& MITSUBISHI
ELECTRIC
Programmable Controller

eeeeee

MELSEC iQ-F
FX5 Programming Manual
(Instructions, Standard Functions/Function Blocks)

SAFETY PRECAUTIONS

(Read these precautions before use.)

Before using the MELSEC iQ-F series PLCs, please read the manual supplied with each product and the relevant manuals
introduced in that manual carefully and pay full attention to safety to handle the product correctly.

Store this manual in a safe place so that it can be taken out and read whenever necessary. Always forward it to the end user.

INTRODUCTION

This manual describes the instructions and functions/function blocks required for programming MELSEC iQ-F series systems.
This manual and the related manuals should be read and the functions and performance of the MELSEC iQ-F series PLC
should be understood before attempting to use the unit.

However, before using a program example introduced in this manual to the actual system, always confirm that it poses no
problem for control of the target system.

Regarding use of this product

 This product has been manufactured as a general-purpose part for general industries, and has not been designed or

manufactured to be incorporated in a device or system used in purposes related to human life.

« Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger
movement vehicles, consult with Mitsubishi Electric.

* This product has been manufactured under strict quality control. However when installing the product where major
accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

Note

« If in doubt at any stage during the installation of the product, always consult a professional electrical engineer who is

qualified and trained in the local and national standards. If in doubt about the operation or use, please consult the nearest
Mitsubishi Electric representative.

 Since the examples indicated by this manual, technical bulletin, catalog, etc. are used as a reference, please use it after
confirming the function and safety of the equipment and system. Mitsubishi Electric will accept no responsibility for actual
use of the product based on these illustrative examples.

» This manual content, specification etc. may be changed without a notice for improvement.

» The information in this manual has been carefully checked and is believed to be accurate; however, if you have noticed a
doubtful point, an error, etc., please contact the nearest Mitsubishi Electric representative. When doing so, please provide
the manual number given at the end of this manual.

CONTENTS

SAFETY PRECAUTIONS e 1
INTRODUCTION. . . e e e e e 1
RELEVANT MANUALS e 16
TERMS . 16
GENERIC TERMS AND ABBREVIATIONS. e 16
HOW TO READ THIS MANUAL e 17

PART 1 OVERVIEW

CHAPTER1 OVERVIEW 22
1.1 Instruction Configuration it i it ittt et ettt e 22
1.2 Data Specification Method i it i i ettt st aaa e 23
Bit data ... 26
16-bit data (word data) e 27
32-bit data (double word data). e 29
Real number data (floating-pointdata) e 32
Character string data. e 33
1.3 Execution Condition it i e e e 35
1.4 Acceleration of Instruction Processing Time.ttt inaeenaenanennns 36
CHAPTER 2 PRECAUTIONS ON PROGRAMMING 39
21 Errors Common to INStructionsottt i it i i et et 39
2.2 Checking the Ranges of Instruction Runtime Devicesand Labels 39
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used. .40
24 Handling general flagsttt i ettt i a et e e aa s a s 45
2.5 Standard Function/Function Block Return Values.ttt e e 47

PART 2 INSTRUCTION/FUNCTION LIST

CHAPTER 3 CPU MODULE INSTRUCTION 50
3.1 Sequence INStrUCtION i i it et et et e, 50
3.2 Basic INStruction i e it 54
3.3 Application Instruction it e e e 69
3.4 Step Ladder InStructionsttt i it it et e e 90
3.5 PID Control Instruction. i i e i e e it it 90
3.6 SFCPrograminstructions i i i i i e 91
CHAPTER 4 MODULE SPECIFIC INSTRUCTION 93
41 Network Common Instruction it it i e et a et e i a e neanenns 93
4.2 Ethernet Instruction i i i ittt ittt e 93
4.3 CC-Link IE TSN INStructions.o ittt i i i it i et et ittt a ettt aaa e an e 95
4.4 CC-Link IE Field Network Instructiont it ittt it e a s 95
4.5 High-speed Counter Instruction. i i it ettt ae s naennnnns 96
4.6 External Device Communication Instruction i i i e 97
4.7 Positioning Instruction e 98

4.8 BFM Device Read/ Write Instruction ittt i i st e sttt tanananannnnnns 929

CHAPTER 5 STANDARD FUNCTIONS/FUNCTION BLOCKS 100

5.1 Standard FUNCHIONS. i i i it ettt ettt e e 100
Type conversion fuNCHONS 100
Standard functions of one numeric variable 105
Standard arithmetic funClions 106
Standard bit shift functions 107
Standard bitwise boolean funNCtions. 107
Standard selection functions 108
Standard comparison fUNCHONS. e 108
Standard character string fUNCHIONS. 109 f’_)
Time data fUNCHONSttt e ettt 110 2
52 Standard FUNCHON BIOCKSuuee et e e e et e e e e e e e e e 111 LU
Bistable function blocks. 111 IE
Edge detection function blocks 111 O
Counter FUNCHON DIOCKS . .« .« ..ottt et e et e e 111 (&)
Timer funcCtion DIOCKS. e 112

PART 3 CPU MODULE INSTRUCTIONS

CHAPTER 6 SEQUENCE INSTRUCTIONS 114
6.1 ContactInstructions it e i et i et 114
Operation start, series connection, parallel connection. 114
Pulse operation start, pulse series connection, pulse parallel connection 117
Pulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection. 121
6.2 Association Instruction. et e 123
Ladder block series/parallel connection e 123
Storing/reading/clearing the operation result. 125
Inverting the operation result. e 128
Converting the operation resultinfoapulse e 129
6.3 OUtpuUt INStrUCHIONS i i i e et 130
Out (excluding the timer, counter and annunciator). 130
T L o e 132
COUNEET .« . oo 135
LONg COUN T . . . 137
ANNUNCIATOT . . . e 139
Setting devices (excluding annunciator) 141
Resetting devices (excluding annunciator) 143
Setting annUNCIator e 145
Resetting annunciator 147
Setting annunciator (with check time) 149
Resetting annunciator (smallest numberreset). 151
Rising edge OUtpUL. 152
Falling edge OUtpUL 154
Inverting the bit device output 156
Inverting the bit device output 157
6.4 Shift InStructions. i e e 159
Shifting bit devices. e 159
Shifting 16-bit data to the right by n bit(s) 161
Shifting 16-bit datato the leftby nbit(s) 163

Shifting n-bit data to the right by 1 bit 165

Shifting n-bitdata tothe left by 1 bit 167
Shifting n-word data to the right by 1word 169
Shifting n-word data to the leftby 1word 170
Shifting n-bit(s) data to the right by (N) bit(s). o 171
Shifting n-bitdata to the leftby n bit(s) 173
Shifting n-word data to the right by nword(s) 175
Shifting n-word data to the leftby nword(s) 177
6.5 Master Control Instruction i i i et e st i e 179
Setting/resetting the master control. e 179
6.6 Termination INStructions. i i e e 183
Ending the main routine program 183
Ending the sequence program 186
6.7 Stop INStrUCtioON. e e iy 188
Stopping the SEqUENCE Programt e e e e 188
CHAPTER 7 BASIC INSTRUCTIONS 189
71 Comparison Operation Instructions i i ittt aae e nnnnns 189
Comparing 16-bit binary data e 189
Comparing 32-bit binary data e 192
Comparison output 16-bit binary data. 194
Comparison output 32-bit binary data. 196
Comparing 16-bit binary databand. 198
Comparing 32-bit binary databand. 200
Comparing 16-bit binary block data. 202
Comparing 32-bit binary block data. 205
7.2 Arithmetic Operation Instructions i i i i it ae e n e nas 208
Adding 16-bit binary data. 208
Subtracting 16-bit binary data e 214
Adding 32-bit binary data. 220
Subtracting 32-bit binary data 226
Multiplying 16-bit binary data. 232
Dividing 16-bit binary data. 236
Multiplying 32-bit binary data. 240
Dividing 32-bit binary data. 244
Adding BCD 4-digit data 248
Subtracting BCD 4-digit data. 250
Adding BCD 8-digit data 253
Subtracting BCD 8-digit data. 256
Multiplying BCD 4-digitdata 259
Dividing BCD 4-digit data 261
Multiplying BCD 8-digitdata 263
Dividing BCD 8-digit data 265
Adding 16-bit binary block data. e 267
Subtracting 16-bit binary block data 269
Adding 32-bit binary block data. 271
Subtracting 32-bit binary block data 273
Incrementing 16-bit binary data. 275
Decrementing 16-bitbinary data. 277

Incrementing 32-bit binary data. 278

7.3

7.4

7.5

Decrementing 32-bit binary data 279

Logical Operation InStructionsiiiiiiiii it ettt iaaraassnarennnens 280
Performing an AND operation on 16-bitdata. 280
Performing an AND operation on 32-bitdata. 282
Performing an AND operation on 16-bitblock data. 285
Performing an OR operation on 16-bitdata. 287
Performing an OR operation on 32-bitdata. 289
Performing an OR operation on 16-bitblockdata. 292
Performing an XOR operationon 16-bitdata 294
Performing an XOR operationon 32-bitdata 296
Performing an XOR operation on 16-bitblock data. 299
Performing an XNOR operationon 16-bitdata 301
Performing an XNOR operationon 32-bitdata 303
Performing an XNOR operation on 16-bitblockdata 306
Bit Processing Instructions i e 308
Setting abitinthe word device 308
Resetting a bitinthe word device 309
Performing a 16-bit test. 310
Performing a 32-bit test. 312
Batch-resetting bit devices 314
Batch-resetting devices e 315
Data Conversion InStructionsttt i it e e e s 318
Converting binary data to BCD 4-digitdata. 318
Converting binary data to BCD 8-digitdata. 320
Converting BCD 4-digitdatato binary data. 322
Converting BCD 8-digitdatato binary data. 324
Converting single-precision real number to 16-bit signed binarydata. 326
Converting single-precision real number to 16-bit unsigned binarydata. 328
Converting single-precision real number to 32-bit signed binary data. 330
Converting single-precision real number to 32-bit unsigned binarydata. 332
Converting 16-bit signed binary data to 16-bit unsigned binarydata 334
Converting 16-bit signed binary data to 32-bit signed binarydata 335
Converting 16-bit signed binary data to 32-bit unsigned binarydata 336
Converting 16-bit unsigned binary data to 16-bit signed binarydata 337
Converting 16-bit unsigned binary data to 32-bit signed binarydata 338
Converting 16-bit unsigned binary data to 32-bit unsigned binarydata 339
Converting 32-bit signed binary data to 16-bit signed binarydata 340
Converting 32-bit signed binary data to 16-bit unsigned binarydata 341
Converting 32-bit signed binary data to 32-bit unsigned binarydata 342
Converting 32-bit unsigned binary data to 16-bit signed binarydata 343
Converting 32-bit unsigned binary data to 16-bit unsigned binarydata 344
Converting 32-bit unsigned binary data to 32-bit signed binarydata 345
Converting 16-bit binary data to Gray code. 346
Converting 32-bit binary data to Gray code. e 347
Converting Gray code to 16-bit binary data. 349
Converting Gray code to 32-bit binary data. 350
Converting decimal ASCIl to 16-bitbinary data. 352
Converting decimal ASCIl to 32-bitbinary data. 356
Converting ASCI 1o HEX.o 360
Converting character string to 16-bitbinarydata. 364
Converting character string to 32-bitbinary data. 367

n
-
<
1]
-
<
O
&

Two's complement of 16-bit binary data (signinversion). 370

Two's complement of 32-bit binary data (signinversion). 372
Decoding from 8 10 256 bits. 373
Encoding from 256 t0 8 bits. 375
Seven-segment deCodingot e 377
Seven Segment With Latch. e 379
Separating 4 bits from 16-bitdata. e 382
Connecting 4 bits to 16-bit data. 384
Separating the specified number of bits 386
Connecting the specified number of bits 388
Separating datain byte units. 390
Connecting datain byte Units e 392
7.6 Digital SWtCh. i e e e 395
7.7 Data Transfer Instructionst i i et ittt aa s an s nn e 397
Transferring 16-bit data. 397
Transferring 32-bit data. 399
Inverting and transferring 16-bitdata. 401
Inverting and transferring 32-bit data. 403
Digit MOVE . . 404
Inverting and transferring 1-bitdata. L 406
Transferring 16-bit block data (65535 points maximum) i 407
Transferring identical 16-bit block data (65535 points maximum). 409
Transferring identical 32-bit block data (65535 points maximum). 411
Exchanging 16-bitdata 413
Exchanging 32-bitdata 415
Exchanging the upper and lower bytes of 16-bitdata. 417
Exchanging the upper and lower bytes of 32-bitdata. 418
Transferring 1-bit data 419
Transferring octal bits (16-bitdata) 420
Transferring octal bits (32-bitdata) 422
Transferring n-bit data 424
CHAPTER 8 APPLICATION INSTRUCTION 426
8.1 Rotation Instruction i i e e 426
Rotating 16-bitdatato the right. 426
Rotating 16-bitdata to the left. e 429
Rotating 32-bit data to the right. 432
Rotating 32-bitdatatothe left. e 434
8.2 Program Branch Instruction. i it e i ittt a e 436
Pointer branch 436
JUMP 10 END . . oo 440
8.3 Program Execution Control Instruction i i i i e 441
Disabling/enabling interrupt programs. 441
Disabling the interrupt program with specified priority orlower., 443
Interrupt program mask 447
Disabling/enabling the specified interrupt pointer 449
Returning from the interrupt program 451
Resetting the watchdog timer 454
8.4 Structuring Instruction o s e s 455

