MITSUBISHI

type ACPU/QCPU-A (A Mode)(Fundamentals)

Programming Manual

MENSEE

Mitsubishi Programmable Logic Controller

—~

SAFETY CAUTIONS

(You must read these cautions before using the product)

In connection with the use of this product, in addition to carefully reading both this manual and
the related manuals indicated in this manual, it is also essential to pay due attention to safety
and handle the product correctly. ,

The safety cautions given here apply to this product in isolation. For information on the safety
of the PC system as a whole, refer to the CPU module User’s Manual.

Store this manual carefully in a place where it is accessible for reference whenever necessary,
and forward a copy of the manual to the end user.

REVISIONS

*The manual number is given on the bottom left of the back cover.

Print Date *Manual Number Revision
Feb., 1991 IB (NA) 66249-A First edition
Sep., 1993 | IB (NA) 66249-B {Addition of models|

A1SCPU, A2UCPU(S1), A3UCPU, A4UCPU,
A2ACPU(S1)-F, ASACPU-F

Correction

CONTENTS, Section1,1.1,2.1,2.3.1,2.4,2.4.2,
2.43,25,2.6,2.6.1,102.6.3, 3.1 to 3.6, 3.6.2,
3.6.3,3.7,3.7.1t0 3.7.4, 3.8, 3.8.2, 3.9 to 3.11,
3.11.2, 3.12, 3.13, 3.13.1, 3.13.2, 3.14 t0 3.17, 4,
4.2,42.2,42.3,4.3,43.2,4.4, 4.41,5,5.1,5.1.1
t0o 5.1.3,5.2,5.2.1,5.3,5.3.1,5.3.2, 5.3.4, 6, 6.1 to
6.8, 6.8.2,6.8.3,6.9106.13,6.13.1,6.14t0 6.17, 7,
8
Addition
Section 5.2.3, 6.18, 9 to 11
For BEGINNERS

Sep., 1990 | IB (NA) 66249-C

Section 3.11.2, 3.13.2, 4.2.2

Dec., 1990 | IB (NA) 66249-D Chapter 9 added

May., 1991 | IB (NA) 66249-E

[®)

orrection

Section 3.6.3, 3.7.4, 3.13.1, 3.13.2, 4.4.1
A1SCPU added

Feb., 1992 IB (NA) 66249-F orrection
Section 3.16, 9.1, 9.6

i

Apr., 1992 1B (NA) 66249-G orrection
Section 3.5, 5.3.4, Chapter 8, Section 9.6

i

Aug., 1992 | IB (NA) 66249-H orrection
Section 3.3

i

O

orrection

A2UCPU(S1), ASUCPU, A4UCPU, A52GCPU, "
A373CPU added
Section 6.18, 9.7, 9.8, Chapter 10, 11 added

May., 1993 | IB (NA) 66249-|

Aug., 1994 | IB (NA) 66249-J
Section 2.4.1, 2.4.2, Chapter 11
May., 1997 | IB (NA) 66249-K

Section 3.1, 3.3, 3.4, 3.5, 3.6.2, 3.10, 3.11.2, 5.3.4,
10.4.1, IMPORTANT

E

Section 3.11.1, 5.3.4, 6.1, Chapter 11

This manual does not imply guarantee orimplementation right for industrial ownership or implementation of other
rights. Mitsubishi Electric Corporation is not responsible for industrial ownership problems caused by use of the
contents of this manual.

Print Date

*Manual Number

Revision

Aug., 1998 | IB (NA) 66249-L [Addition of models]
A1SJCPU-83, A1SCPUC24-R2, A2SCPU(S1),
A1SHCPU, A1SJHCPU, A2SHCPU(S1),
A2ASCPU(S1), ATFXCPU
Section 4.5, Appendix 1
CONTENTS, Section 1.1, 3.1, 4.3.1, Chapter 5,
Section 6.9, 6.10, 6.11, 9.1, 9.3 t0 9.12, 10.3
A2NCPU(P21/R21)-F, A2NCPU(P21/R21)-S1-F,
A3BNCPU(P21/R21)-F, A3N Board

Feb., 2000 | IB (NA) 66249-M The manual name is changed into ACPU/QCPU-A(A
Mode) Programming Manual (Fundamentals).
[Old name: ACPU Programming Manual
(Fundamentals).]
[Addition of models|
QO02CPU-A, Q02HCPU-A, QO6HCPU-A,
A2USHCPU-S1, A1SJHCPU-S8

Dec., 2000 | IB (NA) 66249-N

Section 3.1, 3.6.2, Chapter 8

This manual does not imply guarantee or implementation right for industrial ownership or implementation of other
rights. Mitsubishi Electric Corporation is not responsible for industrial ownership problems caused by use of the
contents of this manual.

@& 1001 Mitennhichi Elantria CAarnaratiann

CONTENTS

GENERAL DESCRIPTION.ttt it i ie i et i ettt is et ranssnnsnnranenns 1-1
1.1 CPU Types and Their Abbreviations UsedinthisManual 1-1
PROGRAMMING LANGUAGES AND OPERATIONS.cccvvivevens 2-1~2-19
2.1 Programming Languages ittt e e 2-1
2.1.1 Relay symbolic language (laddermode). 2-2
2.1.2 Logic symbolic language (listmode). 2—-4
2.2 Operation Processingofthe PCCPU. 2-5
23 Inputand Output Processings.coiiiiniii it i 2-6
231 Directmode. e e 2-6
232 Refreshmode...... i e 2-7
24 Response Lag. e 2-8
241 Inthedirectmode. e 2-8
242 Intherefreshmode. i e 2-9
2.4.3 Response when direct and refresh modes are switched 2-10
2.5 SCAN TIME . ..o e 2-13
2.6 Numeric Data Usable for Sequence Programs. 2-14
26.1 Binarynotation e 2-16
26.2 Hexadecimal....... i e 2-18
2.6.3 BCD (Binary-codeddecimal) 2-19
DEVICES. ...ttt ettt et ittt etesnanssrcnnrarasasnnaanns 3-1~3-57
31 Listof Devices. e e e e 3-1
32 Input(X)andOutput (Y) e e e e e 3-5
3.3 Internal Relays (M), Latch Relays (L), and StepRelays (S) 3-8
34 LinkRelays (B)ot e e e 3-9
35 ANNUNCIAtOrS (F) ... oo e e e e 3-11
3.6 TIMErs (1) ..ot e e e e 3-15
3.6.1 100 ms timers, 10 ms timers, and 100 ms retentivetimers 3-15
3.6.2 Processingand accuracyoftimers..................... 3-17
3.6.83 BExtensiontimers. i e e e e 3-21
3.6.4 IMSTMer e e e 3-23
R A O 1H 41 1= £~ (0 3-26
3.7.1 Countprocessingindirectmode i, 3-27
3.7.2 Countprocessinginrefreshmode 3-28
373 Maximumcountingspeed. ot . 3-29
374 Bxensioncounters............. ...t e e e e 3-30
3.8 Interrupt Counters (C)ottt e e i e 3-32
3.8.1 Countersforinterruptprograms i e 3-32
3.8.2 Counters for counting the number of interrupts (Interrupt counters). 3-34
3.9 DataBegisters (D). i e e 3-37
3.10 Link Registers (W)ottt e e e e 3-38

311 FileRegisters (R) ... e e e e e 3-40

3111 Fileregisters 3-40

3.11.2 Bxensionfileregisters, 3-42
312 Accumulators (A). oo e 3-45
313 Index Registers 3-46
3.13.1 Indexregisters (Z, V)o 3-46
3.13.2 Index registers (Zn(Z, Z1to Z6), Vn(V,V1toVB)) 3-48
314 Nesting (N)o e e e 3-50
B35 Pointers (P) e e 3-51
3.16 InterruptPointers (1) e 3-52
3.17 Special Relays and Special Registers 3-54
ALLOCATIONOFIVONUMBERSci ittt tiincannanenn 4-1~4-19
41 HONUMDEIS ... e e e e 4 -1
4.2 /O Number Allocation of the Building-block Type CPUs 4-2
421 Basicsofthe YO numberallocation 4-2
422 VO allocation using peripheraldevices.ciiin... 4-6
423 Example of /O numberallocation. o 4-8
43 /O Allocation of the AOJ2ZHCPU 4-10
431 Basicsof /Oallocation. i 4-10
4.3.2 Example of /O numberallocation. 4-13
44 /O Allocation of the A2CCPU e e 4-15
441 Basicsofl/fOallocation.......... i 4-15
4.5 /O Number Assignmentfor ATFXCPU. i i, 4-17
451 VOnumberassignment....... 4-18
PROGRAMSTRUCTURE.civiiirirsuiecnesnsrararncacacnnannns 5-1~5-24
51 Sequence Programi.ttt it ettt e e e 5-2
5.1.1 Mainroutine program it e e e 5-3
5.1.2 Subroutine programttt e e e 5-4
51.3 Interrupt programs i e e 5-7
52 Microcompuler Programsttt e e 5-12
521 Utility program. e e e e 5-13
5.2.2 User-created microcomputer programuuivitnnnnnnannan. 5-13
523 SRCProgramo e e e e 5-13
53 HowtoUsetheSub-Programs 0. i iiiiiiiiiiiinnnnnn. 5-15

5.3.1 When the CHG instruction is executed at the leading edge of the

input and the execution/non-execution result storage memotry is used

commonly with the main programs and the sub-programs. 5-17
5.3.2 When the CHG instruction is executed at the leading edge of the

input and the execution/non-execution result storage memory is sued

independently with the main programs and the sub-programs............. 5-19
5.3.3 When the CHG instruction is executed when the input is ON

and the execution/non- execution result storage memory is

used independently with the main programs and the sub-programs 5-20

534 Notesonwriteduringrun 5-21
53,5 Notesonwritingsubprogram, 5-24

FUNCTIONSttt e et ieiacinnncneennasnsnnnnnnnns 6-1~6-50

6.1 Constant Scan.iiiiiiii i .6-3
6.2 Retaining Device Data (Latch Function) 6-5
6.3 PC CPU RUN/STOP with a Peripheral Device (Remote RUN/STOP) 6-7
6.4 Stopping the Sequence Program Operation Retaining

the State of Outputs (PAUSE). e i 6-9
6.5 Retaining Device Data when a Specific Condition is Established (Status Latch) 6-12
6.6 Sampling Device Data at Constant Intervals (Sampling Trace) 6—-14
6.7 Forced ON/OFF of the OUT Instruction with a

Peripheral Device in the RUN Stare (Offline Switch) 6-17
6.8 Step Operation e e e 6-19

6.8.1 Stepoperation (I) i e 6-19

6.8.2 Stepoperation(Il)....... i e 6-22

6.8.3 Precautionsatstepoperation............ 6-28
6.9 ClockFunction. i e 6-29
6.10 /O Module Replacement DuringOnline i ..., 6-34
6.11 Device COmmMENtS. i i e e e 6-37
6.12 Watchdog Timer i i i i it e e e e i 6-39
6.13 Self-diagnosis Function. e e 6—41

6.13.1 Operation mode Whenan errorocCuUrs iiiienennnnnn.n. 6—44
6.14 Setting of the Output (Y) State when Switching from STOPtoRUN 6-45
6.15 Registrationofthe EntryCode i, 6—46
6.16 Registrationofthe Print Title. i i 6-47
6.17 Display Mode Setting of Annunciators

(In case of the CPU module with the LED indicator of 16 characters) 6-48
6.18 ERROR LED Indication Priority Setting 6-49
METHOD OF DATA COMMUNICATION WITH SPECIAL-FUNCTION MODULE 7-1
PARAMETER SETTINGccciiiititiareinnraarsncnsasnnsoscnrannnns 8-1~8-9
CONFIGURATION OF USER MEMORY AREA.ccivivnnnn 9~-1~9-18
91 ATCPUand ATNCPU i e e e e 9-2
8.2 A2CPUST)and A2NCPU(ST) it i e e 9-3
9.3 AO0J2HCPU, A2CCPU, A52GCPU, A1SCPU(S1), and A1SJCPU(S3).............. 9-4
04 A2 CPU (ST . oot e e e e 9-5
95 A1SHCPU, A1SJHCPU(S8),and A2HCPU(S1)........ ...t 9-6
0.6 ATREXCPU . e e 9-7
9.7 A2ASCPU, A2ASCPU-S1, A2ASCPU-830, and A2USHCPU-S1 9-8
9.8 A3CPU, ASNCPU, A3VCPU, A73CPU,and ABHCPU 9-9
99 ABMCPU..................... U 9-11
9.10 A2ACPU(ST)and ABACPU. i e e 9-12
911 A2UCPU(S1)and ABUCPU i i e 9-13
012 AQUCPU . e e 9-14
9.13 QO02CPU-A, QO2HCPU-Aand QOBHCPU-A. i, 9-18

10. CONFIGURATION OF USER MEMORY AREA

(WHEN AN SFCPROGRAMISUSED)........iviiiiiinnnrinnnnnnnnenes 10-1~10-5

10.1 SFC ProgramMemory Areattt i 10-1

102 A2NCPU(S1),and ABNCPU e 10-2

10.83 AO0J2HCPU, A2CCPU, A52GCPU,and A1SCPU. 10-3

10.4 AnACPU* and AnUCPU. 10-3
10.4.1 Allocation when extension comment capacity isnotset. 10-4

10.4.2 Allocation when extension comment capacityisset. 10-5

11. ALLOCATION OF THE MELSECNET/10 NETWORK PARAMETERS. 11-1~11-2
o e T APP -1

1. GENERAL DESCRIPT

1. GENERAL DESCRIPTIO

ION

N

This manual describes the devices and the allocation procedures of input
and output numbers which are required for creating programs for the
MELSEC-A series programmable controllers.

For the operations which pertain to the A6GPP, refer to the A-series basic
course (for SWAGP-GPPAEE) (IB-66412) in the A-SERIES TRAINING

MANUAL.

1.1 CPU Types and Their Abbreviations Used in this Manual

The CPU types and their abbreviations used in this manual are as given in
the table below.

Table 1.1 CPU Types and Their Abbreviations Used in this Manual

Abbreviation CPU Type
A1 A1CPU(P21/R21)
An A2(-S1) A2CPU(P21/R21), A2CPU(P21/R21)-S1
A3 A3CPU(P21/R21)
A1N A1NCPU(P21/R21)
AnN A2N(-S1) A2NCPU(P21/R21), A2NCPU(P21/R21)-S1
A3N A3NCPU(P21/R21)
A3H A3HCPU (P21/R21)
A3M A3MCPU(P21/R21)
A3V A3VCPU(P21/R21)
AnA A2A(-S1) A2ACPU(P21/R21), A2ACPU(P21/R21)-S1
A3A A3ACPU(P21/R21)
A1S A1SCPU(S1), AISCPUC24-R2, A1SJCPU, A1SJCPU-S3
AnS A2S A2SCPU(S1)
AnSH A1SH A1SHCPU, A1SJHCPU(S8)
A2SH A2SHCPU(S1)
AOJ2H AO0J2HCPU(P21/R21)
A2C A2CCPU(P21/R21), A2CCPUDC24, A2CCPUC24(-PRF),
A2CJCPU(S3)
A73 A73CPU(P21/R21)
A52G A52GCPU(T21B)
A2U(-S1) A2UCPU, A2UCPU-S1
AnU A3y A3UCPU
A4U A4UCPU
AZAS A2AS(-S1) A2ASCPU, A2ASCPU-S1, A2ASCPU-S30
A2USH-S1 A2USHCPU-S1
Qo2 Q02CPU-A
QCPU-A Qo2H QO2HCPU-A
QosH QO6HCPU-A
A1EX A1EXCPU
POINTI
This manual does not apply to the AOJ2CPU(P23/R23).
For the instructions used with the A0J2CPU(P23/R23), refer to the
A0J2CPU Programming Manual (IB-66057).

2. PROGRAMMING LANGUAGES AND OPERATIONS

2. PROGRAMMING LANGUAGES AND OPERATIONS

This chapter describes the programming languages and the method of
expression of numeric values which are applied to the writing of sequence
programs.

2.1 Programming Languages
Two different methods, a graphic method and a dedicated instruction

method, can be used for the programming of a PC CPU.

» The graphic method uses the relay symbolic Ianguage.*1 .
« The dedicated instruction method uses the logic symbolic language.

These languages can be used to write a sequence program.

The SFC Ianguage*3 (MELSAP 1) as well as the relay symbolic language
and the logic symbolic language can be used for programming.

¢ For the SFC language (MELSAP Il), refer to the MELSAP Il Programming
Manual (IB-66361).

*1: When the A6GPP/A6PHP/ABHGP is used, set it to the "ladder mode".

*2: When the A6GPP/A6PHP/ABHGP/A7PU is used, set it to the "list mode".

*3: For the PC CPU types which can execute an SFC language, refer to the MELSAP i
Programming Manual (IB-66361) Version B and later.

2. PROGRAMMING LANGUAGES AND OPERATIONS

2.1.1 Relay symbolic language (ladder mode)

The relay symbolic language is based on the concept of relay control lad-
der operation and allows programming using expressions which are similar
to relay sequence ladders.

(1) Ladder block

A ladder block is the smallest unit of sequence program operation. Each
block begins at the bus on the left side and ends at the bus on the right
side.

Left side bus

r“__o_o-(-) """"""""""""""""""""""" H Right
i X I side bus
L of—| (Yo20 44—
L _I
I Ixo01 x0p2x003 T i
Step number iz_" e < Y021)+ E
[]
'" —————— Y022
E . E Ladder
b (Y023) : blocks
r_::::::::::::::::::::::::::::::::: ::;
[X004 X005 !
i 8—| Iy { Y024 > i
| Y024 :
0 1

*X0 to X5: Inputs
Y20 to Y24: Outputs

Fig. 2.1 Ladder Blocks

2. PROGRAMMING LANGUAGES AND OPERATIONS

(2) Operation processing

Sequence program operation is executed repeatedly according to ladder
blocks beginning with step 0 and finishing with the END instruction.

In each ladder block, operation begins with the left bus and proceeds to
the right and from top to bottom.

Head of a ladder block——\ w .
) 7 8 9 (10) End of
_________ LM@ @ ® (@ o ar
! ¥| X000 X001 X005 X006 X007 block
; O — =< Yot0 >+
| 1
i From (3) (4) |
I 5 1
' behtom| | X002 xo03| :
I
| (6))
! X004 !
I I
! 4
Head ettt ittty
| of ladder _L* -_—>
| block (11) (13) (14) From left to right
! X008 XO0A X00B (15)
| 10—} {3t { Yo11)
i From
, topto (12) 16
1 bottom X009 (16)
Returns to step 0 /", — ———— Y012)
after execution of ! 2 (17 End of
END instruction : | ' Y013)] a ladder
! block
. H
*Numbers 1 to 17 indicate the order of operation.
END is not displayed on peripheral devices.

Fig. 2.2 Order of Operation Processing

2. PROGRAMMING LANGUAGES AND OPERATIONS

2.1.2 Logic symbolic language (list mode)

The logic symbolic language uses dedicated instructions for writing con-
tacts and coils (which are written in the relay symbolic language using sym-
bols).

(1) Operation processing

Sequence program operation is executed repeatedly beginning with step
0 and finishing with the END instruction. After the END instruction
execution, processing is executed again beginning with step 0.

Logic symbolic language Relay symbolic language
Step number —— (1 @ () 6 (9
S 7 Yo LD X000 (1) X000 X001 X005 X006 Xoo7 (10)
; 1 AND Xoo1..... 2) — A < Yo1o)
3 2 LD X002 (3) (3) (4 5)
5 3 AND X003 (4) X002 XO! 03
i 4 ORB (5) :> ()
Order of 5 OR X004 (6) X004
operation
processing| 6 AND X005 @) —
; 7 AND X006 (8) (11)
‘ 8 AND X007 (9)
' 9 OuT Y010 (10)
; 10 END (11)
e mmemm ¥
Returns to step 0 after
execution of END instruction
*Numbers 1 to 11 indicate the order of operation.

Fig. 2.3 Order of Operation Processing

2. PROGRAMMING LANGUAGES AND OPERATIONS

2.2 Operation Processing of the PC CPU

The PC CPU employs a repetitive operation method using a stored
program.

(1) Stored program

(a) The sequence program for operation processing is stored in the in-
ternal memory of the CPU.

(b) The CPU performs operation processing by reading the stored pro-
gram by each instruction, and it controls status of devices accord-
ing to the operation results.

(2) Repetitive operation method

The repetitive operation method repeats execution of a series of
operations.
The PC CPU repeats the operation processing as shown below.

() The PC CPU executes the sequence program, stored in the inter-
nal memory, beginning with step 0 to the END instruction.

(b) After executing the END instruction, the PC CPU performs internal
processings such as timer/counter update and self - diagnosis,
and then, returns to step 0 of the sequence program,

R

Step 0

Step 1

Step 2

\ The PC CPU repeats
these operations.

END

v

» Timer/counter
update
» Self - diagnosis

L]

Fig. 2.4 Operation Processing of the PC CPU

The series of steps from step 0 to the next step 0 or from an END instruction to the next END
instruction is called a scan.

The scan time of the PC CPU is calculated as a total of the processing time of the sequence
program (step 0 to END) and the internal processing time of the PC CPU.

2. PROGRAMMING LANGUAGES AND OPERATIONS

23

2,31

Input and Output Processings

Direct mode

The input and output modules are controlled by either the direct mode or
the refresh mode.
The control mode is determined by the type of CPU used.

The direct mode allows input signals to be received by the PC by each sig-
nal and used as input data.

The operation results are output by each result to the output data memory
and output modules.

PC
CPU *1
2) n (1) 1
put (X} 0—
) data memory |— Input module
X0
HH——
@) 2
v20%” Output (Y) o aul
— Output module
HF—<Y25>- (5) T data memory _3:(

+ When an input contact command is executed:
The input data (1) of the input module and the input data (2) of the
data memory are ORed. The operation result is used as the input data
(3) for execution of the sequence program.

+ When an output contact command is executed:
The output data (4) is read from the data memory for execution of the
sequence program.

 When an output OUT instruction is executed:
The operation result (5) is output to the output module and stored in
the output (Y) data memory.

Fig. 2.5 Flow of Input/Output Data in the Direct Mode

*1 The following operations turn ON/OFF the input (X) data memory.
Test operation with a peripheral device
Link refresh of the MELSECNET
Writing data from a computer link module

*2 The following operations turn ON/OFF the output (Y) data memory.
Execution of the OUT instruction of the sequence program
Test operation with a peripheral device
Writing data from a computer link module

2. PROGRAMMING LANGUAGES AND OPERATIONS

2.3.2 Refresh mode

The refresh mode allows input signals to be stored in batch in the input
data memory before execution of each scan.

The data in the input data memory is used for execution of the sequence
program operation.

The operation results (Y) are output by each result to the output data mem-
ory. The data in the output data memory is output in batch to the output
modules after execution of the END instruction.

PC
CPU
Input
3 refresh ——
X0 -) mgtn(l)é)mory B (1) Input module =0~ o—
” (4) Output
y22 Output (Y) refresh o
> utput module __3 j
H }—<Y20>\- (5) > data memory 2 P

» [nput refresh
Input data is read (1) in batch from the input module before execution
of step 0 and stored in the input (X) data memory.

e Qutput refresh
Data (2) in the output (Y) data memory is output in batch to the output
module before execution of step 0.

e When an input contact command is executed:
Input data is read (3) from the input (X) data memory and used for
execution of the sequence program.

e When an output contact command is executed:
Output data is read (4) from the output (Y) data memory and used for
execution of the sequence program.

 When an output OUT instruction is executed:
The operation result (5) is stored in the output (Y) data memory.

Fig. 2.6 Flow of Input/Output Data in the Refresh Mode

POINT|

To access a part of input/output module memory area as in the direct
mode, use the SEG (partial refresh) instruction. Refer to the ACPU

Programming Manual (Common Instructions) (IB-66250) for details.

2. PROGRAMMING LANGUAGES AND OPERATIONS

AnS
. A3H AnU A2C
o [¢] o] o] X X X X o] X o]
Remark

2.4 Response Lag
This section describes the lag between a change in the input module and
its resultant change in the output module in the cases of direct mode and
refresh mode.

2.4.1 In the direct mode

An output module change lags max. 1 scan behind the corresponding input
module change as shown in Fig. 2.7.

Ladder example I

o }_)i??s ¢ YosE >_{ S‘;,Jitt%%te\é%iis switched on by input X5
Earliest YSE is switched on
LD X5
. ¢——OUT Y5SE
i I ON i
xs —OFF | ON
OFF

Y5E

Input X5 is switched on immediately before the operation of step 55 is executed. Y5E is
switched on during the scan in which X5 has been switched on. The delay time is therefore
minimal.

| Latest Y5E is switched on I

LD X5
OUT YSE

END o©
N

—+o
O.__..

x5 —OFF | ON

OFF

YSE

Delay time
(Max. 1 scan)

Input X5 is switched on after the operation of step 55 is executed. Y5E is switched on during
the next scan. The delay time is therefore 1 scan max.

Fig. 2.7 Output Y Change to Corresponding Input X Change

2. PROGRAMMING LANGUAGES AND OPERATIONS

AnS
. A3H AnU A2C
o] X o] o] o] 0 o] o] o] o} (]
Remark

2.4.2 Inthe refresh mode

An output module change lags max. 2 scans behind the corresponding
input module change as shown in Fig. 2.8.

Ladder example

55 LSRR (VosE Output Y5E is switched on by input X5
’ N switched on.
Earliest YSE is switched on ’ Input refresh Input refresh Output refresh

0 END y0 56 ENDy 0
-t
ON!

H

|

P

External contact OFF } :
l

|

|

'ON
X5 OFF
ON
1
YSE OFF i
10N
External load OFF
| Delay time _|
(Min. 1 scan)

The external contacts close immediately before the input refresh is made. X5 is switched on
when the input refresh is mode. Y5E is switched on when the operation of step 56 is executed.
The external load is switched on when the output refresh is mode after the [END] instruction is
executed. The delay time (external contact change to external load change) is therefore 1 scan.

l Latest YSE is switched on l Input refresh Input refresh Output refresh
0 END 0 56 END 0
ON ! i .
. L !
1
External contact OFF| :ON : :
| |
X5 OFF | I
|ON !
{ON
I
Y5E OFF i
10N
External load OFF
| Delay time |

g

(Max. 2 scans)

The external contacts close immediately after the input refresh is made. X5 is switched on
when the next input refresh is mode. Y5E is switched on when the operation of step 56 is
executed. The external load is switched on when the output refresh Is mode after the [END]
instruction is executed. The delay time (external contact change to external load change) is
therefore 2 scans.

Fig. 2.8 Output Y Change to Corresponding Input X Change

2. PROGRAMMING LANGUAGES AND OPERATIONS

AnS
. A3H AnU A2C
o] X o o] X X X X [¢] X 0
Remark

2.4.3 Response when direct and refresh modes are switched

Some types of PC CPUs can handle input data in direct mode and output
data in refresh mode, or vice versa.

This section describes the flow of ON/OFF data from the input module to
the output module when the 1/O control mode is switched from direct mode
to refresh mode, or vice versa.

Figures 2.9 to 2.12 show ON/OFF timing of inputs and outputs when the
program shown below is executed.

External contact - ——nu—— 22— ———— - External load

—o_l—o-—i |——)|(l0—————<Y1O>—| i—(L)—

.1
1
of
{

I
1

I

|

|

|

|

|

|

|

|

X N I
Y10
frio) {mieal aimical s
Sltep 0 I END Step 0 I END' Step 0 I l
T T T
: I !
1 | |
| | |
1 | T
i i :
i |
1
|
I
I

External contact

|
|

X0

Y10

External load 4| l

(1) : Since X0 is turned from OFF to ON, Y10 is turned ON.
2) : Since X0 remains ON, Y10 remains ON.

fsg : Since X0 is turned OFF, Y10 is turned OFF.

(4) : Since X0 remains OFF, Y10 remains OFF.

Fig. 2.9 When Both Input and Output are in Direct Mode

2. PROGRAMMING LANGUAGES AND OPERATIONS

MELSEC-A
Peoal] Qs (]] o
S{tep 0 1 ENI:—?tep o] 1 ENDﬁStep 0 1 ENEI_'_!Step 0 l ENDm
L (1) i () E (3) 5 (4) 1(5) i (6) i 7) 5 (8)
|
External contact l : ‘ ; : I ; ;
T T T |
*S e N N | S S S —
S A AN S N
. f i i |
I I | I {

External load ' ' L L

21; : Since X0 is turned from OFF to ON, Y10 is turned ON.

2) : The Y10 ON data is output to external load in refresh mode.

(3) : Since X0 remains ON, Y10 remains ON.

4) : Since Y10 remains ON , external load remains ON.

5) : Since X0 is turned OFF, Y10 is turned OFF.

(6) : The Y10 OFF data is output to external load in refresh mode.

7) : Since X0 remains OFF, Y10 remains OFF.

8) : Since Y10 remains OFF, external load remains OFF.

Fig. 2.10 When Input is in Direct Mode and Output is in Refresh Mode

o P
Step 0 END Step oI END Step ol END Step oI END
- - -
(1 (2) 38 14 (5) (6) 1(7) (8) (9)

External contact ‘vJ

X0

Y10

External load

RN S N S N ——

: Since the external contact is OFF when X0 is input in refresh mode, X0 remains OFF.
: Since X0 remains OFF, Y10 remains OFF.

: Since the external contact is ON when X0 is input in refresh mode, X0 is turned ON.

: Since X0 is turned from OFF to ON, Y10 is turned ON.

: Since the external contact is OFF when X0 is input in refresh mode, X0 is turned OFF.
: Since X0 is turned OFF, Y10 is turned OFF.

: Since the external contact is ON when X0 is input in refresh mode, X0 is turned ON.

: Sine X0 is turned from OFF to ON, Y10 is turned ON.

: Sine the external contact is OFF when X0 is input in refresh mode, X0 is turned OFF.

Fig. 2.11 When Input is in Refresh Mode and Output is in Direct Mode

2. PROGRAMMING LANGUAGES AND OPERATIONS

MELSEC-A
N0 -1 Output °xo. 1 IFCYVINE TECYWINY
i_l‘"_(l”o _JI refresh U'“—(V‘O _,: U'"—(YW _i H‘”E(Y“’H_I:
Step 0 I END| Step oI END Step I END Step I END

- . - - -
(M 1@ @] NS 15 (6] 8 () [{10) i(11) (12)
I 1
1 !
[
i

|
1’

¥

(13)

} Input refresh
T

]
i l

|
1
| 1
I |
] 1
| |
Il 1
:] |
| |
|
H |
T
| |
|
|

X0

Y10

.

External load

(1) : Since the external contact is OFF when X0 is input in refresh mode, X0 remains OFF.
2) :Since X0 is OFF, Y10 remains OFF.

532 : The Y10 OFF data is output to external load in refresh mode.

(4) : Since the external contact is ON when X0 is input in refresh mode, X0 is turned ON.
(5) : Since X0 is turned OFF to ON, Y10 is turned ON.

6) : The Y10 ON data is output to external load in refresh mode.

27 : Since the external contact is OFF when X0 is input in refresh mode, X0 is turned OFF.
(8) :Since X0 is turned OFF, Y10 is turned OFF.

9) :The Y10 OFF data is output to external load in refresh mode.

10) : Since the external contact is ON when X0 is input in refresh mode, X0 is turned ON.
(11) : Since X0 is turned from OFF to ON, is turned ON.

12} : The Y10 ON data is output to external load in refresh mode.

13) : Since the external contact is OFF when X0 is input in refresh mode, X0 is turned OFF.

Fig. 2.12 When Both Input and Output are in Refresh Mode

2. PROGRAMMING LANGUAGES AND OPERATIONS

Applicable
PPy All Types of CPUs

Remark

2.5 Scan Time
(1) Scan time

Scan time refers to the period of time from the start of step 0 to the
completion of the END instruction of a sequence program.

Length of scan time differs between scans and is determined by the
number of instructions executed within one time of scan.

I Scan time |
I l

END 0 END 0
\ A. /

i_r Sequence program

» END processing

(Processings of timers and
counters, self-diagnoses

Fig. 2.13 Scan Time

(2) Storage of scan time data

(a) The PC stores scan times in special registers D9017 to 9019 in
units of 10 ms.

1) Data stored in D9017 to 9019

¢ DY9017........ Minimum value of scan time
« D9018........ Present value of scan time
¢ D9019........ Maximum value of Scan time

2) Scan time accuracy

Scan time accuracy is £ 10 ms.
Hence, when the value in D9018 is 5, the actual scan time is
between 40 and 60 ms.

3) D9017 to 9019 are not cleared and store the scan time if the WDT
instruction is executed.

(1) In ladder monitor mode of the peripheral device, data of D9019 is displayed.
(2) The AnA and AnU stores present data of scan time (1 ms unit) in D9021.

(3) Scan time measurement may include errors when an interrupt program is used.
Refer to Section 5.1.8 for details.

2. PROGRAMMING LANGUAGES AND OPERATIONS

Applicable

CPU All Types of CPUs

Remark

2.6 Numeric Data Usable for Sequence Programs

Alphanumeric data used by the PC CPUs is represented by 0 (OFF) and 1
(ON), in the most basic form as binary data.

Other types of data such as hexadecimal data which represents binary
data in units of 4 bits and BCD (binary-coded decimal) data are also
usable.

Table 2.1 shows the representation of numeric values by the BCD, binary,
hexadecimal, and decimal notations.

Table 2.1 Binary, Hexadecimal, BCD, and Decimal Notations

BCD
DEC HEX BIN :
(Decimal) (Hexadecimal) (Binary) (BI[r;:Di’l-::I()’ed
0 0 0 °
1 1 1 !
2 2 10 10
H 9 1001 :1001
10 A {1010 110000
11 B 11011 1:0001
12 c {1100 1:0010
13 D 11101 1:0011
14 E 11110 1:0100
15 F (1111 1:0101
16 10 1:0000 1:0110
17 1 1:0001 1:0111
i S5F 101111 100:0111

N 4 A

2. PROGRAMMING LANGUAGES AND OPERATIONS

(1) Input of numeric data from an external device to the PC CPU

To input numeric values using a digital switch or other external device
to the PC CPU, use BCD (binary-coded decimal) data which allows data
to be set in the form of decimal data.

Although the BCD data is binary-coded, it needs to be converted to
binary data so that the PC CPU may execute correct operation.

A BIN instruction is provided to convert the BCD input data into binary
data used for the operations by the PC CPU. It is recommended to write
a program which converts numeric data to binary data. By using this
conversion program, numeric data can be input from an external device
without considering the BIN data.

PC CPU
[Data inpuft]
Digital switch l"—H‘—[BINP K#XO Do
e [l
m BCD data input S
XF to X0 N
——{BCD D5 K4Y30 BIN data

Fig. 2.14 Data Input to the PC CPU

(2) Output of numeric data from the PC CPU to an external device

To read operation results of the PC CPU with an external device, use a
digital display.

The binary data used for operation by the PC CPU cannot be read
correctly if it is output to a digital display directly.

A BCD instruction is provided to convert the binary data into the BCD
data. It is recommended to write a program which converts numeric data
to BCD data. By using this program, a display in decimal notation is
possible.

PC CPU

[Digital display]

F——-{BINP KaXo Do qultal dlsplay

g ST

Y3F to Y30
—/BCD D5 K4Y30 |gcp data outputT

— BIN data

Fig. 2.15 Data Output from the PC CPU

N __ 1R

2. F’F1()(5fal\hnﬂn|f4(5 LANGUAGES AND OPERATIONS

Applicable

CPU All Types of CPUs

Remark

2.6.1 Binary notation
(1) Binary

Binary data is represented by 0 (OFF) and 1 (ON).

Decimal notation uses the numerals 0 through 9. When counting beyond
9, a 1is placed in the 10s column and a 0 is placed in the 1s column to
make the number 10.

In binary notation, the numerals 0 and 1 are used. A carry occurs after
1 and the number becomes 10 (decimal 2).

Table 2.2 gives a comparison between binary and decimal notations.

Table 2.2 Comparison between Binary
and Decimal Notations

Decimal Binary

0000
0001

c
0010 ary
0011

0101
0110
0111

- Carr
1000 :‘ Y
1001

1010
1011

= O O N H BN = O

—_

(2) Representation of binary values

(a) The PC CPU uses 16-bit registers (data registers, link
registers, etc.)
Each bit of a register is allocated with a 2" value.
The most significant bit is used for the positive/negative
judgment.
« [f the most significant bit is 0: Positive
» If the most significant bit is 1: Negative
Fig. 2.16 gives numeric expression used for the registers of
the PC CPU.

Most significant bit (for positive/negative judgment)

Name of . 4514 b13b12b11 b10 b9 b8 b7 b6 b5 bs b3 b2 bl bo

each bit
LI LI P T T T T T T I T 1T
215 p14 518 512 511 510 59 28 o7 98 55 5t 58 52 51 S0

Decimal i} 1 n U i] 1] i]] n i Il [} 1 il
numbers —32768 16384 8192 4096 2048 1024 512 256 128 64 32 16 8 4 2 1

If the most significant bit is 1, data of the register is ‘negative.

Fig. 2.16 Numeric Expression for Each Register of the PC CPU.

2. PROGRAMMING LANGUAGES AND OPERATIONS

(b} Data usable with the PC CPU

According to the numeric expression shown in Fig. 2.16, numeric
values from —32768 to 32767 can be expressed.

Therefore, values from —32768 to 32767 can be stored in the
registers of the PC CPU.

2. PROGRAMMING LANGUAGES AND OPERATIONS

Applicabl
PIE;:S e All Types of CPUs

Remark

2.6.2 Hexadecimal
(1) Hexadecimal notation

In hexadecimal notation, 4 binary bits are expressed in 1 digit.

If 4 binary bits are used in binary notation, 16 different values from 0 to
15 can be represented.

Since hexadecimal notation represents 0 to 15 in 1 digit, letters Ato F
are used to represent the numbers 10 to 15.

Then, a carry occurs after F.

Table 2.3 shows numeric representation by binary, hexadecimal, and
decimal notations.

Table 2.3 Numeric Representation by Binary, Hexadecimal
and Decimal Notations

Decimal Hexadecimal Binary

0 0 :0
1 1 O
2 10 10
3 11 P
9 9 11001
10 A 11010
1 B 11011
12 c 11100
13 D 11101
14 E :1110
15 F F1111
16 10 1: 0000
17 11 1: 0001
47 2F 10: 1111

(2) Expression of hexadecimal values

The PC CPU uses 16-bit registers (data registers, link registers, etc.)
Data which can be stored in each register is within 0 to FFFFH range in
hexadecimal notation.

2. PROGRAMMING LANGUAGES AND OPERATIONS

Applicabl
P'::‘;fj e All Types of CPUs

Remark

2.6.3 BCD (Binary-coded decimal)
(1) BCD notation

BCD notation represents each decimal digit with 4 binary digits.
Though it uses 4-bit representation like hexadecimal notation, it does

not use letters A to F.
Table 2.4 gives numeric representation by binary, BCD, and decimal

notations.

Table 2.4 Numeric Representation by Binary,
BCD, and Decimal Notations

BCD
Decimal Binary (Binary-coded
Decimal)
0 0 iooo0
1 1 1
2 10 10
3 11 11
4 100 100
5 101 101
6 110 : 110
7 111 CoE 11
8 1000 :1000
9 1001 $1001
10 1010 1:0000
11 1011 1: 0001
12 1100 1:0010

(2) Expression of BCD values

The PC CPU uses 16-bit registers (data registers, link registers, etc.)
Data which can be stored in each register is within 0 to 9999 range in

BCD notation.

3. DEVICES

3. DEVICES

3.1 List of Devices

Table 3.1 shows the devices and their range of use which are usable with
the PC CPU.

The usable range for devices marked by an asterisk (*) in Table 3.1 can be
set or changed by setting parameters with a peripheral device.

For the parameter set range refer to Section 8 "PARAMETER SETTING".

Table 3.1 List of Devices

A1SH A2C
Device Als, AisJ-s3 Al SJH(éB) Ai1s-81, A28 A2SH A28-81 A2SH-81 AQJ2H A52G A1FX
/O device 256 poi L ey . .
points ' points 2048 points 512 points 2048 points 1024 points 2048 points 336 points 512 points 512 points
X |Input 2 X, Y0 to FF X, YO to {FF X, YO to 3FF X, YOto 1FF *4| X, YOto 1FF | X, YOioF1
N {Total X and {Total X and (Total X and {Total X and (Total X and (Total X and
Y [Output 2 Y points: 256) Y points: 512) Y points:1024) Y points: 336) | Y points: 512) | Y points: 224)
Special relay M8000 to M9255 (256 points)
Internal i
M [relay MO to 999 (1000 points) Setting can be changed using parameters
* - {Total M, L, S: 2048 points)
Latch relay L1000 to 2047 (1048 points) A1FX cannot use step relays.
Step relay 0 point
B [Link relay BO to 3FF (1024 points)
100 ms timer TO to 199 (200 points)
10 ms timer T200 to 255 (256 points) Setting can be changed using parameters
171100 ms ({Total of timers: 256 points)
retentive 0 point
timer
1ms timer —
Counter CO to 255 (256 points) Setting can be changed using parameters
(Total of counters and interrupt counters:
+|c . 2586 points)
Interrupt, 0 point A2C and A52G cannot use interrupt counters.
counter
For interrupt programs (A2C and A52G cannot use interrupt counters.)
Data register DO to 1023 (1024 points)
D N
Special -
register D9000 to DY255 (256 points)
W |Link register WO to 3FF (1024 points)
. . 0 point
* | |File register (Parameter setting: 1 to 4 k points)
A |Accumulator AD, A1 (2 points)
[Z |index Z (1 point)
v register V (1 point)
N |Nesting NO to 7 (8 levels)
P |Pointer PO to 255 (256 points}
10 to |15,
Interrupt . 112, 113,
| pointer 10 to 131 (32 points) — 129 to 134,
(11 points)
K Decimal K-32768 to 32767 (16-bit instruction)
constant K-2147483648 to 2147483647 (32-bit instruction)
Hexadecimal HO to FFFF (16-bit instruction)
constant HO to FFFFFFFF (32-bit instruction)

*1 : Indicates the number of points that can be specified by input/output (X, Y).
Numbers which follow those allocated to /O modules and special function modules may
be allocated to remote I/0 stations and MELSECNET/MINI-S3 in the data link system.

