stored at SD62.

¢)"1" is subtracted from the SD63 value.

d) If the SD63 value is "0", SM62 is switched OFF.

SET F50 SETF25 SET F2047 LEDR

sbe2
SD63
sDe4
8Des
8Dbes
SD67

CljlOo|Oo|lOo o O {—

SD79| o 4] 0 o o

2) Special register (SD62 to SD79) data operation at RST F:
instruction, and when an annunciator is switched OFF by the
OUT F instruction

a) The annunciator No. which was switched OFF is deleted,

and all subsequent annunciator Nos. are moved up to fill the
vacant space.

b) If the annunciator No. stored at SD64 was switched OFF,
the new annunciator No. which is stored at SD64 is stored
at SD62,

c) "1* is subtracted from the SD63 value.

d) If the SD63 value is "0", SM62 is switched OFF.

4. DEVICE

MELSEC-QnA

SET F50 SETF25 SET F2047 RST F25

L [l

SD&2
SDe3
SDe4
SDe5
SD66
spe7

QIO |0 |00 O |

SD79{ o0 0 o o o

3) Processing at QnACPU

a) Q2ACPU(-51), « If all SD64 to SD79 annunciator Nos.
Q2AS(H)CPU(-81) are switched OFF, the "USER LED"
(at CPU front) switches OFF.

b) Q3ACPU, Q4ACPU, « lithe displayed annunciator number.
Q4ARCPU (CPU front LED display) is switched
OFF, the new annunciator No.
stored at SD62 is displayed.
¢ If an annunciator No. other than
" that displayed is switched OFF, the
displayed No. will not change.
o If all the SDB4 to SD79 annunciator
Nos. are switched OFF, the LED
display will switch OFF.

POINTI

(1) If the RST Fi: or LEDR instruction is not executed after switching
an annunciator OFF by the OUT FI3 instruction, the “processing at
annunciator OFF" (see(b) above) will not occur.

4.2.6 Edgerelay (V)
(1) Definition

(a) An edge relay is a device which stores the operation results
(ON/OFF information} from the beginning of the ladder block.
Edge relays can only be used at contacts, and cannot be used as
coils.

X0 X1
=
|—> Edge retay

Stores the X0, X1, and X10 operation results

Xi0 Vi

4. DEVICE :

(b) The same edge relay number cannot be used twice in programs
executed by the QnACPU.

(2) Edge relay applications

Edge relays are used for detecting the leading edge (OFF-ON) in
programs configured using index qualification.

[Ladder example]

X071%1 VO71+1
| L} e
1 {_Mozi

[Timing chart]

X0 OFF ‘___I—'__‘
oH
When Z1=0 Y0 OFF I l_
ON .)
Wo offF | |
l 1 scan I
ON
X1 OFF i
o 1 scan ON at X1 leading edge
When Z1=1 Vi Off | I
ON
N1 OFF | I

1 scan

1) *1: The ON/OFF information for X0Z1 is stored at the VOZ1 edge relay.
For example, the X0 ON/OFF information is stored at V0, and the X1
ON/OFF information is stored at V1.

4. DEVICE

4.2.7 Linkrelays (B)
(1) Definition

(a) A link relay is the QnACPU relay used to refresh the QnACPU
from the MELSECNET data link module and MELSECNET/10 net-
work module’s link relay (LB).

QNACPU MELSECNET/10 network module
Link relay

l
B
|

Link relay

WO |

]
! Link refrash

1]
I Link fresh ¢
setting range

L

Internal relays or latch relays can be used for data ranges not used by the
MELSECNET data link system and MELSECGNET/10 network system.

» Range where no link relay latch occurs...Internal relay

» Range where link relay latch occurs........ Latch relay

(b) There are no restrictions regarding the number of contacts (N/O
contacts, N/C contacts) used in the program.

No restrictions regarding the quantity used.
/——- BO switches ON at X0 OFF-ON.
st ® M The link relay (B0) ON can only be used for internal
- QnACPU processing, and cannot be output externally.
: <® M

% >4 B0 ON/OFF information is output from the output
“ module to an external destination.
- bon -

e o>

Ly

L

Fig.4.5 Link Relay

(2) Using link relays in the MELSECNET/10 network system

{a) If link relays are used at the MELSECNET/10 network system, the
host station’s ON/OFF information can be read to another station
for use there. Use of link relays in the MELSECNET/10 network
system permits the transfer of ON/OFF information between the
control station and a normal station, and between normal stations.

(b) In order to use link relays in the MELSECNET/10 network system,
a network parameter setting is required at the control station.
Link relays for which no network parameter setting has been desig-
nated can be used as internal relays or latch relays.

4. DEVICE

(3) Useina MELSECNET data link system.

(a) When link refays are used with a MELSECNET data link system,
the ON/OFF statuses at the host station can be read and used at
other stations.

Link relays enable the exchange of ON/OFF information between
a master station and local station of a MELSECNET data link sys-
tem, or between local stations.

(b) To allow use in a MELSECNET data link system, link parameters
must be set at the master station.
Link relays that are not set in the link parameters can be used as
substitutes for Internal relays. :

[REMARKS]

1} For details regarding the network parameters, refer to the For QnA/Q4AR
MELSECNET/10 Network System Reference Manual,

2) For details regarding link parameters, refer to the MELSECNET & MELSECNET/B
Data Link System Reference Manual.

4. DEVICE

4.2.8 Special link relays (SB)
{1} Definition

(a) Special link relays (SB) are used to transmit ON/OFF data be-
tween the MELSECNET/10 network module and the user program.

(b) Because special link relays are switched ON and OFF in accord-
ance with various problems which may occur during a data link,
they serve as a tool for identifying data link problems.

{2) Number of special link relay points
There are 2048 special link relay points (SB0 to SB7FF) for each MEL-
SECNET/ 0 network module. As shown below, the default “number of
points" setting for QnACPU special link relays is 512 points per mod-

ule.

580

to For 1st
SB1FE!| network module
SB200
" to For 2nd
sgapF | hetwork module
SB{:OO For 3rd
SBSFF network modula
segoo For 4th

network module

SB7FF

1) For details regarding special link relays used at the QnACPU, refer to the QnACPU
Programming Manual (Common Instructions).

4.2.9 Step relays (S)

A step relay is aﬁ SFC program device. For details regarding procedures for
using step relays, refer to the QnACPU Programming Manual (SFC).

POINT

Because the step relay is an SFC program dedicated device, it cannot
be used as an internal relay in the sequence program.

Hf used in this manner, and SFC error will occur, and system operation
will be stopped (system down).

4. DEVICE

MELSEC-QnA

4.2.10 Timers (T)

QnACPU timers are "forward timer" types, with the time measurement begin-
ning when the coil switches ON, and ending (time out) when the present value
matches the setting value. The contact is switched ON when a "time out®
occurs. There are 3 timer types: low-speed timers, high-speed timers, and
retentive timers.

(1) Definition

i
S

(a) Low-speed timers are timers which are only operative while the
coil is ON.

{b) The time measurement begins when the timer's coil switches ON,
and the contact switches ON when a *time-out” occurs. When the
timer's coil switches OFF, the present value becomes "0, and the
contact switches OFF. '

{Ladder example]

Xa K10 When X0 switches ON, the TO coil
] / TO switches ON, and the contact switches
~

| ON 1 second later. (The low-speed timer
measures time in 100 ms units)

[Time chart]
ON

TO OFF E
ON

TO coil OfF 3

1 second

TO contact OFF

(2) Measurement units

(a) The default time measurement units setting for low-speed timers
is 100 ms,

{b) The time measurement units setting can be designated in 10 ms
units within a 10ms to 1000 ms range.
This setting is designated in tne "PC system settings" parameiers.

(a) High-speed timers are timers which are only operative while the
coil is ON.

4. DEVICE

MELSEC-QnA

(b) The time measurement begins when the timer’s coil switches
ON, and the contact switches ON when a "time-out® occurs. When
the timer's coil switches OFF, the present value becomes "0%, and
the contact switches OFF,

fLadder example]

High-speed timer display

—
X0 H K200 When X0 switches ON, the T200 coll
i _Z 1200 . switches ON, and the contact

| \ switches ON 2 seconds later. (The
high-speed timer measures timen
10ms units)

[Time chart]
ON
X0 OFF
oN .
T200 coil OFF -
2 seconds
> ON
T200 contact OFF + Y

(2) Measurement units

(a) The default time measurement units setting for high-speed timers
is 10 ms.

(b) The time measurement units setting can be designated in 1Tms
units within 2 1 ms to 100 ms range.
This setting is designated in the PC system settings
parameters. *

2
S

i o
(1) Definition
{a) Retentive timers measure the "coil ON" time.

(b) The measurement begins when the timer coil switches ON, and
the contact switches ON when a time-out {coil OFF) occurs. Even
when the timer coil is OFF, the present value and the contact
ON/OFF status are saved. When the coil is switched ON again,

the time measurement resumes from the present value which was . -
saved.

(c) There are 2 retentive timer types: low-speed retentive timer, and
high-speed retentive timer.

(d) The RST T instruction is used to clear (veset) the present value
and switch the contact OFF.

[Ladder example]
X0 K200
l Z st X0 ON time is measured as 20
) AN seconds.
X1 . Retentive timer display
—4 [rst sm When X1 switches ON, the STO

contact is reset, and the present
valus is cleared.

4, DEVICE

MELSEC-QnA
[Time chart]
DN

X0 OFF
TO ¢oil _OFF 5 seconds

|_ 15 seconds /

[» l‘_,
o [Tesant X1 o 1567 X151 to200 | X0

/
Present value is saved when coil switches ON

TO contact QFF :[/ . a
Instruction

RST STO Contact remains ON when coil switches gxecution
instruction \ﬂ

ON

X1 OFF

(2) Measurement units

() The measurement units settings for retentive timers are the same
those for Jow-speed timers and high-speed timers. _
« [ow-speed retentive timer : Some as low-speed timer
» High-speed retentive timer: Same as high-speed timer

1) *: In order to use retentive timers, a retentive timer "number of
points used" setting must be designated in the PC device settings
parameters.

(a) When an OUT T:: instruction is executed, the following processing

occurs: timer coil ON/OFF, present value update & contact

ON/OFF processing. Timer present value update and contact
ON/OFF processing do not occur at END processing.

{Ladder example]

X0 K10
} ’
i 4 TO

fProcessing at OUT TO0 instruction]

END ouT 1O END
Sequence programy : 1

L R

(b) When the OUT T:: instruction is executed, the present value is
added to the scan time measured at the END instruction.
If the timer coll is OFF when the OUT Tl instruction is executed,
the present value is not updated,

[Ladder example]

4. DEVICE

[Present value update timing]

ouT T0 OuT T0 ouT 70 OUT TO ouT 1O ouT 10
END proc- |END proc- | END proc-] END proc- |END proe- |[END proe-
assing assing essing essing essing essing
Program — 1 H —
H Voo Pt
ON : } i
X0 external input OFF| E : i }
]] 1 T 1
1 1 1 F
{oN P : i
H H i H H
QnACPU's X0 OFF ; o b
1 1 1 3 [
P lon P P
] t 1] 1 1
To coil OFF ; ! i i P
1 1 1 1
A ON i
OFF 1 [l 1 1 [
T0 contact : : E E
1 1 ? 3 14211 2 3 0 1 2 3
10 ms measurement —t———t 1 1
\'\ I \ N \ N \
Measured value at 2 5 \2 i 3 : 2 3
END instruction \' <] < e
' 1
TO present value 042=2 243=5 | 5+2=7 | 7+3=10
| i H '
1 \ [
Input reading timing Timer accuracy
{(+1 scan) (+1 scan)

{c) The timer response accuracy from the point when input (X) read-
ing occurs, until the point when the output occurs is +2 scans.

The following are a few precautions regarding timer use,

(a) A given limer cannot be designated (by OUT T:2) more than once
in a single scan. If it is, the timer’s present value will be updated
at each OUT T:: instruction, resulting in a meaningless measure-

ment.
aut our ouT our aut
END Ti3 T TTI oewp T T3
Sequence _| 1] ! 1] 1
program I | l
- » Prosent value
1 scan is updated
i

(b) When a timer (for example. T1) coil is ON, the OUT T1 instruction
cannot be skipped using a CJ instruction, etc. if the OUT T2
instruction is skipped, the timer's present value will not be up-
dated.

{c) Timers cannot be used in interrupt programs.

