

Computer link/multidrop link module type A1SJ71C24-R4

REVISIONS

Print Date	*Manual Number	Revision
Apr., 1992	IB (NA) 66364-A	First edition
1		

*The manual number is given on the bottom left of the back cover.

INTRODUCTION

Thank you for choosing the Mitsubishi MELSEC-A Series of General Purpose Programmable Controllers. Please read this manual carefully so that the equipment is used to its optimum. A copy of this manual should be forwarded to the end User.

CONTENTS

Man	ual Ov	rview	
		(1) Man	ual Overview
1.	GENI	ERAL DE	SCRIPTION 1 – 1 ~ 1 – 12
	1.1	Product 1.1.1 1.1.2	Outline $1-1$ Computer link module function $1-1$ Multidrop link module function $1-2$
	1.2	Feature 1.2.1 1.2.2	is
	1.3	A1SJ71	C24 Package 1 – 12
2.	SYST		NFIGURATIONS
	2.1 2.2 2.3	Applica	Configurations $2-1$ ble Systems $2-2$ Configurations $2-3$ System configuration precautions $2-3$ When using computer link functions $2-4$ When selecting a multidrop link function $2-13$ When using a multidrop link function $2-13$ When using a multidrop link function $2-13$ When using a multidrop link function $2-13$
З.	SPEC	CIFICAT	ONS 3-1
	3.1	Genera	I Specifications
4.	HAN	dling .	
	4.1 4.2		g Instructions

[COMPUTER LINK FUNCTIONS]

5.	COM	PUTER L	INK FUNCTION SPECIFICATIONS
	5.1	Perform	ance Specifications
		5.1.1	Transmission specifications
		5.1.2	RS-422/485 interface specifications
		5.1.3	RS-422 cable specifications
	5.2	Functior	ns List
		5.2.1	Functions available using dedicated protocols and commands $\ldots \ldots 5-3$
		5.2.2	Functions available in the no-protocol mode
		5.2.3	Functions available in the bidirectional mode
		5.2.4	Transmission error data read function
	5.3	I/O Sign	als List for CPU
	5.4	Buffer N	temory Applications and Allocation
6.	SETT	INGS AN	ND PROCEDURES BEFORE OPERATION $\dots \dots \dots$
	6.1		and Procedures before Operation
	6.2	Nomena	clature
		6.2.1	Nomenclature
		6.2.2	LED signals and displays 6-3
	6.3	Settings	
		6.3.1	Setting the dedicated protocol, no-protocol mode, or bidirectional mode 6-5
		6.3.2	Setting of transmission specifications 6-6
		6.3.3	Station number setting
		6.3.4	Connection of terminal resistance
	6.4	Externa	l Wiring
		6.4.1	Precautions during wiring 6-9
		6.4.2	Connecting the RS-422/485 6 – 9
		6.4.3	Making a 1:n (multidrop) connection 6-10
		6.4.4	Making an m:n (multidrop) connection 6-10
	6.5	Self-loo	pback Test
		6.5.1	Procedure to carry out the self-loopback test 6 - 11
		6.5.2	Self-loopback test operations 6 - 12
	6.6	Loopba	ck Test
7.			THE MODE WHILE COMPUTER LINK FUNCTIONS IG
	7.1 7.2		ions When Switching Modes
	1.2	7.2.1	Mode switching from an external device $$
		7.2.2	Switching the mode using a PC CPU
8.	CON	TROLLIN	IG SEND CONTROL DURING DATA COMMUNICATIONS
	0 1	Droos +	ions During Send Control
	8.1 8.2		Ions During Send Control 8 - 1 3 Send Control 8 - 3
	0.2		

	8.3	DC1/DC	3 Receive Control
	8.4		4 Send Control
	8.5	DC2/DC	4 Receive Control
9.	INITI		ING OF TRANSMISSION CONTROL DATA TO
Э.			IORY
	5011		
	9.1	Reading	Transmission Error Data
		9.1.1	Reading the error LED display status
		9.1.2	Turning OFF error LEDs
	9.2	•	in the No-Protocol Mode
		9.2.1	Setting the no-protocol mode receive-completed code (for receive with variable-length data)
		9.2.2	Specifying no-protocol receive completion data length (fixed length) $\dots 9-5$
		9.2.3	Setting a word or byte unit in the no-protocol mode
		9.2.4	Setting a buffer memory area for no-protocol send
		9.2.5	Setting a buffer memory area for no-protocol receive
	9.3	Setting i	n the Bidirectional Mode
	9.4	Mode S	witching Setting
		9.4.1	Reading the mode setting status
		9.4.2	Mode switching specification setting
	9.5	Send Co	ontrol Setting
		9.5.1	Send control setting
		9.5.2	Changing codes DC1 to DC4
10.	COM	MUNICA	TIONS USING DEDICATED PROTOCOLS
10.			TIONS USING DEDICATED PROTOCOLS
10.	10.1	Data Flo	ow in Communications with Dedicated Protocols
10.		Data Flo Progran	by in Communications with Dedicated Protocols $\dots \dots \dots$
10.	10.1	Data Flo Progran 10.2.1	by in Communications with Dedicated Protocols $\dots \dots \dots$
10.	10.1	Data Flo Program 10.2.1 10.2.2	by in Communications with Dedicated Protocols $\dots \dots \dots$
10.	10.1 10.2	Data Flo Program 10.2.1 10.2.2 10.2.3	by in Communications with Dedicated Protocols $10-1$ ming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$
10.	10.1 10.2 10.3	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics o	by in Communications with Dedicated Protocols $10-1$ ming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$
10.	10.1 10.2	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics o Basic Fo	by in Communications with Dedicated Protocols $10-1$ mming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ pormats of Dedicated Protocol $$
10.	10.1 10.2 10.3	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics o Basic Fo 10.4.1	ow in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ ormats of Dedicated Protocol $10-6$ Control format 1 $10-7$
10.	10.1 10.2 10.3	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics o Basic Fo 10.4.1 10.4.2	bw in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ pormats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$
10.	10.1 10.2 10.3	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics o Basic Fo 10.4.1 10.4.2 10.4.3	bw in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ ormats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-9$
10.	10.1 10.2 10.3	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4	ow in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ ormats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 4 $10-10$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5	bw in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ formats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-10$ Setting protocol data $10-11$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.3 10.4.4 10.4.5 Transm	ow in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ ormats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-9$ Control format 4 $10-10$ Setting protocol data $10-11$ ission Sequence Timing Charts and Communications Time $10-16$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basics Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact	ow in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ ormats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-9$ Control format 4 $10-10$ Setting protocol data $10-16$ er Area Data Transmission $10-16$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device	bw in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ formats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-9$ Control format 4 $10-10$ Setting protocol data $10-11$ ission Sequence Timing Charts and Communications Time $10-16$ Memory Read/Write $10-22$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device 1 10.7.1	bw in Communications with Dedicated Protocols $10-1$ nming Hints $10-2$ To write data to the special use area in buffer memory $10-2$ A1SCPU operation during data communications $10-3$ Precautions during data communications $10-4$ of Dedicated Protocol Control Procedures $10-5$ formats of Dedicated Protocol $10-6$ Control format 1 $10-7$ Control format 2 $10-8$ Control format 3 $10-9$ Control format 4 $10-10$ Setting protocol data $10-11$ ission Sequence Timing Charts and Communications Time $10-16$ er Area Data Transmission $10-22$ Commands and device ranges $10-22$
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device 1 10.7.1 10.7.2	bw in Communications with Dedicated Protocols10 - 1nming Hints10 - 2To write data to the special use area in buffer memory10 - 2A1SCPU operation during data communications10 - 3Precautions during data communications10 - 4of Dedicated Protocol Control Procedures10 - 5ormats of Dedicated Protocol10 - 6Control format 110 - 7Control format 210 - 8Control format 310 - 9Control format 410 - 10Setting protocol data10 - 11ission Sequence Timing Charts and Communications Time10 - 16er Area Data Transmission10 - 22Commands and device ranges10 - 22Batch read in units of bits10 - 28
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device 1 10.7.1 10.7.2 10.7.3	bw in Communications with Dedicated Protocols10 - 1nming Hints10 - 2To write data to the special use area in buffer memory10 - 2A1SCPU operation during data communications10 - 3Precautions during data communications10 - 4of Dedicated Protocol Control Procedures10 - 5prmats of Dedicated Protocol10 - 6Control format 110 - 7Control format 210 - 8Control format 310 - 9Control format 410 - 10Setting protocol data10 - 11ission Sequence Timing Charts and Communications Time10 - 16er Area Data Transmission10 - 22Commands and device ranges10 - 22Batch read in units of bits10 - 30
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device 1 10.7.1 10.7.2 10.7.3 10.7.4	bw in Communications with Dedicated Protocols10 - 1nming Hints10 - 2To write data to the special use area in buffer memory10 - 2A1SCPU operation during data communications10 - 3Precautions during data communications10 - 4of Dedicated Protocol Control Procedures10 - 5commats of Dedicated Protocol10 - 6Control format 110 - 7Control format 210 - 8Control format 310 - 9Control format 410 - 10Setting protocol data10 - 11ission Sequence Timing Charts and Communications Time10 - 16er Area Data Transmission10 - 22Commands and device ranges10 - 22Batch read in units of bits10 - 30Batch write in units of bits10 - 34
10.	10.1 10.2 10.3 10.4	Data Flo Program 10.2.1 10.2.2 10.2.3 Basics of Basic Fo 10.4.1 10.4.2 10.4.3 10.4.4 10.4.5 Transm Charact Device 1 10.7.1 10.7.2 10.7.3	bw in Communications with Dedicated Protocols10 - 1nming Hints10 - 2To write data to the special use area in buffer memory10 - 2A1SCPU operation during data communications10 - 3Precautions during data communications10 - 4of Dedicated Protocol Control Procedures10 - 5prmats of Dedicated Protocol10 - 6Control format 110 - 7Control format 210 - 8Control format 310 - 9Control format 410 - 10Setting protocol data10 - 11ission Sequence Timing Charts and Communications Time10 - 16er Area Data Transmission10 - 22Commands and device ranges10 - 22Batch read in units of bits10 - 30

	10.7.7	Testing device memory in units of words (random write)
	10.7.8	Monitoring device memory 10 – 44
10.8	Extensio	on File Register Read and Write 10 – 53
	10.8.1	ACPU common commands and addresses 10 – 53
	10.8.2	AnACPU dedicated commands and device numbers 10 – 55
	10.8.3	Precautions during extension file register read/write 10 – 58
	10.8.4	Batch read of the extension file register (ACPU common command) \dots 10 – 59
	10.8.5	Batch write of the extension file register (ACPU common command) \dots 10 – 60
	10.8.6	Direct read of the extension file register (AnACPU dedicated command) $.10-61$
	10.8.7	Direct write to the extension file register (AnACPU dedicated command) . $10-62$
	10.8.8	Testing (random write) the extension file register (ACPU common command)
	10.8.9	Monitoring the extension file register 10-64
10.9	Buffer M	lemory Read and Write
	10.9.1	Commands and buffer memory 10 – 67
	10.9.2	Reading data from buffer memory (ACPU common command) 10-68
	10.9.3	Writing data to buffer memory (ACPU common command) 10-69
10.10) Special	Function Module Buffer Memory Read and Write
	10.10.1	Commands and designation 10 – 70
	10.10.2	Special function module numbers using control protocols
		Reading data from the special-function module buffer memory (ACPU common command)
	10.10.4	Writing data to the special function module buffer memory
10 11	Remote	(ACPŬ common command) 10 – 75 Run/Stop of PC CPU and Reading PC CPU Model Name 10 – 76
10.11		Commands
		Remote RUN/STOP
		Reading PC CPU model name
10.12		n Read/Write
		Precautions during program read/write 10 - 80
		Program read/write control procedures
		Parameter memory read/write
	10.12.4	Sequence program read/write 10 – 87
		Microcomputer program read/write
	10.12.6	Comment memory read/write
	10.12.7	Extension comment memory read/write
10.13	3 Global F	Function
	10.13.1	Commands and control
	10.13.2	Setting the global function (ACPU common command) 10 – 104
10.14	On-dem	and Function
	10.14.1	On-demand handshake signal and buffer memory 10 - 105
	10.14.2	On-Demand function control procedure 10 – 106
	10.14.3	On-demand function designation 10 – 109
10.15	5 Loopba	nck Test

11. COMMUNICATIONS WITH A COMPUTER IN THE NO-PROTOCOL MODE . . . $11 - 1 \sim 11 - 17$

	11.1	Basics of the No-Protocol Mode 11 – 1
	11.2	Handshake I/O Signals
	11.3	Programming Hints
		11.3.1 To write data to the special use area in buffer memory $\ldots \ldots \ldots \ldots 11-3$
		11.3.2 Precautions during data communications
	11.4	Basic Program to Read/Write Buffer Memory 11-5
	11.5	Receiving Data in the No-Protocol Mode (External Device \rightarrow A1SJ71C24) 11 – 8
	11.6	Sending Data in the No-Protocol Mode (A1SJ71C24 \rightarrow External Device) 11 – 14
12.	COM	MUNICATIONS IN THE BIDIRECTIONAL MODE $\dots \dots \dots$
	12.1	Bidirectional Mode Basics
	12.2	Handshake Signals and Buffer Memory 12-4
	12.3	Programming Hints
		12.3.1 System configuration and communications mode for bidirectional mode
		communications
		12.3.3 Precautions during data communications
	12.4	Bidirectional Control Procedure Basics
	12.5	Bidirectional Communications Basics
		12.5.1 Control protocols
		12.5.2 Message format
	12.6	Processing an A1SJ71C24 for Simultaneous Send in Full-Duplex Mode
	12.7	Basic Program to Read/Write Buffer Memory 12 – 18
	12.8	Receiving Data in the Bidirectional Mode (Computer \rightarrow A1SJ71C24)
	12.9	Transmitting Data in the Bidirectional Mode (A1SJ71C24 → Computer)

[MULTIDROP LINK FUNCTIONS]

13.	SPEC	FICATIO	DNS FOR MULTIDROP LINK FUNCTION $\dots \dots \dots$	2
	13.1	Transmis	ssion Specifications	1
	13.2		485 Interface Specifications 13 – 2	
	13.3	RS-422	Cable Specifications	2
14.	SETT	INGS AN	D PROCEDURES BEFORE OPERATION	9
	14.1		and Procedures before Operation	
	14.2		lature	
		14.2.1	Nomenclature	
		14.2.2	LED signals and displays 14-3	
	14.3	-		
		14.3.1	Master/local station setting	
		14.3.2	Setting of transmission specifications 14-	
		14.3.3	Station number setting 14-	
		14.3.4	Connection of terminal resistance 14-0	
	14.4	External	Wiring	
		14.4.1	Multidrop link connection 14-	
	14.5	Self-loop	bback Test	
		14.5.1	Procedure to carry out self-loopback test 14-8	
		14.5.2	Self-loopback test operations 14-	9
15.	A1SJ	71C24 M	ASTER STATION	7
15.	A1SJ 15.1		ASTER STATION	
15.		Function		1
15.	15.1	Function	ıs 15–	1 2
15.	15.1 15.2	Function	als List for PC CPU	1 2 3
15.	15.1 15.2	Function I/O Sign Buffer M	Is 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 –	1 2 3 4 5
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1	Is 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 –	1 2 3 4 5
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1 15.3.2	Is 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 –	1 2 3 4 5 7
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3	Is 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 –	1 2 3 4 5 7 7
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4	Iss 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 –	12345777
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5	Iss 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 – Communication data 15 – Iss 15 –	123457770
15.	15.1 15.2	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6	Iss 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 – Communication data 15 – Faulty slave station indication 15 –	1234577700
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co	Is15als List for PC CPU15lemory15Accessed slave station/transmission priority15Number of communication data bits15Maximum number of transmission points setting area15Off-communication station setting area15Communication data15Faulty slave station indication15Communication time15Return request15Immunications Methods with Slave Stations with the Maximum	12345777000
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.6 15.3.7 15.3.8 Data Co Commu	as15-als List for PC CPU15-lemory15-Accessed slave station/transmission priority15-Number of communication data bits15-Maximum number of transmission points setting area15-Off-communication station setting area15-Communication data15-Faulty slave station indication15-1Communication time15-1Return request15-1mmunications Methods with Slave Stations with the Maximum15-1	12345777000 2
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1	as15 -als List for PC CPU15 -lemory15 -Accessed slave station/transmission priority15 -Number of communication data bits15 -Maximum number of transmission points setting area15 -Off-communication station setting area15 -Communication data15 -Faulty slave station indication15 -Communication time15 -Return request15 -Immunications Methods with Slave Stations with the Maximum15 -nications Point Setting of 256 Points15 -Communication with A0J2C2515 -	12345777000 22
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1 15.4.2 Data Co	as 15 – als List for PC CPU 15 – lemory 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 – Communication data 15 – Faulty slave station indication 15 – Communication time 15 – Return request 15 – mmunications Methods with Slave Stations with the Maximum 15 – nication with A0J2C25 15 – Communication with local station (A1SJ71C24) 15 – mmunication with Slave Stations when the Maximum Number of	12345777000 224
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1 15.4.2 Data Co Transmi	as15 -als List for PC CPU15 -Accessed slave station/transmission priority15 -Accessed slave station/transmission priority15 -Number of communication data bits15 -Maximum number of transmission points setting area15 -Off-communication station setting area15 -Communication data15 -Faulty slave station indication15 - 1Communication time15 - 1Return request15 - 1mmunications Methods with Slave Stations with the Maximum15 - 1Communication with A0J2C2515 - 1Communication with local station (A1SJ71C24)15 - 1mmunication with Slave Stations when the Maximum Number of15 - 1	12345777000 224 6
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1 15.4.2 Data Co Transmi 15.5.1	Iss 15 – als List for PC CPU 15 – lemony 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 – Communication data 15 – Faulty slave station indication 15 – Communication time 15 – Return request 15 – mmunications Methods with Slave Stations with the Maximum 15 – nications Point Setting of 256 Points 15 – Communication with A0J2C25 15 – Communication with local station (A1SJ71C24) 15 – mmunication with Slave Stations when the Maximum Number of 15 – Communication with A0J2C25 15 –	12345777000 224 66
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1 15.4.2 Data Co Transmi 15.5.1 15.5.2	Is15 -als List for PC CPU15 -demory15 -Accessed slave station/transmission priority15 -Number of communication data bits15 -Maximum number of transmission points setting area15 -Off-communication station setting area15 -Communication data15 -Faulty slave station indication15 - 1Communication time15 - 1Return request15 - 1mmunications Methods with Slave Stations with the Maximumnications Point Setting of 256 Points15 - 1Communication with A0J2C2515 - 1Communication with Slave Stations when the Maximum Number ofssion Points is Set at 51215 - 1Communication with A0J2C2515 - 1Communication with A0J2C2515 - 1Communication with local station (A1SJ71C24)15 - 1Communication with A0J2C2515 - 1Communication with A0J2C2515 - 1Communication with A0J2C2515 - 1Communication with local station (A1SJ71C24)15 - 2	12345777000 224 660
15.	15.1 15.2 15.3	Function I/O Sign Buffer M 15.3.1 15.3.2 15.3.3 15.3.4 15.3.5 15.3.6 15.3.7 15.3.8 Data Co Commun 15.4.1 15.4.2 Data Co Transmi 15.5.1 15.5.2 A1SJ710	Iss 15 – als List for PC CPU 15 – lemony 15 – Accessed slave station/transmission priority 15 – Number of communication data bits 15 – Maximum number of transmission points setting area 15 – Off-communication station setting area 15 – Communication data 15 – Faulty slave station indication 15 – Communication time 15 – Return request 15 – mmunications Methods with Slave Stations with the Maximum 15 – nications Point Setting of 256 Points 15 – Communication with A0J2C25 15 – Communication with local station (A1SJ71C24) 15 – mmunication with Slave Stations when the Maximum Number of 15 – Communication with A0J2C25 15 –	12345777000 224 6602

		15.7.1	Pre-transmission error processing	23
		15.7.2	Data transmission error processing	24
	15.8	Off-com	munication Control	26
	15.9	Transmi	ssion Delay Time 15-2	28
	15.10	Transmi	ssion Stop Detection Time	28
	15.11	•	15-2	
		15.11.1	Notes on programming	29
		15.11.2	Initial data write	30
		15.11.3	Start-up and error reset 15-3	31
		15.11.4	Transmission data write	32
		15.11.5	Received data read	34
		15.11.6	Off-communication station set/cancel program	37
16.	MULI		LOCAL STATION	10
	16.1	Function	ns	- 1
	16.1 16.2		ns	
		Input Sig		- 1
	16.2	Input Sig	gnals List for PC CPU	- 1 - 2
	16.2	Input Sig Buffer N	gnals List for PC CPU	- 1 - 2 - 3
	16.2	Input Sig Buffer M 16.3.1	gnals List for PC CPU	- 1 - 2 - 3 - 3
	16.2	Input Sig Buffer M 16.3.1 16.3.2 16.3.3	gnals List for PC CPU 16 - lemory 16 - Station number 16 - Number of bits received/transmitted 16 -	- 1 - 2 - 3 - 3 - 4
	16.2 16.3 16.4	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71	gnals List for PC CPU	- 1 - 2 - 3 - 3 - 4 - 5
	16.2 16.3 16.4	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71	gnals List for PC CPU 16 - lemory 16 - Station number 16 - Number of bits received/transmitted 16 - Communication data 16 - C24 Control 16 -	- 1 - 2 - 3 - 3 - 4 - 5 - 6
	16.2 16.3 16.4	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71 Error Co	gnals List for PC CPU 16 - lemory 16 - Station number 16 - Number of bits received/transmitted 16 - Communication data 16 - C24 Control 16 - 16 - 16 - Description 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 - 16 -	- 1 - 2 - 3 - 3 - 4 - 5 - 6
	16.2 16.3 16.4 16.5	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71 Error Co 16.5.1 16.5.2	gnals List for PC CPU16 -lemory16 -Station number16 -Number of bits received/transmitted16 -Communication data16 -C24 Control16 -ontrol16 -Pre-transmission error processing16 -	- 1 - 2 - 3 - 3 - 4 - 5 - 6 - 6 - 6
	16.2 16.3 16.4 16.5	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71 Error Co 16.5.1 16.5.2	gnals List for PC CPU16 -lemory16 -Station number16 -Number of bits received/transmitted16 -Communication data16 -C24 Control16 -Data transmission error processing16 -Data transmission error processing16 -	- 1 - 2 - 3 - 3 - 4 - 5 - 6 - 6 - 6 - 8
	16.2 16.3 16.4 16.5	Input Sig Buffer M 16.3.1 16.3.2 16.3.3 A1SJ71 Error Co 16.5.1 16.5.2 Program	gnals List for PC CPU16-lemory16-Station number16-Number of bits received/transmitted16-Communication data16-C24 Control16-ontrol16-Pre-transmission error processing16-Data transmission error processing16-nming16-	- 1 - 2 - 3 - 3 - 4 - 5 - 6 - 6 - 8 - 8

-

[TROUBLESHOOTING]

17.	TRO	JBLESHOOTING (COMPUTER LINK FUNCTIONS) $\dots 17 - 1 - 1 - 1 - 9$
	17.1	NAK Error Codes with Dedicated Protocols
	17.2	Bidirectional Mode Error Codes 17-3
	17.3	Troubleshooting OFF
		17.3.1 Troubleshooting flow chart 17-4
		17.3.2 When the "RUN" LED is turned OFF 17 – 5
		17.3.3 When the neutral state does not change or data is not received
		17.3.4 When the C/N (LED No. 11) is turned ON 17-7
		17.3.5 When communications sometimes fails
		17.3.6 When undecoded data is transmitted
18.	TRO	BLESHOOTING (MULTIDROP LINK FUNCTIONS) $\dots \dots \dots$
	18.1	Error Codes (Master Station)
	18.2	Error Codes (Local Station) 18-2
	18.3	Troubleshooting OFF
		18.3.1 Troubleshooting flow chart
		18.3.2 RUN LED turns OFF 18-4 18.3.3 SET E. LED turns ON 18-5
		18.3.4 SCAN E. LED turns ON

•

[APPENDICES]

.

APPENDICES	- 14
APPENDIX 1 OUTSIDE DIMENSIONS AP	P – 1
APPENDIX 2 COMPATIBILITY BETWEEN AJ71C24-S6 AND A0J2-C214(S1)API	P-2
APPENDIX 3 ASCII CODE TABLE API	P – 3
APPENDIX 4 COMMUNICATIONS TIME BETWEEN A A1SCPU AND AN A1SJ71C24 API	P – 4
APPENDIX 5 SPECIAL FUNCTION MODULE BUFFER MEMORY ADDRESSES AP	P-6
5.1 Positioning Module Buffer Memory Addresses AP	P – 7
APPENDIX 6 PRECAUTIONS DURING COMMUNICATIONS WHEN USING RS-422/485	
	- 10
APPENDIX 7 A1SJ71C24 SETTING RECORD FORMAPP	- 12

Manual Overview

(1) Manual Overview

This manual is divided into the following five general areas:

(a) Common (Sections 1 to 4):

Describes items common to computer link and multidrop link functions such as the general outline of operations, features, system configurations, general specifications, performance specifications, and handling.

(b) Computer Link Functions (Sections 5 to 12):

Describes the specifications, functions, command, and procedures before operation and procedures used for computer link functions.

(c) Multidrop Link Functions (Sections 13 to 16):

Describes the specifications, functions, programming, and operation settings and procedures used for multidrop link functions.

(d) Troubleshooting (Sections 17 to 18):

Describes troubleshooting procedures if a hardware fault or software error occurs when a computer link function or multidrop link function is used.

(e) Appendices

					×	
	an e					

[COMMON]

and a shear that the

This section explains the system configurations, general specifications, performance specifications, and operation settings and procedures of an A1SJ71C24 which are common to computer link and multidrop link functions.

가는 가는 가는 것이 가지 않는 것이 있었다. 이 것이 있는 것이 같이 있다. 이 가지 않는 것이 되었는 것이 되는 것이 가지 않는 것이 있는 것이 있는 것이 가지 않는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있다. 이 가지 도착되었다. 우리는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있

(2) Construction of the construction of the construction of the methods of the methods of the construction with the construction of the construction of the methods of the second of the methods of the construction of the construction of the construction of the methods of the second of the second of the second of the second of the construction of the construction of the methods of the second of the secon

الأولى من 100 من تسليم من الماد من الماد من من الماد من الماد

网络哈姆 机内容器 化对称 医肉酸酸镁 过去过去 法公司公司 人名法德法斯特 化分析 化分析

1. GENERAL DESCRIPTION

This User's Manual describes the specifications, handling and transmission control protocols of the A1SJ71C24-R4 computer link/multidrop link module used together with a MELSEC-A Series A1SCPU.

1.1 Product Outline

1.1.1 Computer link module function

The A1SJ71C24-R4 has one RS-422/485 port. It is the interface between a A1SCPU and an external device (such as a computer or printer) or to the CPU of another PC station.

Dedicated transmission protocols 1 to 4 are used as transmission control procedures on the A1SJ71C24-R2 and a no-protocol mode and a bidirectional mode are also available. The user can select and set these.

When using a dedicated transmission protocol or the no-protocol mode/bidirectional mode, data is transmitted using the codes as shown below.

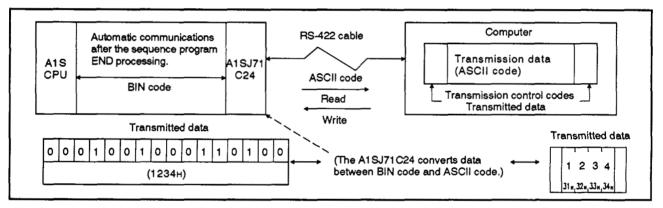


Fig. 1.1 Data Transmission with the Dedicated Protocol

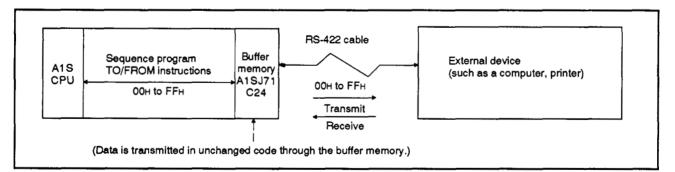


Fig. 1.2. Data Transmission in the No-Protocol Mode/Bidirectional Mode

1.1.2 Multidrop link module function

The multidrop link is a data transmission/receive system using an RS-422/485 interface.

Data communications can be performed between a master station and local or remote stations.

Up to eight local or remote stations can be connected to a master station.

Fig.1.3 shows data transmission/receive using the multidrop link function.

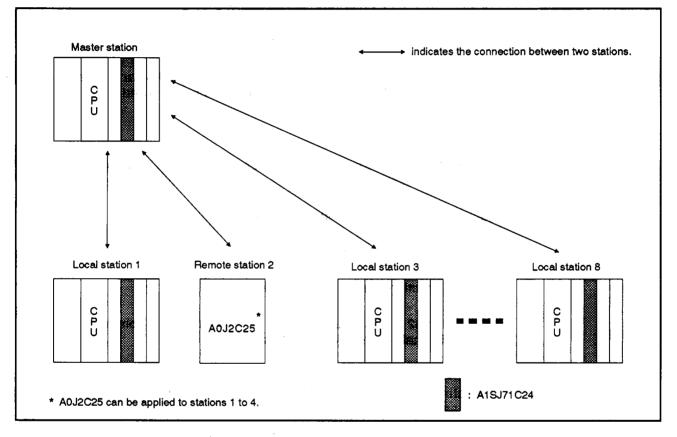


Fig.1.3 Data Transmission/Receive Using a Multidrop Link Function

The features of the A1SJ71C24-R4 computer link/multidrop link module (hereafter called the A1SJ71C24 in this manual) are given below.

The A1SJ71C24 has computer/multidrop link functions. Either function can be selected by using the dip-switch.

[Computer link function]

The A1S71C24 has an RS-422/485 interface. Selecting the computer link function enables this interface to connect between a PC CPU and an external device (such as a computer) or another PC CPU.

(1) Monitoring the PC CPU operating status

Reading data in the PC CPU via the A1SJ71C24 on an external computer allows the PC CPU operating status to be monitored.

(2) Collecting data

Data can be collected and analyzed by reading the data (in the PC CPU) in an external device.

(3) Up-/down loading a sequence program

Executable sequence programs can be up-/down loaded.

(4) Connecting 1: n (n: Max. 32) stations

Up to 32 A1SJ71C24-R4s can be connected to a computer link module. This enables the multidrop link.

[Multidrop link function]

Selecting the multidrop link function enables the corresponding station to be used as a master or local station.

Therefore, a flexible and inexpensive link system using a RS-422/485 port can be built.

- (1) When used as a master station
 - (a) Up to eight slave stations (local stations: A1SJ71C24 or A0J2-C214(S1) remote stations: A0J2C25 can be connected to a master station.
 - (b) Up to eight master station A1SJ71C24s can be connected to one PC CPU.
 - (c) In a link, the baud rate is 38400 BPS (max.), the overall extension distance is 500m, and the number of total link points is 512 (input: 128 (max.), output: 128 (max.), per slave station).
 - (d) When a slave station in a link becomes faulty, it is possible to either a) release the slave station from the link and continue link processing, or b) stop transmission in the link.

- (e) A slave station can be designated to enter the non-communicating state (output: turning OFF all data transmitted to the slave station, input: turning OFF all data received from the slave station).
- (2) When used as a local station
 - a) An AJ71C22(S1), A1SJ71C24, or A0J2-C214(S1) can be used as a master station.
 - b) Up to eight A1SJ71C24s used as local stations can be connected to a master station.
 - c) In a link, the baud rate is 38400 BPS (max.) and the number of total link points varies according to the allocation in the master station.

1.2.1 Control operations using the computer link function

Data transmission operations between an A1SJ71C24 and external devices (e. g., computers) can be controlled using either the dedicated protocols (*1) or in the no-protocol/bidirectional mode. These control operations can be selected using individual A1SJ71C24.

MELSEC

- (1) Communications using the dedicated protocols
 - (a) Communications at the request of the computer

Data communications is always initiated by the computer.

Designated data is transmitted according to the request command transmitted from a computer to an A1SJ71C24.

It is not necessary to create and change special sequence programs in order to use an A1SJ71C24.

1) Read and write possible to and from all PC CPU devices

Data can be read from all PC CPU devices. This permits observation and monitoring of all operations, as well as the collection and analysis of data. Data can be written to all PC CPU devices. This permits production control and production directives to be carried out.

2) An A1SJ71C24 can upload and download programs from a PC CPU.

PC CPU programs (main sequence and subsequence control programs and microcomputer programs), parameter data and comment data are read by the computer and stored. When required they can be written to the PC CPU to change the program.

3) Remote RUN and STOP control of the PC CPU

The PC CPU can be remote-controlled by means of RUN and STOP instructions from the computer.

4) When multiple computers and PC CPU modules are connected to a link with an A1SJ71C24 module, the input (X) signals of the CPUs in the link can be turned ON/OFF using any computer in the link. This function can immediately stop or simultaneously start all CPUs in the link.

(This function is called the global function of the A1SJ71C24.)

(b) Communications at the request of the PC CPU

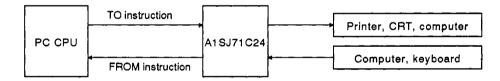
The PC CPU transmits the data send request.

MELSEC-A

When the emergency data needs to be transmitted from a PC CPU to a computer, the PC CPU transmits a send request to the A1SJ71C24 to make the computer execute an interrupt processing.

(This is the on-demand function of the A1SJ71C24.)

- * 1: The dedicated protocols consist of four different protocols. The term "dedicated protocols" used in this manual is the collective term for these protocols.
- (2) Communications in the no-protocol/bidirectional modes


Either the no-protocol mode or the bidirectional mode can be set.

- (a) Communications in the no-protocol mode
 - 1) Data communications can be initiated by a PC CPU

Data communications can be initiated by a computer or any PC CPU. Data can be transmitted from a PC CPU to an external device by using the TO instruction in the sequence program to write data to the buffer memory.

Data transmitted from an external device can be read by a PC CPU using the FROM instruction in the sequence program.

The following example shows a system with a printer, CRT and keyboard terminal connected. Data can be output from the buffer memory to the printer or a CRT display using the TO instruction. Data input from the keyboard to the buffer memory can be read using a FROM instruction from the PC CPU.

2) Receiving data length can be set to variable or fixed:

The length of the data transmitted from an external device and received by the PC CPU can be set to variable or fixed.

i) Receiving variable-length data:

Data receive stops when the receive completed code set by the user is received.

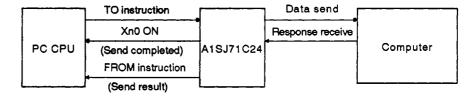
ii) Receiving fixed-length data:

Data receive stops when the fixed length of data set by the user is received.

Both the receive completed code and the receive-completion data length can be freely set by the user.

3) Variable communications memory area

The user memory area can be allocated to suit the purpose and application of the data transmission.

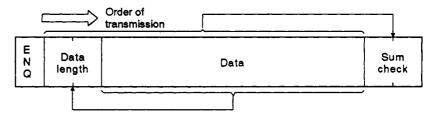

MEI SEC

- (b) Bidirectional communications
 - 1) Data communications can be initiated by a PC CPU

Data communications can be initiated by a computer or any PC CPU. Data can be transmitted from a PC CPU to an external device by using the TO instruction in the sequence program to write data to the buffer memory.

The data send operation is completed when the response message to the sent (received) data is received from the computer. The result of the send (normal end/error) is stored in the buffer memory and can be read out.

The data received from the computer can be read with the FROM instruction of the sequence program.



(When data is transmitted by an A1SJ71C24)

2) Data length is set within the send message

Data length is set within the send message when the data is transmitted to a device.

The receiving side recognizes the data length by the send message.

The send data of the A1SJ71C24 is processed as follows.

ENQ: Added to the head.

Data length:........ The send data length set in the buffermemory is transmitted.

Data: The send data stored in the buffer memoryis transmitted.

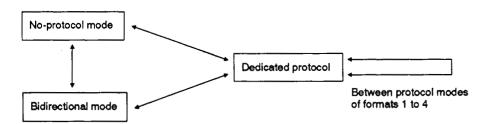
Sum check:.......... Computed with the sum checking range in a message.

The data transmitted by a computer and received by an A1SJ71C24 is processed as follows.

ENQ: Checked and removed from the received data.

Data length:........ Stored in the buffer memory as the received data length.

Data:..... Stored in the buffer memory as the received data.


- Sum check: Checked and removed from the received data.
- 3) Variable communications memory area

The user memory area can be allocated to suit the purposes and applications of the data transmission.

MELSEC-A

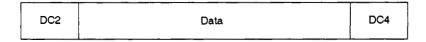
(3) Mode switching function

The communications mode can be changed on line as shown below:

Use either of the following methods to change the mode:

- From an external device
- From a PC CPU

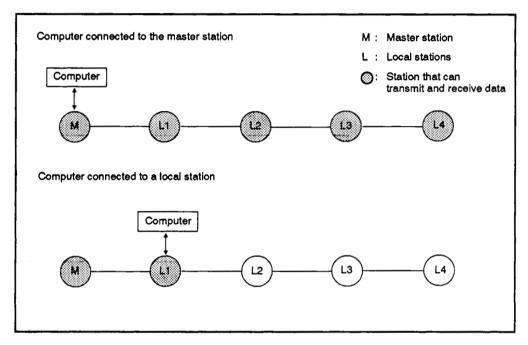
POINT


When the mode is changed from the dedicated protocol to the no-protocol or bidirectional mode, communications is done in the state of default value.

When communications is done using other than a default value, write necessary data to the special-purpose area before communicating with an external device.

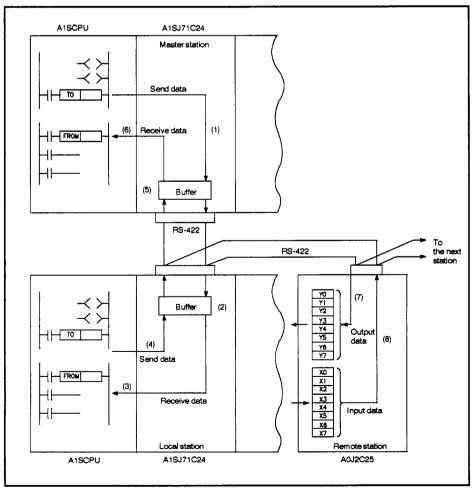
(4) Transmission control function

Communications can be controlled using the DC code.


- The DC1/DC3 control is a function for notifying the communicating station of data transmission/receive enabled or disabled states using the DC1 and DC3.
- The DC2/DC4 code control is a function for indicating the valid range of transmission/receive data using the DC2 and DC4.
- When data is transmitted or received, add the DC2 to the header and the DC4 to the end to transmit or receive data.

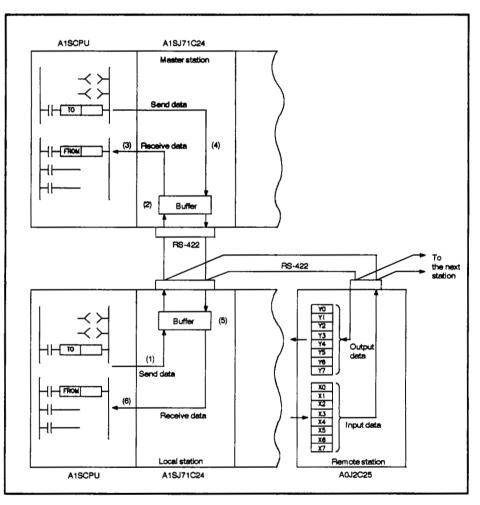
(5) Link with a computer through MELSECNET/B

In a system connected through MELSECNET/B, if the system contains a PC CPU connected to a computer via an A1SJ71C24, data communications is possible between the computer and a PC CPU not equipped with the A1SJ71C24.


All data can be transmitted and received between a MELSECNET/B master station and local stations.

1.2.2 Control operations using the multidrop link function

The multidrop link function controls the following operations:


- (1) When an A1SJ71C24 is used as a master station
 - (a) Writing the bit device status in the PC CPU (master station) to the buffer using a TO instruction.
 - (b) Writing data via the RS-422 cable to the buffer in a local station.
 - (c) Reading receive data (in the buffer) in the PC CPU using a FROM instruction.
 - (d) Writing the bit device status in the PC CPU (local station) to the buffer using a TO instruction.
 - (e) Writing data (in the local or remote station) via the RS-422 cable to the buffer in a master station.
 - (f) Reading receive data (in the buffer) in the PC CPU using a FROM instruction.
 - (g) Outputting send data in the buffer (in a master station) to the buffer in a remote station.

(h) Writing data (input from an external device) as the received data to the buffer in a master station.

MELSEC-A

- (2) When an A1SJ71C24 is used as a local station
 - (a) Writing the bit device status in the PC CPU (local station) to the buffer using a TO instruction.
 - (b) Writing data via the RS-422 cable to the buffer in a master station.
 - (c) Reading receive data (in the buffer) in the PC CPU using a FROM instruction.
 - (d) Writing the bit device status in the PC CPU (master station) to the buffer using a TO instruction.
 - (e) Writing data via the RS-422 cable to the buffer in a local station.
 - (f) Reading receive data (in the buffer) in the PC CPU using a FROM instruction.

1.3 A1SJ71C24 Package

Open the package and make sure that it contains the following items:

ltem	Model (Type)	Number of Units		
Link module	A1SJ71C24-R4	1		
Terminal resistors	330 Ω (Used for RS-422 communications) 110 Ω (Used for RS-485 communications)	2 each		

2. SYSTEM CONFIGURATIONS

This section explains the system configurations that can be combined with an A1SJ71C24.

MELSEC-A

2.1 Overall Configurations

The overall configuration used with an A1SJ71C24 is shown in Fig. 2.1 below.

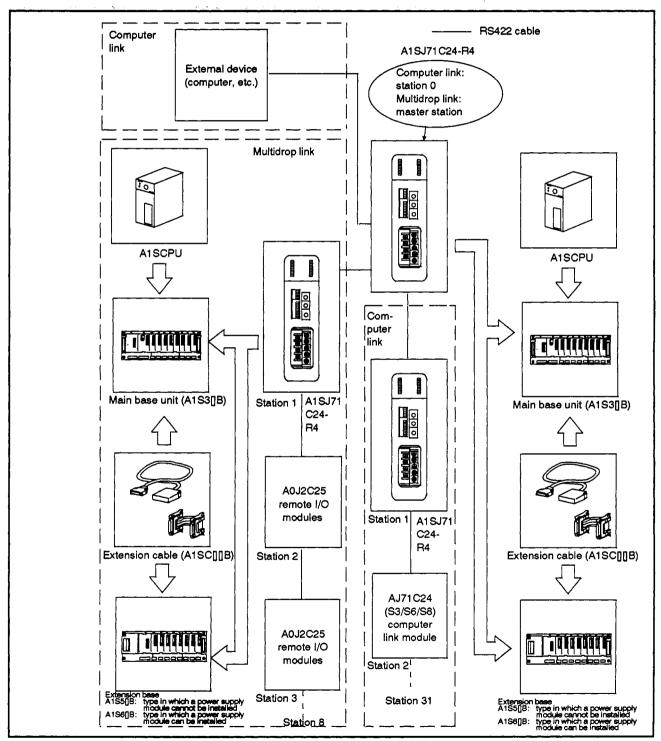


Fig. 2.1 Overall Configuration

2.2 Applicable Systems

The A1SJ71C24 can only be used in the systems described below.

- (1) Applicable PC CPU modules and the number of A1SJ71C24 modules
 - (a) When using an A1SJ71C24 as a computer link

PC CPU Modules	Number of Connectable A1SJ71C24s	Notes			
	If the following modules are used with an A1SJ71C24 when A-series extension base units (A5[]B or A6[]B) are used, the maximum number of connectable A1SJ71C24 modules cannot ex- ceed 2. (See previous column).				
		 AD51(S3)/AD51H Intelligent Communication Module 			
A1S	2	AD57G Graphic Controller Module			
		• AJ71C21(S1) Terminal Interface Module			
		• AJ71C22(S1) Multidrop Link System Module			
					 AJ71C23 Higher Controller High Speed Link Module
			• A1SJ71C24(S6/S8) Computer Link Module		
		• AJ71E71 Ethernet Interface Module			

(b) If an A1SJ71C24 is used in a multidrop function, eight (max.) can be installed.

(The special-function modules in the above table are not included) . If a special-function module in the above table is included, see the manual for that special-function module.

(2) Applicable base unit

The A1SJ71C24 can be inserted into any slot of a main base unit or extension base unit with these two exceptions:

The power supply capacity may be insufficient to load the A1SJ71C24 into an extension base unit with no built-in power supply (A1S5[]B or A5[]B). Wherever possible, avoid loading an A1SJ71C24 module into this type of extension base unit. If it is necessary to use an A1SJ71C24 module in an extension base unit with no built-in power supply, it is important to consider (a) the power supply capacity of the main base unit, and (b) the voltage drop along the extension cables when selecting the extension cables.

(The User's Manual of A1SCPU module employed gives details.)

lim

2-2

2.3 System Configurations

2.3.1 System configuration precautions

This section explains precautions which must be taken with A1SJ71C24 system configurations.

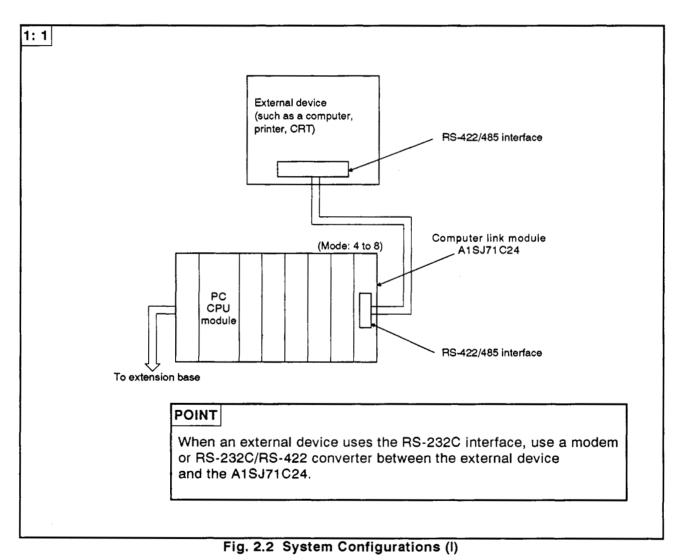
- (1) The local station applicable modules when using an A1SJ71C24 as a master station are as follows:
 - A1SJ71C24-R4 computer link module/multidrop link module
 - A0J2-C214S1 computer link module/multidrop link module
 - A0J2-C214 computer link module/multidrop link module
- (2) The remote station applicable modules when using an A1SJ71C24 as a master station are as follows:
 - A0J2C25 remote I/O modules
- (3) The master station applicable modules when using an A1SJ71C24 as a local station are as follows:
 - A1SJ71C24-R4 computer link module/multidrop link module
 - A0J2-C214S1 computer link module/multidrop link module
 - A0J2-C214 computer link modules/multidrop link modules
 - AJ71C22-S1 multidrop link module
 - AJ71C22 multidrop link module
- (4) The decision tables for using an RS-422/RS-485 in a computer link and a multidrop link are given below.

When using an A1SJ71C24 for a computer link

System	RS-422/RS-485 Communications
Computer (RS-422) + A1SJ71C24-R4	RS-422
Computer (RS-485) + A1SJ71C24-R4	RS-485

When using an A1SJ71C24 for a multidrop link

System	RS-422/RS-485 Communications		
A1SJ71C24-R4 only	RS-422 or RS-485		
A1SJ71C24-R4 + A0J2C25	RS-422		
A1SJ71C24-R4 + A0J2-C214(S1)	RS-422		
A1SJ71C24-R4 + AJ71C22(S1)	RS-422		


2.3.2 When using computer link functions

The A1SJ71C24 is a link module to connect an external device (such as a computer) and a PC CPU. The system can consist of a 1:1 to 32 ratio system or a m:n to 32 ratio system. The connection may be made in two ways: using the RS-422/485 port.

MELSEC-A

- (1) 1:1 ratio of an external device (computer) to a PC CPU
 - (a) The system configuration for a 1:1 ratio of an external device (such as a computer) to a PC CPU is shown in Fig. 2.2 below.

(Mode: [] - []) in the figure indicates the range of setting set with the mode setting switch of an A1SJ71C24 (see Section 6.3.1).

- MELSEC-A

- (b) The following tables list the functions available when an external device is linked with a PC CPU module to make a 1 : 1 configuration.
 - 1) The interface used to set dedicated protocols 1 to 4:
 - i) Functions available when using an external device

Available Fur	nctions	Available/ Unavailable	Note
	Read/write		Including
Device memory	Test	0	Including extension devices
	Monitor		
	Read/write		
Extension file register	Test	٥	
	Monitor		
Buffer memory A1SJ71C24 of the self	Read/write	o	-
Special function module's buffer memory	Read/write	o	
Sequence/Microcom- puter program	Read/write	o	
Comment	Read/write	o	Including extension comments
Parameter	Read/write	o	
PC CPU	Remote RUN/STOP	o	
	PC CPU type read	o	_
Global	input signal (X) ON/OFF	o	
Self-loopback test	Transmission of received data	o	

ii) Functions available when using a PC CPU

Available Functions		Available/ Unavailable	Note
On-demand	Data transmission to external devices	o	_

2) Interfaces used to set the no-protocol mode

Functions available when using an external device and a PC CPU

Available Functions		Available/ Unavailable	Note
Send	PC CPU to external device	o	To computers, printers, and CRTs.
Receive	External device to PC CPU	o	From computers and keyboards

3) Interfaces used to set the bidirectional mode

Functions available when using an external device and a PC CPU

Available Functions		Available/ Unavailable	Note
Send	PC CPU to computer	0	To computers
Receive	Computer to PC CPU	0	From computers

AELSEC-A

- (2) 1 : n ratio of an external device to PC CPUs
 - (a) The system configurations for a 1 : n (up to 32 stations) ratio of an external device (such as a computer) to PC CPUs are shown in Fig. 2.3 below.

(Mode: [] to []) in the figure the range of setting set with the mode setting switch of an A1SJ71C24 (see Section 6.3.1).

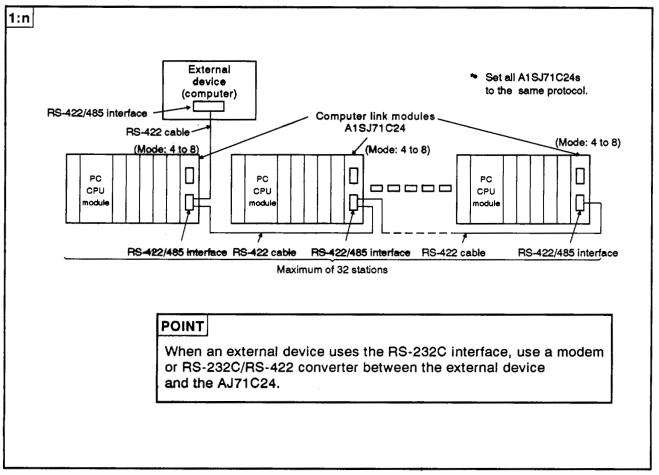


Fig. 2.3 System Configurations (II)

- (b) The following tables list the functions available when an external device is linked with the PC CPU modules to make a 1 : n configuration.
 - 1) The interface used to set dedicated protocols 1 to 4:
 - i) Functions available when using an external device

Available Fun	ctions	Available/ Unavailable	Note
	Read/write		
Device memory	Test	0	Including exten- sion devices
	Monitor		
	Read/write		
Extension file register	Test	o	
	Monitor		
Buffer memory A1SJ71C24 of the self	Read/write	o	_
Special function module's buffer memory	Read/write	o	
Sequence/ microcomputer program	Read/write	o	
Comment	Read/write	o	Including exten- sion comments
Parameter	Read/write	0	
PC CPU	Remote RUN/STOP	o	
	PC CPU type read	o	-
Global	Input signal (X) ON/OFF	٥	
Self-loopback test	Transmission of received data	o	

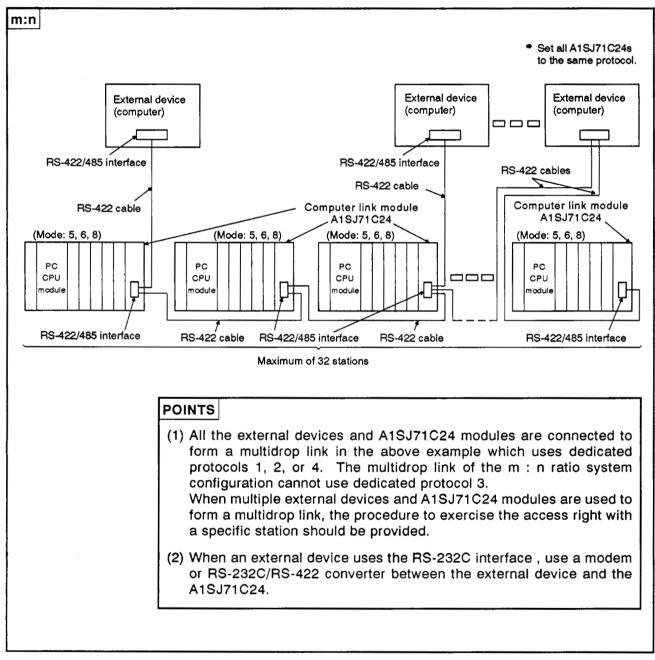
ii) Functions available when using a PC CPU

Available	Functions	Available/ Unavailable	Note
On-demand	Data transmission to external devices	x	-

2) Interfaces used to set the no-protocol mode

Functions available when using an external device and a PC CPU

Available Functions		Available/ Unavailable	Note
Send	PC CPU to external device	o	To computers, printers, and CRTs.
Receive	External device to PC CPU	o	From computers and keyboards


3) Interfaces used to set the bidirectional mode

Functions available when using an external device and a PC CPU.

Available Functions		Available/ Unavailable	Note
Send	PC CPU to computer	×	To computers
Receive	Computer to PC CPU	x	From computers

- (3) m : n ratio of external devices to PC CPUs
 - (a) The system configuration for a m : n (up to 32 stations) ratio of external devices (such as a computer) to PC CPUs is shown in Fig. 2.4 below.

(Mode: [], [], []) in the figure indicates setting set with the mode setting switch of an A1SJ71C24 (see Section 6.3.1).

Fig. 2.4 System Configurations (III)

- (b) The following tables list the functions available when the external devices are linked with the PC CPU modules making an m : n configuration.
 - 1) The interface used to set dedicated protocols 1, 2, 4:

	······································	T	
Available Fun	octions	Available/ Unavailable	Note
	Read/write	0	
Device memory	Test	0	Including exten- sion devices
	Monitor	0	
	Read/write	o	
Extension file register	Test	٥	
	Monitor	o	
Buffer memory A1SJ71C24 of the self	Read/write	o	-
Special function module's buffer memory	Read/write	٥	
Sequence/ microcomputer program	Read/write	o	
Comment	Read/write	o	Including exten- sion comments
Parameter	Read/write	0	
PC CPU	Remote RUN/STOP	o	
	PC CPU type read	0	-
Global	Input signal (X) ON/OFF	0	
Self-loopback test	Transmission of received data	٥	

i) Functions available when using external devices

ii) Functions available when using a PC CPU

Availabl	e Functions	Available/ Unavailable	Note
On-demand	Data transmission to external devices	×	-

2) Interfaces used to set the no-protocol mode

Functions available when using external devices and the PC CPU

Availab	e Functions	Available/ Unavailable	Note
Send	PC CPU to external devices	-	_
Receive	External devices to PC CPU	-	-

3) Interfaces used to set the bidirectional mode

Functions available when using external devices and the PC CPU

Availabi	e Functions	Available/ Unavailable	Note
Send	PC CPU to computer	-	-
Receive	Computer to PC CPU	-	-

---- MELSEC-A

2.3.3 When selecting a multidrop link function

(1) When using an A1SJ71C24-R4 as a master station

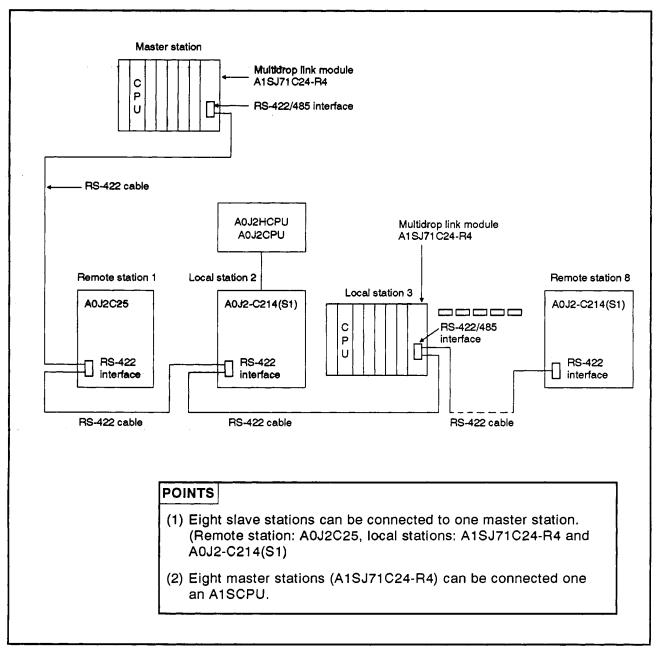


Fig. 2.5 System Configurations (IV)

(2) When using an A1SJ71C24-R4 as a local station

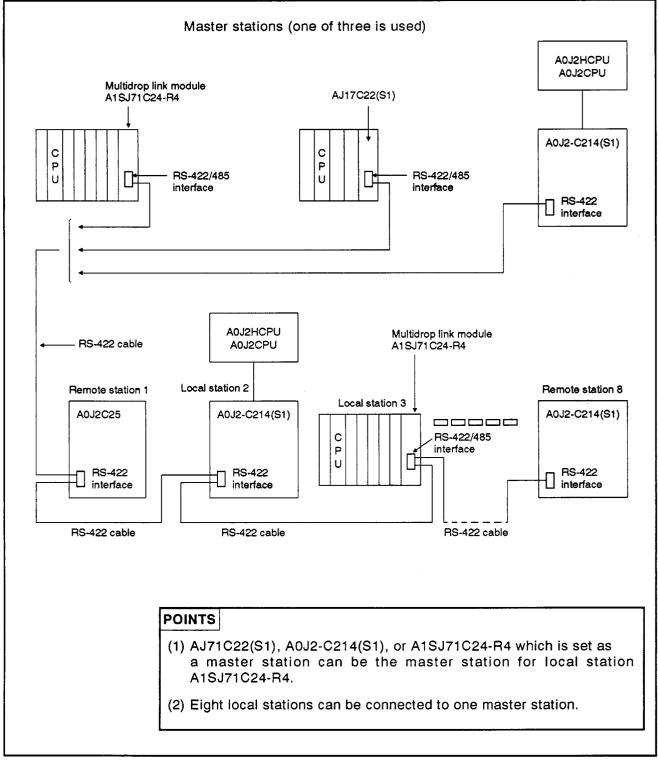
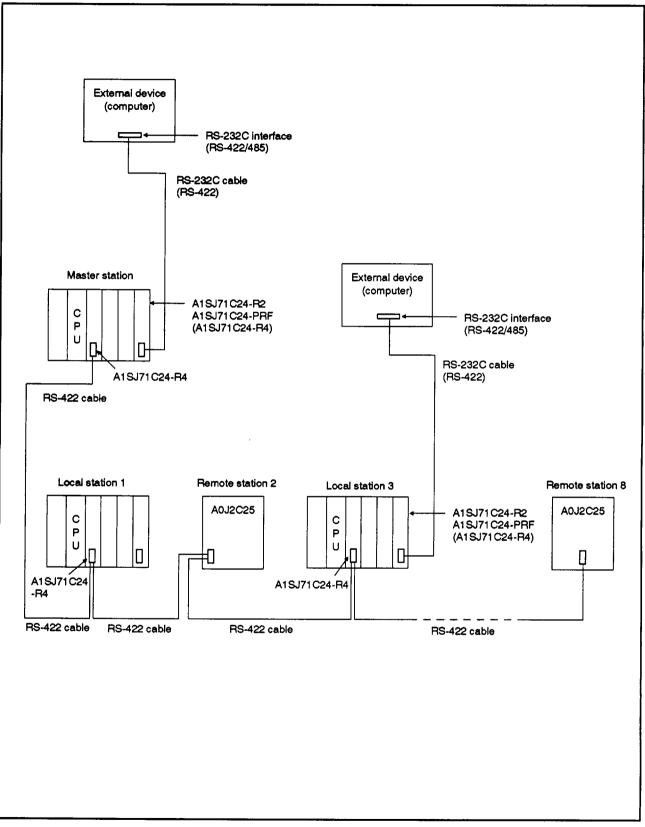



Fig. 2.6 System Configurations (V)

2.3.4 When using a multidrop link function and a computer link function simultaneously

Fig. 2.7 System Configurations (IV)

MELSEG-A

3. SPECIFICATIONS

3.1 General Specifications

Item Specifications												
item	opecifications											
Operating ambient temperature	0 to 55°C (32 to 131°F)											
Storage ambient temperature	–20 to 75° (4	-20 to 75° (4 to 167°F)										
Operating ambient humidity	10 to 90% R	H, no condens	ation									
Storage ambient humidity	10 to 90% R	H, no condens	ation									
		Frequency	Acceler a - tion	Amplitude	Sweep Count							
Vibration resistance	Conforms to **JIS C 0911	10 to 55 Hz		0.075 mm (0.003 inch)	10 times *(1 octave/ minute)							
		55 to 150 Hz	9.8 m/s² (1 g)	-								
Shock resistance	Conforms to	JIS C 0912 (9	8 m/s² (10 g) x 3 times in 3	3 directions)							
Noise resistance	By noise sim and 25 to 60	ulator 1500 V. Hz noise freq	P.P. noise v uency	oltage, 1 μsec	noise width							
Dielectric withstand voltage		r 1 minute acro 1 minute acro										
Insulation resistance		ater by 500 VD terminals and		resistance tes	ster across							
Grounding	Class 3 grounding; If grounding is impossible, make grounding to the panel.											
Operating ambience	No corrosive	gases or dust										
Cooling method	Self-cooling											

Table 3.1 General Specifications

REMARK

One octave marked * indicates a change from the initial frequency to double or half frequency. For example, any of the changes from 10 Hz to 20 Hz, 20 Hz to 40 Hz, 40 Hz to 20 Hz, and 20 Hz to 10 Hz are referred to as one octave.

** JIS: Japanese Industrial Standard

4. HANDLING

- 4.1 Handling Instructions
 - (1) Protect the A1SJ71C24 and its terminal block against impact.
 - (2) Do not touch or remove the printed circuit board from the case.
 - (3) Do not allow metal particles or wire offcuts to enter the A1SJ71C24.
 - (4) Tighten the module mounting and terminal screws as specified below.