*2 : Indicates the I/0 numbers and the number of I/O points that can actually control the |/O
modules and special function modules.

*3 : Interrupt counters for an interrupt program should be set in unit of 8 points in the range
from CO to C255.
(Counters and interrupt counters for an interrupt program are numbered consecutively.)
Interrupt counters for counting the number of interrupts are fixed to C224 to C255.

*4 ; Can be expanded to 480 points if an extension base unitis used.

3. DEVICES

Table 3.1 List of Devices

Device A2AS A2AS(S1/S30), A2USH-S1 Q%ﬁf"’
I/0 device points ™’ 8192 points 8192 points
2
X | Input X, Y0 to 1FF X, YO to 3FF ’((Tmlt‘)’(e
2 (Total X and (Total X and Y points:
Y |[Output Y points: 512) Y points: 1024) P .
4096)
Special relay M9000 to M9255 (256 points)
MO to 999 (1000 points)
Internal reta ;
LM Y M2048 t0 8191 (6144 points) Setting can be changed using parameters
Latch relay L1000 to 2047 (1048 points) (Total M, L, S: 8192 points)
Step relay 0 point '
B [Link relay BO to 1FFF (8192 points)
100 ms timer TO to 199 (200 points), T256 to 2047 (1848 points)™* . .
- - Setting can be changed using parameters
10 ms timer T200 to 255 (256 points) (Total of timers: 2048 points)
« | T | 100 ms retentive timer 0 point
0 point
i Usable with
1ms timer - the ZHTIME
instruction
Counter CO to 255 (256 points), C256 to 1023 (768 points)® Setting can be changed using parameters
N - (Total of counters and interrupt counters: 1024
c a 0 point points)

Interrupt counter *

For counting the number of interrupts

D Data register Do to 8191 (8192 points)
Special register D9000 to D9255 (256 points)
W | Link register WO to 1FFF (8192 points)
. . : 0 point

R | File register (Parameter setting: 1 to 8 k points)
A | Accumulator A0, A1 (2 points)
V4 Z, i

——1! Index register Z1 10 26 (7 point)
A V, V1 to V6 (7 point)
N | Nesting NO to 7 (8 levels)
P | Pointer PO to 255 (256 points)
| | Interrupt pointer 10 to 131 (32 points)
K

K-32768 to 32767 (16-bit instruction)
K-2147483648 to 2147483647 (32-bit instruction)
HO to FFFF (16-bit instruction)

HO to FFFFFFFF (32-bit instruction)

Decimal constant

H | Hexadecimal constant

*1 : Indicates the number of points that can be specified by input/output (X, Y).
Numbers which follow those allocated to I1/0 modules and special function modules may
be allocated to remote 1/O stations and MELSECNET/MINI-S3 in the data link system.

*2 : Indicates the I/O numbers and the number of I/O points that can actually control the I/O
modules and special function modules.

*3 . Interrupt counters for an interrupt program should be set in unit of 8 points in the range
from CO to C255.
(Counters and interrupt counters for an interrupt program are numbered consecutively.)
Interrupt counters for counting the interrupt occurrences are fixed to C224 to C255.

*4 : Timers T256 to T2047 are called extended timers.
To use extended timers, the number of points and the type of timers (100 ms timer, 10 ms
timer, 100 ms retentive timer) to be used must be set for parameters and the setting of a
setting value register is also necessary.

*5 : Counters C256 to C1023 are called extended counters.
To use extended counters, the number of points of counters must be set for parameters
and the setting of a setting value register is also necessary.

3. DEVICES

Table 3.1 List of Devices

- A1 A2 A2-S1 A3, A3N A3H
Device A1N A2N A2N-S1 A3V, A73 A3M
1/O device points ‘! 256 points 512 points 1024 points 2048 points 2048 points
Input 2 X, YO to FF X, Y0 to 1FF X, YO to 3FF X, YO to 7FF X, YO to 7FF
2 (Total X and (Total X and (Total X and (Total X and (Total X and
Output Y points: 256) Y points: 512) Y points: 1024) Y points: 2048) Y points: 2048)
Special relay M9000 to M9255 (256 points)
M Internal relay MO to 999 (1000 points) Setting can be changed using
* Latch relay L1000 to 2047 (1048 points) parameters
- (Total M, L, S: 2048 points)
Step relay 0 point
B | Link relay BO to 3FF (1024 points)
100 ms timer TO to 199 (200 points) Setting can be changed using
« | 1 {10 ms timer T200 to 255 (256 points) parameters
- (Total of timers: 256 points)
100 ms retentive timer 0 point
1ms timer —
Counter CO to 255 (256 points) Setting can be changed using
parameters
0 point (Total of counters and interrupt
« | e . counters: 256 points)
Interrupt counter 3 -
For counting the
For interrupt programs number of
interrupts
b Data register DO to 1023 (1024 points)
Special register D9000 to D9255 (256 points)
W | Link register WO to 3FF (1024 points)

.) . 0 point 0 point)
R |File register (Parameter setting: 1 to 4 k points) (Parameter setting: 1 to 8 k poinis)
A | Accumulator A0, A1 (2 points)

z oint
———-Z Index register {1 point)
) V {1 point)
N | Nesting NO to 7 (8 levels)
P | Pointer PO to 255 (256 points)
| | Interrupt pointer 10 to 131 (32 points)
K | Decimal constant K-32768 to 32767 (16-bit instruction)
K-2147483648 to 2147483647 (32-bit instruction)
R HO to FFFF (16-bit instruction)
H | Hexadecimal constant
HO to FFFFFFFF (32-bit instruction)

*1 Indicates the number of points that can be specified by input/output (X, Y).
Numbers which follow those allocated to I/O modules and special function modules may
be allocated to remote /O stations and MELSECNET/MINI-S3 in the data link system.

*2 Indicates the 1/0 numbers and the number of [/O points that can actually control the 1/0
modules and special function modules.

*3 Interrupt counters for an interrupt program should be set in unit of 8 points in the range
from CO to C255.
(Counters and interrupt counters for an interrupt program are numbered consecutively.)
Interrupt counters for counting the interrupt occurrences are fixed to C224 to C255.

3. DEVICES

Table 3.1 List of Devices

Device A2A A2A-S1 A3A A2u | Aau-st | Asu AdU
1/O device points * 512 points 1024 points | 2048 points 8192 points
X | Input 2 X, YO to 1FF | X, YO to 3FF | X, YO to 7FF | X, YO to 1FF | X, YO to 3FF | X, YO to 7FF | X, YO to FFF
(Total X and | (Total X and | (Total X and | (Total X and | (Total X and | (Total X and | (Total X and
Y |Output 2 Y points: Y points: Y points: Y points: Y points: Y points: Y points:
512) 1024) 2048) 512) 1024) 2048) 4096)
Special relay M9000 to M9255 (256 points)
M Internal relay MO to 999 (1000 points), M2048 to 8191 (6144 points) Setti be ch d usi .
. etting can be changed using parameter
Latch relay L.1000 to 2047 (1048 points) g(TotaI M, L, Sg: 8192 pgoﬁﬂs) s
Step relay 0 point
B | Link relay B0 to FFF (4096 points) | BO to 1FFF (8192 points)
100 ms timer TO to 199 (200 points), T256 to 2047 (1848 points)*
- - Setling can be changed using parameters
« | 7 |10 ms timer T200 to 255 (256 points) (Total of timers: 2048 points)
100 ms retentive timer 0 point
1ms timer —_
Counter CO to 255 (256 points), C256 to 1023 (768 points)’® Setting can be changed using parameters
e (Total of counters and interrupt counters:
. 0 in .
Interrupt counter "3 point 1024 points)
For counting the number of interrupts
D Data register D0 to 6143 (6144 points) | Do to 8191 (8192 points)
Special register D9000 to D9255 (256 points)
W | Link register WO to FFF (4096 points) | WO to 1FFF (8192 points)
. . . 0 point
R [File register (Parameter setting: 1 to 8 k points)
A | Accumulator A0, A1 (2 points)
4 Index register Z, Z1 to Z6 (7 points)
Vv V, V1 to V6 (7 points)
N | Nesting NO to 7 (8 levels)
P | Pointer PO to 255 (256 points)
1 | Interrupt pointer 10 to 131 (32 points)
k | Decimal constant K-32768 to 32767 (16-bit instruction)
K-2147483648 to 2147483647 (32-bit instruction)
ot FF (16-bit instructi
H [Hexadecimal constant HO to FFFF it instruction)
HO to FFFFFFFF (32-bit instruction)

*1 Indicates the number of points that can be specified by input/output (X, Y).
Numbers which follow those allocated to I/O modules and special function modules may
be allocated to remote 1/O stations and MELSECNET/MINI-S3 in the data link system.

*2 Indicates the /O numbers and the number of I/O points that can actually control the 1/O
modules and special function modules.

*3 Interrupt counters for an interrupt program should be set in unit of 8 points in the range
from CO to C255.
(Counters and interrupt counters for an interrupt program are numbered consecutively.)
Interrupt counters for counting the interrupt occurrences are fixed to C224 to C255.

*4 Timers T256 to T2047 are called extended timers.
To use extended timers, the number of points and the type of timers (100 ms timer, 10 ms
timer, 100 ms retentive timer) to be used must be set for parameters and the setting of a
setting value register is also necessary.

*5 Counters C256 to C1023 are called extended counters.
To use extended counters, the number of points of counters must be set for parameters
and the setting of a setting value register is also necessary.

3. DEVICES | |

Applicable
A All Types of CPUs

Remark

3.2 lnput (X) and Output (Y).

The input and output devices are used for data transaction between the PC
CPU and external devices.

The input devices hold ON/OFF data sent from external devices to the
input module. Input data is used by the program as contact data (N/O and
N/C contacts) and as the source data for basic and application instructions.
The output devices are used to output operation results of the program
from the output module to external devices.

Signal light
U Pushbutton switch PC CPU N
@ /S| AN
U Select switch Digital display
Input (X
@ put (X) Sequence | CUtPUls (¥) (
E> program |:> ,
operation
u Digital switch Contactor

Fig. 3.1 Inputs (X) and Outputs (Y)

3. DEVICES

(1) Input X
(@) Inputs give commands and data from external devices (e.g. push

buttons, select switches, limit switches, digital switches) to the PC.

(b) Regarding that one point of input incorporates a virtual relay Xn in
the PC, the N/O contact and N/C contact of that Xn are used in
the program.

Virtual relay
PB1 ‘"*_'___‘__—'“—“‘___'___'""“__'__"“j

1 X0

O O \!(%(0\ J | / N\ ; PC
T\ I —) l‘/

== L X |

O O (x1) | {(—

! | |
2 i (e 7 VAR !
Co T X]

\ . /N . /
Input circuit (External devices) Program

Fig. 3.2 Inputs (X)

(c) There is no restriction on the number of N/O contacts and N/C
contacts of Xn used in the program.

r X000
1t {vo20)

The number of contacts X000 X001 X002
used is not limited. | | et (Yot

Y021
—

\ X000
¥ {vo23)

Fig. 3.3 Used in the Inputs (X)

3. DEVICES

(2) Outputy

(a) Outputs provide program control results to external devices (e.g.
solenoids, magnetic switches, signal lamps, digital indicators).

(b) Outputs can be fetched to the outside as an equivalent to one N/O
contact.

(c) There is no restriction on the number of N/O contacts and N/C
contacts of Yn used in the program.

PC The number of contacts is not limited.
—-— _._.__ A _ - - _ - _ - _ | Load
XOOO | /M;ﬂ\
I . {Yo20 > 1 NG
' Y020
| J ! |
I xoo1 Y020 X002
’ - X {yo21 M |
Y020 X003 '
l — i} (yo22 l
| - - — - - —_ - - _ i
\ y / N\ /
Program Output circuit (External devices)

Fig. 3.4 Outputs (Y)

(d) The Y range which corresponds to the range to where the input
modules are loaded and the range to where no module is loaded
can be used for the internal relay M.

The Y range used for the internal relay M cannot be latched.

3. DEVICES

Applicable
P'::PU All Types of CPUs

Remark

3.3 Internal Relays (M), Latch Relays (L), and Step Relays (S)

The internal relays, latch relays, and step relays are auxiliary relays used
in the PC CPU.

The number of contacts (N/O and N/C) used in the sequence program is
not limited.

The output (Y) devices are used to output operation results of the se-
quence program to external devices.

The number of contacts is not limited.
When X0 is turned from OFF to ON, MO (internal relay) is
X000 turned ON.
| [SET Mo H The M0 ON signal can be used only inside the PC CPU and
MO/ cannot be output to external devices.
K20
I {T0)
B // (1020 M The MO ON/OFF data is output to external devices through
N the output module.
X°l°1 NIIIO y The L1000 ON signal can be used only inside the PC CPU and
f 1l L1000}~ cannot be output to external devices.
X°:°2 TB [pLs s2005]] hen X1is ON, L1000 (iatch relay) is ON.
— When X2 is turned from OFF to ON, S2000 (step relay) is
turned ON for 1 scan.
The 82000 ON signal can be used only inside the PC CPU

and cannot be output to external devices.

Fig. 3.5 Internal Relays; Latch Relays, and Step Relays

The number of internal relays, latch relays, and step relays is changed or
set by parameters.

(1) Internal relays M, step relays S

Cannot be latched. Hence, all internal relays are switched off if the PC
is switched on, reset or latch-cleared.

(2) Latchrelay L

(a) Battery backed, i.e. operation results are retained if the PC is
switched on or reset.

(b) Setthe CPU to STOP, and latch-clear to switch off the latch
relays from the external device.

3. DEVICES

Applicable
plz:PU All Types of CPUs

Remark

3.4 Link Relays (B)

(1) Internal relay for use in a data link system.
When not using a data link, link relays can be used as internal relays.

(2) The ON/OFF data of the link relays used in a data link system can be
read by switching them on/off as coils in the host (master, local station)
and as contacts in other stations (master, local stations). Link relays thus
allow ON/OFF data to be transferred between the master and local
stations.

HBO
BO is read for
use using a

contact
command.

HBO
BO is turned
ON/OFF.

g

When BO is
turned ON.

|

BO is read for
use using a
contact
command.

Remote I/O station cannot
use a link relay.

Fig. 3.6 Link Relay in a Data Link System

(3) The link range (range of link relays for use as coils in each station) must
be set to the master station. Link relays outside the link range may be
used as internal relays.

BO

J Usable as internal relays in each station

Link range
for the first
station

to Link range — not usable as internal relays

Link range
for the "n“th
station

] Usable as internal relays in each station

Fig. 3.7 Assignment of Link Relays

3. DEVICES

MELSEC-A

(4) There is no restriction on the number of N/O contacts and N/C contacts
of link relay used in the program.

The number of contacts is not limited.

When X0 is turned from OFF to ON, BO
X000 - ¥ (link relay) is turned ON.
; 3 1LSET BO ¢ BO cannot be output to external
310%000 devices through the output module.
" L / ¢ In a data link the BO ON signal can be
r AT \Y020

used by other stations.
BOOO
I

{ Y021

L B0 ON/OFF data is output to external
devices through the output module

Fig. 3.8 Processing of Link Relays

For detail of the data link system, refer to the MELSECNET, MELSECNET/B Data Link Refer-
ence Manual (IB-66350).

3. DEVICES

s [V E L SEC-A

Applicable
PI::PU All Types of CPUs

Remark

3.5 Annunciators (F)

Annunciators are used with a fault detection program.
If an annunciator is set, a special relay is turned ON, and the
annunciator number is stored in a special register.

(a) Special relay : M9009.....If an annunciator is set, M9009 is
turned ON.

(b) Special registers : D9009..... Stores the annunciator number
which is set first.
: D9124..... Stores the number of annunciators
which are set.

to |[... Stores the annunciator numbers in
D9132) order of setting.
(D9125 and D9009 store the same
annunciator number.)

By using annunciators in a fault detection program, occurrence of fault and
fault data (annunciator numbers) can be checked by monitoring M9009 and
D9009.

Example

In the sequencedprogram shown below, when F5 is set, M9009
is turned ON and "5" is stored in D9009.

(Fault detection program)

X000
b————{ SET F5 X

M8009| OFF — ON | (Detection of setting of an annunciator)
Do00g 055 {Annunciator number which is set)
M2009 P K4
BCD D9009 voz2o H Do124 01 {The number of annunciators which
Dg125 05 are set)
Dg126 0 Annunciator numbers are stored
Output of a set [(max. 8) in the order of turning ON.

annunciator

Detection of a setting
of an annunciator

(1) How to set annunciators

(a) Annunciators can be set using the OUT (OUT F 1)
.instruction or the SET (SET Fi_}) instruction.

1) The OUT instruction sets/resets annunciators according
to ON/OFF of an input condition. The OUT instruction is
executed every scan. If annunciators are reset by the OUT
instruction, data of M9009, D9009, and D9124 to 9132 does
not change.

3. DEVICES

2) The SET instruction is executed at the leading edge (OFF to ON)
of an input condition and sets annunciators.
(If the input condition is turned OFF, annunciators are held in set
status.)
If a large number of annunciators are used, it is recommended to
use the SET instruction instead of the OUT instruction to make
the scan time short.

(b) When annunciators (Fi) are set:

1) Annunciator numbers (Fi_}) are stored in order of setting in
D9125 to 9132. When data of D9124 is 0, the first set annunciator
number is stored also in D9009. The number of set annunciators
stored in D9124 increases by one each time an annunciator is set.

SET SET SET
F50 F25 F99

P "N
D9009| o 50 | 50 | 50

D9124{ © 1 2 3

D9125| O | 50 [50 | 50

Do126| O 0 |25 | 25

Do127; 0 | 0 | O] 99

2) Indication of annunciators varies with type of the CPU module as
follows.

a) The CPU modules having an LED display on the front panel:
The F number stored in D90089 is indicated on the LED display.

b) The CPU modules having an "ERROR" LED on the front panel:
The "ERROR® LED flashes. (When it lights, it indicates an
operation error.)

¢) The AOJ2H CPU module: The "RUN" LED flashes or lights
according to the status of M9048, as follows.
When M9048 is ON: The "RUN" LED flashes.
When M9048 is OFF: The "RUN" LED remains lit.

POINTSl

(1) If an annunciator is set when any annunciator is already set, the
F number being indicated on the LED display does not change.
(2) If the number of set F numbers has become larger than 8, data of

D9124, and D9125 to 9132 does not change.
However, data of the set F numbers is stored in the PC.

3. DEVICES

(2) How to reset annunciators

(a) Annunciators can be reset by the RST (RST FL_}) instruction or
the LEDR instruction.

1) Use the RST (RST Fi_1) instruction to reset the set annunciator
numbers.

2) The LEDR instruction is used to reset the annunciator numbers
stored in D9009 and D9125.
Fig. 3.9 is the examples of programs used to reset annunciators
by the LEDR instruction.

To reset the annunciators stored in D9009 and D9125

1 SET Fo H
Annunciators are set.

—Ab—————f SET F255 |

Display reset command
—t { LEDR H The first annunciator is reset.

To reset all set annunciators

—t— [SET Fo H

[—— 1+ SET F255 H

Display reset command
—+——————————/o PLS Mo H]

MO M9009 Display reset command is set.
[SET M1 H

M1 M2
———F M2 >

] All set annunciators are reset.
| { LEDR H

M1 MS009
—

RST M1 H Display reset command is reset.

Fig. 3.9 Programs to Reset Annunciators

POINTSI

(1) If annunciators are set by an instruction other than the OUT or
SET instruction, they function as if they are internal relays.
(Note that M3009 is not set, and annunciator numbers are not stored
in DS00Y and D9124 t D9132.)

(2) Even when the annunciator is reset by an OUT instruction,
contents of M2009, D9009, and D9124 to D9132 do not change.
When the annunciator is set by an OUT instruction, reset the
annunciator as follows:
1) Reset the annunciator by an OUT instruction.

2) Execute RST instruction (RST F[]) /LEDR instructions.

3. DEVICES

|

(b) When annunciators are reset by the RST Fi . instruction:

Lo

1) The F numbers of reset annunciators are erased from D9125 to
9132. And then, data stored in the special registers and the F
numbers stored in the PC are shifted forward. If the annunciator
of which F number is stored in D9125 is reset, the data shifted
forward and newly stored to D9125 is stored also in D9009.

The number of set annunciators, stored in D9124, decreases one.

SET SET RST RST

SET SET SET RST RST
F50 F25 F99 F25 F50 F100 ¥ 126,'252/&2‘5
Iy "

D9009 50 |50 (25|99
D9009 | 0 |50 |50 |50 |50 |99 50

Do124| g8 | 8|1 8|8]8
Do12410 {1} 2|3 (2|1

D9125|50 |50 |50 |25 99
D9125 | 0 (50 |50 |50 (50 |99

D9126(25|25 |25(99 | 15

Do126| 0 |0 |25 |25 |99 | 0
o
D9127{ 0 |0 |0 |99 [0 [0 T A

Dg81321210[210|210{100{120

2) If the CPU module is provided with an LED dispiay, the F
number stored in D9125 is indicated on the display. The F number
newly stored in D9125 after reset is indicated on the LED display.

(Special registers)

D009 [50] D9009 [25]
Do124 | 3 | D9124 2 |
D9126 | 50| RST F50 Dg125|25]
D125 |25 D9126 | 9]
De127 9] De127 |0 |

M L L ' L L

(LED display)

3) If data in D9124 has become 0 by resetting the F numbers, the
"LED display" or the "ERROR" LED turns OFF.

POINTl

To reset annunciators, the LEDR instruction or, if the CPU module is
provided with an LED display, the "INDICATOR RESET" switch on
the front panel may be used.

_ 1A

3. DEVICES

Applicabl
p%::ﬁj e All Types of CPUs

Remark

3.6 Timers (T)

The PC CPU uses up count timers.

An up count timer starts timing of the present value when its coil is turned
ON. When the present value has become equal with its preset value (time
out), the contact of the timer is turned ON.

3.6.1 100 ms timers, 10 ms timers, and 100 ms retentive timers
(1) 100 ms and 10 ms timers

(a) Timing of the present value starts when the timer coil is turned
ON. When the timer coil is turned OFF, the present value be-
comes 0 and the contact is turned OFF.

Circuit example

K50
X5 / T2 coil is switched on when X5 is
} 8 T2 switched on, and the timer times 5 s.
(T2 is a 100 ms timer.)

Timing chart l

ON

o o]
8

ON

il

T2 coil OFF ————1 55

ON

T2 contacts OFF

Fig. 3.10 Timing Chart
(2) 100 ms retentive timer

(a) The 100 ms retentive timer measures the length of ON time of a
timer coil.
When a timer coil is turned ON, timing of the present value starts.
When the coil is turned OFF, the present value and the ON/OFF
status of the contact are retained.
When the coil is turned ON again, timing starts with the retained
present value.

3. DEVICES

MELSEC-A

(b) Use the RST T:_: instruction to clear the present value and to turn

Lo

OFF the contact.

Ladder example

X005 K200
{ (T248 The X5 ON status is measured for 20 s.
XO(I)G ,
I \PLS Mo When X6 is turned ON, the contact of
Mo T248 is turned OFF and the present
I (RST To4s value is cleared.
Timing chart ON ON
X5

Contact of T248

Present value

Contact of T248

X6

RST T248

OFF Z ON ZON
A
X0 to 130 ><151 to 200 >{€

|
|
When the coil is turned OFF, ION

OFF the present value is retained. * {
ON

Fig. 3.11 Timing Chart

3. DEVICES

Applicable

CPU All Types of CPUs

Remark

3.6.2 Processing and accuracy of timers
(1) Timer processing

A timer coil turned ON/OFF by execution of the OUT T:_: instruction.
The present value is updated and the contact is turned ON/OFF after
execution of the END instruction.

(a) When a timer coil is turned ON, the present value of the timer is
updated after execution of the END instruction.
When the timer has timed out, the contact of the timer is turned
ON.

1) When the timer coil is turned OFF, the 10 ms and 100 ms timers
‘ reset the present value to 0 and the contact is turned OFF after
execution of the END instruction.

2) The 100 ms timer retains the present value and the ON/OFF
status of the contact when the timer coil is turned OFF.

(b) When a timer is reset by execution of the RST Ti | instruction, the
present value is reset to 0 and the contact is turned OFF.

(c) If the OUT Ti_} instruction is skipped by use of the CJ instruction

after a timerLéZ)iI is turned ON, the timer coil status is held ON.
Then, the present value is updated without execution of the OUT
T} instruction and the contact is turned ON when the timer times

L-d

out.

3. DEVICES

MELSEC-A

I { 9
f ; —
X2C i
cJ P31 |-
X3 K60
I (-
I J99 p
.
1

! o]

5

Sequence J 0
program |

54

P31

| 56
To step O

Updating of present value of timer
ON/OFF of contact of timer

il

When the coil of T99 is on, even if OUT T99 is not
executed by turning on X2C, the present value of

T99 is updated, and when the timer times out, the
contact of T99 turns on.

When X2C turns on, jump is made to P31,

When X3 turns on, the coil of T99 turns on.

Fig. 3.12 Timer Processing

POINTI

not time out.

When the preset value is "0", it is regarded as infinite and the timer does

(2) Present value update timing and accuracy in direct mode

(a) Timer accuracy depends on the timer and scan time.

100 ms retentive

Timer Type Scan Time T Accuracy
10 ms T<10 ms +2 scan time to —10 ms
10 ms T>10ms +2 scah time to —1 scan time
100 ms, .
100 ms retentive T < 100 ms +2 scan time to —100 ms
100 ms, T>100 ms +2 scan to —1 scan time

n 49

3. DEVICES

(b) The following example indicates the present value update timing
and accuracy with a 10 ms timer used in the program of 10 ms or
more scan time.

Circuit example
‘ X0 K800 |
i /-|—203\ When the timer measures 6 s after X0 turns on, the
’ 1l \ I contact of T203 turns on.(T203 is a 10 ms timer.)
Measuring method of timer
For scan time of 25 ms
END OUT ouT ouT ouT
T|203 END T208 END T203 END END T203 END
2]5 ms 2I5 ms 2|5 ms \\ N 2|5 ms
ON)]
X0 OFF i | H // '
H ON
T203 caoil OFF
1 1] i I ON
T203 contact OFF 7
Counting of 10 ms timer f] ; } } } a\y } f
1]2 1] 2 3 1 2.0 12] 1 2 3\
X ‘s Ay o 43
Counting set at END , ! ! ! !
0+3=3 3+2=5| 597+2=599 599+3=602
Present value of T203
*. *1
2
+1 scan +1 scan
*2 6000 ms
0

—1 scan

[600 displayed when monitored by peripheral devices|[*—

Fig. 3.13 Timer Timing

T203 time-out period includes the following errors:
*1:
*2: Error depending on timing of timer input continuity and location

of the [OUT] T:_ instruction in program (x1 scan time)

+ 0.05
-0.025

3) Contact status is updated only after the [END] instruction is
processed regardless of the timer coil status during any scan.

10 ms timer error (+1 scan time)

+2 scan time

Accuracy is therefore 7 S0t

seconds in Fig. 3.13).

40

3. DEVICES

(3) Update timing and accuracy in refresh mode

(a) Timer accuracy depends on the timer and scan time.

Timer Type Scan Time T ' Accuracy
10 ms T<10 ms +2 scan time to -10 ms
10 ms T=10 ms +2 scan time to —1 scan time
100 ms, .
100 ms retentive T <100 ms +2 scan time to -100 ms
100 ms, .
100 ms retentive T 2 100 ms +2 scan to -1 scan .tlme

(b) The following example indicates the present value update timing
and accuracy by using a 10 ms timer in a program of 10 ms or
more scan time.

Ladder example

X0 K600 l
\ {203y When the timer has measured 6 s after X0 enables,
! N I T203 contact turns on. (T203 is 10 ms timer) -

Timer measuring method

Scan time : 25 ms

END OUT ouT ouT ouT
T.203 END T?03 END T203 END END T203 END
When the external input t t t }
is turned ON in the 25 ms 25 ms R 25 ms }\ 25 ms
range 7777777 27777774 ON I
OFF i
X0 / |
| ON
1
T2083 coil OFF J
] 1 1 ON
T203 contact OFF
Counting of 10 ms timer } t 1 + t] a\y } 1
1 2. | 1 2 3., 1 2~} 1 2. 1 2 3y
_ *p 13 Ay A2 \3
Counting set at END = ! -
0+3=3 3+2=5| 597+2=599 599+3=602
Present value of T203
*q X
+1 scan
0
- *2 6000 ms
+1 scan
0

{600 is displayed when monitored by peripheral deviceﬂ*—

Fig. 3.14 Timer Timing

T203 time-out period includes the following errors:
*1 : 10 ms timer error (+1 scan time)
*2 : Error depending on timing of timer input continuity and location
of the [OUT] T} instruction in program (+1 scan time)

" Accuracy is therefore +2 scan time (+0.05 s in Fig. 2.7)

(c) Contact status is updated only after the [END] instruction is proc-
essed, regardless of the timer coil status during any scan. '

-0

3. DEVICES

An$S
. A3H AnU A2C
X X X X X [s] [¢] [¢] X X X
Remark

3.6.3 Extension timers

The AnA, A2AS, or AnU is provided with 2048 timers from T0 to T2047.
Timers T256 to T2047 are allocated to extension timers.

Extension timers can be set as 100 ms, 10 ms, and 100 ms retentive
timers.

Setting values for the extension timers are set indirectly with data
registers, link registers, and file registers.

TO
to Timers — See Section 3.6.1
T255
T256
Extension
to timers
T2047

(1) Setting of extension timers
Use parameter setting to perform the following settings.

(a) Number of timers to be used
Set the number of timers to 257 or over.
Timers T256 and over are set for extension timers.
The default value is 256. Up to 2048 can be set.

(b) Purpose of extension timers
Set the extension timers for 100 ms, 10 ms, or 100 ms retentive
timers.

(c) Set value devices (data registers, link registers, file registers)
Set value devices are used to store set values for extension
timers.
The set value devices begin with a designated device number and
are used through to the last device that corresponds to the last
extension timer.

3. DEVICES

(2) Programming of extension timers
To use extension timers with a sequence program, use the
[OUT] T:i_: instruction. (It is not necessary to key in setting value and
devices for setting values.)
When an [OUT] T:i_} instruction is entered, the set value device number
which corresponds to the designated timer number is displayed on the
screen. -

—Example

To set the number of timers to be used at 512, all the extension timers to
the 100 ms timers, and the set value device to D200:

Set value of T256
Set value device for T256

[Sequence program]

X000 P K
—F————{ MOV 1000 D200 H ~——— Seat value device
/] Since they are set with parameters, it is not
X001 D200 necessary to input them during programming.
i —< 1256) Example) By inputting with the GPP function
N [o]] [T] [2] [5] [6] [GO], a device for setting
T256 T256 (D200) will be automatically displayed.
—it < Y020 }\

Extension timer

(3) Precautions

(a) To use extension timers, set the number of timers to 257 or over.
The timer numbers which are not set in parameters cannot be
written to the sequence program using contact commands or
[OUT] T i instructions.

The timer numbers which are not set in parameters can be
used as data registers.

(b) To change the number of timers by parameter setting, do not set a
number smaller than that designated by a contact command or an
[OUT] Ti } instruction.

If a timer number designated by an [OUT] T: : instruction
is larger than the last timer number designated by parameter
setting, measuring of the present value and turning ON/OFF of

contacts is disabled.

3. DEVICES

AnS
. A3H AnU
Ang::Sble AnN An A1FX | A3H A3V AnA | ARG [acPu-A| AodzH | A2G | A73
X X X X X X X (o} X X X
Remark

3.6.4 1mstimer

With QCPU-A, a 1ms timer can be used in addition to the conventional
high-speed timer (10ms) and low-speed timer (100ms).

(1) Usage
Adding "ZHTIME", a 1ms timer setting instruction, in a program enables
the use of a 1ms timer. (The ZHTIME instruction must be written in the
main program.)
The ZHTIME instruction is checked at startup and at switching from
STOP to RUN. When this instruction exists in the main program, the 1ms
timer can be used.
If the ZHTIME instruction does not exist in the main program, only the
100ms/10ms timer can be used, and the 1ms timer is disabled.
The number of occupied points is set as the total points of the 100ms
timer, 10ms timer, retentive timer, and 1ms timer.
The area for the 1ms timer is reserved following that of the retentive
timer.
Consequently, the constant specified with the ZHTIME instruction is
designated as the device number following that of the retentive timer
specified by parameters in the unit of 16 points.

(2) Use example of the ZHTIME instruction
The use example of the ZHTIME instruction is shown below.
Example) When the timer in 1ms is set at T208 and later:

M9O037
— | LEDB | zHTIME |—

|~ Designate the device
in the unit of 16 points.

L1
SUB Koos “—

LEDR

(3) Accuracy of 1ms timer
The following table shows the accuracy of 1ms timer.

Timer type Scan time Accuracy

T<1ms + 2 scan time to - 1 ms

ims
T21ms + 2 scan time to - 1 scan time

3. DEVICES

(4) Setting example
The following are the setting examples with and without the expansion

timer:

(a) Setting example when the expansion timer is not used
Number of occupied points: 256 (100ms timer: 120 points, 10ms
timer: 40 points, retentive timer: 48 points, 1ms timer: 48 points)

M9037

| LEDB | zHTIME |—
SUB | Koos
LEDR

parameter

According to the setting above, the devices designated for the
100ms timer are TO to T119, for the 10ms timer are T120 to T159,
for the retentive timer are T160 to T207, and for the 1ms timer are

T208 to T255.

7 DA

3. DEVICES

MELSEC-A

(b) Setting example when the expansion timer is used
Number of occupied points: 512 (100ms timer: 240 points, 10ms
timer: 80 points, retentive timer: 80 points, 1ms timer: 112 points)

M9037

— | LEDB | zHTIME —
SUB | ka0 |—
LEDR

According to the setting above, the devices designated for the
100ms timer are TO to T239, for the 10ms timer are T240 to T319,
for the retentive timer are T320 to T399, and for the 1ms timer are
T400 to T511.

POINTSI

Note the following points to use the ZHTIME instruction.

(1) The ZHTIME instruction must be written in the main program.

(2) The ZHTIME instruction must be designated in the unit of 16
points.

(3) The number of occupied points designated in the timer setting by
parameters should include those for the 1ms timer.

(4) When the range for the timer setting by parameters is between
T256 and 2047, the initial device number to be used should be set
at the item of the retentive timer berween T256 and 2047.
The 100ms timer should be used as the retentive timer.

3. DEVICES

Applicable
P'::PU All Types of CPUs

Remark

3.7 Counters (C)

The PC CPU uses up count counters.
A up count counter counts out when the count value becomes equal with
its preset value, and the contact of the counter is turned ON.

(1) Count processing

(a) A counter coil is turned ON by execution of the
[OUT] Ci] instruction. The present value is updated and the con-
tact is turned ON/OFF after execution of the [END] instruction.

(b) The counter counts the leading edges of pulses driving its coil and
counts once only when the coil is switched from off to on.

(2) Reset

(a) When the counter coil is switched on, the counter present value
and contact status are updated after the [END] (FEND) instruction
is executed.

(b) The count value is not cleared if the coil is switched off.
Use the [RST] Ci_] instruction to clear the count value and update
the contact status.

Ladder example
/" Input condition

X500 K10

I <Co CO counts the leading edges of input X5.
X006

F—— rRST Co CO is reset to 0 when input X6 is switched on.

Fig. 3.15 Count Ladder

3. DEVICES

AnS
Applicable | ARN An A1Fx | ASH Asv | anAa | AML lacPu-a| AoszH | A2G | A7s
CPU nSH
o] 0 (o] X X X X (o] X o}
Remark
3.7.1 Count processing in direct mode

When input (X) signals are processed in direct mode, counting is executed
at the leading edge of the input condition of the counter.

Ladder example

X005 K2
I < C3 >

|The contacts of C3 close after after the contacts
I X5 have closed twice.

o]

zZ
L— ™
A

Count of C3 OFF

Counting
Since X5 remains on, counting is not performed.
ouT ouT ouT ouT ouT
—
I] |] I 1 1
ON — : — — :
X5 orr— i 1 = -
| ON i I t . i 1 +
1 I
C3 coil oFF—1— 1 : i [N i
| i ! !
! | | !
? ! !
i | !
; | 1

Fig. 3.16 Counter Counting

For the maximum counting speed of the counter, refer to Section 3.7.3.

3. DEVICES

AnS
. A3H AnU A2C
AP':;I::?SbIe AAnnS"Il-I An A1FX A3M A3V AnA ASAs |QUPU-A| A0J2H AE2G A73
[X o o [e] 0 [o o o o
Remark

3.7.2 Count processing in refresh mode

When input (X) signals are processed in refresh mode, counting is exe-
cuted at the leading edge of the input condition which is received at re-

fresh.
Ladder example
X005 K2 ;
| g The contacts of C3 close after the contacts
< C3 >
! l X5 have closed twice.
Counting
Input (X) refresh Since X5 remains on, counting is not performed.
ouT ouT ouT ouT ouT
END G3 END C3 END C38 END g Eyp C3 END
—+=H e '.:'; E ﬁ% {l ':hll—
ON : : : I i : 1 1 | 1
1 | 1 | | 1 I 1 | 1
xs N L - =,L
ON ! ! | 1
X5 (image) OFF ON
C3 coil OFF—]\ I—
C3 present value 0 = 1 -2 —=
ON I-—
C3 contact OFF

Fig. 3.17 Counter Counting

For the maximum counting speed of the counter, refer to Section 3.7.3.

3. DEVICES

Applicable

ePU All Types of CPUs

Remark

3.7.3 Maximum counting speed

The maximum counting speed of counters is determined by the length of
scan time. Counting is possible only when the ON/OFF switching time of
the input condition is longer than scan time.

Maximum counting speed (Cmax.) = % X —,:S—(times/s)

[REMARK]

where, n = duty (%)
ts = interrupt signal interval (s)

Duty is the ratio of the input signal’s on time to off time as a percentage.

HT1 < T2 0=t x 100 [%]

HT1 5> T2 n =37llos X100 [%]

T1 T2 -

ON

Count input signal

OFF

3. DEVICES

AnS
. A3H AnU A2C
Aplg;fjble AAnnSq-I An A1FX A3M A3V AnA A2AS QCPU-A| A0J2H AB2G A73
X X X ©X X o o o X X X
Remark

3.7.4 Extension counters

The AnA, A2AS, and AnU, QCPU-A is provided with 1024 counters from
CO0 to C1023.

Counters C256 to C1023 are allocated to extension counters.

Extension counters execute the same processings as those mentioned in
Section 3.7.

Setting values for the extension counters are set indirectly with data regis-
ters, link registers, and file registers.

CcO
to Cou —_— i
coss ounters See Section 3.7.
C256
t Extension
° counters
c1023

(1) Setting of extension counters
Use parameter setting to perform the following settings.
(a) Number of counters to be used

1) Set the number of counters to 257 or over.
Counters C256 and over are set for extension counters.

2) The default value is 256. Up to 1024 can be set.
(b) Set value devices (data registers, link registers, file registers)

1) Set value devices are used to store set values for
extension counters.

2) The set value devices begin with a designated device number and
are used through to the last device which corresponds to the last
extension counter.

3. DEVICES

(2) Programming of extension counters
To use extension counters with a sequence program, use the
[OUT] C:_:instruction. (It is not necessary to key in setting values and
devices for setting values.)
When an [OUT] G{_] instruction is entered, the set value device number
which corresponds to the designated counter number is displayed on the
screen.

—Example

ToDsseE)(t)he number of counters to be used at 512, and the set value device
to :

[Sequence program]/
/— Set value device for C256
X000 P K

Set value of C256

—r Set value device
MOV 10 D500 Since they are set with parameters, it is not
X001 D500 necessary to input them during programming.
C256 Example) By inputting with the GPP/PHP
C256 function[-] [C] [2] [5] [6], a device for setting
Y020 C256 (D500) will be automatically displayed.

Extension counter

(8) Precautions

(a) To use extension counters, set the number of counters to 257 or
over.
The counter numbers which are not set in parameters cannot be
written to the sequence program using contact commands or
[OUT] Ci_] instructions.
The counter numbers which are not set in parameters can be used
as data registers.

(b) To change the number of counters by parameter setting, do not
set a number smaller than that designated by a contact command
or an [OUT] Ci_ instruction.

If a counter number designated by an [OUT] C{_} instruction is
larger than the last counter number designated by parameter set-
ting, measuring of the present value and turning ON/OFF of con-
tacts is disabled.

3. DEVICES

AnS
. A3H AnU A2C
Apl:;l::?sble AAn':'S"Il-I An A1FX A3M A3V AnA A2As [QCPU-A| A0J2H AB2G A73
o o) o X X X X X o X [e]
Remark

3.8 Interrupt Counters (C)

The PC CPU can use two kinds of interrupt counters; those used within
interrupt programs and those which count the number of interrupts.