(d) If the timer set value is "0, the contact goes ON when the OUT T2
instruction is executed.

4-24

4. DEVICE

() If the setting value changes to a value which is higher than the
present value following a timer "time-out®, the "time-out" status
will remain in effect, and timer operation will not oceur.

(f) If atimer is used at a low-speed execution program, the present
value will be added to the low-speed scan time when the OUT T2
instruction is executed,

(g) If two timers are used, the ON/OFF ladders should be created as
shown bhelow.

To K10
1 4T 1 second measursment following
— | Tt 15e0e
T X10
{ <TD' >— 1 second measurament following
T1 OFF
10
| | {0 > ONJOFF repeated every 1 second

(h) When creating a program in which a timer contact is used as the
trigger for counting by a different timer, write the program starting
from the counter that counts later. '

In the cases below, if programming is done in the same order in
which the timers count, ail the timers will be ON in the same scan.
» When a high-speed timer is used with a set value shorter than
the scan time '
» When a low-speed timer is used with a set value of "1"

Example

» When timers TO to T2 are programmed in the reverse of the
order in which they start counting:

T4 K1
""i I <'72 >— Timer T2 starts counting in the scan
following the one in which the T1
T X1 contact comes ON.
—,1’; {'“ >— Timer T1 starts counting in the scan

following the one in which the TQ
contact comes ON.

K1
—| E <T0 >— Timer TO starts counting when X0
: comes ON.

» When timers T0 to T2 are programmed in the order in which
they start counting.

X0 K1
—| } (Tﬂ >— Timer TO starts counting when X0
comes ON.
T K1
4- { T '
’{" N > When the TO contact comes ON, the
contacts of timers T1 and T2 come
i X ON.
— | {2 >

4. DEVICE

MELSEC-QnA

4.2.11 Counters (C)

QnACPU counters are "up counter" types, with the contact being switched
ON when the count value equals the setting value (count-out condition).
There are two counter types: counters which count the number of input con-
dition start-ups (leading edges) in sequence programs, and counters which
count the number of interrupt factor occurrences.

POlNTl

When an QUT CC: instruction is executed, the following counter proc-
essing occurs: coil ON/OFF, present value update (count value + 1),
and contact ON/OFF.

Counter present value update and contact ON/OFF processing do not
occur at END processing.

(1) Definition

A counter is a device which counts the number of input condition leading
edges in sequence programs.

(2) Count processing

(a) When and OUT CI3 instruction is executed, the follwing counter
processing occurs: coil ON/OFF, present value update (count value
+.1). and contact ON/OFF.

Counter present value update and contact ON/OFF processing do
not occur at END processing.

[Ladder example]

X0 K10
N | s
R (O

[Processing at OUT C0 instruction (X0: OFF-ON)]

END “QUT Co END

Sequence | \

program

(b) The present vaiue update (count value + 1) occurs at the leading
edge (OFF — ON) of the QUT CI: instruction.
The present value is not updated in the following OUT Ct: instruction
statuses: OFF, ON — ON, ON —» OFF

[Laddér exampte]

X0 | K10
| /
| (Co

4. DEVICE

[Present value update timing]

Sequence END ouT €0 END oUT €O END OUT CO
program 1 L L L | :
i 1 1
ON H ! i
1 1 \
OFF H | E I T
X0 1] |
i H !
10N ! i
OFF ?—]
Co coil l l
Present value update Present value
’ update

(c) Multiple counters can be used within a single scan to achieve the
maximum counting speed.
In such cases, the direct access input (DX{2) method should be used
for the counter input signals. *1

out ouT out our out
e G (=% G} END G c
Sequence : i i i 1 i i
program N
et l - | T - | L) | T ouT c[]
execution
intervals

(3) Resetting the counter

{a) Counter present values are not cleared even if the OUT C instruction
switches OFF. Use the BRST CI: instruction to clear the counter's
present value and switch the contact OFF.

(b) The count value is cleared and the contact is switched OFF at the
point when the RST C:: instruction is executed.
[Ladder example]

X1
I [
I l RST CO

[Present value update timing]
END RST CO

END /ST €O END RST CO
Seguence) ; !]] ;
program ; i
ON .] i
QFF i l r—_“_“_r_—
xecution H !
RST CO oFF \ﬂ N
instruction 1 T
Count value cleared Count value cleared &
& contact OFF contact OFF

(4) - Maximum counting speed

The counter can count only when the input condition ON/OFF time is
longer than the execution interval of the corresponding OUT ClJ instruc-
tion. :

The maximum counting speed is calculated by the following formuta:

Maximum counting speed (Cmax) = X —1—— [times/sec]

n
100

n: Duty (%) *2
t : Execution interval or OUT Ci instruction

4. DEVICE ,

REMARKS

1) *1 : See Section 4.2.1 tor details regarding direct actess inputs.

2) "2 : The *duty" is the count input signal’s ON-OFF time ratio expressed as a per-
contage value.

L n | 2 [
) foN | I
OFF r——
Count input signal —‘—J L
™ T
When T1£T2:n= > % 100 (%) WhenT1<T2:n= x 100 (%)

{1} Definition
Enterrupt counters are devices which count the number of interrupt factor
occurrences.

(2) Count processing

(a) The interrupt counter's present value is updated when an interrup-
tion occurs. {f is not necessary to create a program which includes
an interrupt counter function.

(b) Interrupt counter operation requires more than the simple designa-
tion of a setting value.
To use the interrupt counter for control purposes, comparison in-
structions (=, <=, etc.) must also be used to enable comparisons with
the setting value, with an internal relay (M), etc., being switched ON
or OFF according to the comparison result. The figure below shows
a sample program in which M0 is switched ON after 10 interrupt
inputs occur. (In this example, "C300" is the interrupt counter No.
corresponding to 10.)

— 1 4
H = K10 c300] Mo >—‘

4. DEVICE

(3) Setting the interrupt counter
(a) In order to use interrupt counters, at first interrupt counter No., set-
ting must be designated in the PC system settings parameters. 48
points are then allocated for interrupt counters, beginning from the
*first counter No." which is designated.
["PC system settings® screen)
Lk Sosnen Seeeaned — ——— ______lahel]
[iiner dnerevall %: gﬁ: % 1%;: 5. Cammon Fointer & from (i |
£, Coneral Data Proceassl 1lUnitrtry
2. RUN-PRUSE Contact RUN X[1 ?. & of Pras £lots <16 >
BUSERL 3 m Interrupt First interrupt
3. Allow Remore Resat i3 R° 5. 135 Coner Tnterosll 166ims counter No. is
4. Output at STCP-DRIN 3: 137 Gonat ntervall oie designated
;:?-; :;:.:: :='c§.1::- 5. 131 Const Iatervalfl 18lms here_
EITIREE Cancel<H> .
- Kucciielect bociGhan)
if C300 is designated as the first interrupt counter No., numbers
C300-C347 will be allocated for interrupt counters,
C300 1o
c301 "
C302 12 Interrupt counters (48 points)
€347 147
Values corresponding to the interrupt
counter Nos.
(b) In order to use an interrupt counter, an "interruption permitted"
status must be established at the main routine program.
{4} Precautions
(a) One interrupt pointer is insufficient to execute interrupt counter

(b)

and interrupt program operation. Moreover, an interrupt program
cannot be executed by an interrupt pointer designated for an inter-
rupt counter.

If the processing items shown below are in progress when an inter-
ruption occurs, the counting operation will be delayed until proc-
essing of these items is completed.

Even if the same interruption occurs again while processing of
these items is in process, only one interruption will be counted.

« During execution of sequence program instructions

» During general data processing in END processing

» During interrupt program execution

4. DEVICE

() The maximum counting speed of the interrupt timer is determined
by the longest processing time of the items shown below.
« Instruction with the longest processing time among the instruc-
tions used in the program
» General data processing time at END processing ...Max. 2 ms
« Interrupt program processing time

1
Maximum counting speed = — [PP8]
[Longest processing time + [500 psec x number of
of the above 3 times] interrupt counter pointsj
[Example]
« Longest instruction processing time ... 0.3 ms
s Interrupt program.oienatn None
» Number of interrupt counter points ... 2
Since here the END processing time of 2 ms (0.002 sec) is the highest
value:
1
Max. counting speed = #2333 [PPS]

0.002 + 0.0005 x 2

Based on this maximum counting speed, the input pulse signal must be as
follows:

S R R N B

| amsormore |
Ll Lt]

(d) The use of too many interrupt counters will increase the sequence
program processing time, and may cause a "WDT ERROR?". If this
occurs, either reduce the number of interrupt counters, or reduce
the counting speed for the input pulse signal.

(e) The interrupt counter's count value can be reset by using the RST
{1 instruction in the sequence program prior to the FEND instruc-
tion.

(fy The iﬁterrupt counter's count value can be read out by using the
sequence program MOV instruction.

4.2.12 Data registers (D)
(1) Definition

(a) Data registers are memory devices which store numeric data (-32768
to 32767, or 0000H to FFFFH) in the QnACPU.

(b} Data registers consist of 16 bits per point, with reading and writing
executed in 16-bit units. ,

b15 to b0
o [

4, DEVICE

MELSEC-QnA

(c) If the data registers are used for 32-bit instructions, the data will be
stored in registers Dn and Dn + 1. The lower 16 bits of data are stored
at the data register No. (Dn) designated in the sequence program,
and the higher 16 bits of data are stored in the designated register

No. + 1 (Dn + 1).

For example, if register D12 is designated in the DMOV instruction,
the lower 186 bits are stored in D12, and the upper 16 bils are stored

in D13.

} {DMOV K500000 D12

Processing object: D12, D13

E p12 |
Upper Lower 16
16 bits bits

I b

(d) Data stored by the sequence program is maintained until another

data save operation occours.

4.2.13 Link registers (W)

(1) Definition

(a) A link register is the QnACPU memory used to refresh the QnACPU
with data from the MELSECNET/10 network module and MELSEC-
NET/10 network module link registers (LW).
Link registers are used to store numeric data (-32768 to 32767, or

00004 to FFFFH) at the QnACPU.
QnACPU

Link register

wi

L=}

MELSECNET/10 network module

L

Link register

(=]

Link refresh
setting range

When used outside the MELSECNET data link system, MELSEC-
NET/10 network system’s range, link registers can serve as data

registers.

(b) Link registers consist of 16 bits per point, with reading and writing

executed in 16-bit units.

b15 to

4. DEVICE

(c) If the link registers are used for 32-bit instructions, the data is stored
in registers Wn and Wn + 1. The lower 16 bits of data are stored in
the link register No. {Wn) designated in the sequence program, and
the higher 16 bits of data are stored in the designated register No.
+ 1 (Wn + 1).

For example, if register W12 is designated at the DMOV instruction,
the lower 16 bits are stored in W12, and the upper 186 bits are stored
in W13. o

Processing object: W12, Wi3

| wis | wiz |

Higher Lower
16 bits 16 bits

(d) Data stored by the sequence program is maintained until another
data save operation occurs.

(2). Using link registers in a MELSECNET/10 network system

(a) If link registers are used in a MELSECNET/10 network system, the
host station’s numeric data can be read to another station for use
there.

Use of link registers in the MELSECNET/10 network system permits
the transfer of numetic data between the control station and a normal
station, and between normal stations.

(b} In order to use link registers in the MELSECNET/10 network system,
network parameter settings must be made at the control station.
Link registers not set in the network parameter settings can be used .
as data registers.

(3) Using link registers in MELSECNET data link systems

(a) If link registers are used at the MELSECNET data link systems, the
host station’s numeric data can be read to another station for use
there.

Use of link registers in a MELSECNET data link systems permits the
transfer of numeric data between the master station and a local
station, and between local stations.

{(b) In order to use link registers in the MELSECNET data link system,
network parameter settings must be made at the control station.
Link registers not set in the network parameter settings can be used
as data registers.

(1) For details regarding network parameters, refer to the For QnA/Q4AR
MELSECNET/10 network System Reference Manual.

(2) For details regarding link parameters, refer to the MELSECNET & ‘MELSECNETIB
Data Link System Reference Manual.

4. DEVICE

4.2.14 Special link registers (SW)
{1} Definition

(a) Special link registers are used to transfer data between the MEL-
SECNET/10 network module and the user program.

(b) Because the data link information is stored-as numeric data, the
special link registers serve as a tool for identifying the locations and
causes of faults.