Screw	Tightening Torque N·cm (kg·cm)[lb·inch]
Module mounting screws (M4)	78 (8)[6.93] to 117 (12)[10.39]
RS-422/485 terminal block mounting screw (M3.5)	58 (6)[5.20] to 88 (9)[7.80]
RS-422/485 terminal block terminal screw (M3.5)	58 (6)[5.20] to 88 (9)[7.80]

4.2 Installation Environment

Never install the system in the following environments:

- (1) Locations where ambient temperature is outside the range 0 to 55°C (32 to 131°F).
- (2) Locations where ambient humidity is outside the range of 10 to 90% RH.
- (3) Locations where dew condensation takes place due to sudden temperature changes.
- (4) Locations where there are corrosive gasses and combustible gasses.
- (5) Locations where there is a high level of conductive powder, such as dust and iron filings, oil mist, salt, and organic solvent.
- (6) Locations exposed to the direct rays of the sun.
- (7) Locations where strong power and magnetic fields are generated.
- (8) Locations where vibration and shock are directly transmitted to the main unit.

[COMPUTER LINK FUNCTIONS]

This section describes the specifications, functions, parts, and commands used to perform data communications with such external devices as the computer and printer of the A1SJ71C24 used as the computer link module.

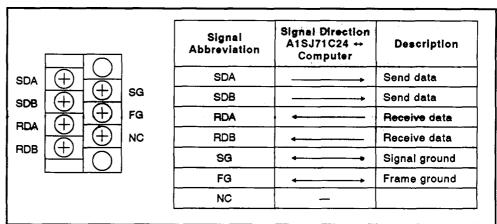
5. COMPUTER LINK FUNCTION SPECIFICATIONS

5. COMPUTER LINK FUNCTION SPECIFICATIONS

5.1 Performance Specifications

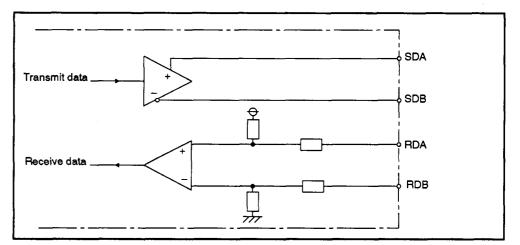
5.1.1 Transmission specifications

Table 5.1 Transmission Specifications


	ltem	Specifi	cations				
Interface		Conform to RS-422/485.					
Transmission method		Dedicated protocol	Half-duplex *1				
Transmission	metnoa	No-protocol/bidirectional	Full-duplex				
Synchronous	system	Asynchronous system					
Transmission	system	300, 600, 1200, 2400, 4800, 9600, 19200	BPS (switch selected)				
	Start bit	1					
Data format	Data bit	7 or 8					
Data lonnat	Parity bit	1 or none	Selectable				
	Stop bit	1 or 2					
Access cycle		Each request is processed in the END processing of the sequence program. Therefore, access cycle is 1 scan time.					
E		Parity check present (odd/even)/absent					
Error detection	n	Sum check present/absent					
DTR/DSR (ER	I/DR) control	Absent					
X ON/OFF (D	C1/DC3) control	Present/Absent (Select either by using the	e buffer)				
		Dedicated protocol	1:1				
System config device: PC CF	uration (External PU)	No-protocol	1:1				
		Bidirectional	1:1				
Transmission	distance	Up to 500 m (1640 ft)					
Current consu	mption	5 VDC, 0.1 A					
Number of occ	cupying I/Os	32 *2					
Weight		250g (0.56 lb)					
Recommended 422 converter	d RS-232C to RS-	EL-LINE-M					

*1: If the on-demand function is used, only full-duplex communications is available when full-duplex communications is enabled.


*2: Set the special function modules to have 32 inputs/outputs when the I/O allocation is set.


5. COMPUTER LINK FUNCTION SPECIFICATIONS

5.1.2 RS-422/485 interface specifications

Fig. 5.1 RS-422/485 Interface Specifications

5.1.3 RS-422 cable specifications

An RS-422 cable is recommended in Section 5.1.1. Other types of cables may be used instead, if they conform to the specifications listed in the following table.

item	Description
Cable type	Shielded cable
Number of pairs	3 Pairs
Conductor resistance (20°C)	88.0 Ω/km or less
Insulation resistance	10.000 MΩ km or less
Dielectric strength	500 VDC, 1 minute
Electrostatic capacity (1 KHz)	60 nF/km or less on average
Characteristic impedance (100 KHz)	110 ± 10 Ω

Fig. 5.3 RS-422 Cable Specifications

(km = 0.621 mile)

MELSEC

5.2 Functions List

The tables below list the functions available when an external device (such as a computer) and a PC CPU are connected by an A1SJ71C24 module.

5.2.1 Functions available using dedicated protocols and commands

The functions available using dedicated protocols 1 to 4 are listed in Tables 5.2 and 5.3.

The commands in Table 5.2 can be used for an A1SCPU connected to the A1SJ71C24 or for the ACPU of another station.

The commands in Table 5.3 can be used for an A2ACPU(P21/R21)(S1) or A3ACPU(P21/R21) over the data link.

(1) Functions available with the ACPU common commands

\sim		······································				
Function			Con Sym- bol	MMand ASCII Code	Description	Number of Point Processed per Communications
		Bit units	BR	42H, 52H	Reads bit devices (such as X, Y, M) in units of 1 device.	256 points
	Batch read	Word	WB		Reads bit devices (such as X, Y, M) in units of 16 devices.	32 words (512 points)
		units	**	57H, 52H	Reads word devices (such as D, R, T, C) in units of 1 device.	64 points
		Bit unit s	BW	42H, 57H	Writes bit devices (such as X, Y, M) in units of 1 device.	160 points
	Batch write	Word	ww	57H, 57H	Writes bit devices (such as X, Y, M) in units of 16 devices.	10 words (160 points)
		units		57H, 57H	Writes word devices (such as D, R, T, C) in units of 1 device.	64 points
	Test (ran- dom write)	Bit units BT 4			Specifies bit devices (such as X, Y, M) and device number in units of 1 device at random and sets/resets the device.	20 points
		Word		57H, 54H	Specifies bit devices (such as X, Y, M) and device number in units of 16 devices at random and sets/resets the device.	10 words (160 points)
		units	WT	576, 546	Specifies word devices (such as D, R, T, C) and device number in units of 1 device at random and sets/resets the device.	10 points
		Bit units BM 42H, 4		42H, 4DH	Sets bit devices to be monitored (such as X, Y, M) in units of 1 device.	40 points *1
	Monitor data entry	Word	wм		Sets bit devices to be monitored (such as X, Y, M) in units of 16 devices.	20 words *1 (320 points)
		units	VVIV:	57H, 4DH	Sets word devices to be monitored (such as D, R, T, C) in units of 1 device.	20 points
		Bit units	MB	4DH, 42H	Reads data from devices for which device data	
	Monitor	Word units	MN	4DH, 4EH	registration has been made.	
	Batch read	1	ER	45H, 52H	Reads extension file registers (R) in units of 1 register.	64 points
	Batch write	9	EW	45H, 57H	Writes extension file registers (R) in units of 1 register.	64 points
Extension file register	Test (random w	Test (random write)		45H, 54H	Specifies the extension file registers (R) in units of 1 register using block or device number and makes a random write.	10 points
	Monitor da registration		EM	45H, 4DH	Sets the extension file registers (R) device numbers to be monitored in units of 1 register.	20 points
	Monitor		onitor ME 4D		Monitors the extension file register after monitor data registration.	_

Table 5.2 Functions List When Using a Dedicated Protocol

- MELSEC-A

5. COMPUTER LINK FUNCTION SPECIFICATIONS

PC CPUs with which the Command can be Executed									PC CPU St	-1-				
	P	C CPU	of the	Commun	icating	Statio	ns ove	r the D	ata Dir	ık				Reference
A1S	A1S	AOJ	A1N	A2N	A2A	A3N	A3A	АЗН	A3M	A73	During			Sections
	~13	2H	A1	A2 (S1)	(S1)	A3					STOP	SW04 ON	SW04 OFF	
														10.7.2
0	İ				0						0	0	o	10.7.3
														10.7.4
0	1				0						0	٥	x	10.7.5
						_								10.7.6
0					0						o	o	×	10.7.7
0				-	o					_	o	0	o	10.7.8
0					0						0	0	0	
o		o	×				0				0	0	0	10.8.4
0		0	×				0	<u> </u>			0	0	x	10.8.5
0		o	x				0				o	0	×	10.8.8
0		0	×				0				0	0	0	10.8.9
0		0	x				0				٥	0	0	

MELSEG-A

Table 5.2 Functions List When Using a Dedicated Protocol (Continued)

				Cor	mmand			Number of Poin Processed per											
Function				Sym- bol	ASCII Code	Description		Communication											
Buffer	Batch	Batch read			Batch read			Batch read			Jatch read			latch read			43H, 52H	Reads data from the A1SJ71C24 buffer memory.	64 words
memory	Batch v	write		cw	43H, 57H	Writes data to the A1SJ71C24 buff- er memory.	the sequence program and the external devices when a multi- drop link is made.	(128 bytes)											
Special function	Batch r	read		TR	54H, 52H	Reads the contents module buffer memo	of the special function ory.	64 words											
module	Batch	write		тw	54H, 57H	Writes data to the s buffer memory.	pecial function module	(128 bytes)											
	[Other than T/C set value	_		Reads main sequen	ice programs.	64 steps											
	Batch	Main	T/C set value	MR	4DH, 52H	Reads T/C set value sequence programs		64 points											
l	read		Other than T/C set value			Reads subsequence	ə programs.	64 steps											
Sequence		Sub	T/C set value	SR	53H, 52H	Reads T/C set value programs.	es used in subsequence	64 points											
Program			Other than T/C set value			Writes main sequen	ice programs.	64 steps											
	Batch	Main	T/C set value	MW	4DH, 57H	Writes T/C set value quence programs.	es used in main se-	64 points											
	write		Other than T/C set value	1		Writes subsequence	e programs.	64 steps											
l		Sub	T/C set value	sw	53H, 57H	Writes T/C set value programs.	es used in subsequence	64 points											
	Batch	، <u>س</u>	Main	UR	55H, 52H	Reads main microco													
Micro	read		Sub	VR	56H, 52H	Reads submicrocom	128 bytes												
computer program	Batch		Main	UW	55H, 57H	Writes main microcomputer programs.		120 09105											
	write		Sun	vw	56H, 57H	Writes submicrocom	nputer programs.]											
Comment	Batch	read		KR	4BH, 52H	Reads comment dat	ta	128 bytes											
	Batch	n write		кw	4BH, 57H	Writes comment dat	ta.	120 09100											
	Batch	read		PR	50H, 52H	Reads parameters f	irom PC CPU.												
Parameter	Batch	n write		PW	50H, 57H	Writes parameters t	OPC CPU.	128 bytes											
		sis rec	quest	PS	50H, 53H	Causes PC CPU to rewritten parameters	acknowledge and check s.	-											
	Remc	ote RU	JN	RR	52H, 52H														
PC CPU	Remc	ote ST	OP	RS	52H, 53H	Request remote run	/stop of PC CPU.												
	PC C	PU rea	ad	PC	50H, 43H	Reads the type of P A3H	PC CPU: A1N, A2N, A3N,												
Global				GW	47H, 57H	Turns ON and OFF A1SJ71C24 loaded	the global signal of the in each PC CPU system.	1 point											
On-deman	On-demand					Send request is initi (Available in a 1:1 m		Data length specified in the sequence program. (May 1760 words)											
Loopback t	est	TT 54H, 54H Echoes unchanged characters back to the computer.				254 characters													

5. COMPUTER LINK FUNCTION SPECIFICATIONS

	PC CPUs with Which the Command can be Executed													
				Commun						ık		PC CPU St	ate	Reference
A1S		A0J	A1N	A2N	A2A	A3N					During	Durin	Sections	
	A1S	2H	A1	A2 (S1)	(S1)	A3	A3A	АЗН	A3M	A73	STOP	SW04 ON	SW04 OFF	
0	o										0	0	o	10.9.2
														10.9.3
0					0						0	•	0	10.10.3
0					٥						0	0	×	10.10.3
0					٥						o	o	o	
×			x					0			o	o	o	
0					0						0	o *2	×	10.12.4
0					0						0	0	×	
×			x					0			0	0	×	
×			x					0			°	o *2	×	
o x			o x		×	o	×		o		0	o	0	
0			0		x	0	×		0		•	o *2	×	10.12.5
×			x								 			
0					0						0	0	°	10.12.6
×					。 。						0 0	0 0	× 0	
0					0						0	x	x	
0					•						· 0	×	x	10.12.3
o					0						0	0	0	10.11.2
0					0						0	0	0	10.11.3
o	0									0	. 0	0	10.13	
0					٥						-	o	0	10.14
0					٥						0	0	o	10.15

MELSEC-A

*1: When the CPU modules other than A3H, A2A(S1), and A3A are used, devices X (input) are allocated with 2 inputs per device.

To include devices X in designated devices, set as follows:

((number of designated X devices x 2) + number of other designated devices) ≤ 40

If only devices X are designated, the number of inputs usable for one communications time is half the value mentioned in the table.

*2: Writing during a program run may be carried out if all the following conditions are met:

(This is different from the write during PC RUN with a MELSEC-A series peripheral device (e.g., A6GPP).)

- (a) The PC CPU is type A3, A3N, A3H, A3M, A73 or A3A.
- (b) The program is not the currently running program.

(includes subprograms called by the currently running main program)

- (c) The PC CPU special relay is in the following states:
 - 1) M9050 signal flow exchange contactOFF (A3CPU only)
 - 2) M9051 (CHG instruction disable).....ON

POINT

When the A1SJ71C24 is used together with the A2ACPU (S1) or A3ACPU, use the commands in Table 5.3 to perform the following functions:

- Batch read/write, test, monitor data registration, and monitor of device memory
- Batch read/write of extension file registers by designating device numbers (continuous numbers)
- · Batch read/write of extension comments

When the commands in Table 5.2 are used, the available functions and the range of devices which can be designated are limited to those available with the A3HCPU.

Accordingly, A2ACPU(S1) and A3ACPU external devices are not accessible.

(2) Functions available with the AnACPU dedicated commands

$\overline{}$			Comr	nands		Number of	PC C	PU St	ate	Refer-
					Description	Point Processed	Dustan	Durin	g RUN	ence
Functior	,		Sym- bol	ASCII Code	2	per Com- munications	During STOP	SW04 ON	SW04 OFF	Sec- tions
		Bit units	JR	4AH, 52H	Reads bit devices (such as X, Y, M) in units of 1 device.	256 points				10.7,2
	Batch read	Word	QR	51H,	Reads bit devices (such as X, Y, M) in units of 16 devices.	32 words (512 points)	o	•	0	10.7.3
		units		52H	Reads word devices (such as D, R, T, C) in units of 1 device.	64 points				
		Bit units	JW	4AH, 57H	Writes bit devices (such as X, Y, M) in units of 1 device.	160 points				10.7.4
	Batch write	Word	ow	51H,	Writes bit devices (such as X, Y, M) in units of 16 devices.	10 words (160 points)	•	•	×	10.7.5
		units		57H	Writes word devices (such as D, R, T, C) in units of 1 device.	64 points				
		Bit units	JT	4AH, 54H	Specifies bit devices (such as X, Y, M) and device number in units of 1 device at random and sets/resets the device.	20 points				10.7.6
	Test (random write)	Word	от	51H,	Specifies bit devices (such as X, Y, M) and device number in units of 16 devices at random and sets/resets the device.	10 words (160 points)	0	0	×	10.7.7
		units G1 54	54H	Specifies word devices (such as D, R, T, C) and device number in units of 1 device at random and sets/resets the device.	10 points					
	Monitor	Bit units	JM	4AH, 4DH	Sets bit devices to be monitored (such as X, Y, M) in units of 1 device.	40 points				
	data regist-	Word		51H,	Sets bit devices to be monitored (such as X, Y, M) in units of 16 devices.	20 words (320 points)	0	o	0	
	ration	units	QM	4DH	Sets word devices to be monitored (such as D, R, T, C) in units of 1 device.	20 points				10.7.8
		Bit units	MJ	4DH, 4AH	Reads data from devices for which		0	0	0	
	Monitor	Word units	MQ	4 DH , 51H	device data has been registered.					
Exten-	Direct read	Word units	NR	4EH, 52H	Reads data in units of 1 device by designating the device numbers continuously regardless of the exten- sion file register block numbers.	64 points	0	0	0	10.8.6
file register	Direct write	Word units	NW	4EH, 57H	Writes data in units of 1 device by desig- nating the device numbers continuously regardless of the extension file register block numbers.	64 points	0	0	x	10.8.7
Exten- sion	Batch r	ead	DR	44H, 52H	Reads the extension comment data.	128 points	0	0	•	10.12.7
com- ment	Batch	write	DW	44H, 57H	Writes the extension comment data.		0	0	x	10.12.7

Table 5.3 Functions List When Using a Dedicated Protocol

POINT

The commands given in Table 5.3 can be used when the A1SJ71C24 is used together with the A2ACPU(S1) or A3ACPU. The whole range of device memory is accessible using these commands.

For functions other than those listed in Table 5.2, use the commands given in Table 5.3.

5. COMPUTER LINK FUNCTION SPECIFICATIONS

5.2.2 Functions available in the no-protocol mode

(1) Functions in the no-protocol mode

				PC				
	Com- mend	Description	Number of Points Processed per	During	Durin	, RUN	Reference Section	
Function			Communications			SW04 OFF		
Send (PC CPU → external device)	-	A PC CPU uses the TO instruction to output data written to an A1SJ71C24 buffer memory area in unchanged code to an external device.	127 words (default value). Can be changed	_			0	
Receive (External device → PC CPU)		A PC CPU uses the FROM instruction to read from an A1SJ71C24 buffer memory which was transmitted from an external device.	with buffer size setting (see Sections 11.5 and 11.6.).	o	0	0	Section 11	

(2) Receive completion by the completed code and by the completion data length

There are two ways to complete the data receive when an A1SJ71C24 is receiving data from an external device:

(a) Reading the received data using the receive completed code (receive of variable-length data)

When an A1SJ71C24 receives the receive completed code which is set in the buffer memory by the user from an external device, the A1SJ71C24 transmits a received data read request to the sequence program.

The sequence program, in response to the read request, reads the received data up to the receive completed code transmitted by the external device.

The user can freely set the receive completed code.

(b) Reading the received data using the receive-completion data length (receive of fixed-length data)

When an A1SJ71C24 receives data of a designated length which is set in the buffer memory by the user from an external device, the A1SJ71C24 transmits a received data read request to the sequence program.

The sequence program, in response to the read request, reads the received data of the designated length transmitted by the external device.

The receive-completion data length can be set within the buffer memory area allocated for the no-protocol receive.

POINTS

- (1) The functions available with the no-protocol mode cannot be used together with the functions available with the bidirectional mode mentioned in Section 5.2.3. Select either mode using the mode setting switch (see Section 6.3.1) and by setting the bidirectional mode setting area in the special applications buffer memory area (see Sections 5.3 and 12.2).
- (2) The receive-completed code and the receive-completion data length can be set and enabled at the same time. When both of them are enabled, the received data read request to the sequence program is made in response to whichever is received first by the A1SJ71C24.

5.2.3 Functions available in the bidirectional mode

\backslash				PC C	PU Sta	ite		
	Com- mand	Description	Number of Points Processed per	During	During	RUN	Reference Section	
Function			Communications	During STOP	SW04 ON	SW04 OFF		
Send (PC CPU → computer)		A PC CPU uses the TO instruction to output data written to the A1SJ71C24 buffer memory area in unchanged code to a computer. When the A1SJ71C24 receives the response message from a computer after data send the A1SJ71C24 transmits a send completed signal to the sequence program.	127 words (default value). Can be changed				Section 12	
Receive (Computer → PC CPU)		A PC CPU uses the FROM instruction to read data from the A1SJ71C24 buffer memory which was transmitted by a computer. When the A1SJ71C24 receives the data read completed signal from the sequence program, the A1SJ71C24 transmits a response message for the data receive to a computer.	with the buffer size setting (see Sections 12.8 and 12.9.)	0	0	0		

(1) Functions in the bidirectional mode

(2) Setting data length setting for data send

The length of the data to be transmitted between an A1SJ71C24 and a computer is set within the send message. (see Section 1.2.1 (2) (b)).

(a) When data is transmitted to a computer:

When the data to be transmitted to a computer is output from the sequence program to an A1SJ71C24, the data length is written to the buffer memory of the A1SJ71C24.

The A1SJ71C24 sets the data length to a send message and transmits it along with the data to a computer.

This allows the length of a send message to vary according to the content and kind of data to be transmitted.

(b) When data is received from a computer:

When an A1SJ71C24 receives data from a computer, the A1SJ71C24 writes the data length contained in the message to its buffer memory.

The sequence program reads the data length from the buffer memory to read all the received data.

POINT

The functions available with the bidirectional mode cannot be used together with the functions available with the no-protocol mode mentioned in Section 5.3.2. Select either mode using the mode setting switch (see Section 6.3.1) and by setting the bidirectional mode setting area in the special applications buffer memory area (see Sections 5.3 and 12.2).

5.2.4 Transmission error data read function

This function permits the sequence program to read error data when the error LEDs on the front panel of the module are lit and permits the sequence program to turn OFF an error LED which is lit. Section 9.1 gives details about sequence programs.

(1) Reading transmission error data

The display status of the error LEDs is stored in buffer memory. The sequence program can read this data to permit the PC CPU to execute error checking and interlocking with data communication sequence programs.

(2) Function to turn off error LEDs

This function permits the sequence program to turn off error LEDs which are lit without resetting the PC CPU.

5.3 I/O Signals List for CPU

The I/O signals of the A1SJ71C24 for the PC CPU are listed below. The numbers (n number) appended to X and Y are determined by the installing position of the A1SJ71C24 and the number of I/O signals used by the I/O signal signals used by the I/O modules installed in front of the A1SJ71C24. (Example: Xn0 \rightarrow X0 when the A1SJ71C24 is loaded in slot 0 of the main base unit)

(1) Input signals (A1SJ71C24 \rightarrow PC CPU)

There are 16 input signals: Xn0 to XnF are turned ON/OFF by the A1SJ71C24.

Input	Signal Name	м	ode							Reference
Signal	Signal Name	Dedicated protocol	No-protocol/ Bidirectional					U	escription	Sections
Xn0	Send completed		o	dev	rns ON when the send from the A1SJ71C24 to the external vice is completed when Y(n+1)0 is turned ON. rns OFF when Y(n+1)0 is turned OFF.					
Xn1	Received data read request	_	o	nate	rns ON when the completed code, fixed length data, or desig- ted data length is received from the external device. Turns OFF en Y(n+1)1 is turned ON.					11.2, 12.2
Xn2	Global signal	o	_		rns ON/OFF according to the message (factor number) when a bal command is received from a computer.					
Xn3	On- demand function operating	0	_	to th	ns ON when the on-demand transmission is executed according he request from the sequence program. Turns OFF when the demand transmission is completed.					
				(1)	with eac	ch othe	r.		d an A1SJ71C24 are communicating n to check communications status, etc. Message Sequence State	
					0	OFF	OFF	OFF	A1SJ71C24 initializing after power ON or OFF using protocol 1 to 4	
Xn4	A1SJ71C24				1	OFF	OFF	ON	Waiting for ENQ	
to	message sequence	o			2	OFF	ON	OFF	Received ENQ	-
Xn6	state				3	OFF	ON	ON	Received station number (self)	
					4	ON	OFF	OFF	Waiting for response from PC after receiving all data	
					5	ON	OFF	ON	Waiting for message	
					6	ON	ON	OFF	Unused	
					7	ON	ON	ON	Unused	
 		 	- - 							

Table 5.4 Input Signals List

5. COMPUTER LINK FUNCTION SPECIFICATIONS

Input	Signal Name	м	ode		Reference
Signal		Dedicated protocol	No-protocol/ Bidirectional	Description	Sections
Xn7	A1SJ71C24 READY sig- nal	0	O	 Goes ON when the A1SJ71C24 is ready (after the power is turned ON, the PC CPU is reset, or the mode is changed). Turns ON when the A1SJ71C24 becomes READY after the PC CPU is reset after (a) power to the PC CPU was turned ON, or (b) the mode was switched. (Turns ON a few seconds after the power is turned ON.) Turns OFF when an error (which discontinues the A1SJ71C24's operation) occurs. Used for the READY communications signal when the no-protocol mode, bidirectional mode, or the on-demand function of the dedicated protocol is used. 	_
Xn8	-	_	—	Unusable	
Xn9	Mode change completed	0	o	Goes ON when completing the A1SJ71C24 mode change turns ON the $X(n+1)9$.	7
XnA to XnC	_		_	Unavailable	
XnD	Watch dog timer error	o	o	Turns ON when the A1SJ71C24 watch dog timer error occurs. Remains OFF during normal operation.	17.2
XnE XnF	_			Unavailable	

POINT

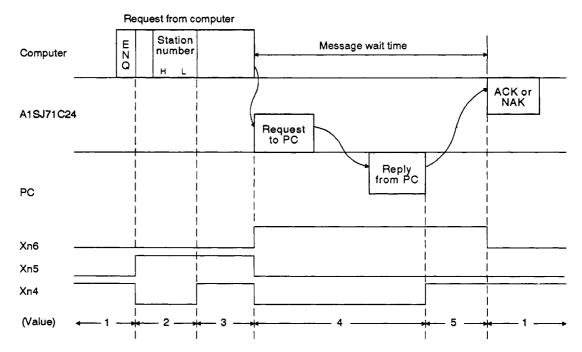
Y(Yn0 to YnF) corresponding to Xn0 to XnF may be used as internal relays.

MELSEC-A

(2) Output signals (PC CPU \rightarrow A1SJ71C24)

There are 16 output signals: $Y_{(n+1)}0$ to $Y_{(n+1)}F$ are turned ON/OFF by the A1SJ71C24.

Output	Signal	M	ode		Refer-
Signal	Name	Dedicated protocol	No-protocol/ Bidirectional	Description	ence Sections
Y (n+1) 0	Send request	-	o	When this signal is turned ON by the sequence program in the no-protocol mode/bidirectional mode, data written to the buffer memory is transmitted from the A1SJ71C24 to an external device. (After Xn0 is turned ON, $Y(n+1)0$ is turned OFF.	11.2, 12.2
Y (n+1)1	Received data read completed	_	o	This signal turns ON in the no-protocol mode/bidirectional mode, when the PC CPU has completed reading the data received from an external device. This data is stored in the A1SJ71C24 buffer memory. (After Xn1 is turned OFF, Y _(n+1) 1 is turned OFF.	11.2, 12.2
Y (n+1) 2 to Y (n+1)8	_	-	-	Unusable	-
Y(n+1)9	Mode change request	0	٥	Turning this ON (using the sequence program) changes the A1SJ71C24 mode, which executes the initial processing. Goes OFF after turning ON Xn9.	7
Y(n+1)A to Y(n+1)F	-	-	_	Unusable	-


Table 5.5 Output Signals List

IMPORTANT

Y(n+1)2 to Y(n+1)8 and Y(n+1)A to Y(n+1)F are reserved for system use only. A1SJ71C24 functions cannot be guaranteed if these signals are turned ON or OFF by a sequence program.

REMARK

Example: Use of input signals Xn4 to Xn6.

5.4 Buffer Memory Applications and Allocation

The term "buffer memory" used in this manual refers to a memory area of an A1SJ71C24 used to store the control and communications data which is transmitted between an external device (e.g., a computer) and a PC CPU.

The buffer memory can be accessed from the sequence program by using the FROM/TO instruction.

The buffer memory can be accessed from an external device by using the buffer memory read/write command (CR, CW) with dedicated protocols 1 to 4.

(1) Buffer memory applications

There are two types of buffer memory area. One area may be used freely by the user, but the other area has a special application.

(a) User area

There are four applications of the user area, which can be categorized as follows.

1) Data receive area in no-protocol mode/bidirectional mode

This area stores data transmitted from an external device in the no-protocol mode or bidirectional mode.

2) No-protocol mode/bidirectional mode data send area

This area stores data from the PC CPU to be transmitted to an external device.

3) On-demand data storage area

This area stores send data to be transmitted from the sequence program to an external device using the on-demand function.

4) Area when using buffer memory read/write commands

This area stores data when communication is made using protocols 1 to 4 for buffer memory read/write commands (CR,CW).

(b) Special applications area

The applications of this memory area are fixed. They are used to determine the data communications format and to change the allocation of the memory area for section (a) above.

When the power is turned ON or the PC CPU is reset, default values are written to this special applications area.

Default values can be changed to suit the purposes and applications of data transmission and the specifications of the external device. Section 9 gives details. (2) Buffer memory allocation

The buffer memory consists of 16-bit addresses. The buffer memory has no back-up battery.

The buffer memory address names and values for each address are listed in the following table.

IMPORTANT

Buffer memory addresses 10EH, 11DH to 11FH are reserved for system use only. Data written to this area will prevent correct operation of the A1SJ71C24.

The following table shows the contents of the buffer memory allocation.

The memory areas which are used with the no-protocol mode or the bidirectional mode are listed as those to be used with the no-protocol mode.

The memory areas function the same way in either mode. When the bidirectional mode is required, see the following table, changing "no-protocol" to "bidirectional".

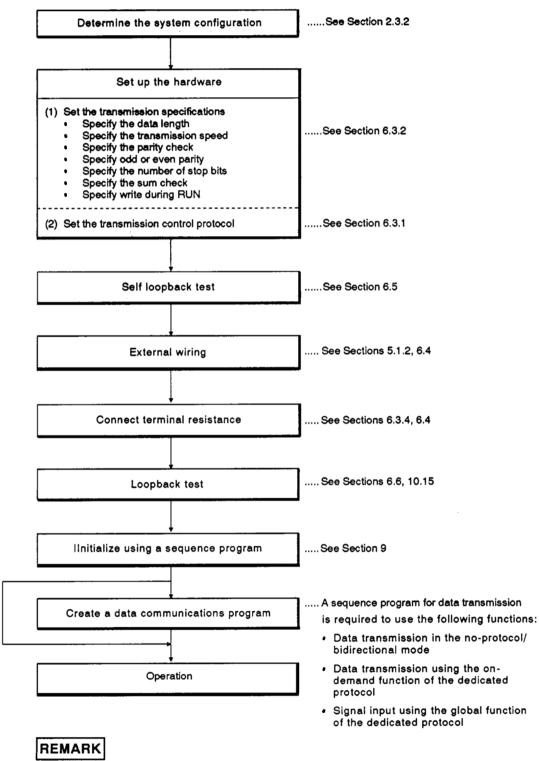
					Mode	set by	user	
85588		Buffer	Memory Address Names	Default Values	Dedicated Protocol	No- Protocol	Bidirec- tional	(Referen Section
н н			No-protocol send data length storage area	No- protocol		0	o	
o ⁼H	User area	Area for	No-protocol send buffer memory	send area	0*3	0	0	
н Н	(256 defai words)	default	No-protocol received data length storage area.	No- protocoi	0.3	•	•	
, Н			No-protocol receive buffer memory area (Received data storage area)	area		o	•	
H•	Area to spe	city receive	completed code in no-protocol mode	0D0AH (CR, LF)		0	-	s
н	Error LED	display OFF	state storage area	0				s
4	Error LED t	urn OFF rec	uestarea	0	•	0	0	s
H•	Area to spe	cify word or	byte units in no-protocol mode	0 (words)	o *1	0	0	s
H•	Area to spe protocol mo		dress of send buffer memory for no-	0		0	0] }9.
H•	Area to spe	cify send bu	ffer size for no-protocol mode	80H		0	0	[]
н•	Area to spe protocol mo	ecify head ac	Idress of receive buffer memory for no-	80H		•	0] } s
H•	Area to spec	ify receive bu	Iffer size for no-protocol mode	80H		0	0	
H•	Area to spe protocol mo		completion 1 on data length in no-	127 (words)	-	0	_	9
н	Area to spe	cify head ac	Idress of on-demand buffer memory	0	0			} 1
Н	Area to spe	cify on-dem	and buffer size	0	0			} I
вн	System are	a (unavailab	le)		—	_	_	
сн	Storage are	a for on-der	nand errors	0		_		1
н	Receive da	ta clear requ	lest area for no-protocol mode	0	—	o	—	1
EH	System are	a (unavailab	le)	-		-	_	
н :н•	Bidirections	al mode setti	ng area	0 (No-protocol mode)		_	0	
вн•	Time-out cl	neck time se	tting area	0 (Infinite)	_		0	
4H•	Simultaneo	us transmiss	sion data valid/invalid setting area	0 (Data valid)	_	_	0) 9
5H•	Check sum	enable/disa	ble setting area	0 (Check sum enabled)	_		0	
6H	Data send	error storage	area	0	_		—] 1
7H	Data receiv	e error store	ge area	0	_	_	_	J ,

5. COMPUTER LINK FUNCTION SPECIFICATIONS

			Mode	set by i	Jser	
Addresses	Buffer Memory Address Names	Default Values	Dedicated Protocol	No- Protocol	Bidiree- tional	(Reference Sections)
118H	Mode setting state storage area	0 (Mode 0)	_	—	_	
119H	Mode change specification area	0 (No change)	0	0	ο	
11AH•	Transmission control specification area (DC code control)	0 (No DC code con- trol)		o	o	
11BH•	DC1/DC3 control code specification area	1311H	—	0	0	
11CH• 11DH	DC2/DC4 control code specification area	1412H	_	0	0	
to 11FH	System area (Unusable)	-		_	-	
120H to	User area (3296 words)	0	o *2	o *2	o*2	
DFFH	*3	<u> </u>	1	L	·	1

*1: The unit of the transmission (send/receive) data in the no-protocol mode or bidirectional mode or of the send data when the on-demand function of the dedicated protocol is used.

*2: Áreas should be allocated so that they do not overlap with each other when (a) data is transmitted in the no-protocol mode or bidirectional mode, or (b) when more than one function of data transmission using the on-demand function of the dedicated protocol is used.

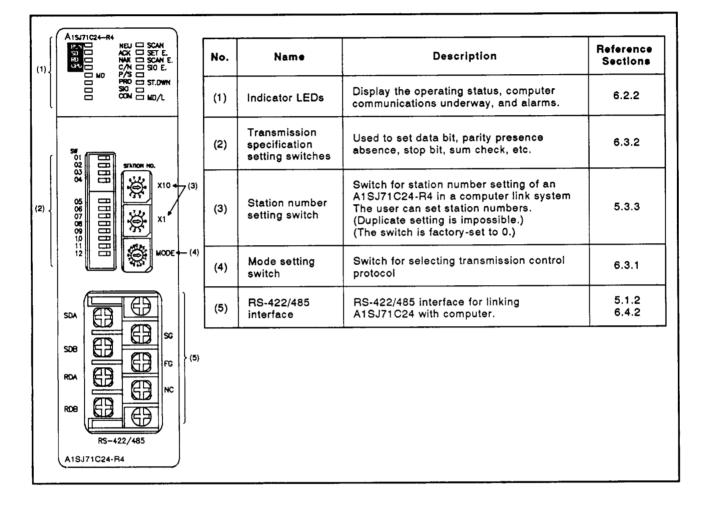

*3: Change the default values marked by the dot symbol (•) attached to the right of the address only when the READY signal of the A1SJ71C24 is turned ON after the power is turned ON or the PC CPU is reset.

- MELSEC-A

6. SETTINGS AND PROCEDURES BEFORE OPERATION

6.1 Settings and Procedures before Operation

The settings and procedures which have to be done before a system using the A1SJ71C24 can be started are described below.


Appendix 7 contains the form sheet for recording the setting values of the A1SJ71C24.

6. SETTINGS AND PROCEDURES BEFORE OPERATION

MELSEC-A

6.2 Nomenclature

6.2.1 Nomenclature

6.2.2 LED signals and displays

	LED Layout		LED No.	LED Name	Meaning of LED Display	LED ON	LED OFF	LED initial State
			0	RUN	Normal run	Normal	Abnormal	ON
*1		_ *1	1	SD	Transmitting	Flashes during data tra	nsmission	OFF
(Example	e) (I	Example)	2	RD	Receiving	Flashes during data rec	eive	OFF
No.		No. 8	3	СРIJ	Communications with PC CPU	Flashes during commur PC CPU	ications with a	ON
0	RUN CONTRACTOR NEU CONSCAN	9	4	MD	Multidrop link	Multidrop link	Computer link	*2
2 3 4 5 6	RD D NAK SCAN E CPU C CN STO E. DMD P/S D ST.DWN	11	8	NEU	Neutral	Transmission sequence initial state (waiting for ENQ)	ENQ received	*3
7		SIO 1 14		АСК	АСК	After sending ACK	After sending NAK	OFF
	Used for		10	NAK	NAK	After sending NAK	After sending ACK	OFF
	the multic link funct		11	C/N	Result of PC CPU communications		Normal	OFF
			12	P/S	Parity/sum check error	Parity/sum check error	Normal	OFF
				PRO	Protocol error	Communications protocol error	Normal	OFF
			14	SIO	SIO error	Overrun, framing error (Data is not received when the OS received area is full.)	Normai	OFF
			15	сом	Computer link	Computer link or multidrop link (local station)	Multidrop link (master station)	*2

*1 Because these LED numbers are examples, they are not actually printed out. *2 and *3 vary according to the switch setting as shown in the following tables.

For *2

Transmission Specification Setting	LED Switch	MD (LED No.4)	COM (LED No.15)		
SW2	SW1 OFF (Local station)	ON	ON		
OFF (Multidrop link)	SW1 ON (Master station)	ON	OFF		
SW2	SW1 OFF	055			
ON (Computer link)	SW1 ON	OFF	ON		

For *3

Transmission Specification Setting Switch	ED NEU (LED No.8)
4	OFF
5 to 8	ON
F	OFF

(1) LEDs C/N to SIO (LED Nos.11 to 14) above light when an error occurs.

The ON/OFF status of the LED Nos. 11 to 14 are stored in the buffer memory at address 101H. The status can be read using the PC CPU instruction which permits checking by a sequence program.

(2) After any LED C/N to SIO (LED Nos. 11 to 14) is ON, they remain ON even when the cause of the error is eliminated.

It is necessary to send a turn-off request to address 102H of the buffer memory using the sequence program TO instruction to turn OFF the LED.

- (3) LEDs RUN to NAK (LED Nos. 0 to 10) above light corresponding to the relevant status.
- (4) LEDs C/N (LED Nos. 11) above light in the following circumstances:
 - (a) When the A1SJ71C24 attempts to make an illegal access while the PC CPU is running (a write during program execution, for example).
 - (b) During abnormal PC CPU access.
- (5) The "initial state" column indicates the status when the power is turned ON the PC CPU is reset or when the READY signal of the A1SJ71C24 is turned ON after the mode was switched.

6.3 Settings

This section describes the setting methods and explains the settings of the transmission control protocol and communications specifications (data length, sum check, etc.).

MELSEC-A

After changing the settings, turn the PC CPU power supply OFF and back ON, or reset the PC CPU.

6.3.1 Setting the dedicated protocol, no-protocol mode, or bidirectional mode

(1) The method of setting the transmission control protocol and the meaning of the switch settings are described in the table below.

When the mode switch is set to "4" and the bidirectional mode setting area in the buffer memory is set to "1", the no-protocol mode in the following table changes to the bidirectional mode.

Mode Setting Switch	Mode Setting Switch Number	Mode Settings	Notes		
	0 to 3	Unusable			
ABCDE	4	No-protocol	This mode is used to enable a no-protocol computer link with all devices connected to the RS-232C interfaces.		
9 8 7 6 5 4 3 2 1 MODE	5	Protocol 1	For connection of computers to RS-232C.		
	6	Protocol 2			
	7	Protocol 3			
	8	Protocol 4			
	9 to E	Unusable	—		
	F	For module test	This mode is used for testing the module.		

All mode settings in the following table are in the no-protocol mode.

POINT

Section 2.3.2 give the examples of settings with different system configurations.

Unusable ON ON ON

Setting of	Switches	Cattle a lis	Position of Setting Switch								
Switches	Switches	Setting ite	Setting Items		ON			OFF			
	SW01	Unused		_			. –				
	SW02	Computer link/multi selection	idrop link		Compu	iter link	4 4		Multidr	op link	
SW ON ←	SW03	Unused			-	_			_	_ =	
01	SW04	Write during RUN enabled/disabled se	، etting		Ena	bled			Disa	bled	
0N ←			Baud rate (BPS)	300	600	1200	2400	4800	9600	19200	ļ
07	SW05			OFF	ON	OFF	ON-	OFF	ON-	OFF	Ī
09	SW06	Transmission speed	d setting 💣	OFF	OFF	ON	ON	OFF	OFF-	ON	Ι
11	SW07			OFF	OFF	OFF	OFF	ON	ON -	ON	Ι
12	SW08	Data bit setting			8 t	oits	-		7 t	oits	
	SW09	Parity bit setting		Set -		Not set					
	SW10	Even/odd parity set	tting		Ev	en			-0	gq	
	SW11	Stop bit setting			2 ł	oits			-1	bit	
	SW12	Sum check setting	١		s	et	-		Not	set	

6.3.2 Setting of transmission specifications

(1) Computer link/multidrop link selection

Select whether an A1SJ71C24 is used as a computer link function module or a multidrop function module.

(2) Write during RUN

Set whether a processing requested by the external device is executed or not executed by the PC CPU in the RUN state when the computer link operates with the dedicated protocol.

Section 5.2.1 gives the functions available with this setting.

(3) Transmission specifications

Do not set the "unusable" baud rate setting (SW05, 06, and 07 ON).

If these switches are set, the RUN indicator LED (LED No. 0) is turned OFF and operation is not possible.

(4) Sum check

Set whether the sum check code is added or not added to the end of the message, when the computer link operates with the dedicated protocol.

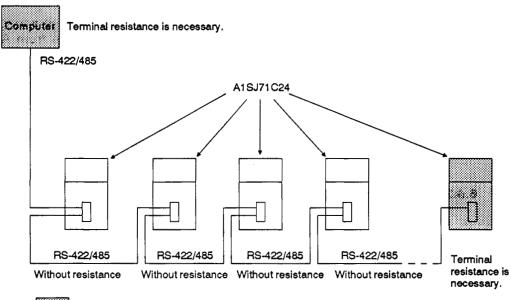
Sections 10.4.1 to 10.4.4 and 10.4.5 (7) give the message structure and sum check code when the sum check setting is "Enabled".

6.3.3 Station number setting

Station numbers are used to determine which A1SJ71C24 is accessed by the computer when a 1:n computer link is formed.

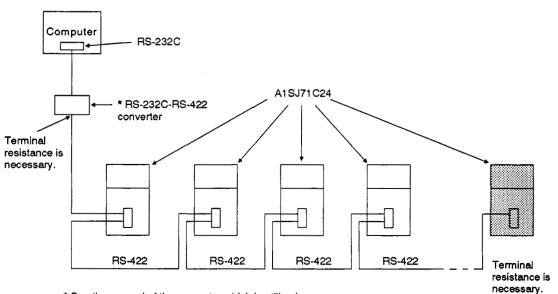
Station Number Setting Switches	Contents			
	 (1) Set the station number in the range of 0 to 31. (Do not set a station number above 31.) 			
	(2) Use X10 to set the station number ten's place.			
	(3) Use X1 to set the station number unit's place.			
6 7 8 9 5 1 0 X 10	(4) Do not duplicate a station number already set in the range of 0 to 31. Therefore, it is not necessary to set station numbers in the order connected to a computer. Also, station numbers can be skipped when set.			
	(5) Station number setting example:			
$\begin{bmatrix} 6 & 7 & 8 & 9 \\ 5 & 4 & 3 & 2 \\ 4 & 3 & 2 \end{bmatrix} \times 1$	Computer A1SJ71C24-R4 A1SJ71C24-R4 J Station 0 Station 1 Station 2 Station 31			

POINT


Do not set the same station number at multiple locations. If this is done, link data will be destroyed when linking is executed.

6.3.4 Connection of terminal resistance

Connect terminal resistance to the stations at both ends of a system connected by cable.


An example of a connecting terminal resistance is given below.

(1) Modules and positions to which a terminal resistance needs to be connected

Connect terminal resistance to the shaded modules.

- (2) Connect 330 Ω resistance for communications using an RS-422, and connect 110 Ω resistance for communications using an RS-485.
- When a computer has an RS-232C interface. (The RS-232C/RS-422 converter is used.)

* See the manual of the converter which is utilized.

6.4 External Wiring

6.4.1 Precautions during wiring

External wiring which is resistant to external noise effects is a prerequisite for reliable A1SJ71C24 operations (full use of all available functions).

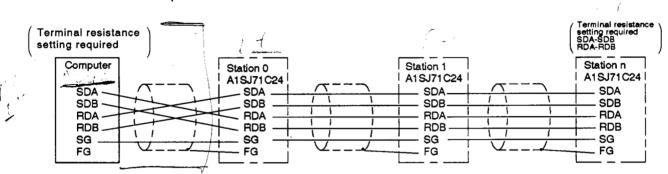
When doing external wiring of the A1SJ71C24, the following precautions must be taken:

- (1) Keep main circuit wiring, high-voltage wiring, and other load-carrying wiring outside the PC CPU separate from A1SJ71C24 wiring. Never bundle them together. This prevents noise and surge-induction effects.
- (2) Ground the shield of shielded wires and cables at only one point.
- (3) Because the RS-422/485 terminal block terminal screw is an M3.5, a solderless terminal suitable for this screw must be attached to the cable. Then, the cable is wired.

6.4.2 Connecting the RS-422/485

A1SJ71C24	Ochia Commentione d	Co	omputer	Description	
Signal Names	Cable Connections and Signal Directions	Pin No.	Signal Names		
SDA		2	RDA	Receive data	
SDB	┝──┴────┴──→	15	RDB	Receive data	
RDA	- ,,	3	SDA	Send data	
RDB	↓ X	16	SDB	Send data	
·		5	RSA	Request to send	
]	18	RSB	Request to send	
	ب ا	4	CSA	Clear to send	
)	17	CSB	Clear to send	
		21	*1		
SG	← →	7,8,20	SG	Signal ground	
FG	 ←	1	FG	Frame ground	

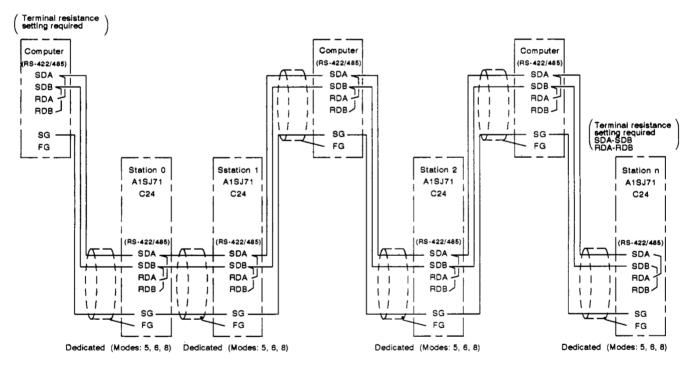
Connection examples are given in the diagram below:


*1: Do the wiring to pin number 21 in accordance with the specifications for the external device.

*2: Set or connect terminal resistance to the computer and the A1SJ71C24. This must be done both between SDA and SDB and between RDA and RDB.

MELSEC-A

6.4.3 Making a 1:n (multidrop) connection


A computer and station 0 A1SJ71C24 are connected through the RS-422/485 port:

6.4.4 Making an m:n (multidrop) connection

The computer and the A1SJ71C24 are connected through the RS-422/485.

In the case of an m:n connection, either an RS-422 or RS-485 can be used. But they cannot be used in combination.

6.5 Self-loopback Test

The self-loopback test function is used (when the A1SJ71C24 is not connected to the computer) to check that the A1SJ71C24 module is operating normally. This function is selected by setting the mode setting switch to "F".

MELSEC-A

6.5.1 Procedure to carry out the self-loopback test

The procedure to carry out the self-loopback test is as follows:

Step 1 Connect the cables

Connect cables to the RS-422/485 terminal blocks as shown below:

Signal Names	Cable Connections
SDA	
SDB	
RDA	⊶
RDB	Je
SG	
FG]
NC	

Step 2 Set the mode setting switch

Set the mode setting switch to "F" to select the self-loopback test. (Section 6.3.1 tells details of how to set this switch.)

- Step 3 Execute the self-loopback test
 - (1) Turn the PC CPU power supply ON or reset the PC CPU.

The test starts automatically when the power supply is turned ON or the PC CPU is reset.

(2) Check sequence

Checks are executed out in the following order:

- 1) PC CPU communications check
- 2) RS-422/485 communications check

The checks are then repeated. The checks are completed within one second. The checks are executed automatically by the A1SJ71C24.

(3) Check the LED display status, as described in Section 6.5.2.

Normal : Follow procedure (4) to end the test.

Error : Correct the error and repeat the self-loopback test

6. SETTINGS AND PROCEDURES BEFORE OPERATION

MELSEC-A

- (4) When checks are completed:
 - 1) Turn the power supply OFF.
 - 2) Disconnect the cables. Connect the cables to link with the computers.
 - 3) Change the setting of the mode setting switch. ("4" to "8")

POINT

Two A1SJ71C24 modules can be loaded to A1SCPU. However, do not execute the self-loopback test with both modules simultaneously (this will result in a PC CPU communications check error).

6.5.2 Self-loopback test operations

Check Items	Check Descriptions		Normal Indicator LED		tor LED	Information Flow	
	After writing data to special data register D9072, the A1S171C24 reads and	C/N (LED No. 11)	OFF			RS-422/485	
PC CPU communication check	matches it is changed and		Flashing	C/N (LED No. 11)	ON	PC CPU A1SJ71C24	
	Checks data sent from RS-422/485 connector. If normal, A1SJ71C24	SIO (LED No. 14)	OFF		ON	RS-422/485	
RS-422/485 communications check	changes data and the procedure is repeated. If not normal, an error is indi-	SD (LED No. 1)	Flaching	SIO (LED No. 14)			
	cated. An error is indicated if no cable is connected.	RD (LED No. 2)	Flashing			A1SJ71C24	

*The test continues even if an error occured with a checking item.

6.6 Loopback Test

The loopback test checks the correctness of data communications between the computer and the A1SJ71C24 using the dedicated command (TT) with the dedicated protocols 1 to 4.

The procedure to execute the loopback test is as follows:

Step 1 Connect the computer and A1SJ71C24

Connect the cable between the computer and A1SJ71C24 as described in Section 4.6.2.

MELSEC

Step 2 Mode switch settings

Set the mode switch to "5" to "8" to set the testing interface for the dedicated protocol. (Section 6.3.1 gives detail of the setting method.)

Step 3 PC CPU start-up

Turn the power to the PC CPU ON or reset the PC CPU. The A1SJ71C24 ready signal turns ON (ready for operation), after which the loopback test can be executed.

(The ready signal turns ON at a few seconds after the A1SJ71C24 is turned ON or reset.)

- Step 4 Execute the loopback test command
 - (1) Create a program to be tested and transmit the command and data to the A1SJ71C24.

Section 10.4 gives the message structure of formats 1 to 4, and Section 10.15 gives the loopback command (TT).

- (2) The A1SJ71C24 transmits the unchanged data back to the computer.
- Step 5 Computer consistency check
 - (1) Check at the computer if data transmitted from the computer to the A1SJ71C24 is identical with the data transmitted back from the A1SJ71C24 to the computer.

Identical data indicates that the communication between the computer and A1SJ71C24 is normal.

If the data transmitted from the computer to the A1SJ71C24 and the data transmitted back from the A1SJ71C24 to the computer are not identical, the transmission specification settings probably do not match or the CD terminal is repeatedly turning ON/OFF. Use the troubleshooting charts in Sections 17.3.5 and 17.3.6 to determine and correct the problem. Then repeat the loopback test.

MELSEC-A

(2) If data communications is not possible

The hardware settings or cable connections have probably not been done correctly.

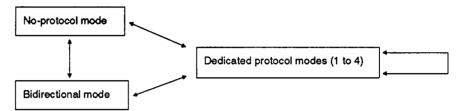
Use the troubleshooting charts in Sections 17.3.2, 17.3.3, and 17.3.4 to determine and correct the problem and then repeat the loopback test.

(3) After the loopback test is finished, a computer link which uses the dedicated protocol is enabled.

When a computer link uses the no-protocol/bidirectional mode, do the following:

- · Set the mode switches.
- Turn the power to the PC CPU OFF/ON or reset the PC CPU.

After doing the above, the computer link operation is enabled.


7. SWITCHING THE MODE WHILE COMPUTER LINK FUNCTIONS IS OPERATING

Switching the mode while computer link function is operating (send control protocol switching)

This section should be read to continue data communications with a communicating device if the mode is switched while an A1SJ71C24 is operating.

If the mode is not switched, it is not necessary to read this section.

While an A1SJ71C24 is operating, switching can be done between the following modes.

Mode settings can be switched by the following methods.

- (1) Switching the mode using an external device
 - Dedicated protocol modes (1 to 4)
 No-protocol mode *1
 Dedicated protocol modes (1 to 4)
- (2) Switching the mode using a PC CPU
 - Dedicated protocol modes (1 to 4)
 No-protocol mode (1 to 4)
 Dedicated protocol modes (1 to 4)
 Bidirectional mode
 Bidirectional mode
 Bidirectional mode
 Dedicated protocol modes (1 to 4)
 Bidirectional mode
 Dedicated protocol modes (1 to 4)
 Bidirectional mode
- *1 If the mode is switched while computer link function is operating, the READY signal (Xn7) of the A1SJ71C24 goes OFF and is turned ON again.

When it is necessary to switch each set value of the special-applications area (addresses 100H to 11FH) of the A1SJ71C24 buffer, switch a set value at the leading edge of the A1SJ71C24 READY signal (Xn7) just after the signal is turned ON.

It can be switched to the bidirectional mode from a dedicated protocol modes (1 to 4) and data communications can be restarted.

The mode switching timing between the external device and the PC CPU must be adjusted beforehand.

MELSEC-A

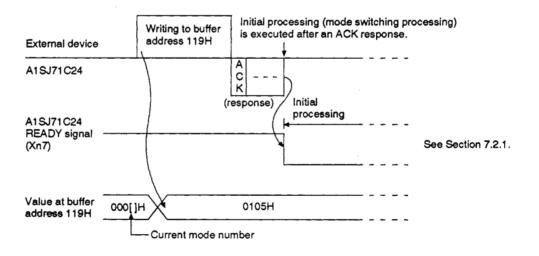
7.1 Precautions When Switching Modes

Precautions to take when (a) switching the mode of an operating computer link function and (b) continuing data communications are given below.

(1) Mode setting between an external device and a PC CPU

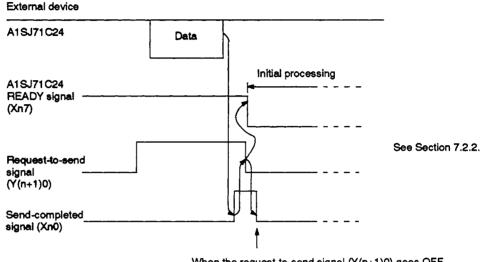
The following rules must be determined when doing mode switching between an external device and a PC CPU.

- (a) In which direction (to/from an external device and a PC CPU) will the mode switching take place?
- (b) The timing of the following mode switches must always be determined.

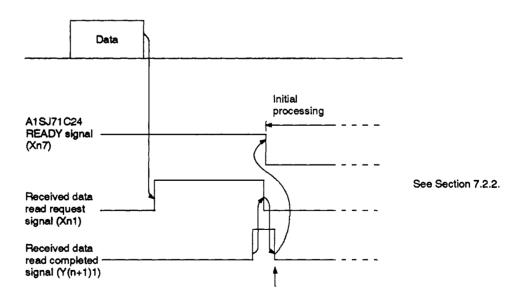

Dedicated protocol modes(1 to 4)	No-protocol/bidirectional modes
No-protocol/bidirectional modes	Dedicated protocol modes(1 to 4)
No-protocol mode	Bidirectional mode
Bidirectional mode	No-protocol mode

(c) Mode switching message structure when doing mode switching in the no-protocol/bidirectional modes

POINT

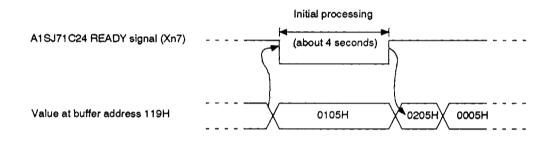

Mitsubishi recommends switching the mode from the PC CPU side (see Section 7.2).

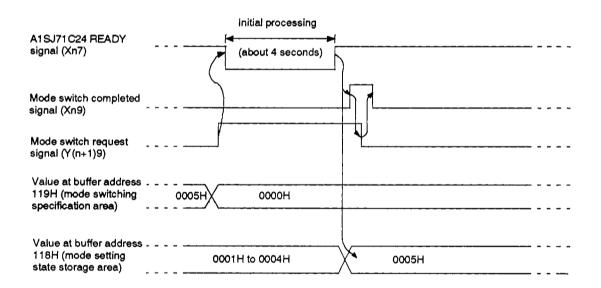
- (2) A1SJ71C24 operations when switching modes
 - (a) If mode switching is requested while communications using a dedicated protocol have not been completed, mode switching processing can only be executed after the A1SJ71C24 has completed data communications (data B - see Section 10.3).


MELSEC-A

- (b) When data communications is done in the no-protocol/bidirectional mode, the A1SJ71C24 switches the mode under the following conditions:
 - If the A1SJ71C24's request-to-send signal (Y(n+1)0) is ON when mode switch processing is executed, that signal is turned OFF.

When the request-to-send signal (Y(n+1)0) goes OFF, initial processing (mode switching processing) is executed.


2) If the A1SJ71C24's received data read request signal (Xn1) is ON when mode switch processing is executed, the received data read completed signal (Y(n+1)1) is turned ON

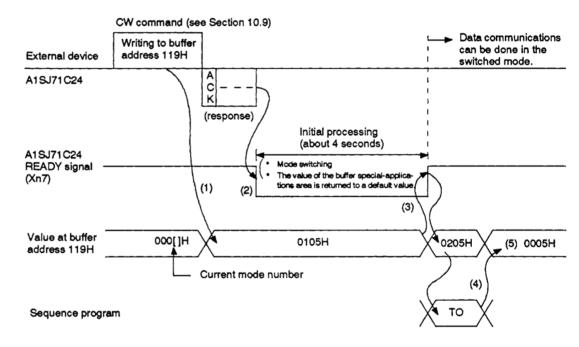

When the received data read completed signal (Y(n+1)1) goes ON, initial processing (mode switching processing) is executed.

MELSEC-A

- (c) When the mode is switched, the following processing takes place.
 - 1) The value of the special-applications area (buffer addresses 100H to 11FH) of the A1SJ71C24 returns to a default value.
 - During data communications in the no-protocol/bidirectional mode, received data stored in the A1SJ71C24 buffer and OS user area is cleared.
 - 3) The READY signal (Xn7) is turned OFF or ON by the following timing.
 - Switching the mode using an external device (dedicated protocol modes 1 to 4 -----> no-protocol mode)

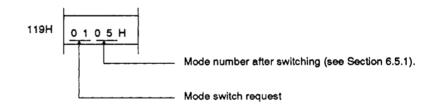
 Switching the mode using a PC CPU (dedicated protocol modes 1 to 4 ——— no-protocol mode)

MELSEC-A

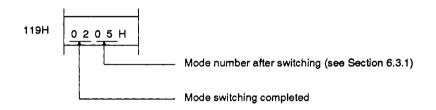

7.2 Mode Switching Methods

7.2.1 Mode switching from an external device

Switching to the no-protocol mode from a dedicated protocol mode (1 to 4) is done by the following method.


However, the set value of the special-applications area (buffer addresses 100H to 11FH) of the A1SJ71C24 is set at a default value. Data communications must be done in the default value state.

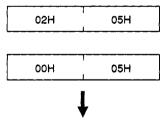
Use a PC CPU to (a) switch to a mode other than the above, or (b) switch the set value in the buffer special-applications area (see Sections 7.1 and 7.2.2).


The operations and processing of the signal timings given in the figure are explained below.

(1) Use a CW command from an external device to write a mode switch request and a mode number in the mode switching specification area (buffer address 119H) of the A1SJ71C24.

MELSEC-A

- (2) After the A1SJ71C24 completes processing of the CW command normally and transmits a response message, the READY signal (Xn7) of the self is turned OFF, and the following mode switching processing is executed.
 - The mode of the A1SJ71C24 is switched.
 - The value of the special-applications area of the A1SJ71C24 buffer is returned to a default value (excluding the mode switching specification area [buffer address 119H]).
- (3) The A1SJ71C24 turns the READY signal (Xn7) of the self ON after completing 2) and switches the value of the higher byte of the mode switching specification area of the buffer to 02H.


(4) After rewriting the value of the higher byte of the mode switching specification area of the A1SJ71C24 buffer to 02H, if the user switches the value of the special-applications area, use a PC CPU to write any desired value to the special-applications area.

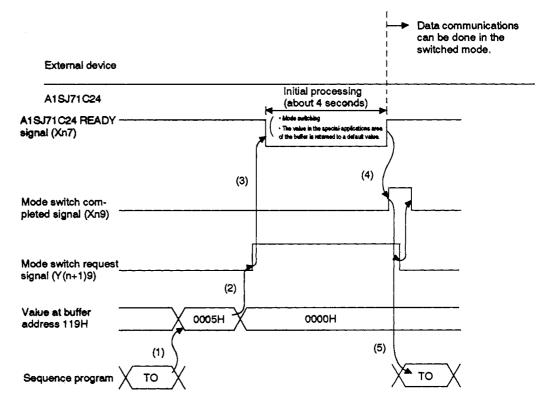
If the value of a special-applications area is not switched, the processing of 4 is unnecessary. Execute processing of 5.

(5) Use a PC CPU to read the mode switching specification area of the A1SJ71C24 buffer, set the higher byte to 00H, and write it to the mode switching specification area.

Value in the read mode switching specification area.

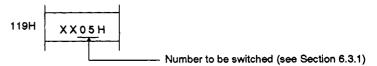
Set the higher byte to 00H.

Write it to the mode switching specification area.


POINTS

- (1) Do the following when switching a value in other than the mode switching specification area (buffer address 119H) of the A1SJ71C24 specialapplications area during mode switching. After the higher byte value of the mode switching special-applications area becomes O2H, then use the PC CPU to write any desired value at the leading edge of the A1SJ71C24 READY signal (Xn7) just after the signal has turned ON.
- (2) The mode of the A1SJ71C24 can be switched even if the PC CPU is in the STOP state.

MELSEC-A


7.2.2 Switching the mode using a PC CPU

(1) This section shows how to switch to a no-protocol/bidirectional mode from a dedicated protocol mode (1 to 4).