3.8.1 Counters for interrupt programs

Counters used within interrupt programs are up count counters.
An up count counter counts out when the count value becomes equal with
its preset value, and then, the contact of the counter is turned ON.

(1) Count processing

(a) A counter coil for an interrupt program is turned ON by execution
of the [OUT] C:_} instruction in an interrupt Program. The present.
value is updated and the contact is turned ON/OFF after execu-
tion of the IRET instruction.

(b) Counting is executed only when the input status of the [QUT] Ci_}
instruction is turned from OFF to ON.
If the input status remains ON (or OFF), counting will not be exe-
cuted.

(2) Reset

(@) The counted value is not cleared when the coil is turned OFF. Use
the [RST] C{_: instruction to clear the counted value and to turn
OFF the contact.

3. DEVICES

MELSEC-A

(b) The present value and the contact of a counter is cleared when an
[RST] instruction is executed to reset the counter.

Ladder example
X000
10 }
X015 K2 ; .
Interrupt | G354 When off — on of X15 is counted twice, C254 turns on.
program (C254 is designated as an interrupt counter.)
| { IRET
Counting Interrupt program Since X15 remains on, counting is not performed.
ouT ouT J ouT ouT
END C254/ IRET €254 IRET END C254 |IRET C254 IRET
—
i 1o i IIRET 10 IRET {10 | _IRET 10 'IRET
ON! I : I | :
X15 OFF i i E : 1 :
H | ! |
I ON H I T
orr—— | —
C254 coil : I ! i
Count value of C254 0 1 : 2
|
Contact of C254 : ON
T

Fig. 3.18 Counting Method of Counter for Interruption

(3) Maximum counting speed
The maximum counting speed of the interrupt counter depends on the
interrupt signal interval. Counting is only possible if the input condition
is on for more than the interrupt signal interval.

Maximum counting speed (Cmax.) _

180 X _t1|_ (times/s)

where, n = duty (%)
ti = interrupt signal interval (s)

Duty is the ratio of the input signal’s on time to off time as a percentage.

IfT1 < T2

T1
n = TTsT2 x 100 (%]

=12
fT1 > T2 n = 20 x 100 [%]

Count input signal

T1 T2

ON

OFF

3. DEVICES

AnS
. A3H AnU A2C
API::I::?Sble A\nnsl‘f_l An A1FX A3M A3V AnA ASAS |QCPU-A[A0J2H AB2G A73
X X X) X o o o] X X X
Remark

3.8.2 Counters for counting the number of interrupts (Interrupt counters)

The interrupt counters are used to count the number of occurrences of
interrupt.

(1) Count processing

(a) Counters C224 to C255 are used for the interrupt counters.
When an interrupt occurs, the present value is updated and the
contact is turned ON/OFF.
The counter counts out when the number of interrupts becomes
equal with its preset value, and then, the contact of the counter is
turned ON.
Contacts of the interrupt counters can be used freely in a
sequence program.

(b) The table below shows correspondence of interrupt pointers to
interrupt counters.
When an interrupt occurs at an interrupt pointer number, its corre-
sponding counter executes counting.
Refer to Section 3.16 for details of interrupt pointers.

Interrupt | Interrupt | Interrupt | Interrupt | Interrupt | Interrupt | Interrupt | Interrupt
Pointer Counter | Pointer Counter | Pointer | Counter | Pointer Counter
o c224 18 C232 116 C240 124 C248
11 c225 19 c233 17 c241 125 C249
12 C226 110 C234 118 C242 126 250
13 c227 111 Cc235 19 Cc243 127 C251
14 c228 112 C236 120 C244 128 c252
15 c229 113 C237 121 C245 129 C253
16 c230 4 c238 122 C246 130 C254
17 c231 115 Cc239 123 C247 131 C255

(2) Setting of the interrupt counters
Perform the following settings to use counters G224 to C255 as interrupt
counters.

1) Set interrupt pointers in units of point by parameter setting.

2) Insert the following program between the [FEND] instruction and
the [END] instruction.

Any set value——~ K100 Contacts of G224 close after
10 | <6224 interrupt factor 10 is received
$ 100 times.

Any contact

(N/O or N/C) Interrupt counter corresponding
to interrupt counter

3) Interrupt should be kept enabled by executing the [El]
instruction at the program head.

3. DEVICES

(3) Precautions

(a) Itis impossible to execute counting with an interrupt counter and
an interrupt program using one interrupt pointer.
An interrupt pointer set for an interrupt counter cannot be used to
execute an interrupt program.

(b) If an interrupt occurs when any of the following processings is be-
ing executed count processing waits until the execution is com-
pleted. Count processing starts when the execution of each
processing is completed.

If the same interrupt occurs again when any processing is being
executed, count processing is executed only once.

+ A sequence program instruction is being executed.

* The interrupt-disable section in the [END] processing is being
executed. (Timer/counter update, etc.)

* An interrupt program is being executed.

(c) The maximum counting speed can be calculated using the longest
processing time of the following:

« |nstruction with the longest processing time present in the
program

e END processing interrupt disable area max. 2 ms
e Interrupt program processing time

1

. i d= - PPS)
Max. counting spee {max. processing time of the above) + (500 us x number of interrupt counters) (

Example:

The [End] processing time is 2 ms (0.002 s). If the max. instruction process-
ing time is 0.3 ms a program is not written during run, there is no interrupt
program, and two interrupt counters are used.

Max. counting speed = 1 = 333 (PPS)
0.002 + 0.0005 x 2

Hence, the highest speed pulse train which may be reliably read by the
A3HCPU, with the above conditions is 333 pulses/s.

A e N

3 ms or more

3. DEVICES

(d) If a large number of interrupt counters are used, the processing
time of the sequence program becomes long, and a "WDT
ERROR" sometimes occurs.

Decrease the number of interrupt counters or slow down the input
pulse counting speed to avoid this error.

(e) The interrupt counters continue counting after count out.
Use an [RST] Ci_] instruction before the [FEND] instruction in the
sequence program to reset the counter.

(f) Counter value of the interrupt counters can be read by use of the
[MOV] instruction in the sequence program.

3. DEVICES

Applicable

cPU All Types of CPUs

Remark

3.9 Data Registers (D)

(1) Data registers are used to store numeric data (-32768 to 32767 or
0000H to FFFFH) within the programmable controller.
Each data register consists of 16 bits which is the unit of data read

and write.
b15 to b0
r——=
1 1
D | RS |
| 16 bits |
Data register No. I 1

Fig. 3.19 Structure of a Data Register

(2) Use two data registers to handle 32-bit data.
The data register number designated by the 32-bit instruction holds
the lower 16 bits and the designated data register number + 1 holds

the higher 16 bits.
32-bit instruction
Refer to the ACPU Programming
Manual (Common Instructions) (1B-66250).

X000 K
F——{DMOV 500000 DO 500000 is stored in DO and D1.

Designation of DO and D1
b1 Do

A %
Lower 16 bits

Higher 16 bits

Fig. 3.20 Programming of Data Registers when the 32-bit
Instruction is Used

(3) Data stored in a register by use of the program is retained till it is re-
placed by a new data.

(4) [f additional data registers are required, the registers mentioned be-
low can be used as data registers.
e Unused timers (T) and counters (C)
¢ File registers (R) within the range set by parameters.
» Link registers (W) not used for data link.
¢ Index registers
e Accumulators

I N7

3. DEVICES

Applicable
CPU

Remark

All Types of CPUs

3.10 Link Registers (W)

(1) Link registers are used to store data for data link.
Each link register consists of 16 bits which is the unit of data read and
write.

b15 to b0

r—==

W 1 |

L1

16 bits
Link register No. [1

Fig. 3.21 Structure of a Link Register

(2) Use two link registers to handle 32-bit data.
The link register number designated by the 32-bit instruction holds the
lower 16 bits and the designated link register number + 1 holds the

higher 16 bits.
32-bit instruction
Refer to the ACPU Programming
Manual (Common Instructions) (IB-66250).

X000 K
I—-[DMOV 500000 Woo00o 500000 is stored in WO and W1.

N\

Designation of WO and W1
W1 Wo

EA;I?
Lower 16 bits

Higher 16 bits

Fig.3.22 Programming of Link Registers when the 32-bit
Instruction is Used

3. DEVICES

MELSEC-A

(8) The data communication described below is possible by using link

registers for data link.

(a) Data written to a station (master or local) can be read and used
with other stations (local or master).
Using link registers, data communication is enabled from the master
station to all local stations, from a local station to the master station,
and between local stations.

H—L mov v;zo CTH

W20 is read and used.

H{ mov {iwao H
Master Data is written to W20
Station

HH{ mov wﬂzo iH

W20 is read and used.

Data of W20 is not used at
the remote /O station.

(4)

Fig. 3.23 Use of Link Registers with a Data Link System

To use link registers for data link, it is necessary to set a link range
(the range used for registers with each station) in the master station.
The link register numbers not set within a link range can be used as
data registers at each station.

Link register . . .
areas to to Link range: Can be used as data registers

0] Can be used as data registers at each station

Link range for
station 1

Link range for
station n

) Can be used as data registers at each station

Fig. 3.24 Allocation of Link Registers

(1) For the data link system and link range setting, refer to the MELSECNET (ll) Data Link

System Reference Manual (IB-66263) and MELSECNET, MELSECNET/B Data Link System
Reference Manual (IB-66350).

(2) To use link registers with remote 1/O stations, use the RFRP/RTOP instructions at the master

station.

3. DEVICES

AnS
. A3H AnU A2C
A1 A o o o 2} o o o o 0
Remark | *1: A1 and A1N are unusable.

3.11 File Registers (R)

3.11.1 File registers

(1) File registers are used in an extended area of data registers.
The user memory area and sequencer CPU in the memory cassette is
used for file registers.

Sequence
program
User memory
area
////////////////
/Flle registers 7
728 |

Fig. 3.25 File Register Area

(2) Each file register consists of 16 bits which is the unit of data read and
write.

b16 to b0

r——- ’
e 03 LLLLLIOLI I
L 16 bits N
™ ~1

File register No.

Fig. 3.26 Structure of a File Register

(8) Use two file registers to handle a 32-bit data.
The file register number designated by the 32-bit instruction holds the
lower 16 bits and the designated file register number + 1 holds the higher

16 bits.
32-bit instruction ‘
Refer to the ACPU Programming
Manual (Common Instructions) (IB-66250).

X000 K
I omov 500000 RO 500000 is stored in RO and R1.

Designation of RO and R1
R1__ RO

]
Lower 16 bits

Higher 16 bits

Fig. 3.27 Programming of File Registers when the 32-bit
Instruction is Used

3. DEVICES

(4) Clearing file register data

MELSEC-A

(a) Data stored in a file register is not cleared when the power supply
is turned ON, or when the RESET switch is moved to "RESET" or
“LATCH CLEAR".

(b) Use the FMOV(P) instruction and write "0" to clear a file register.

To clear file registers RO to R1023 (1K):

Ladder example |

X000 P K
H Fmov o

K
RO 1024

Fig. 3.28 A Ladder to Clear File Registers

(5) Note on setting the comment capacity

File registers are set in the area before the comments.

This means that if the comment capacity is changed, the location of the
file registers changes and the stored data values will be incorrect.
Before changing the comment capacity, write the file register data to a
peripheral device, then write this data back to the CPU after the comment
capacity has been changed.

File registers

Comments

File registers

Comments

3. DEVICES

AnS
. A3H AnU A2C
AP%I::?Sble AAnnSr‘#~I An A1FX A3M A3V AnA A2as |QCPU-A} Ao0J2H AB2G A73
X X X X X [¢] o o} X X X
Remark

3.11.2 Extension file registers

Extension file registers are for extended use of data registers and allo-
cated automatically to vacant (unused) areas in the memory cassette,

A total of 8192 points are set as 1 block. Up to 48 blocks can be used.
The number of blocks varies with type of memory cassette to be used and
capacity of vacant memory areas and the sequencer CPU.

POINT|

Extension file register can be used only when the memory capacity for
registers is set with parameters.

(1) Allocation of extension file registers

(a) Extension file registers are allocated automatically to vacant

areas in a memory cassette as shown below.
Vacant areas are divided into units of 16 k bytes, and each area is
attached with a block number.
If capacity of a vacant area is less than 16 k bytes, such area can-
not be used as an extension file register.

ABNMCA-O........ 16 k bytes
ABNMCA-2........ 16 K bytes
A3BNMCA-4...... 32 Kk bytes
A3NMCA-8........ 64 K bytes

A3BNMCA-1696 k bytes

ABNMCA-25 144 k bytes
ABNMCA-40 144 k bytes
A3BNMCA-56 144 k bytes

A3AMCA-96...... 144 k bytes

Parameter area

Main program area

Subprogram area
(with A3A A3U
and A4U only)

T/C set values and P.I
addresses for subprogram

Extension comment area

(Vacant)

Area for status latch
and sampling trace

File registers (R)
Area for comments

Area for comments

A3NMCA-1632 k bytes
ABNMCA-24 48 k bytes
ABNMCA-401786 k bytes
ABNMCA-56304 k bytes

A3AMCA-96...... 624 K bytes

(Vacant)

A4UMCA-128...880 k bytes

(with A4U only)

AN

4 k bytes

... Set with parameters

—>

(Less than 16 k bytes)

Block No. 8
Area for t
extension °
file registers | Block No. 2
Block No. 1

By parameter setting

By parameter setting

Used as block No.0

>

By parameter setting

Block No.i’
Area for
extension to
file registers | Block No. 11
Block No. 10

With an A2A(S1) and A2U: [} =28

With an A3A and A3U: {1 =48
With an A4U: {73 =64

5 k bytes (0 byte when a subprogram is not used)

16 k bytes

16 k bytes
16 k bytes

16 K bytes

18 k bytes
18 K bytes

3. DEVICES

(b) The block numbers usable for extension file registers among block
number 1 to 8 can be obtained as follows based on the capacity of
vacant areas.

Capacity of vacant areas (k bytes)/16 = N (Truncation)
Usable block numbers: 0 to N

(c) The block numbers usable for extension file registers among block
numbers 10 to 64 vary with type of memory cassette to be used.

A3SNMCA-16 10, 11

A3SNMCA-24 10to 12
A3NMCA-40 10 to 20
A3NMCA-56 10 to 28
A3AMCA-86................... 10 to 48
A4UMCA-128 10 to 64

POINTI

When a value outside the usable block number range is designated
when an ASNMCA-16, 24, 40, 56, ABAMCA-96, or AAUMCA-128 is
used, the following will occur:

A3NMCA-16 _— 12 and after
A3NMCA-24 13 to 28 29 and after
A3NMCA-40 21to 28 29 and after
A3NMCA-58 -_— 29 and after
A3AMCA-96 —_— 49 and after
A4UMCA-128 —_— 65 and after

(2) Use of extension file registers
When data read/write is executed with extension file registers, use them
as file registers (R).
Set the device numbers of extension file register with RO to R8191
similarly as file registers are set.
Designate block numbers of extension file registers and file registers to
be used.
To use the file registers set with parameters, designate block No. 0.
Block No. 0 is set when the PC CPU is powered on.

PC power ON [Mov[kzo0] Rt | « mov [k4oo] R2
[Mov k100] Ro | Block No. 2 | mov [kaoo] R1 | | Block No. 1 | mov [ksoo[Ro |
v
Sequence y y v Y \ Y
program ; : : . .
] | |
l 1
i i : i i
| | Block No. 0 ; i Block No. 2 ' Block No. 1
1 1 1
et Bt > RO 100 : ' RO ~--->Ro 500
I 1
—————— > R1 200 =-----T->R1 300 R1
R2 L->R2 400 R2
R3 R3 R3

3. DEVICES

MELSEC-A

POINT|

RO
to

R4095

Block No. 0

Capacity set
by parameters

—_—

RO
to
R4095

R4096
to
R8191

Block No. 1

Usable

Unusable

The device number usable for data read/write among the extension file
register block numbers 1 through 64 are within the range of the file
registers (block No. 0) set with parameters.

Example) If the file register area is set at 4 k with parameters:

RO
to
R4095

R4096
to
R8181

If index registers (Z, V) are used for index qualification of file register
(R) device numbers, read/write can be done with all device numbers
from O to 8191.

Block No. 28

Usable

Unusable

(3) Precautions on the use of extension file registers

(a) To use extension file registers, set the file register capacity with
parameters.
If the file register capacity is not set, extension file registers can-
not be used.

(b) If sampling trace or status latch is executed when extension file
registers are used, the file registers of which data is to be read are
selected as follows.

At sampling trace:

When a step number is designated: The file registers of the block
numbers designated when the END instruction is executed.
When sampling time is designated: File registers vary with timing

of sampling.
At status latch:

The file registers of the block numbers designated when the

STATUS LATCH instruction is executed.

*: To set block No. 2, use the "RSET" instruction.
For details on the RSET instruction, refer to the Programming Manual
(Dedicated Instructions) for the AnSHCPU/AnACPU/AnCCPU/QCPU-A
(A Mode).

3. DEVICES

Applicable
At All Types of CPUs

Remark

3.12 Accumulators (A)

(1) Accumulators are used to store the operation results of basic and
application instructions.
For the basic and application instructions of which operation
results are stored in accumulators, refer to the list of instructions in the
ACPU Programming Manual (Common Instructions) (IB-66250).

(2) Each accumulator consists of 16 bits which is the unit of data read and
write.

b15 to bo
afl sy LLLIPITTETTTTIT]
L 16 bits =ll

Accumulator No. '

Fig. 3.29 Structure of an Accumulator

(3) Two accumulators (A0, A1) are provided.
Use two accumulators to handle 32-bit data.
Accumulator AO, when used with a 32-bit instruction, holds the lower 16
bits and A1 holds the higher 16 bits.

32-bit instruction
Refer to the ACPU Programming
Manual (Common Instructions).
X000 :

K
H pmov 500000 A0 500000 is stored in AO and A1.

Designation of A0 and A1.
A1 A0

]
Lower 16 bits

Higher 16 bits

Fig. 3.30 Programming of Accumulators when the 32-bit
Instruction is Used

3. DEVICES

AnS
Applicable | AnN An AIFX | A3H A3V AnA | AL lacPu-A| AcszH | A2G | A7s
Py AnSH

o (o] o] (o] [+] X X X o] o] (o]
Remark

3.13 Index Registers

3.13.1 Index registers (Z, V)

(1) Index registers are used to designate indirectly the devices (X, Y, M, L,
S,B,F T, C,D, W, R, K, H, and P) which are used with basic and
application instructions.

This indirect designation of devices is disabled when those instructions
which use bit devices (X, Y, M, L, S, B, F, T, and C) in units of each
device for contacts, coils, etc. are used.

X000 K
159 I { MOV 3 Z
X000 K4 4
165 i} { MOV X000 D5 D5Z means D (5+Z)=D8.

Fig. 3.31 Example of Indirect Designation Using Index

Register
(2) Each index register consists of 16 bits which is the unit of data read and
write.
b15 to bo
anuitiiininninnnnne
. 16 bits .
Index register !

Fig. 3.32 Structure of an Index Register

(3) Two index registers (Z, V) are provided.
Index register Z, when used with a 32-bit instruction, holds the lower 16
bits and V holds the higher 16 bits.
A 32-bit instruction cannot be used to designate V.

32-bit instruction)
Refer to the ACPU Programming
X000 Manual (Common Instructions) (IB-66250).
K
[DMOV 500000 Z 500000 is stored in Z and V.

Designation of Zand V.
\ Z

K
Lower 16 bits

Higher 16 bits

Fig. 3.33 Programming of Index Registers when a 32-bit
Instruction is Used

3. DEVICES

POINT

The CPU modules other than the AnA, A2AS, and AnU, QCPU-A do
not save the index register data before the execution of an interrupt
program.

When index register data has been changed during an interrupt pro-
gram execution and when the index register data needs to be
changed back to the state before the interrupt program execution at
the completion of the interrupt program execution (IRET execution),
make a program as follows:

Device for saving the
index register data
Saving the index

register data
|1 | M9o36

- —Ab———DMOV Z DoH

M9036

dbo————————TDMOV DO ZH Restoring the index
register data
{ IRET H

3. DEVICES

AnS
. A3H AnU A2C
Apl:;lssble AAnnSr‘ll-I An A1TFX A3M A3V AnA A2As |QCPU-A| AoJ2H AE2G A73
X X X X X 0 o o] X X X
Remark

3.13.2 Index registers (Zn(Z, Z1 to Z6), Vn(V, V1 to Vé))

(1) index registers are used to designate indirectly the devices
(X, Y,M,L,S,B,F, T,C,D,W, R, K, H, and P) which are used with basic
and application instructions.
This indirect designation of devices is enabled also when those instruc-
tions which use bit devices (X, Y, M, L, S, B, F, T, and C) in units of each
device for contacts, coils, etc. are used.
However, when devices T and C are used with OUT T[] or OUT
Cl[], indirect designation by using index registers is impossible.

Possible
11
11

T X Indirect designation by
index registers is impossible.

Indirect designation by
index registers is impossible.

I_t—- Indirect designation by index registers is possible.

[Index qualification of word devices]

X010
——-g MOV 3 z H
X010 K
—,PHMOV 5 z H
/T D5Z means D(5+Z).
X012 K4 z When X10 is ON: D(5+3)=D8

—|———{Mov X000 D5 H When X10 is OFF: D(5+5)=D10

[Index qualification of contacts and coils]

X010
T MOV 3 z H
X010 K
T MOV 5 z H
- Y20Z means Y(20+Z).
X012 z /] When X10 is ON: Y(20+3)=Y23
- Y020 > When X10 is OFF: Y(20+5)=Y25

Fig. 3.34 Example of Indirect Setting with Index Registers

(2) Each index register consists of 16 bits which is the unit of
data read and write.

b15 to b0
zave LTI

o 16 bits

»
< >
index register

Fig. 3.35 Structure of an Index Register

3. DEVICES

(a) Two kinds of index registers Zn and Vn are provided. When a 32-
bit instruction is used, a Zn holds the lower 16 bits and a Vn holds
the higher 16 bits. -

The following pairs of index registers are used with a 32-bit
instruction.

1) Zand V
2) Z1 and V1

3) Z2and V2 | Since the Zn is regarded as the lower 16-bit

device, the Vn cannot be used with a 32-bit
4) Z3and V3 | instruction.

5) Z4 and V4
6) Z5 and V5
7) Z6 and V6
32-bit instruction
Refer to the ACPU Programming
Manual (Common Instructions)(1B66250).
X000 K

— pmov 100000 21 500000 is stored in Z1 and

Designation of Z1 and V1
V1 Y4

Lower 16

Higher 16

Fig. 3.36 Programming of Index Registers when a 32-bit
Instruction is Used

POINTI .

The AnA, A2AS, and AnU, QCPU-A modules save the index register
data before the execution of an interrupt program.

Saved index register data is restored after the interrupt program exe-
cution is completed (IRET execution).

When index register data has been changed during an interrupt pro-
gram execution, the index register data returns to that before the
interrupt program execution at the completion of the interrupt pro-
gram execution.

Main routine Interrupt
program program
OI Saving the index
Interruption occurs. - T ceeeees /ing
[register data
IRET
[T | SR Restoring the index
T register data

3. DEVICES

Applicable

CPU All Types of CPUs

Remark

3.14 Nesting (N)
(1) Nesting devices are used with the master control instructions.

(2) The master control instructions are used to open and close the bus so
that switching of ladders may be executed efficiently by the sequence
program.

Each master control sequence begins with an MC instruction and ends
with an MCR instruction.

(Refer to the ACPU Programming Manual (Common I[nstructions)
(IB-66250) for details.)

Start designation
/ with the lowest
number.

—_>
(!
z
9]
Z
(=]
=
LU‘L

NOZ——M15
y { / N\
5 : N/ Exeguled wher(t)N
condition A is .
11 I
|} [Mc Nt mis |—3
N1Z”"M16
4 | / N\
I N/ Executed when
c conditions A and

B are ON.

Start designation with

'S~ the highest number.
] Executed when

MC2 to 7 are reset.

' r and C are ON.
. L MCR N2

Executed when
conditions A and

B are ON.

MC1 to 7 are reset.

MCR N1

i

N2Z=—
Control Control Control] M17| /
range of NO range of N1 range of N2 I : \ 1 Ul

nesting nesting nesting : conditions A, B,
\
/
\
/

Executed when
condition A is ON.
MCO to 7 are reset.

MCR No]———

M

N
N

Executed without
regard to conditions
A,B,andC

Fig. 3.37 Nesting of Master Control

(3) When an MC instruction is OFF, the results of the operations from an
MC to an MCR are as follows.

100 ms and 10 ms timers Count value becomes 0. Coil and contact are turned OFF.
100 ms retentive timers and counters Coils are turned OFF. Count value and contacts retain present status.
Devices used with an OUT instruction All are turned OFF.

Devices used with SET, RST, SFT, basic,

and application instructions Present status is retained.

3. DEVICES

3.15 Pointers (P)

Applicable
PPy All Types of CPUs

Remark

(1) Pointers are used with the jump instructions (CJ, SCJ, JMP, CALL) in
two different ways as follows.
(a) Designation of the destination of jump (CJ, SCJ, JMP) and the
head of destination (label).
(b) Designation of the destination of subroutine call (CALL, CALLP)
and the head of the subroutine program (label).
(2) Alabel number cannot be used at more than one place. If used, an error
will occur.
(3) P255 always designates the END step.
(a) Use P255 with a CJ, SCJ, or JMP instruction to jump to the END
step.
(b) P255 cannot be used as a label.
(c) P255 cannot be used with the devices for the CALL(P) instruction.
[Use of a pointer with the jump instruction] Pointer (destination of
X000 / the CJ instruction)
33— | {cu P20]{ When X0 is turned ON,
ool | xoos ki AP
head of abe step .
&ei?ination) — | [RST Do H
\ X001 Z
P21 (Yoo)
X002
504— | [cd Poss T When X2 is turned ON, the
Z program jumps to the END.
[Use of a pointer with the subroutine call instruction] b (d)
ointer (destination o
Label ﬁqO] / subroutlne. program call)
(head 0 | {cALL P21 }When X0 is turned ON,
of the Z the subroutine program
subroutine | X005 - P21 is called.
program) — | LFEND
X001
el INc Do 1+
X002
506+ | [DEC D1 T} Subroutine program
510 {(RET 1
» \—End of subroutine program
Fig.3.38 Programming of Pointer with the Jump Instruction
(4) When a CHK instruction is used in the sequence program, P254 should

be used as the label of the CHK instruction.
If a CHK instruction is not used, P254 can be used equally to PO to P253.

3. DEVICES

AnS '
Applicable | AnN An ATFX | A3 Asv | Ana | QP acPu-af Aocszd | A2C | A7s
CPU n

[a] [»] o] o] (o] 0 o (o] (o] X o]
Remark

3.16 Interrupt Pointers (I)

(1) Interrupt pointers are used as the label at the head of each interrupt
program.
Each interrupt program begins with an interrupt pointer and ends with
the IRET instruction.

Label © —t {Y020)
s [xo01 [FENDH
1 {Y021)
: Interrupt program : 15
{IRET 1
116 |xo002
it (Y022)
= } Interrupt program : 16
IRET H

Fig. 3.39 Interrupt Pointer

(2) Table 3.2 shows interrupt pointers classified by purpose of use.

Table 3.2 Interrupt Pointers and Their Purpose of Use

Ig:’ei:;prt Interrupt Factor Igtoeill":’tueet Interrupt Factor
10 i 1st point 116 i 1st piece
11 i 2nd point 117 | 2nd piece
12 : 3rd point 118 . 1 3rd piece
13 i 4th point 119 §n?cgrrupt factor by the sequence | 4th piece
14 i 5th point 120 start generator module I| 5th piece
15 ; 6th point 121 | 6th pisce
16 Interrupt factor by the Al61 : 7th point |22 | 7th piece
7 ;noo:jL/l\l;SI61 process interrupt i 8th point 123 II—8th piece
18 i 9th point 24
19 i 10th point 125
110 ! 11th point 26 Unusable
111 | 12th point 127
112 | 13th point 128
113 i 14th point 129 Interrupt factor by 40 ms by an internal timer
114 : 15th point 130 Interrupt factor by 20 ms by an internal timer
115 i 16th point 131 interrupt factor by 10 ms by an internal timer

3. DEVICES

MELSEC-A

1) *1 : The sequence start generator module is a special function module which can send an
interrupt start signal to the PC CPU. (excluding the Al61, A1SI81)
Pointers are allocated to the sequence start generator modules beginning with the one
nearest to the PC CPU when the modules are installed to the base unit.
2) Priority of the interrupt factors is provided as follows.
116 to 123, 10 to 115, 31, 130, 129

i Low
High Priority

(83) When any of 129 to 31 are used with the program, interrupt programs are
executed at every preset interrupt time. Fig. 3.40 shows the example of
execution of interrupt programs when 129 to 31 are used.

» Execution of interrupt programs using 131

Sequence program

I 10 ms

131 131 END 0 131 131 131 END O
o e fan s

IRET IRET I IRET IRET IRET
END processing

Interrupt program by 131
(executed svery 10 ms)

+ Execution of interrupt programs using all of [29 to 131

40 ms R
20 ms N
10 ms
131 130 129 131 ENDO 131 130 131 131 130 129
—— — — 1 —
IRET IRET IRET IRET IRET IRET IRET IRET IRET IRET

END processing

H:; Interrupt program by 129

(executed every 40 ms)

Interrupt program by [30
(executed every 20 ms)

> Interrupt program by |31
(executed every 10 ms)

Fig. 3.40 Execution of Interrupt Programs Using 129 to 131

3. DEVICES

3.17 Special Relays and Special Registers

Special relays and special registers are the internal relays and data regis-
ters which are allocated to specific purposes in the PC CPU.
Special relays and special registers have the following purposes.

(1) PC CPU operation status check
The special relays and registers are used for the PC CPU operation
status check as follows.

(a) Operation status check (RUN/STOP/PAUSE/STEP RUN)

(b) Error check by self-diagnosis Section 6.13
(c) Momentary power failure check Table 3.1
(d) Battery voltage check
(e) Operationerrorcheck............................ Section 6.13
(f) Execution status of a fault detection

program using annunciators Section 3.5
(9) Scantimecheck Section 2.5

(2) Timing contact
Some of the special relays vary in function according to the purpose of
use in the sequence program.

(8) Normally ON/OFFflagsc.civiiiiain.. Table 3.1
By BUNflag e e Table 3.1
(c) Initial processing flag (ONforiscan)................. Table 3.1
(d) Clock by every designatedscan...................... Table 3.1
(e) Clock by every presenttime Table 3.1

(3) For commands to the PC CPU
The special relays and registers are used also to give commands to the
PC CPU by the sequence program or with peripheral devices.

(8) PAUSEenable.............ciiiiiiiiiiin ... Section 6.4
(b) Clockdataread/write Section 6.9
(c) Executionofconstantscan........................ Section 6.1
(d) Execution of /O module switching................. Section 6.10
(e) Execution of error check (fuse blow,

battery voltage, /O module verify) Section 6.13

1) Special relay and special register numbers are allocated as follows.

(a) Specialrelays M9000 to M2255
(b) Special registers......... D9000 to D9255

2) For details of the special relays and registers which can be used with the PC CPU, refer to
the ACPU Programming Manual (Common Instructions) (IB-66250).

3. DEVICES

Special relays and registers used for confirming the operating status and
timing contact of the PC CPU are as given in Table 3.1 below.

Table 3.1 Applications of Special Relays and Registers

Special | Special

Item Relay |Register

Applications and Contents

Initial processing flag Ms038 (1) M9038 relays turns ON for 1 scan when the PC CPU state switches
(1 scan ON) from STOP (PAUSE) to RUN.
0 END/0 END/0 END/0 END/0O
Sequence program | oo f } t }
| an

ON

M9038 T———-—| OFF

Switching from STOP to RUN

(2) By using M9038, a sequence program to be executed only once can
be created without using a PLS instruction when the CPU state
switches from STOP (PAUSE) to RUN.

M9038 e ————— T
I { Initial processing program

Clock at designated Me030 (1) M9030 to M9034 relays switch ON and OFF at designated intervals
interval to when the CPU is in the RUN state.

M9034 (They hold the ON or OFF state when the CPU is in the STOP state.)
e M9030 : 0.1 s clock

e M9031 : 0.2 s clock

*» M9032 : 1 s clock

* M9033 : 2 s clock

* M9034 : 1 min clock

(2) By using M9030 to M9034 relays, a program executed at designated
intervals can be created and the time measurement can be done
without using timers.

s Program executed at 1 s intervals

M9032 fm e ————— -
| | Program executed at |
’ |1sintervals |

ON
s e
J— |0.Ss 0.5sl
+« Measurement of 8 hours
M9034 K480
| (co)
co
{ {RST CO}——

CO present value 0o X 1 >< 2 >< 3

3. DEVICES

MELSEC-A

Table 3.1 Applications of Special Relays and Registers (continued)

[tem

Special
Relay

Special
Register

Applications and Contents

Clock by designated
scan

M8020
to
Mg024

(1) M9020 to M3024 relays switch ON and OFF by designated scans.
Scans are designated with a DUTY instruction.
[Sequence program]

|—|| [DUTY n1 n2 M9020]—|
M9020 to M9024

are designated.
OFF scan

ON scan
[Timing]

ON

OFF
I n2 scan I n1 scan

(2) Timing starts with the OFF state when the power is turned ON or
reset.
(3) By setting the n1 scan to 0, the clock can be terminated.

Detection of instanta-
neous power failure

M9005

D9005

(1) MS900S relay is used for detecting the occurrence of instantaneous
i in the CPU.
It remains ON when an instantaneous power failure is detected.
When M9005 is ON, the sequence program operation continues.
(2) When an instantaneous power failure is detected, D9005 (AC DOWN
detection) data increases by 1.

100 VAC

Instantaneous
power failure
voltage

OFF

M9005

M9005 0 1

Number of occurrences
of instaneous power failure

(3) This can be used for checking the stability of the power supply being
used.

Always OFF flag

Ms037

(1) M9037 relay is always OFF when the power is ON.
(2) This can be used to disable execution temporarily for debugging, stc.

Always ON flag

Mg036

(1) M9036 relay is always ON when the power is ON.
(2) This can be used to create a program which is executed only once
after the power is turned ON.

| M9036
| || [MOVP Kaxo DO}———{

3. DEVICES

MELSEC-A

Table 3.1 Applications of Special Relays and Registers (continued)

Special | Special -
Item Relay |Register Applications and Contents
Confirmation of oper- Ds015 | (1) D9015 is used to store the CPU operating state.
ating state
Bi5t0 B12 B11to B8 B7toB4 B310BO
| 0/1 | Oto2 I 0to2 I Oto3 |
ey e e ———————
A A
1) CPU key switch setting
2) Remote RUN/PAUSE contact
state by parameter setting
3) Remote RUN/STOP state by
the computer
— 4) STOP instruction
execution/non-execution state
Data Stored to 1) to 3) Data Stored to 4)
0: RUN 0: STOP instruction
1: STOP not executed
2: PAUSE 1: STOP instruction
3: STEP RUN executed
(2) This can be used to check the cause of stop when the PC CPU’s
RUN key switch is set in the RUN position and the CPU does not
enter the RUN state.
RUN flag M9039 (1) M9033 relay turns ON at the 2nd scan of the sequence program when

the RUN key switch is in the RUN position.

0 END/O
Sequence program | |

‘ gl
M9039
OFF

RUN

4. ALLOCATION OF /O NUMBERS

4,

41

ALLOCATION OF /0 NUMBERS

I/0 Numbers

This section gives the input and output number allocation procedures for
performing communications with the input/output modules and special func-
tion modules by using the building-block type CPU, A0J2H, A2CCPU, and
A1FXCPU.

The I/O number allocation for the A73 is the same as that for the building-
block type CPUs.

However, since the installation procedure for the main base unit is different
from that for the building-block type CPU, refer to the following manuals.

e A73 : A73CPU Reference Manual (IB-66233)

Since the I/0 number allocation for the A52G varies according to the opera-
tion mode (remote I/O mode, proximity I/O mode, composite mode), refer
to the following manual:

e A52GCPU (T21B) Reference Manual (IB-66420)

The input and output numbers are used with the sequence program for data
input from the input modules and for data output to the output modules.
The input and output numbers are expressed in three hexadecimal digits.
Fig. 4.1 shows the example of the /O numbers when all of the /0 modules
are of the 16-point type.

X [0] [o] [0]| X [o] [1] [0]{X [0] [2] [0]]Y [0] [3] [0]]Y [O] [4][0]

Power to to X2C to to
supply CPU
module module to

X [o][o] [F1|X fo1 [11 [F1{X [0] [2] [F]]Y [0] [3] [F1|Y [0] [4] [F]

input input input output output
16 points | 16 points | 16 points | 16 points | 16 points

Fig. 4.1 Example of the I/0 Numbers

When a peripheral device is used for programming, the I/O numbers can be input in
two digits.

1/0 number Input by a peripheral device
X010 - X10
Y020 - Y20

4. ALLOCATION OF I/O NUMBERS

AnS
. A3H AnU A2C
Aprg;;ﬁble A\nnsrf_l An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H AE2G A73
) [¢] X o o o] o] 0 X X X
Remark

4.2 |/O Number Allocation of the Building-block Type CPUs

This section gives the I/O number allocation procedure of the building-
block type CPUs.

4.2.1 Basics of the /O number allocation

The I/0O number allocation should be performed when the PC CPU is pow-
ered on or reset.

Designate the I/0 numbers, which are allocated as follows, with the
sequence program.

(1) The I/O numbers are allocated beginning with slot No. 0 of the main base
unit (right next to the CPU module) to the right.

Slot No. 0

0 1 2 3 4 5 6 7 <— Slot number

Power | CPU | Input | Input {Output
supply |module

Main base

/ Allocation begins

module > with slot No.

I] 16 16 16 0 and proceeds
points | points | points to the right.

X000 X010 Y020
to to to
XOOF XO1F YO020F

e

Inputs (X) and outputs (Y) are allocated in consecutive numbers.

4. ALLOCATION OF I/0 NUMBERS

(2) If extension base units are used, the allocation at the 1st extension base
unit begins with the number which immediately follows the last number
allocated to the main base unit.

Allocation of extension base units should not follow the order of connec-
tion of extension cables but follow the order of stage number setting of
extension base units.

Allocation when extension base units are used: Allocation when extension base stage number
setting is not consecutive:

Main base unit Main base unit
¢ 1 2 38 4 5 8 7 0 1 2 3 4 5 8 7
Extension cable —Eo 00| 10]20| 30|40 |50 |60 |70 Extension cable —g.,, 00110120 |30 (40|50 |60 |70
FE-] 2
23 tojto|to]to|to]to|to]to 23 to |to|tolto|[to]to]to]to
—H |E2 # |E2
2 OF [IF | 2F [3F | 4F | 5F | BF | 7F ’_— o OF [1F | 2F {3F | 4F | 5F | 6F | 7F
Qrder of /O 1 > 2) Order of /O 1) »2))
allocation Stage number setting aliocation Stage number setting
Es)f‘;egn:'fn Extension base unit Es);?gn:'fn Extension base unit

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

80| 90 |AO|BO|CO|DO|EO|FO 100|110(120|130{140}150|160|170
to]Jtojtojtojto|to]|to]|to

tojto|toltoftofjto|to]to -H
T 10F|11F[12F [13F|14F [15F|16F[17F
|

_-B? oF | oF | AF | BF | cF | DF | EF | FF
]

3) > 4) 3) > 4)

Extension
stage 2

Extension

stage 2 Extension base unit

Extension base unit

i6 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15

100(110]120{130|140|150{160]|170 80 (80 |AO | BO CO|DO |EO |FO
toJtojto|to|to|to|to]to

to [to ftofto]|to|to |[to |to
DD 10F|11F[12F|13F [14F|15F|16F|17F

8F | 9F | AF | BF | CF | DF | EF |FF

5) » 6} 5) > 6)

* The I/O numbers are allocated in the order of 1), 2), 3), 4), 5), and 6).
The /O number allocation examples use the 16-point modules.

(3) Each module occupies the number of I/O numbers which is equal to the -
number of the /O points of the module.
For example, when a 32-point input module is loaded to slot No. 0 of the
main base unit, 32 points of [/O numbers from X00 to X1F are occupied.

0 1 2 3 4

Power CPU Input Input | Output | Output
supply | module
module

points | points | points | points

X000 X020 Y030 Y050
to to to to
X01F X02F YO04F YO5F

Each slot occupies 32 points.

4. ALLOCATION OF I/O NUMBERS

(4) Each vacant slot to which no I/O module or special function module is
loaded should be allocated with 16 points.

Slots to which no 1/0 module or
"4 Y special function module is loaded.

0 1 2 3 4

Power | CPU Input Input | Vacant | Vacant | Output
supply | module

module
[| 16 32 16
points | points points
X000 X020 040 0so Y060
to to to 1o to

X01F XO03F 04F 05F YO6F

\ \ Each vacant slot should be allocated
with 16 points.

(5) Each of the main and extension base units should be regarded to have
8 slots to which I/O numbers are allocated.
For example, allocate the 1/0O numbers for 8 slots to a 5-slot main base
unit. The 1/0 number allocation of the next (extension) base unit should
begin with the number which immediately follows the last number allo-
cated to the main base unit.