(2) Number of special link register points
. There are 2048 special link register points (SWO0 to SW7FF) used by
MELSECNET/10 network modules. As shown below, the default "num-
ber of points” setting for QnACPU special link registers is 512 points

per module, o .
Special link registers
‘Sowo For ist
swiFF | network module
Stgvzoo For 2nd
SWSFE network module
slg\moo For 3rd
swseF | network module
Sweoo For 4th
SWTFF network module

1} For details regarding special link registers used in the QnACPU, refer to the
QnACPU Programming Manual {Common Instructions).

4. DEVICE

4.3 Internal System Devices

Internal system devices are devices used for system operations. The alloca-
tions and sizes of internal system devices are fixed, and cannot be changed
by the user,

4.3.1 Function devices (FX, FY, FD)
(1) Definition

(a) Function devices are devices used in sub-routine programs with
arguments to permit data transfers between the sub-routine pro-
gram with argument, and the CALL source for that sub-routine.

- Example: --------—sssmmmmmmmmm oo oo oo mmmm e e L L LS LT 1
It FX0 and FD1 are used at the sub-routine program, and if M0 and DO
are designated by the sub-routine CALL instruction, the MO ON/OFF
data is transferred toFX0, and the DO data is transferred to FD1.
[Sub-routine program CALL source] [Sub-routine program)]

»FX0

]

]

1

]

1

1

1

1

t

L

X0 | !
I [] l [
CALL PO MO DD PO l_—_[Mov FD1 RO 1
l 3 5

1

1

1

!

]

]

1

1

L e |

{b) Because the function devices used for each sub-routine program
CALL source can be set, the same sub-routine program can be
used without regard to other sub-routine CALL sources.

(2) Types of function devices
There are 3 function device types: function input devices (FX), func-
tion output devices (FY), and function register devices (FD).

(a) Function input devices (FX)

+ These devices are used to designate inputs of ON/OFF data to a
sub-routine program.

« |n the sub-routine program, these devices are used for reading
and processing bit data designated by sub-routine with
argument CALL instruction.

o All the QnACPU bit data designation devices can be used.

{b) Function output devices (FY)

+ These devices are used to designate outputs of sub-routine
program operation results (ON/OFF data) to the sub-routine
program CALL source.

s At sub-routine programs with arguments, the operation results
are stored at the designated device.

« All bit data designation devices except QnACPU inputs (X, DX)
can be used. :

1) Function devices can only be monitored during exscution of a subroutine program
with an argument.

When monitoring function devices, designate a step number in the subroutine with
argument for which the function device is used.

4-34

4. DEVICE

(c) Function registers

» These devices are used to designate data transfers between
the sub-routine CALL source and the sub-routine program.

* The function register input/output condition is automatically
determined by the QnACPU. If the sub-routine program data is
the source data, the data is designated as sub-routine input data.
If the sub-routine program data is the destination data, the data
is designated as sub-routine output data.

» 1 point occupies 4 words.

o The QnACPU word data designation device can be used.

1) For details on the use of function devices, see QnACPU Programming Manual
{Common Instructions).

4.3.2 Special relays (SM)
(1) Definition
(a) Special relays are QnACPU internal relays with fixed applications.
They are used for ON/OFF data communications between
the QnACPU system and the user program.
(2) Special relay classifications
Special relays are classified according to their applications, as shown
below.
(a) For fault diagnosis : SM0-SM199
{b) System information: SM200-SM398
(c) System clock/system counter : SM400-SM499
(d) Scan information : SM500-SM599
(e} Memory card information : SM600-SM699

(f) Instruction related : SM700-SM799

{g) For debugging : SM800-SM899
(h} Latch area : SM800-5M989
(iy For ACPU : SM1000-5M1298

1) For details regarding special relays which can be used by the QnACPU, refer to
the QnACPU Programming Manual (Coemmon Instruqtions).

4. DEVICE

4.3.3 Special registers (SD)
{1} Definition
(a) Special registers are QnACPU internal registers with fixed applica-
tions. They are used for ON/OFF data communications between
the QnACPU system and the user program.
(2) Special register classifications
Special registers are classified according to their applications, as
shown below.
(a) For fault diagnosis : SDO to SD199
(b) System information: SD200 1o SD389
(c) System clock/system counter : SD400 to SD499
(d) Scan information : SD500 to 8D598
(e) Memory card information : SD600 to SD699

(f) Instruction related : SD700 to SD799

(g) For debugging : SD800 to SD88Y
(h) Latch area : SD800 to SDAgY
(i) For ACPU : SD1000 to SD1299

1) For details regarding épecia[relays which can be used by the QnACPU, refer to
the QnACPU Programming Manual (Common instructions).

44 Link Direct Devices (J:1\)
(1) Definition
(a) At END processing, a data refresh (data transfer) operation oc-
curs between the QnACPU and the MELSECNET/10 network sys-
tem modules. Link direct devices are used at that time to directly
access the link devices in the MELSECNET/10 network modules.
(b) Designation method

1) Link direct devices are designated by network No. and device No.

Designalion method:JUAGI)
Fa'al

Device No.
nput X0 or later
-output YO0 or later
«Linkrolay BO or later
- Link register _ WO or later
- Link special telay . . SBO or later
- Link special register . SWO or later

Network No. {1-255)

4. DEVICE
MELSEC-QnA

2) When inputs, outputs, and link special relays are used as word
data or double word data, digit designation is necessary.

LI L]

Designation method: Ju\Ku 3
Fa¥al

l—- Davice No.

‘lnput X0 or later

coutput, YO or later

- Link special refay . . SBO or later
Digit designation

-Worddata K1 to K4

+Double word data . . K1 to K8

Example : For link register 10 (W10) of network No.2, the
designation would be "J2\W10"

[_——| 1
‘_‘ HOvP X100 :’3."31.9}{ Network modules at network No.2

wWo

»H10

3) For a bit device (X, Y, B, SB), digit designation is necessary.
Designation example :J1/1X0, J10/K4BO

(2) Designation range
Link direct device designations are possible for all athe link devices in

network modules.

Device outside the range specified by the network
refresh parameters can also be designated.

{a) Writing

1) Writing is executed within that part of the link device range set
as the send range in the common parameters of the network
parameters that is outside the range specified as the "refresh
range" in the network refresh parameters.

However, when an output outside the refresh range is turned ON,
even if the QnACPU is set to the STOP status it will not be
refreshed and therefore will not go OFF.

anacPu Network module
[—
B0 T H
Refresh l l
range | | Link range
Writ-
1 H 1 ing
| !] =
|

Writing range

4. DEVICE

2) Although writing is also possibie in the “refresh range" portion of
the link device range (specified by the refresh parameters), the
link module’s link device data will be rewritten when a refresh
operation occurs. Therefore, when writing by link direct device,
the same data should also be written to the QnACPU related
devices (designated by the refresh parameters).

[Refresh parameter settings]

« Network No.: 1
+ QnACPU (W0 to W3F) < network modules (LW100 to
LW13F)

[Sequence program]

*101" is written to link module
fq—————JMov K100 JIWIO |4 LW101 when the MOV
instruction is executed.

*100" is written to link module
————| MOV K100 W1
o LW101 when a refresh occurs.

[Writing timing]
QnACPU Notwork module

Writing at instruction l r .

execution 4 1
Fr——{Mov K100 J1\W10]

L—[Mov K100 W1
| wo

W1 »1W101

Writing at instruction exgcution

st | R —

Writing at refrash operation

S

3) When data is written to another station’s writing range using a
link direct device, the data which is received from that station will
replace the writien data.

(b) Reading
Reading by link direct device is possible in the entire link device
range of network modules.

4. DEVICE

o

MELSEC-QnA

(3) Differences between "link direct devices” and "link refresh
"The differences between “link direct devices® and "link refresh” are
shown in Table 4.4 below.

Table 4.4 Differences between "Link direct Devices" and "Link Refresh”

Item Link Direct Device Link Refresh
Link relay JIS/K4BO or later BO or later
Link register JUIWO or later WO or later
Program notation method | iy cpecial retay | JIYK4SBO or later SBO of later
Link special .
register JUSWO or later SWO or later
Number of steps 2 steps 1 step
All network
Parameter
Network module access range module link ¢
devices designated range
Access data guarantee range Word units (16 bits)

lPOINTI

{1) Only one network module capable of writing/reading link direct de-
vices can be used per network number.
If two or more network modules are installed at the same network
number, the network module with the lowest first I/O number will be
the one that handles writing/reading using link direct devices.
For example, if station No.1 and station No.2 network modules are
installed in network No.1 as shown in the figure below, the station
No.2 network module will handle link direct device operations.

a4

Power | QnA | Network{ Network
supply | CPU |module | module
module

Network No.1

Station |Station
No.2 | Ne.1

\‘\———— Writing/reading using link

direct devices not possible

Writing/reading using link
direct devices possible

1) For details regarding the MELSECNET/10 natwork system, refor to the
« For QnA/Q4AR MELSECNET/10 Network System Reference Manual.
2) For details regarding network parameters, common paramsters, and network
refresh parametors, refer to the folfowing manuals:
« Deotailed information .
For QnA/Q4AR MELSECNET/10 Network System Reference Manual
» Setting procedures
SWOIVD-GPPQ Type GPP Function Software Package Operating Manual (Offline)

4. DEVICE

45 Special Function Module Devices (UIN\GII)
(1) Definition

(a) The special function module devices aliow the QnACPU to directly
access the buffer memories of special function modules which are
installed at the main base unit and extension base unit. These de-
vices cannot be used in this manner for special function modules
installed at remote stations of a MELSECNET/10 network system
or a MELSECNET (ll, /B) data link system.

(b} Special function module devices are designated by the special
function module input/output No., and the buffer memory address.

Designation mathod: VINGIS
FaTa Bl a'al

L. Buffer memory address {setting range: 0-16383
(decimal)) *1
Special function module input/output NO.
« Setting: If the input/output No. is a 3-digit value,

designate the first 2 digits.
For X/Y1FO0... X/Y1FD
Fa a2 A AN

L. Designate "01F*
» Setting range: 00H to FEu

To convert the X-axis present value (buffer memories: 602, 603)
{X-axis of AD71 positioning module installed
at slot 0 of the base unit) to “mm" units (1/1000), and store it in DO
and D1, designate the following:.

AD71

l,_“_[n/ UO\GB02 K10000 DO I]
1 T

602 | present value (lower)

1 603 | present value {higher)

R ————

(2) Processing speed
The processing speed for special function module devices is the
total of the *FROM/TO instruction processing speed” and the
"Instruction processing speed”.
If the same buffer memory of the same special function module is
used two or more times in a sequence program, the processing speed
can be increased by using the FROM instruction to read that buffer
memory data to a QnACPU device.

1) *1: For details regarding buffer memory addresses and applications, refer to
the manual for the special function module in question.

2) *2: The quotient and remainder are stored in DO to D3.

Quotient . Remainder
D1 DG D3 D2

I Upper 186 bits I Lower 16 bits] I Upper 16 bits | Lower 16 bits

4. DEVICE

46 Index Registers (Z)
(1) Definition

(a) Index devices are used in the sequence program for indirect set-
ting (index qualification) designations.

{b) There are 16 index registers (Z0-Z15).

{c) Index registers consist of 16 bits per point, with reading and writ-
ing occurring in 16-bit units.

bi15 to b0
Zn | 5

]

(d) If the index registers are used for 32-bit instructions, the data is
stored in registers Zn and Zn +1. The lower 16 bits of data are
stored in the index register No. (Zn) designated in the sequence
program, and the upper 16 bits of data are stored in the desig-
nated index register No. + 1 {Zn + 1).

For example, if register Z2 is designated in the DMOV instruction,
the lower 16 bits are stored in Z2, and the upper 16 bits are
stored at Z3.

I [
I | DMov D0 22

vy

|— Processing object
EREN

Upper | Lower
I 16 bits | 16 bits I
(2) index register processing at program switching
When switching from a scan execution or low-speed execution pro-
gram to another program type, the index register (Z0-Z15) data is
saved (protected).
This data is reset when switching back to the scan execution or low-
speed execution program occurs.

1) For details regarding index qualifications using the index registers, refer to the
QnACPU Programming Manual (Common Iastructions).

4. DEVICE

5

MELSEC-QnA

(a) Switching between scan execution and low-speed execution

programs

1) When switching from a scan execution program to a low-speed
execution program occurs, the scan execution program’s index
register data is saved, and the low-speed execution program’s

index register data is reset.

2) When switching from a low-speed execution program to a scan
execution program occurs, the low-speed execution program’s
index register data is saved, and the scan executlon program’s

index reg:ster data is reset.