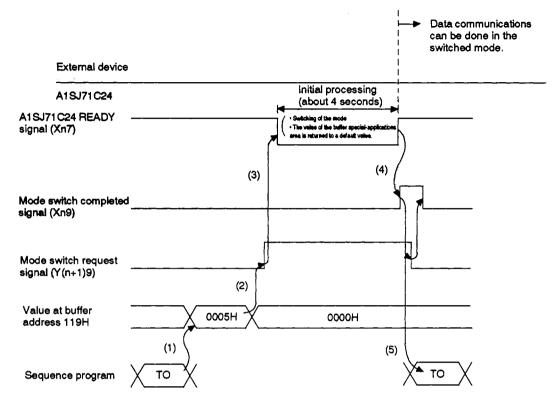
The operations and processing of the signal timings given in the figure are explained below.

(a) Use a PC CPU to write the mode number to be switched to the mode switching specification area (buffer address 119H) of the A1SJ71C24.

- (b) Use the PC CPU to turn ON the mode switch request signal (Y(n+1)9).
- (c) The A1SJ71C24 turns the READY signal (Xn7) of the self OFF and executes the following mode switching processing.
 - The mode of the A1SJ71C24 is switched.
 - The value of the special-applications area of the A1SJ71C24 buffer is returned to a default value (excluding the mode switching specification area [buffer address 119H]).

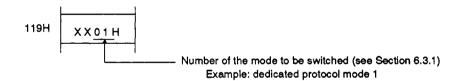
MELSEC-A

- (d) After completing 2) above, the A1SJ71C24 turns the READY signal (Xn7) and mode switch completed signal (Xn9) ON.
- (e) After the mode switch completed signal (Xn9) and the READY signal (Xn7) are turned ON, the PC CPU must turn OFF the mode switch request signal (Y(n+1)9).


If the value is set to other than a default value when the A1SJ71C24 special-applications area does data communications, use a PC CPU to write necessary data to the buffer special-applications area at the leading edge of A1SJ71C24 READY signal (Xn7) immediately after the signal has turned ON.

POINT

During mode switching, when switching a value in other than the mode switching specification area (buffer address 119H) of the A1SJ71C24 buffer special-applications area, write any desired value at the leading edge of the A1SJ71C24 READY signal (Xn7) just after the signal has turned ON.


MELSEC-A

(2) This section shows how to switch from a no-protocol/bidirectional mode to a dedicated protocol mode.

The operations and processing of the signals timings given in the figure are explained below.

(a) Use a PC CPU to write the mode number to be switched to the mode switching specification area (buffer address 119H) of the A1SJ71C24.

- (b) Use the PC CPU to turn ON the mode switch request signal (Y(n+1)9).
- (c) The A1SJ71C24 turns the READY signal (Xn7) of the self OFF and executes the following mode switching processing.
 - The mode of the A1SJ71C24 is switched.
 - The value of the special-applications area of the A1SJ71C24 buffer is returned to a default value (excluding the mode switching specification area [buffer address 119H]).
- (d) After completing 2) above, the A1SJ71C24 turns the READY signal (Xn7) and mode switch completed signal (Xn9) ON.

MELSEC-A

(e) After the mode switch completed signal (Xn9) and the READY signal (Xn7) are turned ON, the PC CPU must turn OFF the mode switch request signal (Y(n+1)9).

If the value is set to other than a default value when the A1SJ71C24 special-applications area does data communications, use a PC CPU to write necessary data to the buffer special-applications area at the leading edge of A1SJ71C24 READY signal (Xn7) immediately after the signal has turned ON.

POINT

When switching a value other than in the mode switching specification area (buffer address 119H) of the A1SJ71C24 special-applications area when switching the mode, write any desired value at the leading edge of the A1SJ71C24 READY signal (Xn7) just after the signal has turned ON.

MELSEC-A

8. CONTROLLING SEND CONTROL DURING DATA COMMUNICATIONS

The A1SJ71C24 controls data communications between the A1SJ71C24 and an external device by using DC codes (DC1/DC3 or DC2/DC4).

The send control function, interfaces, and send control are valid in the modes indicated below:

Transmission Control	Control Mathed	Interface	Modes I	n Which Ser Controlled	Remarks	
Function	Control Method	Interface	No- Protocol	Bidirec- tional	Dedicated Protocol	nemarks
	DC1/DC3 send control		0	_	_	
	DC1/DC3 send control	RS-422/485	0	0	0	Controlled via both the RS-422
DC code control	DC2/DC4 send control		0	0	0	and RS-485 interfaces.
	DC2/DC4 send control	1	0	0	0	

O: Valid (send can be controlled)

— : Invalid

8.1 **Precautions During Send Control**

This section gives the precautions to take when the send control function is used.

(1) Items set for both an external device and the CPU.

Set the following items for both an external device and the CPU:

- (a) Set whether the send control function is used or not. If it is used, set how to control data communications.
- (b) Set when the send is controlled.
- (c) Set which codes (DC1 to DC4) are used to control the send.

(Each code for the computer link can be changed if necessary.)

(2) Setting whether the send control function is used or not

The values set in the send control designation area (address 11AH) of the buffer when the send control function is or is not used or not are given below:

The values in this area must be set/changed when power to the CPU is turned ON, when the CPU is reset, or when the mode of the A1SJ71C24 is changed.

Mod	de Number	4	5 to 8	See Section 6.3.1.		
Modes		No-protocol/ bidirectional	Dedicated protocol			
Value est	DC code control	0101H, 0201H,	0101H, 0201H, or 0301H			
Value set for send control	When the send control function is not used	0001H	See Section 9.5.			

- (3) DC code control
 - (a) DC1/DC3 send/receive can be controlled when full-duplex data communications between the computer link and its communicating device is performed.

When half-duplex communications is performed, do not execute DC1/DC3 control.

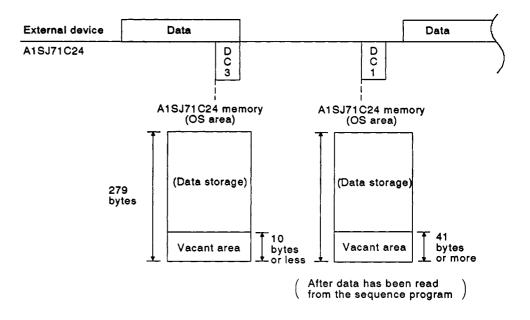
(b) The same data used as any of the DC1 to DC4 codes cannot be included in the user data.

If the same data must be used as part of user data, do either of the following:

- Change the DC codes (see Section 9.5.2)
- Do not use the send control function.

POINT

The computer link will execute the corresponding DC code control if the user data (received from an external device) contains a DC code during DC1/DC3 or DC2/DC4 receive control. When the CPU requests this data to be transmitted, if this data includes DC code, the data will be transmitted unchanged.


8.2 DC1/DC3 Send Control

This section describes DC1/DC3 send control.

(1) What is DC1/DC3 send control?

When, during communications in the no-protocol mode, an external device is informed whether or not the A1SJ71C24 can receive data using DC1 and DC3 codes, this is called DC1/DC3 send control.

(2) Control operations

- (a) Clearing received data (see Section 11.5 (5)) not only deletes data in the no-protocol receive buffer, but also in the OS area.
- (b) If the vacant OS area has no free bytes, attempting to receive more data will cause an SIO error.

In this case, the SIO LED goes ON and the received data will be ignored until there are enough free bytes in the vacant OS area (see Section 6.2.2).

POINTS

(1) When power to the CPU is turned ON, when the CPU is reset, or when the mode of the A1SJ71C24 is changed, DC1 code is not transmitted to an external device.

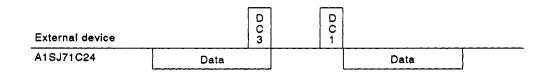
The CPU remains in the same state as after transmitting DC1 code.

(2) It is possible to change the DC1/DC3 codes to be transmitted. Section 9.5.2 gives details about how to change these codes.

8.3 DC1/DC3 Receive Control

This section describes DC1/DC3 receive control.

(1) What is DC1/DC3 receive control?


When the A1SJ71C24 is informed whether or not an external device can receive data using DC1 and DC3 codes, this is called DC1/DC3 receive control.

- (2) Control operations
 - (a) Receiving DC3 code from an external device interrupts A1SJ71C24 data transmission.

The user cannot access the received DC3 code.

(b) Receiving DC1 code from an external device resumes data transmission. (Data from the point of interruption can now be transmitted.)

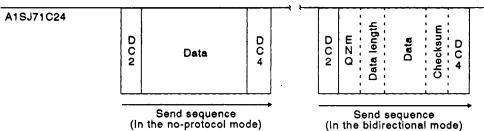
The user cannot access the received DC1 code.

(c) After DC1 code is received, any additional DC1 code which is received is ignored and will be removed from the received data.

POINT

When power to the CPU is turned ON, when the CPU is reset, or when the mode of the A1SJ71C24 is changed, DC1 code is not transmitted to an external device.

The CPU remains in the same state as after transmitting DC1 code.


8. CONTROLLING SEND CONTROL DURING DATA COMMUNICATIONS MELSEC-A

8.4 DC2/DC4 Send Control

This section describes DC2/DC4 send control.

- (1) What is DC2/DC4 send control?
 - When, during data transmission to an external device, the A1SJ71C24 places DC2 code before the data head and DC4 code after the data end, this is called DC2/DC4 send control.

External device

8.5 DC2/DC4 Receive Control

This section describes DC2/DC4 receive control.

(1) What is the DC2/DC4 receive control?

When the data between DC2 and DC4 is treated as valid during data receive by the A1SJ71C24 from an external device, this is called DC2/DC4 receive control.

- (2) Control operations
 - (a) When receiving DC2 code from an external device, the A1SJ71C24 treats the data as valid until DC4 code is received.

The user cannot access the received DC2 code.

(b) When receiving DC4 code from an external device, the A1SJ71C24 treats the data as invalid until DC2 code is received.

The user cannot access the received DC4 code.

	(in the no-protocol mode) *1								
External device	D C 4	Data		Data †	DCN	Data	DC 4		
A1SJ71C24	of th	ed in the b e A1SJ71 OS receive	C24 or	Ignored by the A1SJ71C24	Stored in the buffer of the A1SJ71C24 or the OS receive area.				

(c) After DC2 code is received, any additional DC2 code which is received is ignored and will be removed from the received data.

*1 Message in dedicated protocol 1	External device	D C 2	ЕNQ	Sta num	 P	- 1	Cc me	om - and	lessage wait	Character		hecksum	D C 4	
·	External device	<u> ۲</u>							Me			ชิ	-	

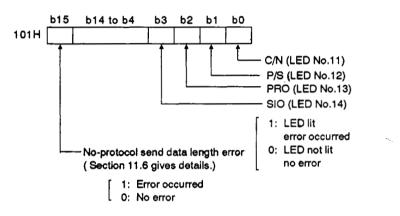
9. INITIAL SETTING OF TRANSMISSION CONTROL DATA TO BUFFER MEMORY

The buffer memory has a special applications area for setting transmission control data for communications with external devices (see Section 5.4).

Each transmission data item has a default value. However (depending on the purpose and application of data transmission), using default values not only makes data communications more complicated, but may even preclude them. This section describes the settings of all items in the buffer memory special applications area, shows how to make changes, and gives specific examples. Section 10.14 discusses the special applications area used with the ondemand function of the dedicated protocol.

POINTS

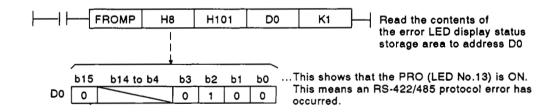
- (1) This section only applies to changing preset default values. It does not cover data communications using these default values.
- (2) When changing a setting (except for the error LED display area and the error LED turn-OFF request area) first turn the power supply OFF and back ON or else reset the PC CPU. Change the setting after the A1SJ71C24 READY signal (Xn7) is turned ON.
- (3) Buffer memory addresses 10EH and 11DH to 11FH are reserved for the system only. Writing data to these addresses precludes normal operation of the A1SJ71C24.


9.1 Reading Transmission Error Data

This section explains the contents of the buffer memory area where the ON/OFF status of the error LEDs are stored. It also shows how to turn LEDS which are lit OFF.

9.1.1 Reading the error LED display status

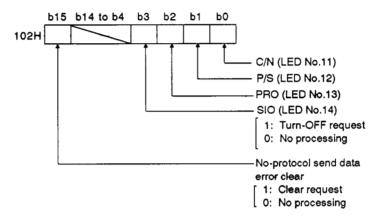
(1) Error LED display status storage area


The ON/OFF status of the error LEDs are stored in address 101H of the buffer memory (see below).

(2) Program example to read the error LED display status storage area

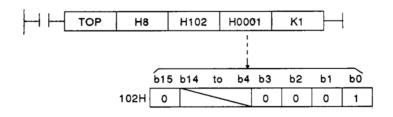
This gives an example of a program using the sequence program [FROM] to read the error LED display ON/OFF status stored in buffer memory address 101H.

Program example to read the error LED display status storage area (A1SJ71C24 I/O addresses 80 to 9F)



9.1.2 Turning OFF error LEDs

When an error LED turns ON, it stays ON (lit) even when the cause of the error has been eliminated.


To turn OFF the lit LED, "1" must be written to the appropriate bit of address 102H of the buffer memory, using the sequence program TO instruction.

(1) Error LED turn-OFF request area

(2) Program example to turn OFF error LEDs

A sequence program example to turn OFF LED C/N (LED No.11) is given below.

POINTS

- (1) The LED turn-OFF request is only valid when it is written.
- (2) Relevant data in the error LED display status storage area at address 101H is cleared when the LED turn-OFF request is made. Data at address 102H remains as written.
- (3) If the error data has not been cleared after the LED turn-OFF request is made, the error LED will go ON again.

9.2 Settings in the No-Protocol Mode

This section describes setting methods and gives no-protocol mode examples.

9.2.1 Setting the no-protocol mode receive-completed code (for receive with variable-length data)

How to set and modify the receive-completed code and the sequence program for the receive processing with variable-length data are shown below.

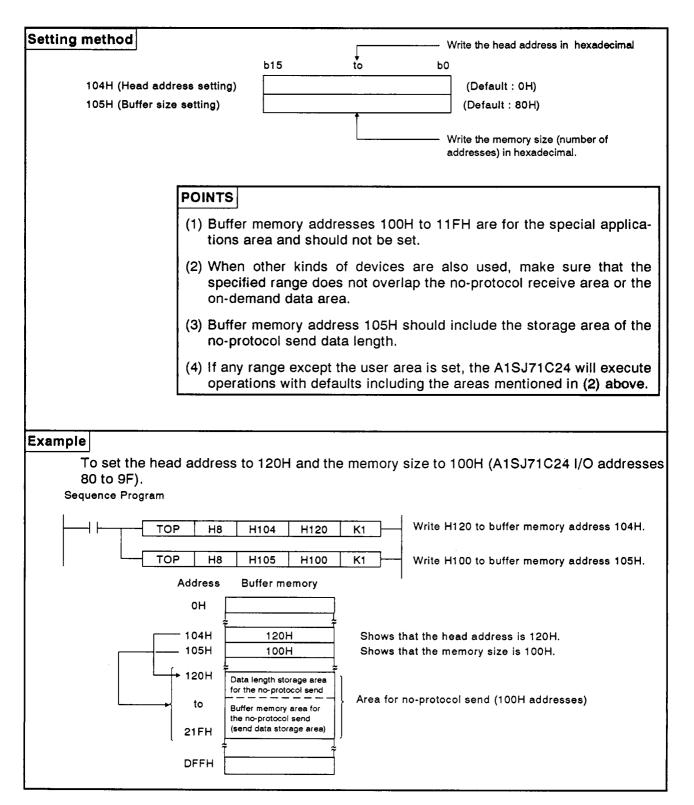
Setting method	
Buffer memory address 10	b15 to b8 b7 to b0 D0H 0 0 Default 0D0AH (CR, LF) When the completed code Always write 00H to the higher 8 bits When the completed code is set.
[POINTS
	 The completed code can be set to any value which makes 1 byte in the range of 00H to FFH. Since the default value setting is 0D0AH, when the CR and LF codes are received during the data receive, the read request is transmitted to the sequence program (Xn1 is ON). If the default setting has been changed, when a modified completed code is received during the data receive, the read request is trans- mitted to the sequence program. If the length of data to complete data receive is also set, the read request for the received data is transmitted when the completed code or the set length of data (whichever comes first) is received. (Xn1 is ON) If the completed code is not set, set buffer memory address 100H to FFFFH. This enables only the setting of data length to complete receive, and the read of received data by fixed data length is enabled.
Example	
·	code to ETX (03H) (A1SJ71C24 I/O addresses 80 to 9F) n) H8 H100 H0003 K1 Write the ASCII code for ETX (03H) to buffer memory address 100H

9.2.2 Specifying no-protocol receive completion data length (fixed length)

How to complete the data receive and set the data length are given below along with a sequence program example.

Setting method		· _			
Buffer memory	b15 address 108H	to	ьо	— Write the amou (default: 127 w	unt of received data vords)
	POINTS	· · · · · · · · · · · · · · · · · · ·			
	(1) Set the length ranges:	n of data to c	omplete th	e data receivo	e in the following
	Length of data units are set)	a received ≤	no-protoco	I mode buffer	size (when word
	Length of data units are set)	received ≤ n	o-protocol i	mode buffer si	ze x 2 (when byte
		-	-	•	tocol mode buffer tocol mode buffer
	(2) Section 9.2.3 data length to			l of a word or	byte unit for the
	· ·	nitted when t	ne complet	ed code or th	st for the received e set data length
	(4) To read the r pleted code, c		•	ength without	setting the com-
		b15	to b	B ^{b7} to b	Write FFFFH.
	Buffer memory add Buffer memory add		F F	F F	_
	Dunei memory au			Write the le (default : 12	ength of received data 27 words)
Example					
	l length at which da a only by fixed len				the case of the read 9F)
(Sequence Program)				
	H8 H100	HFFFF K		pecify the fixed le	ength, write HFFFF fress 100H.
ТОР	H8 H108	K15 K	Write	e "15" to buffer m	nemory address 108H.

9.2.3 Setting a word or byte unit in the no-protocol mode


This section shows how to set the word or byte unit for data communications and gives an example.

Setting method		· · · · · · · · · · · · · · · · · · ·	
Buffer memory address 103H	b15 to	b1 b0 (Default 0: word unit) Write 1. 0: word unit 1: byte unit	
(1)	the no-protocol/bidirect cated protocol.	set here only applies to comunications ctional mode and on-demand data usin address 103H to either 0 or 1. (The A1S s.)	g a dedi-
Example To set the byte un (Sequence Program)	it (A1SJ71C24 I/O addre H8 H103 K1	Write "1" (byte unit) to buffer m K1 ddress 103H.	nemory

9.2.4 Setting a buffer memory area for no-protocol send

This section describes how to set the A1SJ71C24 buffer memory area to store data transmitted from the PC CPU to an external device in the no-protocol mode and gives an example.

When the bidirectional mode setting area (address 112H) is set to "1", this memory area is set for bidirectional mode transmission.

9.2.5 Setting a buffer memory area for no-protocol receive

This section shows how to set the A1SJ71C24 buffer memory area to store data the PC CPU received from the external device in the no-protocol mode. An example is also given.

When the bidirectional mode setting area (address 112H) is set to "1", this memory area is set for bidirectional mode transmission.

Setting method			ن ١		
					Write the head address in hexadecimal
		b15		to	ьо
106H (Head address	setting)				(Default : 80H)
107H (Buffer size set	ting)			k	(Default: 80H)
				L	Write the memory size (number of addresses) in hexadecimal.
	POINTS				
		r memory irea and s			to 11FH are for the special applica-
					ge does not overlap the no-protocol nd data area.
		r memory otocol rec			ould include the storage area of the
					a is set, the A1SJ71C24 will execute g the areas mentioned in (2) above.
Example					· · · · · · · · · · · · · · · · · · ·
	d address	to 300H a	and the r	memory si	ze to 120H (A1SJ71C24 I/O addresses
(Sequence Progr	am)				
	FOP H8	H106	H300	K1	Write H300 to buffer memory address 106H.
	FOP H8	H107	H120	K1	Write H120 to buffer memory address 107H.
	Address 0H	Buffer me	emory	I	
	10011	:	Ť	.	
	106H 107H	H300 H120			hat the leading address is 300H. hat the memory length is 120H.
	🗕 зоон 🕴	-		h	
		Data length stora the no-protocol re	ceive		no-protocol send (120H addresses)
	+ { to 41FH	Buffer memory the no-protoco (received data area)	receive		
	DFFH	:	Î		
	2				

9.3 Settings in the Bidirectional Mode

This section describes how to set items in the bidirectional mode and gives examples.

The defaults set with the buffer memory section are for the no-protocol mode. When the interface mentioned in (1) is used in the no-protocol mode, all settings mentioned in this section are not necessary.

(1) Setting the bidirectional mode (address 112H)

Set the switch to "1".

(2) Setting the time-out check time (address 113H)

Set the time-out check time which specifies the time from the beginning of data send to a computer connected through the bidirectional mode interface until the reception of the response message (see the figure in Section 12.5.1).

(3) Valid/invalid setting of data at simultaneous transmission (address 114H)

Set the data transmitted and received by the A1SJ71C24 to valid/invalid when a computer and the A1SJ71C24 begin simultaneously full-duplex send in the bidirectional mode (see Section 12.6).

(4) Setting the check sum enable/disable (address 115H)

Set whether the check sum code is added or not added to the message when transmitted between the A1SJ71C24 and a computer in the bidirectional mode. (see Section 12.5.2 (4)).

This setting is unrelated to the check sum setting (for dedicated protocol) with SW12 of the A1SJ71C24.

POINT

Sections 9.2.3 to 9.2.5 give the settings of the following areas used in the bidirectional mode. (Since the explanations in Sections 9.2.3 to 9.2.5 are for the no-protocol mode, change the mode from non-protocol to bidirectional when referring to these sections.)

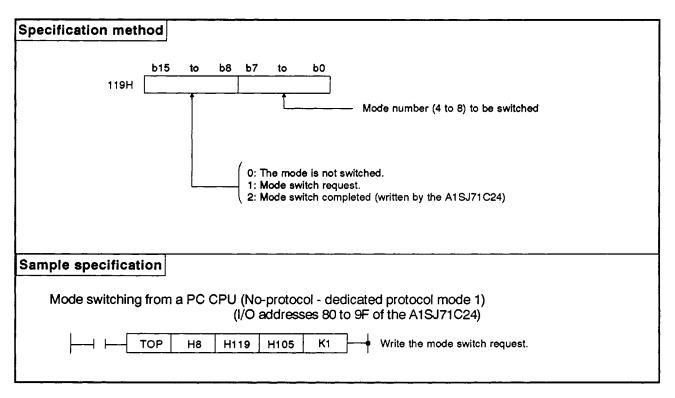
- Bidirectional word/byte setting area: Section 9.2.3
- Bidirectional receive area: Section 9.2.5

Setting method	(1)	Setting the bidirectional mode with the following conditions (A1SJ71C24
	(')	I/O addresses: 80 to 9F)
		1) Set the bidirectional mode.
		 Set the time-out check time to 2 seconds. The setting value is 20 (14H).
		 Set the send data to "invalid" and the received data to "valid" for simultaneous transmission.
		Set the check sum to "disable"
(Sequence Pr	ogram)	
<u> </u>	ТОР	H8 H112 K1 K1 Write "1" to buffer memory address 112H.
-	ТОР	H8 H113 H14 K1 Write H14 to buffer memory address 113H.
' -	TOP	H8 H114 H100 K1 Write H100 to buffer memory address 114H.
Ł_	ТОР	H8 H115 K1 K1 Write "1" to buffer memory address 115H.
	(2)	Setting the bidirectional mode with the following conditions (A1SJ71C24 I/O addresses: 110 to 12F)
		1) Set the bidirectional mode.
		2) Set the time-out check time to "infinite".
		 Set the send data to "valid" and the received data to "valid" for simultaneous transmission.
		Set the check sum to "enable".
(Sequence f	Program)	
<u> </u>	ТОР	H11 H112 K1 K1 Write "1" to buffer memory address 112H.
		Leave settings of buffer memory addresses 113H for 115H for defaults.

9.4 Mode Switching Setting

This Section shows how to specify a setting item during mode switching and a gives a sample specification.

9.4.1 Reading the mode setting status

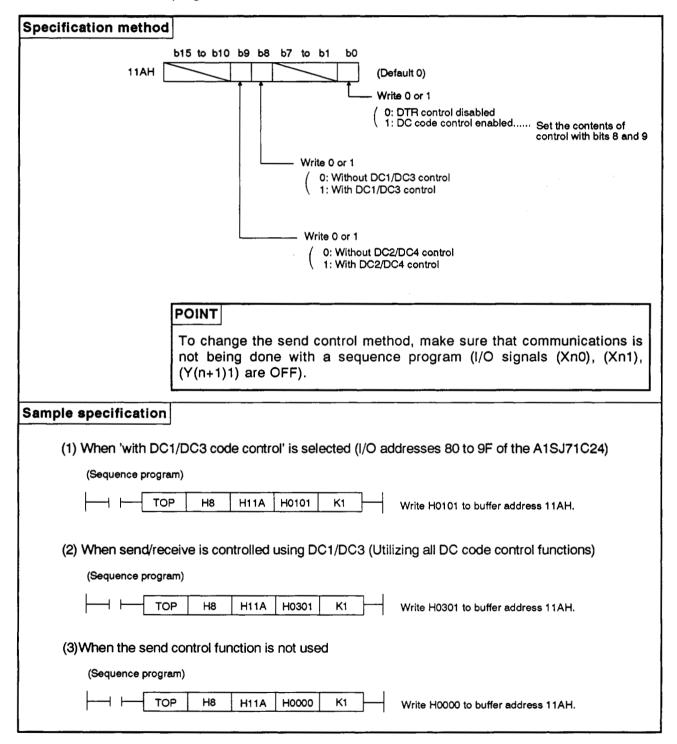

The method for reading the mode number currently being executed is given below.

Specification met	hod		
118H	b15	to	b0 The mode number currently being executed is stored (4 to 8).
Sample read			
Sample program for reading the mode number currently being executed (I/O addresses 80 to 9F of the A1SJ71C24)			
	ROMP	H8 H118	D0 K1 Read from buffer address 118H to D0.

MELSEC-A

9.4.2 Mode switching specification setting

This section shows how to specify mode switching and gives a sample sequence program.

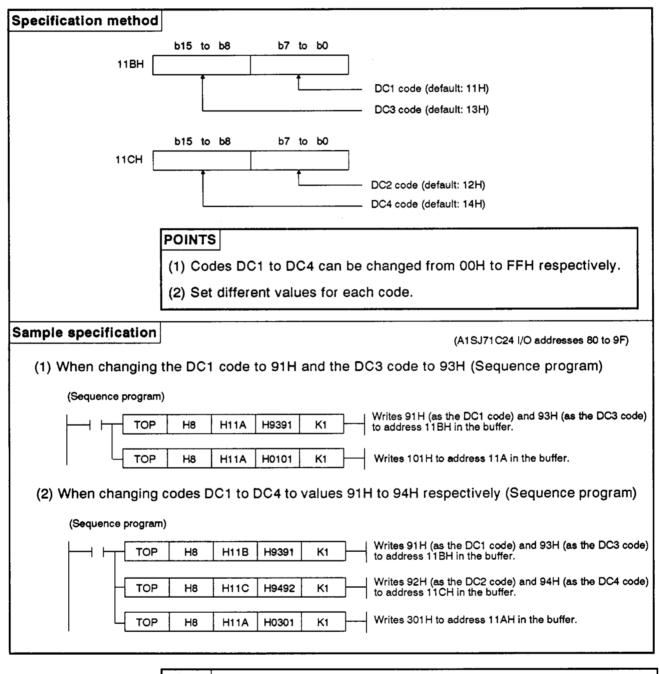

9.5 Send Control Setting

This section shows how to specify a setting item during send control and a gives a sample specification.

ŗ,

9.5.1 Send control setting

This section shows how to specify send control and gives a sample sequence program.



9.5.2 Changing codes DC1 to DC4

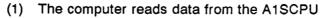
This section describes how to change codes and gives an sequence program example.

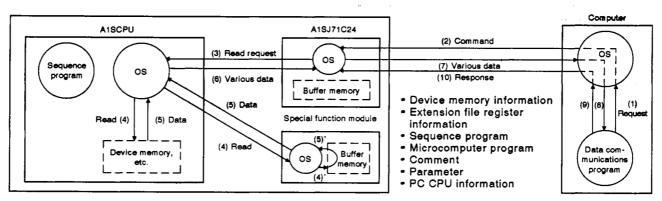
Even when only one code is changed, designate its counter code as well as the code.

(For example, to change DC1, both DC1 and DC3 must be designated.)

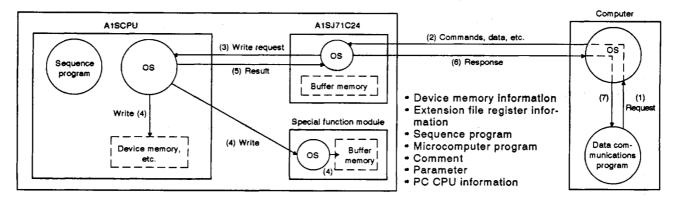
POINT

To alter the DC codes in the default state, after changing the values in addresses 11BH to 11CH in the buffer, designate 'with DC1/DC3 code control' and 'with DC2/DC4 code control' using address 11AH in the buffer.

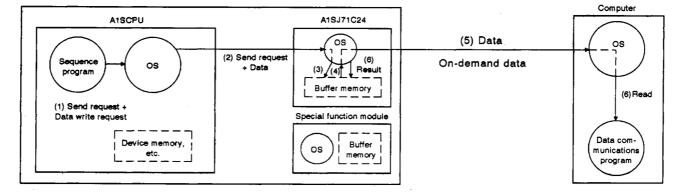

10. COMMUNICATIONS USING DEDICATED PROTOCOLS


10. COMMUNICATIONS USING DEDICATED PROTOCOLS

This chapter explains the details and methods of specifying control protocols 1 to 4 along with examples.


SEC-A

10.1 Data Flow in Communications with Dedicated Protocols



(2) The computer sends data to the A1SCPU

(3) The A1SCPU sends data to the computer

REMARK

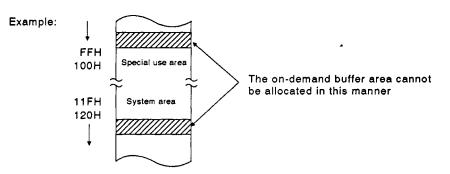
The OS (operating system) shown in the above illustrations is the software that uses resources such as the PC CPU, memory, terminals, files, and network efficiently.

In this manual, this software is described as the system program or system.

10.2 Programming Hints

10.2.1 To write data to the special use area in buffer memory

(1) Buffer memory is not backed up by a battery.


All data in buffer memory is set to the default values when power is turned ON or when the PC CPU is reset. Data changed from the default values must be written to the buffer memory whenever the power is turned ON or the CPU is reset.

- (2) Only TO instruction can be used to write data to the special use area (100H to 11FH). If data is written to the buffer memory using the command in a computer program, the A1SJ71C24 will not operate correctly. Never try to write data using a computer program.
- (3) If the following functions are used in combination with the dedicated protocol, make sure to allocate the user area in buffer memory so that the same area will not be used by different functions.

If the same area is allocated to different functions, the data in this area is rewritten and communications will not be correctly executed.

- No-protocol mode transmission or bidirectional mode transmission
- · No-protocol mode receive or bidirectional mode receive
- Buffer memory read/write (CR/CW command) function
- On-demand function

The memory areas preceding and following the special use area cannot be allocated as a single area. The areas 0H to FFH and 120H to DFFH must be recognized as independent areas.

(4) If the designation is made to process the send/receive data in the no-protocol mode or bidirectional mode in units of words or bytes, the on-demand data is processed in the same designated unit.

10.2.2 A1SCPU operation during data communications

(1) A1SCPU scan time

In response to the access request from the A1SJ71C24, the A1SCPU processes only a single request in each END processing while the A1S CPU is running.

Therefore, the scan time is extended by the time used for processing.

For intervening and processing times required for communications between the A1SJ71C24 and A1SCPU, see Appendix 4.

Scan time is extended approximately 0.2 msec when the A1SJ71C24 is loaded, even if the A1SCPU is not linked.

(2) Simultaneous access

Because the A1SCPU executes only a single processing in END processing, if the A1SCPU is accessed by more than one A1SJ71C24, access to the A1SCPU is suspended until other processing is completed. Thus, the number of times scanning is done is increased.

10.2.3 Precautions during data communications

- (1) The conditions under which the A1SJ71C24 transmission sequence is initialized are as follows:
 - The power supply is turned ON or the PC CPU is reset with the reset switch.
 - Data communications is completed normally.
 - The control code EOT or CL is received.
 - The NAK control code is received.
- (2) NAK response from the A1SJ71C24

The NAK response is given from the A1SJ71C24 to the computer using the dedicated protocol if an error is detected. Therefore, the NAK response may be output even while the computer is sending data in the full-duplex communications mode.

(3) Data link error processing

The A1SJ71C24 enters the standby state (see Section 5.3 I/O list for PC CPU) if a data link error occurs during data communications with a A1SCPU (the A1SCPU number being other than FFH) on MELSEC-NET/B.

If an error is detected by the computer when executing the time check, send a clear command (EOT or CL, see Section 10.4.5 (1)) to initialize the transmission sequence.

(4) Sending a command from the computer

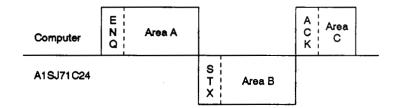
When sending a command from the computer to the A1SJ71C24 using the dedicated protocol, send the command only after the data communications called by the preceding command is completed.

(5) Replacement of a PC CPU on data link system

If the model name of a PC CPU changes, when replacing a PC CPU on data link system after starting up an A1SJ71C24, start up again an A1SJ71C24.

(Power supply reset of the PC CPU of a self/CPU reset/mode switching of an A1SJ71C24)

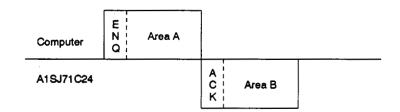
(6) In the 1:n multidrop connection


When a send is started again, before a sender (computer) finishes receiving data from the receiver (A1SJ71C24), a parity error occurs.

After a receiver (A1SJ71C24) finishes receiving data, a sender must transmit data.

...

10.3 Basics of Dedicated Protocol Control Procedures


(1) Reading data by the computer from the A1SJ71C24

- (a) Areas A and C indicate transmission from the external device to the A1SJ71C24.
- (b) Area B indicates transmission from the A1SJ71C24 to the external device.
- (c) Computer programs are created so that all data is transmitted from left to right.

(Example: In area A, data is transmitted to the right after the ENQ signal.)

- (d) Area C of the program completes data communications (whether communications are being carried out or not) and permits the next data communications to be carried out.
 When area C data is transmitted, it is not processed by the A1SJ71C24.
- (2) Writing data by the computer to the A1SJ71C24

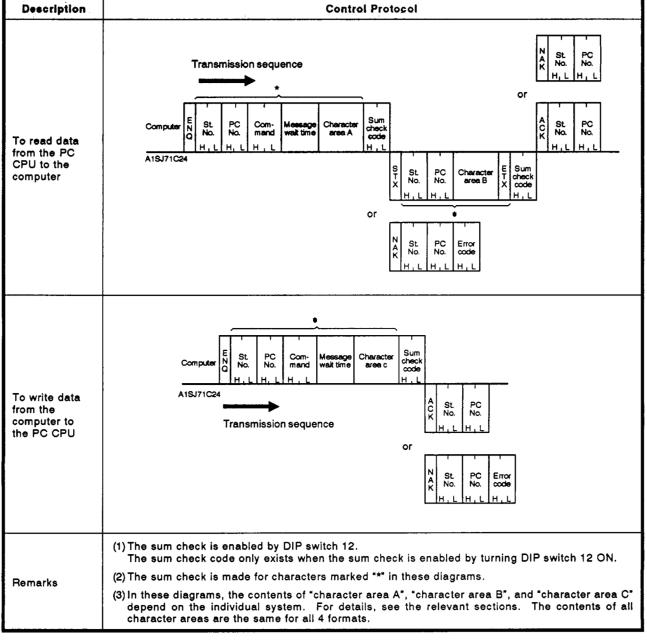
- (a) Area A indicates transmission from the external device to the A1SJ71C24.
- (b) Area B indicates transmission from the A1SJ71C24 to the external device.
- (c) Computer programs are created so that all data is transmitted from left to right.

(Example: In Area A, data is transmitted to the right after the ENQ signal.)

10.4 Basic Formats of Dedicated Protocol

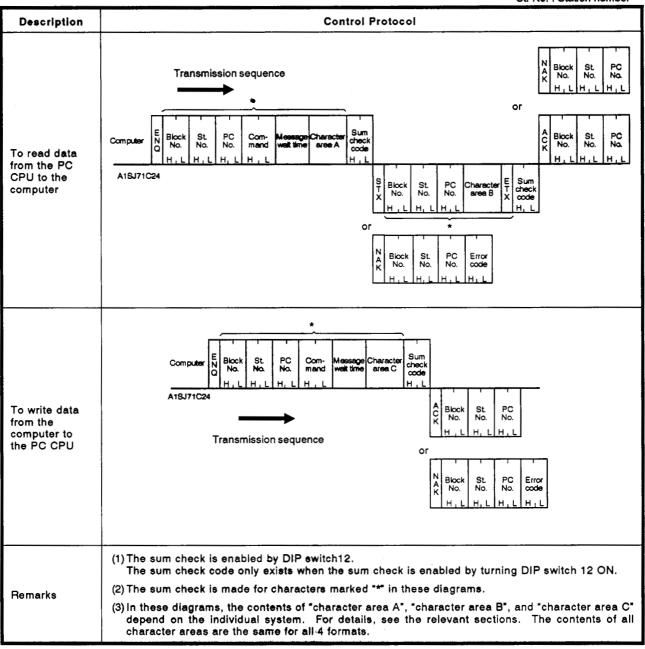
There are 4 formats of control protocol. These control formats are selected by the mode setting switch (see Section 6.3.1). The differences between the control formats (based on format 1) are as follows:

Format 2 : Format 1 with block number added.


Format 3 : Format 1 with STX and ETX added.

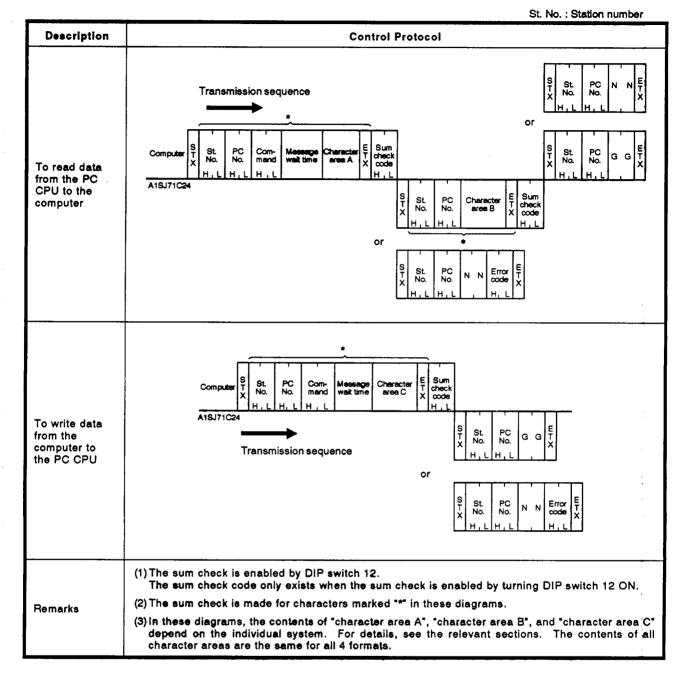
Format 4 : Format 1 with CR and LF added.

The following sections describe details of the four control protocols and the meanings of individual items.


10.4.1 Control format 1

St. No. : Station number

10.4.2 Control format 2


St. No. : Station number

10. COMMUNICATIONS USING DEDICATED PROTOCOLS

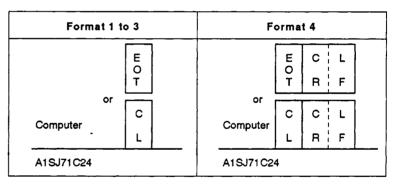
MELSEC

10.4.3 Control format 3

St. No. : Station number

10.4.4 Control format 4

Description **Control Protocol** St. No. PC No. С L K Transmission sequence R F ог Sum check code С St. No. PC No. Com-mand Message wait time Characte area A St. No. PC No. СL Computer NQ CK F R F R To read data from the PC A15J71C24 CPU to the Sum check code С L St. No. PC No. Characte computer area 8 R F н. or сіг St. No. Error PC No. R F ENO Sum check code сι St. No. PC No. Character Com-mand Computer Me Message wait time area C RF A1SJ71C24 To write data сL St. No. PC No. Ĉ from the B F computer to Transmission sequence н the PC CPU or сL St. No. PC No. Error code R F (1) The sum check is enabled by DIP switch 12. The sum check code only exists when the sum check is enabled by turning DIP switch 12 ON. (2) The sum check is made for characters marked *** in these diagrams. Remarks (3) In these diagrams, the contents of "character area A", "character area B", and "character area C" depend on the individual system. For details, see the relevant sections. The contents of all character areas are the same for all 4 formats.


10.4.5 Setting protocol data

(1) Control code

All control codes are sent and received in hexadecimal. They are shown in the following table.

Signal	Code (Hexadecimal)	Description	Signal	Code (Hexadecimal)	Description
NUL	00H	Null	LF	0AH	Line Feed
STX	02H	Start of Text	CL	осн	Clear
ETX	03H	End of Text	CR	ODH	Carriage Return
EOT	04H	End of Transmission	NAK	15H	Negative Acknowledge
ENQ	05H	Enquiry	G	47H	Good
ACK	06H	Acknowledge	N	4EH	No Good

- (a) The NUL code (00H) is ignored in all messages. If a NUL code is included in a message, it is processed as if it did not exist.
- (b) In format 3, control code "GG" is equivalent to ACK and "NN" is equivalent to NAK.
- (c) After receiving an EOT or CL code, the A1SJ71C24 initializes transmission but does not answer. The initializing code depends on the format as indicated below. At this time there is no answer from the A1SJ71C24.

(2) Block number

The block number is an optional number assigned as a data reference number for the computer. Block numbers are used to arrange data, etc. Block numbers may be from 00H to FFH in 2-digit ASCII (hexadecimal).

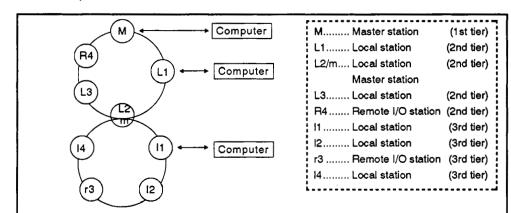
(3) Station number

The A1SJ71C24 is not equipped with a station number setting switch. Allot station number 00H to an A1SJ71C24.

(4) PC CPU number

The PC CPU number determines which PC CPU on MELSECNET/B to access.

The PC CPU number may be from 00H to 40H (00H to 1FH in MELSEC-NET/B) in 2-digit ASCII (hexadecimal).


(a) Accessing PC CPUs of other stations in a MELSECNET(/B) of an A1SCPU

Set all PC CPU numbers to FFH (self) using the computer. Use any function except the on-demand function.

- (b) Accessing PC CPUs on MELSECNET(/B) equipped with A1SJ71C24
 - 1) When computer and master station are connecterd
 - MELSECNET local and remote I/O stations: Set each slave link station number (1 to 64) in hexadecimal (01H to 40H)
 - MELSECNET/B local stations: Set each slave link station number (1 to 32) in hexadecimal (01H to 1FH).
 - When computer and A1SJ71C24-R2 of a local station are connected

MELSECNET/B master stations: Set the PC CPU number to 00H

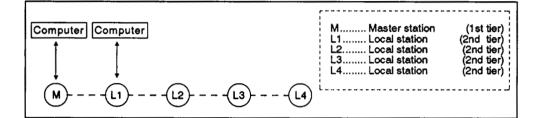
(c) The range of PC CPUs which can be accessed by setting the PC CPU numbers is shown below.

 MELSECNET

A1SCPU Loaded	PC CPUs to Which a Link is Possible (PC CPU Number)									
with A1SJ71C24 Connected to Computer	Self (FF)	M (0)	L1 (1)	L2/m (2/0)	L3 (3)	R4 (4)	1 (1)	12 (2)	r3 (3)	14 (4)
M	0	_	0	0	0	o *1	x	x	x	×
L1	0	0	-	x	×	×	x	x	×	x
1	0	×	×	0	x	×	-	x	x	x

- o..... Access to all devices possible by setting appropriate
 - PC CPU numbers

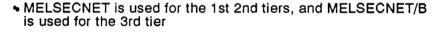
o*1.... Access to special-function module buffer memory possible by setting appropriate PC CPU numbers

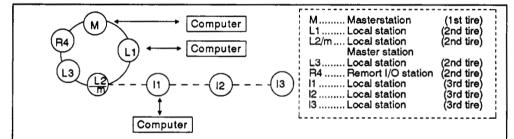

10. COMMUNICATIONS USING DEDICATED PROTOCOLS

MELSEC-A

POINT

Communications is not possible with A0J2CPUP23/R25 or A0J2CPUP25/R25 CPUs.


2) MELSECNET/B



A1SCPU Loaded	PC CPUs to Which a Link is Possible (PC CPU Number)								
with A1SJ71C24 Connected to Computer	Self (FF)	M (0)	L1 (1)	L2 (2)	L3 (3)	L4 (4)			
м	0	-	0	0	0	0			
L1	0	0	-	×	×	×			

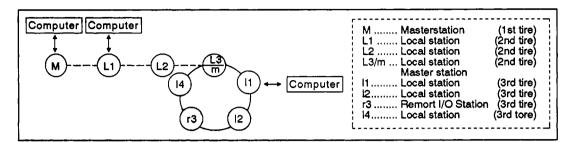
o..... Access to all devices possible by setting appropriate PC CPU numbers

3) Mult mode of MELSECNET and MELSECNET/B

A1SCPU Loaded	PC	PC CPUs to Which a Link is Possible (PC CPU Number)									
with A1SJ71C24 Connected to Computer	Self (FF)	M (0)	L1 (1)	L2/m (2/0)	L3 (3)	R4 (4)	11 (1)	2 (2)	13 (3)		
M	0	_	0	0	0	o *1	x	x	x		
L1	0	0	-	×	x	×	x	x	×		
11	0	x	x	0	x	x	-	x	x		

o..... Access to all devices possible by setting appropriate

- PC CPU numbers
- o*1.... Access to special-function module buffer memory possible by setting appropriate PC CPU numbers
- cy county upper


POINT

Communications with an A0J2CPUP23/R23 or an A0J2P25/R25 is not possible.

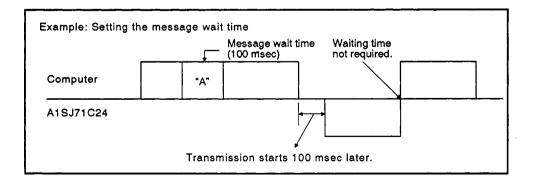
10. COMMUNICATIONS USING DEDICATED PROTOCOLS

MELSEC-A

 MESLECNET is used for the 1st and the 2nd tires, and MEL-SECNET/B is used for the 3rd tire

A1SCPU Loaded	PC CPUs to Which a Link is Possible (PC CPU Number)									
with A1SJ71C24 Connected to Computer	Self (FF)	M (0)	L1 (1)	L2 (2)	L3/m (3/0)	1 (1)	2 (2)	r3 (3)	14 (4)	
м	0	-	0	0	0	x	x	x	×	
L1	0	0	-	x	×	x	X	x	X	
11	0	x	x	x	0	-	x	x	x	

o..... Access to all devices possible by setting appropriate PC CPU numbers


(5) Command

Used to specify the operation required, e.g. read, write, etc. Commands must be in 2-digit ASCII.

(6) Message wait time

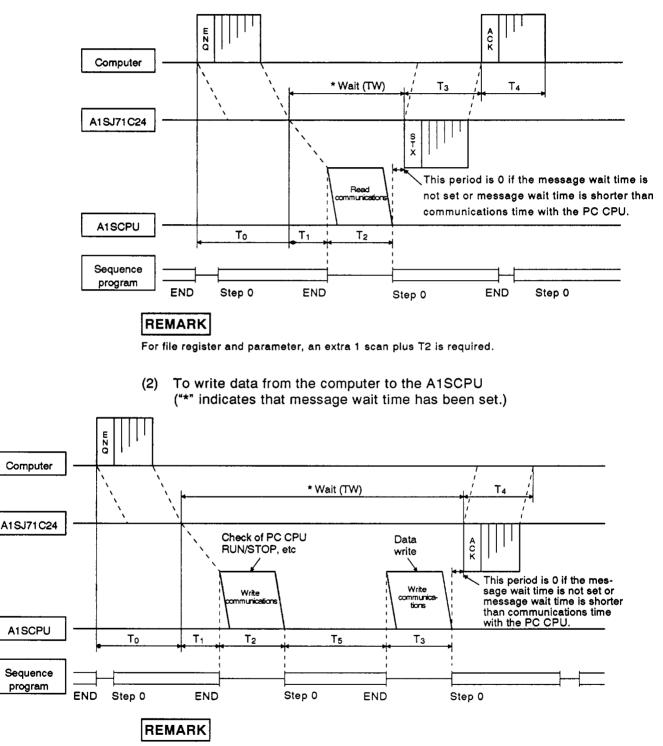
This is a time delay required for some computers to switch from send to receive states. The message wait time determines the minimum waiting time before the A1SJ71C24 sends data after receiving it from the computer. Set this time in accordance with the computer specifications.

The message wait time may be set between 0 and 150 msec in units of 10 msec. The time is set from 0H to FH (0 to 15) in 1-digit hexadecimal, where 1 corresponds to 10 msec,

(7) Sum check code

The sum check code is 2-digit ASCII representing the lower 1 byte (8 bits) of the sum derived from the BIN code representing the checked data.

MELSEC


With DIP switch SW12 OFF, the sum check code is not added.

n d	umber (D, PC lemory	CPU (), and	numbe i mess	er FF, o age wa	in format 1, s command BR (ait time to 30 n ow	batch read of
-	EN	St. No.	PC No.	Command	Message wait time	Charactersarea	Sum check
Computer	ä	·o· ·o·	•F• •F•	'B' 'R' 42H 52H	*3* 33H	M 10 10 10 10 10 4DH 30H 30H 30H 30H	code *C* *0* 43H 30H
A1SJ71C24							
30H + 30H +	- 46H + 4	6H + 42	H + 52	н + ззн	+ 4DH +		
30H + 30H 4	- 30H + 3	0H = 20	юн				
						St. No. :	Station number

- (8) Error code
 - Indicates an error following a NAK transmission.
 - Error codes are transmitted as 2-digit ASCII (hexadecimal) in the range of 00H to FFH.
 - If two or more errors occur simultaneously, the error code of the lowest number is transmitted.
 - For error code details, see Section 17.1.

10.5 Transmission Sequence Timing Charts and Communications Time

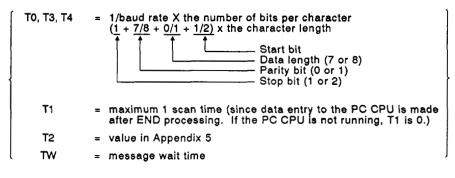
(1) To read data from the A1SCPU to the computer
 (**" indicates that the message wait time has been set.)

As shown above, communications between the A1SJ71C24 and the A1SCPU is always made after END. Therefore, the scan time is extended by the time used for communications.

Appendix 4 gives the communications time.

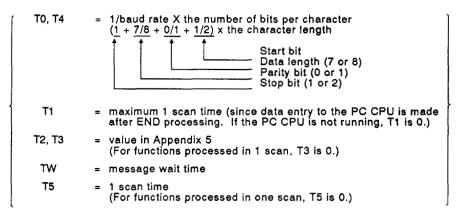
Section 5.2.1 gives the number of points processed per communication after END.

This section describes how to calculate approximate communications time from the start of data transmission from the computer to the completion of all communications after a reply is sent from the A1SJ71C24.


MELSEC

For T0 to T4, see (1) and (2) on the previous page.

(a) To read data from the A1SCPU to the computer


Communications time = T0 + (longer time of T1 + T2 or TW) + T3 + T4

where,

(b) To write data from the computer to the A1SCPU

```
Communications time =
T0 + (longer time of T1 + T2+ T3 + T5 or TW) + T4
where,
```


- (4) Transmission time through MELSECNET/B
 - (a) The transmission time (T1) for data transmission by specifying the PC CPU number to a PC CPU on MELSECNET/B not equipped with an A1SJ71C24 is calculated as follows:
 - Local station

Transmission time (T1) = (LRDP instruction processing time + scan time for station 1 loaded with A1SJ71C24) \times 2

Remote station

Transmission time (T1) = (RFRP instruction processing time + MELSECNET/B master station scan time) × 2

Substitute "3" for the factor "2" in the equations above for the first data communications after the power supply is turned ON or for the relevant station after the PC CPU has been reset.

If no more than 10 stations are communicating, use a factor of "1" for the second (and subsequent) communications.

Causes of delayed transmission time (T1)

Instructions requiring 2 scans for transmission (writing to device "R", etc.) need double the time derived from the equations above.

When other stations in the link are being monitored by an A6GPP, the transmission time doubles for each station to be monitored.

The Data Link Reference Manual gives details of the data link.

Example:

The transmission time for a MELSECNET/B master station equipped with A1SJ71C24 to read a local station device memory:

(Conditions: L<LS<M, M : 80 msec α 1 : 10 msec)

Transmission time T1 = $(M \times 4 + \alpha 1 \times 4 + M) \times 2$

= (80 x 4 + 10 x 4 + 80) x 2 = 880

The transmission time is 880 msec. Where:

- M : MELSECNET/B master station scan time
- α1 : MELSECNET/B master station link refresh time
- LS : Link scan time
- L : MELSECNET/B local station scan time

POINT

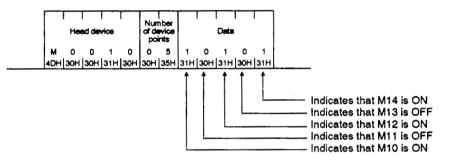
Under some conditions, data transmission to a PC CPU on MELSECNET/B not equipped with an A1SJ71C24 can cause a considerable time delay.

This time delay can be reduced by carrying out all communications from the computer to PC CPUs to stations equipped with an A1SJ71C24 (PC CPU station number FF) and all other data communications using the MELSECNET/B data link (B, W).

10.6 Character Area Data Transmission

The concept of transmission data handled as character areas when using commands to carry out data communications between the computer and the A1SCPU is explained in this section. The data shown in the examples is contained in character area B in the case of read and monitor, and in character area C in the case of write, test, and monitor data register.

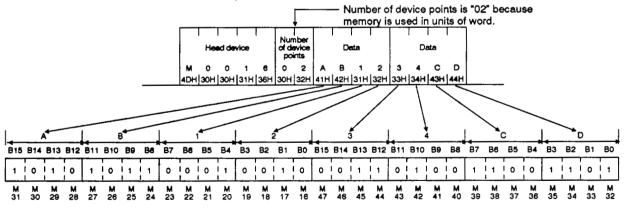
(1) Bit device memory read and write


The bit device memory can be handled in bit units (1 device point) or word units (16 device points).

These units are described below.

(a) Bit units (1 point)

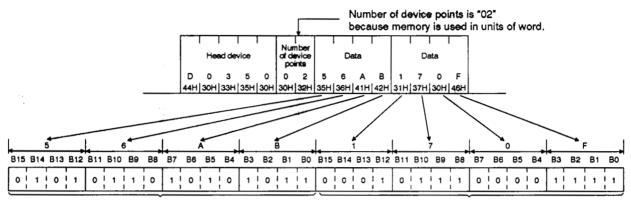
When the bit device memory is handled as bit units, the specified number of device points from the specified head device in sequence from the left are represented as 1 (31H) if the device is ON, or 0 (30H) if the device is OFF.


Example: Indication of the ON/OFF status of 5 points from M10

(b) Word units (16 points)

When the bit device memory is handled as word units, each word is expressed sequentially in hexadecimal values in 4-bit units from the higher bit.

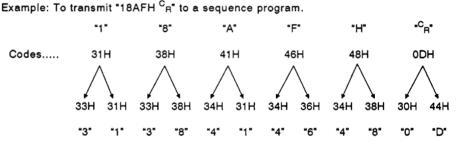
Example: Indication of the ON/OFF status of 32 points from M16


0 : represents ON

1 : represents OFF

(2) Word device memory read and write

In the word device memory, each word is expressed sequentially in hexadecimal values in 4-bit units from the higher bit.


Example: Indication of the contents of the D350 and D351 registers

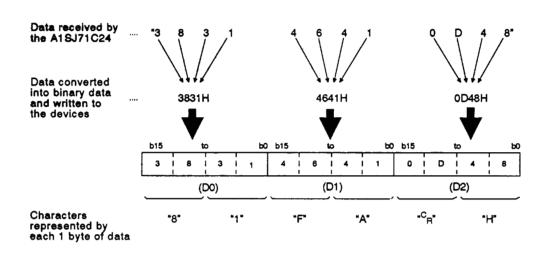
Indicates that the content of register D350 is 56ABH (22187 in decimal) Indicates that the content of register D351 is 170FH (5903 in decimal)

REMARKS

- Extension file memory read and write, buffer memory read and write, and on-demand data when word units are specified are handled according to the same principle as the word device memory.
- (2) To output a character-string with the PR instruction externally after transmitting it from the computer to the A1SCPU, the processing should be as shown below:
 - 1) The character-string to be transmitted is developed into 2-byte codes in units of characters.

 The character-string developed into 2-byte codes is arranged in units of 2 characters and sent to the A1SJ71C24.

Example: The character-string used in the above example in 1.



"383146410D48" is sent from the computer to the A1SJ71C24.

The A1SJ71C24 converts the data sent from the computer into binary data and writes it to the designated device.

Example:

To write the data composed in the above example in 2) to D0 to D2 in the A1SCPU.

10.7 Device Memory Read/Write

10.7.1 Commands and device ranges

(1) The ACPU common commands and device ranges used for device memory read/write are described below.

		Сол	nmand		Number of	PC	CPU Stat	us		A				
ltem				Processing Contents	Points Processed per		During	RUN	Access to	Access to PC CPU				
		Symbol	ASCII Code		Communi- cations	During STOP	SW04 ON	SW04 OFF	AISCPU	in Data Link				
	Bit units	BR	42н, 52н	Reads bit devices (X, Y, M, etc.) in units of points.	256 points				0	0				
Batch Read	Word	WB	57h, 52h	Reads bit devices (X, Y, M, etc.) in units of 16 points.	32 words (512 points)	0	0	•		0				
	units	VVI-	57H, 52H	Reads word devices (D, R, T, C, etc.) in units of points.	64 points					Ū				
	Bit units	BW	42h, 57h	Writes data to bit devices (X, Y, M, etc.) in units of points.	160 points									
Batch Write	Word	I WW 1574 57	574 574	Writes data to bit devices (X, Y, M, etc.) in units of 16 points.	10 words (160 points)	o	o	×	o	0				
	units	****	578, 578	Writes data to word devices (D, R, T, C, etc.) in units of points.	64 points									
	Bit units	вт	42H, 54H	Sets/resets bit devices (X, Y, M, etc.) in units of points by designating the devices and device numbers at random.	20 points					o	o			
Test (Random Write)	Word			WT	WT	war	E7. E4.	Sets/resets bit devices (X, Y, M, etc.) in units of 16 points by designating the devices and device numbers at ran- dom.	10 words (160 points)	•	o	×		0
	units	WI	VT 57h, 54h	Writes data to word devices (D, R, T, C, etc.) in units of points by designating the devices and device numbers at random.	10 points				•	0				
	Bit units	вм	42н, 4Dн	Sets the bit devices (X, Y, M, etc.) to be monitored in units of points.	40 points*				0	0				
Monitor Data Regis-	Word			Sets the bit devices (X, Y, M, etc.) to be monitored in units of 16 points.	20 words* (320 points)	•	•	•						
ration	ration units WM 57H, 4	57H, 4DH	Sets the word devices (D, R, T, C, etc.) to be monitored in units of points.	20 points				0	0					
Maritar	Bit units	мв	4Dн, 42н	Monitors the devices										
Monitor	Word units	MN	40н, 4Ен	registered formonitoring.	_	0	°	0	•	0				

(a) ACPU common commands

Note : oExecutable

x.....Not executable

For the number of processing points indicated by an asterisk (*), the number is one half of the values indicated in the table for the input device (x) when PC CPUs other than the A3H CPU, A2ACPU(S1), and A3ACPU are used. (See *1 in 5.2.1 (1).)

=5 characters

POINT

When a MELSECNET or MELSECNET/B data link system is used, the PC CPUs of other stations are also accessible.

When ACPU common commands are used to access the devices in an A2ACPU(S1) or A3ACPU of other station, the device number ranges described in (b) can be used.

Use the AnACPU dedicated commands described in (2) to access the extension devices.

(b) Device ranges when ACPU common commands are used

The devices and device number ranges that can be used for the device memory access operation are described below.

The device designation code consists of 5 characters.

+

Leading zeros in the device number (underlined zeros in X_{0070} , for example) can be expressed with a blank code (20H).

Device	
1 character]
(2 characters for T/C)	Ì
(2 characters for T/C)	J

Device number 4 characters (3 characters for T/C)

	Bit Device		Word Device						
Device	Device Number Ranges (Characters)	Decimal/ Hexadecimai Expression	Device	Device Number Range (Characters)	Decimal/ Hexadecimat Expression				
Input X	X0000 to X07FF	Hexadecimal	Timer (present value) T	TN000 to TN255	Decimal				
Output Y	Y0000 to Y07FF	Hexadecimal	Counter (present value) C	CN000 to CN255	Decimal				
Internal relay M	M0000 to M2047	Decimal	Data register D	D0000 to D1023	Hexadecimal				
Latch relay L	L0000 to L2047	Decimal	Link register W	W0000 to W03FF	Hexadecimal				
Step relay S	S0000 to S2047	Decimal	File register R	R0000 to R8191	Hexadecimal				
Link relay B	B0000 to B03FF	Hexadecimal	Special register D	D9000 to D9255	Decimal				
Annunciator F	F0000 to F0255								
Special relay M	M9000 to M9255								
Timer (contact) T	TS000 to TS255	Decimal							
Timer (coil) T	TC000 to TC255								
Counter (contact) C	CS000 to CS255								
Counter (coil) C	CC000 to CC255	1							

POINTS

- (1) To designate the bit device ranges in units of words, the bit device number must be a multiple of 16.
- (2) Although the ranges are designated for M, L, and S, if the range for M is designated by L or S, the same processing occurs. This is also true for the ranges for L and S.
- (3) The ranges of special relays (M9000 to M9255) and special registers (D9000 to D9255) are divided into the areas for read only, write only, and system use.