0 1 2 3 4 5 6 7
I B E e |
Power | CPU Input Input Input | Output | Output ! ! !
supply | module \ I H
module : : :
n|] [I
—1l 16 16 16 16 16 ! I 1
points | points | points | points | points \ } :
X000 X010 X020 Y030 Y040 050 060 070
to to to to to to to to
X00F X01F X02F YO3F YO04F 05F 06F 07F
*—Allocation should be made for 8 slots.
Power | CPU | Ouiput | Output (/O numbers for slots 5, 6, and 7 are
supply | module occupied by the main base unit.)
module
H D 16 16
points | points
Y080 Y090
to to
YO8F YO9F

The first [/O number should immediately
follow the last number a

4. ALLOCATION OF /O NUMBERS

(6)

MELSEC-A

If setting of the extension stage numbers is not consecutive (stage
numbers are skipped), the I/0O numbers should be allocated considering
that the I/O numbers obtained as "the number of skipped stages x 8
(slots) x 16 (points)" are already occupied.

Main base unit
{ 0 1

Extension
stage 2

NOYO NN —

UNIT
00

O O
O O
o O
[ee]
(o) e]

NOOYOT A GIN —

2 3 4 5 6 7 <+——Slot number
- C 00 10 20 30 40 50 60 70
S,
oo
=]
. T P to to to to to to to to
q,O
2=
[=]
& U |oF | 1F | 2F | 3F | 4F | 5F | 6F | 7F
Extension base unit
¥ 16 17 18 19 20 21 22 23
2=
o 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170
53
L3 to to to to to to to to
@
E
[l E 10F | 11F | 12F | 13F | 14F | 15F | 16F | 17F

\— The first 1O number should immediately follow the last I/O
number occupied by the extension stage No. 1 (128 points).

4. ALLOCATOIN OF /O NUMBERS

AnS
. A3H v AnU c
Apl::l::l?ble AnN An AtFx | A3d A3V AnA | AN lacPu-Af Acs2H | AZG. | A73
(] (o]] o] (o] (o] (o] o X X X
Remark

4.2.2 /O allocation using peripheral devices

The building-block type CPUs can control I/O modules and special function
modules without the 1/0O allocation using peripheral devices.
The 1/0 allocation using peripheral devices has the following features.

(1) Functions of the I/O allocation using peripheral devices

(a) When a 5-slot base unit is used, the number of 1/0 points to
be allocated to additional 3 slots can be set at 0 points so that
other I/O numbers may be efficiently used.

(b) The number of 1/0O points can be reserved to adopt modules other
than the 16-point module to allow system expansion.

(c) Allocated I/O numbers are held unchanged when I/O modules or
special function modules other than the 16-point module are re-
moved for repair or replacement. ’

(2) Basics of the I/O allocation using peripheral devices

(a) The number of allocation points per slot of the main base unit or
extension base unit is provided as follows.

Number of Allocation Points
Vacant Slot Input Module Output Module Special Function Module
0 — - —
16 16 16 16
32 32 32 32
48 48 48 48
64 64 64 64

(b) The number of I/O points allocated to a specific slot by using a pe-
ripheral device is given priority over the number of I/O points occu-
pied by a module to be loaded in the slot.

1) If the number of I/O points allocated to a slot using a peripheral
device is smaller than that occupied by a module loaded to the
slot, the number of I/O points usable with the module de-
creases.

For example, when a 32-points input module is loaded in a slot
to which 16 points for the input module are allocated using a
peripheral device, the latter 16 points occupied by the input
module cannot be used.

2) If the number of |/O points allocated to a slot is larger than that
occupied by the I/O module loaded to the slot, the excessive
points are set as dummy points.

3) If a slot in which an I/0 module is loaded is set as a vacant
slot, the loaded module becomes unusable.

(c) The I/O allocation of the slots to which I/O allocation using a pe-
ripheral device has not been set is executed according to the nhumber
of points occupied by the modules loaded in the slots.

A n

4. ALLOCATOIN OF /O NUMBERS

Precautions

(3)

(@) The I/O allocation of a slot in which a special function module is
loaded must correspond exactly to that of the loaded module.

If there is any discrepancy between the I/O allocation of the
and that of the loaded module, an error occurs.

1) A11VC............... Output: 16 points
2) AlBT...ceeenn Special: 32 points
3) AG62................. Input: Number of setting points

4) 2-slot module.....

Set with 16 vacant points and 32
special points as shown below.

2 slots 2 slots
N N
w |l ® o | o
1 E 1 E
s S £ =
o.}ﬁ- c.}g_
E| S g E
[53 Q
$l 8 il¢
> @ @l >
© | o o | oo

[N

¥

Also refer to the User's Manual for the special function module to be used.

slot

(b) When the MELSECNET data link system is used, perform the 1/0

allocation as follows.

1) If the I/O allocation is to be set at a master station, the master

station and all the remote I/0 station need I/O allocation.

X/Y0
to

For master
station

X/Yo

For master T
to

station 1/0 aliocation

range

l

For local
station

For remote 1/O
station

1/0

For remote 1/O
station

allocation

range

2) If the 1/O allocation is to be set at a local station, only the
local stations need 1/0O allocation.

3) If the I/O allocation is to be set at a composite I/0O module

(such as A42XY), perform the I/O allocation for the output

module.

POINTI

tension stage of the A3CPU module.

internal relays.

executed.

do not load a module to the slot.

The following restrictions are provided to the last slot of the 7th ex-

1) If an input module is loaded, the Y addresses cannot be used for
2) If the 170 allocation using a peripheral device is set including some
differences from that of the module to be loaded, do not load the

module to the slot. If it is loaded, input and output will beincorrectly

3) If the X and Y addresses are transferred within a data link system,

4. ALLOCATION OF /O NUMBERS

AnS
. A3H AnU A2C
Ap‘:;lg:l?ble A‘}nnsbf-l An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H AE2G A73
() o o) 0 o 0 o X X X
Remark

4.2.3 Example of I/O number allocation

The following are examples of I/O number allocation when a building-block
type CPU is loaded with 1/0O modules and when a peripheral device is used
for [/O allocation.

(1) 1/O allocation when I/0O modules are loaded

A35B base unit
0 1 2 3 r/ 4 5 6 7 <+—Slot
Tt T T T T T T T
Power CPU Input Input Input | Output | Output : H |
supply | module I 1 1
module : : :
| I H I
tl 32 32 16 16 16 I 1 I
points | points | points | points | points | ! !
00 20 40 50 60 Zh an an
to to to to to Zg ?g ?g
1F SF 4F 5F 6F . 7F 8F oF)
8 9 10 11 12 &
Power | Output | Vacant | Output | Output | Output 48 occupied points I
supply
module
[} 32 16 32 32
points points | points | points \—___ AB5B base unit
AO co Do Eo 100 .
to to to to to
BF CF DF FF 11F

(2) 1/O allocation using a peripheral device

(a) Example of I/O allocation

% J/0 LOCATION = uncnnc'usl))
1: @ PT.

SLT 1/0[SLT 1,0]SLT I,0[SLT I/0[SLT 1,0[SLT I1/0[SLT I/0[SLI 1./0 2:16 PI.

NO. UNT {NO. UNT [NO. UNT |NO. UNT |NO. UNT [NO. UNT|NO. UNT|NO. UNT 2:32 PT.
®3z2| 16 32 a8 64 80 % 112 KR
1 X16| 17 33 49 65 81 97 113 Rewy .
2 x32| 18 34] 66 82 98 114 6:16 PT
3 vi6| 19 35 51 67 83 99 115 2:32 PT.
4 816| 28 36 532 &8 84 188 116 S48 PT.
558 | 21 37 53 69 85 181 117 9:64 PT.
658 | 22 38 54 278 86 182 118 vy '
788 | 23 39 55 el 87 1R3 119 a:i6 PT
8 v3z2| 24 44 56 22 88 184 120 B:32 PT.
9 g32| 25 a1 57 73 89 185 121 Gids PT.
18 Y16} 26 42 58 74 98 186 122 Ditd PT.
11 v48| 27 43 59 75 91 187 123 S—UNLTCRY
12 v32| 28 44 60 76 92 198 124 E:i6 BT
13 29 45 61 7?7 93 189 125 F:32 PT.
14 as 46 62 78 94 118 126 G-48 PT.
is 31 47 63 79 95 111 127 Hi64 PT.

PRESS <END>,WHEN SET

16 K-BYTE

LG8 PRRAMETER A3 GPP

KEY-IN DATA

MESSAGE

Fig. 4.2 Example of /0O Allocation Using a Peripheral Device

4. ALLOCATION OF /O NUMBERS

(b) 1/O numbers allocated by using a peripheral device

/—Assa base unit
0

“1

1 2 3 4 5 6 7 <+—— Slot number
T = It |
Power | CPU Input Input Input | Output | Output |(Vacant) H (Vacant):(Vacant):
supply | module 1 1 1
module i | ; Number of /O point
m 32 points | 32 points | 16 points | 16 points | 16 points |(16 poinls):(16 points)!(16 poin(s)z‘— wﬁemn ?ora%ed poinis
]
X32 points[X16 points X32 points Y16 points[S16 points| SO points | S0 points | SO points «—| Number of /O points
———————————— allocated by using a
Xoo X20 X30 Y50 60 / peripheral device
to to to to to
X1F X2F 4YF Y5F 6F '0
¢ 2 (3) 4
AB5B base unit
y 8 9 10 11 12
Power | Output | Vacant | Output | Output | Output
supply
module
f 32 points 16 points | 32 points | 32 points
H Y32 points[S32 points|Y 16 points|Y48 points|Y32 points
Y70 a0 YBO YCo YFO
to to to to to
Y8F AF YBF YEF Y10F
(*6) (*6)

: Since only 16 points are allocated, the latter 16 input points are unusable.
*2:
*3:

*4

*5:
: Since 48 points are allocated, points from EO to EF are set as dummy points.

*6

Since 32 points are allocated, points from 40 to 4F are set as dummy points.

Since 16 points (S) for a vacant slot are allocated, these points cannot be used for
output.

Since 0 point (S) for a vacant slot is allocated, these 3 slots are not allocated with 1/0
points.

Since 32 points (8) for a vacant slot are allocated, 32 vacant points are set.

4. ALLOCATION OF I/O NUMBERS

AnS
. A3H AnU A2C
X X X X X X X [o] X X
Remark

4.3 1/0 Allocation of the A0J2HCPU

The A0J2HCPU can be connected with up to 8 I/O modules.
The following describes the allocation of I/O numbers for the AOJ2H system.

4.3.1 Basics of /O allocation

(1) /O modules for the A0J2H

(a) e J 6 i e
Inputs (X) and outputs (Y) are allocated as follows.
1) Inputs (X) First-half 32 points
2) Outputs (Y) Second-half 32 points

(b) The I/O numbers are allocated in the order of /O module numbers
of the I/0 modules for the A0J2H.
The /0 module numbers do not need to be set in the order of con-
nection of the I/0 modules for the A0J2H.
Use caution not to use duplicate I/0 module numbers.
The 1/O module numbers can be set at 0 to 7.

(c) The head I/O number of the 1/0 modules for the A0J2H is pro-
vided as follows.

Setting 0 1 2 3 4 5 6 7
Head input humber X00 X40 X80 XCo X100 X140 X180 X1Co
Head output number Y20 Y60 YAO YEO Y120 Y160 Y1A0 Y1EO

—— Example

When the I/0O module setting number is 0, the IO humbers of each
I/0 module are allocated as follows.

Number of
points A0J2-E56 A0J2-E28 AoJ2-E32 A0J2-E24
occupied by (56-point (28-point (32-point (24-point
one module module) module) module) module)
Xo Gz X0 Qi B 16 points 4 X0 277
to pa32 pomts to 32 points § XF fecesereces to {32 points 4 Vacant
xie O F) voo | Vo | Xttt
Y20 \\\\\\\\\\\ Y2° NN o RIZ poinis Y Y20 [SNIRSNRRNNY
t N N 24 points { Y2B — fo_ N 24 points \
o N32 oints § Y37 ey Vacant Vacant Y37 Aaantaanan)
Y3F AN \\{ Vacant Vacant

* The 77 area is used for input and the Ry area is used for
output.

4. ALLOCATION OF I/O NUMBERS

(d) The output numbers which correspond to allocated input numbers
and unused numbers can be used for internal memory addresses.
However, if an input-only module is used, the output numbers
which correspond to allocated input numbers and unused numbers
cannot be used for internal memory addresses.

A0J2-E56
(when I/O moduile number is 1)
Xo
to input Y0 to Y1F which correspond to X0 to X1F
X1E 32 points |- can be used for internal relays.
Y20 Output
to | 24 points
Y37
(er?l?:gc‘i) --------- Y38 to Y3F can be used for internal relays.

(2) Special function modules for the A0J2H

(a) e speci io s for the AOQJ cu ints
odule irst- ints are use i
and output (Y). However, the I/0O numbers usable with the se-

guence program vary with each special function module. Refer to
the User’'s Manual for respective special function module for us-
able I1/0 numbers and their purposes.

(b} The head I/O number of the special function modules for the A0J2
is provided according to the I/0 module numbers as follows.

Setting 0 1 2 3 4 5 6 7
Head input number Xo00 X40 X80 XCo X100 X140 X180 X1Co
Head output number Yoo Y40 Y80 YCo Y100 Y140 Y180 Yi1Co

(c) The special function modules can use the second-half 32 points
for internal relays.

(3) Extension base unit

(a) If an extension base unit is used, slot 0 to 3 can be used.

(b) Slots 0 to 3 correspond to I/O module numbers 4 to 7. The I/O
numbers of slot 0 always begin with X/Y100.

(c) Slot 1 occupies 64 points without regard to the number of 1/0
modules and vacant slots.
If 64-point I/0 modules are not used (16- or 32-point modules are
used), the following occurs.

1) When a 16-point module is used, the latter 48 points become
unused. The A0J2H regards those 48 points as a wrap-around of
the 16-point module. (/O points are duplicated for every 16
addresses)

For example, if either of addresses 110, 120, or 130 (see Fig. 4.2
below) is accessed, the A0J2H regards that address 100 is
accessed.

A 44

4. ALLOCATION OF /O NUMBERS

2) When a 32-point module is used, the latter 32 points become
unused. The A0J2H regards those 32 points as a wrap-around of
the 32-point module.

For example, if address 160 (see Fig. 4.2 below) is accessed, the
AO0J2H regards that address 140 is accessed.

Slot 0 Slot 1 Slot 2 Slot 3
16-point 32-point 64-point 64-point
mogule mogule mogule module

e 7

L S ———
] XY e X/Y/ xn %
1007110 | 120 | 130 {140%1504 160 | 170 180 1co:

todto |to [to ptoLteqgto |to to

BF

to

a L
10F]11F | 12F [13F [14F '15F:16F 17F
y

ey

NN

-

\\{

CF.

SN
Y|

ﬁ

No restriction is given when 64-
point modules are used.

Use the first 32 points (fZZ area)
when a 32-point module is used.

Use the first 16 points (2] area)
when a 16-point module is used.

f When modules other than 64-point I/0 modules are used, I/O num-

bers other than actual I/O numbers ({777 area) cannot be used with
the sequence program.

Fig. 4.2 1/O Allocation of Extension Base Unit

POINTI

With an extension base unit, the AOJ2H 1/O modules and special func-
tion modules can be used up to 4 modules in total.

4. ALLOCATION OF /O NUMBERS

AnS
- A3H AnU A2C
API::l:;’Sb'e AAnnsr‘#_l An A1FX A3M A3V AnA A2AS |QCPU-A| A0J2H AB2G A73
X X X X X X X X [e] X X
Remark

4.3.2 Example of I/O number allocation
The following figures show the examples of I/O allocation of the A0J2H.

(1) Fig. 4.3 shows an example of I/O allocation when the A0J2H I/O modules
and special function modules are used.

Vo I/0 Number
Module i ;
Special Function
No. 1/0 Module Module
Xoo Y20
o [¥o0tXIE | x/vo0to X/Y1F to to
X1F Y37
X40 to X5F
1 | Veotovor | X/Y40 to X/Y5F — |
E28
X80 to X9F
2 YAO to YBF X/Y80 to X/Y9F to
X4F
XCO0 to XDF X60
3 YEO to YEF X/YCO to X/YDF to
X100 to X11F YeB
4 Y120 to Y13F X/Y100 to X/Y11F |
X140 to X15F X80 YAO
5 | Yi60to0 yi7F | X/Y140 10 XIV15F o | 2] T
X180 to X19F XoF YB?
6 Y1A0 to Y1BE X/Y180 to X/Y19F ‘ I
X1CO0 to X1DF xco | [gss] | YEO
7 |Y1E0to Y1FF | X/Y1CO to X/Y1DF to to
XDF YF7
X/Y100 Special
to function
XIY11F module
X140 E32
1
X15F
X180 £56 Y1A0
to to
X19F Y1B7
X/Y1CO Special
ifo function|
X/¥Y1DF module

Fig. 4.3 Example of I/O Allocation (1) (with the A0J2 I/O modules and
special function modules)

4. ALLOCATION OF I/O NUMBERS

(2) Fig. 4.4 shows an example of I/O allocation when the AOJ2H I/O modules
and an extension base unit are used.

1/0 Module
No. 1/0 Number
: X00 to X1F Xoo | [Ese| | Y20
0 Y20 to Y3F to to
X1F Y37
1 X40 to X5F |
Y60 to Y7F
X80 to X9F L X40 Y60
2 YAO to YBF to to
X5F Y77
3 XCO0 to XDF I
YEO to YFF
Slot No. on)i?)o E56 Yt'f;o
he extension | /O number
t ! X9F YB7
base unit |
X100 to X13F
0 Y100 to Y13F Xxeo vEo 3
o] (o]
] X140 to X17F XDF YE7 a
Y140 to Y17F £
5 X180 to X1BF
Y180 to Y1BF
3 X1CO to X1FF
Y1CO to Y1FF
| i |
X/Y100 | X/Y140 | X/Y180 | X/Y1CO | 1
to to to to | |
X/Y13F | X/Y17F | XY 1BF | X/Y1FF | 1
1
Siot No, ™ 0 1 2 3 4

Fig. 4.4 Example of I/0 Allocation (2) (with an extension base unit)

<

A

4. ALLOCATION OF I/O NUMBERS

AnS
. A3H AnU A2C
AP':-‘!:;:SbIe AI-\nnsl\ll_l An A1FX A3M A3V AnA A2AS QCPU-A| AOJ2H A52G A73
X X X X X X X X X ANy X

Remark | *1: Only the A2C is applicable.

4.4 1/O Allocation of the A2CCPU

The A2CCPU controls communication with I/0O modules and remote termi-
nals by I/0 numbers.
The following describes the allocation of I/O numbers for the A2C system.

4.4.1 Basics of /O allocation

The I/O numbers are allocated with X/Y0 to X/Y1FF in the order of station
numbers set with the station number setting switch on each module. Note
that the I/O number allocation is not executed in the order of connection of
the I/0O modules and remote terminal modules.

(1) Station number and I/0 number allocation
Each station is allocated with 8 points. Stations 1 through 64 can be set.
Table 4.1 shows correspondence between station number setting and
[/0 number allocation.

Table 4.1 Correspondence between Station Numbers and I/0 Numbers

Station No.| /O Number |[Station No.| 1/O Number |Station No.| 1/0 Number |[Station No.| 1/0 Number
1 X/YO to 7 17 X/Y80 to 87 33 X/Y100 to 107 49 X/Y180 to 187
2 X/Y8to F 18 X/Y88 to 8F 34 X/Y108 to 10F 50 X/Y188 to 18F
3 X/Y10 to 17 19 X/Y90 to 97 35 X/Y110 to 117 51 X/Y190 to 187
4 X/Y18 to 1F 20 X/Y98 to 9F 36 X/Y118 to 11F 52 X/Y198 to 19F
5 X/Y20 to 27 21 X/YAO to A7 37 X/Y120 to 127 53 X/Y1AO to 1A7
6 X/Y28 to 2F 22 X/YAS8 to AF 38 X/Y128 to 12F 54 X/Y1A8 to 1AF
7 X/Y30 to 37 23 X/YBO to B7 39 X/Y¥130 to 137 55 X/Y1BO to 1B7
8 X/Y38 to 3F 24 X/YB8 to BF 40 X/Y138 to 13F 56 X/Y1B8 to 1BF
9 X/Y40 to 47 25 X/YCO to C7 41 X/Y140 to 147 57 X/Y1CO to 1C7
10 X/Y48 to 4F 26 X/YC8 to CF 42 X/¥148 to 14F 58 X/Y1C8 to 1CF
11 X/Y50 to 57 27 X/YDO to D7 43 X/Y150 to 157 59 X/Y1DO to 1D7
12 X/Y58 to 5F 28 X/YD8 to DF 44 X/Y158 to 15F 60 X/Y1D8 to 1DF
13 X/Y60 to 67 29 X/YEO to E7 45 X/Y160 to 167 61 X/Y1EO to 1E7
14 X/Y68 to 6F 30 X/YES8 to EF 46 X/¥168 to 16F 62 X/Y1E8 to 1EF
15 X/Y70 to 77 31 X/YFO to F7 47 X/Y170 to 177 63 X/Y1FO to 1F7
16 X/Y78 to 7F 32 X/YF8 to FF 48 X/¥Y178 to 17F 64 X/Y1F8 to 1FF

4. ALLOCATION OF I/O NUMBERS

(2) Occupied points and station numbers

(a) When the number of I/O points of /O modules and remote termi-
nal modules is 8 or more, one module occupies several consecu-
tive station numbers.

Those station numbers occupied by a module cannot be set to
other modules.

(b) Set the station numbers of 1/0 modules and remote terminal
modules so that the numbers may be consecutive.
When modules which occupy 8 or more points per module are
used, set the head station number of the station numbers occu-
pied by the module as the station number of the module.

A2CCPU
[1
: | I
Set station 32-point I/0 8-point 1/O Set station
No. : 14 module module No. : 1
(Station Nos. 14 to |ggcypied stations: 4 Occupied stations: 1
17 are occupied)
Set station 32-point [/O 32-point I/0 Set station
No.: 10 module module No.:2
(Station Nos. 10 to |Occupied stations: 4 Occupied stations: 4| (Station Nos. 2 to
13 are occupied) 5 are occupied)

Remote terminal
module

Occupied stations: 4

Set station No. : 6
(Station Nos. 6 to
9 are occupied)

Fig. 4.5 Example of Station Number Setting

For the I/0 modules and remote terminal modules usable with the A2CCPU, refer to the A2CCPU
(P21/R21), A2CCPU-DC24V, A2CCPUC24(-PRF), A2CJCPU(S3) User's Manual (IB-66545).

4. ALLOCATION OF I/0 NUMBERS

AnS
. A3H AnU A2C
API:;I:;:SNE AAnnshll-l An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H AB2G A73
X X 0 X X X X X X X X
Remark

4.5 1/O Number Assignment for ATFXCPU

This chapter describes I/O number assignment made to transfer data be-
tween the A1FXCPU and extension modules/extension blocks.

"Inputs (X)" are used to import data from the extension modules/extension
blocks to the ATFXCPU, and "outputs (Y)" are used to output data from the
A1FXCPU to the extension modules/extension blocks.

I/0 numbers are addresses of the inputs/outputs built in the ATFXCPU and
the extension modules/extension blocks.

The number of input/output points that may be controlled by the A1FXCPU
is 242 (built in ATFXCPU: 14 input points/4 output points, extension mod-
ules/extension blocks: 224 points).

However, one special module or special block occupies 8 points.
Hence, when special modules/special blocks are used, the number of
points available for extension modules/extension blocks is found by:

224 points -8 x (number of special modules/special blocks)

s The A1FXCPU contains 14 input points and 4 output points and occupies
X0 to XD as inputs and Y10 to Y13 as outputs.
Therefore, extension modules/extension blocks use X/Y20 to X/YFF.

4. ALLOCATION OF /O NUMBERS

4.5.1 /O number assighment

When switched on or reset by the RUN/STOP switch, the A1TFXCPU makes
the following I/0O number assignment.

When writting a sequence program, specify the /0 numbers assigned in ac-
cordance with the following items.

(1) /O number assignment

(a) IO numbers are assigned to the extension module/extension
block connected on the right-hand side of the A1FXCPU, starting
with X/Y20.

Numbers X are assigned to the inputs of extension modules/
extension blocks and YOO to their outputs.

(b) I/O numbers are assigned in hexadecimal.

(c) Inputs/outputs atart at X/YnO.
The I/O numbers of each module are indicated below.

Number of /O Points of Extension

Module/Extension Block /O Numbers

8 input points Xno to Xn7 (Xn8 to XnF must not be used)

Yno to Yn7 (Yn8 to YnF are handled as internal relays)'1

Xn0 to Xn3 (An4 to XnF must not be used)
Y[n+1]0 to Y[n+1]3 (Y[n+1]4 to Y[n+1]F are handled as internal relays)

Xno to XnF
Yno to YnF

Xno to Xn7 (Xn8 to XnF must not be used)
Y[n+1]0 to Y[n+1]7 (Y[n+1]8 to Y[n+1]F are handled as internal relays)

Xn0 to XnF, Y[n+1]0 to Y[n+1]7

Xn0 to XnF, X[n+2]0 to X[n+2]7 (X[n+2]8 to X[n+2]F must not be used)
Y[n+1]0 to Y[n+J1]F, Y[n+83]0 to Y[n+3]7 (Y[n+3]8 to Y[n+3]F are handled as
internal relays)

8 output points

4 input points, 4 output points

16 input points

16 output points

8 input points, 8 output points

16 input points, 16 output points

24 input points, 24 output points

*1:Can be switched on/off in the sequence program but cannot be provided
to the outside.

For example, /0O numbers are as follows when an extension module/exten-
sion block is connected on the right-hand side of the A1TFXCPU. /O num-
bers in parentheses are occupied by each extension module/extension
block.

4 input points

8 input points

8 output points

4 output points

16 input points

(Y30 to Y3F)

X20 to X23
X20 to X27 Y20 to Y27 (X20 to X2F) X20 to X2F
(X20 to X2F) (Y20 to Y2F) Y30 to Y33 (X20 to X2F)

16 output points

8 input points
8 output points

16 input points
16 output points

24 input points
24 output point

[

X20 to X27 X20 to X2F X20 to X2F X20 to X2F
Y20 to Y2F (X20 to X2F) (X20 to X2F) X20 to X47 X40 to X4F
(Y20 to Y2F) Y30 to Y37 Y30 to Y3F Y30 to Y3F Y30 to Y3F
(Y30 to Y3F) (Y30 to Y3F) Y50 to Y5F Y50 to Y5F

4. ALLOCATION OF I/O NUMBERS

(d) One special module/special block occupies 8 points but does not
use I/O numbers.
Hence, when special modules/special blocks are used, skip them
over when setting the I/0 numbers.

Special module/
16 input points special block 16 output points

A1FXCPU 1X20 to X2F Y30 to Y3F

16 points 8 points 18 points — Number of [/O points used
P P P (Up to a total of 224 points)

The LED indication of the extension module/extension block is in octal.
When using the A1FXCPU to control the extension module/extension block, read the octal of
the LED indication as hexadecimal.

Indication of extension module/extension block Value read as hexadecimal
Q00600060 _, 606566660
o 1 2 s 4 58 6 7 L_> 8 9 A B GDEF
COO000O0O0O CO0OO0OOOO

When a 48-point extension module (24 input points, 24 output points) is connected next to the
A1FXCPU.

Module LED arrangement

I/O number labels

[
_["J"'}o1234567:'" 7o 1 2 3 4 5 & 7
[20]/00000000|[#0]i00OC OO OO O] iputs
Inputs : 0 1 2 3 4 5 6 7! :
_|i[s]OOOCOCOO0O00O!
1 1 1 1
—| 10 1 2 3 4 5 8 71 10 1 2 3 4 5 & 7
3] 0053688066588 ST outpuss
Outputs | o 1 2 3 4 5§ & 7T -
| |i[s8]OOOCOO0O0O0
| -
Actual I/O numbers
[T /O number labels
I'"J"_I F"'I'"‘l
— |1 120 21 22 23 24 25 26 27 | 1 40 41 42 43 44 45 46 47
1EJjeleleRe O O[#]i0 00000 OO iputs
Inputs i 128 28 2A 2B 2C 2D 2E 2F ! !
| [1[28]OOC OO L
i 1 1 1
— | 1 180 31 32 33 34 35 36 37 | 150 51 52 53 54 55 56 57
;:OOOO i-ml O OO OO O O|_] outputs
Outputs :. 138 39 3A 3B aF " -
_;L: O0O0O000O0

5. PROGRAM STRUCTURE

5. PROGRAM STRUCTURE
(1) Classification of programs

Table 5.1 shows the classification of the programs usable with the PC
CPU.

Table 5.1 PC CPU Types and Programs
0 : Applicable, x : Not applicable, — : Not provided

Main Program Sub Program

Sequence Program Microcomputer Program Sequence Program Microcomputer Program

PC CPU
Type Main
Routine/ | Interrupt Utility
Subroutine| Program | Program
Program

User-
Created
Micro-
computer
Program

User-
Created
Micro-
computer
Program

Main
SFC Routine/ | Interrupt Utility
Program |Subroutine| Program | Program
Program

SFC
Program

A2C
A52G
A1S(S1)
A18J-83
A1SJH(S8)
A1SH — —
A28(S1)
A2SH(S1)
A1FX

A2AS
(S1/830)
A2USH-S1

Q02, Q02H
QO6H 0)
AOJ2H
A1
AN 0 o
A2
A2N(S1)
A2A(S1) o
A2U(S1)
A3

A73
A3H :
A3M) 0 — —
ASN _ °
ASA
A3U
A4U

(2) Program capacity

Program capacity is the capacity of memory in which main programs and
sub-programs are stored. Program capacity varies with type of PC CPU.
Use parameter setting to fix program capacity.

(Refer to Chapter 8 for the default value and setting range of program
capacity.)

5. PROGRAM STRUCTURE

5.1

Applicable
CPU

All Types of CPUs

Remark

Sequence Program

A sequence program consists of a main routine program, a subroutine pro-
gram, and interrupt programs, and runs with the PC CPU sequence instruc-
tions, basic instructions, and applied instructions.

Sequence instruction

X000 MO K10
i—i! <T0 >
TO
3 it ——(Y030>
X001 P K4 yj—1 Basic instruction
5k {BIN X010 DOH o .
M9039 X041 PH K “ Kg_| Application instruction
11—t { FROM 0004 0 D10 2 H
CIRCUIT END

Sequence programs are classified into main routine programs, subroutine
program, and interrupt programs.

There is no restrictions on the order of creation of the subroutine program
and interrupt programs.

A subroutine program and interrupt programs can be contained in the se-
guence between an [FEND] instruction and an [END] instruction without
dividing the program area into the subroutine program area and the inter-
rupt program area.

FEND
G 1
| Interrupt program ____
:ﬁ#——-——— No restriction is provided
L | when the subroutine program
Sequence program | Subroutine program__ | r and interrupt programs are
RET contained between an FEND
s || instruction and an END instruction.
[Interrupt program ____|
IRET J

Fig. 5.1 Order of Creation of the Subroutine Program and

Interrupt Programs

POINTl

The subsequence program for the PC CPU for which a subprogram
can be created has the same structure as the main sequence pro-
gram.

Refer to the ACPU Programming Manual (Common Instructions) (1B-66250) for the sequence
instructions, basic instructions, and application instructions.

5. PROGRAM STRUCTURE

Applicabl
P'::Pu e All Types of CPUs

Remark

5.1.1 Main routine program

The main routine program is stored in the head portion of the sequence pro-
gram area and executed regularly in every scan.

If the main program is not stored, the PC CPU cannot execute not only the
main program but also other programs.

Program execution
Main routine
program
L Returns to the head of the main
__________ | ! routine program by the END (FEND)
END | instruction execution.

Fig. 5.2 Execution of the Main Routine Program

5. PROGRAM STRUCTURE

5.1.2 Subroutine program

The subroutine programs are executed when they are called by the main
routine program with a CALL instruction.

(1) Purpose of the subroutine programs

(a) To execute a program for a specific processing more than once
within one scan.

(b) To execute a program only when a specific condition is estab-
lished. '

(2) Structure of the subroutine programs

(a) The subroutine program must be created after the main routine

program and after an FEND instruction and before an END instruc-
tion.

(b) Attach a P} (pointer) to the head step of each subroutine
program.
One pointer number cannot be used twice in the main routine
program or the subroutine programs.

(c) Enter the RET instruction in the last step of each subroutine
program.

Main routine
program

PO FEND

Subroutine
program
int u
coa{"neng?g'eeds"edmt&?ée_ RET | Indicates the end

of a subroutine
Subroutine program.

program

RET

Fig. 5.3 Structure of Subroutine Programs

5. PROGRAM STRUCTURE

(3) Exection of the subroutine programs
Execution of the subroutine programs is controlled by turning ON/OFF
the input of the CALL instruction.

(a) When the input condition : Specified subroutine programs are
is established executed.

(b) When the input condition : The subroutine programs are not
is not established executed, and the instruction right after
the CALL instruction is executed.

Example of subroutine programs Execution of subroutine programs
Input condition
2 Subroutine When the input condition When the input condition
—| l——[:CALL P1o:|—4 } prclwlgram is not established is established
ca
> — (Programs are " Programs are
) 2 >_‘ executed. executed.
r
{FEND| 4
PlO¢——e——(>4 Main routine i
P10 program !
Subroutine
—< >"4 program CALL P10 4:- H
of P10 Main routine | | . : H
[RET | program ! i
1
FEND | S :
Pi0e — (P10 | subroutine i
P11 program i
< >_. ' Subroutine [T T TTTmTmmmeme—e——eo—-oe '~ Execution of subroutine
g{"gﬁm P11] Subroutine program of P10
-
LRET}-@ program
END END

Fig. 5.4 Execution of the Subroutine Programs

(4) Nesting the subroutine programs
Nesting in which a subroutine program is called by another subroutine
program can be done up to 5 levels.
Nesting of 6 or more levels is unusable.

X0
|1 I)
1 [cALL P10 J—o
r

[FEND |—+

| e \
P10 I <

/

| r _
| , { cALL P11 }—4

B] 4 | The CALL(P) instruction
L RET can be used up to 5 levels.

|
1
—
P11+ ¢ >
+— , [cALL P12]—14

~

Fig. 5.5 Nesting of the Subroutine Programs

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
Aplg::cl?ble AAnnSI\#-I An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H | Ai5q A73
o o o 0 o o o} o o X)
Remark

5.1.3 Interrupt programs

Interrupt programs are executed only when interrupt factors occur. Each
interrupt program can be created for each device number specified by inter-
rupt points 10 to 131.

(1) Structure of the interrupt programs

(a) The interrupt programs must be created after the main routine pro-
gram and after a FEND instruction and before a END instruction.

(b) Attach an | (interrupt pointer) to the head step of each interrupt
program.

(c) Enter the IRET instruction in the last step of each interrupt pro-
gram.

(2) Execution of the interrupt programs

(a) Use the El instruction to enable interrupt.

1) An interrupt program is not executed if an interrupt factor occurs
before execution of an El instruction. The interrupt program which
corresponds to an interrupt factor which occurs after execution of
an El instruction is executed.

2) An interrupt program is not executed if an interrupt factor occurs
in the STOP state. The interrupt program which corresponds to
an interrupt factor which occurs after execution of an El instruc-
tion in the RUN state is executed.

Example of interrupt programs Execution of interrupt programs
Program
execution
t———A & £
—— 1 Interrupt to
: 0 occurs.
! Main routine . T Interrupt 1o
H program — ! 129 occurs.
1 [}
1] [| 1
— (End of the main ——
routine program FEND !
10 ¢—— ——— FEND prog 0 i i i
— Interrupt b
! Ir}tﬁ;‘rupt program progra?n : P
' TigeT ° v iy i
129 1 !
129 ¢— ——7— |
1 Interrupt
! Interrupt program !
! } of 129 program |
e— T IRET I
I
[END END |

Fig. 5.6 Execution of Interrupt Programs

5. PROGRAM STRUCTURE

(b) When an interrupt factor occurs, the interrupt program specified
by the interrupt pointer number that corresponds to the factor is
executed.

Interrupt programs are executed according to the following condi-
tions.

1) When multiple interrupts occur:
When muiltiple interrupt factors occur simultaneously, interrupt
programs are executed according to the priority given to the
interrupt pointer numbers.
When an interrupt program is being executed, the next priority
interrupt program is executed when the currently executed inter-
rupt program is finished.

2) When an instruction which disables interrupt (DI) is being
executed:
Interrupt is disabled when a FROM/TO instruction or a CHG
instruction is being executed.

i) When an interrupt factor occurs when a FROM/TO instruction
is being executed, the corresponding interrupt program is exe-
cuted when read/write specified by the FROM/TO instruction
execution is completed.

iiy When an interrupt factor occurs when a CHG instruction is
being executed, the corresponding interrupt program is exe-
cuted when the CHG instruction execution is completed.

5. PROGRAM STRUCTURE

3) When an instruction other than that mentioned above is being
executed:
Interrupt programs are executed when a sequence instruction, a
basic instruction, or an applied instruction other than those men-
tioned above is being executed.

— Example

When an interrupt factor occurs when the lower 16-bit data is being
transmitted by a 32-bit data transmission (DMOV) instruction, the
DMOV instruction execution is suspended when transmission of
the lower 16-bit data is completed, and an interrupt program is
executed.

When the interrupt program exection is completed, the upper
16-bit data is transmitted by executing the DMOV instruction.

Interrupt [aitor /—> DMOYV instruction execution

e

Lower 16-bit transmission —/ l T \— Upper 18-bit transmission

I IRET

If data to be used with an interrupt program is stored by use of the main
routine/subroutine program, use the El and DI instructions so that an
interrupt program may not be executed until the main or subroutine
program completes execution of the data store operation.

0 { B }—
—| (>
¢
r
{ o1t }—)
MDo3s Int t program Interrupt program
I l {] nterrupt progra
DMOV KsXo D2 | execution disabled is not executed
¢ when interrupt
[El }— factor 10 occurs.
4
[END}—
M9036
lo—F——paND Do D2
{IRETH—

Fig. 5.7 Setting an Interrupt Program Execution Disable Section

5. PROGRAM STRUCTURE

4) Real-time interrupt
Real-time interrupt specified by interrupt pointer numbers 129,130,
and 131 is executed in two different ways according to type of PC
CPU as follows.

An: When an interrupt factor occurs during link
' refresh, the interrupt program is executed after
link refresh is completed.

Other than An: When an interrupt factor occurs during link
refresh, link refresh is suspended and the
interrupt program is executed.

An

10 ms 10 ms 10 ms 10 ms

: Held till link refresh is completed
] 1
AN Executed when link refresh is completed
N L i 5

N
Execution of the —[—I i_—l (;I |_| I_J

interrupt program of 131 t

Execution of link refresh

Interrupt factor of 131

Other than An

10 ms 10 ms 10 ms 10 ms

Interrupt factor of 131

i
1
_|
i
1
Execution of the I l ‘ I

interrupt program of 131
}-_Tj Link refresh is suspended and the in-

terrupt program of 131 is executed.

Execution of link refresh

Fig. 5.8 Timing of Real-time Interrupt

5) Interrupt during END processing

i} If an interrupt factor occurs during END processing of monitor-
ing of other station in a data link system, the interrupt program
is executed when monitoring of other stations is completed.

ii) If an interrupt factor occurs during the wait time of the END
instruction in constant scan, the interrupt program that corre-
sponds to the factor is executed.

5. PROGRAM STRUCTURE

MELSEC-A

(3) Restrictions on program creation

(a) Devices which are turned ON by the PLS instruction in an inter-

rupt program remain ON until the same interrupt program is exe-
cuted again.

X0 X0
F—{pLs Mo} F——{PLs Mo}
END O 10JIRET END 0 END 0O I0JIRET END 0
—t— H — i —
ON ! !
X0 OFF |)
‘MO _OFF I
A
'— When X0 is turned — Turned OFF when the PLS
ON, PLS MO instruc- MO instruction is executed.

tion is executed.

(b) When an interrupt program is being executed, interrupt is disabled

(c)

(d)

(D). : _
Use caution not to execute an El or a DI instruction during execu-
tion of an interrupt program.

If an interrupt factor occurs when the main program and the sub-
programs are being executed alternately, the interrupt program is
executed as follows.

1) If an interrupt program included in the main program is the same
as that included in the sub-program, the interrupt program in-
cluded in the currently executed program is executed.

2) If one of the following interrupt factors occurs during execution of
the main program or the sub-program which does not contain an
interrupt program, the following occurs.

*|0to 123 An operation error occurs and the PC CPU stops.
* [29 10 131 : Ignored.

Timers cannot be set in the interrupt programs.

If a timer is used in an interrupt program, the program operation
may often be disordered. For example, the coil of a timer is OFF
when the contact of the timer is ON, or the current value becomes
equal with the set value.

5. PROGRAM STRUCTURE

(e) Timing of the internal clock of the PC CPU is sometimes sus-
pended by execution of an interrupt program. The timer current
value scan time and constant scan time are delayed, as follows,
every time an interrupt program is executed.

Check the processing time of each instruction, and create an inter-
rupt program whose processing time is not more than 8 ms.

1) 0<t<8 Notdelayed.

2) 8<t<20 0 or10 ms delay depending on timing

3)20<t <30 10 or 20 ms delay depending on timing
(t: Interrupt program processing time)

Type of interrupt program specified by the | number, which causes
the timer current value scan time and constant scan time to be de-
layed, differs with type of PC CPU.

1) A1, ATN, A2, A2N, A3N, A73, A0J2H 10 to 131
2) A3 None
3) ABH, ABM. ... 129 to 131

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
o2 o*2 o] 0*2 0*2 A*1*3 0*3 0*3 o] [o] o2

*1: Applicability of the AnA depends on the version.