’ +

i i i
> [e |——a! | ow-speed
A N - Scan execution | .
Scan execution Switch- LOW-speed iswitcn- I Switchd execution
Executed program program ing execution pro- 'Ing program }ing program
gram : :
T T
! Z0=1 L Z=0-20=3*" Z0=1-70=6*2 ! 20=3
Scan axecution program | ! Re- ! Re- | Re-|
Saved | | set Saved || set Saved || seti
i i i
.For scan execu- \’L) le
Index | tion programs | 20=0 20=1} 20=1 Z0=14 Z0=1 Z0=6) | Z0=6
register] ! | ' i i i
storage T ' | i i
arsa ! ! j i 7 i /
i Z0=1 i Z0=0 i Z0=0 I zo=si 0=3 i Z(}:S’I Z0=3
{ i | A] I]

*1: For a low-speed execution prog

ram, Z0 is changed to 3.

*2: For scan execution program, Z0 is changed to 6.

Word devices should be used for exchanges of index register

data between scan execution programs and
programs.

low-speed execution

(b) Switching between scan/low-speed execution programs and inter-

rupt programs

1)} When the scan/low-speed execution progra

m is switched to the

interrupt program, the scan/low-speed execution program’s in-
dex register value is first saved, and is then transferred io the

interrupt program.

2) When the interrupt program is swithed to
execution program, the saved index registe

the scan/low-speed
r value is reset.

: i Scanlllow speed Switeh-} iResat i
- I Scanflow-speed .
Executed program i exacution program —i_h: Interrupt program i_*i execlﬂti; pp;ogram
3 1 | |
! l;l'rans- '
Index register | iferred ~ e 1 ~
vatue ; Z0=1 \ ¥ 20=1-2Z0=3 } Z0=1
! Saved | { Reset
1 |
1 1 t
Index register storage } ! Q
area (for scan/low-] i ,d .
speed execution pro- i 20=0 Z0=1 Z0=1 Z0=1"1 Z0=1
grams} ! !
1 1

*: At interrupt programs, Z0 is c¢hanged to 3.

Word devices should be used to transfer ind

ex register data from

an interrupt program to a scan execution program or low-speed

execution program.

4-42

4. DEVICES
, MELSEC-QnA

47 File Registers (R)
(1} Dsfinition
{a) File registers are expansion devices for data registers.

(b) File register data is stored in files in the QnACPU memory card.
Therefore, the memory card is required when using file registers.

| I
l_“_ [wov, K100 R2:|—1
. Memory card

File registers

RO
R1
R2

*100" is written to R2

(c) File registers consist of 16 bits per point, with reading and writing
occurring in 16-bit units.
b15 to b0

Rn

(d) If the file registers are used for 32-bit instructions, the data will be
stored in registers Rn and Rn + 1. :
The lower 16 bits of data are stored in the file register No. (Rn)
designated in the sequence program, and the upper 16 bits of data
are stored in the designated file register No.+ 1 (Rn + 1).
For example, if register R2 is designated in the DMOV instruction,
_the lower 16 bits are stored in R2, and the upper 16 bits are stored
in R3.

| iy
»—h [ovov 0o E"ﬂ"

Processing object: R2, R3

[re | mre |
Upper Lower
| 16 bits ‘ 16 bits |

(2) File register capacity

Each file can be expanded to a maximum of 32 blocks (1018k words) in
1 block (32k words) units.

However, the permissible number of expansion blocks varies according
to the capacity of the memory card being used, and the size of the
sequence programs stored in the memory card.

1) For details regarding the QnACPU memory cards , See Section 2.3.

4. DEVICES

(3) Differences in memory card access method by memory card type

The following three types of memory card are used to store a file register.
Memory card access method differs depending on the memory type.

RAM
(a) Read/write using a program is allowed.
(b} PC read/write through the device setting is allowed.

{¢) The file register data can be changed by any of the following
methods.

1) Online test operation by GPP

2) Batch write command by the dedicated protocol of QC24 and
QE71

3) Device write or random write command from a GOT900 series

E2PROM

(a) Read using a program is aliowed but write using a program is not
allowed.

(b) PC read/write through the device setting is allowed.

(c) The file register data can be changed by any of the following meth-
ods.

1) Batch write command by the dedicated protocol of QC24 and
QE71 :
(CPU must be in the STOP/PAUSE state.)
This is possible from the following software version of the CPU.

CPU Type Software Version
QnA ‘ L or later
Q2AS(H) T or later
Q4AR S or later

Flash ROM

{a) Read using a program is allowed but write using a program is not
allowed.

{b) PC read/write through the device setting is not allowed.

(c) File read/write through a reader/writer is allowed.
" (For details, refer to the Operation Manual of the GPP.)

4. DEVICES

(4) Designating file registers for use
The memory card can hold a total of 124 file registers.
The memory card file registers which are to be used in the sequence
program are determined by the PC file settings parameters.

[PC file setlings screen]

Designate file registers | fﬂi;;:?' . e n oy
. «C%) Mot L. t
to be used 2.¢ 3 Pre :: Kame ic Uxed Z2.{%> Pro :. HEM iz Used
|\
3.€C 2 Usze tho'!'ellovi.ns Files 3.€ D Uso th:-l'ol‘.l.nuiau Filez
Priva [} Drive [)
[1 e [3
Capacity [1K
2. Comment Pile Used by Instraction 4. Fils for Local Dovice
1.€u) Mot Uzed 1.4{m> Mot Uze
2.¢ > Pro Mame iz Hzed 2.¢ > Use_the Following Piles
. Jve_L DPrive [1
3.¢ > Usa_the Following Files Fils [1
Drive [1 3 .
ITRTETE Cancel(H>

| 07T Y PY T LTI AL

{a) When "Not Use" is selected

This item is selected in order to designate which file registers are to
be used in the sequence program.

The QDRSET instruction is used to designate which file registers are
to be used.

(b} When "Program Name is Used" is selected

This item is selected when the file registers having the same file
name as the sequence program are to be used.

If the program is changed, the file registers are automatically
changed to conform to the new program name.

There are also cases where it is convenient to use the file registers
as local devices which can only be used with the program currently
being executed. :

- Example:

When file registers (A-C) having the same name as the programs (A-G) are to
be used, operation is as shown below.

« At program A execution...File register A is accessed

e At program B execution...File register B is accessed

e At program C execution...File register C is accessed

i Program A execution |<-§!T=-'HETEQ-2-—-~> RO | File rogister A I

. Synchronized .

| Program B axecutioLI e — ey e RO‘ File register B |

|= Synchronized | . RO Filo registerC |

S

I Program C lon

4. DEVICES

In the cases listed below, the file register of the file name that was
.executed at the end of one scan is accessed.

However, if there is no file register for the program executed at the
end of the scan, file register access is not possible.

s Access from a peripheral device
s Access from another station in the network
« Access from a serial communication module

{c) Use the Following Files

This item is selected when a given file register is to be shared by all
executed programs.

By designating the file register "Drive", "File", and "Capacity” setting,
files for the parameter designated file registers will be created when
a QnACPU RUN status is established.

(5} Registering file register files in the QnACPU

(a) If an item other than "Used the Following Files" is selected in the PC
file setting screen, the file register files must be registered in the
QnACPU. (If file registers having the same file name as the pro-
grams are to be used, they should be registered in the drive desig-
nated by the PC file settings parameters.)

1) When file register files are not registered in the QnACPU:
No error occurs even if reading/writing to file registers is exe-
cuted. However, all read outs from file registers are stored as
"FFFFR".

2} Reading/writing to file registers outside the registered range:
No error occurs even if reading/writing occurs to these file reg-

isters. However, all read outs from these file registers are
stored as "FFFFH".

4. DEVICES

(b) To register file register files in the QnACPU, designate the file name
are file register size settings at the peripheral device's "PC write
screen”, then write this data to the QnACPU.

The file register size is designated from ZRO, in 1k-point (1024
points) units. *1 ‘

[PC write screen]

=~ File name setting area

I e Nesuerk : 8 / Station : FF PG Iype : G20
arge WOY ation = H
Target Hen Internal RAM Title [

[-ﬂﬁ 1. File Hame LSAMPLEL 1 Title [

2. T 1.[#3 Paraneter

rd bl

2.[*] Seg/SFC Prog 1.{m) e £ 1X Sten
2.¢ > Step Range i -
3.1 'J Device Comment 3. > Step Range Pi i-I 1
g E 12 Dci:ui:é: Uap!.:n 4.¢ > Block Range [§ 1-1 3
on Data i i i i
8. 1 File Register = 1.<#> Whole Range File register size setting
2.¢ > & c:l.fgm ZRL 1-C 1 area
2. Device MHom 1.0) Internal 1.¢») Whole
2.€) Specify Dueail Range

Cancel<H>
Ctrl+L:List

r}+D:Dir SpaceiSclect EsciClose

(6) File register size check

{(a) i file registers are used in the QnACPU, program so that writ-
ing/reading to the file registers occurs when the file register size is
equal to or greater than the range actually required.

A file register size check should be executed at step 0 of pro-
- grams in which file registers are used.

« Aifter switching to another file register file using the QDRSET in-
struction, execute a file size check.

» When using the RSET instruction to switch blocks, check that
the switching destination block has a size of 1k points or more
before executing the RSET instruction.

[(File register size) > [32k points x (switching block No.) + 1k points] |

{b) The available file register size can be checked in the file register
capacity storage register (SD 647). *2
The file register size is stored in SD647 in 1k-point units.

The "less than 1k-points® surplus portion of a file register size is
not stored. _

In order o ensure an accurate "range of use® check, be sure to
designate the file register setting in 1k-point (1024 points) units.

4. DEVICES
MELSEC-QnA

{(¢) Checking the file register size

1) The file register size used for each sequence program can be
checked.

2) On the basis of the total file register size set in SD647 (in the
sequence program), it is possible to determine if the flle register
size exceeds the number of pomts used.

[Program example 1]

The file register "range of use" is checked at the beginning of each program.

SM400
.

Designates

4k-points

< 50647 K4 |

MO
i

w0 >

1

Transfar
MO command

—(o >

—H—1

[Program example 2]

-
[wove xex20 RO }

+ Final file register
range check

+ Alarm processing

« Writing to file
register

The file register “range of use" is checked after executing the QDRSET in-

struction.

H)

SMa00

r wi. "
[comser “1:ABCO]—

—] <

no
|

=l
SDE47 K4 J

Tranglet
command

S

[Program example 3}

For block switching.

—T
[wove x14xz0 RO]—

\
S

— <

MO
|

-
50647 KSSJ

—

Block switching
MO command

— I rser K1

|
!

» File registeris
changed to drive
1 ABCD

Final file register
range check

* Alarm processing

+ Writing to file

register

s Final file register
range check

» Alarm processing

s Switching to
block 1

4. DEVICE

7

MELSEC-QnA

1} *1 : Even if the file register setting range is not designated from ZR0, the file crea-
tion range will still begin from ZR(, and end at the final file No.
For example, if the file register writing range is designated as ZR1000 to
ZR2047, the file creation range will be ZR0 to ZR2047.
As the data from ZR0 to ZR999 data will be useless in this case, be sure to des-
ignate the range from ZRO0.

2) *2 :When switching to another fite register occurs, the size of the new file register
file is stored at 8D647. ‘

File register designation method
{2) Block switching format

The block switching format designates the number of file register
points in 32k point (R0-R32767) units.

If multiple blocks are used, the RSET instruction is used to switch to
another block No. for further file register settings.

Settings are designated in the RO to R32767 range in each block.

! Mrser ki 3
_| ! L } RO designation Mermory card
at block 1 RO

MOV DO RO to Block 0

|

R32767

}
—|| : MRser k2]__1 RO
]_

RO designation
at block 2 to Block 1

MOV Do RO J R32767

|

 ———ii))

to Block 2

AN

{b) Serial number access format

This format is used for designating file register settings beyond 32k
points without switching blocks Nos. Multiple blocks of file registers
can be used as a continuous file register.

Memory card
] fb———{wov oo zR32788 H 780
to Block 0
ZR32767
— i——[mov) znsssss]- o l—s7m32768
to Block 1
ZRES535
L »zrES536
to Block 2
I\I\ANVVWWV\

4. DEVICES

4.8 Nesting (N)
(1) Definition
Nesting devices are used with master contro! instructions.
{2) Designation method with master control

The master controt instructions are used to open and close the ladders’
common bus so that switching of ladders may be executed efficiently by
the sequence program.