Trying to write data to the ranges outside the write-only area might cause the PC CPU to malfunction.

The ACPU programming manual gives details concerning special relays and special registers.

(4) When using the SW0GHP-UTLPC-FN1 utility software package or the dedicated instructions for the A2ACPU(S1) and A3ACPU extension file registers, use the commands explained in Section 10.8 for read and write operations for the file register (R).

(2) The AnACPU dedicated commands and device ranges used for device memory read/write are described below.

		Co	mmand		Number of	PC	CPU Sta	tus					
item	ı		ASCII	Processing Contents	Points Processed per	Durina	Durin	g RUN	Access to	Access to PC CPU			
		Symbol	Code		Communi- cations	STOP	SW04 ON	SW04 OFF	AISCPU	in Data Link			
	Bit units	JR	4Ан, 52н	Reads bit devices (X, Y, M, etc.) in units of points.	256 points				0	0			
Batch Read	Word	QR	51н, 52н	Reads bit devices (X, Y, M, etc.) in units of 16 points.	32 words (512 points)	0	•	0		0			
	units		· · · · ·	Reads word devices (D, R, T, C, etc.) in units of points.	64 points					Ū			
	Bit units	JW	4Ан, 57н	Writes data to bit devices (X, Y, M, etc.) in units of points.	160 points				0	0			
Batch Write	Word	QW	51 н. 57н	Writes data to bit devices (X, Y, M, etc.) in units of 16 points.	10 words (160 points)	o	0	x					
	units		51n, 57n	Writes data to word devices (D, R, T, C, etc.) in units of points.	64 points				0	0			
	Bit units	JT	4Ан, 54н	Sets/resets bit devices (X, Y, M, etc.) in units of points by designating the devices and device numbers at random.	20 points						o	0	
Test (Random Write)	Word	ford or	OT	от	QT	E1. E4.	Sets/resets bit devices (X, Y, M, etc.) in units of 16 points by designating the devices and device numbers at ran- dom.	10 words (160 points)	o	0	x		
:	units	3	51н, 54н	Writes data to word devices (D, R, T, C, etc.) in units of points by designating the devices and device numbers at random.	10 points				o	o			
	Bit units	ЈМ	4Ан, 4Dн	Sets the bit devices (X, Y, M, etc.) to be monitored in units of points.	40 points				0	o			
Monitor Data Regis- tration	Word	04	51u AD.	Sets the bit devices (X, Y, M, etc.) to be monitored in units of 16 points.	20 words (320 points)	0	0	o					
	units QM 51H, 4DH		51H, 4DH	Sets the word devices (D, R, T, C, etc.) to be monitored in 20 points units of points.					o	0			
Monitor	Bit units	MJ	4Dн, 4Ан	Monitors the devices									
Monitor	Word units	MQ	4DH, 51H	registered for monitoring.	—	0	0	0	0	0			

(a) AnACPU dedicated commands

Note : oExecutable

x.....Not executable

(b) Device ranges when AnACPU dedicated commands are used

The devices and device number ranges that can be used for device memory access operation are described below.

The device designation code consists of 7 characters.

+

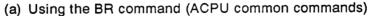
Leading zeros in the device number (underlined zeros in X_{000070} , for example) can be expressed with a blank code (20H).

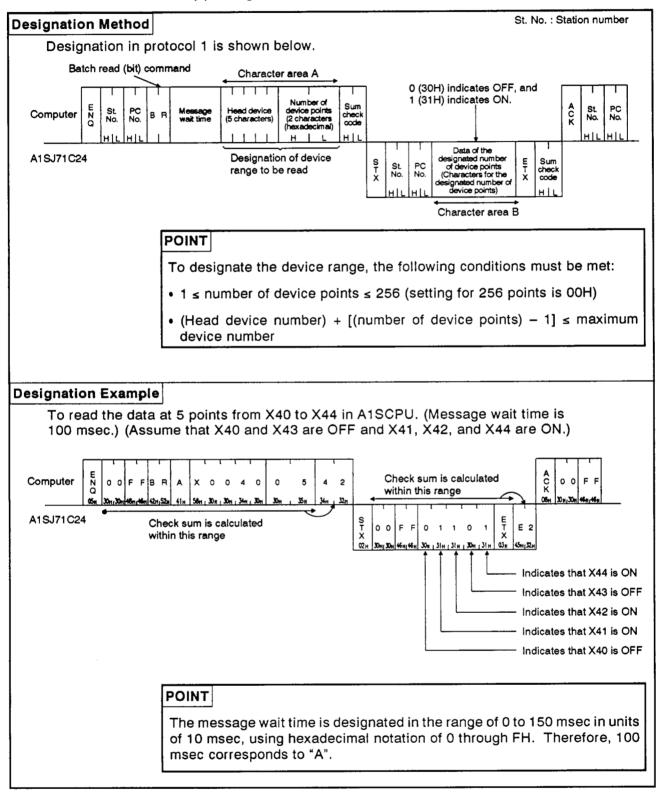
Device 1 character (2 characters for T/C) Device number 6 characters (5 characters for T/C) =7 characters

	Bit Device			Word Device	
Device	Device Number Range (Characters)	Decimal/ Hexadecimal Expression	Device	Device Number Range (Characters)	Decimal/ Hexadecimai Expression
Input X	X000000 to X0007FF	Hexadecimal	Timer (present value) T	TN00000 to TN02047	Decimal
Output Y	Y000000 to Y0007FF	Hexadecimal	Counter (present value) C	CN00000 to CN01023	Decimal
Internal relay M	M000000 to M008191	Decimal	Data register D	D000000 to D006143	Hexadecimal
Latch relay L	L000000 to L008191	Decimal	Link register W	W000000 to W000FFF	Hexadecimal
Step relay S	S000000 to S008191	Hexadecimal	File register R	R000000 to R008191	Decimal
Link relay B	B000000 to B000FFF	Hexadecimal	Special register D	D009000 to D009255	Decimal
Annunciator F	F000000 to F002047				
Special relay M	M009000 to M009255				
Timer (contact) T	TS00000 to TS02047	Decimal			
Timer (coil) T	TC00000 to TC02047				
Counter (contact) C	CS00000 to CS01023	1			
Counter (coil) C	CC00000 to CC01023	1			

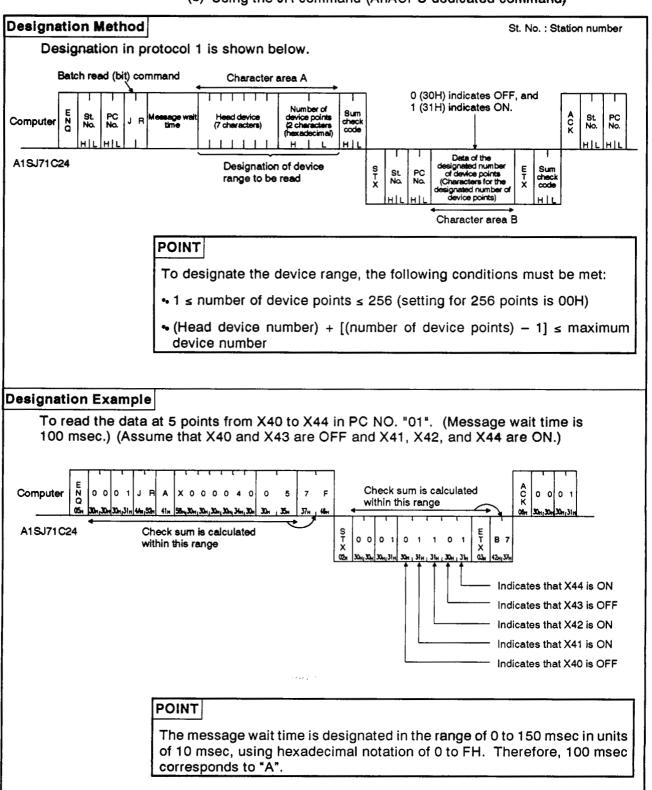
POINTS

(1) To designate the bit device ranges in units of words, the bit device number must be a multiple of 16.


For special relays M, whose device number is M9000 or greater, designation is possible by using "9000 + multiples of 16".

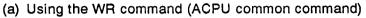

- (2) Although the ranges are designated for M, L, and S, if the range for M is designated by L or S, the same processing occurs. This is also true for the ranges for L and S.
- (3) The ranges of special relays (M9000 to M9255) and special registers (D9000 to D9255) are divided into the areas for read only, write only, and system use.

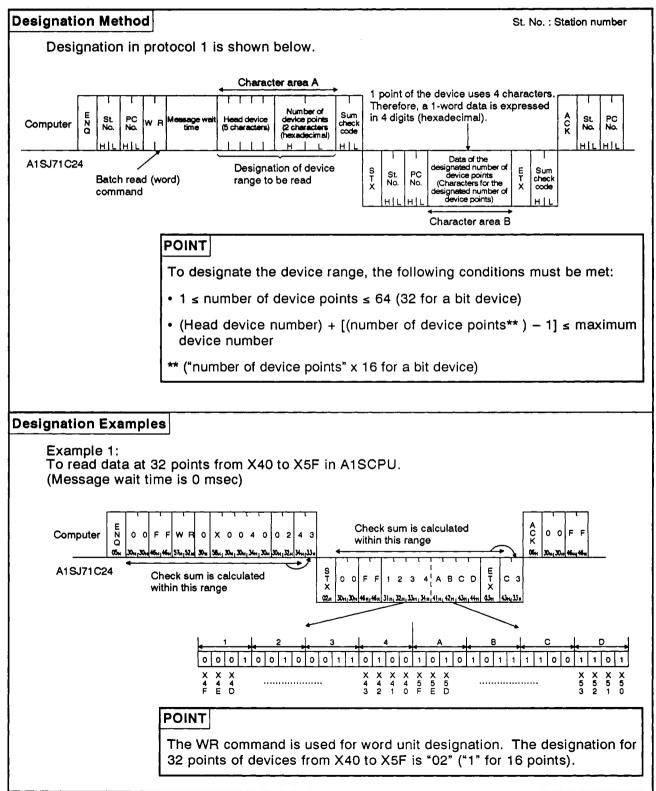
Trying to write data to the ranges outside the write-only area might cause the PC CPU to malfunction.

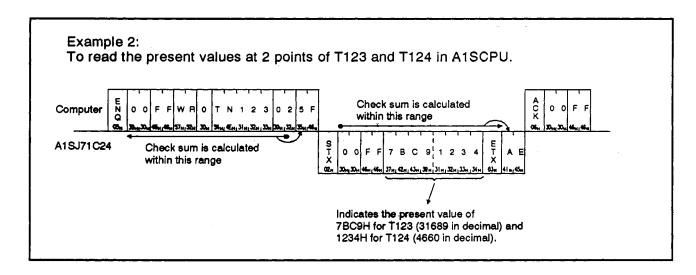

The ACPU programming manual gives details concerning special relays and special registers.

10.7.2 Batch read in units of bits

10. COMMUNICATIONS USING DEDICATED PROTOCOLS

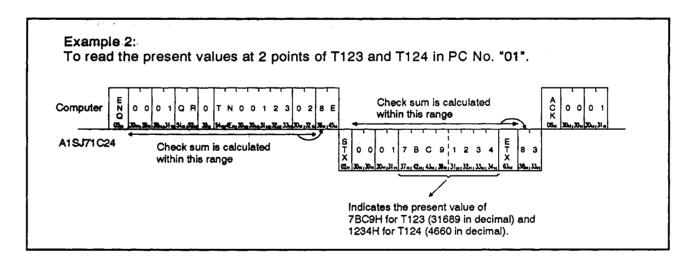


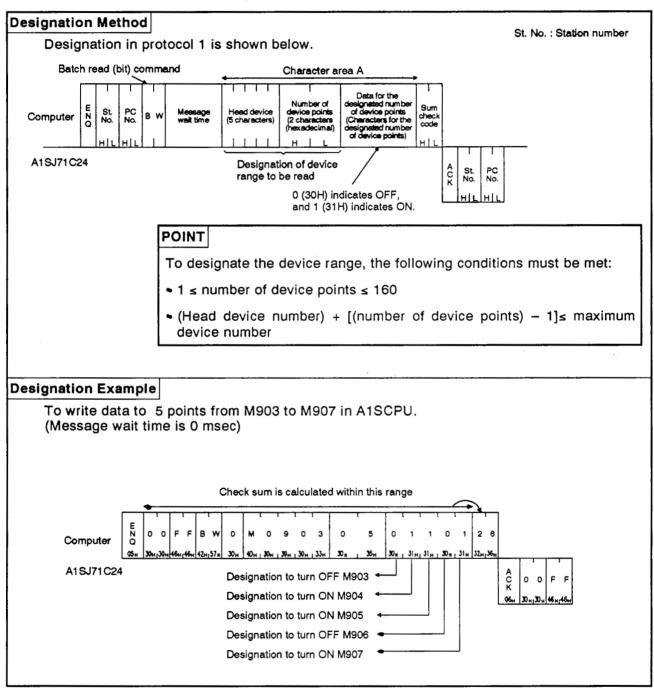

(b) Using the JR command (AnACPU dedicated command)


MELSEC

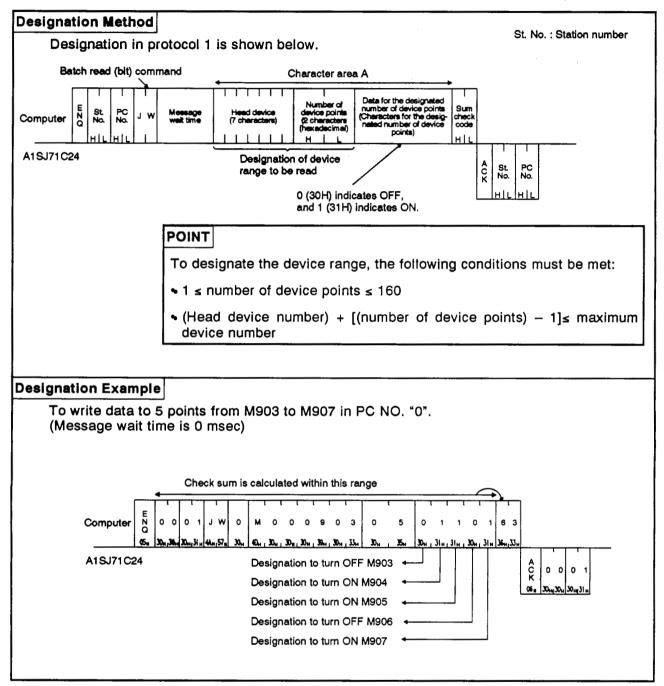
10.7.3 Batch read in units of words

The method for specifying the control protocol and examples are shown below for a batch read of word device memory and batch read of bit device memory (16-point units).

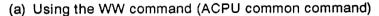


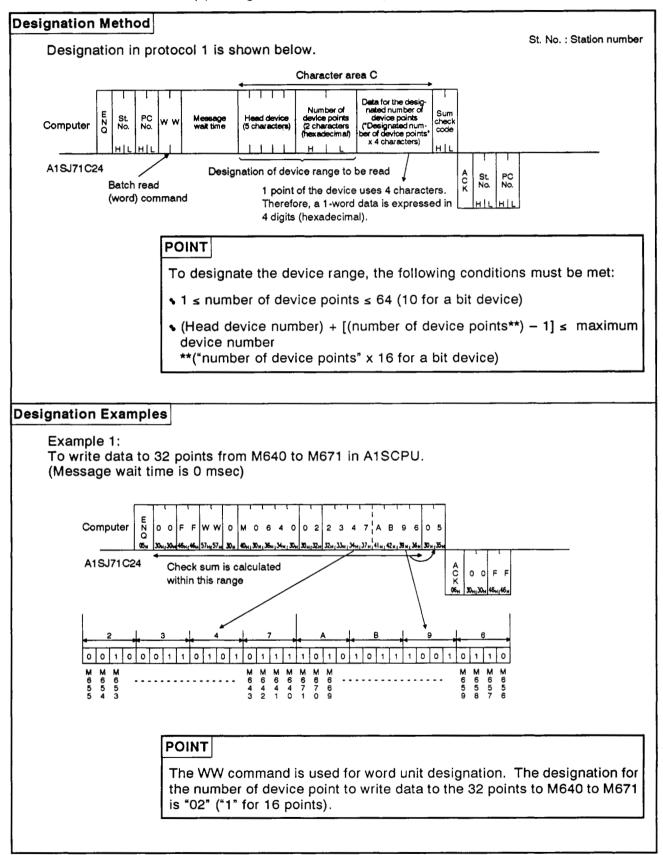

10. COMMUNICATIONS USING DEDICATED PROTOCOLS

Designation Method St. No. : Station number Designation in protocol 1 is shown below. Character area A 1 point of the device uses 4 characters Therefore, a 1-word data is expressed Number of device points (2 characters (hexadecimal) Sum check code in 4 digits (hexadecimal). St. No. PC No. ĉ St. No. id device PC No. Message wait time N а в Computer (7 characters) н Data of the designated number of device points (Characters for the designated number of device points) A1SJ71C24 Designation of device Batch read (word) STX Sum Ē St. No. PC No. check range to be read command × Character area B POINT To designate the device range, the following conditions must be met: • 1 ≤ number of device points ≤ 64 (32 for a bit device) (Head device number) + [(number of device points**) - 1] ≤ maximum device number ** ("number of device points" x 16 for a bit device) **Designation Examples** Example 1: To read data at 32 points from X40 to X5F in PC NO. "01". (Message wait time is 0 msec) ENQ Check sum is calculated ACK Computer QR X 0 0 0 0 4 0 0 0 ٥ 0 ٥ 2 7 2 0 1 1 0 0 within this range 31-51-52-10. 54 30m 30m 30m 30m 30m 34m 30m 37 m 1 S ۵s. A1SJ71C24 ET STX Check sum is calculated 0 0 0 2 BCD 9 1 з Δ 8 within this range æ 0 0 0 1 0 0 0 ٥ 0 ٥ 0 0 0 0 1 1 1 1 0 11 0 0 1 1 0 1 1 1 1 1 1 1 X 4 D X 4 E X 4 0 X 5 F X 4 2 X 4 1 X 5 E X 5 2 X 5 X4F X 4 3 X 5 X 5 3 X 5 0 POINT The QR command is used for word unit designation. The designation for 32 points of devices from X40 to X5F is "02" ("1" for 16 points).


(b) Using the QR command (AnACPU dedicated command)

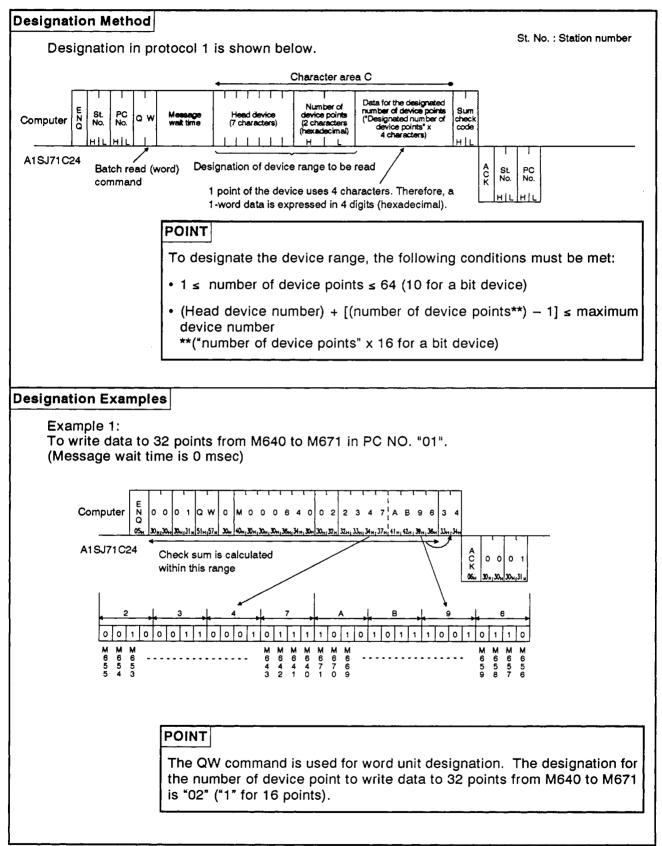
10.7.4 Batch write in units of bits




(a) Using the BW command (ACPU common command)

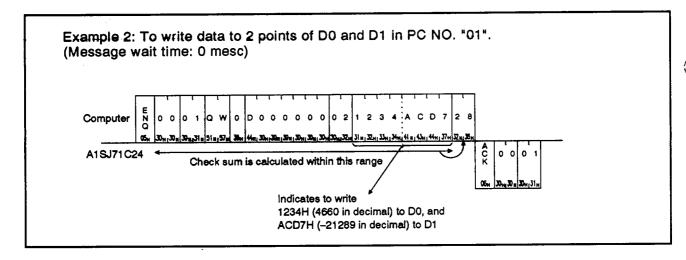
(b) Using the JW command (AnACPU common command)

10.7.5 Batch write in units of words

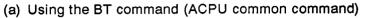


10. COMMUNICATIONS USING DEDICATED PROTOCOLS

MELSEC-A


Example 2: To write data to 2 points of D0 and D1 in A1SCPU. (Message wait time: 0 mesc)	
Computer $\begin{bmatrix} E \\ N \\ 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 \\ F \\ F \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ F \\ V \end{bmatrix}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 \\ V \end{bmatrix}$ $\begin{bmatrix} 1$	
A1SJ71C24 Check sum is calculated within this range	
1234H (4660 in decimal) to D0, and ACD7H (-21289 in decimal) to D1	

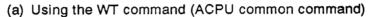
٠

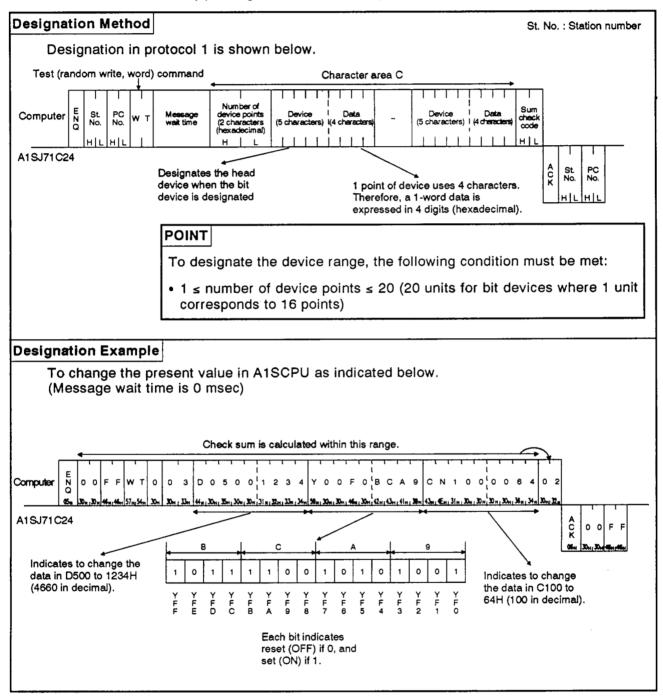



(b) Using the QW command (AnACPU dedicated command)

MELSEC-A

10.7.6 Testing device memory in units of bit (random write)



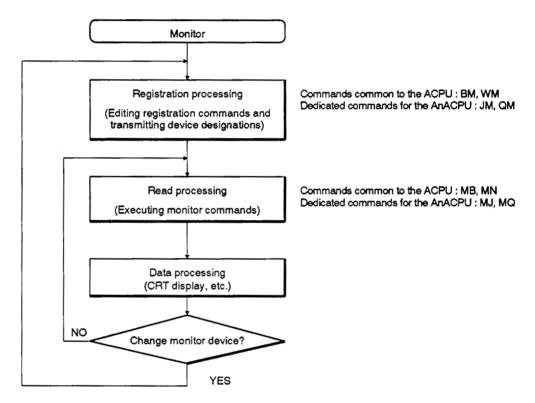

Designation Method St. No. : Station number Designation in protocol 1 is shown below. Test (random write, bit) command) Character area C Т Т Т Number of device points (2 cheracters (hexadecimal) EZQ PC No. Set/ reset Computer St. No. Message wait time Set/ reset Device (7 charact Device (7 characte J н A1SJ71C24 1 character 0 (30H) indicates OFF, and 1 (31H) indicates ON. Sum check code Set/ 7 charact A C K PC No. St. No. POINT To designate the device range, the following condition must be met: 1 ≤ number of device points ≤ 40 **Designation Example** To write ON to M50, OFF to B31A, and ON to Y2F in PC NO. "01". (Message wait time is 0 msec) Check sum is calculated within this range шZQ J Computer 0 0 0 0 з M 0 0 0 0 в 0 С т 5 ٥١ 0 ٥ 3 1 A 0 1 65 n 4D_H [3D_H] 3D_H] 3D_H] 3D_H] 3D_H] 3D_H 31 42, 33m JIn 1 41_H A1SJ71C24 Set (ON) Reset (OFF) ٥ 0 0 0 2 FI 1 ۶ Е 59H 30H 30H 30H 30H 30H 32H 46H A C K 0 0 0 Set 05.

(b) Using the JT command (AnACPU dedicated command)

MELSEC-A

10.7.7 Testing device memory in units of words (random write)

Designation Method St. No. : Station number Designation in protocol 1 is shown below. Batch read (random write, word) command Character area C Т Number of device points (2 characters (hexadecimal) ENC PC No. Computer St. No. Data Me Message wait time Device οт 7 characters (4 cheracters A1SJ71C24 Designation the head device when the bit device is designated. 1 point of device uses 4 characters. Т Therefore, a 1-word data is expressed Т Т Sum check code in 4 digits (hexadecimal). Computer (7 chara нΤι A1SJ71C24 ACK PC No. St. No. нI POINT To designate the device range, the following condition must be met: 1 ≤ number of device points ≤ 40 (40 units for bit devices where 1 unit corresponds to 16 points) Designation Example To change the present value in PC number "01" as indicated below. (Message wait time is 0 msec) Check sum is calculated within this range. ENQ DO Y 0 0 0 0 F ٥١ вс Q 0 з 2 Com-0 0 0 Т 0 0 0 5 0 0 з 4 puter 65 ίω<mark>, 39</mark>ω, 30α, 30ω, 35α, 30ω, 30ω, ³3ίω, 32ω, 33ω, 34μ ¹ 98 μ, 30α, 30ω, 30ω, 30ω, 46 μ, 30μ ¹ 42μ, 43μ, 4ί<u>κ</u>, 36 A1SJ71C24 С R 9 A Indicates to change 0 ٥ ٥ ٥ ٥ ٥ ٥ 1 1 1 1 1 1 1 1 1 the data in D500 C N O O 1 O O 0 O 6 F Y F O FA F ž F F FE F 9 F 6 F FD FC F F to 1234H (4660 in <u>43 n j € n j 30 n j 30 n j 31 n j 30 n j 30 n j 30 n j 36 n j 36 n j 34</u> 46, 431 decimal). A C K Each bit indicates 0 0 0 reset (OFF) if 0, and set (ON) if 1. Indicates to change the data in C100 to 64H (100 in decimal).


(b) Using the QT command (AnACPU dedicated command)

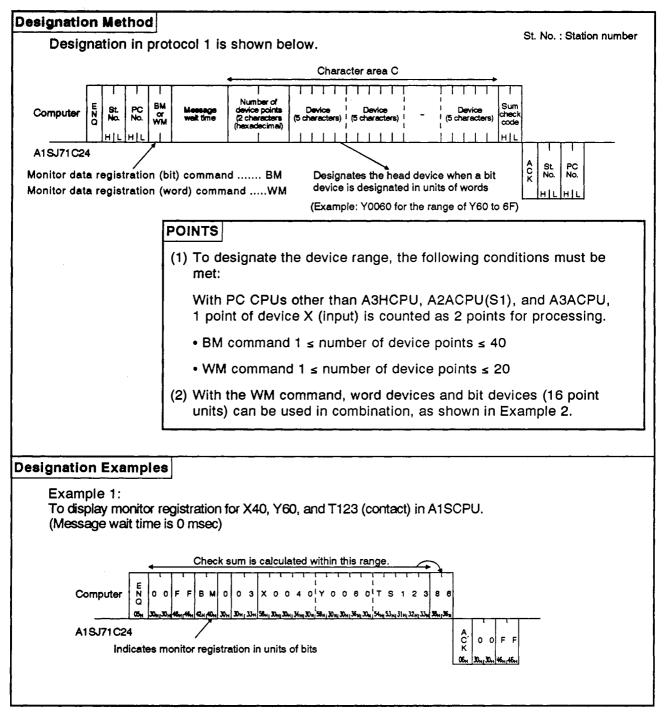
MELSEC-A

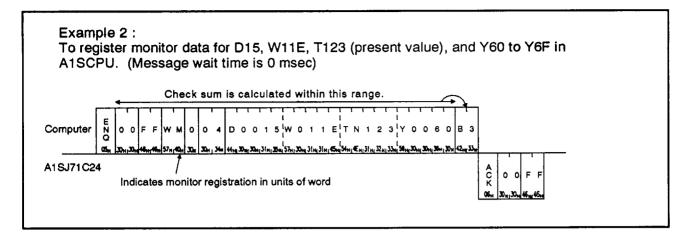
10.7.8 Monitoring device memory

Monitor data registration is the function that registers the name and the number of the device to be monitored by the computer to the A1SJ71C24. The monitor is the function that (a) reads the data content of the device registered at the time the monitor read command is executed by the computer, and (b) executes the corresponding processing such as monitoring.

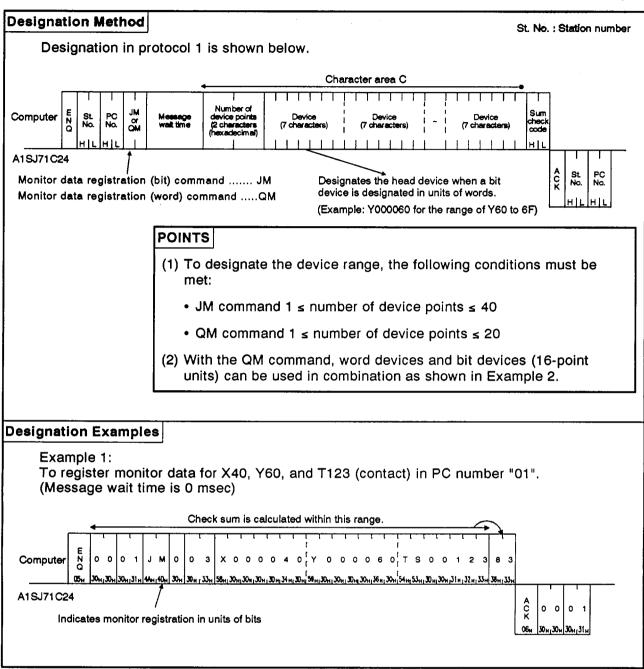
The device numbers must be consecutive when the device is read using the batch read (BR, WR/JR, QR) command. However, when this function is used, it is possible to read and monitor the devices by designating the device numbers at random.

(1) Control procedure for monitoring


POINTS

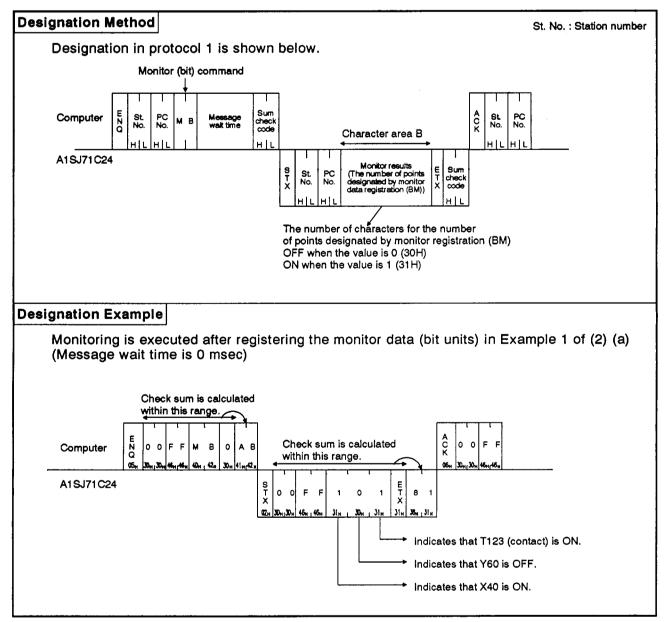

- (1) As the flowchart shows, monitor data registration must be executed before monitoring. Attempting to execute monitoring without registering the monitor data will cause a protocol error.
- (2) The contents registered in monitor data registration are cleared when the power supply is turned OFF or the PC CPU is reset.
- (3) For monitor registration, five types of registration are possible. They are device memory in bit units (BM or JM), device memory in word units (WM or QM), and the extension file register (EM).

MELSEC-A


(2) Registering monitor data of device memory

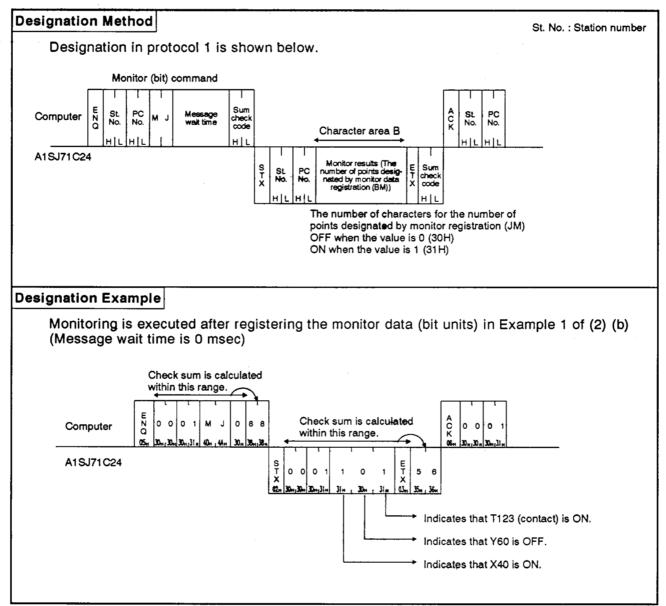
(a) Using the BM or WM command (ACPU common command)

MELSEC-A

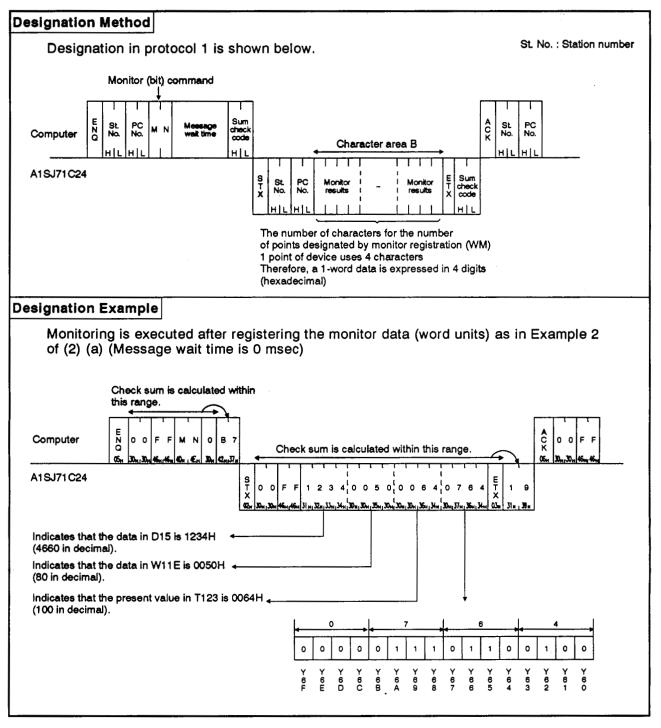


(b) Using the JM or QM commands (AnACPU dedicated commands)

Example 2: To register monitor data for D15, W11E, T123 (present value), and Y60 to Y6F in PC number "01". (Message wait time is 0 msec) Check sum is calculated within this range. -E NO Com-0 0 0 1 Q M O D 0 0 0 0 1 5^lW 0 0 0 1 1 E^l TN00123 0 4 Y 0 0 0 0 6 0 0 2 puter 05+ A1SJ71C24 A C K 0 0 0 Indicates monitor registration in units of words 8 30 yr 31

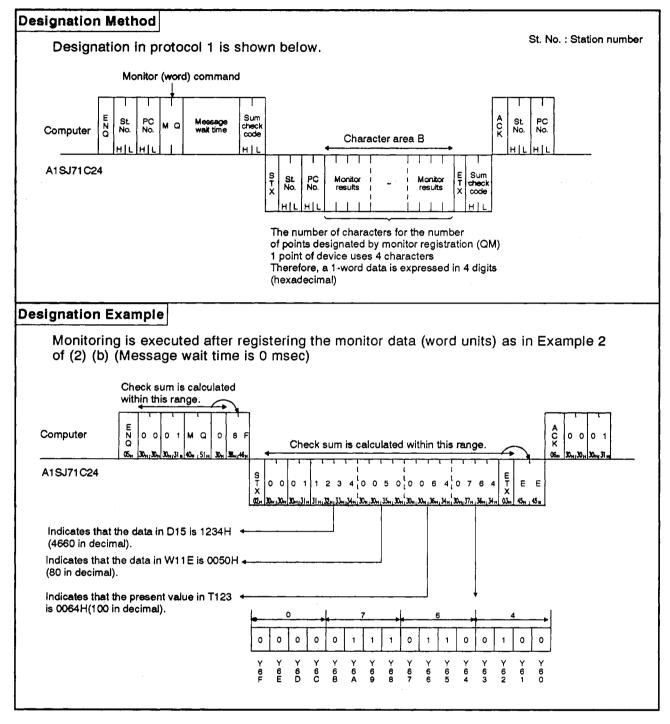

MELSEC-A

- (3) Monitoring device memory in units of bits
 - (a) Monitoring the devices registered by the BM command (ACPU common command)



MELSEC-A

(b) Monitoring the devices registered by the JM command (AnACPU dedicated command)



- (4) Monitoring device memory in units of words
 - (a) Monitoring the device registered by the WM command (ACPU common command)

MELSEC-A

(b) Monitoring the devices registered by the QM command (AnACPU dedicated command)

10.8 Extension File Register Read and Write

An extension file register refers to an empty area of the PC CPU user memory area used as a file register. The extension file register is used to store necessary data, results of the calculation for data processing executed using the SW0GHP-UTLPC-FN1 software package, and dedicated instructions for extension files used in the A2ACPU(S1) and A3ACPU.

10.8.1 ACPU common commands and addresses

(1) ACPU common commands used for read/write of extension file registers

	Command			Number of	State of PC CPU				Access	
ltem		ASCII	Processing	Points Processed	During	During RUN		Access to	to PC CPU in	
	Symbol	Code		per Com- munications	STOP	SW04 ON	SW04 OFF	A1SCPU	Data Link	
Batch read	ER	45H, 52H	Reads from extension file registers (R) in units of 1 point.	64 points	0	0	0	o	o	
Batch write	EW	45H, 57H	Writes to extension file registers (R) in units of 1 point.	64 points	o	0	×	0	o	
Test (random write)	ET	45H, 54H	Specifies the extension file registers (R) in units of 1 point using block or device number and makes a random write.	10 points	o	0	×	o	o	
Monitor data entry	EM	45H, 4DH	Sets the device numbers to be monitored in units of 1 point.	20 points	o	•	o	0	o	
Monitor	ME	4DH, 45H	Monitors the extension file registers after monitor data entry.	-	o	0	o	o	o	

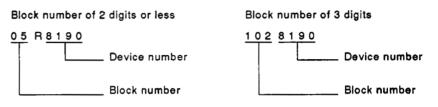
Note : o Executable x Not executable

- (2) Extension file register addresses
 - (a) The extension file register comprises blocks number 0 to "n", with "n" varying according to the memory cassette. Block number "0" contains the number of points designated by the PC CPU parameters and each block with numbers "1" to "n" has 8192 points of registers.

Read/write is possible in the range of parameters designated in block number 0.

(b) The range of block numbers which can be designated varies according to the type of memory cassette and the PC CPU parameter setting.

The UTLP-FN1 Operating Manual or A2A(S1)/A3ACPU User's Manual give details.


- (c) Each address is designated in 7 characters consisting of the block and device numbers.
 - Block number of 2 digits or less:

"Block number (2 digits)" + "R" + "Device number (4 digits)"

Block number of 3 digits:

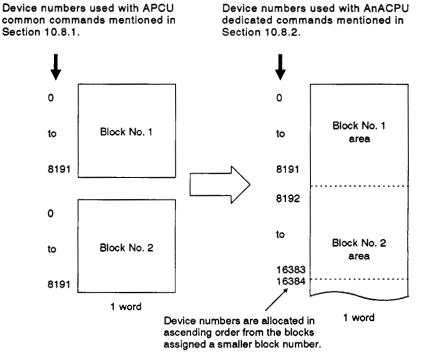
"Block number (3 digits)" + "Device number (4 digits)

Example:

10.8.2 AnACPU dedicated commands and device numbers

(1) The AnACPU dedicated commands used for direct read and direct write of extension file registers are described below.

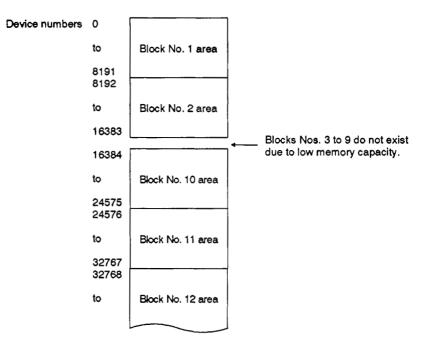
These dedicated commands are used to access the extension file register of block numbers 1 to 256 by directly designating the address, which begins with address 0 in block number 1, as the device number. The address numbers used to access the extension file register go from 0 to "the usable number of blocks x 8192 points".


Con	Comr	nand		Number of	State	of PC (Access	
		ASCII	Processing	Points Processed	During	During	RUN	to CPU	to PC CPU in
	Symbol	Code		per Com- munications		SW04 ON	SW04 OFF	A1SCPU	Data Link
Direct read	NR	4EH, 52H	Reads in units of points (words) by designating the extension file register in successive numbers.	64 points	o	o	o	×	0
Direct write	NW	4EH, 57H	Writes data to the extension file register in units of points (words) by designating the extension file register in successive numbers.	64 points	o	o	×	x	0

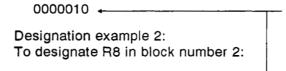
Note : o Executable x Not executable

(2) Device numbers of extension file registers

(a) Device number range


Range: 0 through [(the number of usable blocks x 8192) - 1]

10 – 55


The device numbers that can be designated vary according to the type of memory cassette and the PC CPU parameter setting. (The UTLP-FN1 Operating Manual or the A2A(S1)/A3A CPU User's Manual give details.)

For block numbers that do not exist in the memory cassette, device numbers are not allocated. In this case, the device numbers are allocated as indicated below, skipping non-existent block numbers.

(b) A device number is designated in 7 characters.

```
Designation example 1:
To designate R10 in block number 1:
```


0008200 +

A blank code (20H) can be used to express leading zeros (the underlined 0s in <u>000</u>8200).

POINTS

 The AnACPU dedicated commands NR and NW can only be used for read/write operations at the extension file registers of block numbers 1 to 256.

They can be used regardless of the parameter's file register setting.

- (2) Use the commands described in Section 10.8.1 to access the parameter set file registers (R) or to access a file register by designating a block number.
- (3) The following equation is used to calculate the head device number to be designated with the AnACPU dedicated commands NR and NW. (To designate device number "m" (0 to 8191) in the "n"th block (n ≥ 1))

Head device number = $(n-1) \times 8192 + m$

REMARK

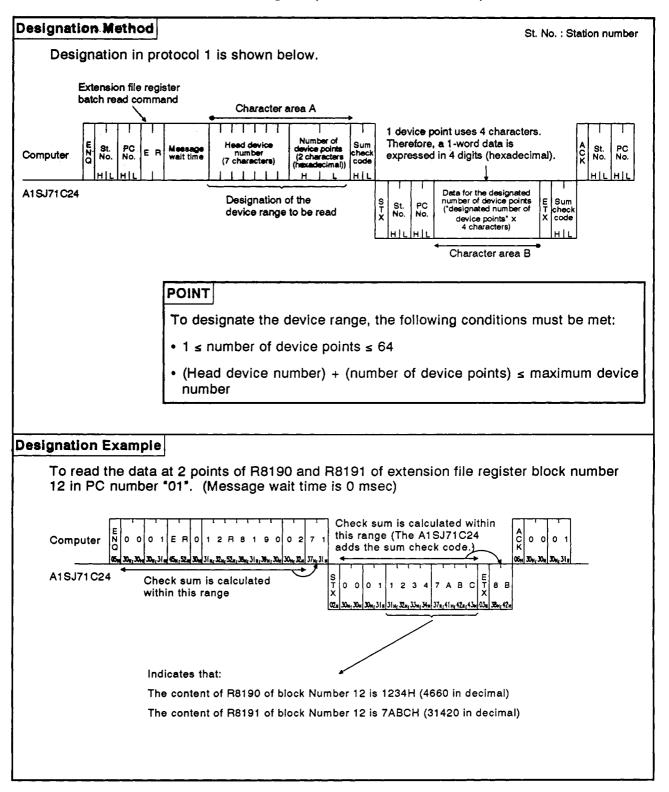
The range of device numbers (up to the 28th block) that can be designated with the NR or NW commands is shown below.

Device No.	Objectiv	ve Block	Device No.	Objecti	ve Block
0 to 8191	1st block	R0 to R8191	114688 to 122879	15th block	R0 to R8191
8192 to 16383	2nd block	R0 to R8191	122880 to 131071	16th block	R0 to R8191
16384 to 24575	3rd block	R0 to R8191	131072 to 139263	17th block	R0 to R8191
24576 to 32767	4th block	R0 to R8191	139264 to 147455	18th block	R0 to R8191
32768 to 40959	5th block	R0 to R8191	147456 to 155647	19th block	R0 to R8191
40960 to 49151	6th block	R0 to R8191	155648 to 163839	20th block	R0 to R8191
49152 to 57343	7th block	R0 to R8191	163840 to 172031	21st block	R0 to R8191
57344 to 65535	8th block	R0 to R8191	172032 to 180223	22nd block	R0 to R8191
65536 to 73727	9th block	R0 to R8191	180224 to 188415	23rd block	R0 to R8191
73728 to 81919	10th block	R0 to R8191	188416 to 196607	24th block	R0 to R8191
81920 to 90111	11th block	R0 to R8191	196608 to 204799	25th block	R0 to R8191
90112 to 98303	12th block	R0 to R8191	204800 to 212991	26th block	R0 to R8191
98304 to 106495	13th block	R0 to R8191	212992 to 221183	27th block	R0 to R8191
106496 to 114687	14th block	R0 to R8191	221184 to 229375	28th block	R0 to R8191

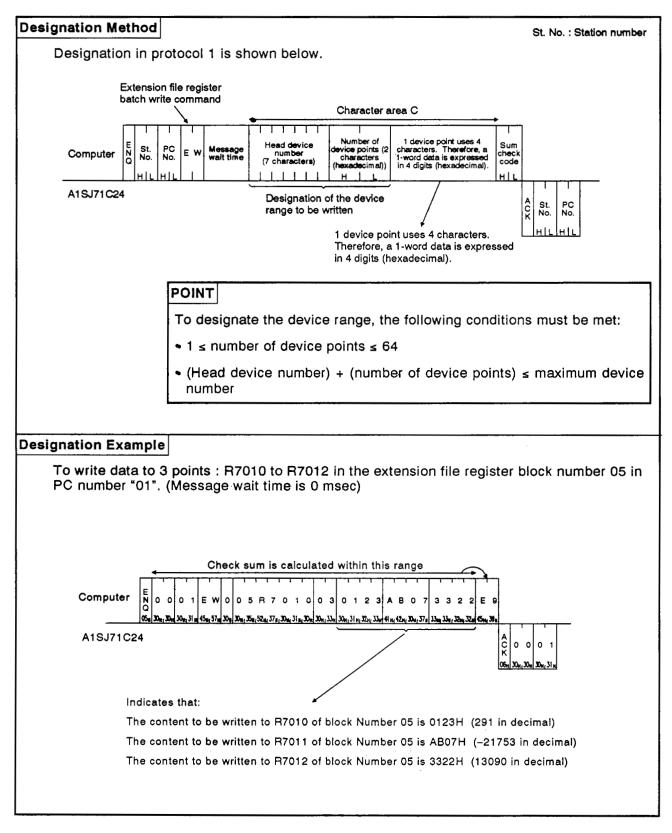
10.8.3 Precautions during extension file register read/write

(1) The extension file register is not used by A1 and A1NCPU.

This function is not available during communications between A1 or A1NCPU and the PC CPU.

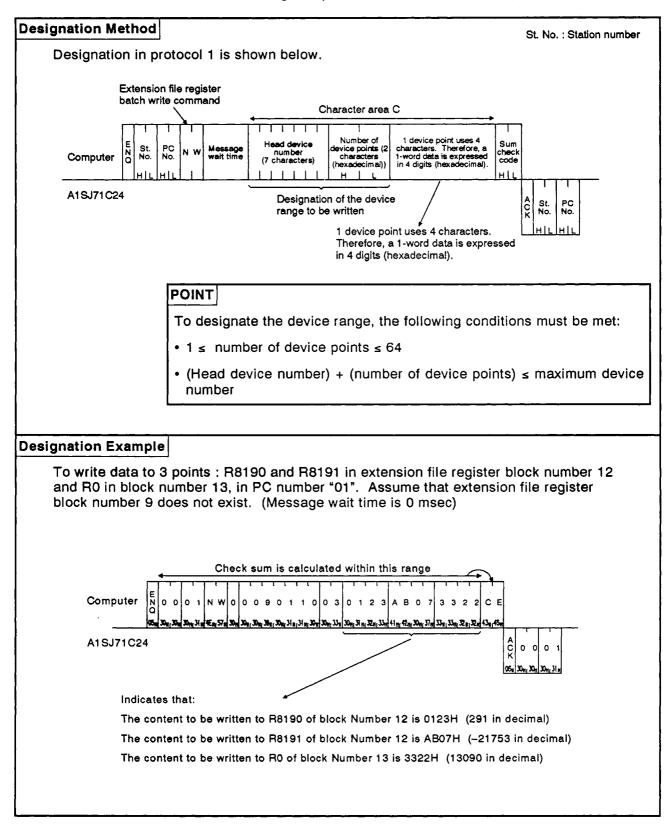

(2) Some types of memory cassette loaded to the PC CPU are unable to detect an error (character area error 06H) if an attempt is made to read or write after specifying a block number which does not exist. In this case, data which is read may not be correct and writing such incorrect data may destroy the PC CPU user memory.

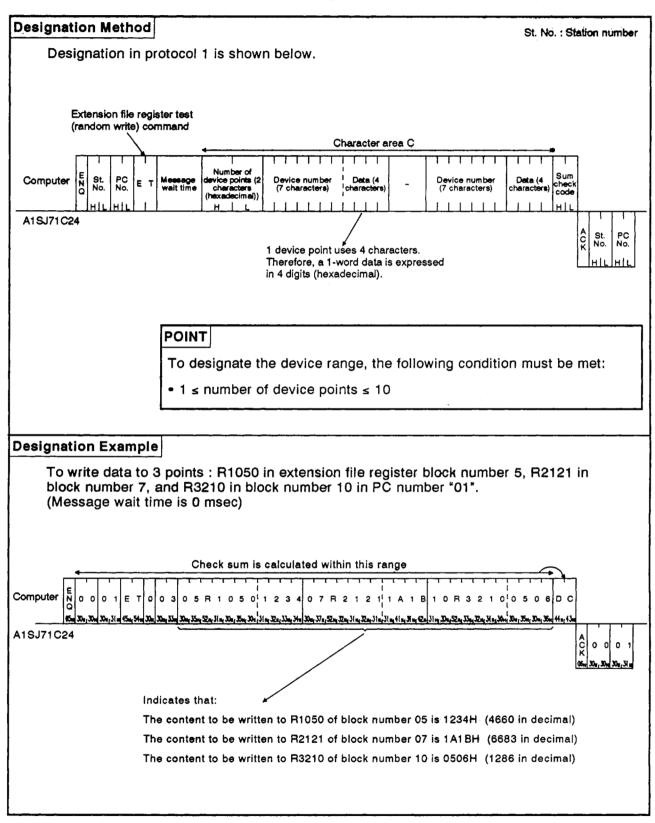
Always check the type of memory cassette and the parameter settings before using this function.


Type of Memory Cassette	Block Numbers Which do not Cause a Character Area Error (06H)						
	A0J2H, A2, A3CPU	A2NCPU, A3NCPU	Азн, А2А (S1) Азасри				
A3NMCA-12		No. 10, No. 11					
A3NMCA-18	_	No. 10 to	o No. 28				
A3NMCA-24		No. 13 to No. 20	No. 13 to No. 28				
A3NMCA-40	-	No. 21 to No. 28					

The UTLP-FN1 Operating Manual or the A2A(S1)/A3ACPU User's Manual give details.

10.8.4 Batch read of the extension file register (ACPU common command)


10.8.5 Batch write of the extension file register (ACPU common command)


Designation Method St. No. : Station number Designation in protocol 1 is shown below. Extension file register batch read command Character area A Т Т Т 1 device point uses 4 characters. Number Head device number (7 characters) device points (2 characters (hexadecide) 8u Therefore, a 1-word data is St. No. PC No. Message wait time St. No. PC No. ŝ Ň Computer N expressed in 4 digits (hexadecimal). checi code xadecimal)) 1 н Data for the designated number of device points (*designated number of device points* x 4 characters) A1SJ71C24 Designation of the Sum check code STX ETX St. No. PC No. device range to be read Character area B POINT To designate the device range, the following conditions must be met: 1 ≤ number of device points ≤ 64 (Head device number) + (number of device points) ≤ maximum device number **Designation Example** To read the data at points of R8190 and R8191 of extension file register block number 2 in PC number "01". (Message wait time is 0 msec) Check sum is calculated within E N C this range (The A1SJ71C24 A C K Computer 0 C 0 N B 0 0 0 1 6 3 8 0 2 5 7 2 0 0 0 adds the sum check code.) 30.,3 €., 52a 30a, 30a, 31a, 35a, 33a, 3 A1SJ71C24 STX Check sum is calculated 0 0 0 1 2 3 4 7 A B C 8 8 within this range 02, 30, 30 30...31 31 H1 32H1 33H1 34H 37H1 41H1 42H1 43 Indicates that: The content of R8190 of block Number 2 is 1234H (4660 in decimal) The content of R8191 of block Number 2 is 7ABCH (31420 in decimal)

10.8.6 Direct read of the extension file register (AnACPU dedicated command)

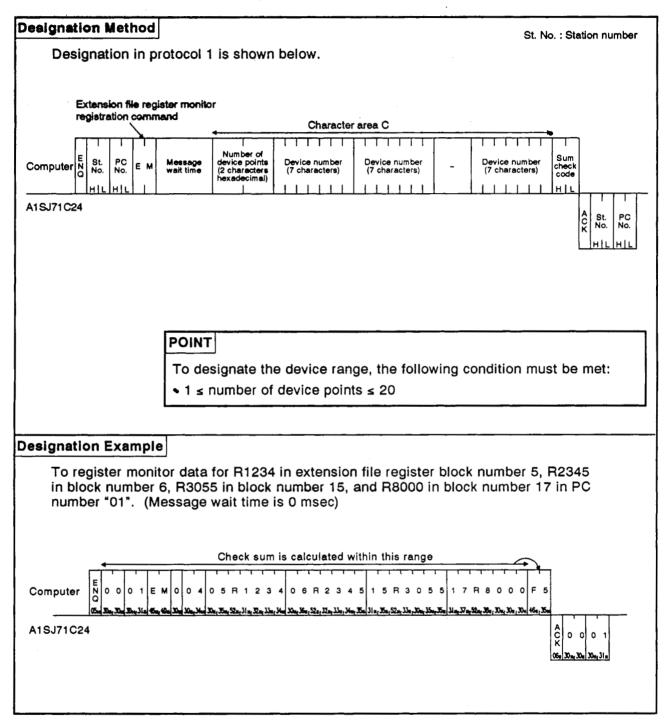
10.8.7 Direct write to the extension file register (AnACPU dedicated command)

10.8.8 Testing (random write) the extension file register (ACPU common command)

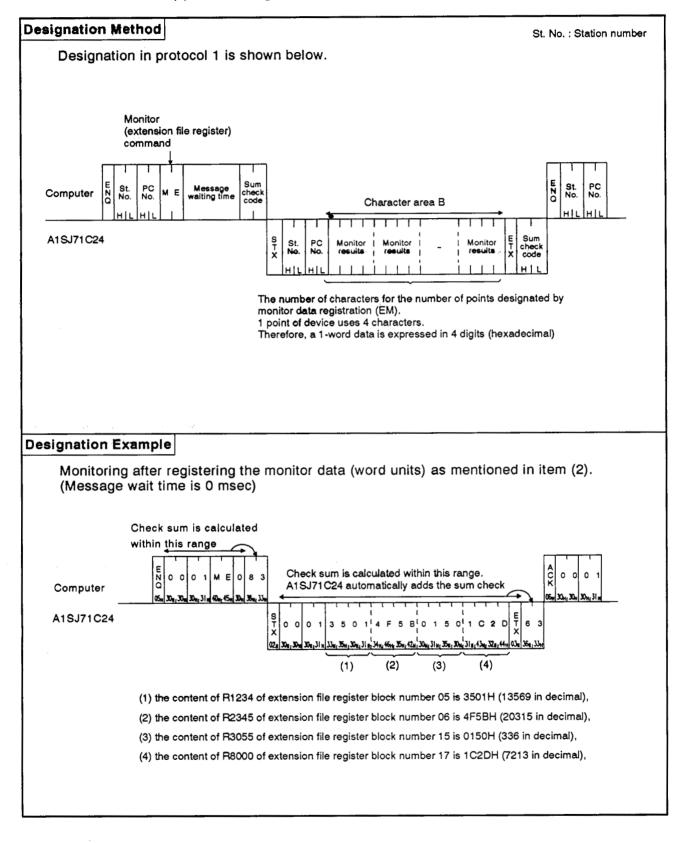
10.8.9 Monitoring the extension file register

Monitor data registration is the function that registers the name and the number of the device to be monitored by the computer to the A1SJ71C24. The monitor is the function that (a) reads the data content of the device registered at the time the monitor read command is executed by the computer, and (b) executes the corresponding processing such as monitoring.

The device numbers must be consecutive when the device is read using the batch read (ER) or direct read (NR) command. However, when this function is used, it is possible to read and monitor the devices by designating the device numbers at random.


- Monitor Editing EM command and transmitting device designation Read processing (Executing ME commands) Data processing (CRT display, etc.) NO Change monitor device? YES
- (1) Control procedure for monitoring

POINTS


- (1) As the flowchart shows, monitor data registration must be executed before monitoring. Attempting to execute monitoring without registering the monitor data will cause a protocol error.
- (2) The contents registered in monitor data registration are cleared when the power supply is turned OFF or the PC CPU is reset.
- (3) For monitor registration, five types of registration are possible. They are device memory in bit units (BM or JM), device memory in word units (WM or QM) and the extension file register (EM).

MELSEC-A

(2) Registering Monitor data of the extension file register (ACPU common command)

(3) Monitoring the extension file register (ACPU common command)

10.9 Buffer Memory Read and Write

This function is used to read from and write to the A1SJ71C24 buffer memory. When this function is used, communications between the computer and A1SJ71C24 commences immediately when the computer sends a read or write request, without waiting for the PC CPU END processing. Therefore, the time T1, described in Section 10.5, is always equal to zero. The PC CPU carries out buffer memory read and write using TO and FROM instructions.

The method for specifying the control protocol, meanings, and examples for carrying out this function are shown below.

10.9.1 Commands and buffer memory

	Command			Number of	State of PC CPU			Access	Access
item		ASCII Processing Processed per Communica-	During	During RUN			to PC CPU in		
	Symbol Code		Communica- tions	STOP	SW04 ON	SW04 OFF		Data Llink	
Batch read	СЯ	43H, 52H	Reads from buffer memory.	64 words				0	0
Batch write	cw	43H, 57H	Writes to buffer memory.	(128 bytes)	0	0	0	o	o

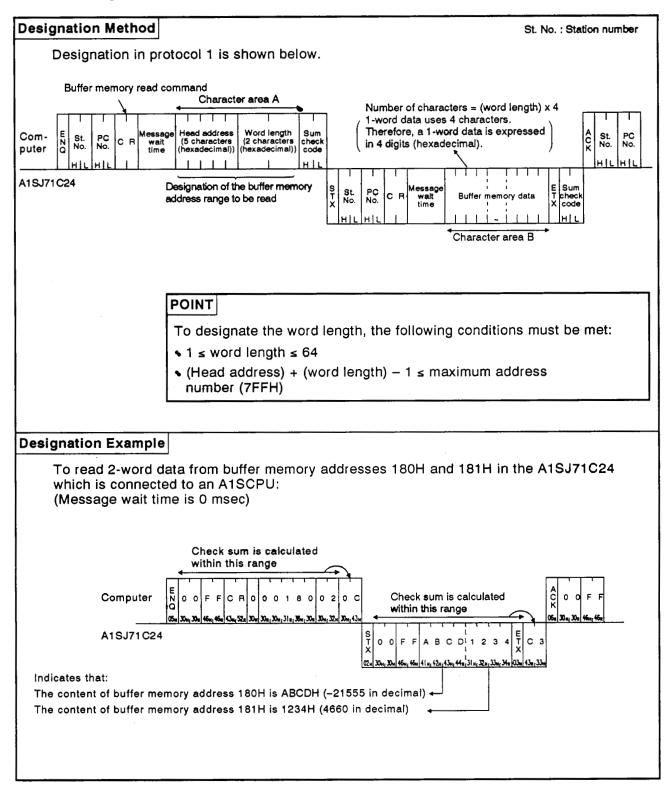
(1) ACPU common commands

Note : o Executable

(2) Buffer memory

Buffer memory addresses are 0H to 7FFH see (see Section 5.4).

One address consists of 1 word (16 bits).


Read and write are both executed in word units, regardless of the word/byte unit setting.

POINT

Buffer addresses 100H to 11FH comprise the special applications area. The A1SJ71C24 will not operate correctly if any operations other than those described in the following sections are executed.