(Refer to the MELSAP Il Programming Manual Version E and later.)
*2: Refer to page 5-1 for applicable microcomputer programs.
*3: Only the SFC programs are applicable.

Remark

5.2 Microcomputer Programs

The microcomputer programs are written in a machine language (machine
codes) which can be used with the PC CPU.

(1) Classification

The microcomputer programs are classified as the utility program, SFC
program and the user-created microcomputer program.

Sequence
program
END
Utility
Main program program)

SFC Microcomputer
program program area

User-created micro-
computer program

Fig. 5.9 Structure of the Microcomputer Programs

(2) Execution

The microcomputer programs are executed when they are called by the
SUB instruction in the sequence program. The head address (hexadeci-
mal) of the microcomputer program to be executed is specified by the
SUB instruction.

Microcomputer
—~——=~_ program execution
Sequence program \I
SUBI: * o~
Sequence program | i’ :
END Lo !
Microcomputer program (l) l /l
Microcomputer program (1) I =~ Microcomputer
U/ program ()
=~ execution
* SUB!_} specifies the head address of the microcomputer program (1).

Fig. 5.10 Execution of the Microcomputer Program

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
APPCI::?SbIe AAnnS"Il-I An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H AB2G A73
o] [} [} [¢) o] FaNS A1 A 0 [¢) [}

Remark |*1: Only the SFC programs are applicable.

5.2.1 Utility program

The utility program is provided by Mitsubishi and enabies PID control, trigo-
nometric function operations, and other control and operations which can-
not be executed by the sequence program.

(1) Storage of the utility program
The utility program must be stored in the microcomputer program area
before it is used.
Use the system floppy disk which contains the utility program to store it
in the microcomputer program area.
Refer to the Instruction Manual for the utility program to be used for
detail.

(2) Precautions

(a) The utility program must be stored at the head address (address
0) in the microcomputer program area.
If the head address of the utility program is other than 0, the utility
program cannot be executed.

(b) The utility program cannot be stored in the sub-program microcom-
puter program area. '

5.2.2 User-created microcomputer program

The user-created microcomputer program is written by a user in a machine
language which can be used with the PC CPU.

Refer to the ACPU Programming Manual (Common Instructions) (I1B-
66250) for the specification of the machine language and the creation and
storage procedure of the microcomputer program.

5.2.3 SFC program

(1) What is SFC?
"SFC" is the abbreviation for "Sequential Function Chart" which is a
format for describing the control specifications such as program execu-
tion sequence and conditions in the form of steps which comprise a
series of control operations.

(2) SFC program
In an SFC program, each unit operation of a series of machine operation
is described as one step, and a ladder diagram is used for programming
each control operation in each step.

For the PC CPU types which can execute an SFC program, refer to the MELSAP Il Programming
Manual (1B-66361) Version B and later.

5. PROGRAM STRUCTURE

A series of machine _J
operations

Machine
(operation >
flow chart
Machining 1 operation
start unit
operation
Pallet i
confirmation anc;{)eratlon
Clamping
- 1 operation
Drilling unit
Unclamping 1 operation
Workpiece unit
load
Machining 1 operation
completed unit

[SFC chart]

In-

condition 1

condition 2

condition 3

L. Transition __
condition 4

I: itial
step

| Transition __ _ _ { |_)|(|2

_|_Transition ______{ l_l
{

_| Transition ______{ |_|
I

[Ladder diagram of the operation output
and transition condition of each step]

Start switch Workpiece detection

X1
11

Conveyor start

Pallet detection

{ y20 +

{ Tran)—-I

Pallet clamp

Clamp confirmation
X3
1

{ Y21

{ Tran)—I

Drill rotation
{ Y22)
Y22
— { PLS M0 H
Mo Drill lower
—i { SET Y23 H
9 | X4 Drill lower limit
ml {RST Y23
K20
{ To
TO Drill raise
mal; {SET Y24 H
Drill raise limit
X5 y
\ Tran
Pallet un-
calmp
{ Y25
{ PLS M1
M1
—t {RST Y24
X6 Unclamp confirmation Conveyor start
=l { Y20

X.7 Workpiece unload confirmation
——{ |"'-l| { Tran)—I

v
SFC program

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
ay A X o o o A ANt X X o

Remark | *1:Only the A3, A3N, A3A, A3U, and A4U, QOBH are applicable.

5.3 How to Use the Sub-Programs

When an A3, A3N, A3H, A3M, A3V, A3A, A3U, A4U, Q06H, or A73 is used,
the main and sub program operations can be switched by using a CHG in-
struction.

[For details of the CHG instruction, refer to the ACPU Programming
Manual (Common Instructions) (IB-66250).]

A sub-program can be executed in the form of "serial execution” or "paral-
lel execution".

e Serial execution: This is used when the program capacity (30 k steps) is
insufficient.
By switching the main program and subprogram
alternately with a CHG instruction, a program which is
larger than 30 k steps can be executed.

Main program

o OH———

2 > 30 k steps

I_|M9036 CHG]{

l J

—_—

» Total 60 k steps
Sub-program

Ol._”____
2 + 30 k steps

M9036
H— crel

| J /
T

 Parallel execution : This is used when the program needs to be switched
according to the object of control with one system.
Programs stored in the main and subprogram areas
are switched by a CHG instruction according to the
object of control.

Main program Switched when the Sub-program
condition is established

oH——cHal] 0 H—cHal

2 2 r 30 k steps.

5. PROGRAM STRUCTURE

Since the execution condition of the CHG instruction and the configuration
of the instruction execution/non-execution result storage memory area
differ with the CPU type used, the procedure of use of a sub-program
accordingly differs.

(1) The CHG instruction execution condition is provided in the following two
different timings:

(a) Execution at leading edge: Executed when the condition is turned
from OFF to ON.

(b) Execution during ON : Executed while the condition is ON.

(2) The instruction execution/non-execution result storage area is used with
the operating system of the PC CPU for the determination of execution
of the PLS and { P instructions in the next scan.

Table 5.2 gives the correspondence between the CPU type and the CHG
instruction execution conditions and the instruction execution/non-execu-
tion result storage memory area.

Table 5.2 Correspondence between the CPU Type, CHG Instruction Execution Conditions,
and the Instruction Execution/Non-Execution Result Storage Memory Area

CHG Instruction Instruction Execution/Non-
Execution Condition Execution Result Storage Area
CPU Type Refer to
Execution at Execution Main/sub Main/sub
Leading Edge During ON Common Independent
A3 O —_ o — Section 5.3.1
A3N
A3V o — —_ —_ Section 5.3.2
A73
A3H
A3M
A3A — o — (0] Section 5.3.3
A3U
A4U
QO6H

POINTS|

(1) Devices except pointers (P), interrupt points (l), timers (T), and
counters (C) are used in common to the main and sub-programs.
(a) Pointers (P) and interrupt pointers (I) can be designated
independently with the main and sub-programs.
(b) Timer (T) numbers and counter (C) humbers used with the main
programs cannot be used with the sub-programs.
(2) Refer to the ACPU Programming Manual (Common Instructions)
(IB-66250) for the operations of the PLS instruction, counters, and
i1 P instruction when the CHG instruction is used to switch the
operation between the main programs and the sub-programs.

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
Apl:;ll:;ble Al'\nnshh An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H AB2G A73
X Ay X X X X X X X X X

Remark |*1: Only the A3 is applicable.

5.3.1 When the CHG instruction is executed at the leading edge of the input and the execution/non-
execution result storage memory is used commonly with the main programs and the
sub-programs

When the CHG instruction is executed at the leading edge of the input and
the execution/non-execution result storage memory is used commonly with
the main programs and the sub-programs, the operation processing is
performed as follows.

(1) The results of execution/non-execution of the main (sub) program
instructions stored in the memory are cleared when the main (sub)
program is switched to the sub (main) program by the CHG instruction.

(2) When the main (sub) program is switched to the sub (main) program,
and then switched again to the main (sub) program, and when an
instruction of which execution conditions vary according to the result of
the last execution/non-execution of the instruction is executed, the result
of the last execution/non-execution of the instruction with the same
program is required. By setting M9050 special relay to ON before
execution of the CHG instruction, the result of execution/non-execution
of instructions stored in the memory area is transferred to the save area.
Therefore, the result of execution/non-execution is not cleared though
the data in the memory area is cleared by execution of the CHG
instruction.

(3) When M9050 is ON

(a) The main program is run with
the repeatedly triggered instruction
executed in accordance with its r . Save area
input condition and the edge

£
; . . . g R (@) {d)
triggered instruction executed in 2 (b)| Data
. . . aps 59 § exchange

accordance with its input condition = | ona instraction _

and previous operation result. s e

1 [CHG] instruction executed £ W e)
(b) The data in the execution/non- 5 | [CH@ instruction

execution result storage memory
area is exchanged with that in the
save area.

{

5. PROGRAM STRUCTURE

(c) The subprogram is run with the
repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in
accordance with its input condition
and previous operation result.

{ [CHG] instruction executed

(d) The data in the execution/
non-execution result storage
memory area is exchanged with
that in the save area.

\
Return to step (a).

(4) When M9050 is OFF

(a) The main program is run with the
repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in
accordance with its input
condition and previous
operation result. L -

(a) jOperation result
™1 memory area

(b) (d)

CHG instruction| (c) Data clear

Main program
A,
1.

1l [CHG] instruction executed

Subprogram
A
1

CHG instruction

(b) The data in the execution/
non-execution result storage
memory area is cleared.

{

(¢} The subprogram is run with
the repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in
accordance with its input condition
and previous operation result.

1 [CH@G] instruction executed

(d) The data in the execution/
non-execution result storage
memory area is cleared.

\:
Return to step (a).

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
Y X X 0*3 o2 N3 N3 A48 X X o2

*1: Only the A3N, A3A, A3U, and A4U, QO6H are applicable.
Remark *2 : Refer to Section 5.3.2.
*3 : Refer to Section 5.3.3.

5.3.2 When the CHG instruction is executed at the leading edge of the input and the execution/non-
execution result storage memory is sued independently with the main programs and the sub-
programs

When the CHG instruction is executed at the leading edge of the input and
the execution/non-execution result storage memory is used independently
with the main programs and the subprograms, the operation processing is
performed as follows.

(a) The main program is run with the
repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in X Main program

accordance with its input e () |Operation result
aps . - < —* memory area
condition and previous operation 5
result. ; CHG instruction
g Subprogram
l [CHG] instruction exscuted c [(b)|operation resutt
© = memory area
S |
(b) The subprogram is run with £ | [cHa instruction
the repeatedly triggered ?

instruction executed in
accordance with its input

condition and the edge triggered
instruction executed in accordance
with its input condition and
previous operation result.

1 [CHG] instruction executed

Return to step (a).

5. PROGRAM STRUCTURE

5.3.3 When the CHG instruction is executed when the input is ON and the execution/non-execution
result storage memory is used independently with the main programs and the sub-programs

When the CHG instruction is executed when the input is ON and the execu-
tion/non-execution result storage memory is used independently with the
main programs and the sub-programs, the operation processing is per-
formed as follows.

(a) The main program is run with the
repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in

accordance with its input _ . Main program
condition and previous operation e | (2 |operation resut
g memory area
result. 2 |)
g CHG instruction
[
1l [CHG] instruction executed = Subprogram

(b) Operation resutt
™ memory area

(b) The subprogram is run with the
repeatedly triggered instruction
executed in accordance with its
input condition and the edge
triggered instruction executed in
accordance with its input
condition and previous operation
result.

CHG instruction

Subprogram
A
L

1 [CHG@G] instruction executed

Return to step (a).

5. PROGRAM STRUCTURE

An$
. A3H AnU
Ap;::lgzjble I-\Annshll-l An A1FX AaM A3V AnA A2As |QCPU-A| A0J2H AAEZZ%. A73
AN A X [o] e} FANS| At JANS] X X o

Remark | *1: Only the A3, A3N, A3U, A4U and QO6H are applicable.

5.3.4 Notes on write during run

(1) When a main program and sub program have been created, it is possible
to modify or re-write the sub (or main) program while the main (or sub)
program is being executed. However, if a CHG instruction is executed
at the main (sub) program and a switch made to the sub (main) program
during transfer of a program to the CPU from a peripheral device, or
when the CPU is modifying pointer (P) or index pointer (l) addresses,
correct operation of the sub (main) program will not be possible, and for
this reason processing that prohibits the execution of CHG instructions
is executed.

However, depending on the combination of the CPU type and the GPP
function software package used at the peripheral device, these notes
may not apply.

The table below shows whether or not these notes apply with each
combination of CPU type and GPP function software package.

) Applicable CPU
GPP Function Software Package
A3A, A3U, A4U, QO6H CPU Other than Those to Left
« SW4GP-GPPAEE (software version R or higher) ° x
e SWIIIVD-GPPA (Il = 1 or higher)
Software packages other than above X X

o : Notes do not apply (write during run is possible even during execution of a CHG
instruction)

X : Notes apply (processing to prohibit execution of the CHG instruction when write
during run is executed is performed)

When special relays M9051, M9056, M9057 are used as the execution
condition for the CHG instruction, the execution status of the CHG
. instruction can be confirmed.

Main Sequence Program Subsequence Program
[CHG] instruction Z [CH@] instruction 2
execution command execution command

\, M2051 M9057 \| M9051. M9056
| |
1

Ladder example A K E CHG I—,H’—,M’—[CHG

! {

Mg051 Switched on during main (sub) sequence program transfer to the CPU. Automatically
switched off when the transfer is complete.

Mgo056 Switched on on completion of the main sequence program transfer to the CPU.
Automatically switched off on complstion of pointer-(P) or interrupt pointer (l) address
storage.

M9O057 Switched on on completion of the subsequence program transfer to the CPU.
Automatically switched off on completion of pointer (P) or interrupt pointer (1) address
storage.

Special relays

Fig. 5.11 Interlocking the [CHG] Instruction Execution Conditions

5. PROGRAM STRUCTURE

(2) The main and sub programs are rewritten as shown below.

Main Program Rewritten

Subprogram Rewritten

Program transfer

/"] Program |

transfer

ON)
] Automatically
M9051 OFF Swithed on swithed off
by user
P, | set / P, I set
ON
Swithed on
M9057 OFF by user -

Automatically
swithed off

[CHG] instruction
to swith to the

subprogram can-
not be executed.

Program transfer

/| Program [\

transfer

N Automatically
Swithed on swithed off

by user

ON
MQ051 OFF
P, | set
M9056 OFF

P, | set

ON
Swithed on
by user I/ N

Automatically
swithed off

[CHG] instruction

to swith to the main
" program cannot be

executed.

Fig. 5.12 Program Rewrite Timing Chart

5. PROGRAM STRUCTURE

(3) Main (sub) program rewrite procedure

Switch on M9051 (CHG instruction
disable).

In the ASCPU, M9050 (operation
result memory change contact)
must be switched off.

Transfer the required program to the
CPU.

Automatically switched
---------- off on completion of
program transfer.

M9051 off?

P, | address table is set to

main program) or M9057 (P, | setre- |-t 1'k step every END.

quest in subprogram).

Switch on M9056 (P, | set request in [

M90E6, M9057
off?

off on completion of P, |

Automatically switched
setting.

Run the program rewritten by exe-
cuting the CHG instruction.

5. PROGRAM STRUCTURE

AnS
. A3H AnU A2C
FAND A X [o] o] A1 A1 A X X o

Remark | *1: Only the A3, A3N, A3U, A4U and QO6H are applicable.

5.3.5 Notes on writing subprogram

(1) When there is an interrupt program, the same interrupt programs must
be written in the main and subsequence programs using the same
interrupt pointer numbers.

(2) A timer and a counter cannot be used with the same device number in
the main and subsequence programs.
If the timer and counter numbers are the same, the RST T/C instruction
may be used in the main (sub) sequence program when the OUT T/C
instruction exists in the (sub) sequence program because the RST T/C
instruction resets the T/C present value on completion of its execution.

(3) Any interrupt is disabled while the CHG instruction is being executed.
Hence, an interrupt program is only executed after the CHG instruction
is executed if the corresponding interrupt factor occurs.

(4) The pointer (P) indicating the destination of the branch instruction (CJ,
SCJ, CALL, JMP)may be used with the same numbers in both the main
and subsequence programs.

6. FUNCTIONS

6. FUNCTIONS
Table 6.1 gives principal functions of the CPU module.
Table 6.1 Table of Functions
Function Description

Constant scan

The sequence program is exsecuted at constant intervals regardless of scan time.

Latch
(power-failure backup)

Contents of devices are retained when the power is cut OFF, when the module is reset, or
when a momentary power failure over 20 ms occurred.

Devices L, B, T, C, D, and W can be latched.

Remote RUN/STOP

Remote RUN/STOP can be instructed from a peripheral device when the RUN keyswilch is
set to RUN.

PAUSE

The CPU operation is stopped retaining the output (Y) state. -

Status latch

Contents of all devices at the time when the status latch condition is established are stored
in the status latch area in a memory cassette,

The contents of devices stored in the status latch area can be monitored with a peripheral
device.

Sampling trace

Operating state of specified devices is sampled at specified intervals and the result of
sampling is stored in the sampling trace area in a memory cassette.

Data stored in the sampling trace area can be monitored with a peripheral device.

Offline switch

Devices (Y, M, L, S, F, B) used with the OUT instruction can be separated from the
sequence program operation.

The sequence program stops after execution of each instruction.
Step run operation is classified into two different methods as follows.

Step run » By specified loop count
* By each instruction
e The clock operation is enabled in the CPU module.
Clock ¢ The clock data is controlled in year, month, date, hour, minute, second, and day of the

week.
The clock data can be stored in special registers D025 to D9028.

Online I/O module
replacement

The 1/O modules can be replaced when the CPU is running (power ON).

Interrupt processing

When an interrupt factor occurs, the corresponding interrupt program is executed with
priority over the sequence program.

Comment

Comments of meaning and purposes are provided for each device and printed o.r monitored
with a peripheral device to help recognition of ladder blocks.

Watchdog timer
(10 to 2000 ms)

An internal timer used for hardware or software faults of the PC CPU. Setting value is
variable.

Microcomputer mode

The utility programs and the user-created microcomputer programs are stored in the
microcomputer program area and are called by the sequence program for various control
operations and processings.

Self-diagnosis

The CPU checks itself and detects and indicates occurrences of errors or stops CPU
operations.

Output setting at
STOP — RUN

The state of output (Y) when operation state is switched from STOP to RUN.

Entry code registration

Read and write of the programs (main/sub-programs and parameters) and comments from
the PC CPU are disabled.

Print title registration

Comments for the system names and program names are registered and printed.,

Annunciator display
mode

Comments and the F numbers are displayed on the LED indicators when the annunciators
are set.

ERROR LED priority
setting

Whether the ERROR LED at an error occurrence is lit or unlit is set.

6. FUNCTIONS -

AAAAAAA A|IA|A|A|A|A|A|A|A|AA S A[A[lA
1111221 1|23]|1|2]|3]3/|3]|2/[22 5 13/|9¢]2
S sSsss sF -~ N|N|NJ|JV]|H|A|s |, |[Aa]|]Jd]c
~J J H~HX s ~ s~z A S]] 2],
S 1 H, S~ 1 s [A A|ls [3Z ;| A|[H]|A
1 8 ~ 1 S ~ 1 |73 3 1 / s| H 3 52 Refer to
Y 3s “1 ~ M|~ [sH] . [uU G
8 ~ 3 1| @
2) - $ 0 14
[3 i 6 A
H| 4
u
0 ~|—}|—]o|lolo]Jo]oO 0 ojofo Sec. 6.1
o o|l|o|o|o|lo|lo]|o]|oO 0 o|lo|o Sec. 6.2
o co|Jlojo|o|[o|lo]|oO]oO 0 o|lo}|o Sec. 6.3
o oloflolol]o]o]o]o 0 ololo Sec. 6.4
@ —|{olo|—]Jo]of|o|o o o|lo|o Sec. 6.5
0 —|lo]J]o|—|0o]Oo]JoOo|oO o o|lo]|o Sec. 6.6
o olo|J]o|oj|jo|o|oOo|— — — (oo Sec. 6.7
— olojo|ololo]|oO]|oO o o|—|— Sec. 6.8
0 —|—=|—|o]lo]lo|o|— o 0| —|A" Sec.69
— — (1 — |1 —10 o O | — 11— o O | — | — Sec. 6.10
0 olo|o|o|lOo}lo]|O]|oO 0 0| 0| — | Sec.5.1.13
0 olJojlo|o|ofo]|oOo]|oO 0 ojo|o Sec. 6.11
0 o|Jlojo|o|oOo|O]|oO 200 ms fixed o|o Sec. 6.12
0 o|lo|o|o|o|fo}]oOo]|oO — —{o]|o Sec. 5.2
0 |olo|lo|o|o]o|ojo o o|o|o Sec. 6.13
0 o|l|o|lo|o|o|[o]o]|oO o o|lo|o Sec. 6.14
0 o|lo|lo|o|lo|oOo]|O]oO 0 o|ojo Sec. 6.15
) olololojJo|l]o]o]o 0 ololo Sec. 6.16
— —|—-lo|—|—}jo0ofo0ofoO — O | —|—| secs.17
o] —_ -] == =] =] =1 — o o o O Sec. 6.18
*1: Only the A2CGPUC24(-PRF) and A52GCPU(-T21B) have the clock fanction.

6. FUNCTIONS

AnS
) A3H AnU
AP%.::Sb.e AnN, An A1Fx | A3H A3V AnA | AL lacpu-A| AoJzH | A2G | A7
(o] X o] o] [o] [+] (o] o] 0 o] (o]
Remark

6.1 Constant Scan

(1) Constant scan .
Scan time varies with the number of instructions executed in each scan.
The constant scan function executes a sequence program at constant
intervals.
By use of this function, a sequence program can be executed maintain-
ing constant scan time.

Scan time when constant scan is not used |

Sequence program
/ END processing
END ¢ El\%oi END ©

;_(—A——-_\ END 0

— — — —
|‘ 50 ms ‘L 60 ms ‘L 50 ms N
I* g T "l

Scan time when constant scan time is set at 70 ms |

Sequence program

END processing
END 0 END 0

Fig. 6.1 Constant Scan Operation

(2) Setting constant scan time

(a) Constant scan time should be set with special register D9020.
Constant scan begins when the constant scan time is set.
Content of D9020 is cleared when power is turned ON or when the
CPU is reset.
To begin constant scan when power is turned ON or when the
CPU is reset, write the following program at the beginning of the
sequence program.

/— Normally closed contact

M9036 P K
0 p—————{ MoV 10 D9020
KR

Constant scan time (in unit of 10 ms.)

(b) If scan time of a sequence program is longer than set constant
scan time, the set constant scan time is ignored and the sequence
program is executed according to its scan time.

6. FUNCTIONS

(c) Set a value greater than the maximum sequence program scan
time for the constant scan setting.
If the sequence program scan time is longer than the setting for
constant scan, processing will be performed in accordance with

the sequence program scan time and the constant scan function
will not operate normally.

[3
T

Constant scan setting

Constant © 10 20 30 40 10 20 30 40 , 10 20 3 40 10 20
scan ' ‘ ' ' ' ' ' ' ' ' ' '
s 0 END 0 END. 0 END o0 END 0
equence |+ | — —t T
program ' ‘ H =
35 ms | 5ms: 35 ms N 34 ms | |ems
1 [1
40 ms 53 ms s7ms 2™ | 40 ms

-—— Since the scan time is

v ~ greater than 40 ms, the
. . L constant scan function

Scan in which constant scan is not normal will not operate normally

in the next scan either.

Fig. 6.2 Operation when Scan Time is Longer than Constant Scan Time

(d) During the interval between execution of the sequence program
END instruction and the start of the next scan, sequence program
processing is stopped (each device retains the status it had be-
fore execution of the END instruction.)

However, when an interrupt cause occurs, the interrupt program
is executed.

(3) Notes on constant

(a) The relationship between the set value for constant scan and the
set time for WDT (watchdog timer) is given by the expression
below.

If the set value is longer than the WDT set time, a WDT error
occurs.

(Constant scan set value) < (WDT set value) — 1

6. FUNCTIONS

Applicable

CPU All Types of CPUs

Remark

6.2 Retaining Device Data (Latch Function)

Data of all devices is cleared to the initial value (bit devices: OFF, word
devices: 0) when the PC CPU is turned ON, when the RUN keyswitch is
turned to RESET, or when a momentary power failure of more than 20 ms
occurs,

The latch function is used to retain device data when the PC CPU is turned
ON, when the RUN keyswitch is turned to RESET, or when a momentary
power failure of more than 20 ms occurs.

The sequence program operation is not influenced by the latch function.

(1)

(2)

Purpose

The latch function is used, when continuous control is being performed,
to retain data such as number of products, number of defectives and
addresses even when a momentary power failure of more than 20 ms
occurs and to enable continuous control.

Devices usable with the latch function

(a) The following devices are usable.
1) Latch relays
2) Link relays
3) Timers
4) Counters
5) Data registers
6) Link registers

(b) Latch range is set with parameters on a peripheral device.
Refer to Chapter 8 for the latch range of each device.

POINTI

Device data within the latch range is retained by the battery (A6BAT)
attached to the CPU module or the memory cassette.
(1) If the sequence program operation is performed with the sequence

(2) If the battery connector is uncoupled from the CPU module or the

program stored in a ROM, a backup battery is necessary to enable
the latch function.

memory cassette when the CPU module or the memory cassette is
being turned OFF, device data within the latch range is destroyed.

6. FUNCTIONS

(8) Clearing device data within the latch range

(a)

(b)

To clear device data within the latch range and to set the initial
data, execute "LATCH CLEAR". When LATCH CLEAR is executed,
device data out of the latch range is also cleared as follows.

1) Y, M/L/S, F,B............. Turned OFF.
2) Special relays
MS000 to M9255......... Retained.
) T,Cee Contacts and coils are turned OFF and
current value becomes 0.
4)D,Z,V,W,A...cc........ Become 0.
5) Rueerriiii e Retained.
6) Special registers
D9000 to D9255.......... Retained.

The method of latch clear differs with type of CPU.
For the method of latch clear, refer to the User's Manual for the
PC CPU to be used.

6. FUNCTIONS

AnS
. A3H AnlU
Applicable | i), | An | AIFX | Asm | AsV | AmA ASAS [acPu-a| Acvzv | AZC | A7s
0 o o 0 o o o o 0 PN o

Remark | *1 : Remote RUN/STOP by a computer is disabled.

6.3 PC CPU RUN/STOP with a Peripheral Device (Remote RUN/STOP)
The RUN keyswitch is used to RUN/STOP the PG GPU.
Remote RUN/STOP is executed with a peripheral device, remote RUN
contacts, or computers with the RUN keyswitch set in the RUN position.

(1) Purpose

Remote RUN/STOP is used in the following cases.
(a) The PC CPU is located out of reach of operators.

(b) To RUN/STOP the PC CPU mounted in a control panel with a
device located outside the control panel.

(2) Remote RUN/STOP operation

The sequence program operation of remote RUN/STOP is as follows.

(a) Remote STOP........ The sequence program operation stops after
execution of the END instruction.
(b) Remote RUN.......... When remote RUN is executed when the

sequence program operation is in the stop
state caused by remote STOP, the sequence
program operation begins with step 0.

(3) Remote RUN/STOP procedures

The following procedures are used to enable remote STOP/RUN.

(a) Using the remote RUN contact
Remote RUN/STOP can be controlled by turning the remote RUN
contact ON/OFF.

1) When the remote RUN contact is OFF, remote RUN is enabled.
2) When the remote RUN contact is ON, remote STOP is enabled.

Step 0 —> END Step 0 — END
ON
OFF
Remote RUN contact -
STOP
RUN
PC CPU RUN/STOP
~—
STOP stage

Fig. 6.3 RUN/STOP Timing when the Remote RUN Contact is Used

6. FUNCTIONS

MELSEC-A

POINT'

Use parameter setting to set the remote RUN contacts.
Refer to Chapter 8 for the remote RUN contacts that can be set.

(b) Using a peripheral device or a computer
Remote RUN/STOP can be controlled with a peripheral device or
a computer as shown below.

Step 0 END Step 0 END
ON 0
Remote STOP ﬂ ________
Peripheral | S0mmand OFF ON
device
Remote RUN OFF | _I_
command sToP~
RUN/STOP state RUN
Step state

Fig. 6.4 RUN/STOP Timing when a Peripheral Device or a Computer
is Used

(4) Precautions

Since priority is given to the STOP state, the following points shouid be
considered.

(a) When remote STOP is executed with a remote RUN contact, a
peripheral device, or a computer, the PC CPU goes into the STOP
state.

(b) To return the PC CPU from the STOP state caused by remote
STOP to the RUN state, set all the external factors (remote RUN
contacts, peripheral devices, computers, etc.) which were used for
remote STOP to the RUN state.

The RUN and STOP states are described as follows.

* RUN state.............. The sequence program is executed repeatedly from step 0 to the END
instruction.
e STOP state........... The sequence program operation is being stopped. All outputs (Y) are

turned OFF.

6. FUNCTIONS

AnS
Applicable AnN | An | ATFX ASH | amsv | ana | AmL (acPu-A| modzH | A2G | A7s
o o o o o o 0 A A A o
Remark |A : PAUSE with the RUN keyswitch is disabled.

6.4 Stopping the Sequence Program Operation Retaining the State of Outputs (PAUSE)

The PAUSE function is used to stop the sequence program operation while
retaining the ON/OFF state of all outputs (Y).
The following methods are used to enable PAUSE.

1) Using the RUN keyswitch
2) Using the remote PAUSE contact
3) Using the GPP/HGP/PHP

(1) Purpose

The PAUSE function is useful when outputs (Y) need to remain ON when
the PC CPU is stopped.

(2) Using the RUN keyswitch

(a) When M9040 is turned ON when the RUN keyswitch is being set
in the PAUSE position, the PAUSE state contact (M9041) is
turned ON after execution of the END instruction of the next scan.
When the END instruction of the scan after the scan in which the
PAUSE state contact is turned ON is executed, the PC CPU goes
into PAUSE and stops the sequence program operation.

(b) Either set the RUN keyswitch in the RUN position or turn M2040
OFF with a peripheral device to restart the sequence program

operation.
o0 — END
0 —END 0 — END
PAUSE] |~ __] 0 —»
RUN
RUN keyswitch
onN,
OFF
M9040 -
ON

OFF
M9041

|PAUSE ____ |
RUN/PAUSE stage —-AYN

Turned ON when
conditions of PAUSE
are established.

Fig. 6.5 PAUSE Timing when the RUN Keyswitch is Used.

6. FUNCTIONS

(3) Using the remote PAUSE contact

(a) When the remote PAUSE contact and the PAUSE enable flag
(M9040) are turned ON, the PAUSE state contact (M9041) is
turned ON after execution of the END instruction of the scan.
When the END instruction of the scan after the scan in which the
PAUSE state contact is turned ON is executed, the PC CPU goes
into PAUSE and stops the sequence program operation.

(b) Either turn OFF the remote PAUSE contact or turn M9040 OFF
with a peripheral device to restart the sequence program

operation.
o —— END END——» END
0o —END 0 0 —
ON | n
Remote PAUSE _|OFF
contact ony, |
OFF
M9041 -1
ON |]
OFF
M9040
PAUSE __ _
RUN/PAUSE stage RUN
\ PAUSE state

Turned ON when
conditions of PAUSE
are established.

Fig. 6.6 PAUSE Timing when the Remote PAUSE Contact is Used.

POINT|

Use parameter setting to set the remote PAUSE contacts.
Refer to Chapter 8 for the remote PAUSE contacts that can be set.

6. FUNCTIONS

(4) Using a peripheral device

(a) The PAUSE state contact (M9041) is turned ON after execution
of the END instruction of the scan in which a remote PAUSE
command from a peripheral device is received.

When the END instruction of the scan after the scan in which the
PAUSE state contact is turned ON is executed, the PC CPU goes
into PAUSE and stops the sequence program operation.

(b) When a remote RUN command from a peripheral device is
received, the PC CPU restarts the sequence program operation
beginning with step 0.

0 ——>»END 0 —>»
0 — END 0 — END
ON
Remote PAUSE OFFH ______
command ON
Remote RUN OFF —I
command oNn |)
M2041 OFF
PAUSE __
RUN/PAUSE stage —3uN
\ PAUSE state

Turned ON when

conditions of PAUSE

are established.

Fig. 6.6 PAUSE Timing when the Remote PAUSE Contact is Used.

POINTl

To set the state of output (Y) to ON or OFF in the PAUSE state, use the
PAUSE state contact (M9041) as interlock.

M20
—1 {Y070) In the PAUSE state, the ON/OFF state of
M20 determines the ON/Off state of Y70.
X000 M9041
—} S <{Y071) Setto OFF in the PAUSE state.
Mo
— {Y072) Setto ON in the PAUSE state.
Mg?ﬂ
—

6. FUNCTIONS

AnS
Applicable | AN An ATFX | A3H A3V | AnAa | AL lacpu-a| AoszH | A2G | A7s
CPU _

A A1 (o] (o] 0 (o] o] (o] (o] o o]

Remark *1: A1 and A1N are unusable.

6.5 Retaining Device Data when a Specific Condition is Established (Status Latch)

Device data at a specific moment cannot be checked by monitoring with a
peripheral device.

If the status latch function is used, data of all devices when the SLT instruc-
tion is executed is transmitted and stored to preset status latch area.

Data stored by status latch can be monitored with the peripheral device.

PC CPU Peripheral device

|
) |
Device Transmission |
memory | | by the SLT }

|

|

| .

! area instruction Status C mode Statys | @ display

i s | aten | D=5 | Jateh | > Q
|

|

|

|

File area area

| |

register | !
area } :
| |

Fig. 6.8 Status Latch Processing

(1) Purpose

Status latch is useful if device data when an error occurs needs to be
stored and monitored.

It is also useful to check the cause of occurrence of an error by setting
the SLT instruction to be executed when a condition of error is estab-
lished during the sequence program operation.

(2) Status latch processing

(a) The following data is stored in the status latch area when the SLT
instruction is executed.

1) Device memory

X, Y,M,L, S, F, B.......... ON/OFF data
T, C e Contact and coil ON/OFF data and
current values
DWAZV..iiiinanns Stored data
2) File registers (R)............. Stored data

o _ 40

6. FUNCTIONS

(b) Data is stored in the status latch area when the SLT instruction is

executed.
If there are outputs which are turned ON/OFF or if device data is
stored using the same input condition, data stored before execu-
tion of the SLT instruction differs from that stored after execution
of the SLT instruction.

Example

If there are programs, before and after an SLT instruction, which -
are turned ON/OFF by the same input, the ON and OFF states of
the outputs are displayed differently between them.

[Example] [Display when status latch data is monitored]
X0 Xo
Y10 ————4Y10 Since Y10 is ON when the SLT
instruction is executed, it is
——L{sLT —{sLT displayed as ON.
—< Y11 Y11 Since Y11 is ON when the SLT
instruction is executed, it is
displayed as ON.

(3) Precautions

Scan time increases each time an SLT instruction is executed.

Set the time of the WDT and constant scan considering the time increase

due to execution of the SLT instruction.
Refer to the ACPU Programming Manual (Common Instructions)
(IB-66250) for the execution time of the SLT instruction.

POINT

Use parameter setting to set the devices used for status latch.

Refer to Chapter 8 for the setting of the devices used for status latch.

6. FUNCTIONS

AnS
Applicable | AnN An A1Fx | A3H A3V AnA | Anl lacPu-A| AodzH | A2CG | A7
CPU nSH
At A* o] (¢} 0 o] [o] [a] [o] [o] 0
Remark *1: A1 and A1N are unusable.

6.6 Sampling Device Data at Constant Intervals (Sampling Trace)

Changes of the ON/OFF status of bit devices and word device data cannot
be checked by monitoring with a peripheral device.

Sampling trace is used to sample and store data of specified devices to the
sampling trace area at constant intervals.

Data stored in the sampling trace area is sampled specified number of
times and latched when the STRA instruction is executed.

Data stored in the sampling trace area can be monitored with the periph-

After the nth sampling, data of the following
sampling is written over the stored data
beginning with the 1st sampling data.

* When the STRA instruction is executed, data of specified devices is sampled specified number
of times and stored to the sampling trace area and latched.

eral device.

PC CPU Peripheral device
e it k| r— = A
| * Data of . | | |
| specified Sampling I | _ I

devices trace area Sampling trace area
| | | |
|) 1 Data of the 1st sampling | [1 |
| D:r‘g:e ™2 Data of the 2nd sampling | { 2 Disol q I
N, " Read by the isplays data
: ‘\\\S‘\ 3 Data of the 3rd sampling { peripheral I 3 sampled speoified | -

; \\\\\\ 4 Data of the 4th sampling device | 4 number of times Monitor of
| File AN | > sampling
| register I‘ \\1 5 Data of the 5th sampling | |:> | 5 trace data
| area “ * [Data of the 6th sampling | { 6 II
| by ' |

R ! ' I I
! | n—1| Data of the (n-1)th sampling { 1n—1 |
| Ly n Data of the nth sampling | } n i
| % N e ____ 2
| i
| |
| |
1 |

Fig. 6.9 Sampling Trace Processing

(1) Purpose

Sampling trace is useful to check data of specified devices sampled at
constant intervals. This is effective to save time when correcting a
sequence program.

(2) Devices usable with sampling trace

The following devices are usable.
(a) Bit devices (X, Y, M, L, S, F, B, and contacts and coils of T and C)
(b) Word devices (Current value of Tand G, and D, W, R, A, Z, V)

o _4A

6. FUNCTIONS

(3) Number of times of sampling

The number of times of sampling is set for the total number of times and
for that after the STRA instruction execution.

(a) Setting the total number of times sets the sampling trace area.
This can be set by 128 times within the range of 0 to 1024 times.

(b) Setting the number of times after the STRA instruction execution

enables completion of sampling trace and data latch after the
STRA instruction execution,

This can be set by 128 times within the range of 0 to 1024 times.

i— S8TRA instruction execution

“ Number of times of

sampling after the STRA
instruction execution

e
Total number of times of sampling

After the STRA instruction
execution, data is sampled

specified number of times,
and then, latched.

Fig. 6.10 Number of Times of Sampling

(c) Setting of the number of times of sampling is provided as follows.

Number of times of sampling after Total number of < - ’
(the STRA instruction execution < times of sampling / — 1024 times

6. FUNCTIONS

(4) Sampling interval
The sampling interval sets the timing of sampling. The following two

kinds of settings are used.

(a) Sampling by END
Sampling trace is executed after execution of every END instruc-
tion of the sequence program.

Sampling by END |

Sequence program
execution

Step 0

/ END

Step 0

Sampling trace
execution

Fig. 6.11 Sampling Trace Execution by Every END

(b) Sampling at specified intervals
Sampling trace is executed every 10 x n ms.
(Sampling trace is executed also when other instructions of the
sequence program are being executed.)

Sampling at specified intervals |

Sequence program
execution

[

/ / /
10xn [ms]u 10xn [ms]‘ 10xn [ms]‘L 10 x n [ms]

END Step 0 Lj T ZENDS'tI;pO /L j'

—j—

|
R A —

execution

Fig. 6.12 Sampling Trace at Specified Intervals

6. FUNCTIONS

AnS
. A3H AnU A2C
Apl;,clg,l?me AAnnSNH An A1FX A3M A3V AnA A2As |QCPU-A| A0J2H | Ai5q A73
0 o 0 o] e] X X x o] o} [¢]
Remark

6.7 Forced ON/OFF of the OUT Instruction with a Peripheral Device in the RUN Stare
(Offline Switch)

When the PC CPU is in the RUN state (when the sequence program opera-
tion is being executed), the devices used with the OUT instruction of the
sequence program cannot be turned ON/OFF with a peripheral device
using the test function.

The offline switch function is used to separate the OUT instruction
execution from the sequence program operation and enables turning ON
and OFF of the devices used with the OUT instruction with a peripheral
device using the test function even when the PC CPU is in the RUN state.
The offline switch function is useful to check operation of the output
modules and wiring between the output modules and peripheral devices
using the test function on a peripheral device when the sequence program
operation is being executed.

When the offline switch is closed

'// QUT instruction

5 | I} < > [—> Online state *1

> Offline state *2

11 \ N/
When the offline switch is open

*1...Online state is established when the offline switch is closed.
Devices used with the OUT instruction are turned ON/OFF by the sequence program
operation.

*2...Offline state is established when the offline switch is open. The OUT instruction
execution is separated from the sequence program operation.
(Devices are not turned ON/OFF by the sequence program operation.)

Fig. 6.13 Offline State and Online State

6. FUNCTIONS

(1) Devices usable with the offline switch function
The following devices used with the OUT instruction can be used with
the offline switch function.
(a) Outputs (Y)
(b) Internal relays (M)
(c) Latch relays (L)
(d) Step relays (S)
(e) Link relays (B)
(f) Annunciators (F)

(2) State of devices on offline state

State of devices in offline state (when the offline switch is open) is as
follows.

(a) State of devices before the offline switch function is used is
retained.

(b) If forcible set/reset of devices is executed with a peripheral device
in offline state, the forcibly set/reset state of devices is retained.

POINTSI

(1) Devices in offline state cannot be turned ON/OFF by the sequence
program operation.
If devices are set to offline in a test run of the CPU, reset them online
by disabling the offline switch function after the test run.

(2) Devices reset from offline to online can be turned ON/OFF by the
sequence program operation.
To set the devices online, check the input condition of the OUT
instruction and make sure that there is no problem when they are
reset online.