It is designated with the MC and MCR master control instructions.

For details on how to use master control, refer to the QnACPU Program-
ming Manual {Common Instructions).

Designated in ascending

No. order
3 A

|1 |
A { me | wo | w15 |
NOT— —M15
1 | O
s ! Executed \¥hen condulon
L *A" is satisfiad
]| 3
j | S IEERIERED:
N1T M6
] O-
— CI Executed when conditions
i1l i *A* and "B" are satisfied
L owe | N2 | w17 o - -
o 17i I Designated in descend-
NO nesting | | N1 nesting | [N2 nesting| M —" . ing No. order
cr:?,trg‘ (i.g:trgi - control Pr Executed when conditions
g 9 range "A", *B", "C" are satisfied
” MCR MC2-7 are reset
-y

Executed when conditions
"A®, and "B" are satisfied
MC1-7 are reset

ﬂ:

Executed when condition
"A" is satisfied MCO-7 are
roset

Executed regardless of
A,B,C condition statuses

e S — Mt N [N~ — Y/

4. DEVICES

49 Pointers
(1) Definition

Pointers are devices usedin branch instructions. A total of 4096 pointers
can be used (total for all programs).

(2) Pointer applications -

(a) Pointers are used in jump instructions (CJ, 8CJ, JMP) to designate
jump destinations and labels (jump destination beginning).

(b) Pointers are used in sub-routine CALL instructions (CALL, CALLP)
to designate the CALL destination and label {(sub-routine beginning).

(3) Pointer types

There are 2 pointer types: “local pointers” which are used independently
in QnACPU programs, and "common pointers® which are used to call
sub-routine grograms from all programs executed in the QnACPU.
(See Section 4.9.1 for details regarding “local pointers", and section
4.9.2 for details regarding “common pointers".)

4.9.1 Local pointers
(1) Definition
(a) Local pointers are pointers which can be used independently in
QnACPU program jump instructions and sub-routine call instruc-
tions. Local pointers cannot be used from other program Jump
instructions and sub-routine CALL instructions.

(b) the same pointer No. can be used in each of the programs.

Program B Program B

. r/ '/ gagee gointer
H ————{ou wH H b ou s}

= [FEND]— / /%]—
S M| [PHE——< X
L= H e H
(w0 H —fe T

4. DEVICES

(2) Number of local pointer points

Local pointers up to the specified number of points can be dlwded among
all the programs.

The highest local pointer Ne. represents the upper limit of the "number
of points used” in each program.

Therefore, when local pointers are used at several programs, the pointer
settings should begin from PO.

if the total number of pointers (total for all programs) exceeds the
designated range, a pointer configuration error (error code:4020) oc-
curs.

r- Example:

If the number of locat pointer points is designated as "400", they cannot be used as follows.

Program A Program B Program C
PO-P99 used P100-P199 used Only P289 is
in program in program used in program

' | ;

P0-P9% oceupy P0-P199 accupy P0-P299 occupy Tolal of 500
100 polats 200 poinis 300 polnt """ points used.
if PO-P99 are If PO is used,
used, the number the number of
of occupied occupied
points is_100. | pointsis 1.

4.9.2 Common pointers
(1) Definition

(a) Common pointers are used to call sub-routine programs from ali
programs being executed in the QnACPU.

Program A Program C
f———{ o oot e p20t | p———{ o P H
FEND ‘—————{RET }
——-
Program B /;205 _I 7
______./
 {w H
|—-———{:c.w. P205
e H
FEND

(b) The same pointer No. cannot be used again as a label. Such use
will result in a pointer configuration error (error code:4021).

4. DEVICES

(2) Common pointer range of use

In order to use common pointers, the first common pointer No. must be
designated in the PC system settings parameters,

All pointers which follow that "first No." will become common pointers.
However, only pointer numbers subsequent to the local pointer range
can be designated (by parameter setting) as common pointers.

Program A ProgramB Program C
PO-P29 used in PO-P99 used in P0-P199 used in
program program program
P0-P99 occupy P0-P99 occupy PO-P199 occupy
100 points 100 points 200 points y
Tota! of 400 All pointers after

...... P400 can be used as

points used. -
common pointers.
[PC system settings screen] Set the head number
/ of the common

: pointers here.
1 |

EENTOETITETI] L. Slow [180Iss 5. Common Pointer ¥ Frea []
2. Fazxt [181z
6. Ceneral Data Procesel LlUnit try
2. RUN-PAUBE Contact RUH XL h] 7. % of Preo Slots < 16 >
PAUSE K[3

8. Syztem Interrupt
3. Allow Remote Reszet i.(#) Yex 1. 1st Interrupt Counter G[h]
2.< > No 2 8 Const Intervall 180]as
29 Const Intervall 48lms
30 Conzt Intorvall 28Ins
31 Const Intarvall 1Blms

b Bt
Eed

3.
4. Output at STOPDRUR 4.
1.¢#> Prior to Calc S.

2.€ > Rftor one Bean

Cancel (W

POINTi

(1) In the jump instruction, jumping to common pointers in other pro-
grams is not allowed. Common pointers should be used only with
sub-routine call instructions.

4. DEVICES

4.10 Interrupt pointers (l)
(1) Definition

(a) Interrupt pointers are used as labels at the beginning of interrupt
programs.

Interrupt pointer
{interrupt program label)

Ve
AN

ra |
1M —
Interrupt program

r
L IRET

(b) A total of 48 interrupt points (10-147) can be used (total for all
programs)

(2) Interrupt pointer No. & interrupt factor
(a) As shown below, there are four types of interrupt factor.

e Al&1 factor.. .. Interrupt input from the Al61 interruption module.

¢ Sequence start generator module factor
.. .. Interruption input from special function modules

such as a computer link module, etc., which
can dictate an interrupt start to the QnACPU
(Al61 excluded).

e Internal time factor
. ... Fixed cycle interruption by QnACPU’s internal timer.

¢ Error interruption
. ... Interruption by an error that does not stop

sequence program operation.

4. DEVICES

(b) A list of interrupt pointer Nos. and interrupt factors is given in Table

4.5 below.
Table 4.5 List of Interrupt Pointer Nos. & Interrupt Factors
Priority Priority Priority
I No. Interrupt Factors Aanking j No. Interrupt factors Ranking 1 No, tnterrupt factors Ranking
. Ewrors that stop
lo 1st point 29 8 1st point 17 132 oparation 1
H 2nd point a0 1z 2nd peoint 18 133 Vacant _—
12 3rd point 31 ns drdpoint | 19 UNIT VERIFY ERR.
. 134 FUZE BREAX OFF SP.
12 4th point az T Sequence |_4th point 20 UNIT ERRO 2
2] Sth point 33 120 | start Sth point 21
15 6th point 34 121 module 6th point 22
AlG1 - {actor*’ - 135 OPERATION ERROR 3

6 Interrupt 7th point 35 122 Tth point 23 Error - SFCP OPE. ERAOR
7 module | sth point 36 123 Bthpoint | 24 factor
[1:] Sth point 37 124 9th point 25 ICM.OPE.ERRCR

136 ' FILE 4
19 10th point as 125 16th point 26 OPE. ERROR
110 11th point 39 126 11th point 27 137 EXTEND INS. ERR, 5
" 12th point 40 127 12th point 28 138 FPRG. TIME QVER 6
12 13th point 41 128 100 ms 48 CHK instruction

139 execution annuneialor 7
13 . 14th point 42 129 :m':'a' 40 ms a7 detection
114 isthpoint | 43 o | facter® | ogpms 45 140

te Vacant —_—
115 16th point 44 131 10 ms 45 147

1) *1 : 1st to 12th points are allocated in order, beginning from the sequence start gen-
erator modute installed closest to the QnACPU.

2) *2 : The internal times shown are the default setting times.
These times can be designated in 5 ms units through a'5 ms-1000 ms range
{PC system settings parameters).

3) *3 : When an error interruption with 132 (error that stops operation)*® occurs, the
QnACPU is not stopped until 132 processing is completed.

4) *4 : Execution of error interruptions is prohibited when the power is turned on and
during a QnACPU reset. When using interrupt pointer Nos, 132 to 139, set the
interruption permitted status by using the IMASK instruction.

4. DEVICES

4.11 Other Devices

4.11.1 SFC block device (BL)
This device is used for checking if the block designated by the SFC pro-
gram is active.

For details regarding the use of SFC block'devices, refer to the QnACPU
Programming Manual (SFC).

4.11.2 SFC transition device (TR)
This device is used for checking if a forced transition is designated for a
specified transition condition in a specified SFC program block.

For details regarding the use of SFC transition devices, refer to the
QnACPU Programming Manual (SFC).

4.11.3 Network No. designation device (J)
{1) Definition

The network No. designation device is used to designate the network
No. in data link instructions.

(2) Designating network No. designation device

The network No. designation device is designated in the data link
instruction as shown below.

|-—H—[>j&m Jn S1 S2 Eﬁ@)—l

Network No. designation device
(n: network No.)

Instruction name

Network No. designation
instruction

1) For details regarding data link instructions, refer to the QnACPU Programming
Manuat {Common instructions).

4. DEVICES

4.11.4 VO No. designation device (U)
(1) Definition

/0 No. designation devices are used with data link instructions or

special function module instruction module instructions to designate 1/0
numbers.

(2) Designating the 1/O No. designation device

I/0O No. designation devices are designated with the data link instructions
or special function module instructions as shown below.

\—H—[Qg.READ un S1 S2 S3 @]-‘

I/0 No. designation device
(n: /O No.}

Instruction name

/0 No. designation instruction

1) For dotaits regarding special function module instructions, refer to the QnACPU Pro-
gramming Manual {Special Function Module}.

4. DEVICES

4,11.5 Macro instruction argument device (VD)

(1)

(2)

Sequence program

Definition

Macro instruction argument devices are used with ladders registered as
macros.

When a VDUl setting is designated for a ladder registered as a macro,
conversion to the designated device occurs when the macro instruction
is executed.

Designating macro instruction argument devices

Macro instruction argument devices are designated for those devices set
as "VDI3" in ladders registered as macro instructions in macro registra-
tion at a peripheral device.”

When using macro instructions in a sequence program, designate de-
vices 1o correspond to the instruction argument devices used with the
ladders registered as macros, in ascending order.

Ladder registered as a macro
(registration nama: MAX)

[MMax DO D1 RO
- } Transfer to VD2 [

Transfer to VD1
Transfer to VDO

> w0 wer|——{wov xoo ,v%a]—

MOV VDI E&}

Name of ladder registered as a macro

Actual sequence program
executed at QnACPU
MOV DO

H> oo m]——[R0 H

-[<- 0o D‘lHMOV 01 Ro}—

1) *: With the macro instruction argument device, VD0 to VD4 can be used in one lad-
der registered as a macro instruction.

4. DEVICES

4.12 Constants

4.12.1 Decimal constants (K)

(1y

(2)

Definition

Decimal constants are devices which designate decimal data in se-
quence programs. .

They are designated as *KIX"settings (e.g. K1234}, and are stored in
the QnACPU in binary (BIN) code.

See Section 3.4.1 for details regarding binary code.

Designation range

The setting ranges for decimal constants are as follows:

« For word data (16 bits) ... K-32768 to K32767

o For 2-word data (32 bits) . K-2147483648 to K2147483647

4.12.2 Hexadecimal constants (H)

(N

(2)

Definition

Hexadecimal constants are devices which designate hexadecimal or
BCD data in sequence programs. (For BCD data designations, 0-9 digit
designations are used.) '
Hexadecimal constants are designated ad "HI2™ seftings (e.g. H1234).
See Section 3.4.3 for details regarding hexadecimal code. -
Designation range

The setting ranges for hexadecimal constants are as follows:

e For word data (16 bits) ... HO to HFFFF (HO to H9999 for BCD)

+ For 2-word data (32 bits) . HO to HFFFFFFFF (HO to H99999999 for
BCD)

4. DEVICES

4.12.3 Real numbers (E)

(1)

(2)

(8)

4.12.4 Character string (")

(1)

2

(3)

Definition

Real numbers are devices which designate real numbers in the se-
quence program.

Real numbers are designated as "EI..settings (e.g. E1.234).

See section 3.4.4 for details regarding real numbers.