MELSEC-A

10.9.2 Reading data from buffer memory (ACPU common command)

MELSEC-A

10.9.3 Writing data to buffer memory (ACPU common command)

Designation Method	
Designation in p	otocol 1 is shown below.
Write to buffer	memory command Character area C
Computer N No. No.	Wessage wait time Head address (5 characters) Word length (2 characters) Data to be written to buffer memory 1 Sum 1 Sum 1 W Message (hexadecimal)) I
Мисинс	
A1SJ71C24	Designation of the buffer memory address range where data is to be written
	Number of characters = (word length) × 4. (1-word data uses 4 characters. Therefore, a 1-word data is expressed in 4 digits (hexadecimal).
	POINT
	To designate the word length, the following conditions must be met:
	• 1 \leq word length \leq 64
	(Head address) + (word length) – 1 ≤ maximum address number (7FFH)
Designation Example	
To write 3-word o connected to an (Message wait tir	
	Check sum is calculated within this range
c	Computer $\begin{vmatrix} E \\ O \\ O \\ C
Indicates that:	K 0544 3041 3041 4544 4644 464
	al) is written to buffer memory address 3A0H
	is written to buffer memory address 3A1H
oros⊓ (20005 in decimal)	is written to buffer memory address 3A2H <

- MELSEC-A

10.10 Special Function Module Buffer Memory Read and Write

10.10.1 Commands and designation

(1) ACPU common commands

	Command			Number	State	of PC (CPU		Access
ltem	Svm- ASCII Processed pe	Processing	Points	During	During RUN		Access to	PCCPU	
		Communications	During STOP	SW04 ON	SW04 OFF	A1SCPU	Data Link		
Batch read	TR	54H, 52H	Reads from special func- tion module buffer memory.	64 words	0	0	0	o	o
Batch write	тw	54H, 57H	Writes to special function module buffer memory.	(128 bytes)	0	0	×	o	o

Note : o Executable x Not executable

(2) Linkable special function modules, buffer memory head address, and module numbers

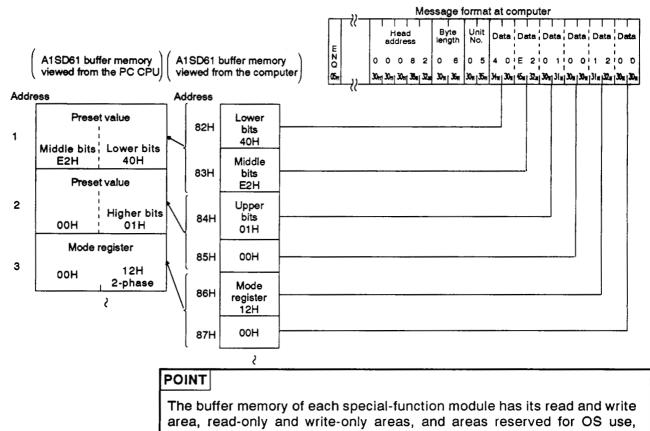
Special-function Module	Head Buffer Address (hexadecimal)	Module No. When Loaded in Slot 0
A1SD61 high-speed counter module	80H	01H
A1S62DA digital-analog converter module	10H	01H
A1S62RD3/4 temperature-digital converter module	10H	01H
A1S64AD analog-digital converter module	80H	01H
A1SJ71C24-R2 computer link module	400H	01H
A1SJ71C24-PRF computer link/printer function module	400H	01H
A1SJ71C24-R4 computer link/multidrop link module	400H	01H

(3) Special-function module buffer memory

The special-function module buffer memory is comprised of 16-bit (one word) addresses. Read and write of the special-function module buffer memory is executed by TO and FROM instructions transmitted between the PC CPU and special-function module.

When the computer reads from and writes to the special-function module buffer memory via the A1SJ71C24, it is done in byte units (1 address = 8 bits).

The addresses specified in the computer (hexadecimal) are converted from FROM/TO instruction addresses as shown below:


Designated address (hexadecimal) = Module head address + [(FROM/TO instruction address × 2) converted into hexadecimal]

Example: To designate A1SD61 high-speed counter module FROM/TO instruction address 1 (CH.1 preset value).

 Specified address
 =
 FROM/TO instruction address 1 × 2
 +
 Head address

 82H
 2H
 80H

The data format when the computer makes a read or write to or from the special-function module buffer memory via the A1SJ71C24, is explained below using the A1SD61 module as an example.

which are not available to the use. See the manual for each module before using the buffer memory.PC CPU or special-function module errors may occur if reading or writing

1

is not done correctly.

MELSEC-A

10.10.2 Special function module numbers using control protocols

The special function module numbers designated by using control (4) protocols are the upper 2 digits of the last special function module I/O address expressed in 3 digits.

Special function module nu									number	
·	Special function module number: 07H									
Power supply module	PC CPU module	Input	Output	Input	Output	Special function module	input	Special function module	Output	
		16 points	32 points	32 points	16 points	32 points	16 points	32 points	32 points	
<u> </u>		00 to 0F	10 to 2F	30 to 4F	50 to 5F	60 to 7F	80 to 8F	90 to AF	80 to CF	
_	1	r	٦							
Power supply module	Input	Output								
	16 points	32 points								
	D0 toDF	E0 toFF	-							

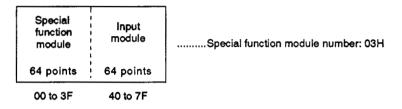
(5) Precautions with special function modules occupying two slots

For special function modules occupying two slots, the number of points occupied by each slot is fixed for each module. The special function module number is the upper 2 digits of the last address of the slot allocated to the special function module.

The User's Manual for each special function module gives details about the allocation of slots to each module.

(a) Modules with the front slot allocated as the vacant slot (AD72, A84AD, etc.)

(Vacant slot)	Special function module	Special function module number: 02H
16 points	32 points	
00 to 0F	10 to 2F	


(b) Modules with the rear slot allocated as the empty slot (A61LS, etc.)

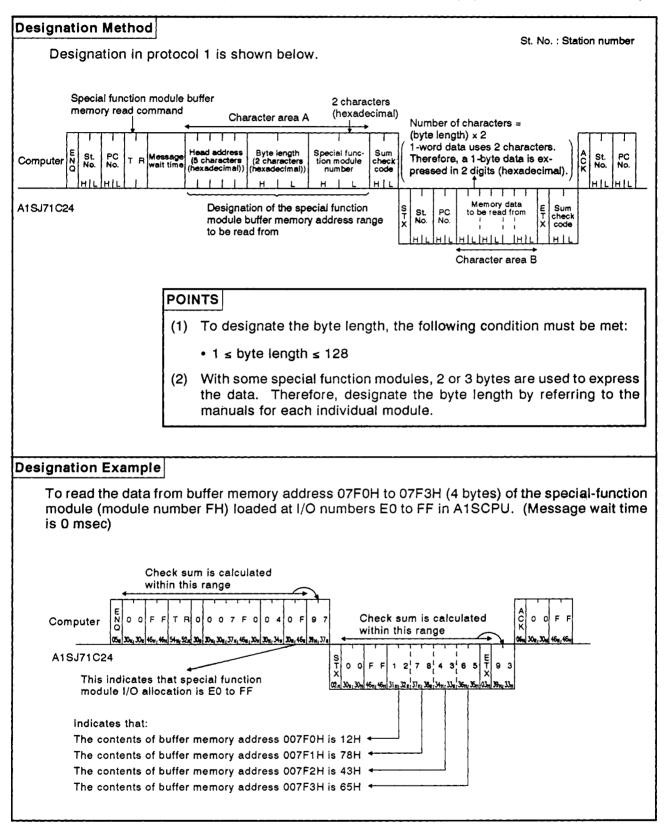
Special function module	(Vacant slot)] Spe
32 points	16 points	
00 to 1 F	20 to 2F	-

ecial function module number: 01 H

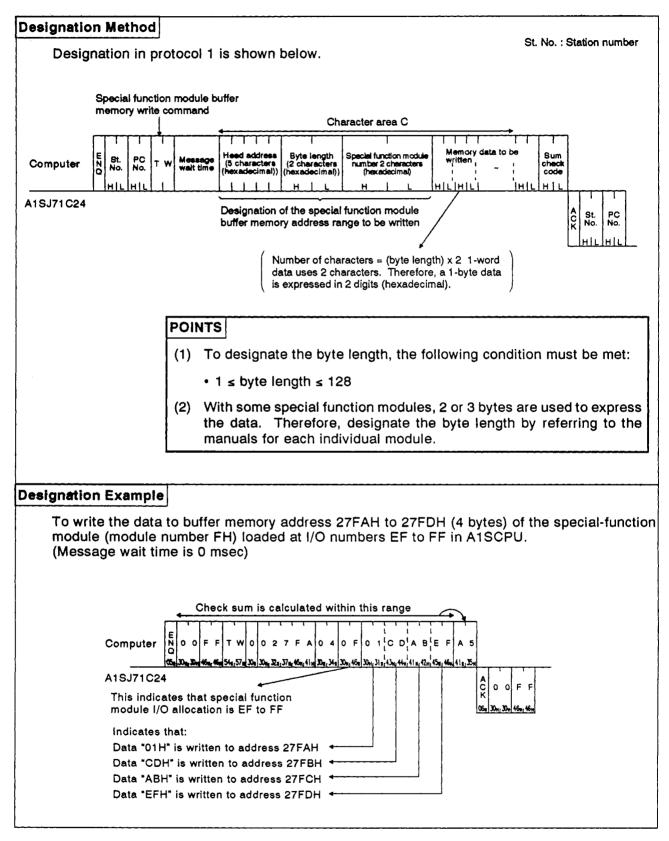
- MELSEC-A

(c) Modules with the special function module allocation and I/O allocation mixed (A81CPU, etc.)

(6) Module numbers of special-function modules at MELSECNET remote I/O stations


The module numbers of special function modules at MELSECNET remote stations are determined by link parameters setting at the MEL-SECNET master station.

L/R	M ← L		M → Ř	M ← R	M →	L/R	₩ ←	L/R
NO.	В	w	w	w	Y	X/Y	x	Y/X
R1			29C-309	0F9-15E	40048F	000-08F	430-44F	030-04F
R2			215–24F	080-0A3	510-67F	010-17F	500-65F	000–15F
R3			1B6-214	15F-1B5	270-32F	050-10F	220-28F	00006F
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-	_	-	-	-	-	-


(I/O addresses viewed from the remote station)			Y00 to 1F	Y20 to 2F	X/Y30 to 4F	Y50 to 6F	Y70 to 8F
Remote I/O station No. 1	Power supply module	AJ72P25	Output 32 points	Output	Special function module 32 points	Output 32 points	Output 32 points
	Link parameter I/O addresses		Y400 to 41F	Y420 to 42F	X/Y430 to 44F	Y450 to 46F	Y470 to 48F

Special function module number H44

10.10.3 Reading data from the special-function module buffer memory (ACPU common command)

10.10.4 Writing deta to the special function module buffer memory (ACPU common command)

MELSEC-A

10.11 Remote Run/Stop of PC CPU and Reading PC CPU Model Name

10.11.1 Commands

Command				State of PC C		Access		
ltem		ASCII	Processing	During	Durin	g RUN	Access to A1SCPU	to PC CPU in Data Link
	Symbol	Code		STOP	SW04 ON	SW04 OFF		
Remote RUN	RR	52H, 52H	Requests remote RUN of PC CPU.	o	o	0	0	o
Remote STOP	RS	52H, 53H	Requests remote STOP of PC CPU.	0	o	0	0	0
PC CPU modle mode	PC	50H, 43H	Reads if the PC CPU is model A1N, A2N, A3N, A3H or AJ72P25/R25.	o	o	o	٥	o

Note : o..... Executable

10.11.2 Remote RUN/STOP

- (1) Remote RUN/STOP control
 - (a) RUN, STOP, PAUSE and STEP-RUN states are produced by the following combinations of PC CPU key switch positions and computer commands.

MELSEC-/

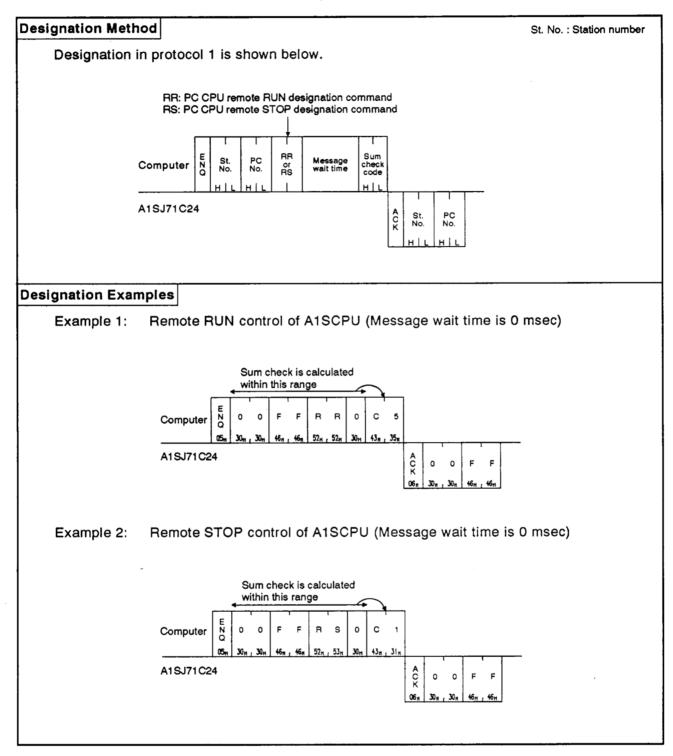
			PC CPU Key Switch Position				
		RUN	STOP	PAUSE	STEP-RUN		
Command from computer	Remote RUN	RUN	STOP	PAUSE	STEP-RUN		
	Remote STOP	STOP	STOP	STOP	STOP		

REMARKS

- (a) When a PC CPU is stopped by the remote STOP command given by an external computer, that PC CPU cannot be put into the RUN state by the computer connected to the PC CPU.
- (b) The clearing of data memories on receiving a remote RUN instruction depends on the states of special relays M9016 and M9017 as shown below.

Specia	al Relay	Data Mamanu Gtata
M9016	M9017	Data Memory State
OFF	OFF	PC CPU enters the RUN state without clearing remote STOP data.
OFF	ON	Remote STOP data is cleared outside the latch range set in parameters. (In this case, Link X image is not cleared.)
ON	ON/OFF	PC CPU enters the RUN state after data memory is cleared.

REMARK

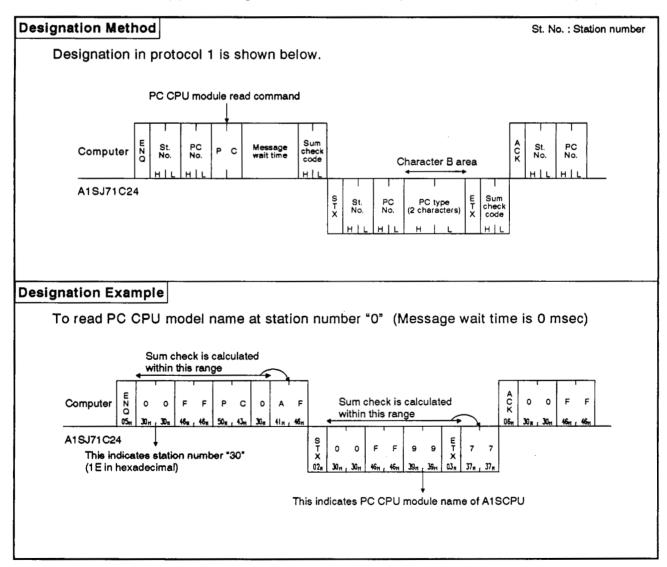

Always reset special relays M9016 and M9017 when data memory clearing is not required.

POINT

After operations remote RUN/STOP control from the computer are completed, the remote data will be lost if the power supply is turned OFF or the PC CPU is reset.

MELSEC-A

(2) Remote RUN/STOP designations and designation examples (ACPU common command)



10.11.3 Reading PC CPU model name

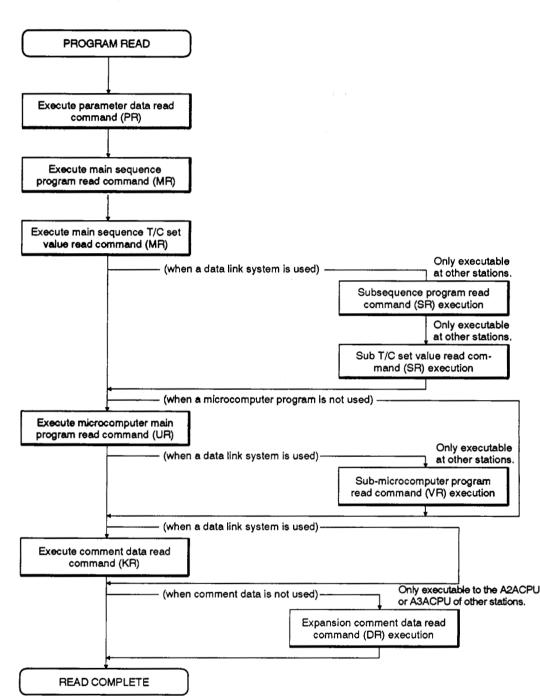
(1)	PC CPU	model	name	and	corresponding	codes
-----	--------	-------	------	-----	---------------	-------

PC CPU Model Name	Code To Be Read (Hexadecimal)	PC CPU Model Name	Code To Be Read (Hexadecimal)	
A0J2HCPU	98H	A3CPU, A3NCPU	АЗН	
A1CPU, A1NCPU	A1H	A3ACPU	94H	
A2CPU(-S1), A2NCPU(-S1)	A2H	АЗНСРИ, АЗМСРИ	A4H	
A2ACPU	92H	A73CPU	АЗН	
A2ACPU-S1	93H	AJ72P25/R25	АВН	
A1SCPU	98H	A2CCPU	ЭАН	

(2) Reading PC CPU model name (ACPU common commands)

10.12 Program Read/Write

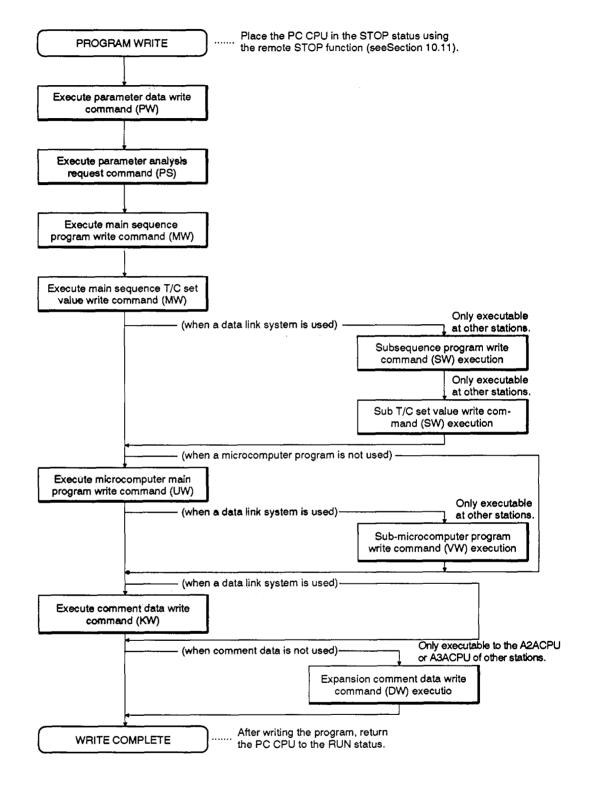
This function is used to transfer all types of programs (main and subsequence programs, microcomputer main and sub programs), parameters and comment data from the PC CPU and store them in the computer. The computer then carries out the appropriate controls by writing programs, parameters, and comment data to the PC CPU.


10.12.1 Precautions during program read/write

(1) When reading programs that have been written to the PC CPU, read all sequence programs, microcomputer programs, parameter data, and comment data from all areas.

When writing programs, write all stored data to the PC CPU. If all areas have not been written to, the PC CPU will not work correctly.

- (2) Before writing programs, write parameter data and execute a parameter analysis request. Otherwise, the parameters in the PC CPU user memory will be changed but the parameters stored in the work area by the ACPU for operation will remain unchanged. Therefore, if a peripheral device is loaded and operated after the parameters are changed, processing will be carried out with the previous parameters, which are still stored in the work area.
- (3) The number of points which can be processed per communications is fixed. When reading or writing data, divide the data into several groups to read or write the entire area. Parameter data should be divided into 3K bytes. Other data shoule be divided into units of data determined by parameter setting.


10.12.2 Program read/write control procedures

τ.

(1) Reading

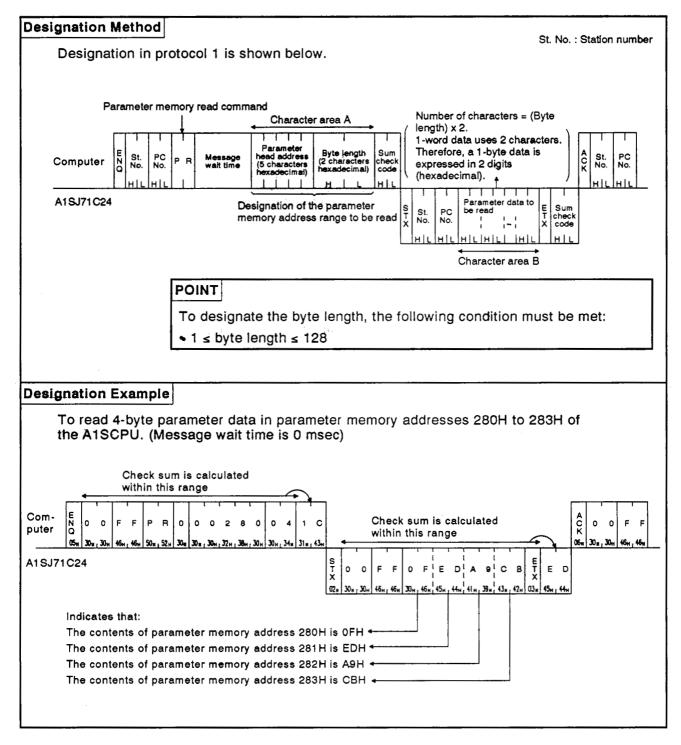
(2) Writing

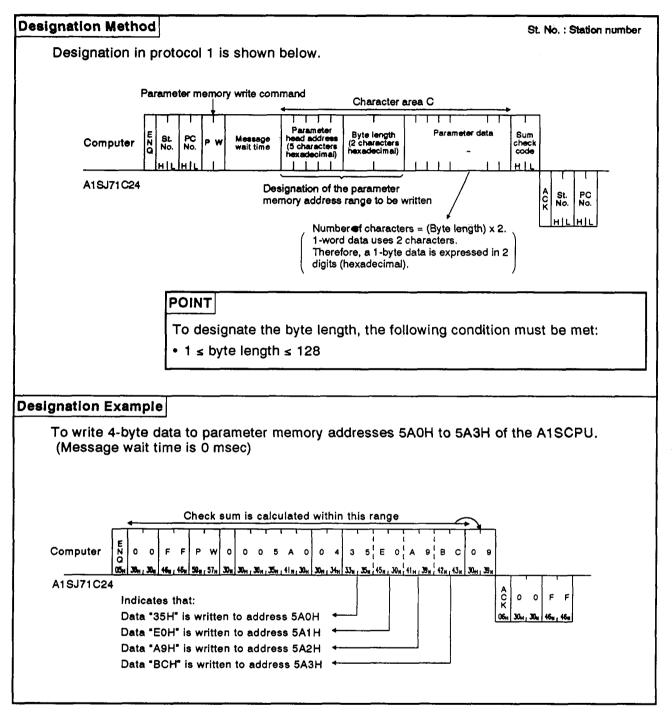
10.12.3 Parameter memory read/write

- (1) Commands and addresses
 - (a) ACPU common commands

Comman		mand		Number of PC		CPU State			Access
ltem		Processing	Points Processed		During RUN		Access to	to PC CPU in	
	Symbol	ASCII code			During STOP	SW04 ON	SW04 OFF	AISCPU	Data Link
Batch read	PR	50H, 52H	Reads parameters.	128 bytes	0	o	٥	0	o
Batch write	PW	50H, 57H	Writes parameters.	120 Dytes	0	x	x	0	o
Analysis request	PS	50H, 53H	Causes the PC CPU to acknow- ledge and check rewritten parameters.		o	x	x	o	o

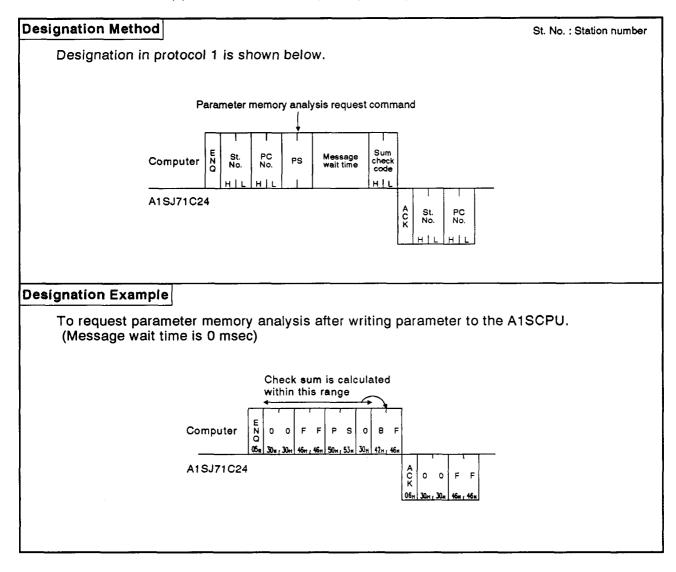
(b) Parameter addresses


There are 3K bytes of parameter memory, addresses 00000H to 00BFFH. For addresses, use 5-digit ASCII (hexadecimal).


POINT

After changing parameters, always call the parameter analysis request command (PS).

If this is not done, the parameters in PC CPU user memory will be changed but the parameters stored in the work area by the ACPU for operation will remain unchanged. Therefore, if a peripheral device is loaded and operated after the parameters are changed, processing will be executed with the previous parameters, which are still stored in the work area.


(2) Parameter memory batch read (ACPU common command)

(3) Parameter memory batch write (ACPU common command)

(4) Parameter memory analysis request (ACPU common command)

10.12.4 Sequence program read/write

(1) Commands and step allocation

(a)	ACPU	common	commands
-----	------	--------	----------

ltem		Com	mand		Number of	PC CPU State		Access	Access to PC CPU in														
			Processing	Points	During	During RUN																	
			Symbol	ASCII Code		Communication		SW04 ON	SW04 OFF	A1SCPU	Data Link												
		Except T/C set value			Reads main se- quence program.	64 steps			o	o													
Batch	Main	T/C set value	MR	4DH, 52H	Reads T/C set values used in main se- quence programs.	64 points	•	o			0												
read		Except T/C set value	SR				5011	Reads subsequence program.	64 steps														
	Sub	T/C set value		53H, 52H	Reads T/C set values used in subsequence programs.	64 points	0	0	•	×	0												
		Except T/C set value															Writes main se- quence program.	64 steps	o	o *	×		
Batch	Main	T/C set value	MW	4DH, 57H	Writes T/C set values used in main se- quence programs.	64 points	0	o	×	•	0												
write		Except T/C set value		5011	Writes subsequence program.	64 step s	0 0	٥*	×	×	o												
	Sub T/C set value		sw	L L	Writes T/C set values used in subsequence programs.	64 points		o	×														

Note : o.....Executable

xNot executable

- * Writing during a program run may be executed if all the following conditions are met:
- 1) The PC CPU is A3, A3N, A3H, A3M, A73, or A3A.
- The program is not the currently running program (indicates a subprogram called by the main program, if the main program is being run).
- 3) The PC CPU special relay is in the following state:
 - i) M9050 (signal flow conversion contact).....OFF (A3CPU only)
 - ii) M9051 (CHG instruction disable).....ON

POINT

When reading or writing the timer/counter setting values using the sequence program read/write command, range designations of T0 to T255 or C0 to C255 are possible.

Extended ranges of T256 to T2047 and C256 to T1023 for AnA CPU should be used for storing the setting values; read or write the set values using the batch read/write command for devices (D, W, R) allocated by parameter setting.

(b) Designating the head address

The division between sequence programs and T/C set values, and their addresses in 4-digit ASCII are shown in the table below.

Example:

To read the set values T0 to T63

Head address = FE00H Command = MR

Sequence Program	Designated Step for Protocol		
T0 set value	FE00H		
T1 set value to T255 set value	FE01H to FEFFH		
C0 set value	FF00H		
C1 set value to C255 set value	FF01H to FFFFH		
Step 0	0000H		
Step 1 to Step 30718 (30K)	0001H to 77FEH		

Calculation of designated step

Timer	: Tm =	FE00H + n
Counter	: Cm =	FF00H + n
where,	m =	device number
	n =	hexadecimal value of device number

(c) Meaning of T/C set values

T/C set values are stored as hexadecimal values as shown in the table below.

When rewriting the PC CPU set values from the computer via the A1SJ71C24, designate the set value in 4-digit ASCII.

Example:

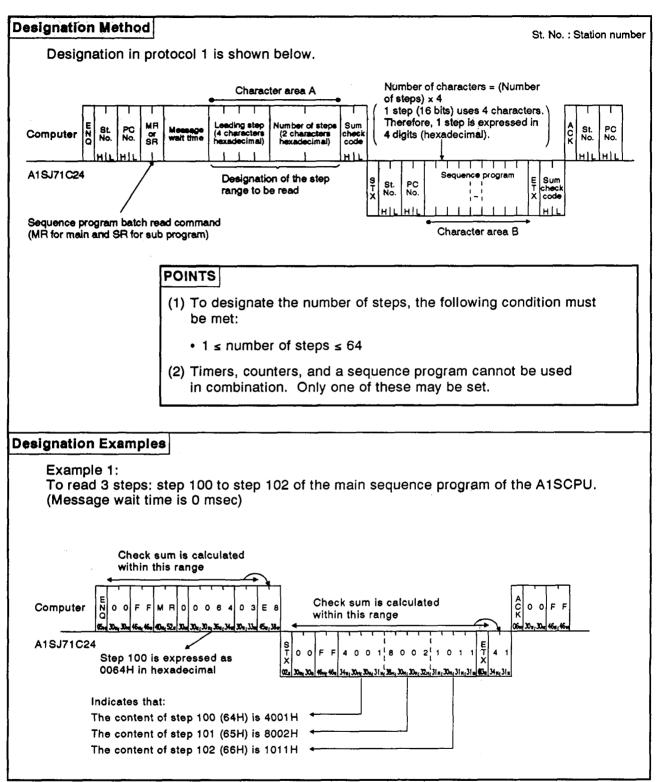
Data designated to change T10 setting value K10 to K20.....0014H Data designated to change T11 setting value D30 to D10.....800AH

Ladder Example in Program	Setting in Program	Setting in Protocol
	K0 K1 to K9 K10 to K32767	0000H 0001H to 0009H 000AH to 7FFFH
$ \xrightarrow{ P [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] [] []] } \\ \xrightarrow{ P [] [] [] [] [] [] [] []] } \\ P [] [] [] [] [] [] [] [] [] [$	D0 D1 D2 to D1023	8000H 8002H 8004H to 87FEH

hexadecimal value of device number

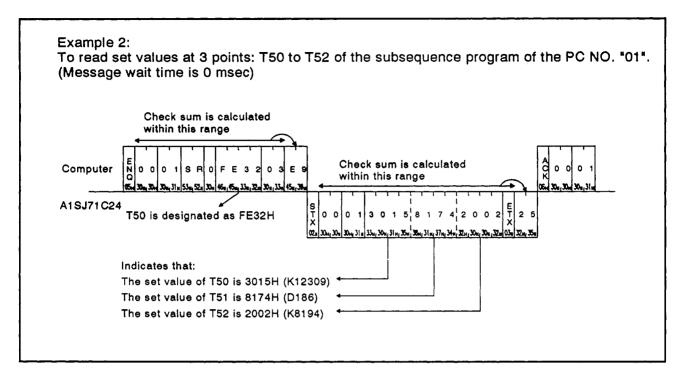
Calculation of protocol setting value

=

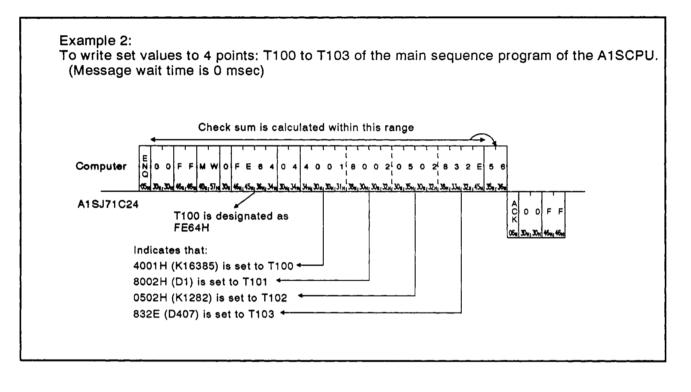

Km = 0000H + n

Dm = 8000H + 2n

where,


m = device number

n


(2) Sequence program batch read (ACPU common command)

MELSEC

Designation Method St. No. : Station number Designation in protocol 1 is shown below. Character area C Leading step (4 characters hexadecimal) М₩ Sequence program Sum Number of steps PC No. N St. No. Message wait time Computer check code (2 characters hexadecimal) sw sw - F A1SJ71C24 Designation of the step ĉ St. No. PC No. range to be write Sequence program batch write command (MW for main and SW for sub program) Number of characters = (Number of steps) $\times 4$. 1 step (16 bits) uses 4 characters. Therefore, 1 step is expressed in 4 digits (hexadecimal). POINTS (1) To designate the number of steps, the following condition must be met: 1 ≤ number of steps ≤ 64 (2) Timers, counters, and the sequence program cannot be used in combination. Only one of these may be set. **Designation Examples** Example 1: To write a program to 4 steps: step 500 to step 503 of the subsequence program of the PC NO. "01". (Message wait time is 0 msec) Check sum is calculated within this range E N Q Computer 0 0 0 s 0 0 F 0 0 5 0 F A12 A 0 5,70 A 46n 41n, 32n 41n, 30n, 35n 37n, 30n 41n 38n 34m 30m 34m 31m 30m A1SJ71C24 ĉ Step 500 is expressed as 0 0 0 01F4H in hexadecimal 06. D. **v.** n Indicates that: 1055H is written to step 500 (1F4H) + 40FAH is written to step 501 (1F5H) 2A05H is written to step 502 (1F6H) 70A8H is written to step 503 (1F7H) +

(3) Sequence program batch write (ACPU common command)

10.12.5 Microcomputer program read/write

(1) Commands and addresses

Commands and program addresses to read and write microcomputer programs are explained below:

		Command			Number of	State of PC CPU				Access
lter	m			Processing	Points Processed		During RUN		Access to A1S CPU	to PC CPU in Data Link
		Symbol	ASCII Code		per Com- munication	During STOP	SW04 ON	SW04 OFF		
Batch	Main	UR	55H, 52H	Reads microcomputer main programs.					o	0
read Sub	VR	56H, 52H	Reads microcomputer subprograms.	128 bytes	0	0	0	x	0	
Batch write Sub	Main	UW	55H, 57H	Writes microcomputer main programs.	100 histor	o			0	0
	Sub	vw	56H, 57H	Writes microcomputer subprograms.	128 bytes		o*	×	×	0

(a) ACPU common commands

Note : o...... Executable x..... Not executable

- * Writing during a program run may be executed if all the following conditions are met:
- 1) The PC CPU is A3, A3N, A3H, A3M or A73.
- 2) The program is not currently running program (indicates a subprogram called by the main program, if the main program is being run).
- 3) The PC CPU special relay is in the following state:

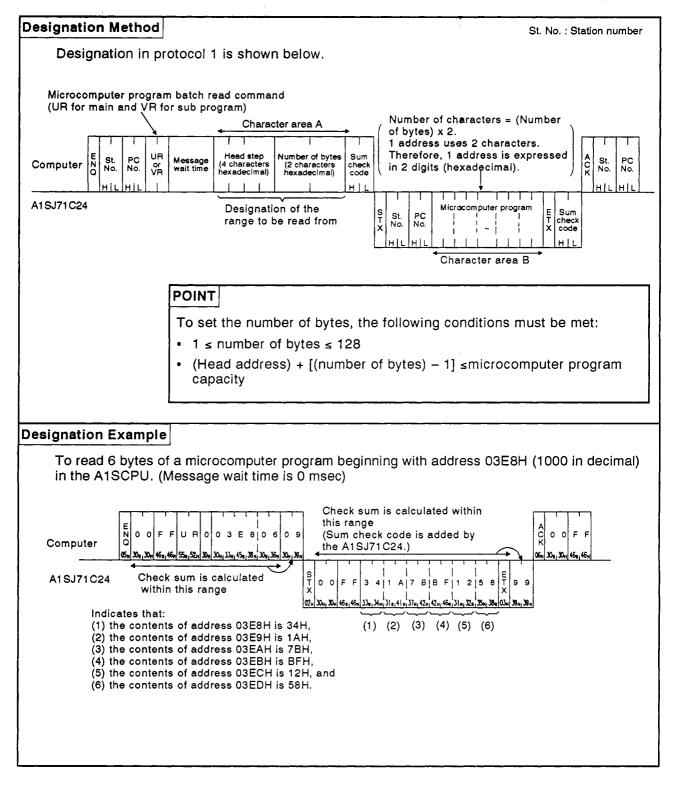
M9050 signal flow conversion contact : OFF (A3CPU only)

M9051 (CHG instruction disable) : ON

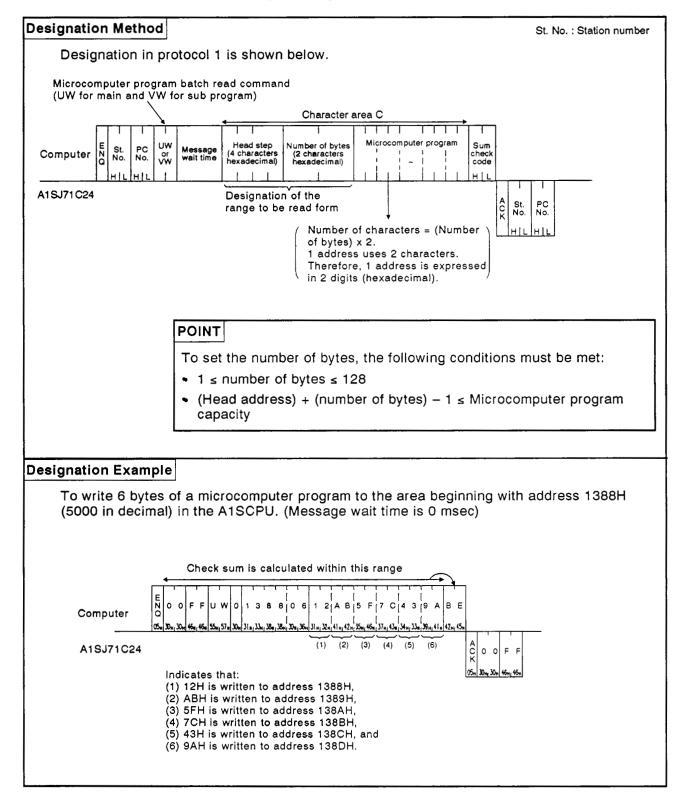
(b) Microcomputer program address

Microcomputer addresses are designated in the protocol as follows:

1) The range of addresses that can be set for each PC CPU is shown in the table on the next page.


CPU Model	Microcomputer Program Capacity	Microcomputer Program Addresses
A1SCPU A0J2HCPU A2CCPU	Max. 14K bytes	0000H to 37FEH
A1CPU A1NCPU	Max. 10K bytes	0000H to 27FEH
A2CPU(S1) A2NCPU(S1)	Max. 26K bytes	0000H to 67FEH
A3CPU A3NCPU A3HCPU A3MCPU A73CPU	Main and sub Max. 58K bytes	0000H to E7FEH

- 2) Addresses are set by converting 4-digit hexadecimals into ASCII.
- A character area error 06H occurs if the following condition is not met:


Head address + (number of bytes) – $1 \ge$ microcomputer program capacity.

MELSEC-A

(2) Microcomputer program batch read (ACPU common command)

(3) Microcomputer program batch write (ACPU common command)

10.12.6 Comment memory read/write

(1) Commands and addresses

Commands and comment data addresses to read and write comment data are explained below.

(a) ACPU common commands

	Command			Number of	State of PC CPU				
ltem	Symbol	ASCII Code	Processing	Points Processed per Com- munication	During STOP	During RUN		Access to A1S	Access to PC CPU in
						SW04 ON	SW04 OFF	CPU	Data Link
Batch read	KR	4BH, 52H	Reads from comment memory.	128 bytes	0	0	0	٥	o
Batch write	кw	4BH, 57H	Writes to comment memory.	128 bytes	0	•	x	0	0

Note : o...... Executable x..... Not executable

(b) Comment memory addresses

The area to store comment data is managed using relative addresses from the head address 00H.

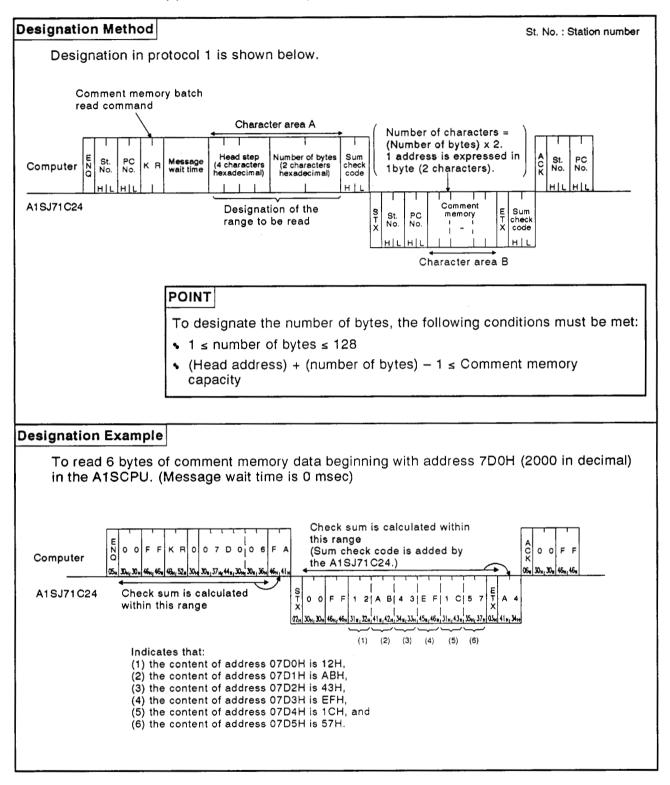
For example, for 2K bytes of parameter comments, the range in which the addresses may be specified for the head address is 00H to 7FFH.

1) Comment memory capacity is 64K bytes

The comment data address range is determined by the parameter setting.

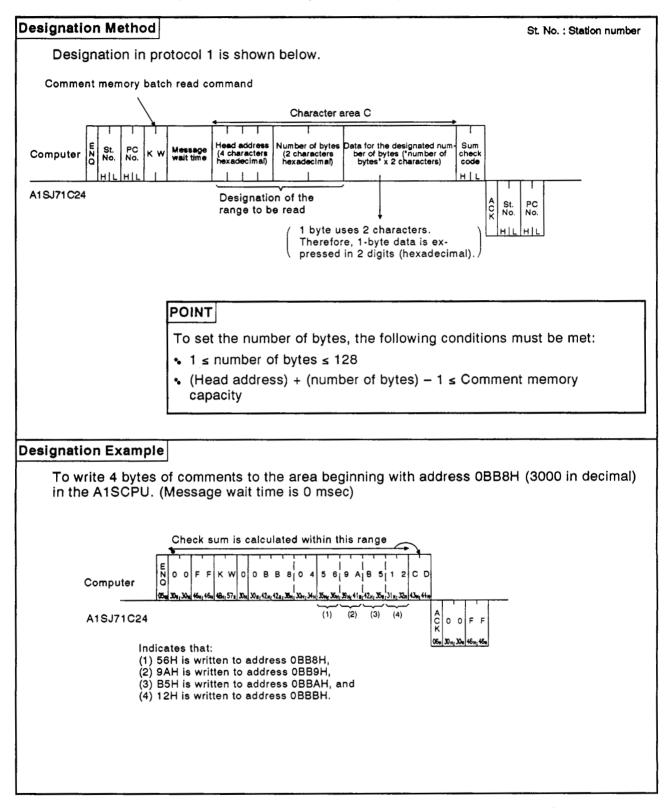
- Comment memory addresses are designated in 4-digit ASCII. (0000 to FFFF)
- A character area error 06H occurs if the following condition is not met:

Head address + designated number of bytes ≤ comment memory capacity.


POINT

It is not possible to designate a particular device or device number when reading or writing comment data.

Always read or write all data from address 0H.


MELSEC-A

(2) Comment memory batch read (ACPU common command)

MELSEC-A

(3) Comment memory batch write (ACPU common command)

10.12.7 Extension comment memory read/write

(1) Commands and addresses

(a) AnACPU dedicated commands

	Command		Number of	State	of PC (CPU		Access	
ltem	Symbol	ASCII Code	Processing	Point Processed per Com- munication	During STOP	During RUN		Access to A1S	to PC CPU in
						SW04 ON	SW04 OFF	CPU	Data Link
Batch read	DR	44H, 52H	Reads from the exten- sion comment memory.	128 bytes	0	o	o	x	o
Batch write	DW	44H, 57H	Writes to the extension comment memory.	128 bytes	0	o	x	x	o

Note : o...... Executable x...... Not executable

(b) Extension comment memory addresses

The extension comment data storage area is managed in relative addresses with the head address 00H.

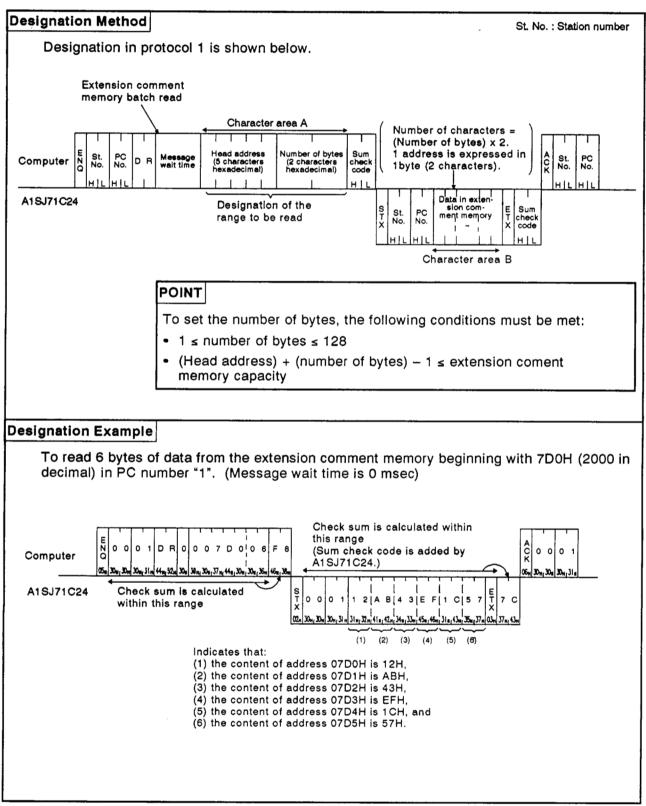
For example, the range that can be set to the head address for an extension comment memory of 3K bytes is 00H to BFFH.

1) The maximum extension comment memory area is 64K bytes.

The address range for the extension comment data is determined in accordance with the paraemter set capacity.

- Designation of the extension comment memory address is made by converting 5-digit hexadecimal into ASCII code (00000 to 0FBFF).
- A character error "06H" occurs if the extension comment memory capacity is not equal to or greater than [head address + (set number of bytes - 1)].

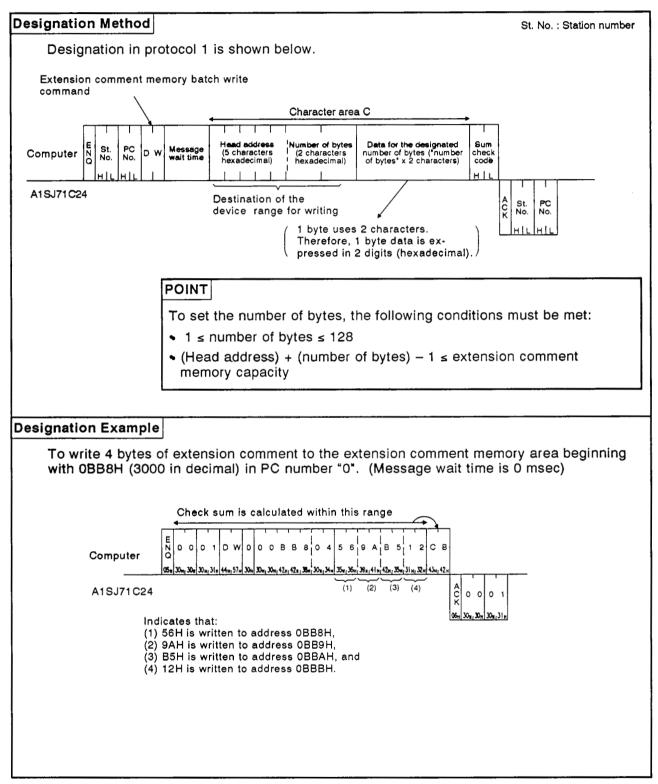
POINT


Reading or writing extension comment data by designating specific devices or device numbers is not possible.

Always read or write extension comment data beginning with address OH.

MELSEC-A

(2) Extension comment memory batch read


Batch read of the extension comment memory using an AnACPU dedicated command is shown below.

MELSEC-A

(3) Extension comment memory batch write

Batch write of data to the extension comment memory using an AnACPU dedicated command is shown below.

10.13 Global Function

The global function is used to switch the Xn2 input signal at each A1SJ71C24 in all stations connected to the computer by the multidrop link.

This function is used for emergency instructions simultaneous start, etc., to the A1SCPU.

10.13.1 Commands and control

(1) ACPU common commands

ltem	Сог	nmand		State	of PC CPU			Access
	Symbol	ASCII Code	Processing		During	RUN	Access to A1S	to PC CPU in
			•	During STOP	SW04 ON	SW04 OFF	CPU	Data Link
Global	GW	47H, 57H	Turns ON/OFF Xn2 of the AJ71C24 loaded in each PC CPU system.	0	0	0	0	×

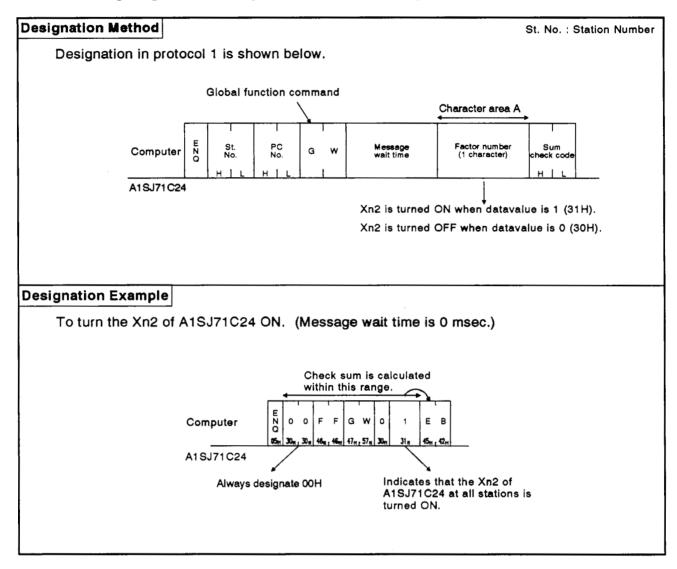
Note : o Executable

(2) Control

This function switches the Xn2 input signal at each A1SJ71C24 in all stations linked to the computer.

(a) Xn2 is determined by the I/O addresses of the A1SJ71C24s.

Example: If the I/O addresses are 90 to AF, Xn2 is X92.

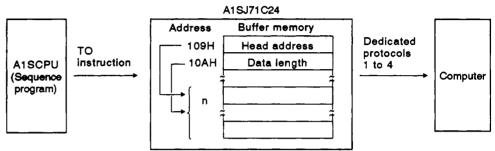

(b) Designate the station number in the control protocol as 00H.

Designating a number other than 00H causes the Xn2 of the A1SJ71C24 at the designated station number to turn ON/OFF.

- (c) This function is a command from the computer. A reply is not given by the A1SJ71C24.
- (d) Xn2 is cleared from any station when the power supply to the station is turned OFF or when the CPU or the station is reset.

MELSEC-A

10.13.2 Setting the global function (ACPU common command)



10.14 On-demand Function

The on-demand function is used when the A1SCPU has data to transmit to the computer. In this case, the A1SCPU specifies the buffer memory area in which the data to be transmitted is stored and then starts transmission.

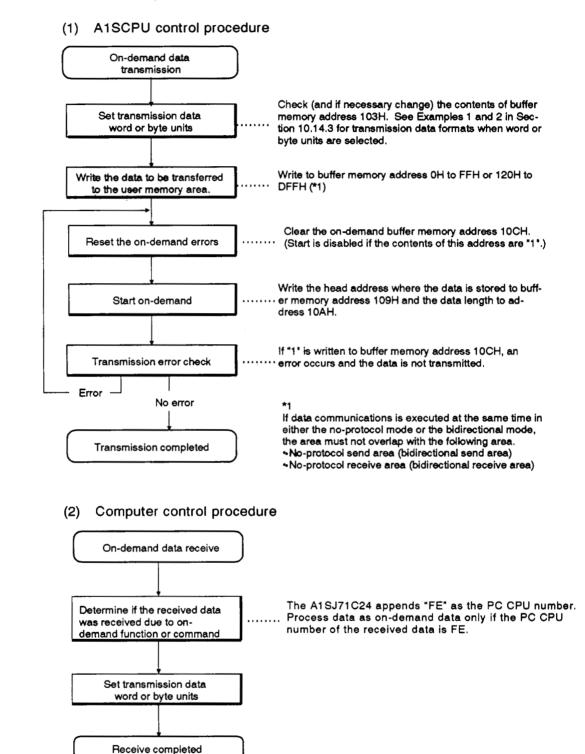
During data transmission between the computer and A1SCPU using dedicated protocols 1 to 4, communications is normally initiated by the computer.

If the A1SCPU has emergency data to transmit to the computer, the ondemand function is used.

10.14.1 On-demand handshake signal and buffer memory

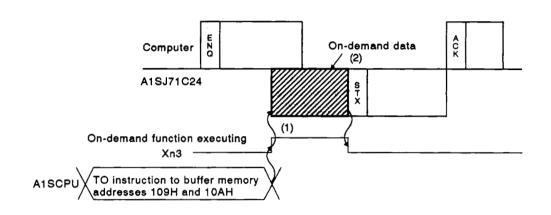
(1) On-demand handshake signal

The on-demand handshake signal turns ON when the A1SCPU transmits a data send request to the computer to start transmission, and turns OFF when transmission of the data specified by the A1SJ71C24 is completed. It acts as an interlock to prevent on-demand requests being made simultaneously.

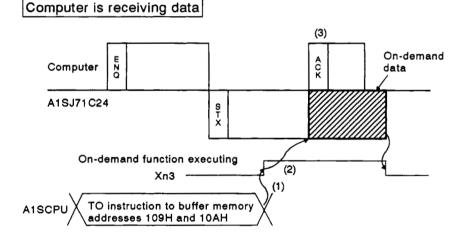

Handshake Signal	Description	Signal Turned ON/OFF by
Xn3*	During execution of on-demand function ON : transmission underway OFF : transmission completed	A1SJ71C24

* "n" in Xn3 is determined by the slot location of the A1SJ71C24.

(2) Buffer memory used by the on-demand function

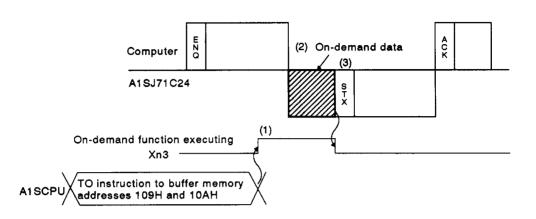

Address	Name	Description					
109H	Area to specify head address in on-demand buffer memory	The head address of the data stored in the buffer memory to be transmitted by the on-demand function is specified by the TO instruction of the Sequence program.					
10AH	Area to specify data length	The length of the data to be transmitted by the on- demand function is specified by the A1SCPU TO in- struction of the sequence program.					
10CH	On-demand error storage area	The A1SJ71C24 writes a "1" to this address if a transmission error occurs during on-demand data transmission. 0 : No error 1 : Error					

10.14.2 On-Demand function control procedure

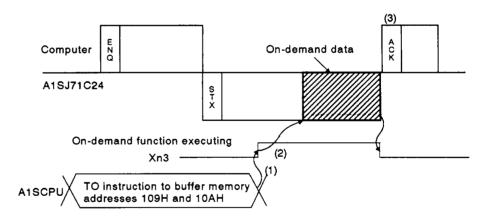


- (3) On-demand request processing timing chart
 - (a) Full-duplex communications

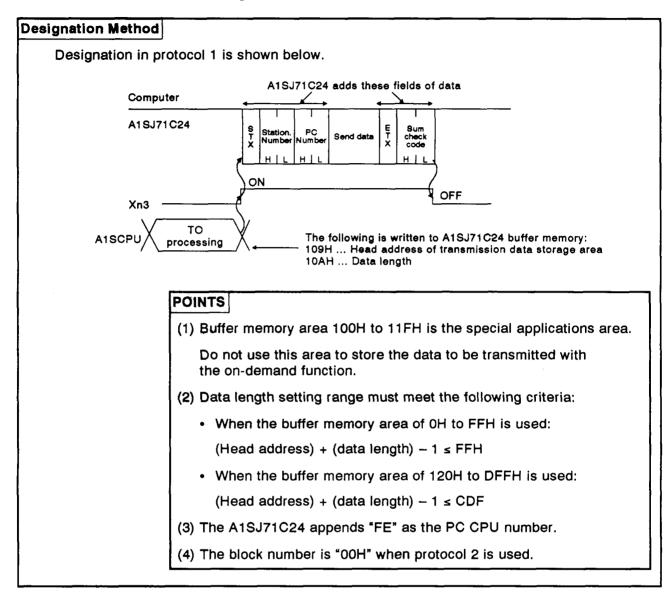
Computer is transmitting data

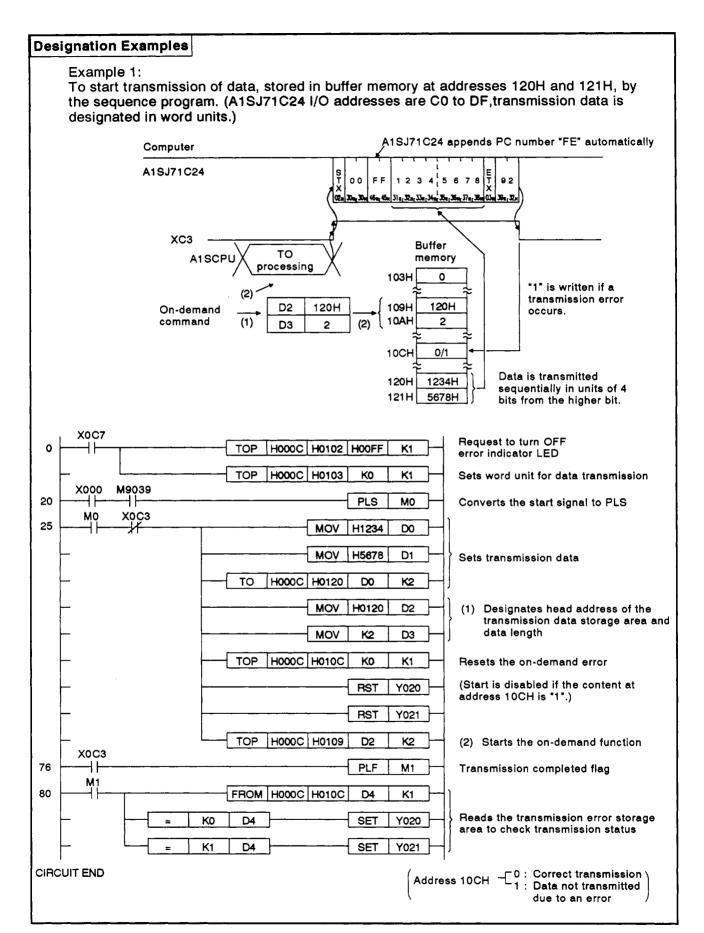

- The on-demand function executing signal (Xn3) turns ON immediately and , the on-demand data is transmitted when the ondemand request is made.
- Transmission of response data (beginning with STX) to the command data (beginning with ENQ) is suspended until the completion of on-demand data transmission.

- The on-demand function executing signal (Xn3) turns ON immediately when the on-demand request is made.
- Transmission of the on-demand data is suspended until the completion of the response data (beginning with STX) to the command data (beginning with ENQ).
- 3) Transmission of the response data (beginning with ACK) from the computer in response to the response data (beginning with STX) from the A1SJ71C24 is possible while the on-demand data is received.


(b) Half-duplex communications

Computer is transmitting data

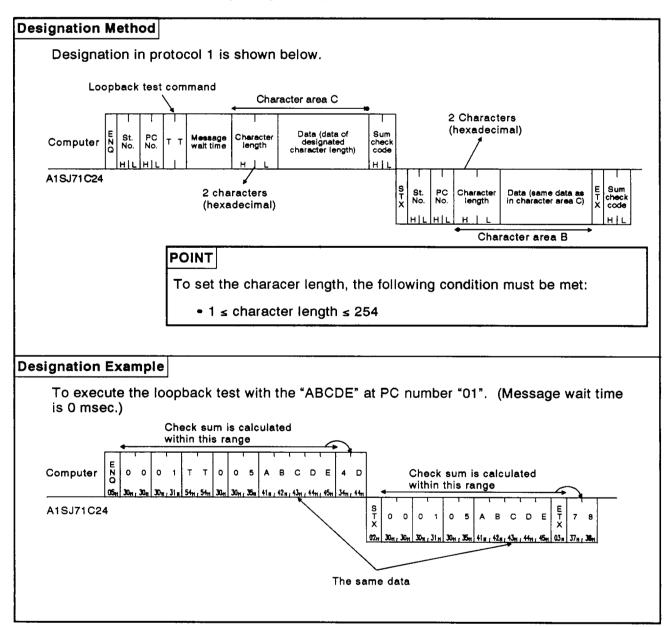

- 1) The on-demand function executing signal (Xn3) turns on immediately when the on-demand request is made.
- Transmission of on-demand data is suspended until the completion of command data receive (beginning with ENQ) from the computer.
- Transmission of response data (beginning with STX) to the command data (beginning with ENQ) is suspended until the completion of on-demand data transmission.


Computer is receiving data



- 1) The on-demand function executing signal (Xn3) turns ON immediately when the on-demand request is made.
- Transmission of the on-demand data is suspended unil the completion of the response data (beginning with STX) to the command data (beginning with ENQ).
- Transmission of the response data (beginning with ACK) from the computer in response to the response data (beginning with STX) from the A1SJ71C24 should be made after the completion of on-demand data receive.