FOR 0 NEXT . . 455

8.5

8.6

8.7

8.8

8.9

8.10

Forcibly terminating the FOR to NEXT instruction loop. i 458

Calling @ subroutine program e 460
Returning from the subroutine program. 465
Calling @ subroutine program e 466
Data Table Operation Instruction. i ittt it i ea e et sannnneeeeans 468
Reading the oldest data fromthe datatable 468
Reading the newest data fromthe datatable 471
Writing datatothe datatable. 474
Inserting data to the datatable 476
Deleting data fromthe datatable 478
Reading/writing Data Instructions. i it e 480
Reading data from the data memory. 481
Writing data to the data memory e 483
File Operation Instructions. it i i it ettt e s e e a e nanans 486
Reading data from the specified file 486
Writing data to the specified file. 512
Deleting the specified file. 535
Copying the specified file. 543
Moving the specified file 553
Renaming the specified file 563
Acquiring the status of the specified file 571
Error codes generated for file operation instructions. 579
Extended File Register Operation Instruction i i i, 580
Reading extended file register. 580
Writing extended file register. e 583
Batch initialization function of extended file register L 586
Character String Operation Instruction. i i i it et e e e nnns 589
Comparing character Strings o 589
Concatenating character Strings e 592
Transferring character Strings i 596
Transferring Unicode string data 598
Converting 16-bit binary data to decimal ASCIL. 600
Converting 32-bit binary data to decimal ASCIL. 605
Converting HEX code data to ASCIl 611
Converting 16-bit binary data to character string. 615
Converting 32-bit binary data to characterstring. 618
Converting single-precision real number to characterstring. 621
Converting Unicode character string to Shift JIS characterstring., 628
Converting shift JIS character string to Unicode character string (without byte ordermark). 631
Converting shift JIS character string to Unicode (with byte ordermark) 634
Detecting a character string length 637
Extracting character string data from theright. 639
Extracting character string data from the left. 642
Storing the specified number of characterstrings. 645
Replacing the specified number of characterstrings. 648
Searching character string. e e 652
Inserting character String. 655
Deleting character string 657
Real Number Instruction.ot i i ittt et et ittt ey 659
Comparing single-precision real numbers. 659
Single-precision real nUMber COmMpariSON e 661

n
-
<
1]
-
<
O
&

8.11

8.12

8.13

Single-precision real number data band comparison 663

Adding single-precision real nUMbers 665
Subtracting single-precision real nUMbeErs 669
Adding single-precision real numbers 673
Subtracting single-precision real nUMbErs 675
Multiplying single-precision real numbers 677
Dividing single-precision real numMbers 679
Multiplying single-precision real numbers 681
Dividing single-precision real nUMbers 683
Converting 16-bit signed binary data to single-precision realnumber. 685
Converting 16-bit unsigned binary data to single-precision realnumber. 686
Converting 32-bit signed binary data to single-precision realnumber. 687
Converting 32-bit unsigned binary data to single-precision real number. 688
Converting character string to single-precisionrealnumber. 689
Converting binary floating point to decimal floating point 694
Converting decimal floating point to binary floating point 696
Inverting the sign of single-precision real number. 698
Transferring single-precision real numberdata. 700
Calculating the sine of single-precision real number. 702
Calculating the cosine of single-precision realnumber. 704
Calculating the tangent of single-precision realnumber 706
Calculating the arc sine of single-precision real number. i 708
Calculating the arc cosine of single-precision real number. i 71
Calculating the arc tangent of single-precisionrealnumber 714
Converting single-precision real number angletoradian 716
Converting single-precision real number radiantoangle i 718
Calculating the square root of single-precision realnumber. 720
Calculating the exponent of single-precision real number. 722
Calculating the natural logarithm of single-precisionreal number. 724
Calculating the exponentiation of single-precision realnumber 726
Calculating the common logarithm of single-precisionrealnumber 728
Searching the maximum value of single-precisionrealnumber, 730
Searching the minimum value of single-precisionrealnumber. 732
Random Number Instruction it i sttt ittty 734
Generating random NUMDETo 734
Index Register Operation Instruction i it e tearnannnens 736
Saving all data of the index register e 736
Returning all data of the index register 739
Saving the selected data of the index register and long index register. 740
Returning the selected data of the index register and long index register. 742
Data Control Instruction i i i i it e it s 743
Upper and lower limit control of 16-bitbinarydata 743
Upper and lower limit control of 32-bitbinarydata 745
Dead band control of 16-bit binary data 747
Dead band control of 32-bit binary data 749
Zone control of 16-bit binary data e 752
Zone control of 32-bit binary data 754
Scaling 16-bit binary data (point coordinates). 756
Scaling 32-bit binary data (point coordinates). 759
Scaling 16-bit binary data (XY coordinates) 762
Scaling 32-bit binary data (XY coordinates) 766

8.14

8.15

8.16

8.18

8.19

8.20

8.21

8.22

8.23

8.24

8.25

Special Timer Instruction i it et e e 769

TeaChing M. . . .o 769
Special function timer 772
Special Counter InStruction it i it it et et e 774
Signed 32-bit bi-directional counters e 774
Shortcut Control Instruction i e e 776
Rotary table shortest direction control. 776
Ramp Signal Instruction. i i i s e i i e 779
Ramp signal. 779
Pulse Related Instruction i i i ettt e it e 782
Measuring the density of 16 bit binary pulses 782
Measuring the density of 32 bit binary pulses 788
16 bit binary pulse output 793
32 bit binary pulse OUIpUL 801
16 bit binary pulse width modulation 809
32 bit binary pulse width modulation 816
Input Matrix Instruction. i e e e 823
INPUL Mt iX . .. 823
Initial Stateo e ey 827
Initial State. . . . 827
[T T =Y o 11 T=Y o - 838
16-bit binary data absolute method. 838
32-bit binary data absolute method L 840
Relative method. 842
[0 1T 2L 0 o T = 845
CheCK COTE . . . oo 845
Data Operation InStruction it i i ittt a et aa e a e 848
Searching 16-bit data 848
Searching 32-bit data 850
Bitcheck of 16-bitdata 852
Bitcheck of 32-bitdata 854
Bit judgment of 16-bit data. 855
Bit judgment of 32-bitdata. 857
Searching the maximum value of 16-bitdata 859
Searching the maximum value of 32-bitdata 861
Searching the minimum value of 16-bitdata. 863
Searching the minimum value of 32-bitdata. 865
Sorting 16-bit data. 867
Sorting 16-bit data 2 870
Sorting 32-bit data 2 873
Adding 16-bit data 876
Adding 32-bit data 878
Calculating the mean value of 16-bitdata. 880
Calculating the mean value of 32-bitdata. 882
Calculating the square root of 16-bitdata 884
Calculating the square root of 32-bitdata 886
CRC calculation.o 887
Indirect Address Read Instruction. it i i it et e 890
Reading the indirect address. e 890
Clock INStruCtioNo o i i e i e 892
Reading clock data 892

n
-
<
1]
-
<
O
&

10

Writing clock data 894

Adding clock data 897
Subtracting clock data. e 900
Converting time data from hour/minute/second to secondsin 16 bits. 903
Converting time data from hour/minute/second to seconds in 32 bits. 905
Converting time data from seconds to hour/minute/second in 16 bits. 907
Converting time data from seconds to hour/minute/second in 32 bits. 909
Comparing date data. 911
Comparing time data. e 914
Comparing clock data e 917
Comparing clock data Zoneso 920
8.26 Timing Check Instruction i it it et e et ae e nannnaeennnennnns 923
Generating timing PUISES.o 923
HoUr Meter. . o o 926
8.27 Module Access Instruction. i i it e e 930
O refresh .« 930
Reading 1-word/2-word data from another module. 932
Writing 1-word/2-word data to another module e 936
Reading 1-word/2-word data from another module. 939
Writing 1-word/2-word data to another module (32-bit specification) 942
8.28 Logging InsStructions. e 945
Setting tigger l0gging oot e 945
Resetting trigger [0ggingo 946
8.29 Real-time Monitor Function Instruction i e i e s 947
CHAPTER 9 STEP LADDER INSTRUCTIONS 949
9.1 Starts/Ends Step Ladder. i e e ettt e 949
CHAPTER 10 PID CONTROL INSTRUCTION 953
10.1 PID CoNtrol LOOP. .« ot i ittt ittt ittt ettt et e e et s e e 953
CHAPTER 11 SFC PROGRAM INSTRUCTIONS 956
111 SFC Control Instructions i i it 956
Checking the status of @ step 956
Checking the status of @a bIOCK. e 958
Batch-reading the status of steps e 960
Starting @ bloCK e 970
Ending a blocK. 971
Pausing @ bloCK 972
Restarting a block 974
Activating @ step oo 976
Deactivating @ step o 978
Activating/deactivating a step 980
Batch-deactivating a step 982
11.2 SFC Dedicated Instruction it it it et ettt nas i aneanns 984
Creating a dummy transition condition 984

PART 4 MODULE DEDICATED INSTRUCTION

CHAPTER 12 NETWORK COMMON INSTRUCTION 986
121 Link Dedicated Instructions i i i it i e 988
Reading data from another station programmable controller, 988
Reading data from another station programmable controller (with notification) 994
Writing data to another station programmable controller. 1000
Writing data to another station programmable controller (with notification). 1008

Sending data to another station programmable controller. 1016 (/7]

Receiving data from another station programmable controller 1024 IE

LLl

CHAPTER 13 Ethernet INSTRUCTION 1030 -

13.1 Built-in Ethernet Function Instruction. i it it s 1030 4

Opening @ CONNECHIONt e e e e e e e e 1030 8
Closing @ CONNECHONo e e e e e 1033
13.2 Socket Communications Function Instruction. i i i e 1035
Reading receive data during the END processing.ttt e 1035
Sending data. e e e 1038
Reading connection information 1041
Reading socket communications receivedata 1043
13.3 Predefined Protocol Support Function Instruction it 1045
Executing the registered protocols 1045
13.4 SLMP Frame Send Instruction i et ittt et a s 1049
Sending the SLMP frame e 1049
13.5 File Transfer Function Instruction i i it i e s e nnaas 1054
Sending FTP client files.o e 1054
Retrieving FTP client files e e e 1059
13.6 EthernetModule i i i ittt st st s a e s 1064
Opening @ CONNECHION o e e e e e e 1064
Closing @ CONNECHIONo e e e e e e 1067
Reading receive data. 1069
Sending data 1071
CHAPTER 14 CC-Link IE TSN INSTRUCTION 1073
141 Own Station Number/IP Address Settingt e 1073
14.2 Sendingan SLMP Frame ittt it ta it et s a e aa s nasaarananeanns 1076
CHAPTER 15 CC-Link IE Field Network INSTRUCTION 1085
15.1 Setting parameters ottt ittt et e e 1085
15.2 Setting the station numbertoownstation i i i i e 1088
CHAPTER 16 HIGH-SPEED COUNTER INSTRUCTION 1091
16.1 High-speed Processing Instruction. it et i e e e 1091
Setting 32-bit data comparison e 1091
Reset 32-bit data comparison 1094
Comparison of 32-bitdata band 1097
Start/stop of the 16-bit data high-speed I/O function. i, 1100
Start/stop of the 32-bit data high-speed I/O function. 1104

11

12

16.2 High-speed Current Value Transfer Instruction it iiieinnenns 1108

High-speed current value transfer of 16-bitdata. 1108
High-speed current value transfer of 32-bitdata. 1110
CHAPTER 17 EXTERNAL DEVICE COMMUNICATION INSTRUCTION 113
171 Serial Communication 2 it i i i it 1113
17.2 Inverter Communication Instruction i i e e 1115
Inverter operation monitoring (Status check). 1115
Inverter operations control (DriVe). oo 1117
Inverter parameter read. 1119
Inverter parameter Write 1121
Inverter parameter block write. 1123
Inverter multi command. 1125
17.3 MODBUS Communication Instruction. i i et e i enas 1127
17.4 Predefined Protocol Support Function Instruction i i 1129
CHAPTER 18 POSITIONING INSTRUCTION 1133
18.1 Dedicated Instruction (Positioning Function). it it e 1133
Zero return(OPR) with 16-bit data DOG search i e 1134
Zero return(OPR) with 32-bit data DOG search e 1138
16-bit data interrupt positioning 1140
32-bit data interrupt positioning 1144
Positioning by one table operation 1148
Positioning by multiple table operation 1150
Multiple axes concurrent drive positioning. e 1152
32-bitdata ABS currentvalueread 1154
16-bit data variable speed pulse 1156
32-bit data variable speed pulse 1160
16-bit data relative positioning. 1164
32-bit data relative positioning. 1168
16-bit data absolute positioning. 1172
32-bit data absolute positioning. 1176
18.2 Positioning Module. e 1180
Restoring the absolute position. 1180
Starting the positioning 1184
TeaChing 1187
Backing up module data (writing data to the lash ROM) 1190
Initializing the Module 1193
CHAPTER 19 DIVIDED DATA READ/WRITE FROM/TO BFM INSTRUCTION 1196
191 Divided BFM Read. o i i i i it ettt sttt e 1196
19.2 Divided BEM Write.ot it i ittt it sttt it s 1200

PART 5 STANDARD FUNCTIONS

CHAPTER 20 TYPE CONVERSION FUNCTIONS 1204
201 Converting BOOL tO WORD it i et et s a e e a s aa s aaeaneanaesanns 1204
20.2 Converting BOOL to DWORDD. ittt ittt ittt et e ae et aae s aa s aaneaaeanansanns 1206
20.3 Converting BOOL t0 INTottt ettt it et sae e nan s anesnnesaanannennnesnnns 1207

204

20.5

20.6

20.7

20.8

20.9

20.10
20.11
20.12
20.13
20.14
20.15
20.16
20.17
20.18
20.19
20.20
20.21
20.22
20.23
20.24
20.25
20.26
20.27
20.28
20.29
20.30
20.31
20.32
20.33
20.34
20.35
20.36
20.37
20.38
20.39
20.40
20.41
20.42
20.43
20.44
20.45
20.46
20.47
20.48
20.49
20.50
20.51
20.52
20.53
20.54

Converting BOOL to DINTttt it et et e aae et naeannsnansanesnneenns 1208

Converting BOOLto TIME i it ittt a e et sa s nnssnasnnasansennn 1209
Converting BOOL to STRING ittt ittt et aa et an e sasannesanaanarnnnenns 1210
Converting WORD to BOOKLttt ittt it e e et e aaa e saesannenanaannsnneenns 1211
Converting WORD to DWORDttt et e et na et a e a s ane s aanasnasansennn 1212
Converting WORD to INT ittt i ittt e ae e s aan s aanesanrannennnennns 1213
Converting WORD to DINT it ittt e et e e aanesan s naennnennnennns 1214
Converting WORD to TIME it i i ittt a ittt et a et 1216
Converting DWORD toO BOOL. ottt it et e e e et e sae s anesanaanernneenns 1217
Converting DWORD tOWORDttt ittt it et s aae et e saeanenanasnnrnneenns 1218
Converting DWORD to INT i i i i e it a ittt et st a e 1220
Converting DWORD tO DINTottt it e it e et eaan e ae s sae e annenansannsnneenns 1222
Converting DWORD tO TIME. ittt it et e e e et aaesann e nansannraneenns 1223
Converting INT to BOOLttt i i i ittt ettt et it a s a s annans 1224
Converting INT to WORD ittt ittt et ae e e aae e sanasnaraanenanennns 1225
Converting INT to DWORNDDottt et e et e e e e e aae s aaneaanesnaenanenanennns 1226
Converting INT to DINTot i i i i i it a ittt e e s a s a e 1228
Converting INT to BC D ittt it e et et e aae et aae s aanean e rnneennn 1229
Converting INT to REAL ittt et et e s aa e et aa e aan e anenannrnnnennn 1231
Converting INT to TIME. i i it ettt it it a i e a e e 1232
Converting INT to STRING i et et e e et ee e sa e aan e nae e rnneenns 1233
Converting DINT toO BOOLttt et et e aa s an e aan e aaenannrnnnennn 1235
Converting DINTtoWORDo i i i i it ettt ittt 1236
Converting DINT to DWORD. it et ettt e e e et sa e nnn e sasannrnnnenns 1238
Converting DINT to INT i ittt e e et a e aa e aernanannnennns 1239
Converting DINT to BCDt i e i et ittt ittt a e a i aaaans 1241
Converting DINT to REAL.o et ettt et e e et e aan e aaesaneennnennn 1243
Converting DINT tO TIME it e et et aa e an e aesaanenanennnn 1244
Converting DINT to STRING i ettt s i ia e as 1245
Converting BCD t0 INTot e et et e e e e et a e aanan e 1247
Converting BCD to DINT i i it et e e e et e sa e aanan e eennnennn 1249
Converting REAL to INT i i it ittt it et aaaans 1251
Converting REAL tO DINTttt i et et et e e et sa s aan e aae e eannennn 1253
Converting REALtO STRING it it ittt ettt a et an s aaesanasannenns 1255
Converting TIME to BOOL i i i i ittt ittt e aans 1258
Converting TIMEto WORD ittt ittt e et et e aa e nanaarananeanns 1259
Converting TIMEto DWORDD.ottt e et et e a e e e a e annsaansannsannennn 1260
Converting TIME to INTttt i ittt et ittt a et s a e a e aarnanennns 1261
Converting TIME to DINT i ittt et ettt et e aa e aesaanenanennns 1262
Converting TIME to STRING i i ittt et a e e et e aa e ranesannennn 1263
Converting STRING to BOOKLttt it it it ettt e a e a s aaasnsanannsnns 1265
Converting STRING to INT i i e ittt a et a et e an e annennn 1266
Converting STRING toO DINTo i i e ettt et et e a s aae e sanesaneennn 1268
Converting STRING tO REAL ittt i it ittt a ettt sa s ane s aaesaneraneennn 1270
Converting STRING tO TIME. i i i ittt ettt a s n e nesnnasansennn 1273
Converting Bit Array to INT i i i ittt ettt et a s 1274
Converting Bit Array to DINTottt i it ettt a e et saesannenaenanarnnnenns 1275
Converting INTto Bit Arrayottt ittt ettt a s an s anssnnasannennn 1276
Converting DINT to Bit Arrayo oottt it ettt s ettt a s n e aassnnasansennn 1277
1 N - 1V 0o T 1278
Reading the Specified Bitof Word Label i i 1279