Designation range

The settmg range for real numbers is -1.0x2'%" to -1.0x2712%, 0, 1.0x2712¢
to 1.0x2

Designation method

Real numbers can be designated in sequence programs by a "normal
expression" or an "exponential expression®.

s Normal expression....... The specified value is designated as
it is F or example, 10.2345 becomes
E10.2345.

+ Exponential expression... The spemfled value is multiplied by a

"x10™exponent.
For example, 1234 becomes E1.234 + 3.*

1) »:The "+3" in the above example represents a 10"value (1 03).

Definition

Character string constants are devices used to designate character
strings in sequence programs.

They are designated by quotation marks (e.g. "ABCD1234").

Usable characters

All ASCII code characters can be used in character strings.

Number of designated characters

Character strings extend from the designated character to the NUL code
(00H).

4. DEVICES

4.13 Convenient Uses for Devices

When executing multiple programs in the QnACPU, local devices among -
the internal user devices can be designated to execute each of the pro-
grams in an independent manner.

Moreover, the device initial settings can be used to designate device and
special function module data settings without using a program.

4.13.1 Global devices & local devices

A number of programs can be stored and executed in the QnQCPU,
QnACPU devices which can be shared by all the programs are "global de-
vices", and those used independently by each of the programs are "local de-
vices".

(1) Global devices

(a) Global devices are devices which ¢an be shared by all the programs
being executed in the QnACPU, Global devices are stored in the
QnACPU’s device memory, with all programs using the same de-

|—< Y11t MO ON/OFF

T data

vices,
QnACPU

o s s s e e R T T T E TS T T 1
! Global devices are shared by all programs being executed. '
i Program A Device memory E
] 1
E w Internal relay E
! Y12 MO ON/OFF |
! l <2 11 mooniore :
1 T data 1
1 1
! L]
']
1 1
] 1
] 1
1 i
] Program B !
i :
E]
¥ [}
P]
1]
] 1
] 1
] 3
] t
1 1
]]
i]
t 1

-

(b) When executing multiple programs, the “shared range" for all pro-
grams, and the "independent range" for each program must be
designated in advance.

Example: Internal relay

MO |Shared by all programs

Used in program A

Used in program B The “range of use" must he designated
for each program.

Used in program C

PN N N N

4. DEVICES

(2) Local devices

(a) Local devices are devices which are used independently by the
programs.
The use of local devices permits programming of muitiple "inde-
pendent execution” programs without regard to other programs.
However, because local devices are stored in the memory card an
memory card is required in order to use them.
Local devices cannot be used without an memory card.

gy
! If tocal devices are designated as the devices which follow M7000, they can be ?
! used independently in programs executed after M7000.)

]
i Program A Memory card '
b || wrooo ForprogramA ___ | |
i < Yi2 : Internal relay ' E
1 M7000 o :MT(}DO ON/OFF !)
: T ON/OFF data |_ ; AR
: | 1 1 :
¥ L = o 1
' :
] 1
1 _Program B For program B '
1 Femmm—mm—m———— - !
! M7000] Internal retay 1 ,
: - L vuzooe [oNfOIF | | !
! M7000 i i !
' I ON/OFF data H H !
‘)
L] 1
L -

{b) Five device types can be used as local devices:_internal relays (M),
edge relays (V), timers (T,ST), counters (C), and data registers (D).

(c) Local device designation

1) In order to use the above devices as local devices, a local de-
vice range of use setting must be designated in the device set-
tings parameters.

Note that the range designated for local devices applies in all
programs, and cannot be changed for individual programs.

For exampie, if the local device range is designated as MO-
M100, this range will be used for local devices in all programs.

Prograrn A Program B Program C

This range
becomes the
tocal device
range for al!
programs.

4. DEVICES

2) When local device settings are designated, the drive and file
name where the local device data is to be stored must be des-
ignated in the PC file settings in the parameter mode

[Device range setting]

[PC file setting screen]

Local device range setling area

(FC 3ade Sete iyl
Tile Rouizter

- B s _Inicial §
1.€ > Mot Ored
EX I‘?;; iz Used

ve [
3. > ln‘:? ?;I?M.n' Files

1

Capacity I 1x
2. Commant File Bssd by Instructise 4. F
1.4e3 Mot Besd

.42 “l-lllt iz Uasd

.80 U-- GN Following Pilaw

Drive []
File T

ve
3.8 > W e Fsllewing Fils
pyie ; 3 s *

."'-F

3+
CancelcH}

Local device file setting area

(d) When local devices are used, an exchange occurs between the local
device file data stored in the memory card, and the data in the
QnACPU's device area. The scan time is therefore extended by this
data exchange time.

Q2ACPU (51)
Q2ASCPU (81

y -

« Q3ACPU 320 + 1.0 x (number of local device words)
X number of program (us)
« Q4ACPU)
o Q4ARCPU } 220 + 0.8 x {(number of local device words)
o Q2ASHCPU (S1) b4 nur_nber of program (ps)
. Program A Program B , Program C
Sequence program — =]
Resel Saved Reset Saved Reset
Local device Local device Local device
For For » ‘_ For _]
'] programA | .1 program A |} , | program A
For For For
program B program B program B
X For | | For i " For
program C program C L program C J

1)
davices.

560 + 1.3 x (number of local device words)*
x number of program (ps)

*: See section 4.1.2 (item 2) for details regarding the "number of words" fqr local

4. DEVICES | ‘
, MELSEC-QnA

POINTS[

(1) Concerning the use of local devices in interrupt programs, refer to
item 3.1.3. :

(2) Unless specifically designated as “local devices", all devices are
global devices. :

.(8) Concerning the use of local devices in sub-routine programs, refer
to item 3.1.2.

4.13.2 Device initial values
(1) Definition

(a) Using device initial setting values, the data used for a program can
be stored in device or special function module buffer memories
without using a data setting program (initial processing program).

[Data setting by initial program}
SM402
__l l [MOV HIDD 00]— Power ON/

M Device

_—[uov H2020 O } memory
1

[Data setting using device initial values]

1
1 1
i
¥

Davice Power ON/STOP-3RUN N Davice
initial values memory

4. DEVICES

(b) In order to use the device initial values, the device initial data must
be created in advance at the peripheral device, and this data must
be stored as a device initial value file in the QnRACPU’s memory card.
At power ON, or on switching from STOP to RUN, the QnACPU writes
the data from the device initial value file to the specified device or
special function module buffer memory.

© QrACPU
| xSt |
. . ; Internal RAM '
Peripheral device 1 Memory card '
. ' 1
"Device Device initial ' Device initial . '
initial value | Vvalue writing value writing Desig- |
. Devi | nated !
range 1 evice ; !
setting ' initial value device | !
___________ 1 file !
] ot ————————— - -
1
*Device ' : -
initial value ' ' Special
data® setting ! ! > | function
: ! module
b e J

(c) Device initial values can be used at the following devices:

1} Timer present value (T)

2) Retentive timer present value (ST)

3) Counter present value {C)

4) Data register (D)

5) Special register (SD)

6) Link register (W)

7) Special link register (SW)

8) File register (R0-R32767)

9} Special function module device {UIN\G3)
10) Link direct device (JII\WII, JUASWC)

(2) Procedure for using device initial values

(a) Designate the device initial value range settings in the device mode,
in the device initial value setting screen.

(b) Designate the device initial value data settings in the device mode

’ screen. ‘
[Device initial value setting screen] [Device mode]
?é*l;%';éc"f/:::”:m TEE:’:/T“ trdandou EISXHPLB\SMPLH n:l“.r:fr;u ;u H:M. Hf Ir'tﬂz‘l

% |% of Dev | Firet Device Last Device Connent

"
n:ﬂ'.\,ﬂ“ﬂu”l‘
Ce—r e
sscRaeDRD®
BEDELICARRD
e
ond ot e N Tt e e M

kA
(LIT-LTLLLLLLLELLLY

Device initial value range setting area Device initiat value data setting area

4. DEVICES

{c) In the PC file settings in the parameter mode, designate the name
of the file where the device initial value data is to be stored.

[PC file settings screen]

PG rale Settiny)
. File Reyictey - Vica JALL: u
235 n Hame 1x Ured ERE S VI
- J 1 -
fo * Frtve (8 %n-\
3.< 5 Bze_the Folloviag Filas 3.¢) Uze_the Follswing
Dris 1 Prdve [1]
File b) File £ 3 o R i :
Capacley € I X Setting area for file which
B TS Rotyred e henenion - i T contains the device initial
o “.Ihn(Used - :-’:““ % ¥ wing Filss Value data
3.< > Use_ths Following Files File 1
Drive L 1
Flls b]
Cancel(H)

(d) Write the device initial value data and parameter settings to the
QnACPU.

(3) Precautions for the use of device initial values

(a) In cases where both device initial value data and latch range data
are present, the device initial value data takes precedence. There-
fore, the latch range data is overwritten by device initial value data
at power ON.

(b) Device initial values cannot be used in the following areas.

1) In an area of a special function module’s buffer memory area
where channel switching is required.
Example: Channel 2 area of the AJ71E71 Ethernet interface
module’s buffer memory.

2) In special function module areas where the writing sequence is
fixed.
Example: Initial settings of A6BAD analog/digital converter
module.

3) In areas where no settings are desired at STOP — RUN switch-
ing (data which is set at power ON, and which is changed by
the program).

1) For details regarding the setting procedures for the "device initial value range” and
*device initial value data® items, refer to the SWEIVD-GPPQ GPP Function Software
Package Operating Manual (Offline).

2) For details regarding the procadure for writing the device initial values to the QnACPU,
refer to the SWOIVD-GPP GPPQ Function Software Package Operating Manual
{Online).

5. PARAMETER LIST

PARAMETER LIST

The parameter settings designated in the QnACPU are shown below.
For details regarding each parameter item, refer to the section or manual in-
dicated.

5.

Item

Description

PC name setting

Designates (in CPU) the label and comment for the peripheral
devices.
This setting does not aftect CPU operation.

Labeil Designates the label setting.
Comment Designates the comment setting.

PC system settings These are settings required in the CPU system.
Low-speed

. X timer

Timer setting Designates the low-speed/high-speed timer settings.
High-speed
timer
RUN-PAUSE comtact Dasignates the conlact which controls the CPU's RUN/PAUSE

operation.

Fiemote reset

Enables/disables the remote reset operation,

STOP—-RUN output mode

Designates the output mode at STOP-3RUN switching.

Common pointer No,

Designates the common pointer "first No.".

General data processing

Dasignates the number of modules used for each general data
processing operation.

Number of vacant slot points

Designatas the number of vacant slot points.

Interrupt
counter
System interrupt
settings Fixed cycle
interval

These settings designate the interrupt counter *first No.", and the
interrupt pointer “fixed cycle interval®.

PC file settings

Designates the various files used in the CPU.

File registers

Designates the file for file registers which are to be used.

Commaent file for instructions

Designates the file for comments used in instructions.

Device initial values

Designates the file for the device initial values which are to be
used.

Local device file

Designates the file for local devices which are to be used.

Device settings

These settings designate the number of points for each device,
and the latch range, etc.

Device number of points

Dasignates the number of device points used.

Latch range (latch clear key
enabled)

Designates the latch range where the latch clear key s enabled.

Latch range (latch cloar key
disabled)

Designates the latch range where the latch clear key is disabled.

Loca) device setting

Designates the device range used for local devices.

5. PARAMETER LIST

MELSEC-QnA

Setting Content

Default Value

Setting Range

Reference
Section/Manual

User's Manua!
No setting Max. of 10 characters
No selting Max, of 64 characters
100 ms 10 ms to 1000 ms {10 ms units)
Section 4.2.10
10ms 1 ms to 100 ms {1 ms units)
No setting X0 to XAFFF ‘
User's Manual*
Disabled Disabled/enabled
Before operation Before operation / 1 scan later)
No setting PO to P4095 Secticn 4.9.2
1 1 1 modules
module o6 e User's Manual*
16 points 0 to 64 points (16-point units)
No setting CO to C65535
112289’—)1%0 ms Section 4.10
—40 ms "
13020 ms 1 to 1000 ms {5 ms units)
131=10 ms
« Not designated by parameter
Not designated by parameter + File name same as program namsa Section 4.7

» Not generated

Not designated by parameter

« Not designated by parametar
» File name same as program name
« Specifiad file is used

User's Manual*

File name same as program
. name

« Not dasignated by parameter
+ File name same as program name
= Specified file is used

Section 4,13.2

Not desighated by parameter

+ Not designated by parameter
» Specified file is used

Section 4.13.1

X—8 k puints
Y-8 k points
M—=8 k points
L—8 X points
B—8 k points
F—2 k points
SB—2 k points
V-2 k points
S—38 Kk points
T—=2 k points
ST—0 k point
C—=1 Kk point
D—12 k points
W—8 k points
SW—2 k points

X (8 k points), Y (8 k points), S (8 k points), SB {2 k points) and

8P (2 k points) are fixed.