10.14.3 On-demand function designation



10.15 Loopback Test

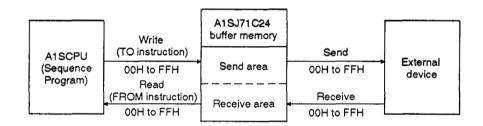
(1) ACPU common command

ltem	Command			Number of	State of PC CPU				Access
		ASCII Code	Processing	Points		During RUN		Access to	to PC CPU
				per Com- munication	During STOP	SW04 ON	SW04 OFF	A1S CPU	in Data Link
Loop- back test	тт	54H, 54H	Echoes back the characters to the computer as they are received	254 characters	o	•	o	o	o

(2) Designating the loopback test

11. COMMUNICATIONS WITH A COMPUTER IN THE NO-PROTOCOL MODE

Read this chapter when the RS-422/485 interface with the no-protocol mode by setting the mode setting switch at the A1SJ71C24 in position of "4".


If these interfaces are used with the dedicated protocol and in the bidirectional mode, it is not necessary to read this chapter.

11.1 Basics of the No-Protocol Mode

(1) What no-protocol mode means

In no-protocol communication:

- Data written to the no-protocol A1SJ71C24 send area (in buffer memory) using the TO instruction in a sequence program is output to an external device in the same code.
- Data received from an external device is read from the no-protocol A1SJ71C24 receive area (in buffer memory) using the FROM instruction in a sequence program.

POINT

In the no-protocol mode, data is not converted to ASCII code in the A1SJ71C24. If ASCII code is required, the data must be processed into ASCII code in the A1SCPU.

(2) Designating a word/byte unit for no-protocol mode communication

For data communications in the no-protocol mode, a unit of data to be transmitted may be selected between words and bytes. Default setting for data unit selection is "word", but selection is possible by writing "1" or "0" to address 103H in the buffer memory area. (Section 9.2.3 gives details about the program to make this setting.)

11.2 Handshake I/O Signals

Signals known as I/O handshake signals are required for no-protocol communications.

These signals (a) output data received from the sequence program to an external device, or (b) detect signals from an external device to enable the sequence program to read them.

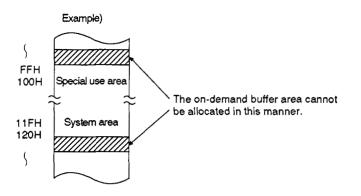
\square	Signal	Timing		
A1SCPU ↓ External device	Y _(n+1) 0 (Send request)	Turned OFF by program		
	X _n 0 (Send completed)	Turned ON by A1SJ71C24		
External device ↓ A1SCPU	X _n 1 (Received data read request)	Turned OFF by A1SJ71C24		
	Y _(n+1) 1 (Receive data read completed)	Turned ON by program		

The letter n attached to X and Y given above is decided by both the slot number of this module and the number of I/O modules installed in the previous slots. (e. g., if an A1SJ71C24 is installed in slot 0 of the main base unit, Xn0 becomes X0.)

11.3 Programming Hints

11.3.1 To write data to the special use area in buffer memory

(1) Buffer memory is not backed up by a battery.


All data in buffer memory is set to the default values when power is turned ON or when the PC CPU is reset. Data changed from the default values must be written to the buffer memory whenever the power is turned ON or the CPU is reset.

- (2) Only TO instruction can be used to write data to the special use area (100H to 11FH). If data is written to the buffer memory using the command in a computer program, the A1SJ71C24 will not operate correctly. Never try to write data using a computer program.
- (3) If the following functions are used in combination with the dedicated protocol, make sure to allocate the user area in buffer memory so that the same area will not be used by different functions.

If the same area is allocated to different functions, the data in this area is rewritten and communications will not be correctly executed.

- No-protocol mode transmission or bidirectional mode transmission
- No-protocol mode receive or bidirectional mode receive

The memory areas preceding and following the special use area cannot be allocated as a single area. The areas 0H to FFH and 120H to 7FFH must be recognized as independent areas.

11.3.2 Precautions during data communications

(1) Conditions when the A1SJ71C24 transmission sequence is initialized

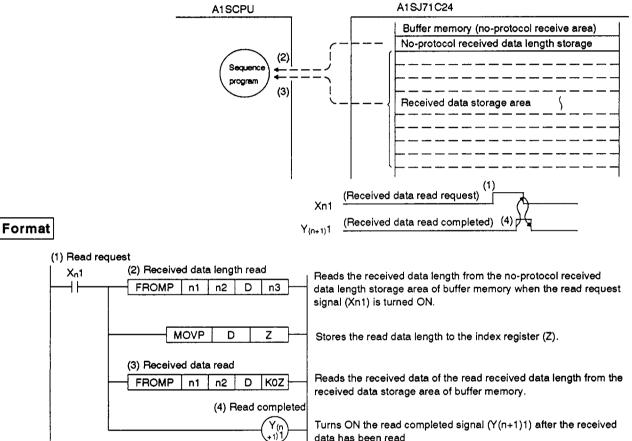
The transmission sequence is initialized in the following cases:

- Power is turned ON or the A1SCPU is reset by the reset switch.
- (2) FROM/TO accesses to an A1SJ71C24

The FROM/TO accesses made by the PC CPU to an A1SJ71C24 must be executed only when they are strictly needed.

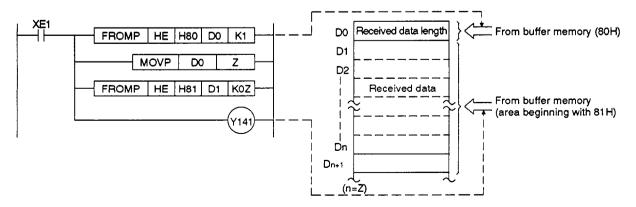
If a FROM/TO access is made by the PC CPU to an A1SJ71C24 when the A1SJ71C24 is transmitting data to an external device, the FROM/TO instruction is given priority in processing.

The data transmission time of the A1SJ71C24 accordingly increases since the FROM/TO instruction is processed.

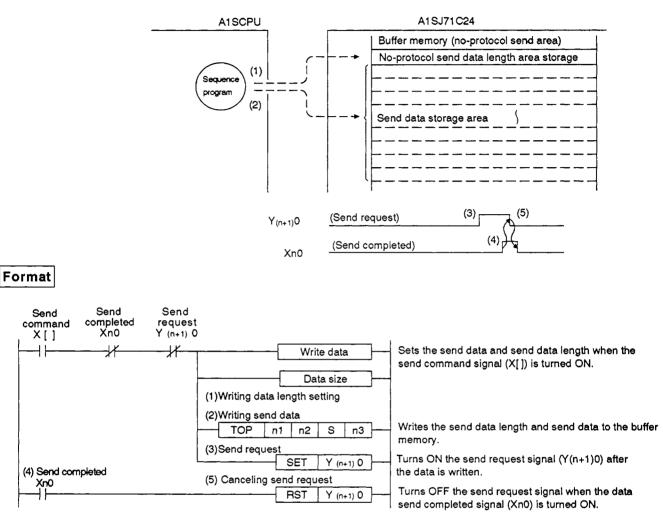

121 MELSEC.A

Basic Program to Read/Write Buffer Memory 11.4

The following describes a basic sequence program to read and write data to and from the A1SJ71C24 buffer memory.


Reading data from the receive area (FROM, FROMP, DFRO, DFROP) (1)

Data is read from the buffer memory no-protocol receive area (default: 80H to FFH).


data has been read

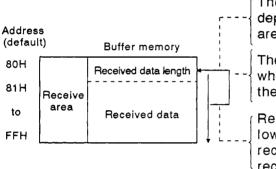

- Data read by program 3) is processed as the received data.
- To read the data of (n+1) words from the area, beginning with Example: buffer memory address 80H, to the area beginning with D0 when the A1SJ71C24 I/O numbers are allocated to E0 to FF.

(2) Writing data to the send area (TO, TOP, DTO, DTOP)

Data written to the no-protocol send area (default: 0H to 7FH).

11.5 Receiving Data in the No-Protocol Mode (External Device \rightarrow A1SJ71C24)

(1) Data receive area


The A1SJ71C24 stores the received data length and received data in the data receive area.

With default setting, buffer memory area 80H to FFH is allocated as the receive area.

This area may be changed as needed. See Section 9.2.5 for the procedure to change the data receive area.

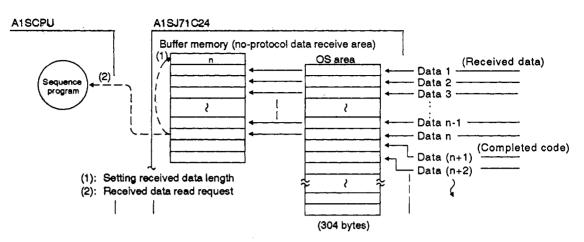
For example, if the data to be received is greater than the A1SJ71C24 receive area (127 words in default setting), data is received in more than one transmission.

It is advisable to set as "data receive area" is larger than "received data length".

The unit (word/byte) of received data length depends on the setting with the word/byte setting area (address 103H).

The actual length of received data is written when the receive completed code is received or the set length of data has been received.

Received data is stored sequentially from the lowest address until the completed code is received or the set length of data has been received.

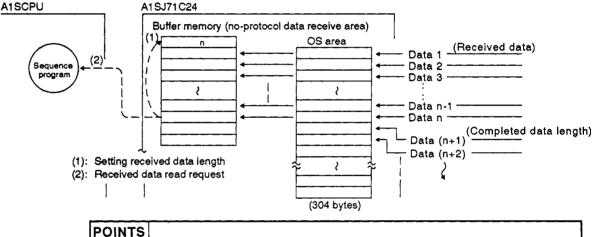

(2) Reading received data

There are two ways of making a request to read the received data:

- By receiving the receive completed code (data receive in variable length), and
- By receiving the set length of data (data receive in fixed length).
- (a) By receiving the receive completed code (variable length)

The A1SJ71C24 makes a request to read the received data to the sequence program when it receives the receive completed code, predetermined by the user and set to the A1SJ71C24 buffer memory. The default receive completed code is CR, LF (0D0AH), but this may be changed to any value in the range of 0000H to 00FFH. (For the procedure to change the read completed code, see Section 9.2.1.)

11. COMMUNICATIONS IN THE NO-PROTOCOL MODE


(b) By receiving the set data length (fixed length)

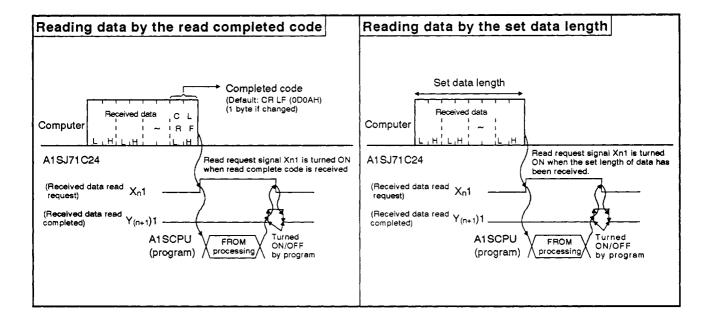
The A1SJ71C24 makes a request to read the received data to the sequence program when it has received the set length of data from an external device.

MELSEC.A

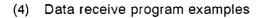
Using this method, it is possible to receive fixed length data.

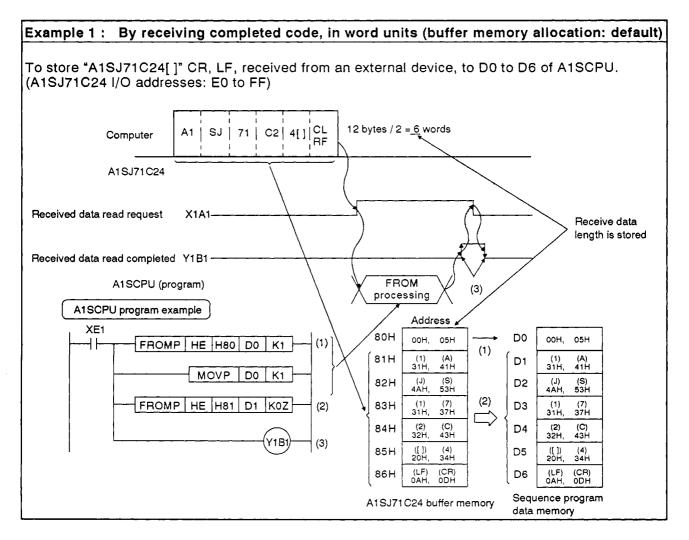
Default setting is 127 words, but this value may be changed as required. (For the procedure to change the data length setting, see Section 9.2.2.)

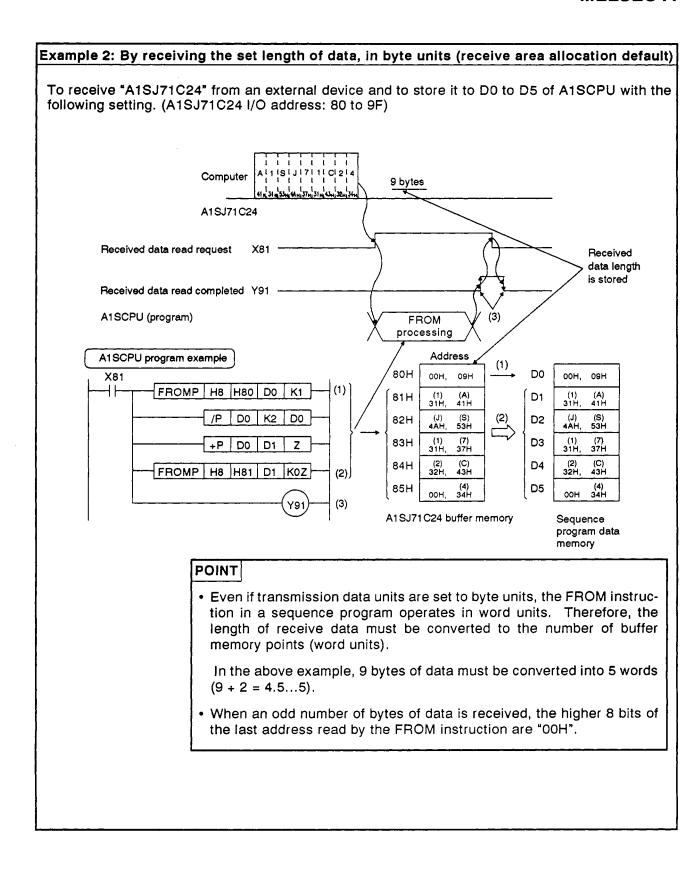
POINTS


(1) When both the receive completed code and the receive completed data length are set to the special application area in buffer memory, both of them are effective.

In this case, the one which is met first triggers the read request signal (Xn1) to the sequence program. See Section 9.2.1 and 9.2.2.


(2) The data received after the reception of the receive completed code or the set length of data has been received is stored in the OS area (304 bytes) of the A1SJ71C24. The data stored in the OS area is transferred to the data receive area after the data previously stored in this area has been read by the sequence program.


When the size of the vacant area in the OS area, where received data is stored, becomes smaller than 10 bytes, the following control operations are executed according to preset transmission control specifications.


When the DC1-DC3 code transmission control has been set: the A1SJ71C24 sends a DC3 code and makes a request to terminate the send from the communicating equipment (see Section 8.2).

(3) Data receive procedure

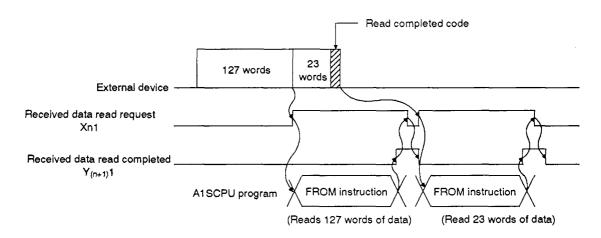
11. COMMUNICATIONS IN THE NO-PROTOCOL MODE

MELSEC-A

REMARK

If the receive data length exceeds the no-protocol mode receive buffer memory size, the data is processed as described below.

(1) When the receive completed code is used:

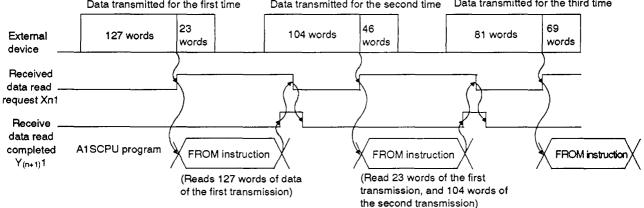

If the A1SJ71C24 receives data that exceeds the receive area size, it turns ON the received data read request signal Xn1 when data equivalent to the receive area size has been received.

Reading the remaining data is enabled at the time the sequence program turns the receive data read completed signal Y(n+1)1 ON.

These steps are repeated until the receive completed code is received.

Set the receive area size so that "receive-completion data length" is less than "no-protocol mode receive buffer memory size".

Example: To receive 150 words of data while receive area is set at 80H to FFH (default).



(2) When receive completion data length is used:

If the receive completion data length is set greater than the receive area size, the no-protocol receive buffer memory size (default: 127 words) which is set at buffer memory address 107H is taken as the receive completion data length.

Set the receive area size so that "receive completion data length" is less than "no-protocol mode receive buffer memory size".

Example: To receive 150 words of data while receive area is set at 80H to FFH (default setting).

Data transmitted for the first time Data transmitted for the second time Data transmitted for the third time

MELSEC-/

(5) Clearing the receive buffer memory

If and error occurs due to failure of an external device, for example, while receiving data from an external device in the no-protocol mode, the data received up to the error may be incorrect or interrupted. To received up to the error may be incorrect or interrupted. To received up to the error has occurred it is possible to cleaa all received data and initialized the A1SJ71C24 buffer memory.

(a) Error detection

The following methods are used to detect errors while data is being received.

1) Reading the error LED display area

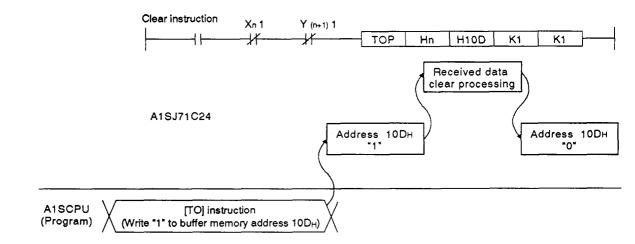
To detect errors the A1SCPU can read the LED ON/OFF statuses, stored at buffer memory address 101H as transmission error data.

2) PC input signals

Signals such as READY signals from external devices are connected to the A1SCPU as input signals. The A1SCPU can detect errors from the ON/OFF status of these signals.

- (b) Clearing received data
 - 1) Range of data cleared

All data already received by the A1SJ71C24 is cleared and the no-prptocol mode receive buffer memory area is initialized (See Appendix 5 for details).


2) How to clear received data

Received data is cleared by writing "1" to buffer memory address 10DH using the [TO] instruction.

After clearing received data, the A1SJ71C24 clears the "1" that was written to buffer memory address 10DH.

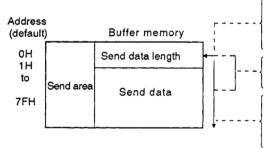
The received data may be cleared while the receive data read request signal (Xn1) and received data read completed signal (Y(n+1)1) are OFF.

Use Xn1 and Y(n+1)1 as an interlock for TO instruction.

11.6 Sending Data in the No-Protocol Mode (A1SJ71C24 → External Device)

In this section, "sending" means outputting data which is in the no-protocol mode A1SJ71C24 send area to an external device receive area. This is in response to turning the A1SCPU send request signal (Y(n+1)0) ON.

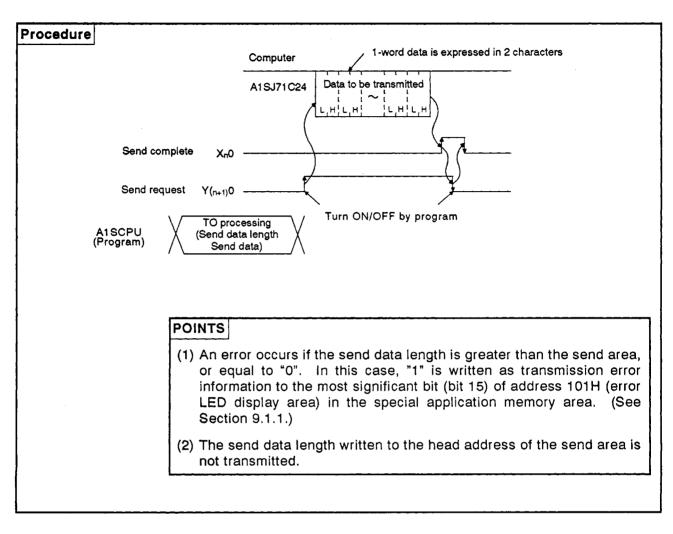
(1) Send area and writing send data


The send data length and send data are written to the send area.

- (a) The length of send data to be written (or having been written) to the send data storage area is written to the no-protocol send data length storage area in either words or bytes.
- (b) The data to be transmitted is written to the send data storage area.

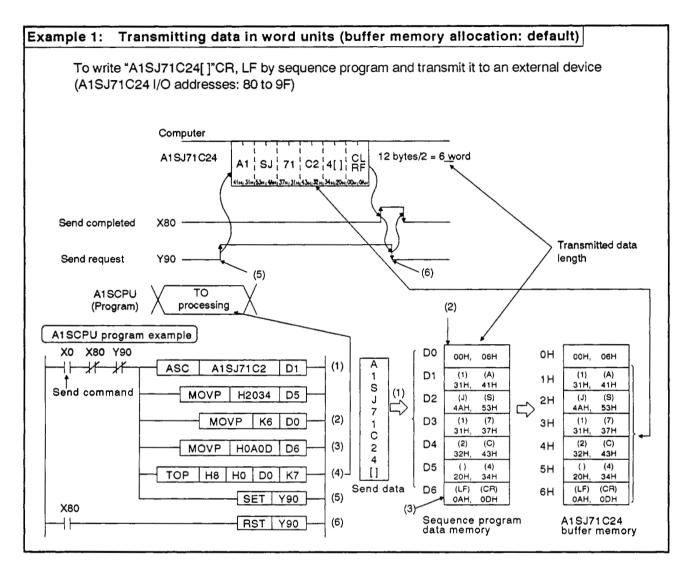
When the send request signal (Y(n+1)0) is turned ON after (a) and (b) have been executed, the A1SJ71C24 transmits the set length of set data from the send data storage area in the order of address number.

By default, buffer memory area 0H to 7FH is allocated to the A1SJ71C24 send area.

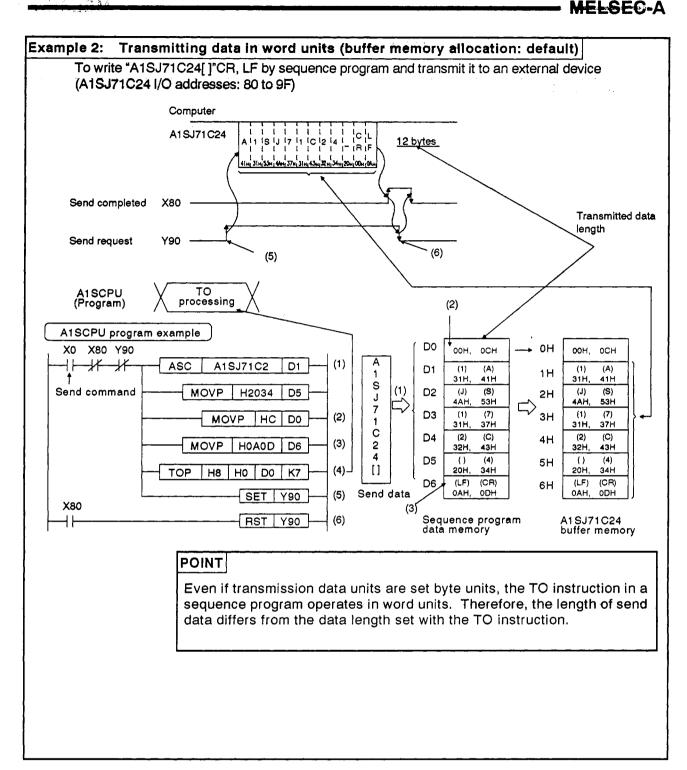

It is however possible to change the send area allocation. (See Section 9.2.4.)

The unit word/byte of send data length depends on the setting (address 103H).

Use the TO instruction to set the length of data to be transmitted.


Data to be transmitted is stored sequentially from the lowest address.

(2) Data sending procedure


11. COMMUNICATIONS IN THE NO-PROTOCOL MODE

MELSEC-A

(3) Data transmission program examples

11. COMMUNICATIONS IN THE NO-PROTOCOL MODE

12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE

Always read this section when the RS-422/485 interface is used with the bidirection mode individually by setting the mode setting switch at the A1SJ71C24 in position of "4".

It is not necessary to read this section when the interface is used with the dedicated protocol and in the no-protocol modes.

POINT

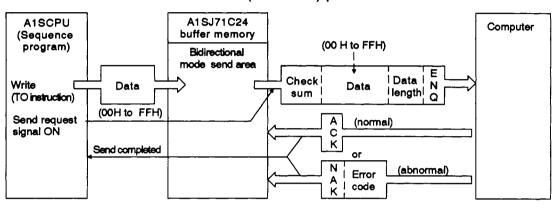
Buffer memory used in the bidirectional mode

In sections other than this, buffer memory used in the bidirectional mode is described as the buffer memory used for the no-protocol mode. Because the application purposes are the same, simply think of the "no-protocol mode" as the "bidirectional mode".

Examples:

- No-protocol mode send area
 - → Bidirectional mode send area
- No-protocol send buffer memory head address setting area
 → Bidirectional send buffer memory head address setting area

11000


12.1 Bidirectional Mode Basics

(1) What bidirectional mode means

In bidirectional communications:

The bidirectional receive/send area in an A1SJ71C24 buffer memory is used for data commuications with a computer.


The data written to an A1SJ71C24 buffer memory by the TO instruction in a sequence program is transmitted to a computer in the same code with the control code (ENQ=05H) prefixed to the data to be transmitted.

An A1SJ71C24 receives a response from a computer.

The data received from a computer is stored in an A1SJ71C24 received area and read by the FROM instruction in the sequence program (the data received is transferred in the code as received).

The response data is transmitted to a computer in response to the read completed signal.

POINT

In the bidirectional mode, data is not converted to ASCII code in the A1SJ71C24. If ASCII code is required, the data must be processed into ASCII code in the A1SCPU.

(2) Designating word/byte units for bidirectional mode communications

For data communications in the bidirectional mode, units of data to be transmitted may be selected between words and bytes. Default setting for data unit selection is "word", but selection is possible by writing "1" or "0" to address 103H in the buffer memory area.

(Section 9.2.3 gives details of the program to make this setting.)

12.2 Handshake Signals and Buffer Memory

(1) Handshake signals in the bidirectional mode

Signals known as I/O handshake signals are required for communications in the bidirectional mode.

These signals output data received from the sequence program to a computer or detect signals from an external device to enable the sequence program to read them.

	Signal		Timing	
A1SCPU ↓ Computer	Y (n+1) 0 X n 0	(Send request) (Send completed)	Turned OFF by program Turned ON by program Turned OFF by A1SJ71C24 Turned ON by A1SJ71C24	
Computer ↓ A1SCPU	X n 1 Y (n+1) 1	(Received data read request) (Receive data read complete)	Turned OFF by A1SJ71C24 Turned ON by A1SJ71C24 Turned OFF by program Turned ON by program	

The number "n" appended to X and Y is determined according to the position where the A1SJ71C24 is loaded and the number of I/O modules loaded prior to this module. If this module (A1SJ71C24) is loaded at slot 0 in a base module, Xn0 is expressed as "X0".

- MELSEC-A

(2) Buffer memory used in the bidirectional mode

(a) Special applications area (100H to 1FFH)

Address	Name	Description
103H	Word/byte designation area for bidirectional mode	 The unit (word/byte) of data length of a message transmitted between a computer and a PC CPU is designated with a TO instruction in a sequence program. This sets the unit of data to be stored in the send data length storage area (default address 0H) and the received data length storage area (default address 80H). 0: Word (default)
		1: Byte
104H	Bidirectional mode send buffer memory area head address designation area	 The head address of the area used for bidirectional mode send buffer memory area (send data length storage area and send data strage area) is designated with a TO instruction in a sequence program. The area of the designated address is set as the send data length storage area. (0 to FEH or 120H to 7FEH : Bidirectional send buffer memory head address. (default : 0H)
	Bidirectional mode send buffer	 The length of the area used for bidirectional mode send is designated with a TO instruction in a sequence program. (default: 80H).
105H	memory length designation area	When 0H to FFH area is used, 2H to 100H: Bidirectional send buffer memory When 120H to DFFH area is used, 2H to CE0H: Bidirectional send buffer memory length
106H	Bidirectional mode receive buff- er memory area head address designation area	 The head address of the area used for bidirectional mode receive buffer area (receive data length storage area and receive data storage area) is designated with a TO instruction in a sequence program. The area of the designated address is set as the receive data length storage area.
		0H to FEH or 120H to 7FEH:Bidirectional mode receive buffer memory head address. (default: 80H)
107H	Bidirectional mode receive buff- er memory length designation area	 The length of the area used for bidirectional mode data receive is designated with a TO instruction in a sequence program (default: 80H).
		When 0H to FFH area is used, 2H to 100H: Bidirectional receive buffer memory length When 120H to DFFH area is used, 2H to CE0H: Bidirectional receive buffer memory length

(continued on page 12-6)

12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE

MELSEC-A

(continued)

Address	Name	Description	
112H	Bidirectional mode designation area	 Whether the interface communications mode is no-protocol or bidirectional is designated with a TO instruction in a sequence program. 0: No-protocol mode (default) 1: Bidirectional mode 	
113H	Time-out check time designa- tion area	 The time-out check time (until the reception of a response after transmission of data to the computer) is designated with a TO instruction in a sequence program. OH : Time-out is not checked (default) 1H to FFFFH : Time-out check time (100 msec units) The most significant bit in the area is not regarded as the sign bit. The set value is regarded to designate value in the range of 1 through 65535. 	
114H	Data valid/invalid designation area at simultaneous transmis- sion	 How the receive and send data at an A1SJ71C24 is processed if data transmission at a computer and an A1SJ71C24 occurs simultaneously is designated with a TO instruction on a sequence program. (Section 12.6 covers silmultaneous transmission) b15 to b8 b7 to b0 114H (default: 0000PH) Receive data (00H: valid, 01H: Invalid) Send data (00H: valid, 01H: Invalid) 	
115H	Bidirectional mode check sum enable/disable designation area	 Whether or not check sum is appended for bidirectional mode communications is designated with a TO instruction in a sequence program. (This designation is not related to the setting of DIP switch SW12.) 0: Check sum enabled (default) Check sum disabled 	
116H	Error storage area for data send	 If an error occurs during data communications, the error code is transmitted by an A1SJ71C24. (The area designated in 117H retains the error code of the last data receive error.) 	
117H	Error storage area for data received	0H : Normal termination (no error) 0001H to } : Abnormal termination (error) 0082H J Section 17.2 gives error code details.	

POINT

The area described above is the special applications area for bidirectional mode communications.

For other special applications areas used for data communications, see Section 5.4, and section 9.

(b) User areas (0H to FFH and 120H to DFFH)

Address	Name	Description		
	Send data length storage area	 The length (words or bytes) of data written to the send data storage area, to be transmitted from the A1SJ71C24 to the computer, is designated with a TO instruction in a sequence program The set value is used as it is to designate data length in a message to be sent to the computer. The unit of data length is determined by the value set at address 103H. Set the send data length within the send data storage area length, described below. 		
0H to FFH and	Send data length storage area	 The data to be transmitted to the computer is designated with a TO instruction in a sequence program. The buffer memory length and length of the send data and send data length storage areas are determined by the values set at 104H to 105H. (Default: Send data length storage area address : 0H Send data storage area address : 1H to 7FH) 		
120H to DFFH	Received data length storage area	 The data length in the message received from the computer is written by an A1SJ71C24 as it is as the received data length. Data length expresses the number of words/bytes at the data section in the message. The unit of data length is determined by the value set at address 103H. Transmit the data from the computer within the receive data storage area length described below. 		
	Received data length storage area	 The data in the data section in the message received from a computer is transmitted by the A1SJ71C24 as it is received. The buffer memory length and length of the received data and received data length storage areas are determined by the values set at 106H to 107H. Default: Received data length stora area address : 80H Received data storage area address : 81H to FFH 		

12.3 Programming Hints

12.3.1 System configuration and communications mode for bidirectional mode communications

System configuration and the A1SJ71C24 mode setting

The mode setting switch in the A1SJ71C24 should be set in position of "4".

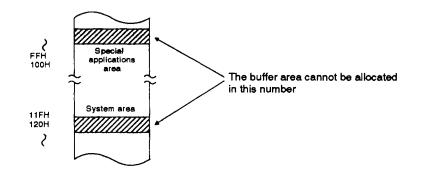
12.3.2 To write data to a special applications area in buffer memory

(1) Buffer memory is not battery backed up by a battery

All data in buffer memory is set to the default values when power is turned ON or when the A1SCPU is reset.

The data changed from the default values must be written whenever the power is turned ON or the A1SCPU is reset.

- (2) Only TO instruction can be used to write data to the special applications area (100H to 11FH).
- (3) If data is written using the command in a computer program, the A1SJ71C24 will not to operate correctly. Never try to write data using a computer program.


If the following functions are used in combination with the dedicated protocol, allocate the user area in buffer memory so that the same area will not be used by different functions.

If the same area is allocated to different functions, the data in this area is rewritten and communications will not be correctly executed.

- Bidirectional mode send
- · Bidirectional mode receive

The memory areas preceding and following the special applications area cannot be allocated as a single area. The areas of 0H to FFH and 120H to DFFH must be recognized as independent areas.

Example:

12.3.3 Precautions during data communications

- (1) The conditions under which the A1SJ71C24 transmission sequence is initialized are as follows:
 - The power supply is turned ON or the A1SCPU is reset with the reset switch.
 - Data communications has completed normally.
 - The response message (ACK or NAK) is transmitted.
- (2) Send request signal made by the computer

To transmit data from an A1SJ71C24 send area to a computer receive area, follow the steps described in Section 12.9.

Once the send request signal (Y(n+1)0) is turned ON, do not turn it OFF until the send completed signal (Xn0) is turned ON.

When the send request signal is turned OFF by turning ON the send completed signal, read the error code storage area (116H) for data transmission to check the send result.

(3) Data send from the computer send area or A1SJ71C24 send area

To transmit data from a computer or A1SJ71C24 in the bidirectional mode, start data communications in sequence only after the receive/send of the response for the previous data send/receive has been completed.

(4) Data length

The data length in a message must be smaller than the send or receive data storage area that is set at the special applications area.

(a) Data transmitted from an A1SJ71C24 send area to a computerreceive area

Data length must be smaller than the send data storage area length [(set value at buffer memory address 105H) - 1 (words)].

(b) Data transmitted from a computer send area to A1SJ71C24 receive area

Data length must be smaller than the received data storage area length [(set value at buffer memory address 107H) - 1 (words)].

12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE

MELSEC-A

- (5) NAK code
 - (a) Transmitting NAK from an A1SJ71C24 to a computer

The NAK response is given from an A1SJ71C24 to a computer if an error is detected.

Therefore, the NAK response might be given while the computer is transmitting data if communications is made in the full-duplex mode.

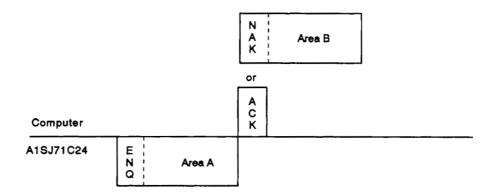
An A1SJ71C24 ignores the designated length of received data if it detects an error while receiving data. If the data length is incorrect, the data received is ignored until the ENQ code is received.

(b) Transmitting NAK from a computer to an A1SJ71C24

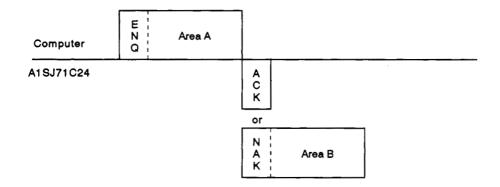
To transmit the NAK from a computer to an A1SJ71C24, transmit a 2-byte error code following the NAK code.

If the NAK code is received as the response, execute error processing according to the error code received directly after the NAK code.

The error codes related to the bidirectional mode communications are described in Section 17.2.

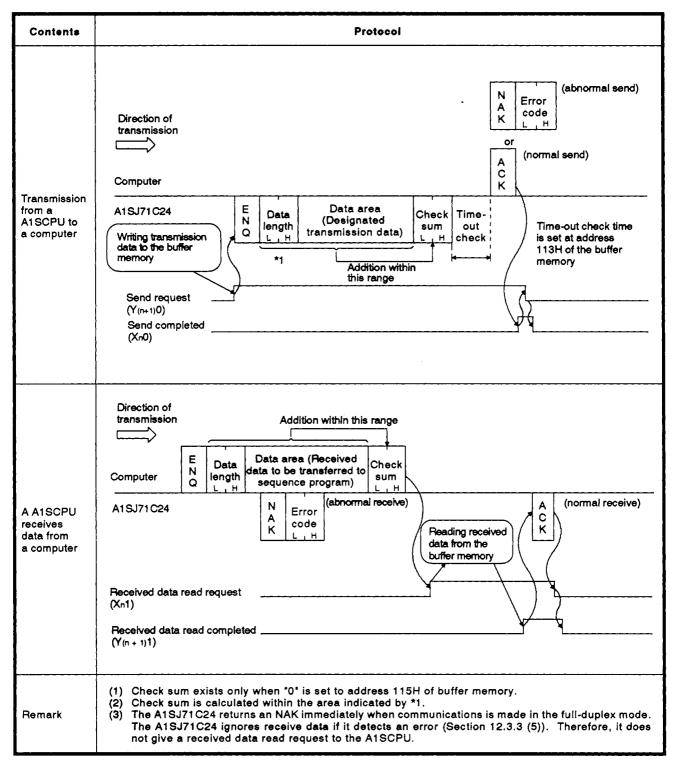

(6) Time-out check by a computer

If a time-out check is made for data transmitted from a computer send area to an A1SJ71C24 receive area in the bidirectional mode, the time-out check time to be set must be longer than the value shown below.


(Maximum scan time of the A1SCPU x 2) + 100 msec

12.4 Bidirectional Control Procedure Basics

(1) Transmitting data from an A1SJ71C24 to a computer


- (a) Area A: Data send from an A1SJ71C24 to a computer
- (b) Area B: Data send from a computer to an A1SJ71C24
- (c) Write a program so that data is transmitted from left to right.(Example: For area A, data is transmitted from ENQ to right)
- (2) Transmitting data from a computer to an A1SJ71C24

- (a) Area A: Data send from a computer to an A1SJ71C24
- (b) Area B: Data send from an A1SJ71C24 to a computer
- (c) Write a program so that the data is transmitted from left to right.(Example: For area A, data is transmitted from ENQ to right)

12.5 Bidirectional Communications Basics

12.5.1 Control protocols

12.5.2 Message format

(1) Control code

Signal Name	Code (hexadecimal)	Meaning	Application
ENQ	05H	Enquiry	The code used to begin data send.
ACK	06H	Acknowledge	The code returned to the mating station when data has been received correctly.
NAK	15H	Nagative Acknowledge	The code returned to the sending stations when data has not been receiving correctly. (immediately followed by an error code)

(a) Data send from an A1SJ71C24 to a computer

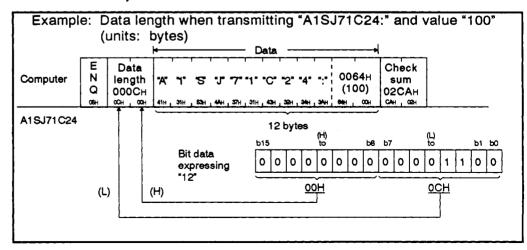
The A1SJ71C24 appends the control code to be transmitted.

(b) Data send from a computer to an A1SJ71C24

The A1SJ71C24 checks the control code received. It is not possible to read the control code from a sequence program.

(2) Data length

Data length expresses the number of bytes or words of data in the data area in 2-byte binary data. Data length units are determined according to the setting at address 103H of the buffer memory.


(a) Data send from an A1SJ71C24 to a computer

The data length to be transmitted is the value written to the send data length storage area of the A1SJ71C24 buffer memory by the TO instruction in a sequence program.

The A1SJ71C24 transmits the written value as it is from the lower byte (L).

(b) Data send from a computer to an A1SJ71C24

The A1SJ71C24 checks the received data length. When it is correct, the A1SJ71C24 writes the first 1 byte to the lower byte position (L) of the received data length storage area of the A1SJ71C24 buffer memory.

(3) Data area

The data of 00H to FFH code can be processed in a string of 1-byte data as the send data.

(a) Data send from an A1SJ71C24 to a computer

The data area to be transmitted is the value written to the send data storage area of the A1SJ71C24 buffer memory by the TO instruction in a sequence program.

The A1SJ71C24 transmits the data according to the designated length and byte/word units sequentially from the lower address in unchanged codes.

(b) Data send from a computer to an A1SJ71C24

The data area received is written to the received data storage area sequentially from the lower address in unchanged codes as they are received.

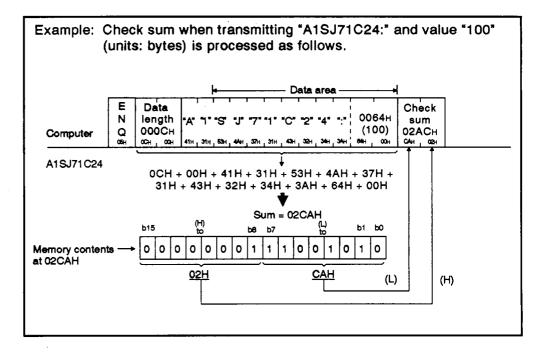
The data length to be written is determined by the data length in the received message and the designated word/byte units.

(4) Check sum

The check sum is the lower 2 bytes (16 bits) of the result obtained by adding the data length and the data area in the message as binary data.

If the setting at address 115H is "1", the check sum is not required.

(a) Data send from an A1SJ71C24 to a computer


The A1SJ71C24 calculates and adds the check sum.

If the check sum is not processed, the check sum is not transmitted.

(b) Data send from a computer to an A1SJ71C24

The A1SJ71C24 checks and processes the check sum received. It is not possible to read the check sum from a sequence program.

When the setting is "check sum is disabled", the received data following the data of the designated length is ignored up to the next control code.

(5) Error code

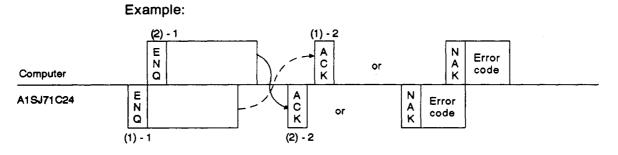
An error code indicates the error content when an NAK response is received. The code is transmitted and received in the range of 0001H to 00FFH. Section 17.2 gives error code details.

(a) Data send from an A1SJ71C24 to a computer

The A1SJ71C24 appends the error code.

When transmitting an error code, the A1SJ71C24 writes the same error code to its error code storage area in the received data buffer memory area.

(b) Data send from a computer to an A1SJ71C24


The A1SJ71C24 writes the received error code to the error code storage area in its send data buffer memory area.

POINT

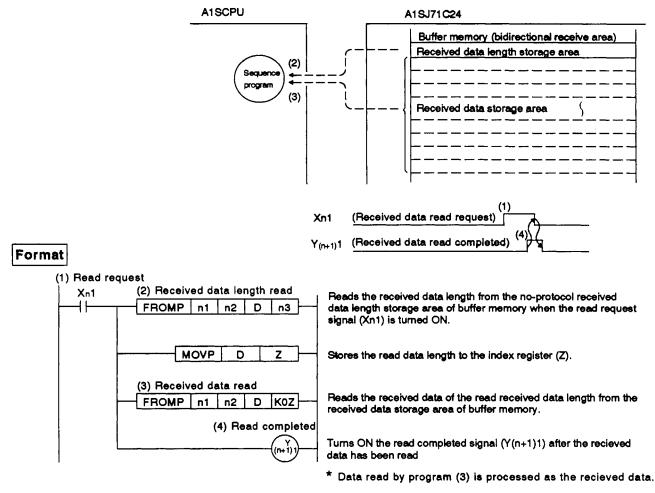
In bidirectional communications, check sum and error codes are all binary data. Note that in the dedicated protocol, they are handled in ASCII code.

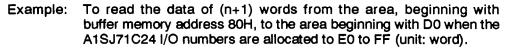
12.6 Processing an A1SJ71C24 for Simultaneous Send in Full-Duplex Mode

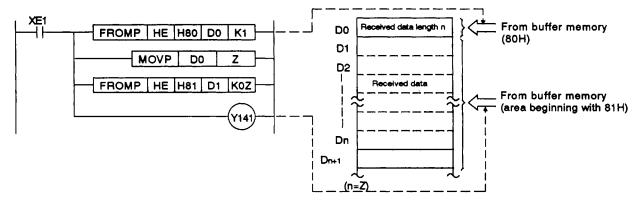
Processing by the A1SJ71C24 varies depending on the setting (valid/invalid setting at simultaneous transmission) when the computer and the A1SJ71C24 transmit data at the same time to each other.

Buffer Memory Setting	Setting	Processing by A1SJ71C24				
(Address 114H)	Setting	Send Processing	Receive Processing			
0000H	Send data : Valid Received data : Valid	After completing data send ((1)- 1), the A1SJ71C24 waits for response ((1)-2) while checking time-out error. Normal or abnormal send com- pletion is confirmed by response and its status is transmitted to the sequence program via the buffer memory.	After completing data receive ((2)-1), the A1SJ71C24 transmits the response ((2)-2). The received data and receive result are transmitted to the se- quence program via the buffer memory.			
0100H	Send data : Invalid Received data : Valid	After completing data send ((1)- 1), the A1SJ71C24 transmits the sequence program of a simul- taneous transmission error (error code: 3) via the buffer memory. The A1SJ71C24 does not wait for a response ((1)-2).	After completing data receive ((2)-1), the A1SJ71C24 transmits the response ((2)-2). The receive data and receive result are transmitted to the se- quence program via the buffer memory.			
0001H	Send data : Valid Received data : Invalid	After completing data send ((1)- 1), the A1SJ71C24 waits for a response ((1)-2) while checking time-out error. Normal or abnormal send com- pletion is confirmed by a response and its status is trans- mitted to the sequence program via the buffer memory.	Data receive ((2)-1) is ignored and received data is discarded. The response ((2)-2 is not trans- mitted. Data receive is not transmitted to the sequence program.			
0101H	Send data : Invalid Received data : Invalid	After completing data send ((1)- 1), the A1SJ71C24 transmits the sequence program of a simul- taneous transmission error (error code: 3) via the buffer memory. The A1SJ71C24 does not wait for a response ((1)-2).	Data receive ((2)-1) is ignored and received data is discarded. The response ((2)-2 is not trans- mitted. Data receive is not transmitted to the sequence program.			

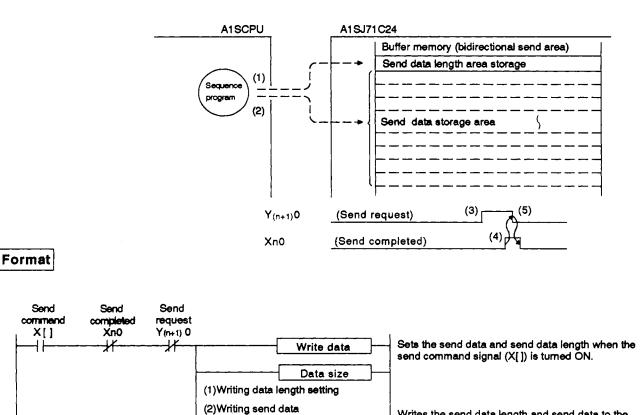
POINT


If data send of the communicating node is interrupted by sending a DC3 during simultaneous send, subsequent processing is executed according to the setting at buffer address 114H for "Simultaneous send data valid/in-valid".


12.7 Basic Program to Read/Write Buffer Memory


The following describes a basic sequence program to bidirectional read and write data to and from the A1SJ71C24 buffer memory.

(1) Reading data from the receive area (FROM, FROMP, DFRO, DFROP)


Data is read from the buffer memory bidirectional receive area (default: 80H to FFH).

Writing data to the send area (TO, TOP, DTO, DTOP)
 Data written to the bidirectional send area (default: 0H to 7FH).

S n3

Y (n+1) 0

Y (n+1) 0

TOP n1 n2

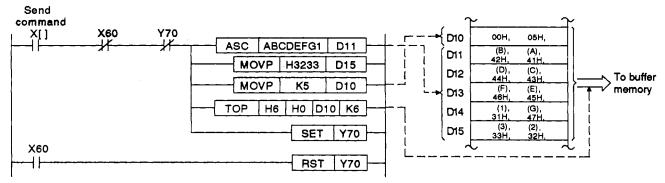
(5) Canceling send request

SET

RST

(3)Send request

(4)Send completed


Xn0

Writes the send data length and send data to the buffer memory.

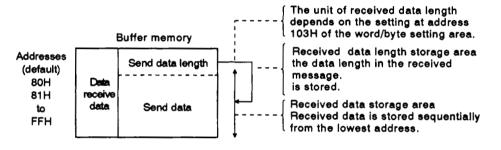
Turns ON the send request signal (Y(n+1)0) after the data is written.

Turns OFF the send request signal when the data send completed signal (Xn0) is turned ON.

Example: To transmit 5-word data after writing "ABCDEFG123" to the buffer memory area from 1H when the A1SJ71C24 I/O numbers are allocated to 60 to 7F.

12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE

MELSEC-A


12.8 Receiving Data in the Bidirectional Mode (Computer → A1SJ71C24)

(1) Data receive area

The A1SJ71C24 stores the received data length and the received data in the data receive area.

With a default setting, 80H to FFH in the buffer memory is allocated as the data receive area.

This area may be changed as needed. Section 9.2.5 gives procedure for changing the data receive area.

If the length of the data area in the message transmitted from the computer is greater than the received data storage area (default: 127 words), split the data area into several blocks so that its length is smaller than the received data storage area and append the block number to specify each data area block.

Message format example:

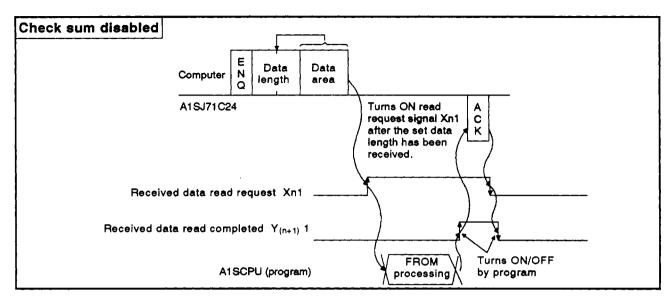
Data area

(2) Reading received data

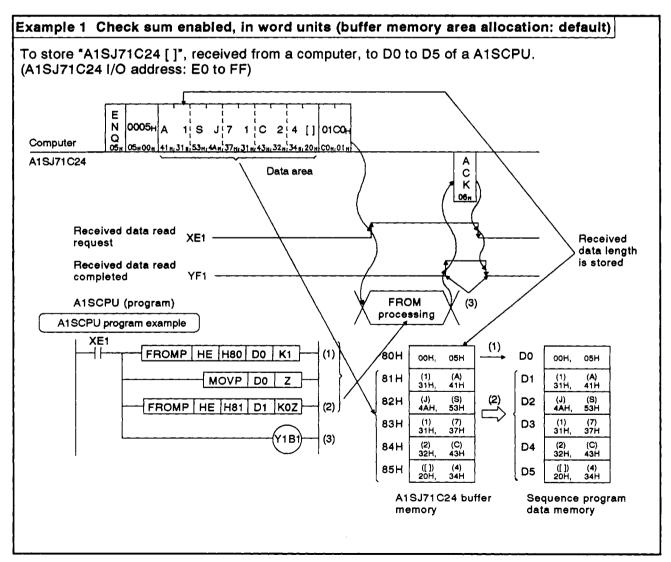
The A1SJ71C24 makes a read request to the A1SCPU at the following timing (the timing at which the XE1 signal in the program example in (4) is turned on).

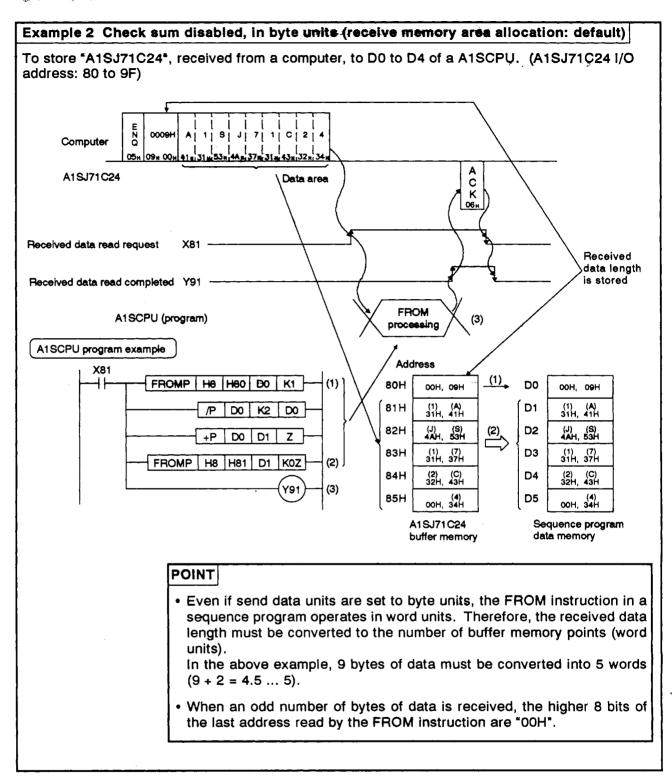
- ••When the data length in the message and the set data length (bytes or words as set in address 103H) have been received.
- If the check sum is processed, when the check sum has been received with the above mentioned data area.

Example:


Word/byte setting: Word units Data length in message: 10 In this case, the A1SJ71C24 makes a read request to the the sequence program at the time 10 words of data (plus the check sum) have been received.

When the read request (Xn1) for the received data is made read the data length and that length of data with a FROM instruction in a sequence program and turn OFF the received data read completed signal (Y (n+1)1).


12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE


MELSEC-A

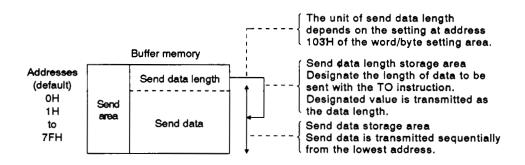
(3) Data receive processing

(4) Data receive program examples

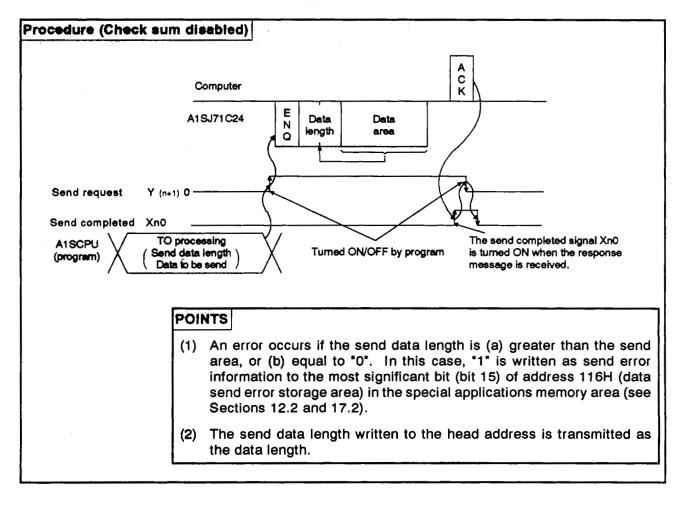
12.9 Transmitting Data in the Bidirectional Mode (A1SJ71C24 → Computer)

Transmitting means outputting data which was written to the bidirectional mode send buffer memory area (hereafter referred to as the send area), from the A1SJ71C24 to a computer in response to turning ON the A1SCPU send request signal (Y(n+1)0).

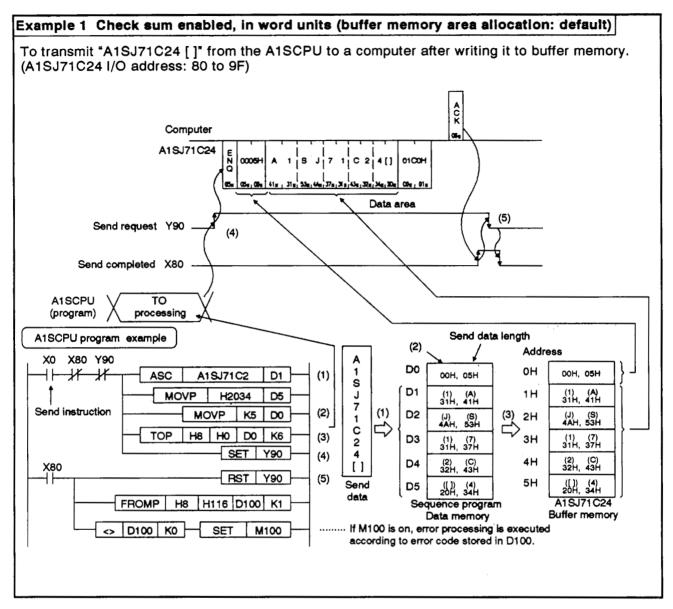
(1) Send area and writing send data


The send data length and send data are written to the send area.

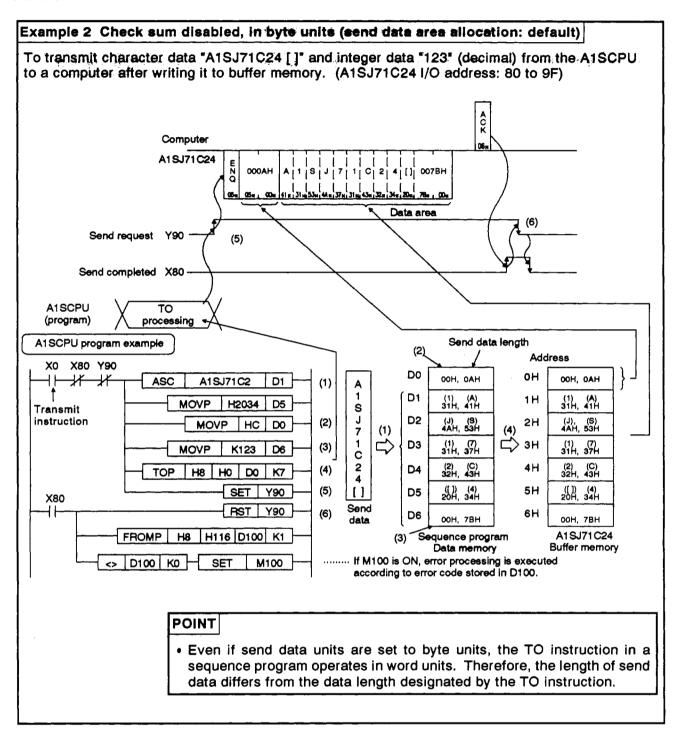
- (a) The length of data to be written (having been written) to the bidirectional send data length storage area in either words or bytes.
- (b) The data to be transmitted is written to the send data storage area.


When the send request signal (Y(n+1)0) is turned ON after (a) and (b) have been executed, the A1SJ71C24 transmits the designated length of designated data from the send data storage area sequentially from the lower address.

By default, the buffer memory area 0H to 7FH is allocated to the send area.


This area may be changed as needed. Section 9.2.4 gives the procedure for changing the send area addresses.

(2) Data transmitting procedure



(3) Transmission program examples

12. COMMUNICATIONS IN THE BIDIRECTIONAL MODE

MELSEC-A

[MULTIDROP LINK FUNCTION]

This section explains the specifications, functions, buffer allocations, and programming when an A1SJ71C24 is used as a multidrop link function module.

```
MELSEC-A
```

13. SPECIFICATIONS FOR MULTIDROP LINK FUNCTION

This section describes the transmission and interface specifications of the A1SJ71C24.

Since the functions, I/O specifications used with the PC CPU, and buffer memory differ with station settings of multidrop link master and multidrop link local, refer to respective section describing station settings.

13.1 Transmission Specifications

	ltem	Specifications
Interface	• • • • • • • • • • • • • • • •	Conforms to RS-422/485.
Transmission syst	tem	Half duplex communication system
Synchronous syst	em	Asynchronous system
Transmission spe	ed	19200/38400 BPS (selectable)
	Start bit	1
Data format	Data bit	7
Data format	Parity bit	1
	Stop bit	1
Error detection		Parity check (even)
Error detection		BCC check
DTR/DSR (ER/DR	l) control	Absent
DC1/DC3, DC2/D	C4 control	Absent
Transmission distance		Total length 500 m
Current consumption		5 VDC 0.1 A
I/O required		32 points
Recommended ca	ble	SPEV (SB)-MPC-0.2 X 3P

13.2 RS-422/485 Interface Specifications

 Fig. 13.1 gives the specifications of the RS-422/485 interface used for connection between a computer and the A1SJ71C24 and between the A1SJ71C24 modules.

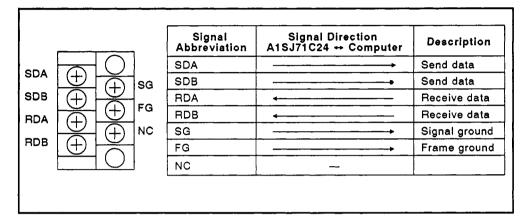
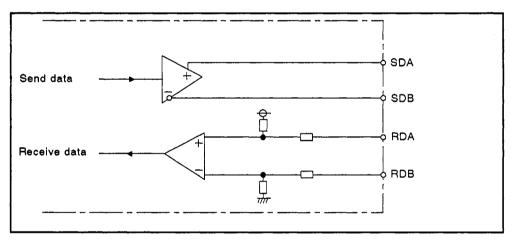
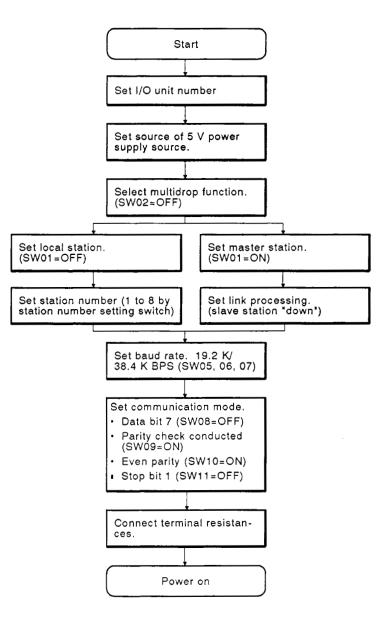



Fig. 13.1 RS-422/485 Interface Specifications

(2) Fig. 13.2 shows a function block diagram of the RS-422/485 interface.