n
-
<
1]
-
<
O
o

13

14

20.55 Writing the Specified Bitof Word Label ittt et naennnns 1280

20.56 Copying the Specified Bitof Word Label i it e s 1281
20.57 Unnecessary of Type CONVeIrSiON it it intt it ieet s aeenanesanesaneeaansnnennnesnnns 1282
CHAPTER 21 SINGLE NUMBER VARIABLE FUNCTIONS 1283
211 Absolute Value.o i e e 1283
21.2 SqUAre ROOt. i e e e e a e, 1285
21.3 Natural Logarithm Operation ittt it ie et eae s na s aneanenanernnns 1286
21.4 Calculating the Common Logarithm i i i e st e ia e anes 1287
21.5 Exponential Operation i i it e e et e, 1289
21.6 Sine OPeratioN.ttt i it e a e e 1290
21.7 Cosine Operation. ittt ittt it i e e e 1291
21.8 Tangent Operation.ttt i i e e e e e e e 1292
21.9 Arc Sine Operationttt e e 1294
2110 Arc Cosine Operationottt ittt ittt et e e e e a s 1296
2111 ArcTangent Operationttt it it a ittt ettt e e e 1298
CHAPTER 22 ARITHMETIC OPERATION FUNCTIONS 1300
272 T - Y [11 To Y o 1300
22.2 Multiplication o i i e e e e et aa e, 1302
7 T TV - Vo T T 1304
72 S 0 11V T TR 1306
22,5 ReMaiNAerttt i it e e 1308
22.6 Exponentiation. e 1310
227 MOVE OPerationottt t ittt it et e e e e a e 1312
CHAPTER 23 BIT SHIFT FUNCTIONS 1314
231 n-bitLeft Shift e e et e 1314
23.2 n-bitRight Shift. e e 1316
23.3 n-bitLeft Rotationt i et e it i e 1318
23.4 n-bitRight Rotation. i i i ittt e e e e e 1320
CHAPTER 24 STANDARD BITWISE BOOLEAN FUNCTIONS 1322
241 AND Operation, OR Operation, XOR Operationitiiitiinnternneranernnnnnns 1322
242 Logical Negationci ittt et ettt s et e e 1324
CHAPTER 25 SELECTION FUNCTIONS 1325
251 SeleCtion. i e 1325
25.2 Selecting Maximum/MinimumValuettt et ae s ana s aaenaesanns 1327
253 Limit Control i e e e i 1329
254 MUItiPIEXEr . . .ottt e 1331
CHAPTER 26 COMPARISON FUNCTIONS 1333
] 70 SR O o Y 1 o - (- 1333
4 0 o T4 T - 1 - 1335
CHAPTER 27 CHARACTER STRING FUNCTIONS 1337
271 Character String Length Detection i i e et e aeeeae s 1337
27.2 Extracting Character String Data from the Left/Right it 1339
27.3 Extract Mid Stringcoiit ittt ettt a et a et aa e a e 1341

274 Link Character Stringsttt it it it a it ettt e 1343

27.5 Inserting Character Stringttt et ittt a e aa e n s 1345
27.6 Deleting Character Stringottt it ittt ia et ae s anesaaesnanannenannennns 1347
27.7 Replacing Character String ittt ittt et tnaa e ianeraareannaaneannesnnns 1349
27.8 Searching Character Stringt it et it a st an e nnansnnns 1352
CHAPTER 28 TIME DATA FUNCTIONS 1354
281 AddItiON e e 1354
28.2 SUBtraCtioN.o e e e 1356
28.3 Multiplication i i e et a e e e, 1358
& J N 0 11V 1= 1o o T 1360

PART 6 FUNCTION BLOCKS

CHAPTER 29 BISTABLE FUNCTION BLOCKS 1364
29.1 Bistable Function Blocks (Set Priority).t i it 1364
29.2 Bistable Function Blocks (Reset Priority). o i i 1366
CHAPTER 30 EDGE DETECTION FUNCTION BLOCKS 1368
30.1 Rising Edge Detector i i e 1368
30.2 Falling Edge Detector i e 1370
CHAPTER 31 COUNTER FUNCTION BLOCKS 1372
B e B U o 0o Y1 o § Y 1372
< 30 - T 3 0o 11 - 1374
31.3 Up-down CoUNterttt ittt ettt s ae et s e aa e e e e, 1376
31.4 Counter Function BIoCKo it i i i ittt et et et n e 1379
CHAPTER 32 TIMER FUNCTION BLOCKS 1381
321 PUlSEe TIMeKttt e 1381
322 ONn-delay Timer ...ttt ittt st ettt et a i a e e e ey 1383
323 Off-delay Timer ittt it et ea e aan e ianesnaeeaaneanesannsnnnennnns 1385
324 Timer Function BIOCKS i i i e 1387
APPENDIX 1390
Appendix 1 Instruction Processing Time. ittt i i ettt e ae e aeean e aaeenns 1390

Instruction processing time (High-speed instruction). 1390

Instruction processing time e 1395
Appendix 2 Number of Instruction Steps. i i i i ettt st e i nnnans 1431
Appendix 3 Added and Changed FUNCLIONSttt it et ennnernneranrnneenns 1452
INSTRUCTION INDEX 1455
REVISIONS . . . 1463
WA RRAN Y L e 1465
TRADEMARKS . . . e 1466

n
-
<
1]
-
<
O
&

15

RELEVANT MANUALS

Manual name <manual number>

Description

MELSEC iQ-F FX5 Programming Manual (Program Design)

Describes the specifications of ladder, ST, FBD/LD, and SFC programs, and

<JY997D55701> labels.
MELSEC iQ-F FX5 Programming Manual (Instructions, Standard Functions/ Describes the specifications of instructions and functions that can be used
Function Blocks) in programs.

<JY997D55801> (This manual)

GX Works3 Operating Manual
<SH-081215ENG>

Describes the system configuration, parameter settings, and online
operations of GX Works3.

TERMS

Unless otherwise specified, this manual uses the following terms.
For details of the FX3 devices that can be connected with the FX5, refer to the User's Manual (Hardware) of the CPU module

to be used.

Terms

Description

Engineering tool

The product name of the software package for the MELSEC programmable controllers

GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

Generic term/abbreviation

Description

Battery

Different name for FX3U-32BL

Bus conversion module

Generic term for Bus conversion module (extension cable type) and Bus conversion module (extension
connector type)

Extension power supply module

Generic term for FX5 extension power supply module and FX3 extension power supply module

FX3

Generic term for FX3S, FX3G, FX3GC, FX3U, and FX3UC PLCs

FX3 intelligent function module

Generic term for FX3U-4AD, FX3U-4DA, FX3U-4LC, FX3U-1PG, FX3U-2HC, FX3U-16CCL-M, FX3U-
64CCL, FX3U-128ASL-M, and FX3U-32DP

FX5

Generic term for FX5S, FX5UJ, FX5U, and FX5UC PLCs

FX5 CPU module

Generic term for FX5S CPU module, FX5UJ CPU module, FX5U CPU module, and FX5UC CPU module

FX5S CPU module

Generic term for FX5S-30MR/ES, FX5S-30MT/ES, FX5S-30MT/ESS, FX5S-40MR/ES, FX5S-40MT/ES,
FX5S-40MT/ESS, FX5S-60MR/ES, FX5S-60MT/ES, FX5S-60MT/ESS, FX5S-80MR/ES™, FX5S-80MT/
ES™, and FX5S-80MT/ESS ™

FX5U CPU module

Generic term for FX5U-32MR/ES, FX5U-32MT/ES, FX5U-32MT/ESS, FX5U-64MR/ES, FX5U-64MT/ES,
FX5U-64MT/ESS, FX5U-80MR/ES, FX5U-80MT/ES, FX5U-80MT/ESS, FX5U-32MR/DS, FX5U-32MT/
DS, FX5U-32MT/DSS, FX5U-64MR/DS, FX5U-64MT/DS, FX5U-64MT/DSS, FX5U-80MR/DS, FX5U-
80MT/DS, and FX5U-80MT/DSS

FX5UC CPU module

Generic term for FX5UC-32MT/D, FX5UC-32MT/DSS, FX5UC-64MT/D, FX5UC-64MT/DSS, FX5UC-
96MT/D, FX5UC-96MT/DSS, FX5UC-32MT/DS-TS, FX5UC-32MT/DSS-TS, and FX5UC-32MR/DS-TS

FX5UJ CPU module

Generic term for FX5UJ-24MR/ES, FX5UJ-24MT/ES, FX5UJ-24MT/ESS, FX5UJ-40MR/ES, FX5UJ-
40MT/ES, FX5UJ-40MT/ESS, FX5UJ-60MR/ES, FX5UJ-60MT/ES, and FX5UJ-60MT/ESS

GX Works3

The product name of the software package, SWnDND-GXW3, for the MELSEC programmable controllers
(The 'n' represents a version.)

High-speed pulse input/output module

Generic term for FX5-16ET/ES-H and FX5-16ET/ESS-H

1/0 module Generic term for Input modules, Output modules, Input/output modules, Powered input/output modules,
and High-speed pulse input/output modules
Input module Generic term for Input modules (extension cable type) and Input modules (extension connector type)

Intelligent function module

Generic term for FX5 intelligent function modules and FX3 intelligent function modules

Intelligent module

The abbreviation for intelligent function modules

Output module

Generic term for Output modules (extension cable type) and Output modules (extension connector type)

Peripheral device

Generic term for engineering tools and GOTs

SD memory card

Generic term for NZ1MEM-2GBSD, NZ1MEM-4GBSD, NZ1MEM-8GBSD, NZ1MEM-16GBSD, L1MEM-
2GBSD and L1MEM-4GBSD SD memory cards.
Abbreviation of Secure Digital Memory Card. Device that stores data using flash memory.

*1 Area-specific model

HOW TO READ THIS MANUAL

The following describes the page layout and symbols used in this manual.

How to read PART 3 and PART 4

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description
may differ.

Special function timer

QO —————» STMR

0o X3 N 0 0

This instruction uses the four devices from the device specified by (d) to perform four types of timer output.

Ladder diagram Structured text
ENO:=STMR(EN s1,52,d);

FBD/LD
. -
>
— o ¢ -
— =
Setting data
o ——————————p HDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Used timer number (operates as a 100 ms timer) - Device name ANY16
(s2) Timer set value 1to 32767 16-bit signed binary ANY16
(d) Start bit number to be output — Bit ANYBIT_ARRAY
(Number of elements: 4)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
(5] » mApplicable devices
Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST.C,D,W, |umeO |z |Lc [z |sSpecification [y g Tg
F.B,SB,S SD, SW, R
(s1) - o1 - - - - [e} - - - -
(s2) o o o o |- |- TJo o |- [- |-
@ o 072 — - = 1= 1= - = 1= 1=
*1 Only T can be used.
*2 T, ST, C cannot be used.
@® ——————» EControl data
Operand: (d)
Device Description Setting range | Set by
+0 Off delay timer output: — System
Tuns on at the rising edge of the command of the STMR instruction and turns off when the time specified by
(s2) elapses after the falling edge.
1 One-shot timer output after turning off — System
Tuns on at the falling edge of the command of the STMR instruction and turns off when the time specified by
(s2) elapses.
- One-shot timer output after turning on —
@ ———————————» __Processing details

« This instruction uses the four devices from the device specified by (d) to perform four types of timer output.

(a1
(@2
(A3 T
fe—> fe—> fe—>
@) @)) @)
- mand of the STMR instruction
7 /\spm““i)/__/_\
@ —————>» Precautions

« The timer number specified in this instruction cannot be used in other general circuits (such as OUT instruction). If the timer
number is used in other general circuits, the timer malfunctions.

+ The timer specified by (s1) starts counting as a 100 ms timer on the rising edge of the command contact.

+ Four devices are occupied from a device specified in (d). Make sure that such devices are not used in other controls for the
machine.

« If the command contact is turned off, (d), (d)+1, and (d)+3 turn off when the set time elapses. (d)+2 and the timer (s1) are
immediately reset.

© ——————» _Operation.error

Error code Description

(SD0/SD8067)

2820H The device range specified by (d) exceeds the corresponding device range.

3405H The value specified by (s2) is outside the following range.

1t0 32767

W

18

@ Indicates the instruction symbol.
* The instruction symbol with brackets means multiple instructions. For example, "GRY(P)(_U)" means the GRY, GRYP,
GRY_U, and GRYP_U instructions.

Instruction symbol Description of symbol
Instruction symbol with "(P)" The instruction is executed on the rising edge.
Instruction symbol with "(_U)" The instruction handles 16-bit or 32-bit unsigned binary data.

» The instruction symbol with "O0" means multiple instructions. For example, "LDDTO" means the LDDT=, LDDT<>, LDDT>,
LDDT<=, LDDT<, and LDDT>= instructions.

O Indicates the availability of instructions for each CPU module. (The instruction cannot be used with CPU modules marked

with an X.)

©Indicates the description format of the ladder diagram, FBD/LD language and ST (structured text) language

Instruction symbols are input in each corresponding place surrounded in a square in the ladder diagram.

OIndicates the description, setting range, data type, and data type (label) of each operand.

* For the data type, refer to the following.

L[TIMELSEC iQ-F FX5 Programming Manual (Program Design)

@ |ndicates the applicable devices for each operand. The following table describes the usage classification.

Operand | Bit Word Double word | Indirect Constant Others™
x*2, Y*Z, M*Z, T*3, ST*3, c*3, UD\GD*4 Z Lc*3 LZ specification K, H E $
L2, SM2 F2, | D“W" sD*,
B2, sB'2, 82 |sw* R™

Applicable | X,Y,M,L,SM,F, | T,ST,C,D, W, SD, | um\aO z LC LZ @O KH |E $ P, U,

devicesm | B, SB, S SW,R @0O.0 DX, DY, N,
BL,
BLO\SO

*1 For the description of each device, refer to the following.
LTIMELSEC iQ-F FX5 User's Manual (Application)

*2 "O"is described in positions where bit devices or digit specification of bit devices is available.

*3 When T, ST, C, and LC are used with an instruction other than the following instructions, they can be used only as word data. They
cannot be used as bit data.
[Instruction which can be used as bit data]
LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, OUT, RST, BKRST,
MOVB(P), CMLB(P)

*4 "O"is described in positions where word device or bit specification of word device is available.