Including the above points, 2 maximum of 32 k points can be designated
for each device, within a 28.8 k word range {totai).
Howevar, the maximum for bit devices is 64 k points (total).

Section 4.1

No setting 1 range per device

User's Manual*
No setting 1 range per device
No setting 1 range per device Section 4.13.1

* : Indicates the User's Manual for the CPU module

being used.”

5-2

5. PARAMETER LIST

item

Description

PC RAS settings

Seftings used for the RAS function

WOT settings

WDT settings

initial execution
monitor time

Low-speed
execution monitor
tims

Watchdog timer settings.

Error check

Designates whether or not efror detection occurs.

Operation mode at error

Designates the GPU operation mode to be established when

oceurrences an error is detected.
Constant scan Designates the constant scanning time.
F No. display
(ﬁ:;i:;c;?c;%; Comment display Designates the display mode at annunciator ON.
Occurrence time
Failure log Designates the storage destination for the CPU fault history.

Lew-speed execution program
execution time

Designates the time setting for low-speed execution program
execution.

17O allocations Designates the installation status for each system module.
Type
" Number of points Designates the module type, number of points, first
Siot settings - inputfoutput No., etc,
First XY
Modet name

Base settings

Power supply
modute’s model
name

Extension cable's
model nama

Designates the module names of the power supply module
and the extension cable. These settings do not affect CPU
operation.

MELSECNET (11./10) setting

Designates the link parameters for the MELSECNET Il data
link system, and the network parameters for the
MELSECNET/10 network system.

MELSECNET/MINI settings

Designates the "automatic refresh® setting for the
MELSECNET/MINI system.

Number of master modules

Designa-tes the number of MELSECNET/MIN! master modules
to be used.

First master
module
Inputroutput No.

Module name &
number of stations

Batch refresh of
recelvad data

Bateh refresh of
transmission data

MELSECNET/

Communication
error ratry count

MINI setting
items

FROM/TO access
priority

Received data
CLEAR at
communication
arror

Error station
detection bit data

Error No.

MINI link
operation at CPU
STOP

Line error check

Make the datailed settings required for automatic refresh of
a MELSECNET/MINI system,

5-3

5. PARAMETER LIST

Setting Content

Befault Value

Setting Range

Referenca Section/Manuat

200 ms 10 ms to 2000 ms (10 ms units)
No setting 10 ms to 2000 ms {10 ms units)
No setting 10 ms to 2000 ms (10 ms units)
Checked Error check accurs User's Manual
Stop Stop/Continue
No selling 5 ms to 2000 ms (5 ms units)
ON ON/OFF
OFF ONJOFF
OFF ON/OFF
Internal RAM Internal RAM/designated log file
No setting S ms to 2000ms (5 ms units) Section 3.2.3
No seiting Vacant/input/output/speciat
No setting 0 to 64 points (16-point units)
No setting 0 to 1FFF {104 units: hexadecimal)
No setling Max. of 16 characters User's Manual*
No setting Max. of 16 characters
For QnA/Q4AR MELSECNET/40
Refer to the For GnA/Q4AR MELSECNET/0 Network System N T e e paence
: Reference Manual. MELSECNET/B Dala LinkSystem
Reference Manual
0 module 0 to 8 modules
No setting Number of CPU Input/output points
MINI-S3 MINI-S3/MINI () stations
X1000 to 200H X ML, B, T, 8T, C, D, W, R. ZR, None (bit devices are multiples of 16)
Y1000 to 200H Y. M. L,B,T, ST, C, B, W, R, ZR, None (blt devices are multiples of 16)
User's Manual*
5 times 0 to 32 times
CPU priority CPU priority/link priority
Clear Clear/Hold
No setting X,L,B.T,ST,C, D, W, R, ZR, None
No setting D.WT7,8T,C.R, 2R
Stop Continue/Stop
Hold data, Test transmisslon/OFF data/HOLD data

*: Indicates the User's Manual for the CPU module

5-4 being used.

5. PARAMETER LIST .

Item Description
Auxiliary settings Designates settings required when using multiple programs.
Program setting Designates the programs to be executed.
. Designates the file setting, stc., required for the boot
Boot setting operation,)
SFC satting Designates settings required for SFG programs.
Permits 1O allocation settings to be checked. This senting
XY allocation check ’ does not atfect CPU operation.

5. PARAMETER LIST

Setting Content
Reterence Section/Manual
Detauit Value Setling Range

No sefling . Program name, scanflow-speed/initial/standby Section 3.2
No setting Flle name, type, transmission source drlve, transmisslon destination drive

e Refer to the QnAGPU Programming Manual (SFC) QrAGPU Pr c:g?gl)mlng Manuat

—_— - SWOIVD-GPPQ Operaling

Manual {Qfftine)

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

The procedure for writing programs (created at a peripheral device} to the
QnACPU is described in this section.

6.1 Writing Procedure For 1 Program

The procedure for writing one program created at a peripheral device to the
QnACPU and executing it is described here.

6.1.1 items to consider when creating one program

In order to create a program, the program size, number of device points
used, and the program file name, etc., must be set in advance.

(1)

(2)

()

4

Program size considerations

Check that CPU’s program capacity is adequate for storing the pro-
gram and parameter data. The program capacities of the CPUs are
shown below.

o Q2AS(H)YCPU : 28 k steps
« Q2ACPU : 28 Kk steps
¢ Q2AS(H)CPU-S1 : 60 k steps
+ QZACPU-51 : 60 k steps
« Q3ACPU : 92 k steps
+ Q4ACPU : 124 k steps
= Q4ARCPU 1 124 k steps

If the CPU capacity is only adequate for the program, the parameter
data should be stored in the memory card.

Designéting a program file name

The file name of the program to be stored in the QnACPU must be
designated.

This file name is used when writing the program from the peripheral
device to the QnACPU, and when executing the program in the
QnACPU.

See Chapter 2 for details regarding file names.

Designating devices

The number of devices required for the program must be determined.
See Chapter 4 for details regarding devices which can be used in the
QnACPU.

Device initial value setting
Designate whether or not the device initial value settings are to be

used in the QnACPU devices and special function unit data.
See Section 4.13.2 for details regarding device initial values.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

6.1.2 Procedure for writing programs to the QnACPU

The procedure for writing programs and parameters (created at the periph-
eral device) to the memory card installed in the QnACPU memory card inter-
face "A" is shown below,

In order to write programs and parameters to the QnACPU memory card,
the memory card must be installed, and the boot and drive (where parame-
ters are stored) settings must be designated by the QnACPU DIP switches
(SYS 1).

For details regarding QnACPU DIP switches, refer to the User's Manual of
the CPU module used.

When writing programs and parameters to the QnACPU internal RAM, the
steps indicated by asterisks (*) below are not required.

Procedural steps shown in [boxes are performed at the peripheral de-
vice, and those shown in 3 boxes are performed in the QnACPU.

s)

Start the GPP function software | ., Refer to the SWOIVD-
package. GPPQ Operating Manuat
{Offline)}

Mode selection screen is
displayed.

Change the
number of device
points?

.......... See Section 4.1.2

Change the number of device
points at the device setting item
in the parameter mode.

1
[Create the program which is to |
be-executed in the QnACPU.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

MELSEC-QnA

M

Use the device
initial values?

........... See Section 4.13.2

Designate the device initial value
range in the device mode.

Designate the device initial val-
ues in the device mode.

In the PC file setlings in the pa-
rameter mode, designate the
name of the file to be used for
the designated device
initial values.

In the boot file setting item in the
parameter mode, designate the
file name of the program to be

read from the ' memory card.

In the program settings in the
parameter mods, designate
the name of the program to be
executed, and its execution
condition,

Connect the paripheral device to

the QhACPU.
...... Q2AS(H)CPU(-81)/ : ERROR LED
Set the QnACPU's RUN/STOP Q2ACPU{-81) switches ON
key to the STOP position, then Q3ACPU/Q4ACPU/ : PARAMETER
switch the power ON. Q4ARCPU ERROR is
displayed

In the peripheral davice online
mode, select the internal
RAM, and use the PC memory
batch operation to format the
internal RAM.

@

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

2

In the periphsral device online
mode, selact memory card "A*
(RAM), then use the PC memory
batch operation to format

memory card A",

In the peripheral device online
mode, write the cteated program
and parameter data to memory
card “A'.

I

Use the OnACPU's RUN/STOP
key to execute a reset.

QnACPU's "BOOT" LED switches
ON.

e D

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

6.2 Procedure For Multiple Programs

The procedure for writing multiple programs (programs split up according to
function, process, designer) to the QnACPU is described below.

6.2.1 ltems to consider when creating multiple programs

To create multiple programs, it is necessary to decide in advance the size
of each program, the device used, and the program file name, etc.

(1) Program size considerations
Check that the CPU’s program capacity is adequate for storing the

programs. The program capacities of the CPUs are shown below.
*» Q2AS(H)YCPU : 28 Kk steps

+ Q2ACPU : 28 k steps
s Q2AS(H)CPU-81 :60 k steps
e Q2ACPU-S1 : 60 k steps
s Q3ACPU : 92 k steps
 Q4ACPU : 124 k steps
« Q4ARCPU : 124 k steps

Decide whether the parameters are to be stored in the internal RAM
or in the memory card.

If they are to be stored in the internal RAM, the area available for the
program will be the capacity shown above, minus the parameter data
size.

(2) Designating a program file name

Designat the file name of the program to be stored in the QnACPU.
This file name is used when writing the program from the peripheral
device to the QnACPU, and when executing the program at the
QnACPU. See Chapter 2 for details regarding file names.

{38) Designating the program execution conditions

In order to execute multiple programs in QnACPU, execution condi-
tions must be designated for each program.

Execution is impossible for programs without file name and execution
condition settings.

See Section 3.2 for details regarding execution conditions.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

(4)

6y

Designating devices

(a) Designate the number of device points used in each program, and
the number of device points which are shared by all programs.
See Chapter 4 for details regarding devices which can be used in
the QnACPU.

(b) Designate whether or not the internal relays, edge relays, timers,
counters, and data registers of each program are to be designated
as local pointers. ‘

See Section 4.13.1 for details regarding local pointers.

(c) When creating sub-routine programs, designate whether or not com-
mon pointers are to be used.
See Section 4.9.2 for details regarding common pointers.

Device initial value setting

Designate whether or not the device initial value settings are to be
used for the QnACPU devices and special function unit data.

See Section 4.13.2 for details regarding device initial values.

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

6.2.2 Procedure for writing programs to the QnACPU

The procedure for writing programs and parameters (created at the periph-
eral device) to the memory card installed in the QnACPU memory card inter-
face "A" is shown below.

In order to write programs and parameters to the QnACPU memory card,
the memory card must be installed, and the boot and drive (where parame-
ters are stored) settings must be designated by the QnACPU DIP switches
(SYS 1). : '

For details regarding QnACPU DIP switches, refer to the User’'s Manual.

When writing programs and parameters to the QnACPU internal RAM, the
steps indicated by asterisks {*) below are not required.

Procedural steps shown in [T boxes are performed at the peripheral de-
vice, and those shown in 3 boxes are performed at the QnrACPU.

C -)

Start the GPP function software | Refer to the SWOIVD-GPPQ
package. Operating Manual {Offline)

Mode selection screen is dis-
played.

Change the
number of device
points?

.......... See Section 4.1.2

Change the number of device
points at the device setting item
in the parameater mode.

3
[Create the program which is to
be executed at the QnAGPU. |

- ST

(1

6. PROCEDURE FOR WRITING PROGRAMS TO QGnACPU

M

Use the device

initial values? -~ T See Section 4.13.2

YES

Designate the device initial vaiue
range in the device mode.

Designate the device initial
values in the device mode.

In the PC file settings in the
parameter mode, designate the
name of the file to be used for

the designated device initial

values.

NO Designate local

atelocal ™~ ... See Section 4.13.1
devices? .

In the device setting item in the
parameter mode, designate the
local device range.

In the file setting item in the
parameter mode, designate the
name of the local device file.

Use common

pointers? .~ "t Seo Section 4.9.2

In the PC system setting item In
the parameter mode, designate
the first pointer No.