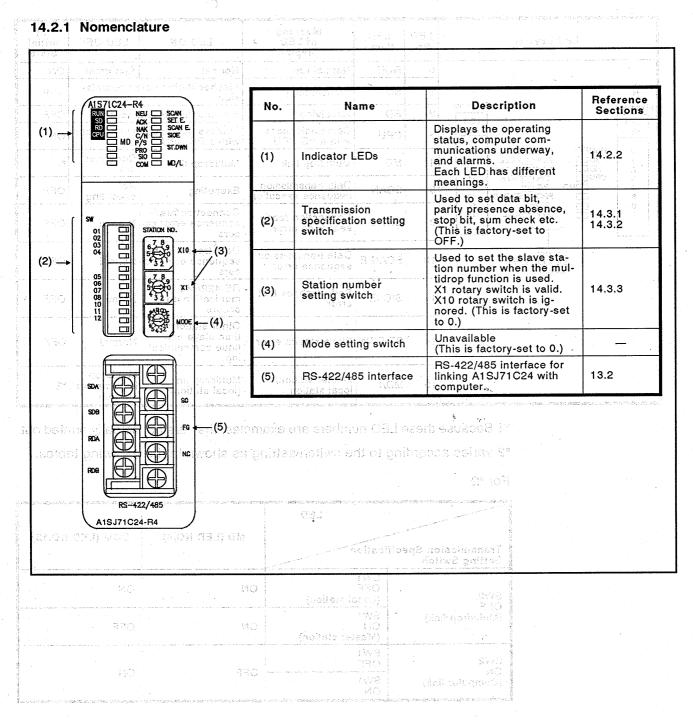
13.3 RS-422 Cable Specifications


RS-422 cables must conform to the following specifications.

ltem	Description				
Cable type	Shielded				
Number of pins	3 Pairs				
Conductor resistance (20°C)	88.0 Ω/km or less				
Insulation resistance	10,000 MΩ km or less				
Dielectric strength	500 VDC, 1 minute				
Electrostatic capacity (1 KHz)	60 nF/km or less on average				
Characteristic impedance (100 KHz)	110 ± 10 Ω				

Fig. 13.3 RS-422 Cable Specification

14. SETTINGS AND PROCEDURES BEFORE OPERATION


14.1 Settings and Procedures before Operation

14 – 1

14. SETTINGS AND PROCEDURES BEFORE OPERATION MELSEC-A

14.2 Nomenclature

14.2.2 LED signals and displays

	LED Layout		LED No.	LED Name	Meaning of LED Display	LED ON	LED OFF	LED Initial State
			0	RUN	Normal run	Normal	Abnormal	ON
1			1	SD	Transmitting	Flashes during dat sion	a transmis-	OFF
(Example)		(Example)	2	RD	Receiving	Flashes during dat	a receive	OFF
LED No.		No.	3	CPU	Communications with a PC CPU	Flashes during con with a PC CPU	nmunications	ON
0 1 2	RUN NEU SCAN SD ACK SET E. RD NAK SCAN E.		4	MD	Multidrop link	Multidrop link	Computer link	*2
3 4 5			8	SCAN	Data transmission sequence execution	Executing	Not executing	OFF
6 7		14 15	9	SET E.	Connection ready sequence error	Connection ready sequence error oc- curs	Normal	OFF
	l Used for the multidrop link function		10	SCAN E.	Data transmission sequence error	Data transmission sequence error oc- curs	Normal	OFF
			11	SIO E.	Self-loopback test error	RS-422/485 com- munication error occurs	Normal	OFF
			14	ST.DWN	Slave station error	Other stations than slave con- tinue communicat- ing.	Normal	OFF
			15	MD/L	Master station/ local station	Multidrop link (local station)	Multidrop link (master station)	*2

*1 Because these LED numbers are examples, they are not actually printed out.

*2 varies according to the switch setting as shown in the following tables.

For *2

Transmission Speci Setting Switch	LED	MD (LED NO.4)	COM (LED NO.15)
SW2 OFF	SW1 OFF (Local station)	ON	ON
(Multidrop link)	SW1 ON (Master station)	ON	OFF
SW2 ON (Computer link)	SW1 OFF SW1 ON	OFF	ON

14.3 Settings

14.3.1 Master/local station setting

October - Occidente	Switch	O a taliana	Switch Position			
Setting Switch	Number	Setting	ON	OFF		
SW 01 02 03	SW01	Master/local station setting	Master station	Local station		

The above switches are only valid after the power is switched on or the CPU connected to the A1SJ71C24 is reset.

14.3.2 Setting of transmission specifications

	Switch	a	Switch Position							
Setting Switch	Number	er Setting	ON				OFF			
	SW02	Computer link/multidrop Computer link selection			Multidrop					
	SW03	Loopback self-check	Test mode				Data t	ransmiss	sion mo	de
01 02 03 04	SW04	Link process- ing for "down" slave station	Continue		Stop					
0K ← 05 □		Baud rate (BPS)	Unused	Unused	Unused	Unused	Unused	Unused	19200	38400
06 07 00 00 00 00 00 00 00 00 00 00 00 00	SW05	<u></u>	OFF	ON	OFF	ON	OFF	ON	OFF	ON
	SW06	Transmission speed setting	OFF	OFF	ON	ON	OFF	OFF	ON	ON
	SW07	opeed sering	OFF	OFF	OFF	OFF	ON	ON	ON	ON
	SW08	Data length	8 bits				7 bits			
L	SW09	Parity check	Yes			No				
	SW10	Parity setting	Even				Odd			
	SW11	Stop bit	2 bits				1 bits			
	SW12 Sum check SW12 enable/disable Yes setting				No					

Set the switches to positions marked

- (1) The above switch settings (SW02 to SW12) are only valid after the power is switched on or the PC CPU connected to the A1SJ71C24 is reset.
- (2) SW04 is valid for the A1SJ71C24 master station. When SW04 is ON and a slave station goes down, that station is disconnected from the link system and link processing continues. When recovered, the disconnected station automatically returns to the system. When SW04 is OFF and a slave goes down, link processing stops.
- (3) The baud rate may be set to 19.2 or 38.4 K BPS. When the A1SJ71C24 is a local station with an AJ71C22 master, set to 38.4 K BPS.
- (4) SW12 must be OFF.

14.3.3 Station number setting

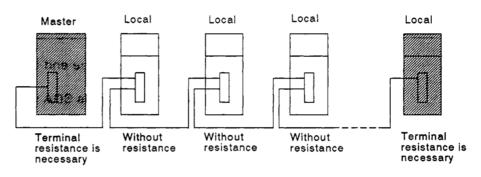
(1) When an A1SJ71C24 is used as a master station

Station setting switches are invalid.

(2) When an A1SJ71C24 is used as a local station

Only unit's place of station number setting switch is valid.

	Station Number Setting Switches	Application
1	0	Unused
[]	1	Station 1
6789	2	Station 2
$5(\Sigma)^{0}$	3	Station 3
432	4	Station 4
	5	Station 5
	6	Station 6
	7	Station 7
1	8	Station 8
	9	Unused


14.3.4 Connection of terminal resistance

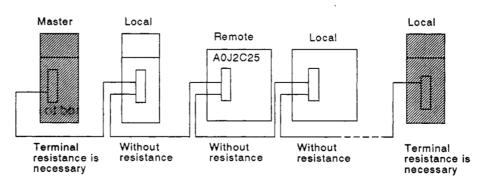
Connect terminal resistance to the stations at both ends of a system connected by cable.

An example of a connecting terminal resistance is given below.

- Modules to which a terminal resistance needs to be connected (1)
 - (a) When the following module is used as a master station:

A1SJ71C24	: RS-422 communication (terminal resistance: 330 Ω) or RS-485 (terminal resistance: 110 Ω)
A0J2-C214(S1)	: RS-422 communication (terminal resistance: 330 $\Omega)$
AJ71C22(S1)	: RS-422 communication (terminal resistance: 330 Ω)

A1SJ71C24

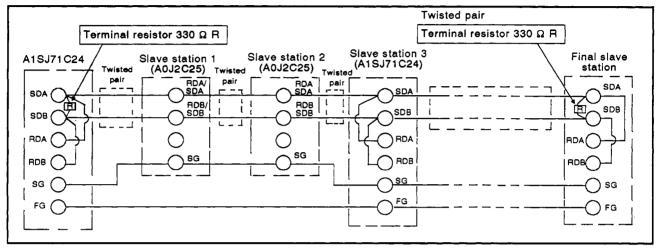

: Connect terminal resistance to the shaded modules.

(b) When the following module is used as a local station:

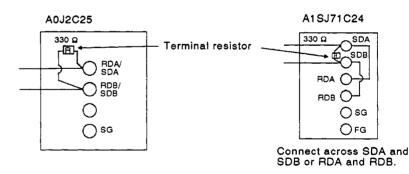
A1SJ71C24	: RS-422 communication (terminal resistance: 330 Ω) or RS-485 (terminal resistance: 110 Ω)
A0J2-C214(S1)	: RS-422 communication (terminal resistance: 330 $\Omega)$
A0J2C25	: RS-422 communication (terminal resistance: 330 Ω)

A1SJ71C24

A1SJ71C24



: Connect terminal resistance to the shaded modules.


14.4 External Wiring

14.4.1 Multidrop link connection

Connect the A1SJ71C24 and slave stations as shown below.

- (1) The A1SJ71C24 must be at the end as shown above.
- (2) Connect A1SJ71C24 terminals SDA with RDA and SDB with RDB.
- (3) Connect the following terminals between the stations:
 - SDA (or RDA) and SDA (or RDA)
 - SDB (or RDB) and SDB (or RDB)
 - SG and SG
 - FG and FG (not provided for the A0J2C25)
- (4) Connect a terminal resistor in the final slave station.

The terminal resistor should be used to ensure reliable data communication.

POINT

Communications using RS-422 or RS485 is possible in a multidrop link consisting of A1SJ71C24 modules only.

Conect terminal resistances of 330 Ω when RS-422 is used, or 110 Ω when RS-485 is used.

14.5 Self-loopback Test

The self loopback test is used to check that the A1SJ71C24 module is operating normally. This function is selected when SW03 is ON.

14.5.1 Procedure to carry out self-loopback test

The procedure to carry out the self-loopback test is as follows:

(Step 1) Connect the cables

Connect cables to the RS-422/485 terminal blocks as shown below.

Signal Names	Cable Connections
SDA	
SDB	├────────────────────────────────────
RDA	•
RDB	
SG	
FG	
NC	

- (Step 2) Set the transmission specification setting switch
 - (a) Master station
 - Turn SW01 (master station/local station setting switch) ON.
 - Turn SW02 (computer link/mulitdrop link setting switch) OFF.
 - Turn SW03 (self-loopback test setting switch ON.
 - Turn SW05 to SW07 (Transmission speed setting) to OFF/ON/ON(19200 BPS) or ON/ON/ON(38400 BPS).
 - (b) Local station
 - Turn SW01 (master station/local station setting switch) ON.
 - Turn SW02 (computer link/mulitdrop link setting switch) OFF.
 - Turn SW03 (self-loopback test setting switch ON.
 - Turn SW05 to SW07 (Transmission speed setting) to OFF/ON/ON(19200 BPS) or ON/ON/ON(38400 BPS).
- (Step 3) Execute the self-loopback test
 - (a) Turn ON power to the PC CPU or reset the PC CPU.

The A1SJ71C24 starts checking automatically.

(b) Checking

RS-422/485 is checked.

(The A1SJ71C24 executes checking automatically.)

The checking is completed within one second.

(c) Check the LED display status as described in Section 14.2.2.

Normal : Follow procedure (4) to complete the test.

Error : Correct the error and repeat the self-loopback test.

- (d) When checks are completed:
 - 1) Turn the power supply OFF.

- 2) Disconnect the cables. Connect the cables to perform multidrop link.
- 3) Turn SW03 (self-loopback test setting switch) OFF (data transmission mode).

14.5.2 Self-loopback test operations

Check Items	Check Descriptions	Normal Indicator LED		Error Indicator LED		Information Flow	
	Checks data sent from RS-422/485 con- nector. If normal, A1SJ71C24 changes data and the proce- dure is repeated. If not normal, an error is indicated. An error is indicated if no cable is con- nected.	SIOE. (LED NO.11)	OFF				
RS-422/485 communica- tions check		A1SJ71C24 changes data and the proce- dure is repeated. If not normal, an error is indicated. An error is indicated	SD (LED NO.1)	Flash-	SIOE. (LED NO.11) ON	RS-422/485	
		RD (LED NO.2)	ing			A1SJ71C24	

• The test continues even if an error occurred with a checking item.

а., **т**.,

15. A1SJ71C24 MASTER STATION

15.1 Functions

Item		Function	Ref. Section	
	Number of slave stations to be Set the number of slave stations to be accessed. accessed		15.3.1	
Initial setting	Transmission precedence	Set the order in which salve stations are accessed during transmission sequence cycles.	15.3.1	
-	Amount of data communicated between stations	Set the number of bits to be communicated with each slave station. Maximum for network: 512 (256/512 points selectable) Maximum per slave station: receive 128, transmit 128	15.3.3	
Off-communication station setting		Sets all points of send data, to be transmitted to a specified slave station, to OFF and ignores received data. Stores OFF data to buffer memory receive data area.	15.3.4	
Pre-transmission sequence		The A1SJ71C24 transfers initial data slave stations to check the initial setting. When the response is correct, the A1SJ71C24 proceeds to the data transmission sequence.	15.6	
Data transmission sequence		The A1SJ71C24 communicates with slave stations in accordance with the initial data.		
		 In the event that a slave station goes down during communication, + 1) That slave station may disconnected for continued network processing; or 2) Data transmission over the network may be stopped. *: When 1) is selected, the faulty station can return to the link system by a return request 		
Transmission time monitoring		The maximum and present transmission times can be monitored in batches to within 10 msec. (From buffer addresses 62H and 63H.)	15.3.7	
Loopback self-check		The RS-422/485 port can be self-checked.	14.5	

15.2 I/O Signals List for PC CPU

I/O device numbers depend on the A1SJ71C24 I/O unit number.

The device numbers indicated in the table below assume that the I/O unit number has been set to 0.

LEI SEC.A

(1) Input signals (A1SJ71C24 to PC CPU)

16 points from Xn0 to XnF are provided.

Device	Signal Name	Description
Xn0	During data transmission sequence	 On during normal data transmission sequence. Off indicates pre-transmission sequence or an error.
Xn1	Pre-transmission sequence error	 On indicates an error during pre-transmission sequence. Switched off when Y(n+1)1 is turned on.
Xn2	Data transmission sequence error (Valid when link processing setting is STOP (SW04 OFF).)	 On indicates an error during data transmission sequence. Switched off when Y(n+1)1 is turned on.
Xn3	Data transmission sequence error (Valid when link processing setting is CONTINUE (SW04 ON).)	 On indicates an error during data transmission sequence. Switched on by a return request when the faulty slave station retunes to the link system.
Xn4 to XnC	—	Reserved
XnD	WDT (Watch dog timer) error	 Switched on when the A1SJ71C24 watch dog timer times out.
XnE XnF	—	Reserved

POINT

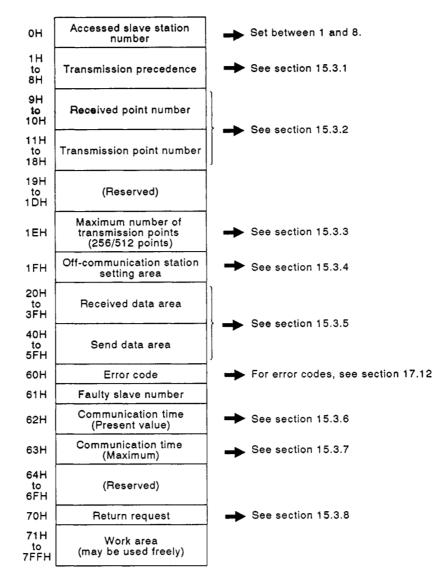
Yn0 to YnF which are unused by the A1SJ71C24 may be used as internal relays.

(2) Output signals (PC CPU to A1SJ71C24)

16 points from Y(n+1)0 to Y(n+1)F are provided.

Device	Signal Name	Description		
Y(n+1)0	Link start-up	 Switch on to start up the A1SJ71C24. Keep this signal on during operation. 		
. (Switch off to stop transmission. 		
Y(n+1)1	Error reset	 Use this signal to turn off Xn1 or Xn2. 		
Y(n+1)2 to Y(n+1)F	_	Reserved		

IMPORTANT


Y(n+1)2 to Y(n+1)F are reserved for the use by the system and cannot be used by sequence programs. If any of these devices in used (ON/OFF) by a sequence program, correct operation of the A1SJ71C24 are not guaranteed.

15.3 Buffer Memory

The A1SJ71C24 has a buffer memory for data communication with the A1SCPU. For data transfer between the A1SCPU and buffer memory, use the FROM and TO instructions.

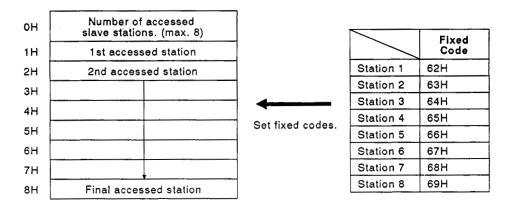
MELSEC-A

Buffer addresses are 16 bit locations.

POINT

Error codes (address 60H) must be removed from the buffer memory by resetting the PC.

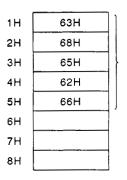
Codes are not cleared when the cause of the error is removed.


The error code in address 60H is always the most recent one.

15.3.1 Accessed slave station/transmission priority

Specify the number of slave stations to be accessed and their corresponding communication priority. Specify the number of slave stations at address OH and station codes at addresses 1H to 8H.

MELSEC-A


Data communication in mode in order of address numbers.

POINT

When the power is switched on or the PC CPU is reset, codes 62H to 69H are automatically written to addresses 1H to 8H by the OS as default values.

Example: Specify slave station communication priority as: stations 2, 7, 4,

Set the number of slave stations in buffer address OH.

1 and 5

POINTS

- (1) The "number of accessed slave stations" determines the maximum number of slave stations which may be accessed. If further stations are specified in the priority list, these are ignored.
- (2) Error code "33" is written to address 60H if:
 - 1) The same station number is repeated;
 - 2) The specified number of slave stations is greater than the number set in the priority list.
 (e.g. 5 stations specified at address 0H, but only three stations set to addresses 1H to 3H); or
 - 3) Any code other than 62H to 69H has been used in the priority list.

15.3.2 Number of communication data bits

Specifies the number of bits used for transmit and receive data communication. Specify the number of receive bits at addresses 9H and 10H and the number of transmit bits at addresses 11H to 18H. Note the following restrictions:

- (1) The total number of receive plus transmit bits for all stations must not exceed 256.
- (2) The number of receive data points per station must not exceed 128.
- (3) The number of transmit data points per station must not exceed 128.
- (4) Communication data must be specified in batches of 8 bits.

9Н	Station 1 setting	
AH	Station 2 setting	
вн	Station 3 setting	
СН	Station 4 setting	Number of bits of
DH	Station 5 setting	input data (Bits received)
EH	Station 6 setting	
FH	Station 7 setting	
10H	Station 8 setting	
11H	Station 1 setting	Ī
12H	Station 2 setting	
13H	Station 3 setting	
14H	Station 4 setting	Number of bits of
15H	Station 5 setting	output data (Bits transmitted)
16H	Station 6 setting	
17H	Station 7 setting	
18H	Station 8 setting	

POINT

If the communication data setting is not a multiple of 8, error code "33" is written to buffer address 60H.

Example:

	Station 1	Station 2	Station 4	Station 5	Station 7
Input	8	24	16	0	0
Output	16	8	16	16	16
101					

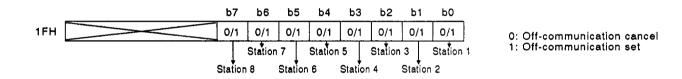
(Stations 1 and 2 = A0J2C25, stations 4, 5 and 7 = A1SJ71C24 local)

эн	8	
АН	24	
ВH	0	
СН	16	Dite and hard
DH	0	Bits received
EH	0	
FH	0	
10H	0	J
11H	16	
12H	8	
13H	0	
14H	16	
15H	16	Bits transmitte
16H	0	
17H	16	
18H	0	
		,

transmitted

15.3.3 Maximum number of transmission points setting area

This area is used to set the maximum number of transmission points, to be handled with remote and local stations, at 256 or 512 points. Write 0 or other number to buffer memory at address 1EH.


POINT

The transmission data storage procedure differs according to the setting (256 or 512 points).

If the setting is changed, setting of the read and write addresses used with the data transmission program needs to be modified.

15.3.4 Off-communication station setting area

This area is used to set slave stations to the off-communication station. Write 0 for off-communication cancel or 1 for off-communication set to the lower 8 bits of buffer memory at address 1FH.

15.3.5 Communication data

Communication data between the master and slave stations is written to the lower 8 bits of buffer addresses 20H to 5FH.

Received data is written to addresses 20H to 3FH. Data for transmission is written to addresses 40H to 5FH and then set to slave stations.

This data area must be assigned to slave stations in order of station numbers (ignoring the transmission priority) in accordance with the number of bits specified for communication, starting at address 20H or 40H. This is illustrated in the following example:

(1) When the maximum number of transmission points is set at 256.

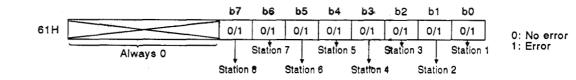
The following is the example of allocation of the transmission data storage areas when the maximum number of transmission points is set at 256 and the number of transmission points of each slave station is set as shown below.

	Station 1	Station 2	Station 3	Station 4
Receive points	8	24	0	48
Send points	24	16	24	16

Unused	ON/OFF data	
	(n+7)th point to *n*th point	
20H	Points 1 to 8 of received data of Station 1	
21H	Points 1 to 8 of received data of Station 2	
22H	Points 9 to 16 of received data of Station 2	
23H	Points 17 to 24 of received data of Station 2	
24H	Points 1 to 8 of received data of Station 4	
25H	Points 9 to 16 of received data of Station 4	
26H	Points 17 to 24 of received data of Station 4 Received dat	a
27H	Points 25 to 32 of received data of Station 4 storage area	
28H	Points 33 to 40 of received data of Station 4	
29Н	Points 41 to 48 of received data of Station 4	
2AH		
to		
3FH		
40H	Points 1 to 8 of received data of Station 1	
41H	Points 9 to 16 of received data of Station 1	
42H	Points 17 to 24 of received data of Station 1	
43H	Points 1 to 8 of received data of Station 2	
44H	Points 9 to 16 of received data of Station 2	
45H	Points 1 to 8 of received data of Station 3	
46H	Points 9 to 16 of received data of Station 3 Send data	
47H	Points 17 to 24 of received data of Station 3 storage area	
48H	Points 1 to 8 of received data of Station 4	
49H	Points 9 to 16 of received data of Station 4	
4AH		
to		
5FH	J	

(2) When the maximum number of transmission points is set at 512.

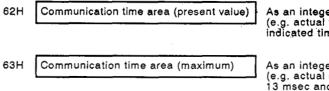
The following is the example of allocation of the transmission data storage areas when the maximum number of transmission points is set at 512 and the number of transmission points of each slave station is set shown below.


	Station 1	Station 2	Station 3	Station 4
Receive points	8	24	0	48
Send points	24	16	24	16

	(n+7)th point to (Higher 8 bit) to *n*th point ↓	(n+7)th point to (Lower 8 bit) to "n"th point	1
20H [Points 1 to 8 of received data of Section 2	Points 1 to 8 of received data of Section 1	
21H [Points 17 to 24 of received data of Section 2	Points 9 to 16 of received data of Station 2	
22H [Points 9 to 16 of received data of Section 4	Points 1 to 8 of received data of Station 4	
23Н [Points 25 to 32 of received data of Section 4	Points 17 to 24 of received data of Station 4	Received data
24H	Points 41 to 48 of received data of Section 4	Points 33 to 40 of received data of Station 4	storage area
25H			
to			
ЗFH			
40H	Points 9 to 16 of received data of Section 1	Points 1 to 8 of received data of Station 1	
41H	Points 1 to 8 of received data of Section 2	Points 17 to 24 of received data of Station 1	
42H	Points 1 to 8 of received data of Section 3	Points 9 to 16 of received data of Station 2	
43Н [Points 17 to 24 of received data of Section 3	Points 9 to 16 of received data of Station 3	Send data
44H [Points 9 to 16 of received data of Section 4	Points 1 to 8 of received data of Station 4	storage area
45H			
to			
5FH			

ON/OFF data

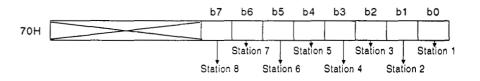
15.3.6 Faulty slave station indication


Errors are indicated (0: no error, 1: error) for the appropriate station in the lower 8 bits of address 61H.

- (1) With SW04 ON the faulty station is disconnected from the network which continues communication without that station.
- (2) The error indication is cleared when the faulty station returns to the network after a return request is given or when the pre-transmission sequence is restarted after the error has been reset.

15.3.7 Communication time

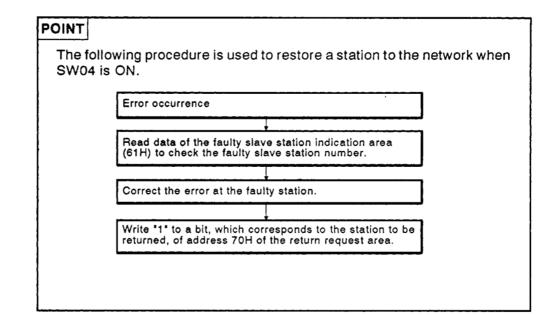
Each communication cycle time and the maximum cycle time are written in units of 10 msec.



As an integer multiple of 10 msec. (e.g. actual time = 7 msec, indicated time = 10 msec)

As an integer multiple of 10 msec (e.g. actual scan tomes = 8 msec, 13 msec and 21 msec, indicated maximum = 30 msec.)

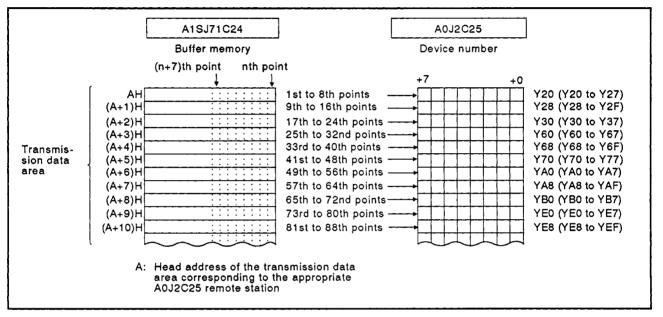
15.3.8 Return request


With SW04 ON writing 1 to the appropriate bit of address 70H returns the faulty station to the network.

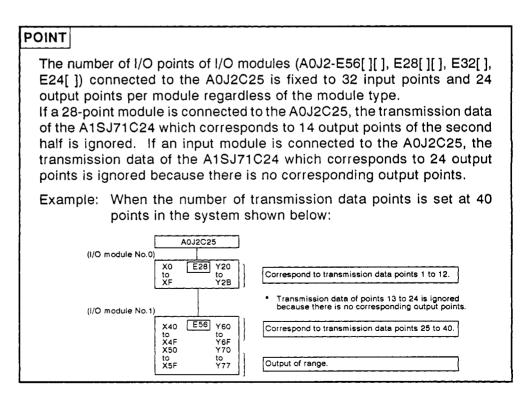
Writing 1 to the corresponding bit causes the pre-transmission sequence to be processed for the appropriate station.

If this is completed normally, the data transmission sequence is executed for the next scan.

(The corresponding bit is cleared when the OS receives the return request.

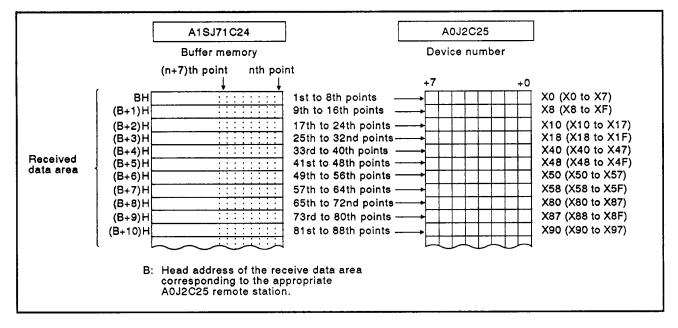

15 – 11

15.4.1 Communication with A0J2C25

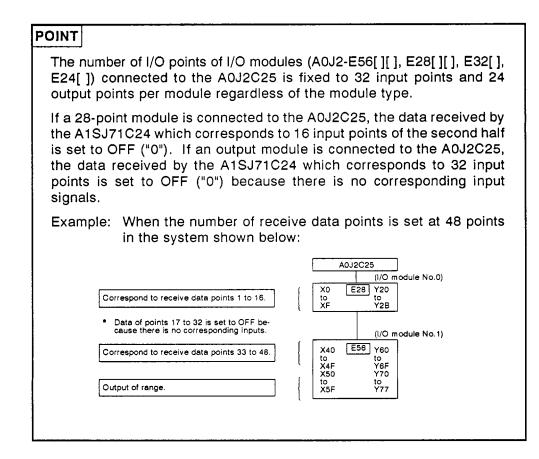

(1) Data transmitted from A1SJ71C24 to A0J2C25

Transmitted A1SJ71C24 buffer bits correspond to A0J2C25 outputs (Y) as indicated below:

MELSEC-A

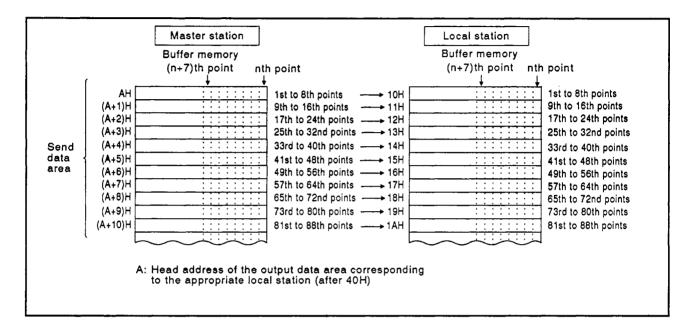


Writing ON/OFF data to the relevant A1SJ71C24 buffer transmission data bits switches the corresponding A0J2C25 outputs (Y) on or off, (e.g. "1" written to bit 0 (1st point) of address AH, switches Y20 on at the A0J2C25 station).



(2) Data received from A0J2C25 by A1SJ71C24

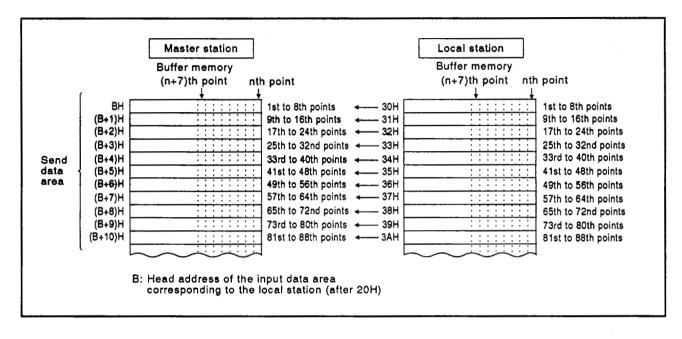
Bits received by the A1SJ71C24 buffer memory correspond to A0J2C25 inputs (X) as shown below:


Switching the A0J2C25 inputs on or off causes the corresponding A1SJ71C24 buffer bits to switch between 1 and 0 respectively. (e.g. switching X1 on at the remote station, causes bit 1 in buffer address BH to switch on)

15.4.2 Communication with local station (A1SJ71C24)

(1) Data output from master to local station

For data transmission from the master to the local station, master buffer bits correspond to local buffer bits as illustrated below.



Writing ON/OFF data to master buffer bits switches the corresponding local buffer bits on/off.

(e.g. "1" written to bit 0 of the master A1SJ71C24 buffer address AH, switches bit 0 of the appropriate local A1SJ71C24 buffer address 10H "on".)

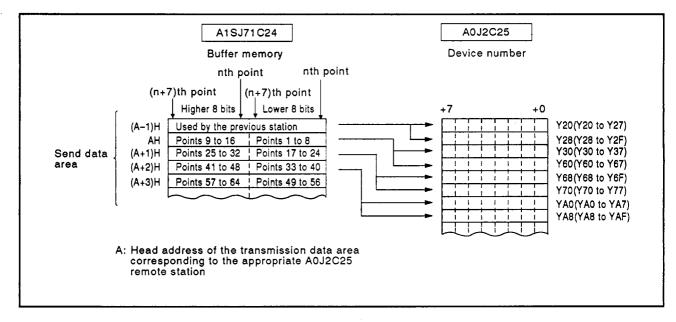
(2) Data input from the local to the master station

When receiving data from the local station, the master buffer bits correspond to the local buffer bits as shown below:

Writing ON/OFF data to local buffer bits switches the corresponding master buffer bits on/off.

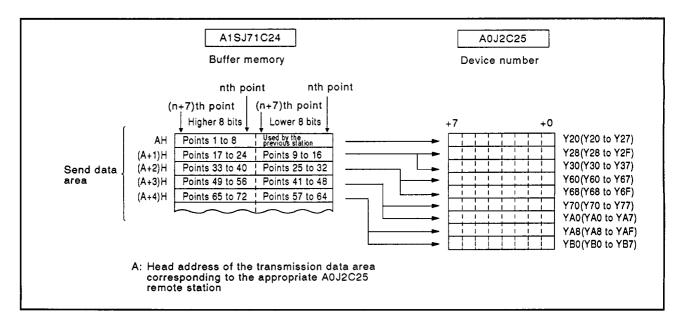
(e.g. "1" written to bit 0 of the local A1SJ71C24 buffer address 30H, switches bit 0 of the master A1SJ71C24 buffer address BH "on".)

15.5 Data Communication with Slave Stations when the Maximum Number of Transmission Points is Set at 512


This section describes the data communication between the A1SJ71C24 and slave stations (A0J2C25, A1SJ71C24 (local station)) when the maximum number of transmission points is set at 512.

ielgec.a

15.5.1 Communication with A0J2C25

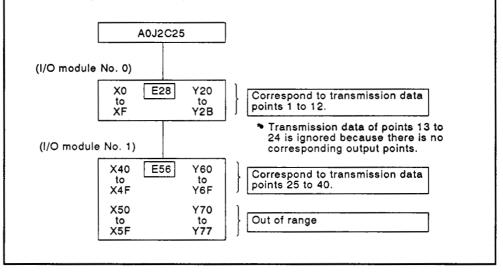

(1) Data transmission from A1SJ71C24 to A0J2C25

Transmitted A1SJ71C24 buffer bits correspond to A0J2C25 outputs (Y) as indicated below:

(a) When the previous station uses higher 8 bits

(b) When the previous station uses only the lower 8 bits

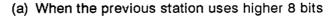
(c) Writing ON/OFF data to the relevant A1SJ71C24 buffer transmission data bits switches the corresponding A0J2C25 outputs (Y) on or off.

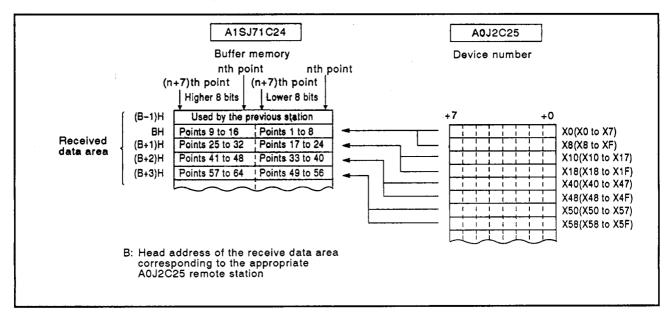

e.g. if "1" is written to bit 0 of address AH in the condition (a), or if "1" is written to bit 8 of address AH in the condition (b), Y20 at the A0J2C25 is switched on.

POINT

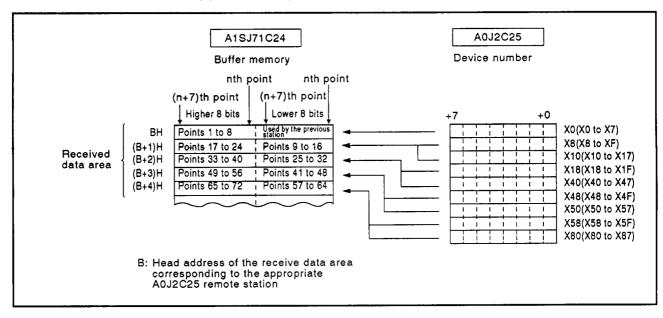
The number of I/O points of I/O modules (A0J2-E56[][], E28[][], E32[], E24[]) connected to the A0J2C25 is fixed to 32 input points and 24 output points per module regardless of the module type.

If a 28-point module is connected to the A0J2C25, the transmission data of the A1SJ71C24 which corresponds to 14 output points of the second half is ignored. If an input module is connected to the A0J2C25, the transmission data of the A1SJ71C24 which corresponds to 24 output points is ignored because there is no corresponding output points.


Example: When the number of transmission data points is set at 40 points in the system shown below.



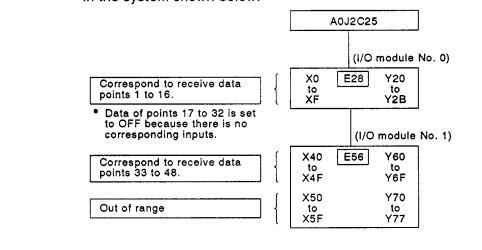
MELSEC-A


(2) Data received from A0J2C25 by A1SJ71C24

Bits received by the A1SJ71C24 buffer memory correspond to A0J2C25 inputs (X) as shown below:

(b) When the previous station uses only the lower 8 bits

(c) Writing ON/OFF data to the relevant A1SJ71C24 buffer transmission data bits switches the corresponding A0J2C25 outputs (Y) on or off.

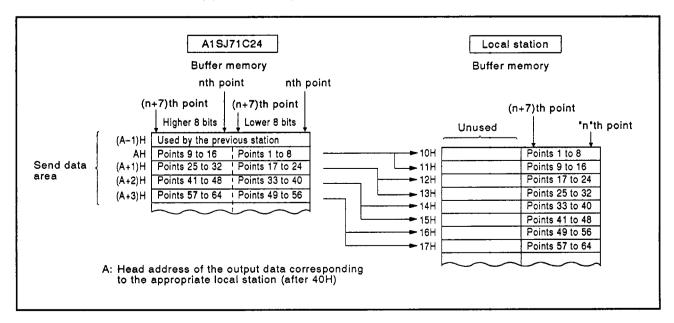

e.g. when X1 at the A0J2C25 is switched ON, "1" is written to bit 1 of address BH of the A1SJ71C24 in the condition (a), or to bit 9 of address BH in the condition (b).

POINT

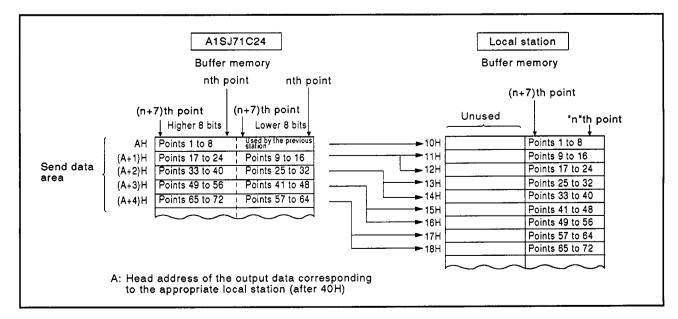
The number of I/O points of I/O modules (A0J2-E56[][], E28[][], E32[], E24[]) connected to the A0J2C25 is fixed to 32 input points and 24 output points per module regardless of the module type.

If a 28-point module is connected to the A0J2C25, the data received by the A1SJ71C24 which corresponds to 16 input points of the second half is set to OFF ("0"). If an output module is connected to the A0J2C25, the data received by the A1SJ71C24 which corresponds to 32 input points is set to OFF ("0") because there is no corresponding input signals.

Example: When the number of receive data points is set at 48 points in the system shown below:


MELSEC-A

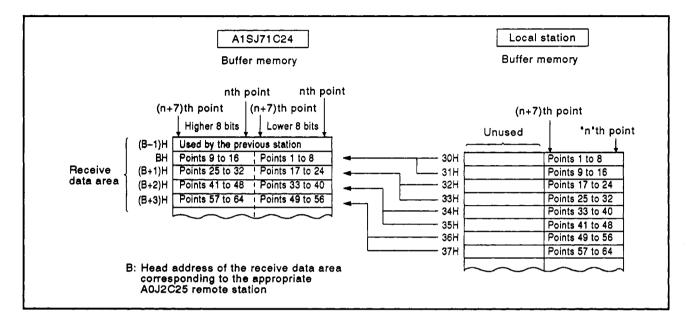
15.5.2 Communication with local station (A1SJ71C24)


(1) Data output from master to local station

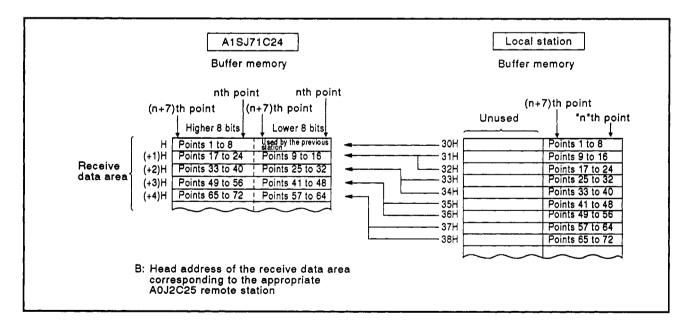
For data transmission from the master to the local station, master buffer bits correspond to local buffer bits as illustrated below.

(a) When the previous station uses higher 8 bits

(b) When the previous station uses only the lower 8 bits

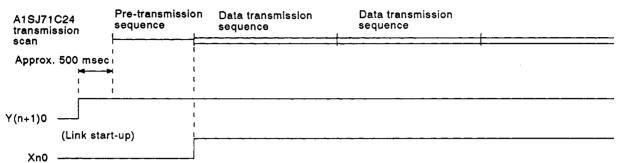


(c) Writing ON/OFF data to master buffer bits switches the corresponding local buffer bits on/off.


(e.g. "1" is written to bit 0 of address AH in the condition (a), or if "1" is written to bit 8 of address AH in the condition (b), bit 0 (point 1) of address 10H at the local station is set to "1". (2) Data input from the local to the master station

When receiving data from the local station, the master buffer bits correspond to the local buffer bits as shown below.

(a) When the previous station uses higher 8 bits


(b) When the previous station uses only the lower 8 bits

(c) Writing ON/OFF data to local buffer bits switches the corresponding master buffer bits on/off.

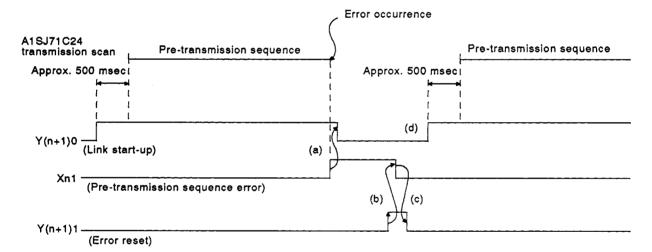
e.g. if "1" is written to bit 1 (point 2) of address 30H at the local station, bit 1 (point 2) of address BH at the master station in the condition (a), or bit 9 of address BH at the master station in the condition (b) is set to "1".

15.6 A1SJ71C24 Control

(During data transmission sequence)

- Approximately 500 msec after Y(n+1)0 is switched on, the pre-transmission sequence checks the link status and I/O points.
- (2) The pre-transmission sequence is for the processing which confirms connection with slave stations, number of I/O points, etc.
- (3) When the pre-transmission checks are complete, the data transmission sequence is started automatically and Xn0 is switched on. I/O data communication cycles are repeated between the master and slave stations in the order specified for the transmission priority.

Xn0 should be used as an interlock in the sequence program to prevent buffer memory transactions from being processed during the data transmission sequence.


(4) The data transmission sequence is for the I/O data send/receive processing with slave stations. Data communication is executed with slave stations in the order specified for transmission priority. After completing data transmission with all the set slave stations, data communication is executed with the first slave station. Data communication is repeated cyclically in this manner.

15.7 Error Control

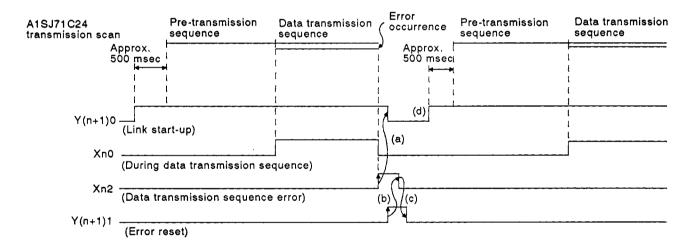
15.7.1 Pre-transmission error processing

- (1) Any error which occurs during the pre-transmission sequence, will cause communication with all slave stations to be stopped and:
 - (a) A1SJ71C24 Xn1 turns on;
 - (b) "SET E." LED on the A1SJ71C24 front is lit;
 - (c) The error code is written to buffer address 60H.
 - (For error codes, see Section 17.12)
- (2) Restart the pre-transmission sequence:
 - (a) Switch on Y(n+1)1 in the sequence program to reset the error.(Xn1 turns off automatically.)
 - (b) Switch on Y(n+1)0 in the sequence program.

(3) Sequence error and restart control timing chart

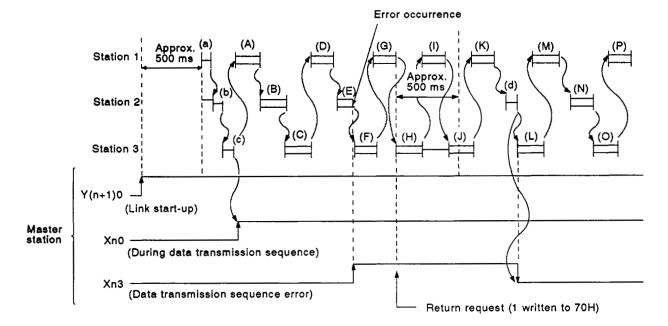
- (a) Switch on Xn1 to reset Y(n+1)0 (in the sequence program).
- (b) Switch on Y(n+1)1 in the sequence program, Xn1 automatically switches off.
- (c) When Xn1 turns off, Y(n+1)1 is switched off in the sequence program.
- (d) Switch on Y(n+1)0 in the sequence program, to restart the pre-transmission sequence.

15.7.2 Data transmission error processing


Any error which occurs during the data transmission sequence, will have one of the following effects: the faulty station may be disconnected from the network for continued link operation or communication between all stations may be stopped (depends on SW04 setting) and:

MELSEC-A

- (1) 1 (master): 1 (slave) ratio and SW04 off
 - (a) Xn2 switches on and Xn0 off.
 - (b) The "SCAN" LED on the A1SJ71C24 front turns off and the "SCAN E." LED is lit.
 - (c) The error code is written to buffer address 60H.
- (2) Restart the data transmission sequence:
 - (a) Switch on Y(n+1)1 in the sequence program to reset the error.


(Xn2 turns off automatically.)

- (b) Switch on Y(n+1)0 in the sequence program to execute the pre-transmission sequence.
- (3) Sequence error and restart control timing chart

- (a) Switch Xn2 on, to switch off Y(n+1)0 (in the sequence program).
- (b) Switch on Y(n+1)1 in the sequence program, Xn2 switches off automatically.
- (c) When Xn2 turns off, Y(n+1)1 is turned off in the sequence program.
- (d) Switch on Y(n+1)0 in the sequence program, to restart the pre-transmission sequence.

(4) 1 (master): n (slave) ratio and SW04 on

(3 slave stations in the following chart)

- About 500 ms after Y(n+1)0 switches on, the pre-transmission sequence is started at station 1 ((a)). ((a) → (b) → (c))
- After completion of the pre-transmission at the final station, the data transmission sequence is commenced at station 1 ((A)).
- For an error occurring at station 2 ((E)) during the data transmission sequence, the handshake signals between the A1SJ71C24 (master) and PC CPU and the data between the master and slave stations are transferred as follows:
 - When the error occurs, Xn3 turns on and the "ST. DWN" LED is lit.
 - 2) The data transmission sequence is stopped at station 2 and initiated at station 3.

This sequence is executed at stations 1 and 3 until station 2 returns to the link system.

 To return station 2 to the link system after the error is removed, "1" must be written to the appropriate bit of buffer address 70H in the sequence program.

The pre-transmission sequence is executed during the first communication with Station 2 at about 500 msec after a return request was issued.

When the pre-transmission sequence is complete at station 2, Xn3 and the "ST. DWN" LED automatically switch off.

MELSEC-A

15.8 Off-communication Control

The following describes the control processings when a slave station (A0J2C25, A1SJ71C24 (local station), manifold serial transfer device) is set to off-communication state by the master station.

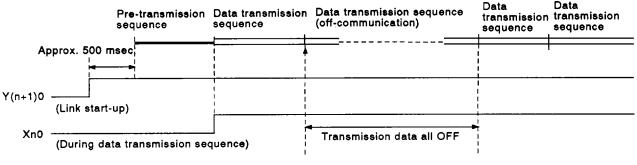
- (1) Control processings in off-communication state
 - (a) Setting and cancel of off-communication

Off-communication state is set by writing "1" or canceled by writing "0" to a bit which corresponds to a target slave station at address 1FH of buffer memory.

· 14日。

(Refer to Section 15.3 for detail of buffer memory.)

- (b) Transmission data in off-communication state
 - 1) Send data


OFF data is sent to an off-communication station regardless of data in the send data area which corresponds to the off-communication station.

2) Receive data

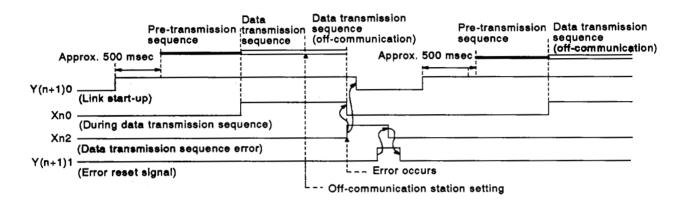
OFF data ("0") is written to the receive data area which corresponds to the off-communication station regardless of data received from the slave (off-communication) station.

(c) Timing chart

The following is the timing chart of control processings in off-communication state.

Off-communication state is set with buffer memory 1FH. ("1" Is written to a bit which corresponds to the target slave station.) Off-communication state is canceled with buffer memory 1FH. ("0" is written to a bit which corresponds to the target slave station.)

(2) Control processings when an error occurs in off-communication state


Control processings when an error occurs in off-communication state differ according to link process setting ("STOP" (SW04 OFF) or "CON-TINUE" (SW04 ON)) when an error occurs at a slave station, as described below:

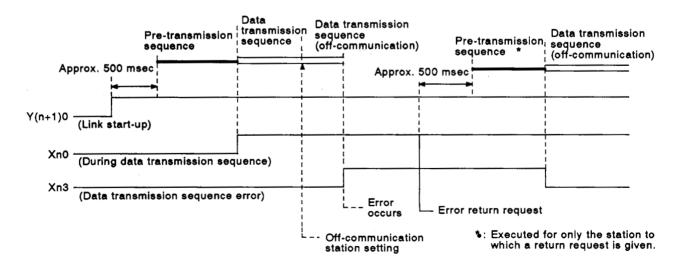
(a) When link process setting when an error occurs at a slave station is "STOP"

When an error occurs at a slave station or an off-communication station, the master station suspends the data transmission sequence.

When the link start-up signal is given after the error reset, the pre-transmission sequence starts after 500 msec, and then, the data transmission sequence starts restoring off-communication state.

The following is the timing chart of the control processings.

REMARK


The off-communication setting is not cleared by error occurrence (Xn2 ON) or error reset (Y(n+1)1 ON).

(b) When link process setting when an error occurs at a slave station is "CONTINUE"

When an error occurs at an off-communication station, the master station suspends communication with the station.

When an error return request signal is given, the pre-transmission sequence starts, and then, off-communication state is restored.

The following is the timing chart of the control processings:

15.9 Transmission Delay Time

During transmission between the A1SJ71C24 and a slave station, there is a delay until one receives data from the other.

ELSEC-A

The delay time per station may be found from the following expression.

When there are more than one slave station, add the delay times for each station.

Delay time= $\left(\frac{X}{8}\right) \times 0.74 + \left(\frac{Y}{8}\right) \times 0.86 + 6.1$ [msec]

where X = number of points input from a corresponding station

Y = number of points output to a corresponding station

15.10 Transmission Stop Detection Time

(1) Slave stations detect a A1SJ71C24 transmission stop in the order set as the transmission priority, starting at the slave station next to the one that made the final communication with the A1SJ71C24.

For example, if the A1SJ71C24 stops transmission during communication with station 3 and the transmission priority is set as 5, 2, 3, 1, 7, the order in which the slave stations detect the stopped transmission is 1, 7, 5, 2, 3.

- (2) Times required to detect stopped transmission:
 - (a) For the first detecting station

Max. 500 msec after the A1SJ71C24 stops transmission

(b) For other slave stations

$$\frac{10}{\text{Transmission speed}} \times (6 + \frac{X + Y}{4}) + 2 \text{ [msec]}$$
(19.2/38.4)

where X = number of input points at the preceding station

Y = number of output points at the preceding station

POINTS

- (1) The A0J2C25 switches all outputs off when a stop in transmission is detected.
- (2) The A1SJ71C24 buffer memory retains data after the transmission stop.
- (3) The A0J2CPU can detect a A1SJ71C24 transmission stop from the ON/OFF status of Xn0, Xn1 and Xn2. (For I/O unit number 0)

15.11 Programming

15.11.1 Notes on programming

- (1) The A1SJ71C24 buffer memory data is initialized by:
 - (a) Resetting the PC CPU; or
 - (b) Switching the PC power off then on
- (2) The initial data in the buffer memory is written to the A1SJ71C24 operating system (OS) when Y(n+1)0 switches on.

Hence data at buffer addresses 0H to 18H cannot be rewritten during the pre-transmission or data transmission sequence.

- (3) For transmission delays between the PC CPU and slave stations, see Section 15.9.
- (4) For details on the use of the FROM and TO instructions for data communication with the PC CPU, see the Programming Manual.

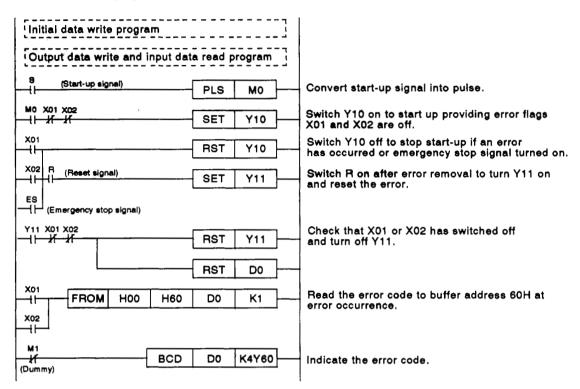
15.11.2 Initial data write

See Section 15.3 for buffer memory addresses,

PROGRAM CONDITIONS

- (1) A1SJ71C24 I/O unit number = 0............X00 to X1F, Y00 to Y1F
- (3) Transmission precedence...... Stations 1, 2, 5, 6, 4, 3
- (4) Transferred points.....

	Station 1	Station 2	Station 3	Station 4	Station 5	Station 6
Received points	16	8	32	16	0	0
Transmission points	16	8	32	8	16	16


PROGRAM EXAMPLE

I	S (Initial setting wr	ite command)						, 1	
ł	S (Initial setting wr					CJ	P0		
ł	M0 X01 X02 Y11					PLS	MO	Η	
ł	-1+17-17-17				MOV	K6	D0	\vdash	Set the number of slave stations
					MOV	H62	D1	┠┈┥	Set station 1 to precedence 1.
					MOV	H63	D2	\vdash	Set station 2 to precedence 2.
					MOV	H66	D3	\vdash	Set station 5 to precedence 3.
					MOV	H67	D4	\vdash	Set station 6 to precedence 4.
					MOV	H65	D5	Ì	Set station 4 to precedence 5.
					MOV	H64	D6	<u> </u>	Set station 3 to precedence 6.
					MOV	K16	D10		Set station 1 receive points to 16.
					MOV	K8	D11	iН	Set station 2 receive points to 8.
					MOV	K32	D12	íЦ	Set station 3 receive points to 32.
					MOV	K16	D13	j	Set station 4 receive points to 16.
					MOV	KO	D14	іщ	Set station 5 receive points to 0.
					MOV	КО	D15	í	Set station 6 receive points to 0.
					MOV	K16	D20	і́—	Set station 1 transmission points to 16.
					MOV	КВ	D21	Ĺ	Set station 2 transmission points to 8.
					MOV	K32	D22		Set station 3 transmission points to 32.
					MOV	K8	D23		Set station 4 transmission points to 8.
					MOV	K16	D24		Set station 5 transmission points to 16.
					MOV	K16	D25		Set station 6 transmission points to 16.
					MOV	K1	D23		The maximum number of transmission points is set for 512
			- TO					」 」	(Not necessary when the maximum number of transmission points is set for 256)
			<u>TO</u>	HO	HIE	D100	K1		Write the number of stations and transmission precedence
1			TO	HOO	<u>H0</u>	D0	. K7		to buffer addresses 0H to 6H. Write the number of received points to buffer addresses 9H
			<u>TO</u>	HOO	<u>H9</u>	D10	K6	1	to EH.
							Write the number of transmission points to buffer addresses 11H to 16H.		
°0	H Transmiss	ion data writ	e and r	eceive	d data r	ead pro	gram		
		nd error rese		 am			====	1	
								i	

15.11.3 Start-up and error reset

Assume the A1SJ71C24 I/O numbers to be X00 to X1F, Y00 to Y1F.

(1) When link process setting when an error occurs at a slave station is "STOP"

(2) When link process setting when an error occurs at a slave station is "CONTINUE"

Initial setting data write program									
Output data write and input data read program									
S Start eignal PLS M0									
M0 X01									
x3 ─-{	FROM	HOO	H61	D0	К1				
S2 	то	H00	H70	D0	K1				
Error return	request sig	nal							

The start signal is changed into a pulse. If either of error signals X01 and X02 is not ON, Y10 is turned ON to start.

When X3 is turned on indicating the occurrence of a faulty slave station, the faulty station number is read to D0.

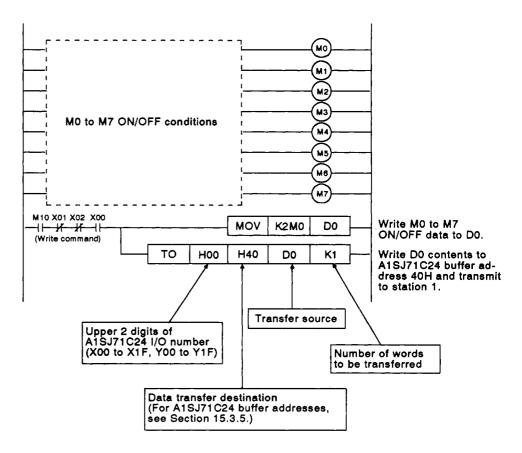
After the faulty station is recovered, the error return request is issued.

1

15.11.4 Transmission data write

PROGRAM CONDITIONS

- (1) A1SJ71C24 I/O addressesX00 to X1F, Y00 to Y1F
- (3) Number of outputs.....


\backslash	Station 1	Station 2	Station 3
Points	8	16	8

MELSEC-A

(4) M0 to M7 ON/OFF data is echoed at the 1st to 8th output devices in station 1.

PROGRAM EXAMPLE

To control the ON/OFF statuses of outputs at station 1

EXPLANATION

- (1) Data is written to the specified buffer memory addresses in the A1SJ71C24 by the TO instruction and is then automatically transmitted from the A1SJ71C24 to slave stations.
- (2) Data transmitted to stations 1 to 3 is written to the following A1SJ71C24 buffer addresses:

	Maximum Number of Transmission Points: 256	Maximum Number of Transmission Points: 512
Send data of points 1 to 8 of station 1	Lower 8 bits of address 40H	Lower 8 bits of address 40H
Send data of points 1 to 8 of station 2	Lower 8 bits of address 41H	Higher 8 bits of address 40H
Send data of points 9 to 16 of station 2	Lower 8 bits of address 42H	Lower 8 bits of address 41H
Send data of points 1 to 8 of station 3	Lower 8 bits of address 43H	Higher 8 bits of address 41H

IMPORTANT

The data store procedure of the send data area differs according to the setting of the maximum number of transmission points (256 or 512).

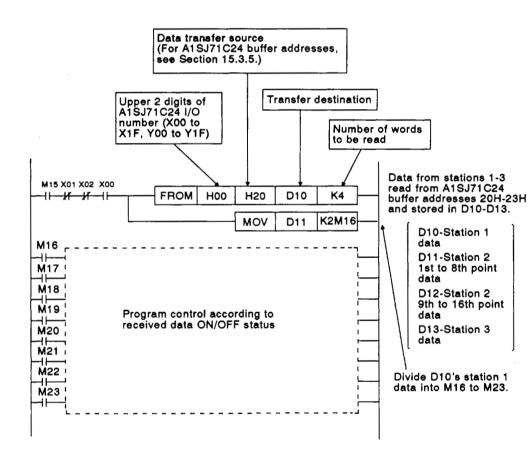
When the maximum number of transmission points is set at 512, and, if the TO instruction is executed every 8 bits as shown by M0 to M7 in the example, "0" (OFF) is written to all of higher 8 bits.

When the maximum number of transmission points is set at 512, data transmission should be executed in units of 16 bits (1 word).

15.11.5 Received data read

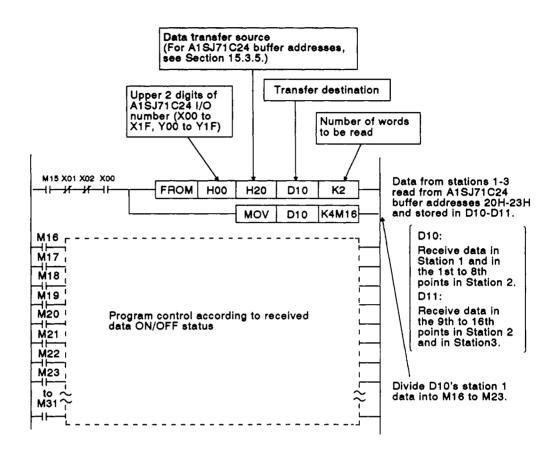
PROGRAM CONDITIONS

- (1) A1SJ71C24 I/O addressesX00 to X10, Y00 to Y10
- (3) Number of outputs.....


•••	/	Station 1	Station 2	Station 3
	Points	8	1 6	8

MEL SEC

(4) The ON/OFF statuses of 8 bits are read from station 2 to M16 to M23 in the CPU.


Program example: When the maximum number of transmission points is set at 256

To detect and control each point of received ON/OFF data.

Program example: When the maximum number of transmission points is set at 512

To detect and control each point of received ON/OFF data.

EXPLANATION

(1) Data is automatically received from slave stations and written to the specified buffer memory address in the A1SJ71C24.