*5 Devices which can be set are described in the "Others" column.

@Depending on the instruction, the control data to set the operation of the instruction exists. When the "Set by" column is

"User", the value must be specified according to the setting range.

@ Indicates the function details of the instruction. When no details are described, the following programs correspond to

"Interrupt program".

* Interrupt program using the interrupt pointer ()

» Fixed scan execution type program

» Event execution type program which is triggered by an interrupt by the interrupt pointer (1)

O Indicates the cautions.

O Indicates an error code (hexadecimal) which occurs at the execution and the error description when the instruction has a

specific operation error.

» A device in which an error code is stored is described in the error code column. When an error code is stored in SD0/
SD8067, the error flag (SM0O, SM1, SM56, SM8067) turns on.

How to read PART 5 and PART 6

The contents described in this section are provided only for explaining how to read this manual. Thus, the actual description
may differ.

20.25 converting DINT to BOOL

@ —————————— % DINT_TO_BOOL(_E)

These functions convert DINT type data to BOOL type data.

Ladder diagram, FBD/LD Structured text
[Without ENENO] [With EN/ENO] [Without EN/ENO]

S d:=DINT_TO_BOOL(s);
| —— [With EN/ENO]
. 1 en ENo |— d:=DINT_TO_BOOL_E(EN,ENO.s);

s ¢ =

l

®
v

v

Setting.data.

@ ————F—» HDescriptions, types, and data types
Argument | Description Type Data type

EN Execution condition (TRUE: Execution, FALSE: Stop) Input variable BOOL

S(N) Input Input variable DINT
ENO Output status (TRUE: Normal, FALSE: Abnormal) Output variable BOOL

d(DINT_TO_BOOL(_E)) Output Output variable BOOL

@ ——————————>» Processing details
HOperation processing
+ These functions convert the DINT type data input to (s) to BOOL type data and output from (d).
+ When the input value is 0, these functions output "FALSE".
+ When the input value is any value other than 0, these functions output "TRUE"
(s) ()
[[J—> | FALSE |
[12345678 J—> | TRUE]

DINT BOOL
« Avalue input to (s) is the DINT type data value.

HOperation result

1. Function without EN/ENO

The operation processing is executed. The operation output value is output from (d).
2. Function with ENJENO

The following table lists the execution conditions and operation results.

Execution condition Operation result

EN ENO (d)

TRUE (Executes operation) TRUE Operation output value
FALSE (Stops operation) FALSE™ Indefinite value

*1 When FALSE is output from ENO, data output from (d) is undefined. I that case, modify a program so that the data output from (d) is
not used.

@ ————F—» Operation error

There is no operation error.

20 TYPE CONVERSION FUNCTIONS
20.25 Converting DINT to BOOL 1 201

@ Indicates function symboals.

When character strings in brackets are added to the end of the function symbol for standard functions and function blocks, the
function symbol indicates multiple functions. For example, "DINT_TO_INT(_E)" means "DINT_TO_INT" and
"DINT_TO_INT_E".

Function symbol Description of symbol

Function symbol to which "(_E)" is added. Indicates that the description format with EN/ENO can be used in the standard function and function block.

O Indicates the availability of standard functions or function blocks for each CPU module. (The standard function or function
block cannot be used with CPU modules marked with an X.)

©Indicates the description format of the ladder diagram, FBD/LD language and ST (structured text) language.

In the square , either of the following symbol should be described.

« Standard function: Function symbol

+ Standard function block: Instance name and function block symbol

The sign of return value of the standard function of FBD/LD is not displayed.

O|ndicates the description, type and data type of each argument.

@ Indicates the functions of each standard function or function block.

19

@Indicates an error code which occurs at the execution and the error description when the standard function or the function

block has a specific operation error.
A device in which an error code is stored is described in the error code column. When an error code is stored in SDO, the error

flag SMO turns on.

20

PART 1

OVERVIEW

Part 1 consists of the following chapter.

1 OVERVIEW

2 PRECAUTIONS ON PROGRAMMING

21

22

1 OVERVIEW

1.1 Instruction Configuration

Many instructions available for CPU module are each divided into the instruction part and device part.
The instruction part and device part are used as follows.

* Instruction part: Indicates the function of the relevant instruction.

+ Device part: Indicates the data used for the instruction.

The device part is further classified to source data, destination data, and numerical data.

Source (s)

Source is the data used in the operation.
Depending on the label or device specified in each instruction, the source becomes as follows.

Type Description

Constant The constant specifies a numerical value used in the operation.
It is set during program creation and cannot be changed during program execution.

Bit device The user specifies the device where the data to be used in the operation is stored.

Word device Necessary data must be thus stored in the specified device before operation execution.

By changing the data to be stored in the specified device during program execution, the data to be used by the
instruction can be changed.

Destination (d)

Data after operation is stored in the destination area.
However, some instructions require the data to be used in the operation to be stored before the operation.

[Ex]

Binary 16-bit data addition instruction

(1): The data required for operation is stored before the operation.
(2): Only the operation result is stored.

A label or device to store data must be set for the destination.

Numerical values (n)

In an instruction which uses multiple devices or an instruction which specifies the number of repetitions, data to be processed,
and character strings, use numerical values to specify the number of devices, transfers, data, and character strings.

[Ex]

Block transfer instruction

—fewov] 5 [@] &
lH

Q)

(1): The number of transfers executed by the BMOV instruction is specified.

A numerical value from 0 to 65535 or 0 to 4294967295 can be set for the size such as the number of devices, transfers, or
characters.”

Note, however, that when the size specification such as the number of devices, transfers, or characters is 0, the relevant
instruction results in non-processing.

*1 The setting range varies depending on the instruction. For details, refer to the description of each instruction.

1 OVERVIEW
1.1 Instruction Configuration

Point/©

Be careful when a large numerical value is used such as for the number of transfers. It delays the scan time.

1.2

Data Specification Method

The following table lists the types of data that can be used for instructions in CPU modules.

Data

Classification

Bit data

Bit data

16-bit data (word data)

16-bit signed binary data

16-bit unsigned binary data

32-bit data (double-word data)

32-bit signed binary data

32-bit unsigned binary data

Real number data (floating-point data)

Single-precision real number data

BCD data BCD 4-digit data
BCD 8-digit data
String data String

Unicode character string

Device data

Data type Description Specifiable device/constant™
Bit Bit data can be handled. « Bit device

=~ Page 26 Bit data « Bit specification of word device
Word Word data can be handled. * Word device

=~ Page 27 16-bit data (word data)

16-bit signed binary

16-bit unsigned binary

16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=~ Page 27 16-bit data (word data)

- Digit specification of bit devices (K1 to K4)™2
» Decimal constant
* Hexadecimal constant

Double word

Double-word data can be handled.
=~ Page 29 32-bit data (double word data)

32-bit signed binary

32-bit unsigned binary

Two consecutive sets of 32-bit data or 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

=~ Page 29 32-bit data (double word data)

* Word device

* Double-word device

- Digit specification of bit devices (K1 to K8)™2
» Decimal constant

» Hexadecimal constant

BCD 4-digit BCD 4-digit data can be handled. * Word device
16-bit data is divided by 4 digits and each digit is specified in 0 to 9. - Digit specification of bit devices (K1 to K4)™2
 Decimal constant
* Hexadecimal constant
BCD 8-digit BCD 8-digit data can be handled. * Word device

32-bit data is divided by 8 digits and each digit is specified in 0 to 9.

* Double-word device

- Digit specification of bit devices (K1 to K8)™2
« Decimal constant

» Hexadecimal constant

Single-precision real
number

Single-precision real number data (single-precision floating-point data) can be
handled.
=~ Page 32 Configuration of single-precision real number data

* Word device
* Double-word device
» Real constant

Character string

ASCII code and Shift JIS code character string data can be handled.
=~ Page 33 Character string data

» Word device
« Character string constant

Unicode character string

Unicode character string data can be handled.
=~ Page 33 Character string data

» Word device
« Character string constant

Device name

A device can be directly specified.

Name of the relevant applicable device

*1 Aconstant can be used in the data specified for the source (s) or numerical data (n) by an instruction.
*2 For the specification method, refer to the detail page of each data type.

1 OVERVIEW
1.2 Data Specification Method

23

24

Label data

EPrimitive data type

Data type (label)

Specifiable label

Bit
(BOOL)

« Bit type label

« Bit-specified word [unsigned]/bit string [16 bits] type label

« Bit-specified word [signed] type label
« Timer/retentive timer type label contact/coil
« Counter/ long counter type label contact/coil

Word [unsigned]/bit string [16 bits]
(WORD)

» Word [unsigned]/bit string [16 bits] type label

« Digit specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [unsigned]/bit string [32 bits]
(DWORD)

» Double word [unsigned]/bit string [32 bits] type label
« Digit specified bit type label (K1 to K8)
« Current value of long counter type label

Word [signed]
(INT)

« Word [signed] type label

« Digit specified bit type label (K1 to K4)

« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [signed]
(DINT)

« Double word [signed] type label
« Digit specified bit type label (K1 to K8)
* Current value of long counter type label

Single-precision real number

« Single-precision real data type label

(REAL) « Digit specified bit type label (K1 to K8)
Time » Time type label
(TIME)

Character string

* Character string type label

(STRING) « Digit specified bit type label (K1 to K4)
Character string [Unicode] « Character string [Unicode] type label
(WSTRING)
Timer « Timer type label
(TIMER)
Retentive timer * Retentive timer type label
(RETENTIVETIMER)
Counter « Counter type label
(COUNTER)
Long counter « Long counter type label
(LCOUNTER)
Pointer « Pointer type label
(POINTER)

1 OVERVIEW

1.2 Data Specification Method

HEGeneric data type

Data type (label)

Specifiable label

ANY™ Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string, structure

ANY_BITADDR’! Bit

ANY_BOOL Bit

ANY_ELEMENTARY

Bit, word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

ANY_WORDADDR

Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

Any 16-bit data (ANY16)

Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S Word [signed]

ANY16_U Word [unsigned]/bit string [16 bits]

Any 32-bit data (ANY32) Double word [signed], double word [unsigned]/bit string [32 bits], hour
ANY32_S Double word [signed], hour

ANY32_U Double word [unsigned]/bit string [32 bits]

ANY_REAL Single-precision real number

ANYREAL_32 Single-precision real number

ANY_STRING Character string

ANYSTRING_SINGLE

Character string

ANYSTRING_DOUBLE

Character string [Unicode]

ANY_STRUCT"!

Structures

ANY_DT Word [signed], word [unsigned]/bit string [16 bits]
ANY_TM Word [signed], word [unsigned]/bit string [16 bits]
STRUCT Structures

ANY16_OR_STRING_SINGLE

Word [signed], word [unsigned]/bit string [16 bits], character string

*1 Can also be used as an array.

EGeneric data type (array)

For the following generic data type, define the number of array elements.

Data type (label)

Specifiable label

ANYBIT_ARRAY

Bit

ANYWORD_ARRAY

Word [signed], double word [signed], word [unsigned]/bit string [16 bits], double word [unsigned]/bit string[32 bits],
single-precision real number, hour, character string

ANY16_ARRAY

Word [signed], word [unsigned]/bit string [16 bits]

ANY16_S_ARRAY

Word [signed]

ANY16_U_ARRAY

Word [unsigned]/bit string [16 bits]

ANY32_ARRAY

Double word [signed], double word [unsigned]/bit string [32 bits]

ANY32_S_ARRAY

Double word [signed]

ANY32_U_ARRAY

Double word [unsigned]/bit string [32 bits]

ANY_REAL_ARRAY

Single-precision real number

ANY_REAL_32_ARRAY

Single-precision real number

ANY_STRING_ARRAY

Character string

ANY_STRING_SINGLE_ARRAY

Character string

ANY_STRING_DOUBLE_ARRAY

Character string [Unicode]

STRUCT_ARRAY

Structures

1 OVERVIEW 2
1.2 Data Specification Method 5

Bit data

Data size and data range

Bit data is handled in increments of bits such as contacts and coils.

Data name Data size Value range

Bit data 1 bit 0,1

Handling bit data with bit devices and labels

Bit data of one point per point can be handled.

Handling bit data with bit word devices

By specifying a bit number for a word device, bit data of the specified bit number can be handled.
A bit in a word device can be specified by "Word device number.Bit number".

A bit number can be specified in hexadecimal in the range from 0 to F.

For example, bit 5 (b5) of DO is specified as D0.5, and bit 10 (b10) of DO is specified as D0.A.
The following word devices support bit specification.

Item Device

Word devices which support bit specification « Data register (D)

« Link register (W)

« Link special register (SW)

* Special register (SD)

* Module access device (UO\G)
« File register (R)

Handling bit data with word type labels

By specifying a bit number for a word [unsigned]/bit string [16 bits] type label or word [signed] type label, bit data of the
specified bit number can be handled.
A bit in a word type label can be specified by "Label name.Bit number".

2 6 1 OVERVIEW
1.2 Data Specification Method

16-bit data (word data)

Data size and data range
16-bit data includes signed and unsigned 16-bit data.

In signed 16-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation Hexadecimal notation
Signed 16-bit data 16 bits (1 word) -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data 0 to 65535

Handling 16-bit data with bit devices
A bit device can be handled as 16-bit data by performing digit specification.

Item Notation Example
Bit device KOBIt device start number K4X10
O: Number of digits (Specify the number within the range of 1 to 4.) K2M113

Handling 16-bit data with bit type array labels

A bit type array label can be handled as 16-bit data by performing digit specification.
The following table shows the notation for handling a bit type array label as 16-bit data by digit specification.

Item Notation Example

Bit type array label KOLabel name K1L_BOOL
O: Number of digits (Specify the number within the range of 1 to 4.)
Specify a label name without an array element.

1 OVERVIEW 2
1.2 Data Specification Method 7

Digit specification range

The following table lists the range of 16-bit data for each digit specification.

Digit Decimal notation Hexadecimal notation
specification

K1 0to 15 OH to FH

K2 0to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 Signed 16-bit data: -32768 to 32767 0000H to FFFFH

Unsigned 16-bit data: 0 to 65535

[Ex]

When digit specification is made for X0, the applicable number of points is as follows.
* K1X0—4 points from X0 to X3

* K2X0—8 points from X0 to X7

* K3X0—12 points from X0 to X13

* K4X0—16 points from X0 to X17

X17 - X14X13 - X10 X7 X4 X3 X0

_ K2X0

_ K3X0

K4X0

ESpecifying a bit device with digit specification in the source (s)
When a bit device with digit specification is specified in the source of an instruction, 0 is stored in the bits, which follow the bit
for which digit specification is made in the source, in the word device of the destination.

Ladder example Processing

 16-bit data instruction

ol Tl
X10
F——— mov | kixo [Do Y
i ° v
A
' I
4 b3 b2 bl bo

5 e
DO|0‘0‘O‘O‘O‘O‘O‘O‘O‘O‘O‘O‘X3‘X2‘X1‘XO|

(s)

ESpecifying a bit device with digit specification in the destination (d)

When a digit specification is made in the destination of an instruction, the number of points by the digit specification is
applicable in the destination.

The bit devices after the number of points specified by nibble remain unchanged.