6. FUNCTIONS

AnS
Applicable | AnN, An A1FX | A3H A3V AnA | APU lacpu-Al Aoz | A2C | A7s
CPU nS
A (o] X (o] [a] (o] [o] (o] X X (o]
Remark |*1:Only the AnN is applicable.

6.8 Step Operation

Sequence program steps can be executed one-at-a-time, beginning with a
specified step.

Step operation can be used to confirm sequence program operation and
contents of each device while the sequence program is being monitored for
debugging or other purpose.

6.8.1 Step operation (l)
(1) Contents of step operation (1)
There are two methods used for step operation (I):
(a) Step operation of each instruction
Instructions are executed one-at-a-time from the current step.
Operation steps after each execution.
It can be used when each device state is confirmed at the execu-
tion of each instruction.
Sequence program example Execution from step 0
0{ LDXo
p.(au1]
ok Srot0 1| OUT Y10 Instruction are
2 1?01 oy a0 Do 2| LDX1 " executed
: 3 | MOV K4Y20 Do one-at-a-time.
— Y011 An execution
X002 8 | OUT Y11 command from
9 [rsT DO g | LD X2 a peripheral
device stops
10| RST DO operation after
13| END each step.
Fig. 6.14 Step Operation by Each Instruction
(b) Step operation by specifying a loop count.
Step operation is executed for the specified loop count (1 through
1 to 32767) beginning with step 0 or the current step and stops at
the specified step.
Sequence program example Execution from step ¢ Execution stopped at step 8
X00D 0| LD Xo 4——" 0| LD X0
D <yo10 1| OUTYI10 : Executed forthe 1 | OUT Y10
X001 specified number
2 oy a0 Do 2| LDX1 L eans 2| LbX1
. 3 | MOV K4Y20 DO ! 3 | MOV Ka4Y20 DO
%002 Yol 8 | OUT Y11 1 — 8 | ouT Y11
9 |1 [RST DO s | LD X2 : 9| LDX2
10| RST DO ! 10| RST DO
13| END . 13| END
Fig. 6.15 Step Operation by Specifying the Loop Count

6. FUNCTIONS

(2) Method of step operation

Use the following procedure to execute step operation:

(a) Set the RUN keyswitch on the PC CPU to the "STEP RUN"
position.

(b) Execute step operation with the GPP/PHP/HGP.
Refer to the Operating Manual of the peripheral device for the
step operation.

(3) Output (Y) state at step operation

The state of output (Y) differs with the method of setting the RUN key
switch to the STEP RUN position.

(@) Operation : RUN — PAUSE — STEP RUN
When the RUN keyswitch is set to the STEP RUN position, the
output ON/OFF state is retained, and the operation is stopped.
The step operation executed with the GPP/PHP/HGP uses the
state of ON/OFF of output (Y) at stop.

0 —™END 0 —»END
0 ———»END STEP RUN
PAUSE l Execution of
|- step operation
RUN keyswitch | RUN is enabled
STOP

RUN/STOP stage RUN

output (v) ON
OFF
-«—— Result of the sequence program —»« The output -»>
operation is output. stage at PAUSE is
retained.

(b) Operation : RUN — STOP — STEP RUN
After storing all output in the internal memory, all outputs (Y) are
turned OFF and the operation is stopped.

0 END
STEP RUN
STOP l Execution of
RUN - step operation —»
RUN keyswitch is epnat':Iet‘:I’=1 °
STOP
RUN

RUN/STOP stage

Output (Y)
OFF

<+ Result of the »1%— Qutputs are all OFF —»—The output
sequence program stage at PAUSE is
operation is output. retained.

6. FUNCTIONS

(4) Processing of timers and special timing clocks at step operation

Processing of timer and special timing clocks (M9030 to M9034) in the
sequence program is as follows.

(a) Timers
e 10 ms timer................... 10 ms is added every 1 scan execution.
e 100 ms timer................. 100 ms is added every 10 scan

executions.
(b) Special timing clocks
» M9030 (0.1 s clock)....... Turned ON/OFF every 5 scans.
» M9031 (0.2 s clock)....... Turned ON/OFF every 10 scans.
* M2032 (1 s clock).......... Turned ON/OFF every 50 scans.
e M9033 (2 s clock).......... Turned ON/OFF every 100 scans.
e M9034 (1 min clock)...... Turned ON/OFF every 3000 scans.

6. FUNCTIONS

AnS
. A3H AnU
Apphffjble lAnnSNH An A1FX A3M A3v AnA Az"ns QCPU-A| A0J2H A2C A73

X X X X X (o) o (o] X X X

Remark

6.8.2 Step operation (lI)
(1) Contents of step operation (Il)

Step operation (lI) can be executed with type AnA, A2AS, and AnU
CPUs.

There are five methods used for step operation :

(a) Step operation of each instruction (Same as the step operation (1))
Instructions are executed one-at-a-time from the current step.
Operation stops after each execution.

It can be used to confirm each device state of each instruction
execution.

(b) Step operation with step interval and loop count specification.
Instructions are executed one-at-a-time every specified step
interval (1 to 99 s).

Operation is executed for the specified loop count (1 to 32767)

and stops.
Sequence program example Execution from step 0 Stopped after 3 loop execution
0 | LD X0 N . 0 | LD Xo l«— Returns to
X000) 0 _'(1) 7y Stops interval 1 [outvie step 0.
] xgm Yo1o OUT Y10 }(z)—lr (110 99 s).
k4 2 | LD X1 ! . 2 [LDX1
2 —H——: Mov Yoza Do (3! 3-loop
3 [MoV Kay20 Do | (4)‘7\ Instructions are ex- execution 3 | MOV K4Y20 DO
- Yo11 -at-a-ti
8 | OUT Y11 ecuted one-at-a-time :> 8 [OUT Y11
s ﬁ?” kst Do o [ID%3 1 :(8) every step interval. o D x2
(8) : Each instruction is
10 | RST DO (@ 1 executed for loop 10 | RST DO
13 | END ———-l\ count (scans). 13 | END
Stops at
step 0.

Fig. 6.16 Step Operation by Specifying Step Interval Loop Count

6. FUNCTIONS

(c) Step operation by ladder block
Ladder blocks are executed one-at-a-time from the current step.
Operation stops after each ladder.
It can be used to confirm each device state at each ladder block
execution.

Sequence program example @ Execution from step 0

Ladder blocks are executed
one-at-a-time by the execution
command.

xan0 LD X0 —
0} <yo10

OUT Y10
X001

0

1 T
K4
2 }—,—[MQV Y020 DO 21 LD X1 (2) :
3 MOV K4Y20 DO I
Y011 1(4)

8 |
o I
|
I

X002 OouUT Y11
9 Hi [RST DO LD X2

3
10| RST Do @
13| END —~ - Returns to step 0.

Fig. 6.17 Step Operation by Ladder Block

(d) Step operation by specifying loop count and break points
Step operation is executed for the specified loop count (1 to 9999)
and stops at a specified break point.
There are two methods used for specifying a break point.

1) Step operation using a label (Pn) as a break point
This is the method of setting the pointer (Pn) that is set in the
sequence program as the label of the break point.
A maximum of 4 places can be specified as the break point.

Sequence program example ~ Execution from step 0 Execution stopped at PO

LD X5 =7

— Tes Po T CJ PO

0 LD X5
_| 1
Xpoo 4 | LD X0
1

5

6

0

1 CJ PO
4 | LD X0
5 OUT Y10
6

7

I Y010 D1
Ka OUT Y10
6 —H—]————[Mtw X020 Do | LD X1
Yo11 7 | MOV K4Y20 Do

X002
13{} [rsT Do} 12| OUT Y11
r-*oI7 X003 N 13| LD X2

i o2 14 | RST Do
17 | PO

Py
(=]
=]
2

Execution for the LD X1
specified number MOV K4Y20 DO

of scans 12| OUT Y11

C————————> 13| oxe
14 | RST DO
17 | Po '«—Stops at a

18| LD X3 18 | LD X3 specified

pointer.
19 [OUT Y12 19| OUT Y12
20 | END L 20 | END

Fig. 6.18 Step Operation by Specifying Loop Count and Label

6. FUNCTIONS

2) Step operation using a specified step as a break point.
This is the method of setting a step of a sequence program as a
break point.
A maximum of 4 places can be specified as the break point.
A total of 4 places can be specified as break point when using
both of above-mentioned 1) and 2).

Sequence program example Execution from step 0 Execution stopped at step 8
<00 o | LD Xo ——q o | LD Xo
0 yo10 1 [ouT Y10 | Execution of the 1 | _QUT Y10
) 5?01 vov o no 2 | LD X1 | specified number 2 | LD X1
<ot 3 | MOV K4Y20 DO ! of scans. 3 | MOV K4Y20 DO
— 0
02 ! 8 | ouTY11 | 8 | OUT Y11
9 i Tkst Do 9 [LD X2 | 9 | LD x2 «—Stops ata
10| RST DO ! 10| RST Do gf:pm"ed
13| END A 13| END '

Fig. 6.19 Step Operation by Specifying Loop Count and Step Number

(e) Step operation according to device state
Operation stops when data of a specified bit device or a word de-
vice equals the set data.
Verify of data with the set data is executed when data is written to
the specified device.

[uove k2 Do s o
v Current value 12
Verified when Mask value : FFFFy

data is written
to D10

Number of the
Trigger Devices

Device that can
be Specified

Device State

Device Data

1 point

All bit devices

ON - OFE

ON « OFF

All word devices

.
'Current value
& Mask value

*1 Current value & Mask value.
The following example describes the relation betwsen the set values of the
current value, the mask value and step operation.
The bit of which current value is verified with the trigger device is set with the

mask value.

When the bit of the mask value is 1, the bit is verified, and when it is 0, the bit

is not verified.

nA

6. FUNCTIONS

1) When the current value is "3" and the mask value is "FFFF"
When the mask value is "FFFF" , step operation is stopped when

all bits of the current value and the trigger device become equal
with each other.

Value of the trigger device o/1|o/1)0/1 [or1{ori fort |ord |or1|ori [o/1[o/1 0/ |ori|or |or |or1

All bits are
| verified.

Setting of the current value "3" ojlojofo

. t
Setting of the mask value "FFFFy" LN T O T T T T T T I O T I O A T I I} Verity is executed

where bit data is
II1II

2) When the current value is "14" and the mask value is "FFFCH"
When the mask value is "FFFC" , step operation is stopped when

the bit data except 2 lower bits of the current value and the trigger
device value become equal with each other.

Lower 2 bits of the trigger device are ignored.

When the value of the trigger devices becomes "12", "13", "14" or
“15", step operation is stopped.

[OOOCH (12)

| 000DH (13)
000EH (14)
000Fy (15)
td AY
b15 to b0
Value of the specified device o/t o/t |o/1for fort|or1]|or|omfori{os|om|or|on]or|or oA
A
b2-b15 are ie
verified. _E__Not verified
A
Set current value "14" ofojojojojo]lo}fo 6 ofofoj1|[1]1]0
Set mask value "FFFCH" 11ttt f1f{1]1f1]1]1][1]0]0

POINT

When status latch is being executed by a specified device, step opera-

tion according to break specification of a device condition can not be
executed. :

6. FUNCTIONS

(2) Method of step operation

Use the following procedure to execute step operation:
(a) Set the RUN keyswitch on the PC CPU to the STEP RUN position.

(b) Execute the step operation with the GPP/PHP/HGP.
Refer to the Operating Manual of a peripheral device for step
operation.

(3) Output (Y) state during step operation

The state of output (Y) differs with the method of setting the RUN
keyswitch to the STEP-RUN position.

(@) Operation : RUN —» PAUSE — STEP RUN
When the RUN keyswitch is set to the STEP RUN position, the
ON/OFF state of all outputs (Y) are retained and the operation is
stopped.
Step operation with the GPP/PHP/HGP is executed by using the
ON/OFF state of output (Y) at the time of stop.

0 —> END 0 —>END
0 — END STEP RUN

PAUSE | Execution of the

» ti
RUN keyswitch JRUN ?steepnggleerg o

STOP

RUN/STOP state | RUN

Output (Y) ON
OFF
<«—— Result of the sequence program —»le The output >
operation is output. state at PAUSE
is retained.

(b) Operation :RUN — STOP — STEP RUN
After storing the state of all outputs (Y) in the internal memory, all
outputs (Y) are turned OFF, operation is stopped.

0 END
STEP RUN
STOP I
RUN - i -
RUN keyswitch tEhxee:;jetlpon of
STOP
RUN

RUN/STOP state

Output (Y)
OFF

= Result of the = QOutputs are all OFF.—% Output state —»
sequence program at STOP is
operation is output. re-output.

6. FUNCTIONS

(4) Processing of timers and special timing clocks when step operation is
executed

Processing of timers in the sequence program and special timing clock
(MS030 to M9034) is as follows.

(a) Timers
e 10 ms timer................... 10 ms is added every 1 scan execution.
+ 100 ms timer................. 100 ms is added every 10 scans

execution.
(b) Special timing clock
e M9030 (0.1 s clock)....... Turned ON/OFF every 5 scans.
» M9031 (0.2 s clock)....... Turned ON/OFF every 10 scans.
e M9032 (1 s clock).......... Turned ON/OFF every 50 scans.
» M9033 (2 s clock).......... Turned ON/OFF every 100 scans.
» M9034 (1 min clock).... Turned ON/OFF every 3000 scans.

6. FUNCTIONS

AnS
. A3H AnU A2C
API:;I::?SbIe ‘Glnsl‘#_l An A1TFX A3M A3V AnA A2AS QCPU-A| A0J2H A52G A73
JANG | o X o [} [} o o] X X o]

Remark | *1: Only the AnN is applicable.

6.8.3 Precautions for step operation
The following describes the precautions for step operation.

(1) Loop count is counted after execution of the step specified as a stop step
in the step operation with the loop count specification.
Therefore, when the step specified as a stop step has not been executed
due to the CJ instruction, loop count is not counted.

(2) When the RUN keyswitch is moved from the STEP RUN position into the
STOP position or from the RUN position into the STOP position, the state
of outputs before STOP is retained in the internal memory of the CPU
module.

Therefore, when the RUN keyswitch is moved from the STOP position
into the STEP RUN position or from the STOP position into the RUN
position, the outputs retained in the internal memory of the CPU module
are re-output before executing the operation.

Move the keyswitch from the STOP position into the STEP RUN position
or the RUN position after reset in order to disable output of the outputs
in the internal memory of the CPU module at the STOP state.

(3) The next step of the NEXT instruction step can not be set to a stop step
in the step operation by the loop count specification.
If the next step of the NEXT instruction is set to a stop step in the step
operation by the loop count specification, an error occurs and the PC
CPU stops.
At that time, the error message "CAN'T EXECUTE(P)" is displayed.
In the case of the operation by each instruction, this setting does not
cause an error.

(4) When the operation processing is stopped with the step operation, /O
refresh is executed.
The PC CPU using the refresh mode receives or outputs signals during
the operation.

6. FUNCTIONS

AnS
. A3H AnU A2C
APF::I::?Sble I-\Annsrf-l An A1FX A3M A3V AnA A2As |QCPU-A[A0J2H AB2G A73
o X o X o 0 o o X /N o
Remark | *1: Usable with the A2CCPUC24(-PRF) and A52GCPU(-T21B).

6.9 Clock Function

Some PC CPUs have the clock function inside of the CPU module.

It can be used for time management, because clock data can be read with
a sequence program.

Clock operation by the clock function is continued with a battery when the
PC CPU is powered off or at momentary power failure more than 20 ms.

POINTI

Clock operation can not be continued if the following is done when
the PC CPU is powered OFF or at momentary power failure more
than 20 ms.

e The connector of the battery is uncoupled.

* The memory cassette is removed from the CPU module.

(1) Clock data
Clock data is the data comprised of year, month, day, hour, minute,
second, and day of the week used by the clock element installed inside

the PC CPU.
Data Name Description
Year The lower 2 digits of the Christian Era
Month 1to12
Day 1 to 31 (A leap year is distinguished automatically)
Hour 0 to 23 (Controlled 24 hours)
Minute 0 to 59
Second 0to 59
0 Sunday
1 Monday
2 Tuesday
Day of the week 3 Wednesday
4 Thursday
5 Friday
6 Saturday

(2) Precision
Precision of the clock element depends on the operating ambient tem-
perature as shown below.

isi in S d
Ambient Temperature (°C) Precision (Week by Error in Seconds)

Except AnA and AnU AnA and AnU
+55 +15.5 within + 8
+25 +2.75 within + 15

o} +8.5 within £ 7

6. FUNCTIONS

(3) Special relays and special registers for reading and writing clock data.
The following describes the special relays and special registers used for
setting data and reading clock data for clock operation.

The devices enclosed in square brackets [| are used for the
A2CCPUC24(-PRF) and A52GCPU(-T21B).

(a) Special relays used for the clock function

Device Name Description
M9025 Clock data set e Clock data is written to the special register (D9025 to
[M9073] | request D9028) for the clock operation.

« After the END instruction is executed in a scan in which
M8025 is turned ON the clock data stored in D9025 to
D8028 is written to the clock element.

M90286 Clock data error » Error is detected when a clock data is set.

[M9074] e Turned ON when each data is not BCD data.

M9027 1 | Clock data » Clock data is displayed on the LED display on the front
display of the PC CPU.

¢ When M9027 is turned ON, clock data is displayed on
the LED display on the front of the CPU module.

M9028 Clock data read s Clock data is read to the special registers (D9025 to

[M9076] | request D9028).

» When M9028 is turned ON, clock data is read to D9025
to D9028 after execution of the END instruction.

*1 Usable with ASA A73 and A3N.

(b) Special registers used clock data

Device Name Description

D9025 Clock data s Year and Month are as follows.
[D9073] | (year and month) b15__ to b8 b7 to b0

. , —

I—— Month {01 to 12 are stored in BCD)

Year (00 to 99 are stored in BCD)

D9026 Clock data ¢ Day and Hour are as follows.
[D9074] (day and hour) bi5 to bB b7 to b0

~ v

L—— Hour (01 to 31 are stored in BCD)

Day (00 to 283 are stored in BCD)

Dg027 Clock data * Minute and Second are as follows.
[D9075] | (minute and b15 to b8 b7 to__ bO
second)

;—Second (00 to 59 are stored in BCD}

Minute {00 to 59 are stored in BCD}

D9028 Clock data » The day of the week is as follows.
[De076] | (day of the week) | pys to__ b4 b3to b0

]_’ The day of the week

{0 to 6 are stored in BCD)
0 is stored.

o Setting of the day of the week is as follows.

Day of the week | Sun. {Mon. | Tues. | Wed. | Thur. | Fri. | Sat.
Data stored 0 1 2 3 4 5 6

6. FUNCTIONS

(4) Writing clock data to the clock element

(a) Use the following procedure to write clock data to the clock
element.

1) Store clock data to D9025 to D9028 in the BCD code by use
of the sequence program or a peripheral device.

2) Turn M9025 ON by use of the sequence program or a peripheral
device, and write the data of D9025 to D9028 to the clock element.

(b) Writing example of the clock data by use of the sequence program.
Write request

X000 P H
0%.; [MOV 8911 D9025H November, '89

PH
- ——————{ MOV 1011 D9026 H 11 o'clock on 10th

PH
= —{ MOV 3524 D9027H 35 min 24 s
PH

— —— MOV 0005 D9028H Friday: 5

= (M9025)

(c) When writing clock data with a peripheral device, use the test mode.
Refer to the Operation Manual of the peripheral device for turning
ON/QFF the special relays and writing data to the special registers
with the test mode.

POINTSI

(1) The CPU is shipped without clock data being correctly set.
When using the clock function, write clock data to the clock element.

(2) When correcting some parts of clock data, it is necessary to write all
data again to the clock element.

(3) If illegal clock data is written to the clock element, the clock opera-
tion can not be executed normally.

13 (month) 32 (day)

(6) Reading clock data

(a) When reading clock data to D9025 to D9028, turn M9028 ON by
use of the sequence program or a peripheral device.

(b) The PC CPU which has a 16 digit LED indicator on the front can
display clock data (month, day, hour, minute, second).
To display clock data on the LED indicator, turn M9027 ON.
Clock data has the lower priority of order for display when an error
occurs it is displayed, and clock data is not displayed.

e T vy

A3ACPU
(07M 27D 10:50: 07)

* Data of year and day of the week are
not displayed.

Second
Minute
Hour

Day (D)
Month (M)

6. FUNCTIONS

(6) When an AnA, A2AS, AnU and QCPU-A is used, data of a specified
word device can be written to, and read from the clock element with a
dedicated instruction.

When clock data is set with peripheral digital switches, use a dedicated
instruction.

- —— Example

A program for setting clock data using peripheral digital switches
is as shown below.

System configuration
The system configuration for setting clock data.

Main base
AX40 /

Power |AnA
supply {AnU X0
module to
I:I X7
X8
X9

Digital switch for setting
clock data

E—— Clock data setting command
S Write command to the clock

slement

Clock data storage device
Devices used to store clock data are as follows.

Do Year

D1 Month

D3 Day

D4 Hour

D5 Second

Dé Day of the week

Program example
The following is a program to write clock data to the clock

element.
X008 MO r P K2 zZ
— 3 [MOV X000 po H o
p Clock data is written to
DO to D8.
- Nne z | °
K .

- = z 7 RST Z H l When setting of clock data
is completed, MO fcltock
data setting completion

~ SET Mo HJ flag) is set, and Z is reset.

X009 MO r

— | {LEDB DATEWR H

= [LEDC Do H | Writing clock data

= [LEDR K

- [RsT Mo H

6. FUNCTIONS

(7) Handling the year 2000

Year 2000 is a leap year, so February 29 comes after February 28.
The AnSHCPU automatically fixes data by the clock element in the CPU
module, so the user does not have to manually set the date to the clock
element.

The year only contains the last two digits of the year. Therefore, when
the clock data is read from the PC CPU and used in the sequence control,
the year data may have to be fixed using a sequence program depending
on the usage.

Year 1999 — "09"
Year 2000 — "00"

When comparison is made only with the last two digits of the year read,
the year 2000 and consecutive years are considered older than the year
1999.

6. FUNCTIONS

AnS .

. A3H AnU
AP'::I:;:SME AnN An AIFX | A3H A3V AnA | AU lacpu-Af AcueH | A2G | A73
AN X X X X (<] A2 X X X °

*1 : Only the AnN is applicable.

Remark | .5 Only the AnU is applicable.

6.10 1/0 Module Replacement During Online

When I/O modules or special-function modules are replaced when the PC
CPU is in the ON state, the "UNIT VERIFY ERROR" occurs.

And the operation of the PC CPU stops or the I/O numbers become differ-
ent from set numbers.

The I/0 module replacement during online is to replace I/O modules with-
out causing the "UNIT VERIFY ERROR" when the the PC CPU is in the ON

state.
AX41 (O1d) AX41 (New)
ala| @

- =] =~ glele — —_
alele 2lEl=]= 2 2

@ £lelE 5/l2lglg £ £
S olo{o ol &l oy 2 o o
S ol o| o £ g g © Q <%
o o|la|o ejelc o o
= ~|o] o c])
~ | =] ~—~ 9 ()] @ [0} ~ —
Zle|e]|2]e HEIEIE ° o
= =] =] =] c =] =
2135|B|olo slelele 5 B
aloloele]oe “|E|E|E o o
~|E|E|E|E Bl=]l=|= £ E
olSlsl=el= s|2l 2| 2 - =
z s| S| > ol & &8 = =
o o [«% . Q. o = p=1 = Q. o
alols|lElE w]Oo|lO|O £ £

Fig. 6.20 1/O Module Replacement During Online

(1) Purpose
The 1/O module replacement during online can be used while continuing
the control with the sequence program and allow I/O modules to be
replaced without causing "UNIT VERIFY ERROR"

(2) Operation procedure

(@) Use the following procedure to replace an I/O module during online:

1) Set the upper 2 digits of the head 1/0 number displayed in 3
digits of the 1/0 module to be replaced into D9094
(Replacement |I/O head I/0 number storage register).
Example : Head I/0 number 070 — Set number: H0Z

Head I/0 number 170 —» Set number: H17

2) Set M3094 (I/O replacement flag).
3) Replace the specified I/O module.
4) Reset M9094 (1/O replacement flag)

6. FUNCTIONS

(b) Data can be set for D9094 and M9094 can be turned ON/OFF by
sequence program or a peripheral device.

(a) Using the sequence program

(b) Using a peripheral device

The specified I/0 module can be replaced with
the following sequence program when the PC

The 1/0 module specified with the test mode
of a peripheral device can be replaced.

MELSEC-A

CPU is in the RUN state.

The upper 2 digits of the head
I/O number of the 1/O module to

The PC CPU may be in either the RUN state,
the STOP state or the PAUSE state.

g:ﬁ::itition be replaced are specified. PROCEDURE
F— MOVP HIil D9094 . .
_[(1) Connect the peripheral device to the PC
——M9094 CPU. . .
(2) Set the upper 2 digits of the head l/O
* This sequence program can be written with a peripheral number of the I/O module to be replaced to
D9094 with the test mode.
device to the PG CPU in the RUN state. (8) Set (turn ON) M9094 with the test mode.

(4) Replace the specified I/0 module.
(5) Reset (turn OFF) M9094 with the test mode.
(Operation of the replaced module starts.)
(1) Turn ON the input condition, and set the
replacing module number to D9094.
M9094 is turned ON.
(2) Replace the specified 1/0 module.
(3) Turn the input condition OFF.
M9094 is turned OFF.

(Operation of the replaced module starts

again.)
(3) Each module executes processings as follows according to the ON/OFF
state of special relay M9094.
M9094 | Module Processing Contents in the CPU "RUN" State
1) The operation state is stored to the image memory area of X or Y in the CPU when the first END
is processed after M9094 is turned ON,
After that, the corresponding input or output module is not accessed.
2) After M90¢4 is turned ON, the operation processing of the corresponding input module is
CPU executed (ON or OFF) of the image memory area of X.
3) After M9094 is turned ON, the resuit of the execution processing of the CPU is stored in the
ON image memory area of Y by the operation of the corresponding output module.
4) After M9094 is turned ON, verify of module and fuse blown check are not executed for all
modules.
Replaced [1) The operation state at the first END instruction processing after turning ON M9094 is retained
module and the operation is stopped.
Other 1) Normal operation.
modules The module which executes output according to data of the input module to be replaced
operates in the condition that the input data is fixed.
1) The input module executes operation processing with data of the image memory area of X in
the first END processing after M8094 is turned OFF.
The corresponding input module is accessed.
CPU 2) An output module outputs data (ON or OFF) of the image memory area of Y in the first END
processing after M9094 is turned OFF.
OFF The corresponding output module is accessed. .
3) After turning M9094 OFF, verify of module and fuse blown check are restarted for all modules.
Replaced 1) Access is restarted with data of the image memory area of the CPU after the END processing
module after M9094 is turned OFF.
Other .
modules 1) Normal operation.

* Replacement with a peripheral device (force M9094 ON/OFF) while the CPU is in the STOP
state is the same as mentioned above.
Since all outputs are turned OFF, all processing stops.
Output resumes in the RUN state.

6. FUNCTIONS :

(4) Precautions

NO. Item Precautions

Replacement of special
function module

They cannot be replaced online. Turn OFF the power and replace.

1) Only the I/O modules which have the same number of /O points can be substituted.
(When the number of I/O points is different, errors may occur.)

2) Only the modules specified with special register D9094 can be replaced.
If module that is not specified is replaced, /O misoperation of the devices connected
with the module may occur because the module being replaced is still operating.

Keyswitch operation to | Set the keyswitch before replacement. Do not operate it until replacement is completed.
3. |the RUN and the STOP |Ifitis operated while replacement, the operation processing of the CPU is changed and
position /O misoperation is caused. .

1) When the power to the CPU is turned ON, HFF is set, and when the power is turned
OFF, the data memory is cleared.
4. |Operation of D9094 Data is overwritten by specifying the upper 2 digits of the head 1/0 number.

2) As the setting range and the set value of D9094 is not checked in the CPU, set the |/O
number correctly and replace.

2. |Replaceable /O module

After turning special relay M8094 ON, do not execute the test operation with a
peripheral device.

If the test operation is executed, the content of the relay enters the image memory area,
and when M9094 is turned OFF, it is output.

1) When the special relay M9094 is turned ON, the replacement module is stopped and
when the relay is turned OFF, it is operated with data of the image memory area.
Check the operation of the device after the replacement of the module.

Safe measures for Turn M9094 OFF, and restart the operation.
8. [replacement when the

CPU is in the RUN state |2) When a peripheral device which receives output is a display module such as the
ABFD, safe measures are not needed.

When a peripheral device is operated, provide interlock by use of the sequence
program or turn off the device.

Prohibition of the test
5. |operation with a
peripheral device

1)} Turn OFF the power supply, and load the replacement module.
The "UNIT VERIFY ERR" error message appears, if a module is loaded in the ON

state.
In case a power failure |2y |f I/O numbers are allocated, the /O numbers are not changed.
more than 20 ms This can prevent wrong input and output.
7. |occurs (CPU is started - —
initially) while the 3) If 1/O numbers are not allocated, when the CPU module is started initially, the vacant
module is removed slot allocated automatically as vacant 16 points.

(Refer to Section 6.4.1.)

When the removed I/O module has more than 16 points, the I/O numbers will be
changed, and wrong input and output may occur.

Therefore load the module in the OFF state.

6. FUNCTIONS

Applicable
CPU

Remark

All Types of CPUs

6.11 Device Comments

The Name and application of a device can be assigned when programming.
The device name and application are called comments.

(1) Purpose of a comment

If a comment is registered, it can be used as follows.

(a) A comment can be attached to a device and displayed when the
program is monitored.
The devices used in the program are displayed with name and
application, so that it is convenient when corrections are to be
made to the program.

(b) A comment can be attached to the sequence program and can be
printed.
Sequence program, device names and applications are printed at
the same time, so that a program can be understood easily.

(c) The ABFD can display the comment data of the PC CPU by use of
the sequence program.
The A6FD can display error contents by use of the fault detection
ladder with annunciators.

(2) Number of comments and storage area

Number of comments that can be stored in the PC CPU and the storage
area are as shown in Table 6.2.

Table 6.2 Number of Comment and Storage Area

A2(S1), A3, A3H, A2A(S1), A3A, A73, AU
Azﬂgg'1;‘1f;&53 A1 A1SJH, A1SH A2N(S1), A3N, A3M, A2U(S1), A3U,
: A1IN A2SH(S1), A1FX A2AS(S1/530), A2USH-S1, Q02, Q02H,
AOJ2H, A52G QO6H
Number of » 0 to 128* 0 to 3648 .
comments 0 to 1600 (FOto F127) | (In unit of 84) 0 to 4032 (in unit of 64)
srtg;age Memory area in the CPU module User memory area in the memory cassette

*0 to 4032 comments can be created with a peripheral device.

6. FUNCTIONS

(3) Devices to which a comment can be added

(a) Bit devices
Input (X)/output (Y)
Internal relay (M)
Latch relay (L)
Step relay (S)
Link relay (B)
Annunciator (F)
Timer (T)
Counter (C)

(b) Word devices
Data register (D)
Link register (W)
File register (R)

(c) Others
Pointer (P)
Interrupt pointer (1)

POINTSI

(1) Comments of the special relay and the special register are stored
onh a system floppy disk.
User can not create comment for the special relay and the special
register.

(2) The comment of input (X) and output (Y) can not be created with the
same /O number.

(3) All devices’ (except the input and output devices) comments can be
created with the same device number independently in the main
program and the sub-program.

(4) - Creating a comment

(a) A maximum of 15 characters can be used for the comment of 1
device.

(b) Alphanumeric characters (upper and a lower cases) and special
symbols can be used to create a comment.

6. FUNCTIONS

Applicable

CPU All Types of CPUs

Remark

6.12 Watchdog Timer
(1) Watchdog timer

The watchdog timer is an internal timer of a programmable controller to
detect the error of hardware and a sequence program.
Default value is set for 200 ms.

(2) Reset watchdog timer

Before step 0 is executed (after the END processing is executed), a
programmable controller resets the watchdog timer.

When a programmable controller is operating normally and the END
instruction is executed within the set value in a sequence program, the
watchdog timer does not time out.

When the END instruction has not been executed within the set value
due to an error in the programmable controller or the scan time of the
sequence program was too long, the watchdog timer times out.

When it exceeds the

Sequence program set value, a watch
/ dog timer error
Internal processing gccurs.

time

r N— N ——
0 END 0
E—

WDT reset
(internal processing of the
programmable controller)

Fig. 6.21 Reset of the Watchdog Timer

6. FUNCTIONS

(3) Processing when the watchdog timer has timed out

When scan time exceeds the set value of the watchdog timer, a watchdog
timer error occurs, and the programmable controller operates as follows.

(a) Outputs of the programmable controller are all turned OFF.
(b) The RUN LED on the front of the CPU module goes out or flashes.
(c) Mg008 is turned ON, and an error code is stored to D9008.

1) The setting time of the watchdog timer can be changed by the parameter setting with the
peripheral device.
But when A3H, A3M, AnA, A2AS, AnU and QCPU-A are used, the setting time of the
watchdog timer can not be changed.
Refer to Chapter 8 for details on the parameter setting.

2) The watchdog timer can be reset with the WDT instruction in the sequence program.
Scan time is not reset and is measured till the END instruction.

6. FUNCTIONS

Applicable

CPU All Types of CPUs

Remark

6.13 Self-diagnosis Function

The self-diagnosis is the function that diagnoses an error in the PC CPU
itself.

(1) Self-diagnosis timing

The self-diagnosis is executed when the PC CPU is powered on or reset
and when each instruction including the END instruction is executed.

(a) At power on or reset
Executability of operation by the PC CPU is diagnosed.

(b) At the execution of each instruction '
When the operation of each instruction of a sequence program
cannot be executed normally, an error occurs.

(c) At the execution of the END instruction
The diagnosis (watchdog, /0 module verify and fuse blown) that
does not influence the operation of the sequence program is exe-
cuted.

(2) Operation mode at error detection

There are two methods of operation mode, one of which stops the
operation of the PC CPU and the other continues operation when an
error is detected by the self-diagnosis.

There is an option, by parameter setting, to stop the operation when an
error occurs in the mode that continues the operation.

(Refer to Section 6.13.1.)

(a) When an error which stops operation is detected by the self-diag-
nosis, -operation is stopped and all outputs (Y) are turned OFF.

(b) When an error which continues operation is detected, only the
part of the program where the error occurred is not executed, the
next step and remaining program is executed.

When an I[/O module verify error is detected, operation is contin-
ued with the I/0 addresses before the detection of the error.

6. FUNCTIONS

(3) Confirmation of error contents

When an error is detected, M9008 (self-diagnosis error) is turned ON
and an error code is stored to D9008 (self-diagnosis error).

Confirm error contents, especially in the continue mode, to prevent the
PC CPU or a machine system from misoperating.

Error contents detected by the self-diagnosis are as shown in Table 6.3.
Refer to the User’s Manual of the PC CPU on the self-diagnosis contents
that can be used in each PC CPU.,

(1) Two different states mentioned in the "state of the CPU" and the "state of RUN LED"
columns in Table 6.3 can be switched by the setting with a peripheral device.

(2) The message on the LED display is as shown below when the error contents of the error
is related with the CHK instruction in the Operation Check Error.

R L]

[<CHK> ERRORL.L. it 4]

Displays an error code in 3 digits.

(3) *1: When an error is detected during a sequence program execution, an operation error
flag (M9010, M9011) is set, and the error step of the instruction with which the error is
detected is stored in an error step storage register (D9010, D9011).

When an operation error (D9008 : 50) occurs with an AnA, AnU or QCPU-A the error
step number can be checked by monitoring D9010 and D9011.

6. FUNCTIONS

Table 6.3 Self-diagnosis is Contents and Error Messages

Diagnosis Contents

Diagnosis Timing

State of the

State of the

LED Message

CPU RUN LED (A3N, A3A, A3U, A4U)
Instruction code check At the execution of each instruction INSTRCT. CODE ERR
At power on or reset
Parameter setting check When {STOP/PAUSE} is change PARAMETER ERROR
into {RUN/STEP-RUN}
When M9056 or M9057 is in the ON
Without the END state
instruction When switching from {STOP/ MISSING END INS.
- PAUSE} to {RUN/STEP-RUN}
=3
@ At the execution of each instruction st Flick
> . . [CJ] [SCJ] [UMP] [CALL(P)] op icker
S Instruction execution [FOR-NEXT] CAN, T EXECUTE(P)
E is disabled e '
[When switching from {STOP/
2 PAUSE} to {RUN/STEP-RUN}
Format (CHK instruction) When switching from {STOP/
check PAUSE} to {RUN/STOP-RUN} CHK FORMAT ERR.
. . At interruption occurrence
Inetruction execution When switching {STOP/PAUSE?} to CAN, T EXECUTE ())
{RUN/STEP-RUN}
Without a memory
cassette At power on or reset CASSETTE ERROR
At power on or reset
RAM check When M9084 is in the ON state RAM ERROR
during STOP
% Operation ladder check At power on reset OPE. CIRCUIT ERR.
R Stop Flicker
o)
o Watchdog error monitor fA‘t the execution of the END WDT ERRCR
) instruction
The END instruction is At the execution of the END
not executed instruction END NOT EXECUTE
Main CPU check Usually WDT ERROR
At the execution of the END Stop Flicker
1I/0 module verify instruction (It is not checked when UNIT VERIFY ERR.
s M9084 or M9094 is in the ON state.)
g At the execution of the END
= | Fuse blown instruction FUSE BREAK OFF
(It is not checked when M9084 or :
M9094 is in the ON state.) Operation ON
At the execution of the FROM and
Control bus check the TO instructions CONTROL-BUS ERR.
Special-function module At the execution of the FROM and
- error the TO instructions SP. UNIT DOWN
o
g At power on or reset When switching st Fick
@ | Link module error {STOP/PAUSE?} to {RUN/STEP- op Icker LINK UNIT ERROR
3 RUN}
(=]
E 170 interrupt error At interruption occurrence I/O INT. ERROR
% Special-function module At power on or reset
5 allocation error When switching {STOP/PAUSE} to SP. UNIT LAY. ERR.
by {RUN/STEP-RUN}
[]
g -
é_ Special-function module Aﬁt ﬂ_lrc-i)execulion of the FROM and Stop Flicker SP. UNIT ERROR
error the instructions . '
Operation ON
At power on or reset
Link parameter error When switching {STOP/PAUSE} to Operation ON LINK PARA. ERROR
{RUN/STEP-RUN}
Battery | Battery voltage drop '\Rnggglj"ig ig‘t;feng:\lcst]t(:fgd Wwhen Operation ON BATTERY ERROR
Sto Flicker
* Operation check error At the execution of each instruction P OPERATION ERROR
Operation ON

6. FUNCTIONS

Applicable

CPU All Types of CPUs

Remark

6.13.1 Operation mode when an error occurs

The PC CPU can be set to stop or continue operation when the following
errors occur.
Stopping or continuing the operation is set with parameters.

(a) Operation error
(b) 1/0 module verify error
(c) Fuse blown

(d) Special-function module error
(1)

Default value of the operation mode when an error occurs

The default value (initial value) of the operation mode and the state of
the PC CPU when an error occurs are as shown in Table 6.4.

Table 6.4 Operation Mode at Time of Error

CPU Status
Operation RUN LED Special Special Self-
Error o check
"ERROR" on Relay Register Error
Defauit | NO "ERROR" Switched for Storing
Value Lepcpy | theLEDof on Data Number
other CPU (D9008)
Sequence program error, e.g.
Operation the value to be converted into . . M9010 D9o10
error BCD is greater than 0 to 9999 Continue Flicker On M9011 D9011 50
(or 0 to 99999999).
Any /O module status A3: Off
/O module detected is different from that : .
verify error at power on (e.g. 32-point Stop Flicker ASN. A3H: MS002 D9002 31
module change). Flicker
Fuse blow An output module fuse has . .
error blown. Continue Flicker On M9000 D9000 32
] FROM/TO Instruction has been A3: Off
Function . | executed to the siot without Stop Flicker A3N, A3H: Moois Dooo 46
any special function module. Flicker

6. FUNCTIONS

Applicable

CPU All Types of CPUs

Remark

6.14 Settinvg of the Output (Y) State when Switching from STOP to RUN

When the operation state is switched from RUN to STOP, outputs

(Y) in the RUN state are stored to the PC CPU.

Whether re-outputting outputs (Y) when the operation state is switched
from STOP to RUN or outputting them after executing the operation can be
set with the parameter.

(1) Re-outputcceeeennnnnn. The operation of a sequence program is exe-
cuted after outputting the outputs (Y) state
which were stored before the operation state
was switched to STOP.

(2) Output after executing... After clearing all outputs (Y) and executing
the operation the operation of a sequence program,
outputs (Y) are output.

STOP state — RUN state

NO (output after executing the operation)

Re-output ?

YES (re-output)

Output the output (Y) state that was Output (Y) state clear
stored immediately before the STOP put (¥)
state began.

Sequence program operation
execution

Fig. 6.22 Processing when the Operation STOP State is Switched from RUN

6. FUNCTIONS

Applicable
CPU All Types of CPUs

Remark

6.15 Registration of the Entry Code

The entry code is used to prohibit programs and comments in the PC CPU
from being read or rewritten with a peripheral device.

(1) Read/write from the PC CPU to which the entry code is registered.
In case the key word is registered, parameters, main/subprograms
and comments can not be read or written from the PC CPU to a pe-
ripheral device unless the entry code is entered to the peripheral de-
vice.