Reading received data from the A1SJ71C24 buffer memory using the FROM instruction allows the received data ON/OFF status to be used in the sequence program.

(2) Data received from stations 1 to 3 is written to the following A1SJ71C24 buffer addresses:

	Maximum Number of Transmission Points: 256	Maximum Number of Transmission Points: 512
Receive data of points 1 to 8 of station 1	Lower 8 bits of address 20H	Lower 8 bits of address 20H
Receive data of points 1 to 8 of station 2	Lower 8 bits of address 21H	Higher 8 bits of address 20H
Receive data of points 9 to 16 of station 2	Lower 8 bits of address 22H	Lower 8 bits of address 21H
Receive data of points 1 to 8 of station 3	Lower 8 bits of address 23H	Higher 8 bits of address 21H

IMPORTANT

The data store procedure of the receive data area differs according to the setting of the maximum number of transmission points (256 or 512).

When the maximum number of transmission points is set at 512, read of higher 8 bits only of each address is disabled. It is necessary to prepare a program that executes the FROM instruction every word and then processes higher 8 bits only by use of the sequence program.

15.11.6 Off-communication station set/cancel program

The following is the example of a program used to set and cancel off-communication stations.

(The I/O numbers of the A1SJ71C24 are X00 to X1F and Y00 Y1F.)

Off-communication set command

MOV Kn D1 то H1F D1 но **K1** Off-communication cancel command MOV K0 D2 state. то но H1F D2 K1

When the off-communication set command is turned ON, a bit which corresponds to the off-communication station is set to D1.

When data of D1 is written to buffer memory address 1FH, the station which corresponds to the bit of the address is set to off-communication state.

By writing "0", off-communication setting is canceled.

MELSEC-A

16. MULTIDROP LOCAL STATION

16.1 Functions

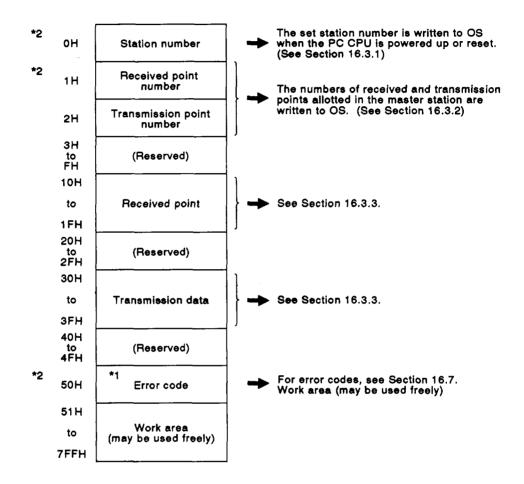
ltem	Function	Ref. Section
Pre-transmission sequence	The A1SJ71C24 receives initial data from the master and responds.	
Data transmission sequence	After the pre-transmission sequence, the A1SJ71C24 communicates with the master.	16.4
Loopback self-check	RS422 port can be checked.	14.5

16.2 Input Signals List for PC CPU

Input device numbers depend on the A1SJ71C24 I/O unit number.

The following device numbers assume that the I/O unit number has been set to 0.

Device Number	Signal Name	Description
Xn0	During data transmission sequence	 On indicates normal data transmission sequence. Off indicates pre-transmission sequence or an error
Xn1	Pre-transmission sequence error	 On indicates an error during pre-transmission sequence. Switched off when the pre-transmission sequence with the master is normalized.
Xn2	Data transmission sequence error	 On indicates an error during data transmission sequence. Switched off when the pre-transmission sequence with the master is restored.
Xn3 to XnC	_	• Reserved
XnD	Watch dog timer (WDT) error	 Switched on when the A1SJ71C24 WDT times out.
XnE XnF		• Reserved


IMPORTANT

- (1) Yn0 to YnF, which are unused by the A1SJ71C24, may be used as internal relays.
- (2) I/O signals marked "Reserved" cannot be used.

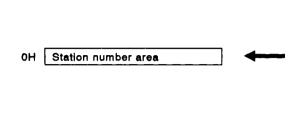
16.3 Buffer Memory

The A1SJ71C24 has a buffer memory for data communication with the PC CPU. For data transfer between the PC CPU and buffer memory, use the FROM and TO instructions.

Buffer addresses are 16 bit locations.

POINTS

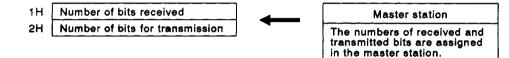
*1: Error codes (address 50H) must be removed from the buffer memory by resetting the PC.


Codes are not cleared when the cause of the error is removed.

The error code in address 50H is always the most recent one.

*2: Do not write data to the OS control areas.

16.3.1 Station number


The station numbers are converted into fixed codes and are written to this area when the PC CPU is powered up or reset.

	Fixed Code
Station 1	62H
Station 2	63H
Station 3	64H
Station 4	65H
Station 5	66H
Station 6	67H
Station 7	68H
Station 8	69H

16.3.2 Number of bits received/transmitted

The numbers of received and transmitted bits assigned by the master station are written to their respective areas on completion of the pre-transmission sequence.

POINT

This data is written automatically from the master station.

Do not write data to the station number and received/transmitted point number areas.

16.3.3 Communication data

Communication data between the master and slave stations is written to the lower 8 bits of buffer address 10H to 3FH.

The received data is written to the received data area and data for transmission must be written to the transmission data area from the sequence program as illustrated below.

Example: Transmission/received data = 24 bits each	Upper 8 bits (not used), lowe	er 8 bits	_	
-	8 point ON/	OFF data		
	(n+7)th point	nth	point .	
Data received from master to 1FH	. 1 . 1 . 0 .	1 1 1 0 1 0 1 1 0 1 0 0 1 0 0 0	1st to 8th points 9th to 16th points 17th to 24th points	Received data PC CPU uses FROM in- struction to read this data from the buffer memory.
Data trans- mitted to master 30H 31H 32H	0 0 1	0:1:1:0:0 1:1:0:1:1 0:1:1:1:1:1 \$	1st to 8th points 9th to 16th points 17th to 24th points	Transmission data PC CPU uses TO instruction to write this data to the buffer memory.

16.4 A1SJ71C24 Control

A1SJ71C24 transmission	Initialization	Wait for pre-transmis- aion sequence	Pre- transmission sequence	Data transmission sequence	Data transmission sequence	Data transmission sequence
scan				, 1 1		
Power –						
Xn0		·····		Í		· · · ·

(1) Pre-transmission sequence

When the power is switched on, the A1SJ71C24 is initialized and waits for the pre-transmission sequence from the master station.

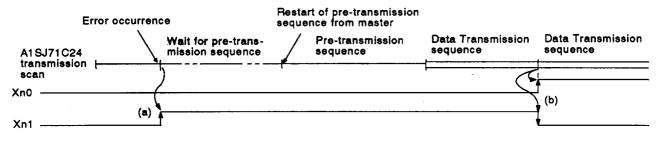
- (2) During the pre-transmission sequence, the local A1SJ71C24 confirms the link status and I/O points.
- (3) Data transmission sequence

When the pre-transmission checks are complete, the data transmission sequence is started automatically.

After the first transmission sequence is finished, Xn0 is switched on (Assuming that the I/O unit number is 0).

The transfer of data between the A1SCPU and A1SJ71C24 buffer must be started in the sequence program after Xn0 switches on.

(4) When the master A1SJ71C24 is connected to several slaves, Xn0 is switched on after completion of the first data transmission sequence.

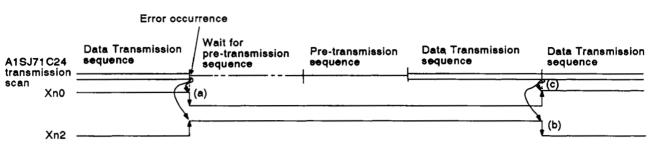

16.5 Error Control

16.5.1 Pre-transmission error processing

- (1) Any error which occurs during the pre-transmission sequence, will cause transmission to the master station to be stopped and:
 - (a) A1SJ71C24 Xn1 switches on;
 - (b) "SET E." LED on the A1SJ71C24 front is lit;
 - (c) The error code is written to buffer address 50H.

(For error codes, see Section 16.7)

- (2) Sequence restart is controlled by the master after the error is removed.
- (3) Sequence error control timing chart


- (a) The error switches Xn1 on.
- (b) After the pre-transmission sequence is completed without fault. Xn1 switches off automatically.

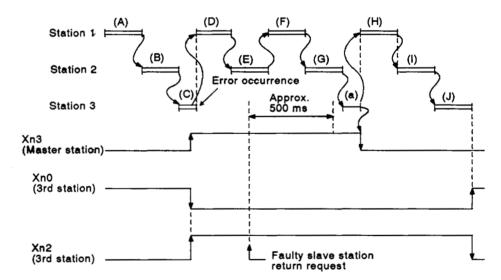
16.5.2 Data transmission error processing

- (1) Any error which occurs during the data transmission sequence, will cause communication with the master station to be stopped, and:
 - (a) Xn2 switches on.
 - (b) The "SET E." LED on the A1SJ71C24 front is lit.
 - (c) The error code is written to buffer address 50H.

(For error codes, see Section 16.7)

- (2) Sequence restart is controlled by the master after the error is removed.
- (3) Sequence error control timing chart.

(a) 1 (master): 1 (slave) ratio and SW04 off


- 1) The error switches Xn0 off and Xn2 on.
- 2) Xn2 automatically switches off on normal completion of the restarted pre-transmission sequence.

MELSEC.A

 Xn0 switches on after completion of the first restarted data transmission sequence.

POINT

When an error occurs during the data transmission sequence, the received data area is not cleared.

(b) A1SJ71C24 as local station n and master station SW04 on (n = 3)

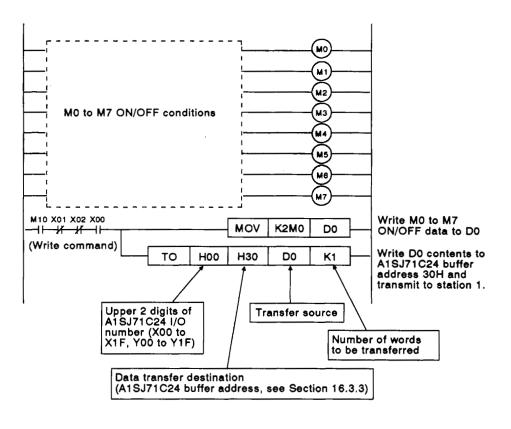
- If an error occurs during the data transmission sequence ((C)) with station 3, the master station stops communication with station 3 and initiates the data transmission sequence with station 1 ((D)). Approx. 500 ms after the return request is given from the master station, the pre-transmission sequence is initiated at station 3. If this is completed without fault, then the data transmission sequence ((J)) is restarted.
- 1) The error switches Xn0 off and Xn2 on.
- Xn0 switches on, Xn2 switches off when the data transmission sequence is completed ((J)) after the pre-transmission sequence at station 3.

16.6 Programming

16.6.1 Notes on programming

- (1) The A1SJ71C24 buffer memory data is initialized by:
 - (a) Resetting the PC CPU; or
 - (b) Switching the PC power off then on.
- (2) The initial data (0H to 2H) in the buffer memory is written to the A1SJ71C24 OS during the pre-transmission sequence.
- (3) Hence data at buffer addresses 0H to 3H should not be rewritten during the pre-transmission or data transmission sequence.
- (4) The PC CPU for transmission delays between the PC CPU and master station, see Section 15.9.
- (5) The PC CPU for details on the use of the FROM and TO instructions for data communication with the PC CPU, see the Programming Manual.
- (6) When the maximum number of transmission pints of the master station is set at either 256 or 512, a program used with local stations does not change.

16.6.2 Transmission data write


PROGRAM CONDITIONS

- (1) A1SJ71C24 I/O addressesX00 to X1F, Y00 to Y1F
- (2) M0 to M7 ON/OFF data is echoed at the 1st to 8th output devices at the master station.

MELSEC-A

PROGRAM EXAMPLE

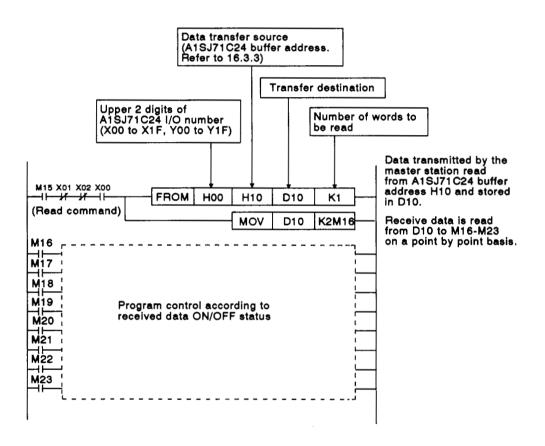
To control the ON/OFF statuses of outputs at the master station

EXPLANATION

(1) Data is written to the specified buffer memory addresses in the A1SJ71C24 by the TO instruction and is then automatically transmitted from the A1SJ71C24 to the master station.

1st to 8th device data Address 30H

For further details, see Section 16.3.3.


16.6.3 Received data read

PROGRAM CONDITIONS

- (1) A1SJ71C24 I/O addressesX00 to X10, Y00 to Y10
- (2) The ON/OFF statuses of 8 bits in the master station are echoed at M16 to M23 in the A1SCPU.

PROGRAM EXAMPLE

To detect and control each point of received ON/OFF data.

EXPLANATION

(1) Data written from the master station is automatically stored in the specified buffer memory addresses in the A1SJ71C24.

Reading received data from the A1SJ71C24 buffer memory using the FROM instruction allows the received data ON/OFF status to be used in the sequence program.

1st to 8th device data Address 10H

For further details, see Section 16.3.3.

[TROUBLESHOOTING]

This section explains troubleshooting procedures if an error occurs when a computer link function or multidrop link function of an A1SJ71C24 is used.

- •

MELSEC-A

17. TROUBLESHOOTING (COMPUTER LINK FUNCTIONS)

This section describes errors which can occur with the computer link functions.

17.1 NAK Error Codes with Dedicated Protocols

Table 17.1 gives the error codes and their descriptions when the NAK code is transmitted between the computer and the PC CPU as 2-digit ASCII (hexadecimal) between 00H and FFH.

If several errors occur simultaneously, the code with the lowest number takes precedence and is transmitted.

If any of the following errors occur, the transmission sequences are initialized and LED NEU (LED No. 8) is turned ON.

Error Code (Hexadecimal)	Error	Error Description	Indicator LED No.	Corrective Actions
оон	Disable during RUN	 Invalid access has been made during RUN. (1) Data has been written to a A1SCPU with the SW04 OFF (write disable during RUN). (2) Sequence program and parameters have been written. 	C/N (LED No.11)	 Start communicationss after turning ON SW04. Write parameters after set- ting the A1SCPU to STOP.
01H	Parity error	Parity error With the SW09 ON (parity enabled), the parity check result does not match the state of SW10 (odd/even parity).	P/S (LED No.12)	Check control protocol, change the SW setting or data.
02H	Sum check error	Sum check error With the SW12 ON (sum check enabled), the sum check result of received data does not match the sum check code of transmitted data, i.e., send data is dif- ferent from received data.	P/S (LED No.12)	Check data transmitted from computer and sum check result. Correct invalid data.
03Н	Protocol error	Communications protocol not valid. Communications have been made with a protocol different from the one set by the mode setting switch.	PRO (LED No.14)	Check and correct the mode setting switch position and control protocol and restart data communications.
04H	Framing error	Framing error Data does not match the setting of SW11 (stop bit).	SIO (LED No.14)	Change the setting of SW11 or the control protocol.
05H	Overrun error	Overrun error New data has been transmitted before A1SJ71C24 receives all the preceding data.	SIO (LED No.14)	Decrease the data transmis- sion speed and restart data communications.
06H	Character area error	 Character area A, B, or C error, or designated command does not exist. (1) The designation of the character area A, B, or C for the control protocol set with the mode setting switch is not correct. (2) A command used with the protocol does not exist. (For example, a subsequence program was designated to be used with A1SCPU.) The set device number does not exist in the set PC CPU. (3) The device number is not set with the required number of characters. (ACPU common command: 5 characters, AnACPU dedicated command: 7 characters) 	PRO (LED No.13)	 Check and correct the character area A,B, or C and restart data communications. See the functions list in Section 5.2.1 and the A1SCPU User's Manual to correct the designated commands, and restart data communications. See Section 10.7.1 to correct the number of setting characters of the device number, and restart data communications.

Table 17.1 Error Code List

17. TROUBLESHOOTING (COMPUTER LINK FUNCTIONS)

MELSEC-A

Error Code (Hacadecimal)	Error	Error Description	Indicator LED No.	Corrective Actions
07H	Character error	Character error received.	PRO	Check and correct data.
		A character other than "A to Z", "0 to 9", "_" and control codes in Section 10.4.5 (1) has been	(LED No.13)	
08H	PC CPU access error	Buffer memory is unable to make communica- tions with the PC CPU.	C/N (LED No.11)	Use a PC CPU which can per- form data communications.
		The PC CPU is not the type mentioned in Section 2.2.		
10H	PC CPU number error	Defined PC CPU number does not exist.		Change the PC CPU number
		The PC CPU number designated with the protocol was not the self (FFH) or a sta- tion number set with the MELSECNET link parameters.	C/N (LED No.11)	to the self (FFH) or a station
11H	Mode error	Incorrect communications between an A1SJ71C24 and a A1SCPU.	_	Restart data communications. If the error recurs, (a) check for noise and/or other causes, or (b) replace the A1SJ71C24. Restart data communications.
		After the A1SJ71C24 has correctly received a request from the computer, nor- mal data communications is not performed between the A1SJ71C24 and A1SCPU due to noise or some other reason.		
	Special function module designa- tion error	Special function module designation error.		Check control protocol data or change the special function 1) module location.
12H		A special function module, having buffer memory and capable of performing data communications, is not placed in the desig- nated special function module number's position. Or the module number is wrong.	C/N (LED No.11)	
13H	Program step number designa- tion error	Error in the designation of a sequence pro- gram step number.	PRO (LED No.13)	Designate a step number which lies within the desig- nated range, or change the parameters and restart trans- mission.
		A step number was designated which lies outside the program range designated by the PC CPU parameters.		
18H	Remote error	Remote RUN/STOP impossible.	PRO (LED No.13) Check for and reset remote STOP/PAUSE from another module.	
		Remote STOP/PAUSE has already been executed from another module (such as another A1SJ71C24).		STOP/PAUSE from another
20H	Data link error	Access was made to a station with which communications has been discontinued.	C/N (LED No.11)	Check the state of data link.
21H	Special function module bus error	 Memory access to the special function module cannot be made (for command TR, TW). (1) Special function module control bus error. (2) Special function module breakdown. 	C/N (LED No.11)	A1SCPU, base unit, special function module or A1SJ71C24 hardware fault. Consult the nearest Mitsubishi representative.

REMARKS

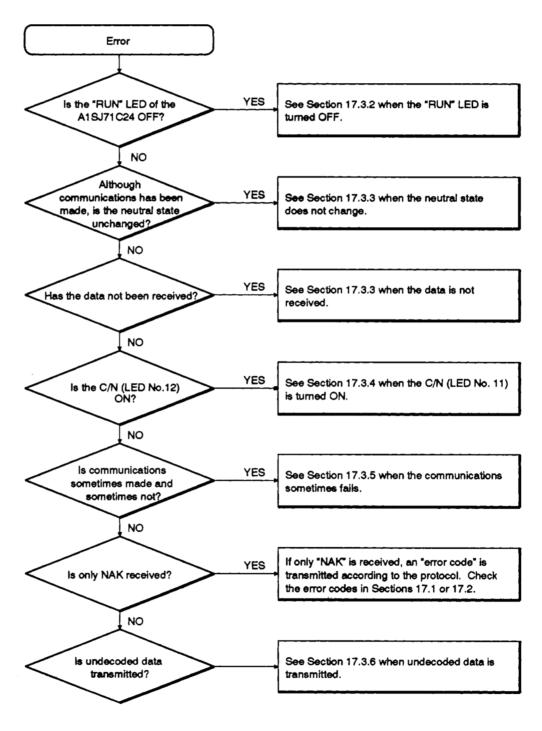
- (1) Error codes 00H to 08H are transmitted to a computer after diagnosis by an A1SJ71C24, when access is made by the computer to the A1SJ71C24.
- (2) Error codes 10H to 21H are transmitted from an A1SJ71C24 to a computer after diagnosis by a PC CPU when access is made by an A1SJ71C24 to the PC CPU.

17.2 Bidirectional Mode Error Codes

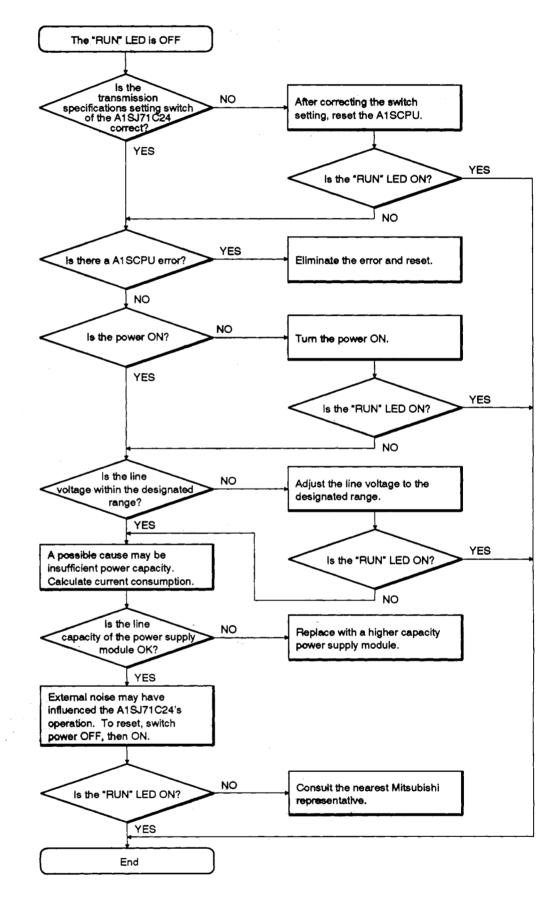
Table 17.2 gives the error codes, error descriptions, and corrective actions for errors which may occur during bidirectional mode communications.

The following error codes (1-word integers) are transmitted in order of the lower byte and the higher byte immediately following the NAK code when an error has occurred. (e.g., when the error code is 01_H , 01_H is transmitted first, and then 00_H is transmitted.)

Error Code (Hexadecimal)	Error Descriptions	Corrective Actions
01H	Send data length error	Either (a) make the setting size of the send data length storage area in the buffer memory for bidirectional transmission smaller than the size of the send data storage area, or (b) set the send data length to "1" or greater. (Data which does not have a data part cannot be transmitted using the bidirectional mode.)
02H	Response message time-out error	Set the computer so that it transmits the response mes- sage (in response to the data received from the A1SJ71C24) to the A1SJ71C24 within the set value of the time-out time setting area (address 113H) in the A1SJ71C24 buffer memory.
03H	Simultaneous transmission error	Either (a) interlock the computer with the A1SJ71C24 so that they cannot begin transmitting data simultaneously to each other, or (b) set the data valid/invalid setting area (ad- dress 114H) in the A1SJ71C24 buffer memory to "valid".
10H	Error code is not received when the NAK code is received	When the computer transmits the NAK code to the A1SJ71C24 in response to the data received from the A1SJ71C24, an error code should be added immediately after the NAK code.
22H~5FH	Errors designated by the user	These error codes are added to immediately after the NAK code. Take corrective actions according to the procedure fixed by user.
80H	SIO error at data receive Framing error Overrun error	 Transmit data from the computer according to the following settings with the A1SJ71C24 (see Section 6.3.2 for SW01 to SW11). Data bit length with SW08 Transmission speed with SW05 to SW07 Stop bit length with SW11 Use insulation transformers (noise-cutting transformers)
		to eliminate noise.
81H	Check sum error Parity error (only at data receive)	• To transmit the check sum to the A1SJ71C24, obtain the check sum as described in Section 12.5.2. Set the check sum enable/disable setting area (address 115H) in the A1SJ71C24 buffer memory to "disable", so that the check sum is not transmitted.
		 Transmit data from the computer according to settings with SW09 and SW10 of the A1SJ71C24.
83H	Received data length error	Either (a) make the data part length and the set value of the data part length of the receive message less than the size of the received data storage area, or (b) transmit correctly the data length (0001 H or more) contained in the message which is transmitted to the A1SJ71C24. (Data which does not have the data part cannot be transmitted using the bidirectional mode.)
83H	Received data time-out error	When data is transmitted from the computer, set the actual length of the data part to the data length part. (The A1SJ71C24 executes the time-out check (as set with address 113H of the buffer memory) if it fails to receive data of a set length. This error occurs when it fails to receive the next data within the set time.)

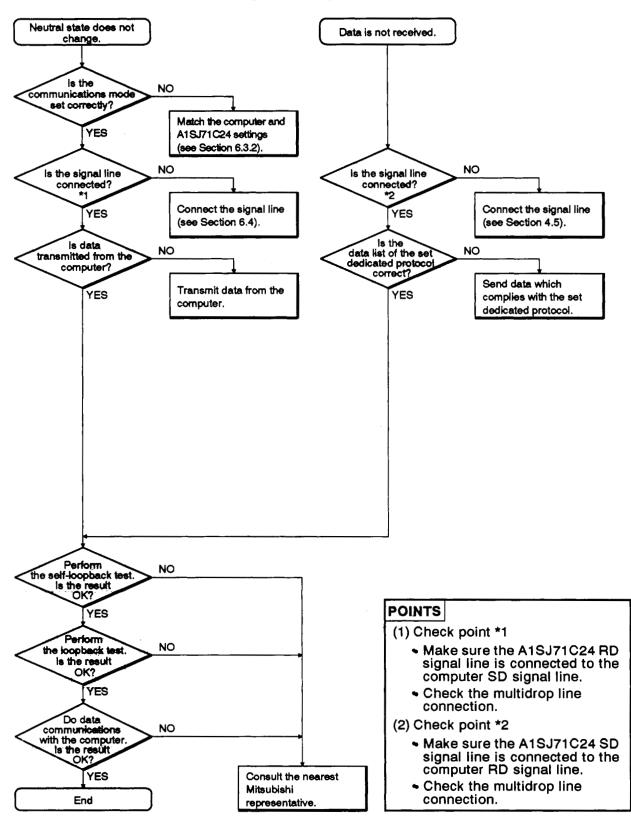

Table 17.2 Error Code List

17.3 Troubleshooting OFF


This section describes basic troubleshooting procedures for the computer link functions. The User's Manuals give information on PC CPU module troubleshooting.

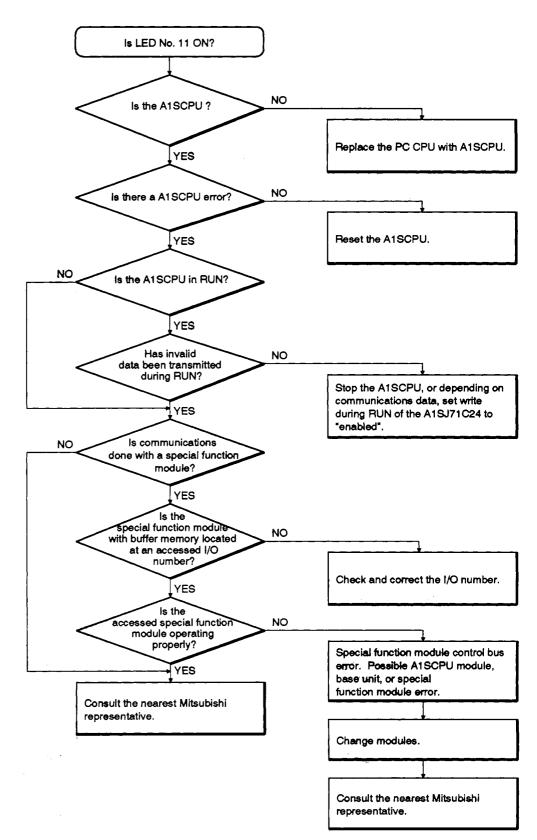
17.3.1 Troubleshooting flow chart

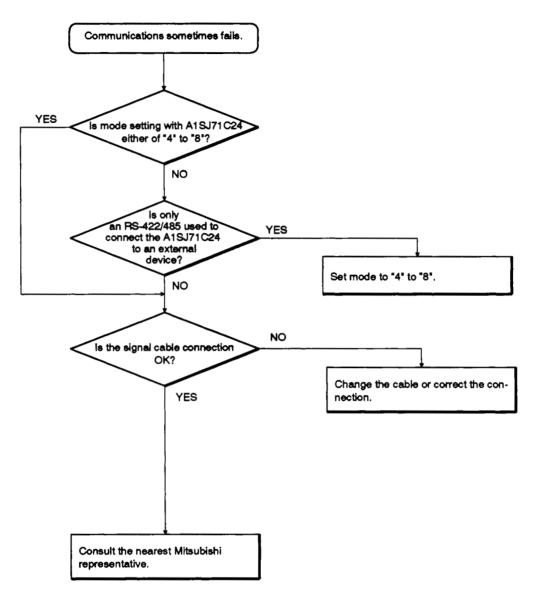
The state of errors is described as follows:


17.3.2 When the "RUN" LED is turned OFF

17 – 5

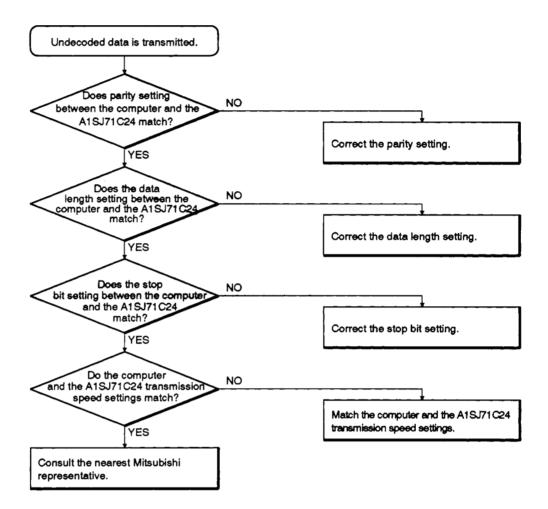
17.3.3 When the neutral state does not change or data is not received


The A1SJ71C24 LED remains ON indicating (a) the neutral state, or (b) that communications is disabled (even though a communications request is made to the A1SJ71C24). The computer cannot receive data.


- MELSEG-A

17.3.4 When the C/N (LED No. 11) is turned ON

Flow chart to use when the C/N (LED No. 11) on the A1SJ71C24 panel turns ON.



17.3.5 When communications sometimes fails

17.3.6 When undecoded data is transmitted

Use this flow chart when the A1SJ71C24 (in response to data from the computer) transmits code and data which is not included in the control code.

18. TROUBLESHOOTING (MULTIDROP LINK FUNCTIONS)

This chapter describes errors which can occur with the multidrop functions.

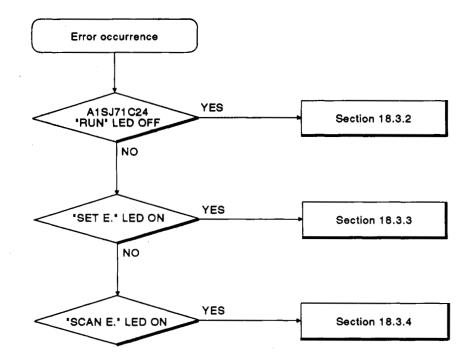
18.1 Error Codes (Master Station)

During data transmission between the A1SJ71C24 and slave stations appropriate error codes are written to buffer address 60H to define the error as follows:

Error Code (Hexadec imal)		Description		LED Signal	Remedy
01H (1)			During communication with station 1		
02H (2)			During communication with station 2		
03H (3)		Any of the following er- rors has occurred during	During communication with station 3		
04H (4)		pretransmission se- quence.	During communication with station 4		 Check initial data. Check DIP switches. Check slave station
05H (5)	Pretransm ission se-	 Initial data setting error DIP switch setting error 	During communication with station 5	SET E. ON	 power. 4) Check cable. 5) Check terminal resistor.
06H (6)	quence	 Cable connection error Data communication error 	During communication with station 6	Xn1 ON	S) Check terminal resistor.
07H (7)			During communication with station 7		
08H (8)			During communication with station 8		
09H (9)		Initial data has not been tra memory to the RS-422/485 buffer.			 Check the number of FROM/TO instructions. Hardware fault
11H (17)		Any of the following er- rors has occurred during with station 3	ĺ		
12H (18)					
13H (19)			During communication with station 3		
14H (20)		data transmission se- quence.	During communication with station 4		1) Check slave station
15H (21)	Data transmis- sion se-	 Cable error Data communication error 	During communication with station 5	SCAN E. ON	power. 2) Check cable
16H (22)	quence		During communication with station 6	Xn2 ON	
17H (23)		· · · · ·	During communication with station 7	• * * •	
18H (24)	}		During communication with station 8		
19H (25)		Data cannot be transferred memory and the RS-422/48 tion buffer.			 Check the number of FROM/TO instructions. Hardware fault
21H (33)	Pretransm ission se- quence	Initial data is wrong.		SET E. ON Xn1 ON	Check initial data. (See Section 14.3)

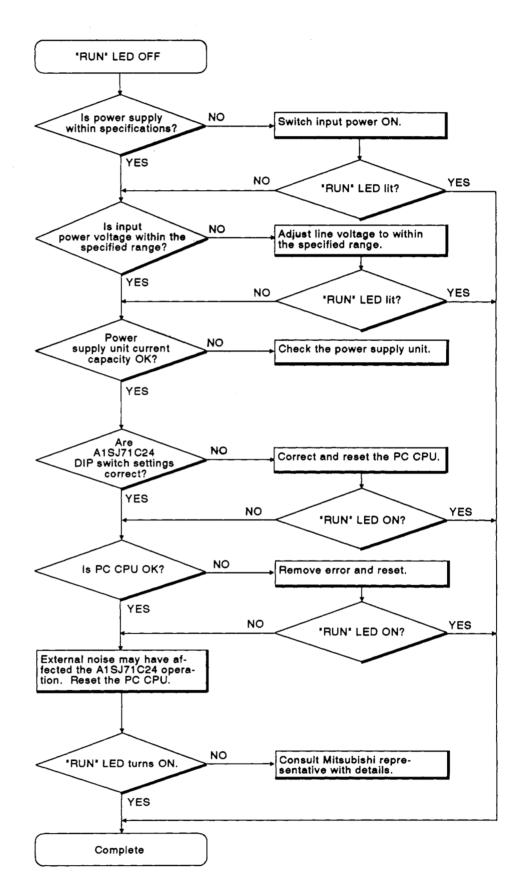
*1: When SW04 (setting of link processing(slave station is faulty)) turns ON (continuation), LED No. 13 turns ON, and Xn3 turns ON.

18.2 Error Codes (Local Station)

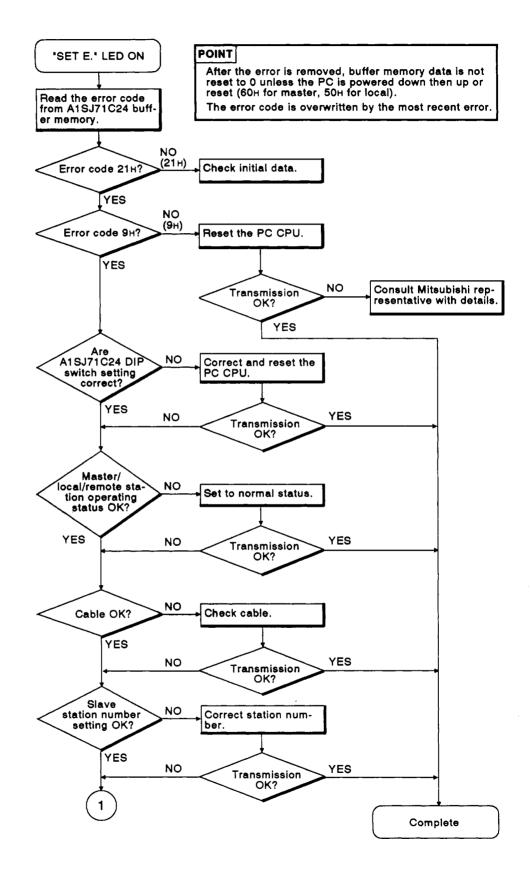

During transmission between the master and slave stations appropriate error codes are written to buffer address 50H to define the error as follows:

Error Code (Hexadec imal)		Description		LED Signal	Remedy	
01H (1)			During communication with station 1			
02H (2)			During communication with station 2			
03H (3)		Any of the following er- rors has occurred during	During communication with station 3		1) Obselvisitist data	
04H (4)		pretransmission se- quence.	During communication with station 4		 Check initial data. Check DIP switches. Check slave station 	
05H (5)	Pretransm ission se-	 Initial data setting error DIP switch setting error 	During communication with station 5	SET E.	 power. 4) Check cable. 5) Check terminal resistor. 	
06H (6)	quence	 Cable connection error Data communication error 	During communication with station 6	Xn1 ON	5) Check terminal resistor.	
07H (7)			During communication with station 7			
08H (8)			During communication with station 8			
09H (9)		Initial data has not been tra memory to the RS-422/485 buffer.			 Check the number of FROM/TO instructions. Hardware fault 	
11H (17)			During communication with station 1		1) Check slave station	
12H (18)			During communication with station 2			
13H (19)		Any of the following er- rors has occurred during	During communication with station 3]		
14H (20)		data transmission se- quence.	During communication with station 4			
15H (21)	Data transmis- sion se-	 Cabl error Data communication error 	During communication with station 5	SCAN E.	power. 2) Check cable	
16H (22)	quence		During communication with station 6	Xn2 ON		
17H (23)			During communication with station 7	-		
18H (24)			During communication with station 8			
19H (25)		Data cannot be transferred memory and the RS-422/48 tion buffer.			 Check the number of FROM/TO instructions. Hardware fault 	

18.3 Troubleshooting OFF

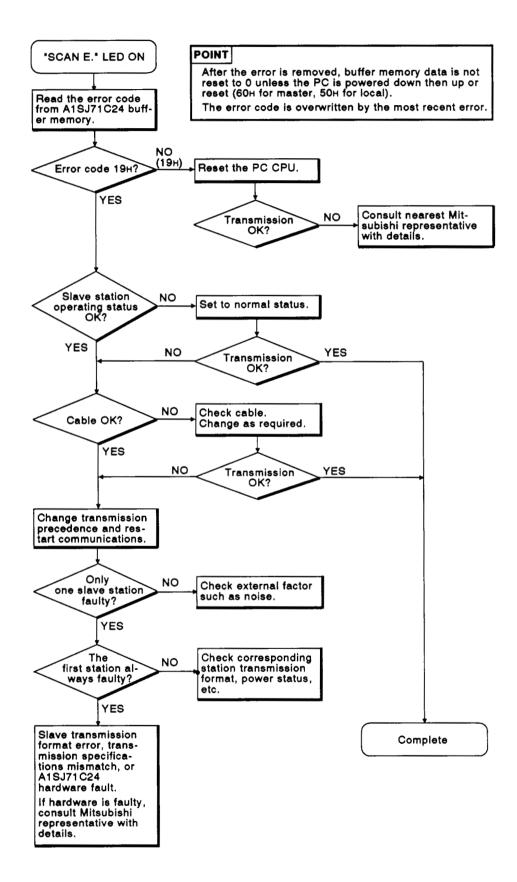

This section describes basic troubleshooting procedures for the multidrop link functions. The User's Manuals give information on PC CPU module troubleshooting.

18.3.1 Troubleshooting flow chart



MELSEG-A

18.3.2 RUN LED turns OFF

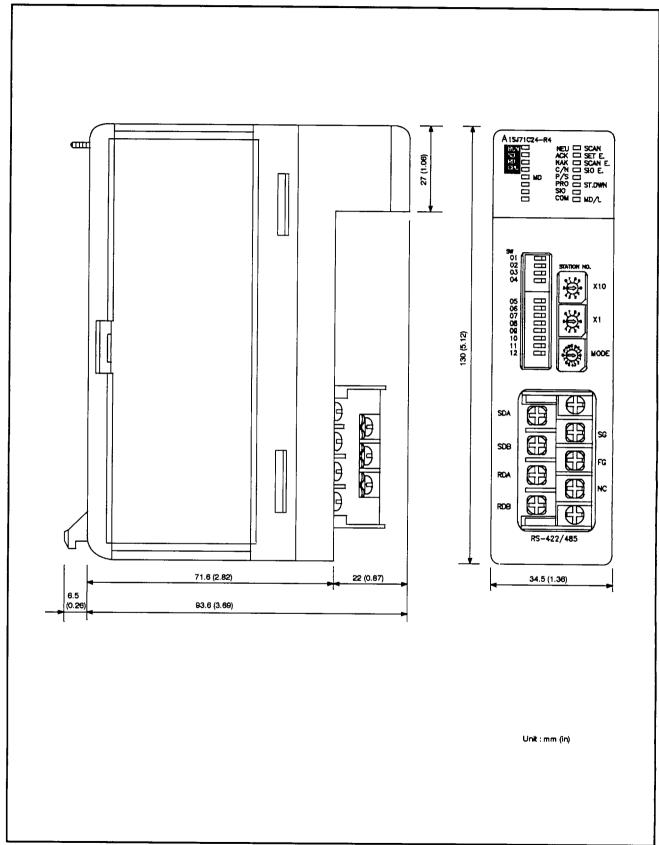

18.3.3 SET E. LED turns ON

NO Correct the initial data. Initial data correct? YES YES NO Transmission normal? Connect terminal resis-tor. (Refer to Common.) NO Terminal resistor OK? YES YES NO Transmission normal? NO Only one slave station faulty? Check for external cause such as noise. YES Check corresponding sta-tion transmission format, NO The first station always faulty? power status, etc. YES Slave transmission for-mat error, transmission specifications mismatch, or A1SJ71C24 hardware Complete fault. If hardware is faulty, con-sult Mitsubishi representative with details.

MELSEC-A

18.3.4 SCAN E. LED turns ON

18-7


[APPENDICES]

and fa

.

APPENDICES

APPENDIX 2 COMPATIBILITY BETWEEN AJ71C24-S6 AND A0J2-C214(S1)

	Function	A1SJ71C24-R4	AJ71C24-S6	A0J2-C214	A0J2-C214S1		
	Connection with a computer	2:1 is impossibility.	1:1 1:n 2:1	m : n			
	Online mode switching	0		x			
	DC code control	0		x			
	DTR/DSR control	×	RS-232C only				
Computer link	k Dedicated protocol mode (1-4)				 Dedicated protocol mode (1-4) No-protocol mode 		
	Command	 ACPU common c AnACPU dedicate 		 ACPU common command (A subsequence program batch read SR command and an on-demand func- tion are left out.) 			
Multidrop	Maximum com- munications pos- sibility number of points	Max. 512 points	_	Max. 512 points	Max. 256 points		
link	Off-communica- tions station setting	0		0	×		
Interface	• · · · ·	RS-422/485	RS-232C/422	•			

(1) A basic program (computer link) of A1SJ71C24-R4 is the same as a basic program (computer link) of AJ71C24-S6/A0J2-C214(S1).

A1SJ71C24-R4 and AJ71C24-S6 have a compatibility in the range of the function of AJ71C24-S6.

A1SJ71C24-R4 and A0J2-C214(S1) have a compatibility in the range of the function of A0J2-C214(S1).

(2) The communicating time with the PC CPU of A1SJ71C24-R4 is different from a communicating time with the PC CPU of AJ71C24-S6/A0J2-C214(S1).

Confirm the communicating time in the User's Manual of each module.

APPENDIX 3 ASCII CODE TABLE

	MSD	0	1	2	3	4	5	6	7
LSD		000	001	010	011	100	101	110	111
0 1 2 3 4 5	0000 0001 0010 0011 0100 0101	NUL SOH STX ETX EOT ENQ	DLE DC1 DC2 DC3 DC4 NAK	SP ! # \$	0 1 2 3 4 5	@ A B C D E	P Q R S T U	∖ a b c d e	p q r s t u
6 7 8 9 A	0110 0111 1000 1001 1010	ACK BEL BS HT LF	SYN ETB CAN EM SUB	& / () *	6 7 8 9 :	F G H J	V W X Y Z	f 9 h i j	v w x y z
B C D E F	1011 1100 1101 1110 1111	VT FF CR SO SI	ESC FS GS RS VS	+ , _ , /	; = ?	K L M N O		k m n o	{ } DĒL

Character codes used for the computer link are shown below. (7-bit codes)

at an internation

APPENDIX 4 COMMUNICATIONS TIME BETWEEN A A1SCPU AND AN A1SJ71C24

When the A1SCPU is in the run state, data is processed after executing the END instruction in response to a request from the A1SJ71C24. Section 5.2.1 gives the minimum number of devices processed per communications.

The intervening times (i.e. by how much the scan time increases) for each processing operation and its corresponding processing times (indicated in number of scans) are shown below.

	h	em		Com-		ening Times ime Increases)	Scan Count Required for Processing
				mano	A1S	Access Data Unit	Processing
		Betab	Bit units	BR	0.76 ms	256 devices	1 scan
	Batch read		Word devices	WR	1.13 ms	64 devices	(2 scans for device "R" only)
			Bit units	BW	1.13 ms	160 devices	2 scans
		Batch write	Word devices	ww	1.13 ms	64 devices	(1 scan when "enable during RUN" is set [ex- cluding R])
	Durte	Test	Bit units	BT	1.13 ms	20 devices	2 scans
	memory	Device (ran- memory dom write)	Word devices	wτ	1.13 ms	10 devices	(1 scan when "enable during RUN" is set [ex- cluding R])
		Monitor		ВМ			_
Device	ce	registrat	Word devices	wм	_	_	1 scan for device "R" only
data			Bit units	мв	2.02 ms	40 devices	
		Monitor	Word devices	MN	2.08 ms	20 devices	1 scan
		Batch rea	ıd	ER	1.27 ms	64 devices	
		Batch wri	Batch write Test (Random write)		1.27 ms	64 devices	2 scan (3 scans for ET [only
	Exten- sion file				1.31 ms	10 devices	ÀnACPU])
	register Monitor d registratio Monitor Buffer memory Batch wri			EM		_	
				ME	1.75 ms	20 devices	1 scan
			d	CR			
			Batch write			_	_
Special	function	Batch rea	ıd	TR	FROM in- struction		1 scan
module	Special function module buffer memory Batch write		te	тw	processing time + 1.13 msec	128 bytes	2 scans (1 scan when "enable during RUN" is set)

	ltem				Com- (Scan Time Increases)		Scan Count Required for Processing	
			mang	A1S	Access Data Unit	Processing		
		Batch Main		MR	1.20 ms]	1 scan	
	Se-	read	Sub	SR	1.20 ms		i scan	
	quence program	Batch	Main	MW	0.67 ms	64 steps	2 scans	
		write	Sub	sw	0.67 ms		(1 scan when "enable during RUN" is set)	
	Batch	Main	UR	1.35 ms	· · · · · · · · · · · · · · · · · · ·			
	Pro- gram		Sub	VR	1.35 ms	128 bytes		
Pro- gram		Batch	Main	UW	1.35 ms		2 scans	
-		write	Sub	vw	1.53 ms]		
	Comment	Batch read Batch write		KR	1.35 ms	108 butes	2 scans	
				кw	1.53 ms	128 bytes	2 scans	
		Batch read		PR	0.68 ms	128 bytes	2 scans	
	Parameter	Batch w	Batch write					
			request	PS	-	_	_	
	Remote RUN		RR					
PC CPU		Remote STOP		RS	-	_		
	PC t		PC type read					
Giobal				GW	_	-		

POINT

The PC CPU can only process one of these operations with each END processing. If the A6GPP and A1SJ71C24 access a given PC CPU at the same time, one processing must wait until the other processing is completed. Therefore, the scan count required for processing further increases.

APPENDIX 5 SPECIAL FUNCTION MODULE BUFFER MEMORY ADDRESSES

The special function module buffer memory addresses are listed below. They are used to read and write (commands TR, TW) data to and from the special function module buffer memory with protocols 1 to 4.

However, as for the AD70(D), AD71(S1), AD71-S2, or AD72 positioning modules, the buffer area addresses are shown in another section.

Refer to Section 10.10 about A1S series special-function module.

The appropriate manuals give details about buffer memory contents.

(1) Linkable special function modules, buffer memory head addresses, and module numbers

Special Function Module Name	Buffer Head Address (Hexadecimal)	Module Number When Loaded in Slot No.0
AD61 (S1) high-speed counter module	80H	01H
A616AD analog-digital converter module	10H	01H
A616DAI digital-analog converter module	10H	01H
A616DAV digital-analog converter modu le	10H	01H
A616TD temperature-digital converter module	10H	01H
A62DA(S1) digital-analog converter module	10H	01H
A68AD(S2) analog-digital converter module	80H	01H
A68ADN analog-digital converter module	80H	01H
A68DAV/DAI digital-analog converter module	10H	01H
A68RD3/4 temperature-digital converter module	10H	01H
A84AD analog-digital converter module	10H	02H
A81CPU PID control module	200H	03H
A61LS position detection module	80H	01H
A62LS position detection module	80H	02H
AJ71PT32 MELSECNET/MINI master module	20H	01H
AJ71C22 multidrop link module	1000H	01H
AJ71C24(S3/S6) computer link module	1000H	01H
AD51 (S3)/AD51H intelligent communications module	800H	02H
AD57G graphic controller module	280H	02H
AJ71C21(S1) terminal interface module	400H	01H
AJ71B62 B/NET interface module	20H	01H
AJ71P41 SUMINET interface module	400H	01H
AJ71E71 Ethernet interface module	400H	01H

(2) Conversion formula

The addresses specified in the computer (hexadecimal) are converted from FROM/TO instruction addresses as shown below:

Designated address (hexadecimal) = Module head address + [(FROM/TO instruction address x 2) converted into hexadecimal]

The User's Manual of the particular module gives details about the FROM/TO instruction addresses.

5.1 Positioning Module Buffer Memory Addresses

(1) AD70 positioning module

	Buffer Me	emory Contents	Address Set by Computer	Address Set with FROM/TO Instruction	
	Upper str	oke limit			
	Lower str	oke limit	- вон	o	
Fixed parameter	Electronic	Command pulse magnifica- tion numerator	to 8BH	to 5	
	gear	Command pulse magnifica- tion denominator			
	Velocity I	Imit value			
	Accelerat	tion time	A8H	20	
Variable parameter	Decelera	tion time	to	to	
parameter	In-positio	n range	ВЗН	25	
	Positioni	ng mode			
	Zero poir	nt address			
Zero	Zero retu	rn velocity	ООН	40	
return data	Creep ve	locity	to DFH	to 47	
		stance setting after near- t dog ON			
	Positionir	ng pattern			
	Positionir	ng address P1	F8H	60	
Position- ing data	Positionir	ng velocity V1	to	to	
	Positionir	ng address P2	109H	68	
	Positionir	ng velocity V2	- -		
	Present v	alue change area			
	Velocity of	change area			
Control	JOG velo	city area	120H	80	
change area	Error cou	nter clear command	to 133H	to 89	
	Analog o	utput adjustment area			
	Velocity p change a	position, and travel distance rea			
	Feed pos	ition data			
		sition data	4		
		e (ERR.1)	1		
		e (ERR.2)	148H	100	
Monitor area		nter value	to	to	
	Travel dis dog ON	stance after near-zero point	- 15FH	111	
	Velocity (position change command]		
	n velocity	operation]		

,

-

Buffer Memory Co	phients	Address Set by Computer	Address Set with FROM/TO Instruction
X-axis positioning start d	ata	200H	0 to
V-axis positioning start o		391 H	200
Error reset		392H 393H	201
		458H	300
Y-axis positioning start d	ata	to 5E9H	to 500
		2040H	3872
Positioning information	Positioning information		to 4271
		235FH 2360H	4272
Positioning velocity	X-axis	to	to
	positioning	267FH 2680H	4671
Dwell time	data	to	to
	4 L	299FH	5071
Positioning address		29A0H to	5072 to
Fositioning address	1	2FDFH	5871
		2FE0H	5872
Positioning information		to 32FFH	to 6271
		3300H	6272
Positioning velocity	Y-axis	to 361FH	to 6671
	- positioning -		6672
Dwell time	data	to	to
	-1 -	393FH	7071
Positioning address		3640H to	7072 to
		3F7FH	7871
V outo a comotor		3F80H	7870 48 7807
X-axis parameter		to 3F9FH	7872 to 7887
Y-axis parameter		3FA8H	
		to 3FC7H	7892 to 7907
		3FD0H	
X-axis zero return data		to	7912 to 7917
		3FDDH	
Y-axis zero return data		3FE4H to	7922 to 7928
I -unio zoro returni vata		3FF1H	1522 (0 1520

(2) AD71(S1) and AD71-S2 positioning modules

(3) AD72 positioning module

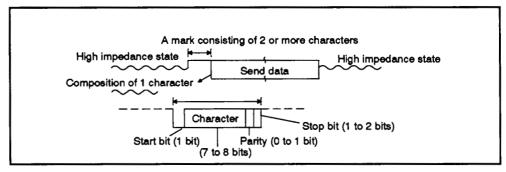
200H to 391H 392H 393H 458H to 5E9H 6B0H to 6BFH 2040H	0 to 200 201 300 to 500 600 to 607 3872
391H 392H 393H 458H to 5E9H 6B0H to 6BFH	200 201 300 to 500 600 to 607
392H 393H 458H to 5E9H 6B0H to 6BFH	201 300 to 500 600 to 607
393H 458H to 5E9H 6B0H to 6BFH	300 to 500 600 to 607
458H to 5E9H 6B0H to 6BFH	to 500 600 to 607
to 5E9H 6B0H to 6BFH	to 500 600 to 607
5E9H 6B0H to 6BFH	500 600 to 607
6B0H to 6BFH	600 to 607
to 6BFH	to 607
6BFH	607
2040H	3872
to	to
	5871
	5872
	to
	7871
** ***	7872
	to 7891
	7892
to	to
3FC7H	7911
3FD0H	7912
to	to
	7917
3FE4H	7922
	to 7928
	3FC7H 3FD0H to 3FDDH

APPENDIX 6 PRECAUTIONS DURING COMMUNICATIONS WHEN USING RS-422/485 INTERFACE

sion from the A1SJ71C24 to the computer.

Send data - + SDA RDA High impedance control A1SJ71C24 Computer A1SJ71C24 A1SJ71C24

(1) The following figure shows the hardware structure for the data transmis-


A1SJ71C24 Send Circuit

(2) Data transmission methods

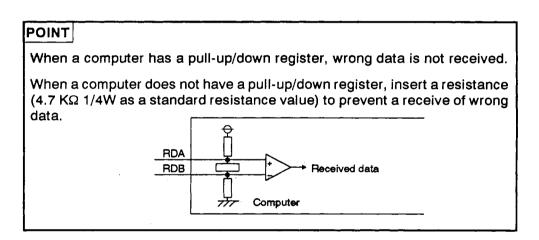
When each station of the A1SJ71C24 is not transmitting data, set the transmission line to the high impedance state so that one send data does not interfere with other send data in a multidrop link.

When all stations transmit data, the high impedance state must be canceled. Then, after transmitting a mark consisting of 2 or more characters, each station transmits data.

This method applies also to a 1:1 link system.

Transmission from the A1SJ71C24

(3) Ignoring wrong data


When any station is not transmitting data, the send line is in the high impedance state.

Thus, the send line may become unstable due to noise, causing a computer to receive wrong data.

Since a parity error or a framing error may occur in this case, error data must be ignored.

When using protocol 1 to 4, either ACK, NAK, or STX code is transmitted first.

Therefore until an ACK, NAK, or STX code is received, other codes must be ignored.

APPENDIX 7 A1SJ71C24 SETTING RECORD FORM

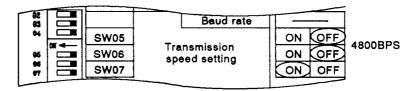
Use this form to keep record of settings of the A1SJ71C24 or to create computer link programs for PC CPUs and computers.

Make duplications of this form and use them.

Method of entry

(1) No. and Data

Enter the number of the record form and the date on the top right corner of the form.


(2) Settings of the buffer memory special applications area

Enter the set values which change default settings when the A1SJ71C24 READY signal (Xn7) is turned ON in the set value's column.

The settings required for the dedicated protocol and the noprotocol/bidirectional mode at the start of the A1SJ71C24 are indicated with [] mark in the columns next to the address's column.

- (3) Switch settings
 - (a) Transmission specification switch settings

Circle ON or OFF according to switch setting from SW01 to SW12 in the ON/OFF column.

(b) Mode switch settings

Enter the set value (value indicated by the arrow) in the mode setting switch column.

(c) Station number setting switch

Enter a set value (value of an arrow point) in a setting area.

APPENDICES

MELSEC-A

Record form

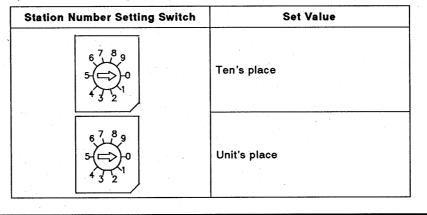
No. Date : :

Record of A1SJ71C24 settings

	Address	Dedi- cated Protocol	No- protocol	Bidirec- tional	Name	Set Value	Default Setting
	100H	_	0	_	No-protocol receive-completed code set- ting area		0D0AH (CR, LF)
	101H	—	_	_	Error LED ON status storage area	-	0
	102H	_	-		Error LED turn OFF request area	_	0
	103H	0	0	•	No-protocol word byte setting area		0 (words)
	104H	_	o	•	No-protocol send buffer memory head ad- dress setting area		0
	105H	1	o	0	No-protocol send buffer memory length set- ting area		80H
	106H	_	o	0	No-protocol receive buffer memory head address setting area		80H
	107H	—	o	0	No-protocol receive buffer memory length setting area		80H
	108H		o	_	No-protocol receive-completion data length setting area		127 (words)
	109H	1	—	_	On-demand buffer memory head address setting area	_	0
	10AH	_	—	—	On-demand data length setting area	_	0
uffer	10BH	—	—	_	System area (unavailable)	-	_
nemory	10CH	1	_	-	On-demand error storage area	—	0
	10DH	_	—	—	No-protocol received data clear request area	_	0
	10EH to	_	_	_	System area (unavailable)	_	
	111H						
	112H	-	-	o	Bidirectional mode setting area	1	0 (No-protocol mode)
	113H			0	Time-out check time setting area	100	0 (Infinite)
	114H	-	_	0	Simultaneous transmission data valid/in- valid setting area		0 (Data valid
	115H	—	—	0	Check sum enable/disable setting area	1	0 (Check sum enabled
	116H	-	_		Data send error storage area	_	_
	117H	-	_		Data receive error storage area	—	_
	118H	_	-		Mode setting status storage area		0 (Mode)
	119H	0	0	o	Mode switching specification area		0 (No change)
	11AH	_	0	0	Transmission control specification area		0 (DTR contro
	11BH	-	0	0	DC1/DC3 control code specification area		1311H
	11CH	_	0	0	DC2/DC4 control code specification area		1412H

APPENDICES

	e of switch		· · · · · · · · · · · · · · · · · · ·			in sei se hiona goir	
1) Trans	smission s	pecification	setting switch (Refer to Sec	tions 6.3.2, 14.3	.1 and 14.3.	od so snarromise (2). mai natopus term	361 (5).
Switch Setting		Setting Switch	Setting Item of a Computer Link	Set Value	Setting Switch	Multidrop Setting Item	Set Value
sw01 sw02		SW01	Unused befoing off	ON OFF	SW01	Local master station/station setting	ON OFF
		SW02	Computer link/ multidrop link selection	ON OFF SW02	Computer link/ multidrop link selection	ON OFF	
01 02 03 04	888	SW03	Unused	ON OFF	SW03	Self-loopback test	ON OFF
		SW04	Write-enabled/disabled during RUN setting	ON OFF	SW04	Link processing setting (When a slave station is faulty.)	ON OFF
05 06 07 08			Baud rate (BPS)	an a sananang sa siya mina (a a takingkana 	g have an and a strength states and the states and the states of the states and the states of the states and the states of the s	Baud rate (BPS)	a international and and and and a
09 200010 11 12		SW05	- Idiomenan an aidail a	ON OFF	SW05	Rep domastic months	ON OFF
		SW06	Transmission speed	ON OFF	SW06	Transmission speed	ON OFF
l Narah		SW07	ne vien Lobretti ou	ON OFF	SW07	la americaib bais aelo	ON OFF
	or ettik	SW08	Data bit setting		SW08	Data bit setting	ON OFF
y le figge fisser		SW09	Parity bit setting	ON OFF	SW09	Parity bit setting	ON OFF
		SW10	Even/odd parity setting	ON OFF	SW10	Even/odd parity setting	ON OFF
		_ SW11	Stop bit setting	ON OFF	SW11	Stop bit setting	ON OFF
gan in na ncescure.	a jana provinsko postana	SW12	Sum check setting	ON OFF	SW12	Sum check setting	ON OFF


2) Mode setting switch (Refer to Section 6.3.1.).

Mode Set- ting Switch	Mode Setting Switch No. Setting		Set Value
	0 to 3	Unusable	
	4	No-protocol	
, BC n_	5	Protocol 1	
	6	Protocol 2	
	7	Protocol 3	
545	8	Protocol 4	
	9 to E	Unusable	
	F	Simple substance test	

1.5

MELSEC-A

3) Station number setting switch (Refer to Sections 6.6.3 and 14.3.3.)

01 02 03 04 800 X10 Ð 05 06 07 09 10 11 12 888888888 (1) Ř XI Ø MODE €€ SD 8 63 63 SD8 8 6 RDA 62 e: ROF RS 422/48 A1SJ71C24-R4

A 15171024-R

हेंब्रहे DDDDDDDDD NEU CI SON NAX CI SSET E NAX CI SSAN CSN CI SSAN CSN CI SSAN SSO COM CI ST.DW SSO COM CI MD/L

(2)

(3)

APP - 14

IMPORTANT

- (1) Design the configuration of a system to provide an external protective or safety inter locking circuit for the PCs.
- (2) The components on the printed circuit boards will be damaged by static electricity, so avoid handling them directly. If it is necessary to handle them take the following precautions.
 - (a) Ground human body and work bench.
 - (b) Do not touch the conductive areas of the printed circuit board and its electrical parts with and non-grounded tools etc.

Under no circumstances will Mitsubishi Electric be liable or responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. Mitsubishi Electric will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible applications of this equipment, you must satisfy yourself as to its suitability for your specific application.

HEAD OFFICE: MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100 TELEX: J24532 CABLE MELCO TOKYO NAGOYA WORKS: 1-14, YADA-MINAMI 5, HIGASHI-KU, NAGOYA, JAPAN

When exported from Japan, this manual does not require application to the Ministry of International Trade and Industry for service transaction permission.

IB (NA) 66364-A (9204) MEE

Printed in Japan

Specifications subject to change without notice.