Ladder example Processing

* When the source data is a word device bo

DO|1‘1‘1‘0‘1‘0‘1‘0‘1‘0‘0‘1‘1‘1‘0‘
-

X10 ! |
}—H—| mov | Do |K2M1oo}—{ g »

M115 M108M107 M100
o] | | | [[[| [+]ofole]1]r]o]1]
- J
VT
(@)

(1): The data remain the same.

(d)

2 8 1 OVERVIEW
1.2 Data Specification Method

Handling 16-bit data with word devices/labels

HEWord device

One point of word device can handle 16-bit data.

EWord type label
One point of word type label can handle 16-bit data.

32-bit data (double word data)

Data size and data range

32-bit data includes signed and unsigned 32-bit data.
In signed 32-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation

Hexadecimal notation

Signed 32-bit data 32 bits (2 word) -2147483648 to 2147483647

Unsigned 32-bit data 0 to 4294967295

00000000H to FFFFFFFFH

Handling 32-bit data with bit devices

A bit device can be handled as 32-bit data by performing digit specification.

Item Notation Example
Bit device KOBiIt device start number K8X10
O: Number of digits (Specify the number within the range from 1 to 8.) K6B018

Handling 32-bit data with bit type array labels

A bit type array label can be handled as 32-bit data by performing digit specification.

The following table shows the notation for handling a bit type array label as 32-bit data by digit specification.

Item Notation Example
Bit type array label KOLabel name K8L_BOOL
O: Number of digits (Specify a number within the range of 1 to 8.)
Specify a label name without an array element.
1 OVERVIEW 29

1.2 Data Specification Method

30

Digit specification range

The following table lists the range of 32-bit data for each digit specification.

Digit Decimal notation Hexadecimal notation

specification

K1 Oto 15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 0 to 65535 0000H to FFFFH

K5 0 to 1048575 00000H to FFFFFH

K6 0to 16777215 000000H to FFFFFFH

K7 0 to 268435455 0000000H to FFFFFFFH

K8 Signed 32-bit data: -2147483648 to 2147483647 00000000H to FFFFFFFFH
Unsigned 32-bit data: 0 to 4294967295

[Ex]

When digit specification is made for X0, the applicable number of points is as follows.

* K1X0—4 points
* K2X0—8 points
* K3X0—12 point
* K4X0—16 point
* K56X0—20 point
* K6X0—24 point
* K7X0—28 point
* K8X0—32 point

from X0 to X3

from X0 to X7

s from X0 to X13
s from X0 to X17
s from X0 to X23
s from X0 to X27
s from X0 to X33
s from X0 to X37

X37 -+ X34 X33 - X30X27 -+- X24 X23 --- X20 X17 --- X14 X13 - X10 X7 -

X4X3 -+ X0

| K3X0
¢

_ K4X0

o K5X0

K6X0

_ K7X0

<

_ K8X0

1 OVERVIEW

1.2 Data Specification Method

ESpecifying a bit device with digit specification in the source (s)
When a bit device with digit specification is specified in the source of an instruction, 0 is stored in the bits, which follow the bit

for which digit specification is made in the source, in the word device of the destination.

Ladder example Processing

« 32-bit data instruction
e[z [0
X10
F———— pmov | kixo [Do Y
i ° v

) ' I
b15 b4 b3 b2 b1 b0

DO[O|O|O0O|O0O|O|O|O[O0O|O0O]O0O|O0]|O0|X3 X2|X1|X0

ptfojojojojojo0ojo0ojo0ojo0ojo0j0|j0|j0f0|0]|O0
b31 b16
- /)

BSpecifying a bit device with digit specification in the destination (d)

When a digit specification is made in the destination of an instruction, the number of points by the digit specification is
applicable in the destination.

The bit devices after the number of points specified by nibble remain unchanged.

Ladder example Processing

* When the source data is a word device b15

po[11 1]ofof1]o]ofolt]o]1]1]1]o]1]

X10
}—{ F——omov| po | K5M10}—{ b15

D1|0‘0‘1‘1‘0‘1‘0‘0‘1‘0‘0‘1‘0‘1‘1‘1|

(d)
v

M25 8M17 M10
Lrlilrfoloftlofolof]ofs]1]1]o]1]
M41 M30M29 - M26
LT P[] Jofefe]r]
— —~ _
()
(1): The data remain the same.
Handling 32-bit data with word devices/labels
EWord device
Two points of word device can handle 32-bit data.
Note, however, that one point of the following devices can handle 32-bit data.
 Long counter (LC)
» Long index register (LZ)
EDouble word type label
One point of double word device can handle 32-bit data.
1 OVERVIEW
31

1.2 Data Specification Method

32

Real number data (floating-point data)

Data size and data range

Real number data includes single-precision 32-bit real number data.
Real number data can be stored only in devices other than bit devices or in single-precision real data type labels.

Data name Data size Value range
Single-precision real number data (single-precision Positive 32 bits (2 word) 271%6< real number<2'28
floating-point data) number

Zero 0

Negative -2128<real numbers<-27126

number

Configuration of single-precision real number data

Single-precision real number data consists of a sign, mantissa, and exponent, and is expressed as shown below.

The following figure shows the bit configuration of the internal expression of single-precision real number data and the

| Sign | 1. | Mantissa | * 2

meaning of each part.

HERNEEEEEEENE NN

b31 b30 b23 b22 b16 b15 b0
N AN i
Y N ~
Sign Exponent Mantissa

WSign (1 bit)
This bit represents the positive or negative sign of a numerical value. "0" indicates a positive number or 0. "1" Indicates a
negative number.

EMantissa (23 bits)

A mantissa means XXXXX:- of 1. XXXXX--x2N representing a single-precision real number in binary.

HEExponent (8 bits)

An exponent means N of 1 XXXXX:-x2N representing a single-precision real number in binary. The following table shows the
relationships between the exponent value and N of a single-precision real number.

Exponent (b23 to b30) | FFH FEH FDH 81H 80H 7FH 7EH 02H 01H 00H
N Not used | 127 126 2 1 0 -1 -125 -126 Not used
Precautions

EWhen setting an input value of single-precision real number from the engineering tool
The number of significant digits is about 7 because the engineering tool processes single precision real number data in 32-bit

single precision.
When the input value of single-precision real number data exceeds 7 digits, the 8th digit is rounded off.
Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

When "2147483647" is set as an input value, it is handled as "2147484000" because 8th digit "6" is rounded off.

[Ex]

When "E1.1754943562" is set as an input value, it is handled as "E1.175494" because 8th digit "3" is rounded off.

1 OVERVIEW
1.2 Data Specification Method

Point/©

The monitor function of the engineering tool can monitor real number data of CPU modules.

To represent "0" in real number data, set all numbers in each of the following range to 0.

« Single-precision real number data: b0 to b31

The setting range of real number data is as follows.

« Single precision real number data: -2128<single precision real number data]s-2'126, 0, 2'1263[single

precision real number datal<
Do not specify "-0" (only the most significant bit is 1) in real number data. Performing a real number operation

2128

using -0 results in an operation error.

Character string data

Format of character string data

The following table lists the types of character string data, each of which ends with a NULL code to be handled as a character

string.
Type Character code Last character
Character string ASCII code NULL(00H)
Unicode character string Unicode (UTF-16 (little endian)) NULL(0O000H)

Character string data is stored in devices or an array in ascending order of device numbers or array element numbers.

Lower

» Upper

O

»
Ll

ABC - XYZ

'ABC - XYZ'
(1): Character code string

Method for expressing a character string

When a character string or a Unicode character string is specified in a program, an error may occur depending on the

expressing method.

The expressing methods in the programming languages are shown below.

HLadder program
Data type Expressing method
String Enclose character strings with single (') or double quotation marks (").

Character string [Unicode]

Enclose Unicode character strings with single (') or double quotation marks (").

HST program

Data type

Expressing method

String

Enclose character strings with single quotation marks (').

Character string [Unicode]

Enclose Unicode character strings with double quotation marks (").

EFBD/LD program

Data type

Expressing method

String

Enclose character strings with single quotation marks (').

Character string [Unicode]

Enclose Unicode character strings with double quotation marks (").

1 OVERVIEW
1.2 Data Specification Method

33

34

Data range

The following table summarizes the ranges of character string data.

Type

Maximum number of character strings

Maximum number of character strings that can
be handled in the program

Character string

255 single-byte characters (excluding the last NULL 16383 characters (excluding the last NULL character)

character)

Unicode character string*1

255 characters (NULL at the end is not included.)

*1 For Unicode strings, characters in the basic multilingual plane can be used.

Number of words required for storing data

Character string data can be stored in word devices.
The following table lists the numbers of words required for storing character string data.

Number of character string

bytes

Number of words required for storing character | Number of words needed for storing Unicode

strings

character string

0 byte

1 [word]

1 [word]

Odd number of bytes

(Number of character string bytes+1) + 2 [words]

— (Because one character is in an even byte.)

Even number of bytes

(Number of character string bytes+2) +1 [words]

Number of characters + 1 [words]

Character string data storage location

An image of the character string data storage location is shown below.

BCharacter strings

In each character string storage image, "NULL" indicates a NULL code (O0H).

Character string
to be stored

Image of storing character string data from DO

Image of storing character string data from word type
label array arrayA[0]

" (null character

string) DO NULL H NULL arrayA[0] NULL H NULL
'ABC'
DO B : A arrayA[0] B : A
D1 NULL H C arrayA[1] NULL ' C
'ABCD'
DO B : A arrayA[0] B : A
D1 D ! C arrayA[1] D ' c
D2 NULL \ NULL arrayA[2] NULL ' NULL

EUnicode character strings
In each Unicode character string storage image, "NULL" indicates the NULL code (0000H).

Character string
to be stored

Image of storing character string data from DO

Image of storing character string data from word type
label array arrayA[0]

" " (null character

string) DO NULL arrayA[0] | NULL
"ABCD"
DO A arrayA[0] A
D1 B arrayA[1] B
D2 C arrayA[2] C
D3 D arrayA[3] D
D4 NULL arrayA[4] NULL
1 OVERVIEW

1.2 Data Specification Method

1.3 Execution Condition

Types of execution conditions

The following are the five types of execution conditions of the instructions and functions of CPU module.

Execution condition

Description

On An instruction is executed during on. It is executed only while the precondition of the instruction is on. When the
precondition is off, the instruction is not executed.
Rising edge An instruction is executed one time when turned on. It is executed only once on the rising edge (off to on) of the
I precondition of the instruction and is no longer executed later even when the condition turns on.
Off An instruction is executed during off. It is executed only while the precondition of the instruction is off. When the
—|_,_ precondition is on, the instruction is not executed.
Falling edge An instruction is executed one time when turned off. It is executed only once on the falling edge (on to off) of the
1 precondition of the instruction and is no longer executed later even when the condition turns off.
Always — An instruction is always executed regardless of whether the precondition of the instruction is on or off. When the
precondition is off, the instruction performs off processing.

Execution condition of each instruction

The execution condition varies depending on the instruction. The following table lists the execution conditions of individual

instructions.

Execution condition

Applicable instruction

On All instructions except for the following
Rising edge * Instruction followed by symbol (P), (GP.), and (SP.)
* PLS
Off —
Falling edge PLF
Always LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF, ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI, ANB, ORB, MPS,

MRD, MPP, INV, MEP, MEF, OUT, OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST, OUT C, OUT LC, MC, MCR, FEND,
END, LDO, ANDO, ORO, LDO_U, ANDO_U, ORO_U, LDDO, ANDDO, ORDO, LDDO_U, ANDDO_U, ORDO_U, JMP, DI, El,
IMASK, SIMASK, IRET, FOR, NEXT, RET, LD$0, AND$O, OR$0O, LDEO, ANDEO, OREO, STMR, LDDTO, ANDDTO, ORDTO,
LDTMO, ANDTMO, ORTMO

1 OVERVIEW
1.3 Execution Condition 35

36

1.4 Acceleration of Instruction Processing Time

High-speed instruction

In some instructions, when the device and label specified in each operand satisfy the specific condition, the instruction

processing time is accelerated.

Such accelerated instructions are called high-speed instructions.

The instructions capable of accelerating and the conditions of acceleration

The table below shows the instructions capable of accelerating and the conditions of acceleration (conditions of non-

acceleration).

Classification

Instruction symbol

Conditions of non-acceleration

Contact instruction

LD, LDI, AND, ANI, OR, ORI, LDP, LDF, ANDP, ANDF,
ORP, ORF, LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

Association instruction

ANB, ORB, MPS, MRD, MPP, INV, MEP, MEF

Output instruction

OUT, OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST,
OUTHS ST, OUT C, SET, RST, ALT

Shift instruction

SFR, SFL

* When indexing is executed

» When link register (W) is specified, the number of points of
file register (R) + the number of link register (W) > 32767

* When link special register (SW) is specified, the number of
points of file register (R) + the number of points of link
register (W) + the number of link special register (SW) >
32767

» When module access device (Un\Gn) is specified

» When direct access input (DX) is specified

* When direct access output (DY) is specified

« In OUT, SET, RST instructions, annunciator (F) or step
relay (S) is specified in the operand

* In OUT T instruction, routine timer is specified in the
operand

+InOUTT, OUT ST, OUTH T, OUTH ST, OUTHS T, OUTHS
ST, OUT C instructions, a data other than constant is
specified in the second operand

* In OUT T, OUT ST instructions, KO is specified in the
second operand

* In RST instruction, a data other than the bit type is
specified in the operand

Comparison operation instruction

LD=, AND=, OR=, LD=_U, AND=_U, OR=_U, LD<>,
AND<>, OR<>, LD<>_U, AND<>_U, OR<>_U, LD>,
AND>, OR>, LD>_U, AND>_U, OR>_U, LD<=,
AND<=, OR<=, LD<=_U, AND<=_U, OR<=_U, LD<,
AND<, OR<, LD<_U, AND<_U, OR<_U, LD>=,
AND>=, OR>=, LD>=_U, AND>=_U, OR>=_U, LDD=,
ANDD=, ORD=, LDD=_U, ANDD=_U, ORD=_U,
LDD<>, ANDD<>, ORD<>, LDD<>_U, ANDD<>_U,
ORD<>_U, LDD>, ANDD>, ORD>, LDD>_U,
ANDD>_U, ORD>_U, LDD<=, ANDD<=, ORD<=,
LDD<=_U, ANDD<=_U, ORD<=_U, LDD<, ANDDX,
ORD=<, LDD<_U, ANDD<_U, ORD<_U, LDD>=,
ANDD>=, ORD>=, LDD>=_U, ANDD>=_U, ORD>=_U

* When indexing is executed

» When link register (W) is specified, the number of points of
file register (R) + the number of link register (W) > 32767

» When link special register (SW) is specified, the number of
points of file register (R) + the number of points of link
register (W) + the number of link special register (SW) >
32767

* When module access device (Un\Gn) is specified

* When the indirect specification is used

» When specifying the nibble of a device, the number of
digits is other than K4 or K8

* When specifying the nibble of a device, the head device
number is other than a multiple of 8

(Example) K4M8: Acceleration available, K4M9:

Acceleration not available

« When specifying the nibble of a label™

1 OVERVIEW

1.4 Acceleration of Instruction Processing Time

Classification

Instruction symbol

Conditions of non-acceleration

Arithmetic operation instruction

+ (2 operands), +_U (2 operands), + (3 operands), +_U
(3 operands), - (2 operands), -_U (2 operands), - (3
operands), -_U (3 operands), D+ (2 operands), D+_U
(2 operands), D+ (3 operands), D+_U (3 operands), D-
(2 operands), D-_U (2 operands), D- (3 operands), D-
_U (3 operands), *, *_U, INC, INC_U, DEC, DEC_U,
DINC, DINC_U, DDEC, DDEC_U

Logical operation instruction

WAND (2 operands), WAND (3 operands), DAND (2
operands), DAND (3 operands), WOR (2 operands),
WOR (3 operands), DOR (2 operands), DOR (3
operands), WXOR (2 operands), WXOR (3 operands),
DXOR (2 operands), DXOR (3 operands), WXNR (2
operands), WXNR (3 operands), DXNR (2 operands),
DXNR (3 operands)

Bit processing instruction

BSET, BRST, TEST, DTEST

Data conversion instruction

INT2UINT, INT2UDINT, INT2DINT, UINT2INT,
UINT2DINT, UINT2UDINT, DINT2INT, DINT2UINT,
DINT2UDINT, UDINT2INT, UDINT2DINT, UDINT2UINT

Real number instruction

INT2FLT, DINT2FLT, UINT2FLT, UDINT2FLT, EMOV,
DEMOV

* When indexing is executed

* When link register (W) is specified, the number of points of
file register (R) + the number of link register (W) > 32767

« When link special register (SW) is specified, the number of
points of file register (R) + the number of points of link
register (W) + the number of link special register (SW) >
32767

* When module access device (Un\Gn) is specified

« When the indirect specification is used

« When specifying the nibble of a device, the number of
digits is other than K4 or K8

« When specifying the nibble of a device, the head device
number is other than a multiple of 8

(Example) K4M8: Acceleration available, K4M9:

Acceleration not available

« When specifying the nibble of a label”

« When specifying timer (T), retentive timer (ST), counter
(C), long counter (LC), timer type label, retentive timer
type label, counter type label, and long counter type label
in the operand with the data type of word/double word

*1 When specifying the nibble of a label, some instructions are accelerated depending on the assignment position of the label. However,
because the assignment position of label cannot be checked and changed, check the actual operation.