(@

6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU

In the boot file setting item in the
parameter mode, designate the
file name of the program to be

read from the memory card.

In the program setting item in the
parameter mode, designate the
name of the program to be exe-

cuted, and its execution condition.

Connect the peripheral device to
the QnACPU.

Set the QnACPU’s RUN/STOP key

to the STOP position, then switeh (|-~ """ "~ ggﬁgg‘gcg?('sﬂf : ERROR LED
the power ON. (-81) switches ON
Q3ACPU/Q4ACPL/ : PARAMETER
Q4ARCPU ERROR is
displayed

In the peripheral device online
mode, select the internal RAM,
and use the PC memory batch op-
eration to format the internal RAM.

In the peripheral device online
mode, select memory card "A"
(RAM), then use the PC memory
batch operation to format

memory card *A".

In the peripheral device online
mode, write the created program
and parameter data to memory
card "A". *

Use the QnACPU’s RUN/STOP
key to execute a reset.

QnACPU's "BOOT" LED switches
ON. :

. (End)

[A]

Accuracy of the initial scan time

Accuracy of the scan time

Annunciators (F)

ASCH code
[B]

B (Link relays)

BCD (Binary coded decimal)

BIN {Binary code)

BL {SFC block device)

Block switching format (File register)
[C] : '
C (Counters)

Character string

Character string data

Common pointer

Constant scan

Constants

Counter count processing
Counter maximum counting speed
Counters (C)

[D]

D {Data registers)

Data registers (D)

Decimal constants

Designating file regisiers

Device initial values

Device list

Direct access inputs (bX)

Direct access outputs (DY)

Direct mode

Drive No.

Duty

DX ‘(Direct access inputs)

DY (Direct access outputs)
(E]

E (Real numbers)

Edge relay (V)
END processing

INDEX

3-16
3-18
4-12

344

4-18
3-41
3-38
4-56
4-49

4-26
4-60
3-44
4-52
3-17
4-59
4-26
4-27
4-26

4-30
4-30
4-59
4-45
4-64
4-1
4-5
4-8
3-34
23
4-28
4-5
4-8

460
4-16
3-156
317
3-23

[E]
Executing interrupt programs
Extension

iF]
F (Annunciators)
FD (Function register)
File date & time
File handiing precautions
File header
File name
File operation
File register designation method
File registers (R)
File registers
serial number access format (ZR)
File size
File types
Function output (FY)
Funetion input (FX)
Function register (FD)
FX (Function input)
FY (Function output)
(G]
Global devices
[H)
H (Hexadecimal constants)
HEX (Hexadecimal)
Hexadecimal constants {H)
High-speed retentive timer (ST)
High-speed timers (T)
i
1 (Interrupt pointers)
/O No. designation device (Un)
Index register processing
index registers (Z)
initial execution programs
Initial execution time monitor
Initial scan time
Input/output processing

3-9
2-1

4-12
4-34

22
2-14
2-11

2-1
2-12
4-49
4-43

4-49
2-2
2-9

4-34

4-34

4-34

4-34

4-34

4-61

4-59
3-40
4-59
4-22
4-21

4-54
4-57
4-41
4-41
3-15
3-16
3-16
3-32

] IL]

Inputs (X) 4-4 Low-speed execution time monitor 3-24

Intemal RAM 2-4 Low-speed retentive timer (ST) 4-22
Internal relays (M) : 4-10 Low-speed scan time 3-23
Internal system devices _ : 4-34 Low-speed timers (T) 4-21
Internal user devices- . 4-4 [M]
Interrupt counter (C) 4-28 M (internal relays) : 4-10
interrupt counter count processing 4-28 Magcro instruction argument device (VD) 4-58
Interrupt counter precautions 4-29 Main routine program 3-4
Interrupt factors 4-54 Memory capacity Internal RAM 2-5
Interrupt pointers (1) : 4-54 Memory capacity Memory card 2-7
Interrupt program creation restrictions ~ 3-11 Memory capacity after formatting
Interrupt programs 3-8 Internal memory 2-5
[J] Memory capacity after formatting
J (Network No. designation device) 4-56 memory card 2-7
JI\BE: (Link relay) 4-36 Memory map Intemal RAM 2-4
JINSBX: (Link special relay) 436 ~ Memorymap Memory card 2-6
JUNSWL (Link special register) 4-36 Memory card 2-6
JUWE (Link register) ' 4-36 [N]
JUAXE3 (Link input) 4-36 N (Nesting) 4-50
JEAYE3 (Link output) 4-36 Nesting (N) 4-50
[K] Network No. designation device (J) 4-56
K (Decimal constants) : 459 [O]
iL] : Outputs {Y) 4-7
L (Latch relays) 411 [P
Latch refays (L) 4-11 P (Pointers) 4-51
Link direct devices 436 Parameterlist 5-1
Link input (J:1\X<3) 4-36 Pointers (P) 4-51
Link output (JI\Y<3) 4-36 Precautions regarding the use of
Link register (J2AW:3) 4-36 device initial values 4-64
Link registers (W) 4-31 Precautions when using timer 4-24
Link refay (JIAB:2) 4-36 Procedure for using device ?nitial values 4-65
Link relays (B8) 418 Procedure for writing programs to the
Link special register (J:\SW:3) 4-36 QnACPU ‘ 2:?
Link special relay (J::\SB:3) 4-36 Processing at annunciator OFF 4-15
Local devices 4-61 o, L
Local pointers 451 Processing at anm.mctator ON 4-13
Low-speed END processing 3-23 Program constiuction 12
) Program execution conditions 3-13
tow-speed execution program
execution time 3-21

3-22

IR

[8]

R (File registers)
Real numbers

Refresh modé

Related programming manuals
Retentive timers (QUT ST2)

S (Step relays)

SB (Special link relays)
Scan execution programs
Scan time

SD (Special registers)
8D520, SD521

(Scan time: Present value)

SDs22, SD523 {Initial scan time)

SD524, SD525

(Scan time: Maximum value)

8D528, SD527
{Scan time: Minimum value)

SD528, 8D529

{Low-speed scan time: Present value)

8D530, SD531

(Low-speed scan time: Initial value)

8D532, SD533

{Low-speed scan time: Minimum value)

SD534, SD535

{Low-speed scan time: Maximum value)

Sequence program

Serial number access format

(File register)

Setting the interrupt counter
Setting units at the internal user device

SFC block device (BL)
SFC transition device (TR)
Single precision floating
decimal point data

Size (File)

SM {Special relays)

Special function module devices

(UsNGE3)

4-43
3-42

4-60

3-32
1-9
4-22

4-20
4-20
3-17
3-18
4-36

3-18
3-16

3-18

3-18

3-23

3-23

3-23

3-23
3-1

4-49
4-29

4-2
4-56
4-56

3-42
2-2
4-35

4-40

[s]

Special link registers (SW)
Special link relays (SB)
- Special registers (SD)

. Special relays (SM)
ST (Retentive timers: OUT ST3)

Standby programs

Step relays (S)

Storage destination of files
Sub-routine programs

SW (Special link registers)

T {Timers)

Timer accuracy

Timer processing

Timers (T)

Title

TR (SFC transition device)

i
U (/O No. designation device)

UG

{Special function module devices)

V]

V (Edge relay)

VD (Macro instruction argument device)

W

W (Link registers)
Watchdog timer (WDT)
WDT (Watchdog timer)

X

X (Inputs)

Iv]

Y (Cutputs)

74

Z {Index registers)

. ZR (File registers setial number

access formaf)

4-33
4-20
4-36
4-35
4-22
3-25
4-20

2-9

4-33

4-21

423

4-23
4-21

2-2
4-56

4-57

4-40

4-16
4-58

4-31

3-18
3-18

4-41

4-49

iMPORTANTI

Design the configuration of a system to provide an exiernal protective or safety inter locking
circuit for the PCs.

Under no circumstances will Mitsubishi Electric be liable or responsible for any conéequential
damage that may arise as a result of the installalion or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding
the text, not to guarantee operation. Milsubishi Electric will accept no responsibility for actual
use of the product based on these illustrative examples.

Owing to the very great variety in possible applications of this equipment, you must satisfy
yourself as to its suitability for your specific application.

vooet| QNAPKKISOME |
MoDEL 13JF46
IBINA)BEE 14-C(9809)MEE

2 MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNGUCHI TOXYO 100-0005 TELEX, : J24532 CABLE MELCO TOKYO
RAGOYA WORKS : 1-14, YADA-MINAMI 5 , HIGASHLKU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of Intemationai Trade and Industry for service transaction permission,

Specifications subject to change without notice.
Printed in Japan on recycled paper.

	SAFETY CAUTIONS
	REVISIONS
	INTRODUCTION
	CONTENTS
	About Manuals
	1. GENERAL DESCRIPTION
	1.1 Programs
	1.2 Convenient Programming Devices and Instructions
	1.3 Related Programming Manuals

	2. QnACPU FILES
	2.1 QnACPU Internal RAM & Memory Cards
	2.2 Internal RAM
	2.2.1 Memory map
	2.2.2 Formatting precautions
	2.2.3 Memory capacity after formatting

	2.3 Memory Card
	2.3.1 Memory map
	2.3.2 Memory capacity after formatting
	2.3.3 Executing memory card programs (boot run)

	2.4 File Types & Storage Destinations of Files Managed by QnACPU
	2.5 Program File Configuration
	2.6 File Operation and File Handling Precautions
	2.6.1 File operation
	2.6.2 File handling precautions

	3. SEQUENCE PROGRAM CONFIGURATION & EXECUTION CONDTIONS
	3.1 Sequence Program
	3.1.1 Main routine program
	3.1.2 Sub-routine programs
	3.1.3 Interrupt programs

	3.2 Program Execution Conditions & Operation Processing
	3.2.1 Initial execution programs
	3.2.2 Scan execution programs
	3.2.3 Low-speed execution programs
	3.2.4 Standby programs

	3.3 Input/Output Processing & Response Lag
	3.3.1 Refresh mode
	3.3.2 Direct mode

	3.4 Numeric Values which Can Be Used in Sequence Programs
	3.4.1 BIN (Binary Code)
	3.4.2 HEX (Hexadecimal)
	3.4.3 BCD (Binary Coded Decimal)
	3.4.4 Real numbers

	3.5 Character String Data

	4. DEVICES
	4.1 Device List
	4.1.1 Device list
	4.1.2 Setting units in the internal user device

	4.2 Internal User Devices
	4.2.1 Inputs (X)
	4.2.2 Outputs (Y)
	4.2.3 Internal relays (M)
	4.2.4 Latch relays (L)
	4.2.5 Annunciators (F)
	4.2.6 Edge relay (V)
	4.2.7 Link relays (B)
	4.2.8 Special link relays (SB)
	4.2.9 Step relays (S)
	4.2.10 Timers (T)
	4.2.11 Counters (C)
	4.2.12 Data registers (D)
	4.2.13 Link registers (W)
	4.2.14 Special link registers (SW)

	4.3 Internal System Devices
	4.3.1 Function devices (FX,FY,FD)
	4.3.2 Special relays (SM)
	4.3.3 Special registers (SD)

	4.4 Link Direct Devices (J[]\[])
	4.5 Special Function Module Devices (U[]\G[])
	4.6 Index Registers (Z)
	4.7 File Registers (R)
	4.8 Nesting (N)
	4.9 Pointers
	4.9.1 Local pointers
	4.9.2 Common pointers

	4.10 Interrupt pointers (I)
	4.11 Other Devices
	4.11.1 SFC block device (BL)
	4.11.2 SFC transition device (TR)
	4.11.3 Network No. designation device (J)
	4.11.4 I/O No.designation device (U)
	4.11.5 Macro instruction argument device (VD)

	4.12 Constants
	4.12.1 Decimal constants (K)
	4.12.2 Hexadecimal constants (H)
	4.12.3 Real numbers (E)
	4.12.4 Character string (")

	4.13 Convenient Uses for Devices
	4.13.1 Global devices & local devices
	4.13.2 Device initial values

	5.PARAMETER LIST
	6. PROCEDURE FOR WRITING PROGRAMS TO QnACPU
	6.1 Writing Procedure For 1 Program
	6.1.1 Items to consider when creating one program
	6.1.2 Procedure for writing programs to the QnACPU

	6.2 Procedure For Multiple Programs
	6.2.1 Items to consider when creating multiple programs
	6.2.2 Procedure for writing programs to the QnACPU

	INDEX