(2) Registration and cancellation of the entry code
A maximum of 6 digits in hexadecimal (0 to 9, A to F) can be used to
set the entry code.
The entry code is registered or canceled with parameter setting.

6. FUNCTIONS

Applicable
CPU

Remark

All Types of CPUs

6.16 Registration of the Print Title

The print title is the comment of the system name and the program name
used with the sequence program.

(1) Purpose

If the print title is registered, it can be printed.
The printed print title can be used for the cover of a sequence

program.
M O M O W W M M W M W N O M MM N N MW
E 3
* MELSEC-A =
* *
* Designed hy MITSUBISHI ELECTRIC =
3 I
* 1985-9-1 »
k.3 E
* AGGPP *
3 3
FE W I W MW I I I I W W W I M N I I I I M

(2) Setting the print title

(a) A maximum of 128 characters (32 characters x 4 lines) can be
used to make the print title.

(b) The print title is set by parameters with a peripheral device.

6. FUNCTIONS

AnS
. A3H AnU A2C
Al Al X o o Al Al X X X)

Remark | *1: Only the A3, A3N, A3A, A3U, and A4U are applicable.

6.17 Display Mode Setting of Annunciators (In case of the CPU module with the LED indica-
tor of 16 characters)

As for the PC CPU that has the LED indicator of 16 characters on the front
of the CPU module, the LED indicator displays the annunciator number
stored in D9009 when the annunciator (F) is turned ON.

At this time, in case a comment has been added to the annunciator, the
following setting is enabled with a parameter.

(In case a comment has not been added to the annunciator, the setting
with comment is disabled.)

(1) Without comment : Only the annunciator number is displayed on the
LED indicator.

Sequence program

X0
F———{ SET F5

F5:ON LED indicator

pooos [s|e—p [TTTTTTTTTTTTTIFE
K}

An annunciator number
is displayed.

Fig. 6.23 Without Comment

(2) With comment : An annunciator number and a comment are displayed
alternately on the LED indicator every 2 s.

Sequence program

X0
p————{ SET FsH

F5:ON
Doooo[5]
:::>Illllllllllllllll
Commentof F5[[[[TTTTITTTITTI]] {

An annunciator number and
a comment are displayed
alternately every 2's.

Fig. 6.24 With Comment

6. FUNCTIONS

AnS
Applicable | AN An AtFx | A3H A3V | AnA | Anl lacpu-A| AcszH | A2G | A7
CPU
A X 0 X X o o o o o 0
Remark *1 : AnN is unusable.

6.18 ERROR LED Indication Priority Setting

The following functions are available by changing the ERROR LED indica-
tion priority setting:

(a) Unnecessary error indications among those given in Table 6.5 can
be avoided.
For example, it is possible to set the ERR. LED not to be lit even
when an annunciator is turned ON.
This feature is not available with the errors that stop the sequence
program operation.

It is possible to reset an annunciator by using a LEDR instruction.
By setting the annunciator to the first priority, it is possible to re-
set the annunciator (F) by using a LEDR instruction regardless of
other error contents.

(The LEDR instruction cannot be used for resetting the annuncia-
tor (F) when an error whose ERR. LED indication priority is higher
than the annunciator occurs.)

(1) Default priority settings for the ERR. LED indication are as given in

Table 6.5.
Table 6.5 Error Indication Priority
P Error Item ERROR LED State at an
Priority Error Contents No. Error Occurrence
Error with which the operation
High stops unconditionally -
1/O module verify Fuse blown 1
Special module error Lit
Operation error
Link parameter error 2
SFC parameter error
SFC operation error
CHK instruction execution 3 Unlit
Low Annunciator (F) on 4 Flicker
Battery error 6 Lit

6. FUNCTIONS

(2) Changing the priority
Change the ERR. LED indication priority by designating an error item
number given in Table 6.5 with D9038 and D9039 (LED indication pri-
ority storage registers).
The priority order and default settings (settings by the PC CPU initial
processing) to be set with D9038 and D9039 are as given in
Table 6.25,

[Priority order set with D9038 and D9039]

|<-—— Dso3g —+— D9038—

v

bi5 to b4b3 to bObi5 to bi2b11 to b8 b7 to b4ab3 to bo

Priority 5 Priotity 4 | Priority 3 Priority 2 Priority 1

“ R v
~

~
Ignored Error item No. setting area

[Default settings with D9038 and D9039]

I‘—‘— Dg039g =|l< D9038

v

b15 to b4b3 to bObi15 to bi2b11 to b8b7 to b4b3 to bO

0 0 0 6 4 3 2 1

Fig. 6.25 Priority Settings with D9038 and D9039

POINTSl

(1) To set the ERROR LED to be unlit when an error given in Table
6.5 occurs, set the error item No. in D3038 or D9039 to 0.
Example: To set the ERROR LED to remain unlit when the

ahnhunciator is turned ON, change error item No. 4 to 0.

bis to b4b3 to bOb15 to b12b11 to b8b7 to b4b3 to bO

0 0 0 6 0 3 2 1

Since error item No. 4 is not
set, the ERROR LED will remain
unlit even when the annunciator
is turned ON.

(2) Even though the ERROR LED is set to remain unlit, M9008
(CPU error flag) is turned ON and the error code is stored in the CPU
error register.

7. METHOD OF DATA COMMUNICATION WITH

SPECIAL-FUNCTION MODULE

Applicable

ey All Types of CPUs

Remark

7. METHOD OF DATA COMMUNICATION WITH SPECIAL-FUNCTION MODULE

The following describes the method of reading data to the PC CPU from a
special-function module and writing data to a special-function module from
the PC CPU.

(1) Special-function modules

Special-function modules are used to deal with the analog data and
high-speed puises in the PC CPU which can not be processed only with
the /0 modules.

For example, analog data is converted to digital data through an analog-
digital converter module of the special-function module to be used with
the PC CPU.

The special-function modules have memory (buffer memory) in which
data received from the outside and data output to the outside is stored.

(2) Read/write of data from the PC CPU

Read and write data with the FROM/TO instruction.

When the FROM/TO instruction is executed, data stored in the buffer
memory of the special-function module is read, or data is written to the
buffer memory when the FROM/TO instruction is executed.

Special-function

. " module
Write with the TO {___.__
>
l
1
I
]

Read with the FROM
PCCPU instruction

<

instruction
Buffer <:> External
memory device

]

Fig. 7.1 Data Communication with A Special-Function Module

(1) Refer to the ACPU Programming Manual (Common Instructions) (1B-66250) for details on
the FROM/TO instruction.

(2) Refer to the manual of the special-function module for details on the buffer memory of the
special-function module.

8. PARAMETER SETTING

8. PARAMETER SETTING

(1) Parameters are used to specify the allocation of the user memory area

in the CPU module and the ranges of use of various functions.

Parameter data is stored in the head 3 k bytes of the user memory area.

(2) The default value has been arranged for parameter data as shown in

Table 8.1.

Parameter data utilize the default values.

(3) Parameter data can be changed within the setting range shown in Table
8.1 according to the purpose.
Execute parameter setting with a peripheral device.
Refer to the Operating Manual of each peripheral device for the opera-

tion of parameter setting.

‘REMARKSI

(1) The conversion from the setting unit to the humber of bytes used with the main sequence
program and the subsequence program is as shown in Table 8.1.

Setting Unit

Item Number of Bytes
Main sequence program capacity 1k step 2 K bytes
Subsequence program capacity
File register capacity 1 k points 2 k bytes
Comment capacity 64 points 1 k bytes
Sampling trace memory capacity 128 times 1 k bytes

(2) As for the comment capacity, additional 1 k bytes are included in the displayed value,
because 1 k bytes are added automatically when the comment capacity is set with a

peripheral device.

8. PARAMETER SETTING

Table 8.1 List of Parameter Setting Ranges

Setting Range

Default Setting AlS
Item . A2 A2-S1
A18-s1
Value Unit A1 A1ss'J_Ss3 ,A\gg A2N-S1
AN A1Q.1Jﬁ:|sa) A2sH A28-S1
ADJ2H A1FX A2SH-S1
Sequence program 1to6k 1to 8Kk
memory capacity 6 k steps 1 k step steps steps 1 to 14 k steps
Subsequencs program
memory capacity - 1k step - -
File register capacity — 1 k point — 1 to 4 k points
Comment capacity None 1622 ggi':::/ 12(%;:;)“8 0 to 4032 points
Memory
Allocation capacity 0/8 to 16 k bytes
of user
memory | Status latch | Data None — None/Provided
area memory
Common File i
parame- register None/Provided
ters
Memo.ry 0/8 k bytes
capacity
Device .
Sampling setting _ 128 times . Device number
trace
Execution Every scan
condition Every hour
Sampling 0 to 1024 times
count
Microcomputer Oto10k [Oto14k
program capacity None 2 k bytes bytes bytes 0 to 26 k bytes
Link relay (B) BO to 3FF
Latch (power Timer (T) L1000 to - TO to 255
failure backup) |4 n1er (C) 2047 only | 1Point CO to 255
range setting
Data register (D) DO to 1023
Link register (W) WO to 3FF

8. PARAMETER SETTING

o : Setting possible x : Setting impossible

Peripheral Device
Usable for Setting *
A2A-s1
A2A | A2U-s1
A3 A3H A2C A3A Qo2 Other
A73 A2U | A2AS-S1 A4U QO6H PU
A3N A3M A52G A2AS | A2AS-s30 A3U QO02H than PU
A2USH-s1
1to8k 1to28k | 1to 30k
1 to 30 k steps steps 1 to 14 k steps 1 to 30 k steps steps steps o o
1 to 30 k steps
1to 30 (upto 3 1t030k
110 30 k steps - — k steps | programs can - steps ° °
be set)
. 1todk . R
1 to 8 k points points 1 to 8 k points 0 to 8 k points [¢] o
0 to 4032 points X o
0/8 to 16
0/8 k to 24 k bytes K bytes
None/Provided - X o
- None/
None/Provided Provided
0/8 k bytes
Device number
- X [
Every scan
Every hour
0 to 1024 times
0 to 58 k bytes Oto 14k 0 to 26 k bytes 0 to 58 k bytes X °
bytes
AnA : BO to BFFF, AnU : BO to B1FFF BO to B1FFF
TO to T255, T256 to T2047
CO to C255, C256 to C1024 ° °
AnA : DO to D6143, AnU: DO to D8191 DO to D8191
AnA : WO to WFFF, AnU : WO to W1FFF WO to W1FFF

*: "PU" and "Other than PU" in the Peripheral Devices Usable for Setting column correspond
to the following devices:
PU : ASPUE
Other than PU : Devices which are not using GPP function software
package and which can set the CPU type by PC type setting.

8. PARAMETER SETTING

Table 8.1 List of Parameter Setting Ranges (continued)

r

Setting Range

setting

Item Default Value Settl_ng M_s A2 A2-81
Unit A18-51 A2N
A1 A18J-83 A2S A2N-S1
A1N ngﬁ:'ss) A2SH A2s-S1
A0J2H A1FX A2SH-S1
Number of
link stations 11064
X0 to FF
Input (X) X0to FF | A0 | %0 to 1FF | X0 to 3FF
p;i‘:ts X0 to 1FF
Link range
setting None Yo to FF
Output (Y) Yoto FF [2 1 voto 1FF | Yo to 3FF
YO0 to 1FF
Link relay (B) BO to 3FF
Common Link register 1
parame- (W) g point WO to 3FF
ters
Internal relay (M), latch relay MO to 299 1 M/L/S 0 to 2047
(L), and step relay (S) setting L1000 to 2047 point |M, L, and S are continuous numbers
Watchdog timer setting 200 ms 10 ms 10 ms to 2000 ms
Timgr 70 to T255 100 ms : TO to 199 8 ﬁrsnsersomts for 100 ms, 10 ms, and retentive
setting 10ms : 720010255 | points Timers must be continuous numbers
Interrupt 256 points for counters and interrupt
Counter 8
setting counter None points counters

Counters must be continuous numbers.

8. PARAMETER SETTING

o : Setting possible x : Setting impossible

Peripheral Device
Usable for Setting *
A2A-S1
A2A A2U-S1
A3 A3H A2C A3A Qo2 Other
A73 A2U A2AS-S1 A4U QO06H PU
A3N A3M A52G A2AS | A2AS-S30 A3U QO2H than PU
A2USH-S1
X0 to 7FF X0 to 1FFF(0 to 1FF] X0 to 3FF |X0 to 7FF X0 to FFF
X (o]
YO to 7FF YO to 1FF|YO to 1FF| YO to 3FF |YO to 7FF Yo to FFF
BO to 1FFF
WO to 1FFF
M/L/S 0 to 8191 o o
M, L, and S are coniinuous numbers
100 ms
ﬁggdms to 200 ms fixed o [¢]
2000 ms
o o
Interrupt
count
counters —_ Interrupt count counters (C224 to 255) setting o o
(C224 to
225) setting

*: "PU" and "Other than PU" in the Peripheral Devices Usable for Setting column correspond
to the following devices:
PU : ABPUE
Other than PU : Devices which are not using GPP function software
package and which can set the CPU type by PC type setting.

8. PARAMETER SETTING

Table 8.1 List of Parameter Setting Ranges (continued)

Setting Range

ad A3M

Setting Als A2 -
Item Default Value Unit AlS-Si AZN A2-81
A1 A18J-83 A2S A2N-$1
A1N Mg\jﬁrlsa) A2SH A2s-s1
A0J2H A1FX A2SH-S1
Input (X)
module
Output (Y)
1/0 number R .
allocation module None 16 points 0 to 64 points
Special func-
tion module
Vacant slot
R te RUN/PAUSE tact ot
emote contac . AO0J2H,
setting None 1point | XOto FF | , g 'sy. | X0 to 1FF | X0 to 3FF
X0 to 1FF
Fuse blown Continue
Common :
f S
parame- Operation 1/O verify error top
H - -
ers g\rc:gre at Operation error Continue - Stop/Continue
occurrence Spec_lal
function Sto
module check p
error
Annunciator display mode — — —
Operation state
. . Output of state before STOP or after
STOP — RUN display mode before STOP is — operation execution
output.
Print title registration None — 128 characters using all keys on MELSAP
Entry code registration None — Hexadecimal (0 to 9, A to F) Max. 6 digits
Total number
of slave
stations
Protocol
Remote Head station
Parameter inal number
for A2c | lermina - — —
setting
Mode setting
Parameter
for A3H 1/0O control setting — — —

8. PARAMETER SETTING

0 : Setting possible x : Setting impossible

Peripheral Device
Usable for Setting *
A2A-S1
A2A A2U-$1
A3 A3H A2C A3A Qo2 Other
A73 A2U A2AS-S1 A4U Qo6H PU
A3N A3M A52G A2AS | A2AS.S30 A3U Qo2H than PU
A2USH-s1
_ 0 to 64 points X
Module type can be entered. °
X0 to 7FF X0 to 1FF [X0 to 1FF} X0 to 3FF [X0 to 7FF X0 to FFF X o
X o
Alternate display of F Qfltgrgsrt:bogrs[/al:y
number / — — . — X o
: number with
F number with comment comment
X o
X o
o o
1 to 64
MINI standard
/ No protocol
1 to 61
— X o
0: Automatic
online return
enabled
1; Automatic
online return
disabled
2: Transmission
stop at online
fault
Direct/refresh setting for
input and output — o [
independently

*: "PU" and "Other than PU" in the Peripheral Devices Usable for Setting column correspond
to the following devices:
PU : ABPUE
Other than PU : Devices which are not using GPP function software
package and which can set the CPU type by PC type setting.

8. PARAMETER SETTING

Table 8.1 List of Parameter Setting Ranges (continued)

Setting Range

Parame-
ters for

the AnA,
and AnU

Item Default Value sfjtrtliil:g A1l\s1_sé1 A2 A2-S1
A1 AlSJ-s3 ﬁgg A2N-$1
A1N A1Is\\11ﬁ?ss) A2SH A2S-S1
ADJ2H A1FX A2SH-51
T256 to T2047
Extension
timer — — —
Number of
points in use
Set value device
. Number of
Extension points in use . _
counter —
Set value device
Number of link
MELSECNET | stations
-1l link - — — —
range setting | Link relay

Link register

MELSECNET/
MINI

MELSECNET/
MINI-S3

Number of
modules
supported

Head 1/O number

Type registration

Received data

Send data

Retry count

FROM/TO
response
designation

Faulty station
data clear
designation

Faulty station
detection

Error No.

Total number of
remote stations

Transmission
condition setting
in line fault

8. PARAMETER SETTING

o : Setting possible x : Setting impossible

Peripheral Device
Usable for Setting *
A2A-S1
A2A A2U-s1
A3 A3H A2C A3A Qo2 Other
A73 A2U A2AS-S1 A4U Qo6H PU
A3N A3M | A52G A2AS | A2AS-S30 A3U Qo2H than PU
A2USH-S1
. 1792 points for 100
1792 points for 100 ms, 10 ms, and ms, 10 ms, retentive
retentive timers timer and 1 ms.
Timers must be continuous numbers Timers must be
continuous numbers
o o
0 to 2048 points
D, W, and R when the number of points exceeds 256
0 to 1024 points
o 0
D, W, and R when the number of points exceeds 256
0 to 64 stations
X o
BO to BFFF
WO to WFFF
0 to 8 modules
oto 1FO| 0 to 3F0 |0to7F0| 0 to FFO
MINI, MINI-S3
X,M, L, B, T, C, D, W, and R are not provided.
(Bit devices are set in 16-point units.)
Y,M, L, B, T,C, D, W, and R are not provided.
{Bit devices are set in 16-point units.)
0 to 32 times
X o
Priority to link/CPU
Hold/Clear
M, L, B, T, C, D, W, and R are not provided.
(Bit devices are set in 16-point units.)
T,C,D,W,R
0 to 64 stations
Test message OFF data hold
(send data)

*: "PU" and "Other than PU" in the Peripheral Devices Usable for Setting column correspond
to the following devices:
PU : ABPUE
Other than PU : Devices which are not using GPP function software
package and which can set the CPU type by PC type setting.

9. CONFIGURATION OF USER MEMORY AREA

9. CONFIGURATION OF USER MEMORY AREA

This chapter gives the configuration of the user memory area of the PC
CPU.

(1) The following programs can be stored in the sequence program area of
the PC CPU:

Parameter area » Refer to Chapter 8 for the details
of parameter setting.

T/C set values | —>Timer and counter set values are stored here.

User J
memory area Sequence
program area Main routine
program
Not used
FEND
Subroutine program
This area can be used for Interrupt program
an extended sequsnce END

program area, comment
area, microcomputer
area, etc. by parameter
setting with peripheral
device.

Fig. 9.1 Configuration of the Sequence Program Area

(2) The user memory area can be used for a sequence program area,
comment area, file register area, etc. by parameter setting with periph-
eral device.

(a) When parameter setting is not done
A parameter area, T/C set value area, sequence program area of
6 k steps are allocated beginning with the head of the user mem-
ory area.

1) Parameter area
The area where the parameters given in Table 8.1 are stored.

2) T/C set value area
The area where the timer and and counter set values used with
the sequence program are stored.

3) Sequence program area
The area where the main routine programs, subroutine programs,
and interrupt programs are stored. (Refer to Section 5.1 for the
details of the main routine programs, subroutine programs, and
interrupt programs.)

(b} When parameter setting is done

1) A parameter area, T/C set value area, sequence program area,
and sub-program area are allocated beginning with the head of
the user memory area.

2) Gomments and file registers set with parameters given in Table
8.1 are allocated beginning with the end of the user memory area.

9. CONFIGURATION OF USER MEMORY AREA

9.1 A1CPU and A1NCPU

Configuration of the user memory area of the A1 and AINCPUs is the
same regardless of the memory type (IC-RAM, EPROM, EZPROM) installed.
For the operation using a ROM, parameters, T/C set values, sequence pro-
gram, and microcomputer program in the user memory area can be stored
to the ROM. :

(1) When parameter setting is not done
The user memory area is set with defaults and has a configuration as
shown in Fig. 9.2.

N
Parameters } 3 k bytes

T/C set values } 1 k byte

User memory area
16 Kk bytes

Sequence program (5115 ?(ngfes)

Fig. 9.2 Cofiguration of the User Memory Area

(2) When parameter setting is done

(a) The sequence program area can be changed to the microcom-
puter program area by parameter setting.(User-created microcom-
puter programs and utility programs can be stored in the
microcomputer program area.)

' Parameters } 3 k bytes
T/C set values } 1 k byte
Sequence program Max. 25115 ?(ytt)?/?es)
User memory area
16 k bytes
; Max. 10 k bytes
M'°,§‘,’§ggpm”te’ (when sequence program
capacity is 1 k step)
A1 or AIN
internal memory =" Comment } 2 k bytes

Flg. 9.3 Configuration of the User Memory Area and Comment Area

POINTSl

(1) Comments are stored in the comment area (internal memory) of the
A1 or A1N. The 16 k byte user memory area shown in Fig. 9.3 will
not be reduced even when a comment area is set by parameter
setting.

(2) Comments, which are created by using a peripheral device, of 124
points from FO to F123 can be stored in the comment area of the A1
or A1N.

9. CONFIGURATION OF USER MEMORY AREA

9.2 A2CPU(S1) and A2NCPU(S1)

Configuration of the user memory area of the A2(S1) and A2N(S1)CPUs
varies according to the memory cassette type.

However, when parameter setting is not done, the user memory area is set
with defaults regardless of the memory type and 16 k bytes are allocated.

(1) When parameter setting is not done ,
Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.4.

(a) RAM operation (b) ROM operation
/ Parameters
ROM Stori T/C set values
memory areal oring
{Max. 32 k bytes) Unusable to ROM Sequence
program
_____ Not used
3 k bytes Parameters
1 k byte T/C set values
RAM memory 6k it%ps Sequence
area in the (12 k bytes) program
memory cassette Not used
(Max. 320 k bytes)
Not used

Fig. 9.4 Configuration of the User Memory Area

(2) When parameter setting is done
A maximum of 144 k bytes of the user memory area can be used by
allocating it as shown in Fig. 9.5. An area exceeding 144 k bytes can be
used as extension file registers by using the SWOGHP-UTLP-FN1 utility

program.
(a) RAM operation (b) ROM operation
' Parameters
T/C set values
ROM memory area Sequence
(Max. 32 k bytes) Unusable program
Microcomputer program
______ _ Not used
Parameters Storing
to ROM
T/C set values °R
Sequence
program Not used
Microcomputer program
Notused | _______ _ Max. 144 k bytes
RAM memory Sampling trace Sampling trace
area in the
memory cassette Status latch Status latch
(Max. 320 k bytes) - -
File register File resister
Comment Comment
________ y
. --» This area can be
Extension Extension used by using the
. file register file register SWOGHP-UTLP-
FN1 utility program.

Fig. 8.5 Configuration of the User Memory Area

"~ ~

9. CONFIGURATION OF USER MEMORY AREA

9.3 AO0J2HCPU, A2CCPU, A52GCPU, A1SCPU, and A1SJCPU-S3

The A0J2HCPU, A2CCPU, A52GCPU, A1SCPU and A1SJCPU-S3 have a
32 k byte user memory area.

(1) When parameter setting is not done

Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.6.

(a) RAM operation (b) ROM operation
' Parameters
ROM memory area T/C set values
(Max. 32 k bytes) Unusable Sequence
Storing program
y /|to ROM Not used
] 3 k bytes Parameters
1 k byte T/C set values Unusable
Internal memory | g i steps Sequence (OS area)
area (32 k bytes) | (12 k bytes) program
l Not used Not used

Fig. 9.6 Configuration of the User Memory Area
(2) When parameter setting is done

A maximum of 32 k bytes of the memory area can be used by allocating
it as shown in Fig. 9.7.

(a) RAM operation

(b} ROM operation
Parameters
ROM T/C set values
memory area
(Max. 32 k bytes) Not used Sequence
Storing program
to ROM Not used
3 k bytes Parameters
1 kbyte T/C set values Unusable
1 to 8 k steps Sequence (OS area)
(2 to 16 k bytes) program
Internal memory P E "
area (32 k bytes) Sampling trace Sampling trace
Status| Data area status| Data area
lateh | rire resister lateh ['gije resister
File resister File resister
\ Comment Comment

Fig. 9.7 Configuration of the User Memotry Area

9. CONFIGURATION OF USER MEMORY AREA

9.4 A2SCPU(S1)

The A2S and the A2S-S1 have user memory area of 64 k bytes and 192 k
bytes, respectively.

(1) When parameter setting is not changed

Configuration of the user memory area when parameter setting is not
changed is as shown in Fig. 9.8.

(a) RAM operation (b) ROM operation
T Parameters
ROM T/C set values
memory area
(Max. 64 k b%/tes) Unusable Sequence
Storing program
/|to ROM| Not used
] 3 k bytes Parameters
CPU internal 1 k byte T/C set values Unusable
memory area (OS area)
(64 k bytes) 6 k steps Sequence
"""""""" rogram
A2S: 64 kbytes | (12 Kbytes) program |/ __
A2S-S1: 152 k bytes Not used Not used

Fig. 9.8 Configuration of the User Memory Area

(2) When parameter setting is changed

By changing the parameter setting, it is possible to use the user memory
area (64 k bytes, 192 k bytes) by allocating it as shown in Fig. 9.9.

(a) RAM operation (b) E2PROM/EPROM operation
Parameters
T/C set values
oer e, e Unusable Seuence
Microcomputer program
/ Not used
Parameters Storing
T/C set values to ROM
Sequence .
program 2
Microcomputer program
Not used
Internal RAM mem- Sampling trace | Sampling trace
Azs?rgflr(et?ytes Status latch Status latch
A28-S1: 182 K bytes
File register File resister
Comment Comment
—» Can be used by
Extended f.Extenc.jed SWOGHP-UTLP-FN1
file register ile register
*2 . E2PROM operation Since this area is used by the system, the area is not usable.
EPROM operation The area is not used area and can be used for extended file register.

Fig. 9.9 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.5 A1SHCPU(S8), A1SJHCPU and A2HCPU(S1)

The A1SH, A1SJH and A2SH, and the A2SH-S1 have user memory area of
64 k bytes and 192 k bytes, respectively.
(1)

When parameter setting is not changed

Configuration of the user memory area when parameter setting is not
changed is as shown in Fig. 9.10.

(a) RAM operation (b) ROM operation
T Parameters
(A R|_(|)M memoty area T/C set values
18 y A1SJH: 32 k byles Unusable Se
. quence
A2SH(S1): 64 k bytes) i program
Storing
/|to ROM Not used
| 3 k bytes Parameters
CPU internal 1 k byte T/C set values Unusable
memory area OS area
(A1SH, Al SyJH, A2SH 6 k steps Sequence ()
: 64 K bytes (12 k bytes) prog.am |/
A28H-S1: 192 k bytes)
7 Not used Not used

Fig. 9.10 Configuration of the User Memory Area

(2) When parameter setting is changed
By changing the parameter setting, it is possible to use the user memory
area (64 k bytes, 192 k bytes) by allocating it as shown in Fig. 9.11.
(a) RAM operation (b) E2PROM operation
T Parameters
ROM memorSyJaHrea T/C set values
(A1SH, A1SJH: s
Unusable equence program
Ifzzslf-ltzgtﬁs (Min. 1 k steps)
64 k bytes) Storing | | Microcomputer program
___t‘ifu_)y Not used
{ Parameters
3 k bytes
{ T/C set values
Write- 1 K byte *p
protected a1gH, A1SJH S?l(\]/llijr?n'(l:ekpsl;%grsa;m Unusable
memory 1 to 8 k steps : P (System area)
area (32 (2 1o 16 k bytes)|| Microcomputer program
kbytes) AzsH(S1) @ f———————F--—-—--- —
1to 14 K steps Notused |
internal RAM l (2 1o 28 k bytes)
memory area
(A1SH, A1SJH, Extended Extended —» Canbe
A2SH : 64 k bytes file register file register used by
A2SH-81: SWOGHP-
182 kbytes) (000} _ UTLP-FN1
Sampling trace area Sampling trace area
Status latch area Status latch area
File register area File register area
Comment area Comment area

Fig. 9.11 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.6 A1FXCPU
The A1FX has user memory area of 64 k bytes.
(1) When parameter setting is not changed
Configuration of the user memory area when parameter setting is not
changed is as shown in Fig. 9.12.
(a) RAM operation (b) ROM operation
I Parameters
ROM memory ar T/C set values
ory area
{Max. 32 k bytes) Unusable Sequence
Storing program
/|to ROM], Not used
' 3 k bytes Parameters
A1FX intornal 1 k byte T/C set values Unusable
memolrr;, ‘:,’r’;i 6 k steps Sequence (OS area)
(64 k bytes) (12 k bytes) program |/
l Not used Not used
Fig. 9.12 Configuration of the User Memory Area
(2) When parameter setting is changed
By changing the parameter setting, it is possible to use the user memory
area (64 k bytes) by allocating it as shown in Fig. 9.13.
(a) RAM operation (b) E2PROM operation
T Parameters T
E2PROM T/C set values
Write Write-pro-
capacit Sequence program <—— [Peripheral tected area
(32 Ebytgs) Unusable (Min. 1 k steps) —_— de'\alice (32 k bytes)
Microcomputer program Read
________ Not used
Parameters 1
T/C set values Unusable
Write-pro- Sequence program (System area)
tectﬁ%area (Min. 1 k steps)
(32 k bytes) Microcomputer program
RAM | T Netuemd .V T TTT°T
capacity Not used Not used Not write-
(64 k bytes)) Extended i Extended —» Can be used protected
file register file register by SWOGHP-
Sampling trace area Sampling trace area UTLP-FN1
"\)Il?gt‘gé{tee& Status latch area Status latch area
File register area File register area
Comment area Comment area

Fig. 9.13 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.7 A2ASCPU, A2ASCPU-S1, A2ASCPU-S30, and A2USHCPU-S1

The A2AS, and the A2AS-S1, A2AS-S30 and A2USH-S1 have user mem-
ory area of 64 k bytes and 256 k bytes, respectively.

(1) When parameter setting is not changed

Configuration of the user memory area when parameter setting is not

changed is as shown in Fig. 9.14.

(a) RAM operation (b) ROM operation
Paramsters
T/C set val
ROM memory area U bl setvaues
(Max. 64 k bytes) nusable Staring Sequence
to ROM program
¥ Not used
A
CPU internal 3 k bytes Parameters
memory area 1k byte T/C set values
. 6 k steps Sequence Not used
;2‘22;2236? I(A?ng (12 k bytes) program
S30 : 256 k bytes
Not used
Y

(2)

Fig. 9.14 Configuration of the User Memory Area

When parameter setting is changed

By changing the parameter setting, it is possible to use the user memory
area (64 k bytes, 256 k bytes) by allocating it as shown in Fig. 9.15.

(a) RAM operation

ROM memory area

(Max. 64 k bytes)

Unusable

Parameters

T/C set values

Storing
to ROM

A2AS-S1, A2AS-
S30: 256 k bytes

Sequence program

Extended file register

File register

Comment

Extended file register

(b) E2PROM operation

Parameters

T/C set values

Sequence program

MELSECNET/10
network parameters

Not used

Unusable

Extended file register

File register

Comment

Internal RAM . (System area) i
memory area MELSECNET/10 22228?3; 3614 k bytes
————————————— network parameter AASGPU-S3H:
A2AS: 84 k bytes Extended comment Extended comment 144 k bytes

Extended file register

*: When MELSECNET(Il) data link system is constructed using the GPP function software package
which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link paramaster area.

Fig. 9.15 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.8 A3CPU, ASNCPU, A3VCPU, A73CPU, and A3HCPU

Configuration of the user memory area of the A3CPU, ASNCPU, A3VCPU,
A73CPU, and ABHCPU varies according to the memory cassette type. How-
ever, when parameter setting is not done, the user memory area is set with
defaults regardless of the memory type and 16 k bytes are allocated.

(1) When parameter setting is not done
Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.16.

(a) RAM operation (b) ROM operation
Parameters
/C
ROM memory areal U bl Storing T/C set values
(Max. 64 k bytes) nusable to ROM Sequence
program
A S A Not used
3 k bytes Parameters
ROM memory 1 k byts T/C set values
area in the
memory cassette 6 k steps Sequence
(12 k bytes) program
A3, A3N, A3V,
A73, A3N (Max. Not used
320 k bytes)
[Ay Not used
(Max. 448 k bytes)

Fig. 9.16 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

(2) When parameter setting is done

A maximum of 144 k bytes of the user memory area can be used by

allocating it as shown in Fig. 9.17.
Unused areas can be used as extension file registers by using the

SWOGHP-UTLP-FN1 utility program.

(a) RAM operation

ROM memory area

(by ROM operation

Parameters

T/C set values

Sequence program

Microcomputer program

Not used

(Max. 64 k bytes) Unusable
S R L
\ Parameters Storing
T/C set values to ROM

RAM memory
area in the
memory cassette

Sequence program

Microcomputer program

T/C set values

Subsequence program

A3, ASN(-F), A3V,
A73, ASN board
(Max. 320 k bytes)

A3H

Microcomputer program

P, | address storage

Operation result storage

Not used

Sampling trace

(Max. 448 k bytes)

Status Data aresa
latch | File resister

File register

Comment

Not used

T/C set values

Subsequence program

Microcomputer program

P, | address storage

Operation result storage

Not used

Sampling trace

Status Data area

latch | File resister

File register

Comment

Max. 144 k bytes

Not used

Fig. 9.17 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.9 A3MCPU

Configuration of the user memory area of the ABMCPU varies according to
the memory cassette type. However, when parameter setting is not done,
the user memory area is set with defaults regardless of the memory type
and 16 k bytes are allocated.

(1) When parameter setting is not done
Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.18.

(a) RAM operation (b) ROM operation
Parameters
ROM Stor T/C set values
memory area oring
(Max. 64 k bytes) Unusable to ROM Sequence
program
. Not used
! 3 k bytes Parameters
RAM memory 1 k byte T/C set values
area in the s
memory cassette 6 k steps equence
““““““““““ (12 k bl;tes) program Not used
A3M
(Max. 448 k bytes)
¢ Not used

Fig. 9.18 Configuration of the User Memory Area

(2) When parameter setting is done
A maximum of 144 k bytes of the user memory area be used by allocating
it as shown in Fig. 9.19.
Areas exceeding 144 k bytes can be used as extension file registers or
BASIC program areas.

(a) RAM operation (b) ROM operation
I Parameter
T/C set values
F;?Agxmsem?{:yytaer:)a Unusable Sequence program
Microcomputer program
Not used
Parameter s_t;r;ng—_— B T/C set values ’
T/C set values to ROM Subsequence program
Sequence program : Microcomputer program
Microcomputer program P, 1 address storage
T/C set values Operation result storage
Subsequence program
RAM memory Microcomputer program
area in the P, | address storage Not used Max. 144 k bytes
memory cassette | .
———— ASM Operation result storage le— *1
(Max. 448 k bytes) Not used <1
Sampling trace Sampling trace
Status Data area Status Data area
latch | Filg register latch | File register
File register File register
Comment L o Comment y
“BASIC progran areas [<"1 “HASIC program aress <"1
*1: This area can be used as extension file registers by using the SWOGHP-UTLP-FN1 utility program.

Fig. 9.19 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.10 A2ACPU(S1) and A3ACPU

Configuration of the user memory area of the A2A(S1) and ABACPUs var-
ies according to the memory cassestte type. However, when parameter set-
ting is not done, the user memory area is set with defaults regardless of

the memory type and 16 k bytes are allocated.

(1) When parameter setting is not done

Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.20.

(a) RAM operation

(b) ROM operation
Parameters
T/C set values

Storing
to ROM

Sequence
program

Y
ROM memory area
(Max. 64 k bytes) Unusable
3 k bytes Parameters
RAM memory 1 k byte T/C set values
area in the
| memory cassette | 6 k steps Sequence
r
A2A(S1) and A3A (12 k bytes) program
(Max. 448 k bytes)
& Not used

Not used

Not used

Fig. 9.20 Configuration of the User Memory Area

(2) When parameter setting is done

A maximum of 448 k bytes of the user memory area can be used by
allocating it as shown in Fig. 9.21.

(a) RAM operation

ROM memory are
(Max. 84 k bytes)

Unusable

(b) ROM operation

Parameters

T/C set values

Sequence program

Not used

Parameters

T/C set values

Storing
to ROM

T/C set values

Sequence program

T/C set values

RAM memory
area in the

A2A(S1) and A3A
(Max. 448 k bytes)

Subsequence program

P, | address storage
Operation result storage
Extension comment
Extension file register
File register
Comment

Extension file registers

*1 : These areas can be set ‘only with the A3A.
*2 : Refer to Section 3.11.2 for the details of extension file registers.

Subsequence program

P, 1 address stor

age

Operation result storage

Extension comment

Extension file register

File register

Comment

"1

Max. 144 k bytes

o *D

Extension file registers

12

Fig. 9.21 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

9.11 A2UCPU(S1) and A3UCPU

Configuration of the user memory area of the A2U(S1) and ASUCPUs var-
ies according to the memory cassette type. However, when parameter set-
ting is not done, the user memory area is set with defaults regardless of

the memory type and 16 k bytes are allocated.

(1) When parameter setting is not done
Configuration of the user memory area when parameter setting is not

done is as shown in Fig. 9.22.

(a) RAM operation

(b) ROM operation

] Parameters
ROM Stor T/C set values
memory area oring
(Max. 64 k bytes) Unusable to ROM Sequence
program
\ Not used
’ 3 k bytes Parameters
RAM memory 1 k byte T/C set values
area in the S
memory cassefte 6 k steps equence
_____________ Not used
r
A2U(S1) and Asu| (12 Kbytes) program
(Max. 448 k bytes)
i Not used

Fig. 9.22 Configuration of the User Memory Area

(2) When parameter setting is done
A maximum of 448 k bytes of the user memory area can be used by

allocating it as shown in Fig. 9.23.

(a) RAM operation

ROM memory area
(Max. 64 k bytes) Unusable
Parameters Storing
T/C set values to ROM
Sequence program
MELSECNET/10 |3
network parameter
RAM memory T/C set values
area in the
memory cassette Subsequence program .

A2U(S1) and AU

(Max. 448 k bytes)

y

P, | address storage
Operation result storage
Extension comment 5
Extension file register
File register
Comment
Extension file registers

*1 : These areas can be set only with the A3U.

*2 . Refer to Section 3.11.2 for the details of extension file registers.

*3 : Refer to Section 11 for allocation of the MELSECNET/10 network parameters.
When MELSECNET(ll) data link system is constructed using the GPP function software package
which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link paramaeter area.

(b) ROM operation

Parameters

T/C set values

Sequence program

MELSECNET/10
network parameter

Not used

T/C set values

Subsequence program

P, | address storage

Operation result storage

Extension comment

Extension file register

File register

Comment

>*1

Max. 144 k bytes

P *2

Extension file registers

y

Fig. 9.23 Configuration of the User Memory Area

~ ~m

9. CONFIGURATION OF USER MEMORY AREA

9.12 A4UCPU

Configuration of the user memory area of the A4UCPU varies according to
the memory cassette type. However, when parameter setting is not done,
the user memory area is set with defaults regardless of the memory type
and 16 k bytes are allocated.

Sub-programs 2 and 3 can be set by using an ASAMCA-96 or A4UMCA-
128 memory cassette with the A4U. Sub-programs 2 and 3 cannot be set by
using a memory cassette other than those mentioned above.

(1) When parameter setting is not done
Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.24,

(a) RAM operation {b) ROM operation
I Parameters
RoM Ston T/C setvalues
memory area oring
(Max. 64 k bytes) Unusable to ROM Sequence
program
, Not used
] 3 k bytes Parameters
RAM memory 1 k byte T/C set values
area in the S
memory cassette 6 k steps equence
Vi (12 k bytes) program Not used
(Max. 880 k bytes)
¢ Not used

Fig. 9.24 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

(2) When parameter setting is done (When sub-programs 2 and 3 are not

used)
A maximum of 880 k bytes of the user memory area can be used by

allocating it as shown in Fig. 9.25.

(a) RAM operation (b) ROM operation

] Parameters
T/C set values

Féﬁl;ﬂxmgfll?:)yy?erse)a Unusable Sequence program
: MELSECNET/10 *
network parameter
y L Not used
] Parameters Strong T/C set values
to ROM
T/C set values Subsequence program
Sequence program *
MELSECNET/10 P, | address storage
network parameter Operation result storage
RAM memory T/C set values Extension comment
area in the
| memory cassette | Subsequence program Max. 144 k bytes
A4V P, | address storage o] -
(Max. 880 k bytes) - Extension file register
Operation result storage
Extension comment -
Extension file register
File register File register
Comment | Comment !
/ Extension file registers }*1 Extension file registers }*1

*1 : Refer to Section 3.11.2 for the details of extension file registers.

*2 : Refer to Chapter 11 for the allocation of the MELSECNET/10 network parameters.
When MELSECNET(ll) data link system is constructed using the GPP function software package
which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link paramaeter area.

Fig. 9.25 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

(3) When parameter setting is done (When sub-programs 2 and 3 are set
with an ABAMCA-96 memory cassette)
When parameter setting is done with an ASAMCA-96, a maximum of 624
k bytes of the user memory area can be used by allocating it as shown
in Fig. 9.26.
Sub-programs 2 and 3 are allocated beginning with the last block of the

extension file registers.

(a) RAM operation

ROM memory area
(Max. 64 k bytes)

RAM memory area
in the memory
cassette
(768 k bytes)

¥

MELSECNET/10
network parameter

T/C set values

Sub-program 1

P, | address storage

Operation result storage

Extension comment

Extension file register

File register

Comment

Unusable
‘ Parameters Storing
to ROM
T/C set values
Main program .