1 OVERVIEW
1.4 Acceleration of Instruction Processing Time 37

Execution time of high-speed instruction

For execution time of high-speed instruction, refer to the following.
(==~ Page 1390 Instruction Processing Time

1 OVERVIEW
38 1.4 Acceleration of Instruction Processing Time

2 PRECAUTIONS ON PROGRAMMING

2.1 Errors Common to Instructions

The following table lists the conditions under which an error occurs when the instruction is executed.

Error content™! Error code
(SD0/SD8067)

An 1/0 number which corresponds to no module is specified. 2801H

* An I/0O number which is out of range (0 to 1777 (Octal number)) is specified. 2820H

* The device or label specified by the instruction exceeds the available range.

The range of the buffer memory of the module specified by the instruction is exceeded. 2823H

*1 For a contact instruction, an error is not detected but the operation result becomes no continuity.

2.2 Checking the Ranges of Instruction Runtime
Devices and Labels

Checking the ranges of devices and labels

When a device or label is specified in an instruction, range check is performed. If a range exceeding that of the relevant

device or label is specified, an error occurs.
The same applies when a label assigned to a device is specified in an instruction in the program.
Create such a program that the operation result falls within the range of the relevant device or label.

When a global device is specified

Device assignment image in
———1Bmov| Do |p1023| k10 the device/label memory

(1) Do

D1022

D1023 } Data are written to these areas.
WO

WO0007

WO3FF

(1) The transfer destination is in the range corresponding to D1023 to D1032. Because D1024 to D1032 do not exist, the data are written only to D1023.

2 PRECAUTIONS ON PROGRAMMING
2.1 Errors Common to Instructions 39

2.3 Operations Arising when the OUT, SET/RST, and
PLS/PLF Instructions of the Same Device are Used

If two or more OUT, SET/RST, and PLS/PLF instructions are executed using the same device during one scan, they operate

as described in this section.

For OUT instructions of the same device

More than one OUT instruction of the same device must not be issued during one scan.

Otherwise, the specified device turns on or off, depending on the operation result up to each OUT instruction while it is in
execution.

In this case, the device may turn on/off during one scan because the on/off state of the specified device is determined during
execution of each OUT instruction.

The following figure shows the behavior arising when a circuit turning on/off the same internal relay (MO0) is created with input
X0 and X1.

%
Cﬁz Cﬁg
o o
x

}
)
k&

END END END
[| [||
I | [[| | [
ON ! ! ' ' ON
X0 OFF 5 5 lOFF | |
ON : : ON : :
X1 lOFF ! ! T ! ! OFF

| ON

1) (3)
(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO turns off.
(3) Since X0 is off, MO remains off.
(4) Since X1 is on, MO turns on.

If output (Y) is specified using an OUT instruction, the on/off state of the last OUT instruction executed during the one scan will
be output.

40 2 PRECAUTIONS ON PROGRAMMING
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used

If SET/RST instructions of the same device are used

BFor SET instructions

The SET instruction turns on the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more SET instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is on.

BFor RST instructions

The RST instruction turns off the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more RST instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is off.

HIf the SET and RST instructions of the same device exist in one scan

If the SET and RST instructions of the same device exist in one scan, the SET instruction turns on the specified device if the
execution command is on, and turns off the specified device if it is on.

If both the SET and RST instructions are off, the on/off state of the specified device will be unchanged.

X0
1] SET
X1
|| RST
X0
SET SET
m
EN END END
|
— l l —
ON ! ! ! !
X0 __OFF i i lOFF . .
5 5 ON 5 5
X1 _oFF ’ E] E E
tON ! : '
Mo _ OFF \ X OFF
(

2))

1) (3)

(1) Since X0 is on, MO turns on.
(2) Since X1 is off, MO remains on. (The RST instruction results in non-processing.)
(3) Since X0 is off, MO remains on. (The SET instruction results in non-processing.)
(4) Since X1 is on, MO turns off.

If output (Y) is specified using a SET/RST instruction, the on/off state of the last SET/RST instruction executed during the one
scan will be output.

2 PRECAUTIONS ON PROGRAMMING 41
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used

42

If PLS instructions of the same device are used

The PLS instruction turns on the specified device when the execution command specifies an off-to-on change. The specified

d

evice is turned off unless the execution command specifies an off-to-on change (i.e. off to off, on to on, on to off).

Thus, if two or more PLS instructions of the same device are issued during one scan, the specified device is turned on when

the execution command of each PLS instruction specifies an off-to-on change. The specified device is turned off unless the

e

xecution command specifies an off-to-on change.

Thus, if two or more PLS instructions are issued during one scan, the device turned on by a PLS instruction may not turn on

for one scan.

X0

1]
X1

| s

« If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)

X0
——T{pus[woH]
}—m-l [PLs[wo]
EN END END
|
I]] l
ON ! ! ! !
X0 _ OFF i i lOFF . .
| | ON : .
X1 _oFF : :] : :
. ON | i . _ON

Mo _ OFF k OFF

| \(2) \ | 4)

) (3)

1) Since X0 turns on, MO turns on.

2) Since X1 is other than turning on, MO turns off.

3) Since X0 is other than turning on, MO remains off.
4) Since X1 turns on, MO turns on.

2 PRECAUTIONS ON PROGRAMMING
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used

« If the off-to-on changes of X0 and X1 are at the same timing

X0
——TPisTwo Im
PLS MO PLS MO
END END END
| I I

lOFF

ON :

ON

MO OFF N OFF

) 4)

(1) 3)

(1) Since X0 turns on, MO turns on.

(2) Since X1 turns on, MO remains on.

(3) Since X0 is other than turning on, MO turns off.
(4) Since X1 is other than turning on, MO remains off.

If output (Y) is specified using a PLS instruction, the on/off state of the last PLS instruction executed during the one scan will
be output.

2 PRECAUTIONS ON PROGRAMMING 4
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used 3

44

If PLF instructions of the same device are used

The PLF instruction turns on the specified device when the execution command specifies an on-to-off change. The specified
device is turned off unless the execution command specifies an on-to-off change (i.e. off to off, off to on, on to on).

Thus, if two or more PLF instructions of the same device are issued during one scan, the specified device is turned on when
the execution command of each PLF instruction specifies an on-to-off change. The specified device is turned off unless the
execution command specifies an on-to-off change.

Thus, if two or more PLF instructions are issued during one scan, the device turned on by a PLF instruction may not turn on
for one scan.

X0
11 PLF [Mo |
X1

| PLF | Mo |

« If X0 and X1 differs in the on/off timing (i.e. the specified device does not turn on for one scan)

X0 X0

PLF pLF]

[PLF[mo] [PLF[MO]
END END END
| |

| | |

ON

ON
Mo OFF OFF

@ 4)

(1 3)
1) Since XO0 turns off, MO turns on.
2) Since X1 is other than turning off, MO turns off.
3) Since X0 is other than turning off, MO remains off.
4) Since X1 is other than turning off, MO remains off.

2 PRECAUTIONS ON PROGRAMMING
2.3 Operations Arising when the OUT, SET/RST, and PLS/PLF Instructions of the Same Device are Used

« If the on-to-off changes of X0 and X1 are at the same timing

X0
PLF PLF
IIEND| END END
ON [[[I I
X0 OFF
ON E E E E ON
X1 OFF : : ; :
. ON . 1 1
mo_ OFF \ OFF |
@)

(1 3)

(1) Since X0 turns off, MO turns on.

(2) Since X1 turns off, MO remains on.

(3) Since XO0 is other than turning off, MO turns off.
(4) Since X1 is other than turning off, MO remains off.

If output (Y) is specified using a PLF instruction, the on/off state of the last PLF instruction executed during the one scan will
be output.

2.4 Handling general flags

In some types of instructions, the following flags operate:

» SM8020: Zero flag

» SM8021: Borrow flag

+ SM8022: Carry flag

+ SM8029: Instruction execution complete flag

» SM8090: Block comparison signal

« SM8304: Zero flag (MUL, DIV instructions only)

» SM8306: Carry flag (MUL, DIV instructions only)

» SM8328: Instruction non-execution flag

« SM8329: Instruction execution abnormal end flag

These general flags turn ON or OFF every time instructions turn ON, but do not change when various instructions turn OFF or
when errors occur.

Because multiple instructions change the status of these flags, the ON/OFF status of flags change every time such
instructions are executed.

Program general flag contacts directly under each instruction. (I=5~ Page 46 Program containing many flags (example of
SM8029 (Instruction execution complete flag)))

2 PRECAUTIONS ON PROGRAMMING 4
2.4 Handling general flags 5

Program containing many flags (example of SM8029 (Instruction execution complete

flag))

When two or more SM8029 (Instruction execution complete flag) are programmed together for instructions which operate the
same flag, it is difficult to determine which instruction executes which flag. Also, the flag corresponding to each instruction
cannot be read normally.

For using flags in any positions other than directly under instructions, refer to [==~ Page 47 Method for using flags in any
positions other than directly under instructions (example of SM8029 (Instruction execution complete flag)).

Good example .
| |
L}

SM8000

——

X10 Y10 DO K1

MUL DO K10 D20

SM8029 works as
a flag to indicate
that execution of
DSW is
completed.

MO

K1000 D20 YO

SM8029 works as
a flag to indicate
that execution of
DPLSY is
completed.

<V

N
Bad example SM8029 works as| S 9

flag to indicat 5 Program for the second DPLSY
that execution of RST MO

! . .
the second Execution is " instruction

DPLSY is completed .
completed. L

SM8000
— DSW X10 Y10 DO K1

RST MO

SM8029 works as X0
a flag to indicate

that execution of
DSW is —AF——— SET MO

completed.

MO
+ ———— DPLSY | K1000 D20 YO First DPLSY instruction

SM8029 works as

?hfl?g to in?icatef S 9
at execution O

the first DPLSY MUL | Do | Kkio | pzo | Program forDSW

is completed. Execution is instruction

completed
M1

- Second DPLSY
_\ ————— DPLSY | K1000 D22 Y1 instruction

46 2 PRECAUTIONS ON PROGRAMMING
2.4 Handling general flags

Method for using flags in any positions other than directly under instructions (example
of SM8029 (Instruction execution complete flag))

When two or more instructions are programmed, general flags turn ON or OFF when each instruction turns ON.

Accordingly, when using a flag in any position other than directly under an instruction, set another device to ON or OFF just
under the instruction, and then use the contact of the device as the command input.

n
SM8000
—V— — DSW X10 Y10 DO K1
DSW Iexe(f:lution
complete flag
SM8029 is Execution is M100
changed to complete
M100. o
Mo <
— DPLSY | K1000-1 D20 YO
DPLSY
execution
complete flag Execution is| ~ RST Mo
SM8029 is complete
changed to
M200.
}{ . - M200
It works as DSW . o
execution
complete flag.
M100 e
—AF——————— MUL DO K10 D20
o
It works as
DPLSY execution
complete flag.
M200
— Y30

2.5

When standard functions/function blocks are used, always set a device or label for the output variable, and make sure to

Standard Function/Function Block Return Values

receive the return value.
If the output variable is not set, an error may occur after writing to the PLC.

Write - 1

6

7 s |

1) g

- 10 WO

2 — BEN ENOB O—
3 [Do Hma | IiAK E |I

a [o1 Hme

5 (22 END -
Write - L |2 3 4 5 6 7 8 9 10 u | 12

4 o WA E

I MO bl

2 — BEN ENOB {O—
3 [oo Hmi |MA><_E L D10]Il

a [o1 Hwmz

5 (38) END 1—

2 PRECAUTIONS ON PROGRAMMING
2.5 Standard Function/Function Block Return Values

47

MEMO

48 2 PRECAUTIONS ON PROGRAMMING
2.5 Standard Function/Function Block Return Values

PART 2

PART 2 INSTRUCTION/
FUNCTION LIST

This part consists of the following chapters.

3 CPU MODULE INSTRUCTION

4 MODULE SPECIFIC INSTRUCTION

5 STANDARD FUNCTIONS/FUNCTION BLOCKS

49

50

3 CPU MODULE INSTRUCTION

3.1 Sequence Instruction

Contact instruction

HOperation start, series connection, parallel connection

Instruction symbol Description Reference
LD Starts logical operation (Starts NO contact logical operation) Page 114
LDI Starts logical NOT operation (Starts NC contact logical operation)
AND Logical AND (NO contact series connection)
ANI Logical NAND (NC contact series connection)
OR Logical OR (NO contact parallel connection)
ORI Logical NOR (NC contact parallel connection)
HPulse operation start, pulse series connection, pulse parallel connection
Instruction symbol Description Reference
LDP Starts rising edge pulse operation Page 117
LDF Starts falling edge pulse operation
ANDP Rising edge pulse series connection
ANDF Falling edge pulse series connection
ORP Rising edge pulse parallel connection
ORF Falling edge pulse parallel connection

HPulse NOT operation start, pulse NOT series connection, pulse NOT parallel connection

Instruction symbol Description Reference
LDPI Starts rising edge pulse NOT operation Page 121
LDFI Starts falling edge pulse NOT operation
ANDPI Rising edge pulse NOT series connection
ANDFI Falling edge pulse NOT series connection
ORPI Rising edge pulse NOT parallel connection
ORFI Falling edge pulse NOT parallel connection
Association instruction
HLadder block series/parallel connection
Instruction symbol Description Reference
ANB AND between logical blocks (series connection between logical blocks) Page 123
ORB OR between logical blocks (parallel connection between logical blocks)
BStoring/reading/clearing the operation result
Instruction symbol Description Reference
MPS Stores the operation result Page 125
MRD Reads the operation result stored by MPS
MPP Reads and resets of the operation result stored by MPS
Hinverting the operation result
Instruction symbol Description Reference
INV Inversion of the operation result Page 128

3 CPU MODULE INS

TRUCTION

3.1 Sequence Instruction

HEConverting the operation result into a pulse

Instruction symbol Description Reference
MEP Conversion of operation result to rising edge pulse Page 129
MEF Conversion of operation result to falling edge pulse
Output instruction
HOut (excluding the timer, counter and annunciator)
Instruction symbol Description Reference
ouT Device output Page 130
ETimer (low-speed, high-speed, low-speed retentive, high-speed retentive)
Instruction symbol Description Reference
OUTT Low-speed timer Page 132
OUTHT Timer
OUTHS T High-speed timer
OUT ST Low-speed retentive timer
OUTH ST Retentive timer
OUTHS ST High-speed retentive timer
ECounter, long counter
Instruction symbol Description Reference
ouTC Counter Page 135
OUT LC Long counter Page 137
BAnnunciator
Instruction symbol Description Reference
OUTF Annunciator Page 139
BSetting devices (excluding annunciator)
Instruction symbol Description Reference
SET Sets devices Page 141
HResetting devices (excluding annunciator)
Instruction symbol Description Reference
RST Resets devices Page 143
ESetting/resetting annunciator
Instruction symbol Description Reference
SETF Sets annunciator Page 145
RSTF Resets annunciator Page 147
ANS Sets annunciator (with evaluation time) Page 149
ANR Resets annunciator (smallest number reset) Page 151
ANRP
HRising/falling edge output
Instruction symbol Description Reference
PLS Generates a pulse for 1 cycle of a program at the rising edge of the input signal. Page 152
PLF Generates a pulse for 1 cycle of a program at the falling edge of the input signal. Page 154
Hinverting the bit device output
Instruction symbol Description Reference
FF Inversion of device output Page 156
ALT Page 157
ALTP
3 CPU MODULE INSTRUCTION 51

3.1 Sequence Instruction

EShifting bit devices

SFT 1 bit shift of the device

SFTP

Page 159

EShifting 16-bit data to the right/left by n bit (s)

bn

bn-

SFRP

\\ (swoo smaozz)

Page 161

SFL
n+1 bn
I [1
(SM700 SM8022)
SFLP
1_|_

T o]

Page 163

EShifting n-bit data to the right/left by 1 bit

BSFR Page 165
LT TR \ |

BSFRP \\ > (sm700)
I ITTHTTTT] | |

BSFL) Page 167
(d)
[T Tl
BSFLP (SM700) < /
| | LITTTITT To

EShifting n-word data to the right/left by 1 word

DSFR Page 169
SFRP I\I{H\\III\I

Ll TTYTTTT]
DSFL) Page 170

(d)
LTI L]

DSFLP / ’l/
T

52 3 CPU MODULE INSTRUCTION
3.1 Sequence Instruction

BShifting n-bit data to the right/left by n bit (s)

Instruction symbol Description Reference
SFTR (1) Page 171
(n2)
(d)
SFTRP EEERN | 2N
\ \ (s)
CITTYTTITrTy
t |
SFTL (n1) Page 173
(n2)
— (d)
N
SFTLP / ©
(LTI rrrfy
EShifting n-word data to the right/left by n word (s)
Instruction symbol Description Reference
WSFR 1) Page 175
(n2)
—
(d)
WSFRP (T IV T1IT1] (n2)
\ \ (s)
LLTTRTITTy [C
t |
WSFL (1) Page 177
(n2)
— d)
CITTTITTT] (n2)
WSFLP / ©
LTI Iy L
Master control instruction
ESetting/resetting the master control
Instruction symbol Description Reference
MC Starts master control Page 179
MCR Releases master control
Termination instruction
BEnding the main routine program
Instruction symbol Description Reference
FEND Ends the main routine program Page 183
HEnding the sequence program
Instruction symbol Description Reference
END Ends the sequence program Page 186
Stop instruction
EStopping the sequence program
Instruction symbol Description Reference
STOP Stops the sequence operation after input conditions are met. Page 188

Executes the sequence program, upon setting the RUN/STOP/RESET switch to RUN again.

3 CPU MODULE INSTRUCTION
3.1 Sequence Instruction

53

54

3.2 Basic Instruction

Comparison operation instruction

BComparing 16-bit binary data

Instruction symbol Description Reference
LD=, AND=, OR= (s1)=(s2): Conductive Page 189
LD= U AND= U OR= U (s1)#(s2): Non-Conductive
LD<>, AND<>, OR<> (s1)#(s2): Conductive
LD<> U, AND<>_U, OR<> U (s1)=(s2): Non-Conductive
LD>, AND>, OR> (s1)>(s2): Conductive
LD> U AND> U OR> U (s1)<(s2): Non-Conductive
LD<=, AND<=, OR<= (s1)<(s2): Conductive
LD<= U. AND<= U. OR<= U (s1)>(s2): Non-Conductive
LD<, AND<, OR< (s1)<(s2): Conductive
LD< U AND< U OR< U (s1)=(s2): Non-Conductive
LD>=, AND>=, OR>= (s1)>(s2): Conductive
LD>= U. AND>= U. OR>= U (s1)<(s2): Non-Conductive
BEComparing 32-bit binary data
Instruction symbol Description Reference
LDD=, ANDD=, ORD= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive Page 192
LDD= U. ANDD= U. ORD= U [(s1)+1, (s1)] # [(s2)*+1, (s2)]: Non-Conductive
LDD<>, ANDD<>, ORD<> [(s1)+1, (s1)] # [(s2)*1, (s2)]: Conductive
LDD<> U ANDD<> U [(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
ORD<>_U
LDD>, ANDD>, ORD> [(s1)+1, (s1)] > [(s2)*+1, (s2)]: Conductive
LDD>_U, ANDD>_U, ORD>_U [(s1)+1, (s1)] < [(s2)*1, (s2)]: Non-Conductive
LDD<=, ANDD<=, ORD<= [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive
LDD<= U ANDD<= U [(s1)+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive
ORD<=_U
LDD<, ANDD<, ORD< [(s1)+1, (s1)] < [(s2)*+1, (s2)]: Conductive
LDD<_U, ANDD<_U, ORD<_U [(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDD>=, ANDD>=, ORD>= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive
LDD>= U ANDD>= U [(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
ORD>=_U
EComparison output 16-bit binary data
Instruction symbol Description Reference
CMP (s1)>(s2): (d) is on Page 194
CMPP (s1)=(s2): (d) +1is on
(s1)<(s2): (d) +2 is on
CMP_U
CMPP_U
EComparison output 32-bit binary data
Instruction symbol Description Reference
DCMP [(s1)+1, (s1)] > [(s2)*+1, (s2)]: (d) is on Page 196
DCMPP [(s1)+1, (s1)] = [(s2)+1, (s2)]: (d) + 1 ison
[(s1)+1, (s1)] <[(s2)+1, (s2)]: (d) + 2 is on
DCMP_U
DCMPP_U

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

BEComparing 16-bit binary data band

Instruction symbol Description Reference
ZCP (s1)>(s3): (d) is on Page 198
ZCPP (s1)<(s3)<(s2): (d) + 1is on
(s3)>(s2): (d) + 2 is on
ZCP_U
ZCPP_U
BComparing 32-bit binary data band
Instruction symbol Description Reference
DzCP [(s1)+1, (s1)] > [(s3)+1, (s3)]: (d) is on Page 200
DZCPP [(s1)+1, (s1)]<[(s3)+1, (s3)]<[(s2)+1, (s2)]: (d) + 1 is on
[(s3)+1, (s3)]>[(s2)+1, (s2)]: (d) + 2 is on
DzZCP_U
DZCPP_U
EComparing 16-bit binary block data
Instruction symbol Description Reference
BKCMP=, BKCMP<>, BKCMP>, Compares the 16-bit binary data in the device area ((n) points) from (s1) with the 16-bit binary | Page 202
BKCMP<=, BKCMP<, BKCMP>= | data in the device area ((n) points) from (s2), and stores the result in the device area ((n)
BKCMP=P, BKCMP<>P, points) from (d).
BKCMP>P, BKCMP<=P,
BKCMP<P, BKCMP>=P
BKCMP=_U, BKCMP<>_U,
BKCMP>_U, BKCMP<=_U,
BKCMP<_U, BKCMP>=_U
BKCMP=P_U, BKCMP<>P_U,
BKCMP>P_U, BKCMP<=P_U,
BKCMP<P_U, BKCMP>=P_U
EComparing 32-bit binary block data
Instruction symbol Description Reference
DBKCMP=, DBKCMP<>, Compares the 32-bit binary data in the device area ((n) points) from (s1) with the 32-bit binary | Page 205

DBKCMP>, DBKCMP<=,
DBKCMP<, DBKCMP>=

DBKCMP=P, DBKCMP<>P,
DBKCMP>P, DBKCMP<=P,
DBKCMP<P, DBKCMP>=P

DBKCMP=_U, DBKCMP<>_U,
DBKCMP>_U, DBKCMP<=_U,
DBKCMP<_U, DBKCMP>=_U

DBKCMP=P_U, DBKCMP<>P_U,
DBKCMP>P_U, DBKCMP<=P_U,
DBKCMP<P_U, DBKCMP>=P_U

data in the device area ((n) points) from (s2), and stores the result in the device area ((n)
points) from (d).

3 CPU MODULE INSTRUCTION
3.2 Basic Instruction

55

56

Arithmetic operation instruction

BAdding/subtracting 16-bit binary data

Instruction symbol

Description

Reference

+

+P

+ U

+P_U

(d)*(s) > (d)

Page 208

+P

+P_U

(s1)+(s2) > (d)

Page 210

ADD

ADDP

ADD_U

ADDP_U

(s1)+(s2) > (d)

Page 212

(d)-(s) > (d)

Page 214

(s1)-(s2) — (d)

Page 216

SuB

SUBP

SUB_U

SUBP_U

(s1)-(s2) — (d)

Page 218

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

BAdding/subtracting 32-bit binary data

Instruction symbol

Description

Reference

[(d)*+1, (d)] +[(s)*+1, (s)] - [(d)+1, (d)]

Page 220

D+P_U

[(s1)*1, (sT)] + [(s2)*+1, (s2)] = [(d)*+1, (d)]

Page 222

DADD

DADDP

DADD_U

DADDP_U

[(s1)*1, (sT)] + [(s2)*1, (s2)] — [(d)*+1, (d)]

Page 224

(@)1, (d)] - [(s)*1, ()] = [(d)+1, (d)]

Page 226

D-_U

D-P_U

[(s1)+1, (s1)] - [(s2)*+1, (s2)] - [(d)+1, (d)]

Page 228

DSUB

DSUBP

DSUB_U

DSUBP_U

[(s1)+1, (s1)] - [(s2)*+1, (s2)] - [(d)+1, (d)]

Page 230

EMultiplying/dividing 16-bit binary data

Instruction symbol

Description

Reference

*

*P

* U

*P_U

(s1) x (s2) > [(d)+1, (d)]

Page 232

MUL

MULP

MUL_U

MULP_U

(s1) x (s2) > [(d)+1, (d)]

Page 234

/P

/_U

P_U

(s1) + (s2) — quotient (d), remainder (d)+1

Page 236

DIV

DIVP

DIV_U

DIVP_U

(s1) + (s2) — quotient (d), remainder (d)+1

Page 238

3 CPU MODULE INSTRUCTION
3.2 Basic Instruction 57

58

EMultiplying/dividing 32-bit binary data

Instruction symbol

Description

Reference

D*

D*P

D*_U

D*P_U

[(s1)*1, (s x [(s2)+1, (s2)] - [(d)*3, (d)+2, (d)*+1, (d)]

Page 240

DMUL

DMULP

DMUL_U

DMULP_U

[(s1)*1, (s x [(s2)+1, (s2)] - [(d)*3, (d)+2, (d)*+1, (d)]

Page 242

D/

D/P

D/_U

D/P_U

[(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2]

Page 244

DDIV

DDIVP

DDIV_U

DDIVP_U

[(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2]

Page 246

BAdding/subtracting BCD 4-digit data

Instruction symbol

Description

Reference

B+

B+P

(d)+(s) > (d)

Page 248

(s1) + (s2) > (d)

Page 249

(d)-(s) > (d)

Page 250

B-P

(s1) - (s2) > (d)

Page 251

BAdding/subtracting BCD 8-digit data

Instruction symbol

Description

Reference

DB+

DB+P

[(d)*+1, ()] +[(s)*+1, (s)] - [(d)+1, (d)]

Page 253

DB+

DB+P

[(s1)+1, (s1)] + [(s2)+1, (s2)] - [(d)+1, (d)]

Page 254

DB-

DB-P

(@)1, (d)] - [(s)*+1, ()] = [(d)+1, (d)]

Page 256

DB-

DB-P

[(s1)+1, (s1)] - [(s2)*+1, (s2)] - [(d)+1, (d)]

Page 257

EMultiplying/dividing BCD 4-digit data

Instruction symbol

Description

Reference

B*

B*P

(s1) x (2) = [(d)*+1, (d)]

Page 259

B/

B/P

(s1) + (s2) — quotient (d), remainder (d)+1

Page 261

EMultiplying/dividing BCD 8-digit data

Instruction symbol

Description

Reference

DB*

DB*P

[(s1)+1, (s1)] x [(s2)*+1, (s2)] = [(d)+3, (d)+2, (d)+1, (d)]

Page 263

DB/

DB/P

[(s1)+1, (s1)] = [(s2)+1, (s2)] — quotient [(d)+1, (d)], remainder [(d)+3, (d)+2]

Page 265

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

BAdding/subtracting 16-bit binary block data

Instruction symbol Description Reference
BK+ Adds the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or constants in | Page 267
BK+P the device area ((n) points) from (s2) at once, and stores the result in the device area ((n) points)
from (d).
BK+_U
BK+P_U
BK- Subtracts the 16-bit binary bit data in the device area ((n) points) from (s1) and the data or Page 269
BK-P constants in the device area ((n) points) from (s2) at once, and stores the result in the device area
((n) points) from (d).
BK-_U
BK-P_U
BAdding/subtracting 32-bit binary block data
Instruction symbol Description Reference
DBK+ Adds the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or Page 271
constants in the device area ((n) points) from (s2), and stores the result in the device area specified
DBK+P by (d) and later.
DBK+_U
DBK+P_U
DBK- Subtracts the 32-bit binary bit data in the device area ((n) points) from (s1) and the 32-bit data or Page 273
constants in the device area ((n) points) from (s2) and later, and stores the result in the device area
DBK-P specified by (d) and later.
DBK-_U
DBK-P_U
Hincrementing/decrementing 16-bit binary data
Instruction symbol Description Reference
INC (d)+1—>(d) Page 275
INCP
INC_U
INCP_U
DEC (d)-1—(d) Page 277
DECP
DEC_U
DECP_U
Hincrementing/decrementing 32-bit binary data
Instruction symbol Description Reference
DINC [(d)+1, (d)] + 1 — [(d)+1, (d)] Page 278
DINCP
DINC_U
DINCP_U
DDEC [(d)+1, (d)] -1 > [(d)*+1, (d)] Page 279
DDECP
DDEC_U
DDECP_U