1k byte

T/C set values

L)
Max. 30 k steps
(60 kutes)

Sub-program 2

1 k byte

T/C set values

L)
Max. 30 k steps
(60 kutes)

Sub-program 3

Extension file registers

}*1

(b) ROM operation

Parameters

T/C set values

Sequence program

MELSECNET/10
network parameter

Not used

I

T/C set values

Sub-program 1

P, | address storage

Operation result storage

Extension comment

Extension file register

File register

Comment

Max. 144 k bytes

>*1

T/C set values

Sub-program 2

T/C set values

Sub-program 3

Extension file register

*1 : Refer to Section 3.11.2 for the details of extension file registers.

*2 : Refer to Chapter 11 for the allocation of the MELSECNET/10 network parameters.
When MELSECNET(Il) data link system is constructed using the GPP function software package
which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link paramaeter area.

},1

Fig. 9.26 Configuration of the User Memory Area

9. CONFIGURATION OF USER MEMORY AREA

(4) When parameter setting is done (When sub-programs 2 and 3 are set
with an AA4UMCA-128 memory cassette)
When parameter setting is done with an A4UMCA-128, a maximum of
880 k bytes of the user memory area can be used by allocating it as
shown in Fig. 9.27.
Sub-programs 2 and 3 are allocated by a RAM operation beginning with
the last block (block No. 64) of the extension file registers.
To perform a ROM operation, the main programs and sub-programs (1
to 3) whose capacity has been set need to be stored in the ROM.
(EPROM: 256 k ROM is used)

(a) RAM operaton (b) ROM operation
Y [Parameters
T/C set values
1) —> Main program Main program
ROM memory area o MELSECNET/10 ‘o (64 k bytes)
(Max. 256 k bytes) network paramster l
L Not used
T/C set values T
Sub- 1
2) —> Sub-program 1 %&pkmbgyrtzrsn)
Unusable L Not used ¢
T/C set values r
Sub-program 2
(8) —™ Sub-program 2 (64pk bgytes)
Not used ¢
r T/C set values T
Sub-program 3
(4) —> Sub-program 3 (84 k bytes)
] ¥ I Not used
* 3 Kk bytes Parameters P, | address storage
1 k byte T/C set values Operation result storage
+ - . -
Max. 30 k steps Main program (1) Extension comment
60 k bvtes MELSECNET/10 .
(ytes) 2
network parameter {
1k byte T/C set values
Max. 30 k steps (2)
(60 k *bytes) Sub-program 2 Extension file register |*1 Max. 144 k bytes
P, | address storage
RAM memory Operation result storage .
area in the Extension comment t%tggla
memg‘rlykcgstsette Extension file register [>*1
(o ytes) File register File register
v Comment | | Comment
1 Kk byte T/C set values
L]
Max. 30 k steps (3)
(60 k bytes) Sub-program 2
¥
1 k byte T/C set values Extension file register *q
L)
Max. 30 k steps } (4)
(60 K bytes) Sub-program 3
¥
* Extension file registers | }*1
*1 : Refer to Section 3.11.2 for the details of extension file registers.
*2 : Refer to Chapter 11 for the allocation of the MELSECNET/10 network parameters.
When MELSECNET(II) data link system is constructed using the GPP function software package
which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link paramaeter area.

Fig. 9.27 Configuration of the User Memory Area

o~y

9. CONFIGURATION OF USER MEMORY AREA

9.13 Q02CPU-A, Q02HCPU-A and Q06HCPU-A

The Q02CPU-A, Q02HCPU-A and Q06HCPU-A have user memory area of
144 k bytes respectively.

(1)

When parameter setting is not done

Configuration of the user memory area when parameter setting is not
done is as shown in Fig. 9.28.

(a) RAM operation

(b) ROM operation

Parameters

T/C set values

'

ROM memory area Storing
(Max. 144 k bytes) Unusable to ROM
1
3 k bytes Parameters
1 k byte T/C set values
RAM memory area
in the memory 6 k steps Sequence
cassette (12 k bytes) program
(Max. 144 k bytes)
Not used

Sequence
program

Not used

Not used

Fig. 9.28 Configuration of the User Memory Area

(2) When parameter setting is done
By changing the parameter setting, it is possible to use the user memory
area (144 k bytes) by allocating it as shown in Fig. 9.29.

(a) During RAM operation

(b) During boot operation from ROM

Boot operation

*1 : These areas can be set only with the QO6HCPU-A.
*2 : Refer to Section 11 for allocation of the MELSECNET/10 network parameters.
When MELSECNET(ll) data link system is constructed using the GPP function software package

which is compatible to AnU, 2 k bytes (equivalent to 1 k step) are occupied for link parameter area.

= from ROM

4 Parameter
T/C setting value
Main program
MELSECNET/10
Memory capacity network parameter
of ROM Unusable
(144K bytes max.) T/C setting value
Sub program 1
Y) o Unused
A 3k bytes Parameter Change into Parameter
1k byte T/C setting value ROM T/C setting value
Main program Main program
30(':3:‘5@;;'?)"' MELSECNET/10 - “ MELSECNET/10
i network parameter network parameter
1k byte T/C setting value T/C setting value
L]
30k steps max.
(tiokb yies) Sub program1 o Sub program1
Reserved for storing P/l addresses Reserved for storing P/l addresses
B Reserved for storing operation results Reserved for storing operation resuits
Memory capacity " -
of RAM Expansion comment Expansion comment
(144K bytes max.) Expansion file register Expansion file register
File register File register
Comment Comment
v Expansion file register Expansion file register

Fig. 9.29 Configuration of the User Memory Area

10. CONFIGURATION OF USER MEMORY AREA

(WHEN AN SFC PROGRAM IS USED)

10. CONFIGURATION OF USER MEMORY AREA
(WHEN AN SFC PROGRAM IS USED)

When an SFC program is used, an SFC program memory area is added to
the user memory area mentioned in Chapter 9.

Memory areas other than the SFC program area conform to the memory
area configuration mentioned in Chapter 9.

10.1 SFC Program Memory Area

The SFC program memory area is classified into SFC program area, SFC
program work area, and step trace area.

Refer to the MELSAP-Il Programming Manual (IB-66361) for the details of
the SFC program memory area.

(1) SFC program area
The SFC programs are stored in the microcomputer program area.
When setting parameters, set the total capacity of the sequence program
area and microcomputer program area (SFC program + utility program
+ user-created microcomputer program) to a value smaller than the main
program capacity of the PC CPU to be used.

Parameter
T/C set values

Sequence
program / SFC program

Mocrocomputer ‘J""‘_—_t__d_—T“_
program ser-created micro-

computer program
/\/
Fig. 10.1 Allocation of the SFC Program

(2) SFC program work area and step trace area *

(a) The SFC program work area is used by the OS to execute an SFC
program, and 4 k bytes are required in the user memory area.
(The SFC program work area is not accessible by the user.)
When the SFC program work area cannot occupy 4 k bytes, the
SFC program execution is disabled.

(b) A step trace area can be set in the 0 to 12 k byte range and is
used for executing step tracing with peripheral devices.

POINT

* : Allocation of the SFC program work area and step trace area is
determined by the CPU type and memory cassette type to used.
Refer to Sections 10.2 to 10.4 for details.

10. CONFIGURATION OF USER MEMORY AREA

(WHEN AN SFC PROGRAM IS USED)

10.2 A2NCPU(S1) and ABNCPU

When the A2N(S1) and A3N are used, the feasibility of SFC program exe-
cution depends on the vacant capacity in the memory

cassette used.

The following gives the feasibility of SFC program execution depending on
the vacant capacity in the memory cassette used and the allocation of the
SFC program work area and step trace area.

POINTSl

(1) * : The feasibility of SFC program execution when the A2N(S1) or
A3N is used is determined by the version of the CPU module.
For the details of the CPU versions which are compatible with the
SFC program, refer to the MELSAP-Il Programming Manual
(IB-66361) (Version: B and later).

(2) Refer to Section 10.1 for the allocation of the SFC program mem-
ory area.

A3(N)MCA-2, 4, 8 A3SNMCA-16
A3MCA-12, 18 A3MCA-24, 40
K -
Parameters Parameters
T/C set values T'\',{C set values
Main program ain program
(M) {Sub-programs, etc. (A) Sub-programs
<cMair2§{t‘é > Vacant area (B) |/ Parameter) Vacant area (B) | (A)
i setting range
capacity Sampling trall1ce grang (M) Sasmplin? trice
Satus late atus latcl
File register File register
Comment Comment v
v
W 7%
énaesn;::tye éll :s"s'::t‘; P;r’:t':}:ter Vacant Area SFC Program Available Stap Trace
type Capacity (M)| Range (gA) Capacity (B) Execution Feasibility Area Capacity
TI7T77I777 777777777, , ////////////
A3(NIMCA-2 | 16 kbytes | 16 kbytes [16 k bytes of more/://///////////////////////12 Kk byte ////
A3(N)MCA-4 32 k bytes 32 k bytes V /////,/,/,///,//7 / /] // 7 t////;//:‘//;/b / /
AAMMONE | Sakbytes | Bk ovtes AN 777777 5B
A3MCA-18 144 k bytes | 144 k bytes 3 k bytes or less Excution |mposs|ble ———————
ASNMGATo | 128 K bytes | 5Bk bytes 118K T T0c) // 7)) 7
A3NMCA-24 | 192 k bytes | 144 k bytes p7Z7 "2~ 74 0%
ASNMGA-40 | 320 k bytes | 144 k bytes (7. ,“,,tE’,‘f,',‘,'?)’,t?,s,// n poss / lff,ff,f’,)”ﬂ,'ffi‘,’ff,//
// / // // /// % 12 Kk bytes* /
s oo /,(,,9,’?,‘3,',5,9,’199)/

*1:
utility program,
*2:

When the extension file registers are used by using the SWOGHP-UTLP-FN1
extension file register No.1 cannot be used.

When the extension file registers are use
utility program, extension file register No. 10 (ZZ area) cannot be used.

y using the O0GHP-UTLP-FN1

Fig. 10.2 Allocation of the SFC Program Memory Area

PI.Y

10. CONFIGURATION OF USER MEMORY AREA
(WHEN AN SFC PROGRAM IS USED)

10.3 Compact Type CPU

The SFC program work area and step trace area are allocated in the follow-
ing user memory area.

Type CPU User Memory Area
AO0J2H, A2C, A52G, A1S, A1S-S1, A1SJ-S3 32 k bytes
A1SH, A1SJH, A2SH, ATFX, A2S, A2AS 64 k bytes
A28-81, A2SH-S1 192 k bytes
A2AS-81, A2AS-S30, A2AS-S60 256k bytes

The following gives the feasibility of SFC program execution depending on
the vacant capacity in the user memory area and the allocation of the SFC
program work area and step trace area.

Parameters
-{/{gi;? %trgg',‘;?ns Vacant Area SFC Program Avallable Stap Trace
32 k bytes [y " B Capacity Execution Feasibility Area Capacity
ik bytes | Vacentarea (B) BN i, mssey
yies | sampling trace [t s s 2 xcution possi 7, G eprrrrrrrrrrd A,
Satus latch 4 Y018 k bYtes 2 il A o 15) -4l K bytes
Fg%;ﬁg:;?r 3 k bytes Excution impossible -

Fig 10.3 SFC Program Memory Area

10.4 AnACPU* and AnUCPU

When the AnA, or AnU is used, the feasibility of SFC program execution de-
pends on the vacant capacity in the memory cassette used and setting of
extension comment capacity.

POINTS

(1) * : The feasibility of SFC program execution when the AnA is used
is determined by the version of the CPU module.
For the details of the CPU versions which are compatible with the
SFC program, refer to the MELSAP-Hl Programming Manual
(IB-66361) (Version: B and later).

(2) Refer to Section 10.1 for the allocation of the SFC program mem-
ory area.

1iN._"

10. CONFIGURATION OF USER MEMORY AREA

(WHEN AN SFC PROGRAM IS USED)

10.4.1 Allocation when extension comment capacity is not set

The feasibility of SFC program execution depends on the vacant capacity

in the memory cassette used.

The following gives the feasibility of SFC program execution depending on
the vacant capacity in the memory cassette used and the allocation of the
SFC program work area and step trace area.

A3(N)MCA-2, 4,8 A3NMCA-16
A3MCA-12, 18 A3BMCA-24, 40
x
T Parameters Parameters
T/C set values "I\'//IC set values
Main program ain program
M (M) Sub-programs, etc.| (A) Sub-programs, etc.
caesr::trtye > Vacant area (B) |(Farameter) Vacant area (B) A
capacity setting range M)
File register File register
_L Comment Comment
Extension file
v register No. 10
é’;’::{t‘g y:sns‘:;é Pas':t't'i‘:;er Vacant Area SFC Program Available Stap Trace
Type Capacity (M) Range (A) Capacity (B) Execution Feasibility Area Capacity
777777777777 777777777777,
A3(N)MCA-2 16 k bytes 16 k bytes M/{/{{W//// ///’ O to 12 kbytes (E)ﬂensllol?I file /2
ﬁgmmgﬁg gi Il: Eyies gi t gﬁes //////// /////;/ / cution possi // ’///?}Z}i/r//;/}/u/n/a};l/a//})/;//
- ytes es / /
Simchs | sakbrtes | sakones s kives /10 ey e)
3 k bytes or less Excution impossible _—
- 777 7777777777777
ASNMCA-16 | 128 k bytes | 96 k bytes /777 {/{/{/ 777 //////// ot 12 k by s (Extension e 2
7 y es or more/ / register No. 1 unavailable) 4
V000 ution pos s[’//////////////////////// 7/
7////////////////////) gsiaaag
/ 15 Kk bytes or |GSS//; //// / register r\Yo 10 unavailable . 4
i s 7% NN,
ASNMCA-18 | 144 k bytes | 144 k bytes /32 k bytes or morez/ Excutlon ossible O Ee e oo Extensian e 2
/ (] L] unaval
////// 7477 //////// A A //////g/////////////////////
16 to 31 k bytes Excutlon impossible ——————
4 10 15 K bytes 247 Excution possible 74,0 to li4 1o 15, -4 k bytes 7
/ Y IYIIIVIIIIY] / A} IP y3 LELL A /////////////III/I/I// A
3 k bytes or less Excution impossible _
7 7777777777 7777777 77777
ASNMCA-24 | 192 k bytes | 144 k bytes ///{ 2 tes//o/r/{n//é/e//ﬁ e 0%/7// s 12 ks Eaengion 1s 4
ASNMCA-40 | 320 k bytes D22 A ///////) ieisier Ve 2 inavaiatle)
ASNMCA-56 | 448 k bytes 16 to 31 k bytes Excutlon impossible —_———
v 7 7777777777 777777777777
//// //7 //////////////0 to 12 k bytes (Extension file :
/ k byt // xcutlon OSSIble register No. 10 unavailable}
0 ///////////////// e ///////////////////////////

Fig. 10.4 Allocation of the SFC Program Memory Area

EWal A

10. CONFIGURATION OF USER MEMORY AREA
(WHEN AN SFC PROGRAM IS USED)

10.4.2 Allocation when extension comment capacity is set

Allocation when the parameter setting capacity contains vacant area capac-
ity when the extension comment capacity is set conforms to the allocation
when the extension comment capacity is not set. (Refer to Section 10.4.1.)
When the capacity after setting the extension comment capacity exceeds
the parameter setting capacity, extension comments will be stored in exten-
sion file register Nos. 10 and after when the following memory cassettes
are used.

The feasibility of SFC program execution and the allocation of the SFC pro-
gram work area and step trace area depend on the vacant area capacity in
the memory capacity less the extension comment capacity.

e ASNMCA-16 « ASNMCA-24 « ABNMCA-40

o ASNMCA-56 « A3AMCA-96 ' « A4UMCA-128"2

*1: Compatible with ASACPU and AnUCPU only.

*2: Compatible with AA4UCPU only.

A3NMCA-40, 56
A3NMCA-96
A3NMCA-16 —_— A3NMCA-24 A3NMCA-128
Parameters Parameters Parameters
T/C setvalues | (A)= T/C set values T/C set values
Main program 96 k Main program Main program
(M) = Sub-programs, etc.| bytes Sub-programs, etc. | (A) =k Sub-programs, ste.
T 144 (A)
128 k Parameter
bytes Vacant area (B) <setting > Vacant area (B) |bytes Vacant area (B)
Memory File register range (M) = File register File register
(cassette > Comment 192 k Comment v Comment
capacity Extonsion file bytes ™ tension file | | Extension file
register No. 11 [a5 | register No. 12 (M) rest;IS"t\tler '\4?1 n
* O NO.
Extension file bytes Extension file |48 k Extonsion fie
register No. 10 register No. 11 bytes register No. 13
Extension file Extension file
v register No. 10 register No. 12 g’?’é'
Extension file bytes*
register No. 11
Extension fite
v register No. 10
Memory Memory Parameter | Vacant Area Capac- -
Cassette Cassette Setting ity Less Extension Exef:t(i:ozrlgg;:?l;ilit Ava‘l\lfebalecitaa%i'lt';ace
Type Capacity (M)| Range (A) | Comment Capacity Y P
ASNMCA-16 | 128 k bytes | 96 k bytes /,ijsjjkjhx*,ef,e,r,moFé?// i R
//Z;s,qgnl(’g);tle,;,% CU‘IO /}//5 register No. 1 unavailable)
,,,,,,, LY
3k bytes or less Excutlon lmpossmle _—
777
ASNMCA-24 | 192 k bytes | 144 k bytes // t e 77 r{/é/e///V W :’ﬁfﬂé’fﬁ”:{é%’%ﬁfe
“ register No. unavatlal 4
ASNMCA-40 | 320 k bytes /////////////// 77777/ / //////////// //////////A’////3////////////////////
A3BNMCA-56 | 448 k bytes 16 to 31 k bytes Excution i bl
A3AMCA-96 | 768 k bytes y xcution impossible
/ IIIIIIIIIIIIII’II/ / IIIIIIIIIIIIIIIIIIIIy 7 [III[I//IIIIIIIII/IIy
ASUMCA-128 | 1024 k bytes V40 15 K bytes V7 Exculion possivie S el 18 4ikie 7
3 k bytes or less Excution impossible
* . Extension comments are stored in extension file register Nos. 10 and the following areas according to set
capacity.
Examples:
When the extension comment capacity is 20 k bytes, extension comments are stored in extension file register
Nos. 10 and 11.
Areas used for the extension comments cannot be used as extension file registers.

Fig. 10.5 Allocation of the SFC Program Area

C¥al

11. ALLOCATION OF THE MELSECNET/10
NETWORK PARAMETERS

11. ALLOCATION OF THE MELSECNET/10 NETWORK PARAMETERS

To use a MELSECNET/10 data link system with an AnUCPU, A2ASCPU
and QCPU-A, it is necessary to set the MELSECNET/10 network parame-
ters.

(1) MELSECNET/10 network parameter capacity
The MELSECNET/10 network parameters need to be set with each
MELSECNET/10 link module.
The set network parameters are stored in a range of 64 k bytes from the
head of the memory area of the memory cassette.
Because of this, when MELSECNET/10 network parameters are set with
an A3U or A4U, the main program setting range is reduced by 30 k steps.

Parameter area (3 k bytes)

+
c .
Memory capacity 64 k bytes > T/C setling area (1 k byte)

+

Main program area (2 to 60 k bytes)
+

Network parameters (2 to 16 k bytes)

(2) The capacity used for network parameters varies depending on the
settings made.

Network parameter setting capacity
o : Must be set A : Setif necessary x: Setting not necessary

Item Control Station | Normal Station
Internal data (30 bytes) o o
Routing parameters (390 bytes) A A
Transfer parameters for data link (246 bytes) A A
Common parameters (2164 bytes/module) *1 o X
Refresh parameters (92 bytes/module) *2 o o
Station-specific parameters (1490 bytes/moduls) A A

*1 For a remote master station, the common parameters occupy 2722 bytes.
*2 |f for example the number of network modules mounted is two, the refresh parameters
occupy 92 x 2 = 184 bytes.

For the network parameter capacity, secure an area on the basis of the
total of each of the settings in 2 k byte units.

Total Capacity of Each Setting Network Parameter Setting Capacity
30 to 2048 bytes 2 k bytes
2049 to 4096 bytes | 4 k bytes
4097 to 6144 bytes 6 k bytes
6145 to 8192 bytes 8 k bytes
8193 to 10240 bytes 10 k bytes
10241 to 12288 bytes 12 k bytes
12289 to 14336 bytes 14 k bytes
14337 to 16384 bytes 16 k bytes

(3) Range to be stored to the ROM for the ROM operation
When the memory contents are stored to a ROM, the MELSECNET/10
netowork parameters are also stored the ROM.
Use an EPROM which can store parameters, T/C set values, main
programs, and MELSECNET/10 network parameters.

44 4

NETWORK PARAMETERS

11. ALLOCATION OF THE MELSECNET/10

(1) A2U(S1)

(a) RAM operation

ROM memory area

{Max. 64 k bytes) Unusable
4
3 k bytes Parameters
1 k byte T/C set values
+

Main program area
(Max. 14 k steps)

Sequence program

Microcomputer program

MELSECNET/10
network parameter

/\/

(2) A3U, A4U, Q02, Q02H and QO6H

{a) RAM operation

ROM memory area

Storing to ROM

(Max. 64 k bytes) Unusable
3 k bytes Parameters
1 k byte T/C set values

area

‘[4
Main program
Max. 30 k Y

Sequence program

Microcomputer program

steps

MELSECNET/10
hetwork parameter

/\/

(b) ROM operation

Parameters

T/C set values

Sequence prpgram

Microcomputer program

MELSECNET/10
network parameter

Not used

/’_/

(b) ROM operation

Parameters

T/C set values

Sequence prpgram

Microcomputer program

MELSECNET/10
network parameter

Not used

Storing to ROM

X/\‘/

* : (Main program capacity) > 30 — (MELSECNET/10 network parameter capacity)/2[k step]

Fig 11.1 Allocation of the MELSECNET/10 Link Parameters

APPENDIX

APPENDIX

APPENDIX 1 Differences between A3NCPU and A3N board

Refer to v Item A3NCPU A3N Board
2.42 Refresh method 0 X
372 Count processing during refreshing 0 A
422 I/0 allocation using peripheral devices o X
6.10 Changing I/0 modules in online o X
6.17 Setting the display mode for annunciator o X

*1 Applied only for A7LMS-F

APPENDIX

Error Message

Description

Course of Action

CIRCUIT

CONTINUATION ERROR.

The return ladder is not correct.

Ladder the return.

COMMAND ERROR.

Method of specification is incorrect.

Look at HELP Information and
specify correctly.

There is an incorrect code in the sequence
program.

Delete the incorrect step using list
mode.

COMMAND ERROR.
ERROR STEP=%S.

When writing a parameter + main, main program
or sub-program in PC mode, the step indicated by
*Error Step\XXX" has an incorrect code.

Using step mode, check the
following, then edit or delete the
error step. Did you use a "W"
command with a CPU that has no
link card in the AOJ or in the XY
device range? Otherwise, the
program is irregular.

COMMENT CAPACITY
NOT SET.

The comment capacity parameter has not been set.

Set the comment capacity with
Parameter Setup.

DATA NOT FOUND.

When reading out file maintenance data, the data
file is smaller than the parameter capacity.

Set the parameter correctly.

When recording items for the Ladder Mode
Monitor, you selected Device Memory or Status
Latch, but the required data is not in the AT's
memory.

Read out the required data in PC
mode or in File Maintenance.

DATA OVERFLOWS ONE
SCREEN.
PRESS [ENTER].

The SFC Device Search found more devices than
it can display on one screen.

Press [ENTER] to see the next
screen.

DEVICE NUMBER OUT
OF RANGE.

The number specified for the device is out of
range.)

Set the device number to an
in-range value.

DRIVE NOT READY.

When writing to the floppy disk, there is no disk
inserted in the destination drive.

Insert a disk in the destination
drive.

EXECUTABLE DURING
BLOCK STOP ONLY.

You selected the test functions Restart or without
first stopping the block.

Execute Continue or One Cycle
Execute only when the block is
stopped.

FILE NOT FOUND.

Your search selection has no file.

Change your selection.

FLOPPY DISK ERROR.

You iried to access a drive that has no disk
inserted.

Insert a floppy disk or change the
drive number.

You tried to write a write-protected disk.

Switch the disk’s write protect tab
to write-enable.

Disk is unusable.

Change the disk.

INCORRECT BRANCH/
CONNEGCTION.

A branch or converge on the SFC chart does not
follow the language format values.

Correct the branch or converge in
accordance with the language
format rules.

INCORRECT DATA.

A block containing no set steps has been recorded
for Step Trace.

Set a base step for the block.

INCORRECT DATA
NAME.

The sampling trace, status latch or device memory
data name has been incorrectly specified.

Enter a correct data name. You
may use alphanumeric characters
and "-"," _". (Up to 8 characters.)
You must begin the name with an
alphabetic character (A-Z).

APPENDIX

Error Message

Description

Course of Action

INCORRECT
EXECUTION POSITION.

You selected Zoom while not at a step or
transition condition.

Move the cursor to a step or
transition consition before selecting
Zoom.

When deleting a branch or converge on the SFC
Chart, the chart symbol specified by the cursor is
different from the function key diagram symbol.

Press a function key with the same
diagram symbol as the one
specified by the cursor.

INCORRECT JUMP You specified a Jump out of or into a branched Please follow SFC language format.
DESTINATION. area.

INCORRECT The order of your settings is incorrect. Input settings in correct order.
OPERATION.

INCORRECT SYSTEM
NAME.

When performing an intra-disk file copy (source
and destination are the same floppy disk), you
specified the same system name for source and
destination.

Change the destination system
name.

INCORRECT The bottom edge of the SFC diagram is not a Enter a Jump or End step on the
TERMINATION. Jump or End step. bottom edge.
INVALID KEY. You pressed an improper key. Follow the explanations on the

screen, consult HELP or read the
manual and press a proper key.

JUMP DESTINATION
NOT FOUND.

When writing the SFC diagram, you created a
Jump node with a non-existent destination step.

Write the Jump destination step
before writing in the Jump
transition.

LADDER NOT ENTERED.

You selected an unsaved ladder for program copy.

Select a saved ladder.

LADDER OVERFLOW.

The ladder has more than 8 ANB or ORB
commands in a row, or more than 9 LD commands
in a row.

Edit the ladder to correct the error
condition.

MICROCOMPUTER
PROGRAM CAPACITY
NOT SET.

You tried to create a program in SFC mode
without setting the microcomputer capacity.

Set the microcomputer capacity
with Parameter setting.

NOT BROKEN.

You tried to perform the test function Restart or
Cancel Break when there was no break set.

Set a break point or blockbreak.

NO "END’ COMMAND.

A transition condition or output directive program
created with the List language has no End
statement.

Add an End statement to the end of
the transition condition or output
directive program.

NOT ENOUGH MEMORY.

The remaining memory capacity on the floppy disk
is too small to perform the requested write
operation.

Insert a new disk and re-execute
the write operation. If there is
unneeded data on the disk, delete
it to free up space.

NOT USABLE FOR

You entered a command or label that is not

Enter an acceptable command for

SFC-STEP. alowed in output directives (commands MC, MCR, anh output directive.

CJ, SCJ, JMP, FEND, RET, IRET, CHK, CHG or

labels P,I).
NUMBER NOT You selected an entry number that does not Select an entry number that
ENTERED. contain an entered program for Macro Recall. contains an entered program.

OR LADDER EXCEEDS
24 LINES AND
OVERFLOWS DISPLAY
AREA.

You tried to display a ladder block that is more
than 25 lines long.

Verify via List Display. When you
verify via Ladder Display, the block
is truncated to 24 lines.

OUT OF SETTING
RANGE.

Capacity setting is out of range.
Specified step number is out of range.

Set capacity in-range.
Specify step number in-range.

PARAMETER ERROR.

You tried to record a Sampling Trace, but the PC
Sampling Trace capacity has not been set.

Set PC Sampling Trace to "Y" with
Parameter Setting.

'APPENDIX

Error Message

Description

Course of Action

PARAMETER SETTING
MISMATCH.

When trying to read or write in PC mode, settings
in parameter memory do not correspond.

Correct the appropriate parameters.

During parameter verification, the contents do not
correspond.

You tried to display Sampling Trace without
executing Sampling Trace from Parameters.

Select "Y" for Sampling Trace from
Parameters.

PC CAPACITY NOT SET.

You executed a write in PC mode, but the PC
capacity parameter has not been set.

Set the PC capacity with
Parameter Setting.

PC COMMUNICATION
ERROR.

PC power is off.

Turn the PC power on.

Cable or connection is bad.

Re-connect carefully with the
correct cable type.

The PC was reset during transmission.

Re-start the transmission from the
AT.

The RUN LED began to flash during transmission.

Correct the cause of the flashing,
reset the PC, and re-start the
transmission from the AT.

The AT issued a Remote Run when the PC was
obeying a Remote Stop issued by the computer
link unit.

Cancel the Remote Stop issued by
the computer link unit and issue a
Remote Run from the AT.

PC SELECTION ERROR.

The PC type specified in the initial data and the
PC actually connected are different.

Re-display the initialization setting
screen and enter the correct PC
type.

PC TYPE MISMATCH.

The PC type specified by parameters does not
match the PC actually connected.

Re-set the parameter to the
connected PC type.

PRINTER NOT READY.

You tried to execute a printout, but the printer is
not connected.

Connect the printer.

PROGRAM NOT FOUND.

Your search selection has no program.

Change your selection.

RANGE SETTING
ERROR.

The specified range is outside of the acceptable
range.

Specify a proper range.

SELECT "DETAILED
DISPLAY".

You tried to write a diagram while it was in
skeleton diagram display mode.

Set the display to "detailed" mode.

SELECT "DISPLAY WITH
COMMENT".

You selected Create Comments when the display
was not in "include comments" mode.

Change the display to include
comment 1 or comment 2.

SELECT "DISPLAY
WITHOUT COMMENT".

You tried to write, Insert or Delete to a circuit in
Zoom mode when the display was in "With
comments” mode.

Change the display to "Without
comments" mode.

SET PC TO STEP-RUN.

You selected a test function (F1 to F7) when the
PC was not in Step Run mode.

Set the PC to Step Run mode and
re-select the test function.

SFC DIAGRAM ERROR.

There is a ladder entry that does not follow SFC
grammar.

Re-enter following the SFC
grammar.

STEP NUMBER
ALREADY EXISTS.

In statement mode, you selected a step that
already has a program.

Check the program and choose a
correct step number.

SYSTEM NAME NOT
FOUND.

The read origin system name does not exist on the
specified drive.

View the directory to confirm the
system name and re-enter.

THE PC CHANNEL AND
PC NUMBER ARE
INCORRECT.

The operation is prohibited for the currently set PC
Channel and PC Number, or you tried to set the
Remote I/0O port while it was connected.

Consult HELP or the manual to
avoid prohibited operations.

APPENDIX

Error Message Description Course of Action
WRITE TO ROM You executed a write in PC mode,but the Set the RAM/ROM switch in the PC
IMPOSSIBLE. RAM/ROM switch in the PC memory cassette was memory cassette to RAM.
set to ROM.
WRITE-IN ERROR. You executed "write’ (download) in PC mode when | Change the memory cassette
the PC memory cassette RAM/ROM switch was RAM/ROM switch to RAM.
set to ROM.
When writing a file, you exceeded the disk Delete unnecessary files to
capacity. increase free space on the disk.

APPENDIX

Information Message

Description

COMPLETE. STEP NUMBER
CHANGED.

When a step number has been changed.

COPYING TO THE RAM DISK.

You chose PC mode or ladder mode from the menu.

EXECUTING. When a Read, Write or Verify (to/from the PC, floppy disk or ROM) is in
progress, or when a circuit conversion is in progress.
LADDER END. In ladder display, when the last part of the program has been read out.

MONITOR STARTED.

When monitoring is in progress (Monitor function).

MONITOR STOPPED.

In ladder monitor, a trigger stop has been encountered, or you pressed
ESC.

OPERATION COMPLETE.

When a Read, Write or Verify (to/from the PC, floppy disk or ROM) has
completed or when a circuit conversion is complete.

PLEASE SELECT PC TYPE.

When you select a PC type during system setting.

PRESS [CONV.] (SHIFT + F4) TO
DELETE A LADDER BLOCK.

When a circuit block is deleted.

PROCESSING.

Internal management in progress.

READOQUT PC MEMORY.

It is necessary to read from the PC.

SAMPLING STARTED.

In Sampling Trace mode, the PC has begun sampling.

SAMPLING STOPPED.

In Sampling Trace mode, you pressed ESC during sampling execution to
abort sampling.

STOPPED.

A function has been aborted in progress by the user.

VERIFYING.

When a verify is in progress.

WRITE SETTING DATA TO PC.

It is necessary to write setup data to the PC.

WARRANTY

Please confirm the following product warranty details before starting use.

1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the dealer or Mitsubishi Service Company.
Note that if repairs are required at a site overseas, on a detached island or remote place, expenses to dispatch an
engineer shall be charged for.

[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated
place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.

[Gratis Warranty Range]

(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc.,
which follow the conditions and precautions, efc., given in the instruction manual, user's manual and caution labels
on the product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused
by the user's hardware or software design. .

2. Failure caused by unapproved modifications, etc., to the product by the user.

3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions
or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary
by industry standards, had been provided.

4, Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.

7. Any other failure found not to be the responsibility of Mitsubishi or the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.
Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
{2) Product supply (including repair parts) is not possible after production is discontinued.

3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of chance loss and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to damages caused by any cause
found not to be the responsibility of Mitsubishi, chance losses, lost profits incurred to the user by Failures of Mitsubishi
products, damages and secondary damages caused from special reasons regardless of Mitsubishi's expectations,
compensation for accidents, and compensation for damages to products other than Mitsubishi products and other duties.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

6. Product application :
(1) In using the Mitsubishi MELSEC programmable logic controller, the usage conditions shall be that the application will
- notlead to a major accident even if any problem or fault should occur in the programmable logic controller device, and
that backup and fail-safe functions are systematically provided outside of the device for any problem or fault.

(2) The Mitsubishi general-purpose programmable logic controller has been designed and manufactured for applications
in general industries, etc. Thus, applications in which the public could be affected such as in nuclear power plants and
other power plants operated by respective power companies, and applications in which a special quality assurance

" system is required, such as for Railway companies or National Defense purposes shall be excluded from the
programmable logic controller applications.
Note that even with these applications, if the user approves that the application is to be limited and a special quality is
not required, application shall be possible. ‘
When considering use in aircraft, medical applications, railways, incineration and fuel devices, manned transport
devices, equipment for recreation and amusement, and safety devices, in which human life or assets could be greatly
affected and for which a particularly high reliability is required in terms of safety and control system, please consult
with Mitsubishi and discuss the required specifications.

type ACPU/QCPU-A (A Mode)(Fundamentals)

Programming Manual

MODEL ACPU(FUNDA.)-P-E
e 133740

IB(NA)-66249-N(0012)MEE

2% MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100-8310 TELEX : J24532 CABLE MELCO TOKYO
NAGOYA WORKS : 1-14 , YADA-MINAMI 5 , HIGASHI-KU, NAGOYA , JAPAN

When exported from Japan, this manual does not require application to the
Ministry of International Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	SAFETY CAUTIONS
	REVISIONS
	CONTENTS
	1. GENERAL DESCRIPTION
	1.1. CPU Types and Their Abbreviations Used in this Manual

	2. PROGRAMMING LANGUAGES AND OPERATIONS
	2.1 Programming Languages
	2.1.1 Ready symbolic language (ladder mode)
	2.1.2 Logic symbolic language (list mode)

	2.2 Operation Processing of the PC CPU
	2.3 Input and Output Processings
	2.3.1 Direct mode
	2.3.2 Refresh mode

	2.4 Response Lag
	2.4.1 In the direct mode
	2.4.2 In the refresh mode
	2.4.3 Response when direct and refresh modes are switched

	2.5 Scan Time
	2.6 Numeric Data Usable for Sequence Programs
	2.6.1 Binary notation
	2.6.2 Hexadecimal
	2.6.3 BCD (Binary-coded decimal)

	3. DEVICES
	3.1 List of Devices
	3.2 Input (X) and Output (Y)
	3.3 Internal Relays (M), Latch Relays (L), and Step Relays (S)
	3.4 Link Relays (B)
	3.5 Annunciators (F)
	3.6 Timers (T)
	3.6.1 100ms timers, 10ms timers, and 100ms retentive timers
	3.6.2 Processing and accuracy of timers
	3.6.3 Extension timers
	3.6.4 1ms timer

	3.7 Counters (C)
	3.7.1 Count processing in direct mode
	3.7.2 Count processing in refresh mode
	3.7.3 Maximum counting speed
	3.7.4 Extension counters

	3.8 Interrupt Counters (C)
	3.8.1 Counters for interrupt programs
	3.8.2 Counters for counting the number of interrupts (Interrupt counters)

	3.9 Data Registers (D)
	3.10 Link Registers (W)
	3.11 File Registers (R)
	3.11.1 File registers
	3.11.2 Extension file registers

	3.12 Accumulators (A)
	3.13 Index Registers
	3.13.1 Index registers (Z, V)
	3.13.2 Index registers (Zn (Z, Z1 to Z6), Vn (V, V1 to V6))

	3.14 Nesting (N)
	3.15 Pointers (P)
	3.16 Interrupt Pointers (I)
	3.17 Special Relays and Special Registers

	4. ALLOCATION OF I/O NUMBERS
	4.1 I/O Numbers
	4.2 I/O Number Allocation of the Building-block Type CPUs
	4.2.1 Basics of the I/O number allocation
	4.2.2 I/O allocation using peripheral devices
	4.2.3 Example of I/O number allocation

	4.3 I/O Allocation of the A0J2HCPU
	4.3.1 Basics of I/O allocation
	4.3.2 Example of I/O number allocation

	4.4 I/O Allocation of the A2CCPU
	4.4.1 Basics of I/O allocation

	4.5 I/O Number Assignment for A1FXCPU
	4.5.1 I/O number assignment

	5. PROGRAM STRUCTURE
	5.1 Sequence Program
	5.1.1 Main routine program
	5.1.2 Subroutine program
	5.1.3 Interrupt programs

	5.2 Microcomputer Programs
	5.2.1 Utility program
	5.2.2 User-created microcomputer program
	5.2.3 SFC program

	5.3 How to Use the Sub-Programs
	5.3.1 When the CHG instruction is executed at the leading edge of the input and the execution/non-execution result storage...
	5.3.2 When the CHG instruction is executed at the leading edge of the input and the execution/non-execution result storage...
	5.3.3 When the CHG instruction is executed when the input is ON and the execution/non-execution result storage memory is...
	5.3.4 Notes on write during run
	5.3.5 Notes on writing subprogram

	6. FUNCTIONS
	6.1 Constant Scan
	6.2 Retaining Device Data (Latch Function)
	6.3 PC CPU RUN/STOP with a Peripheral Device (Remote RUN/STOP)
	6.4 Stopping the Sequence Program Operation Retaining the State of Outputs (PAUSE)
	6.5 Retaining Device Data when a Specific Condition is Established (Status Latch)
	6.6 Sampling Device Data at Constant Intervals (Sampling Trace)
	6.7 Forced ON/OFF of the OUT Instruction with a Peripheral Device in the RUN Stare (Offline Switch)
	6.8 Step Operation
	6.8.1 Step operation (I)
	6.8.2 Step operation (II)
	6.8.3 Precautions at step operation

	6.9 Clock Function
	6.10 I/O Module Replacement During Online
	6.11 Device Comments
	6.12 Watchdog Timer
	6.13 Self-diagnosis Function
	6.13.1 Operation mode when an error occurs

	6.14 Setting of the Output (Y) State when Switching from STOP to RUN
	6.15 Registration of the Entry Code
	6.16 Registration of the Print Title
	6.17 Display Mode Setting of Annunciators (In case of the CPU module with the LED indicator of 16 characters)
	6.18 ERROR LED Indication Priority Setting

	7. METHOD OF DATA COMMUNICATION WITH SPECIAL-FUNCTION MODULE
	8. PARAMETER SETTING
	9. CONFIGURATION OF USER MEMORY AREA
	9.1 A1CPU and A1NCPU
	9.2 A2CPU(S1) and A2NCPU(S1)
	9.3 A0J2HCPU, A2CCPU, A52GCPU, A1SCPU, and A1SJCPU-S3
	9.4 A2SCPU(S1)
	9.5 A1SHCPU(S8), A1SJHCPU, and A2HCPU(S1)
	9.6 A1FXCPU
	9.7 A2ASCPU, A2ASCPU-S1, S2ASCPU-S30, and A2USHCPU-S1
	9.8 A3CPU, A3NCPU, A3VCPU, A73CPU, and A3HCPU
	9.9 A3MCPU
	9.10 A2ACPU(S1) and A3ACPU
	9.11 A2UCPU(S1) and A3UCPU
	9.12 A4UCPU
	9.13 Q02CPU-A, Q02HCPU-A and Q06HCPU-A

	10. CONFIGURATION OF USER MEMORY AREA (WHEN AN SFC PROGRAM IS USED)
	10.1 SFC Program Memory Area
	10.2 A2NCPU(S1) and A3NCPU
	10.3 Compact Type CPU
	10.4 AnACPU* and AnUCPU
	10.4.1 Allocation when extension comment capacity is not set
	10.4.2 Allocation when extension comment capacity is set

	11. ALLOCATION OF THE MELSECNET/10 NETWORK PARAMETERS
	APPENDIX
	APPENDIX 1 Differences between A3NCPU and A3N board

	WARRANTY