3 CPU MODULE INSTRUCTION
3.2 Basic Instruction

59

Logical operation instruction

EPerforming an AND operation on 16-bit/32-bit data

Instruction symbol Description Reference
WAND (d)A(s) = (d) Page 280
WANDP
WAND (s1)A (s2) > (d) Page 281
WANDP
DAND [(d)+1, (d)] Al(s)*+1, (s)] = [(d)+1, (d)] Page 282
DANDP
DAND [(s1)+1, (SN [(s2)+1, (s2)] - [(d)*+1, (d)] Page 283
DANDP

HPerforming an AND operation on 16-bit block data
Instruction symbol Description Reference
BKAND (s1) (s2) () Page 285
——

HPerforming an OR operation on 16-bit/32-bit data
Instruction symbol Description Reference
WOR (d)V(s) - (d) Page 287
WORP
WOR (s1) V(s2) - (d) Page 288
WORP
DOR [(d)+1, (d)] V [(s)+1, (s)] = [(d)+1, (d)] Page 289
DORP
DOR [(s1)+1, (s1)] V [(s2)*1, (s2)] - [(d)+1, (d)] Page 290
DORP

EPerforming an OR operation on 16-bit block data
Instruction symbol Description Reference
BKOR (s1) (s2)) Page 292
v ——

HMPerforming an XOR operation on 16-bit/32-bit data
Instruction symbol Description Reference
WXOR (d) ¥ (s) - (d) Page 294
WXORP
WXOR (s1) ¥ (s2) > (d) Page 295
WXORP
DXOR [(d)+1, (d)] ¥ [(s)+1, (s)] = [(d)+1, (d)] Page 296
DXORP
DXOR [(s1)+1, (s1)] ¥ [(s2)*1, (s2)] - [(d)+1, (d)] Page 297
DXORP

HPerforming an XOR operation on 16-bit block data
Instruction symbol Description Reference
BKXOR (s1) (s2) () Page 299
BKXORP ‘ IV - i I(n)

60 3 CPU MODULE INSTRUCTION
3.2 Basic Instruction

HPerforming an XNOR operation on 16-bit/32-bit data

Instruction symbol Description Reference
WXNR —_— Page 301
(@) (5) (@) a9e
WXNRP
WXNR m N (d) Page 302
WXNRP
DXNR Page 303
[(d)+1, (d)] 3 [(s)+1, (8)] = [(d)+1, (d)]
DXNRP
DXNR Page 304
[(s1)+1, (s1)] v [(s2)+1, (s2)] = [(d)*+1, (d)]
DXNRP
EPerforming an XNOR operation on 16-bit block data
Instruction symbol Description Reference
BKXNR G ERC) Page 306
BKXNRP ‘ A - | I(n)
Bit processing instruction
ESetting/resetting a bit in the word device
Instruction symbol Description Reference
BSET) Page 308
|b15 |bn| bo|
BSETP t
BRST (d) Page 309
|b15 |bn| bO|
BRSTP t o
EPerforming a bit test
Instruction symbol Description Reference
TEST Extracts the 'n'th bit in the specified word device. Page 310
(s1)
b15] (d)
(s2)
DTEST Extracts the 'n'th bit in the specified word device. Page 312
(s1)
b31 b0 (d)
DTESTP]
(s2)
EBatch-resetting bit devices
Instruction symbol Description Reference
BKRST Resets the (n) points of bit devices starting from the bit device specified. Page 314
(d)[_ON (d)|_OFF
OFF OFF
BKRSTP : : : :(n)
ON OFF
ON OFF

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction 61

62

EBatch-resetting devices

Instruction symbol Description Reference
ZRST Page 315
(@] -------c------ @2 | @ | @n |
ZRSTP ﬂ M
‘ (d2) ‘ """"""" ‘ (d1)+2 ‘ (d1)+1 ‘ (d1) ‘
(1): (d1), (d2) are bit devices: Writes off (reset) from (d1) to (d2)
(d1), (d2) are word devices: Writes KO from (d1) to (d2)
Data conversion instruction
EConverting binary data to BCD 4-digit/8-digit data
Instruction symbol Description Reference
BCD Converts the specified 16-bit binary data (0 to 9999) to BCD 4-digit data. Page 318
S » (d
BCDP @) @
BIN BCD
DBCD Converts the specified 32-bit binary data (0 to 99999999) to BCD 8-digit data. Page 320
DBCDP (s+1,s) > (d+1, d)
- BIN g BCD
EConverting BCD 4-digit/8-digit data to binary data
Instruction symbol Description Reference
BIN Converts the specified BCD 4-digit data (0 to 9999) to 16-bit binary data. Page 322
5 » (d
BINP R ©Q
BCD BIN
DBIN Converts the specified BCD 8-digit data (0 to 99999999) to 32-bit binary data. Page 324
s+1, s » (d+1,d
DBINP ¢) ()
BCD BIN
HConverting single-precision real number to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
FLT2INT Converts the specified single-precision real number (-32768 to 32767) to 16-bit signed binary data. | Page 326
(s+1,s) » (d)
FLT2INTP (1) i S BIN
(1): Real number
FLT2DINT Converts the specified single-precision real number (-2147483648 to 2147483647) to 32-bit signed | Page 330
binary data.
FLT2DINTP (s+1,) > (d+1,d)
) BIN
(1): Real number
HConverting single-precision real number to 16-bit/32-bit unsigned binary data
Instruction symbol Description Reference
FLT2UINT Converts the specified single-precision real number (0 to 65535) to 16-bit unsigned binary data. Page 328
(s+1,s) »(d)
FLT2UINTP r 1) BIN
(1): Real number
FLT2UDINT Converts the specified single-precision real number (0 to 4294967295) to 16-bit unsigned binary Page 332
data.
FLT2UDINTP (s+1,s) »(d+1,d)
[S Tt BN

(1): Real number

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

EConverting 16-bit

signed binary data to 16-bit/32-bit unsigned binary data

Instruction symbol Description Reference
INT2UINT Converts 16-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the Page 334
INT2UINTP converted data in the device specified by (d).
INT2UDINT Converts 16-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the Page 336
INT2UDINTP converted data in the device specified by (d).

EConverting 16-bit signed binary data to 32-bit signed binary data
Instruction symbol Description Reference
INT2DINT Converts 16-bit signed data in the device specified by (s) to 32-bit signed data, and stores the Page 335
INT2DINTP converted data in the device specified by (d).

EConverting 16-bit unsigned binary data to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
UINT2INT Converts 16-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the Page 337
UINT2INTP converted data in the device specified by (d).
UINT2DINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the Page 338
UINT2DINTP converted data in the device specified by (d).

EConverting 16-bit unsigned binary data to 32-bit unsigned binary data
Instruction symbol Description Reference
UINT2UDINT Converts 16-bit unsigned data in the device specified by (s) to 32-bit unsigned data, and stores the | Page 339
UINT2UDINTP converted data in the device specified by (d).

EConverting 32-bit signed binary data to 16-bit signed binary data
Instruction symbol Description Reference
DINT2INT Converts 32-bit signed data in the device specified by (s) to 16-bit signed data, and stores the Page 340
DINT2INTP converted data in the device specified by (d).

EConverting 32-bit signed binary data to 16-bit/32-bit unsigned binary data
Instruction symbol Description Reference
DINT2UINT Converts 32-bit signed data in the device specified by (s) to 16-bit unsigned data, and stores the Page 341
DINT2UINTP converted data in the device specified by (d).
DINT2UDINT Converts 32-bit signed data in the device specified by (s) to 32-bit unsigned data, and stores the Page 342
DINT2UDINTP converted data in the device specified by (d).

EConverting 32-bit unsigned binary data to 16-bit/32-bit signed binary data
Instruction symbol Description Reference
UDINT2INT Converts 32-bit unsigned data in the device specified by (s) to 16-bit signed data, and stores the Page 343
UDINT2INTP converted data in the device specified by (d).
UDINT2DINT Converts 32-bit unsigned data in the device specified by (s) to 32-bit signed data, and stores the Page 345
UDINT2DINTP converted data in the device specified by (d).

EConverting 32-bit unsigned binary data to 16-bit unsigned binary data
Instruction symbol Description Reference
UDINT2UINT Converts 32-bit unsigned data in the device specified by (s) to 16-bit unsigned data, and stores the | Page 344
UDINT2UINTP converted data in the device specified by (d).

3 CPU MODULE INSTRUCTION
3.2 Basic Instruction

63

64

EConverting 16-bit/32-bit binary data to Gray code

Instruction symbol Description Reference
GRY Converts the specified 16-bit binary data (-32768 to 32767) to 16-bit binary Gray code data. Page 346
(s) > ()
GRYP L BIN - Ge
Gc: Gray code
GRY_U Converts the specified 16-bit binary data (0 to 65535) to 16-bit binary Gray code data.
(s) »(d)
GRYP_U BIN - Ge
Gc: Gray code
DGRY Converts the specified 32-bit binary data (-2147483648 to 2147483647) to 32-bit binary Gray code | Page 347
data.
DGRYP (s*1,s) » (d+1, d)
BIN Ge
Gc: Gray code
DGRY_U Converts the specified 32-bit binary data (0 to 4294967295) to 32-bit binary Gray code data.
(s+1, s) »(d+1, d)
DGRYP_U BIN Gc
Gc: Gray code
HEConverting Gray code to 16-bit/32-bit binary data
Instruction symbol Description Reference
GBIN Converts the specified 16-bit binary Gray code data (-32768 to 32767) to 16-bit binary data. Page 349
(s) > (d)
GBINP Ge BIN
Gc: Gray code
GBIN_U Converts the specified 16-bit binary Gray code data (0 to 65535) to 16-bit binary data.
(s) »>(d)
GBINP_U Ge LY
Gc: Gray code
DGBIN Converts the specified 32-bit binary Gray code data (-2147483648 to 2147483647) to 32-bit binary | Page 350
data.
DGBINP (s+1,s) »(d+1, d)
Gc BIN
Gc: Gray code
DGBIN_U Converts the specified 32-bit binary Gray code data (0 to 4294967295) to 32-bit binary data.
(s+1, s) »(d+1, d)
DGBINP_U Ge BIN
Gc: Gray code
EConverting decimal ASCII to 16-bit/32-bit binary data
Instruction symbol Description Reference
DABIN Converts a 5-digit decimal ASCII value in the device specified by (s) to a 1 word binary value, and | Page 352
DABINP stores the converted data in the word device number specified by (d).
DABIN_U
DABINP_U
DDABIN Converts a 10-digit decimal ASCII value in the device specified by (s) to a 2 word binary value, and | Page 356
DDABINP stores the converted data in the word device number specified by (d).
DDABIN_U
DDABINP_U
EConverting ASCII to HEX
Instruction symbol Description Reference
HEXA Converts the ASCII data stored in the number of characters specified by (n) starting from device Page 360
HEXAP specified in (s), and stores the converted data in the device specified by (d) onwards.

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

EConverting character string to 16-bit/32-bit binary data

Instruction symbol Description Reference
VAL Converts a character string including decimal point in the device specified by (s) to a 1 word binary | Page 364
VALP value and number of decimal fraction digits, and stores the converted data in the devices specified
by (d1) and (d2).
VAL_U
VALP_U
DVAL Converts a character string including decimal point in the device specified by (s) to a 2 words Page 367
DVALP binary value and number of decimal fraction digits, and stores the converted data in the devices
specified by (d1) and (d2).
DVAL_U
DVALP_U
ETwo's complement of 16-bit/32-bit binary data (sign inversion)
Instruction symbol Description Reference
NEG — Page 370
@@ 9
NEGP BIN
DNEG @14 (d+1, d) Page 372
DNEGP BIN
EDecoding from 8 to 256 bits
Instruction symbol Description Reference
DECO (d) Page 373
(s) x
—Tr—
(n) ! '] 2(m bits
DECOP — Y
BEncoding from 256 to 8 bits
Instruction symbol Description Reference
ENCO (s) @ Page 375
—1r——
I I [20 bits
ENCOP — (M
ESeven-segment decoding
Instruction symbol Description Reference
SEGD Decoded to data for the seven-segment display unit in the device specified by (s),and stores in the | Page 377
SEGDP device specified by (d).
ESeven-segment with latch
Instruction symbol Description Reference
SEGL The 4-digit numeric value stored in (s) is converted into BCD data, and each digit is output to the Page 379
seven-segment display unit with the BCD decoder by the time division method.
EMSeparating 4 bits from 16-bit data
Instruction symbol Description Reference
DIS Separates the 16-bit data specified by (s) into 4-bit units and stores in the lower 4 bits of (n) points | Page 382
DISP from (d). (n < 4)
EConnecting 4 bits to 16-bit data
Instruction symbol Description Reference
UNI Connects the lower 4 bits of (n) points from the device specified by (s), and stores the result in the | Page 384
UNIP device specified by (d). (n < 4)

3 CPU MODULE INSTRUCTION
3.2 Basic Instruction

65

66

ESeparating/connecting the specified number of bits

Instruction symbol Description Reference
NDIS Separates the data in the devices starting from the one specified by (s1) into bits specified by the Page 386
NDISP devices from (s2), and stores them to the devices starting from the one specified by (d).
NUNI Connects the data in the devices starting from the one specified by (s1) with bits specified by the Page 388
NUNIP devices from (s2), and stores them to the devices starting from the one specified by (d).
ESeparating/connecting data in byte units
Instruction symbol Description Reference
WTOB Breaks (n) points of 16 bit data from the device specified by (s) into 8-bit units, and stores in the Page 390
WTOBP devices starting from the one specified by (d).
BTOW Connects the lower 8 bits of 16-bit data of (n) points from the device specified by (s) into 16-bit Page 392
BTOWP units, and stores in the devices starting from the one specified by (d).
Digital Switch
Instruction symbol Description Reference
DSW Stores the value of the (n) sets of digital switches connected to (s) to (d2). Page 395

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

ETransferring 16-bit/32-bit data

MOV (s)) Page 397
MOVP

DMOV (s*+1, s) (d+1, d) Page 399
DMOVP

Hinverting and transferring 16-bit/32-bit data

CML ® (d) Page 401
CMLP

DCML &9 (d+1, d) Page 403
DCMLP

EShift move

SMOV

SMOVP

Shifts the specified no. of digits from the word device specified by (s), and store in (d). Page 404

Hinverting and transferring 1-bit data

CMLB

CMLBP

Inverts the bit data specified by (s), and store in (d). Page 406

ETransferring 16-bit block data

BMOV

BMOVP

(s) (d) Page 407

i > ()
=
(n) = 1to 65535

HTransferring identical 16-bit block data

FMOV

(d) Page 409

FMOVP

—— | |

(s) =
I(n)

(n) = 1to 65535

HTransferring identical 32-bit block data

DFMOV

(d+1,d) Page 411

DFMOVP

(s*+1,s) =
e I(n)
=

(n) = 1to 65535

BExchanging 16-bit/32-bit data

XCH @) (d2) Page 413
XCHP
pxeH (d1+1,d1) ——p (d2+1,d2) Page 415
DXCHP
3 CPU MODULE INSTRUCTION
3.2 Basic Instruction 67

68

HBExchanging the upper and lower bytes of 16-bit data

SWAP

SWAPP

b15 - b8b7 - b0 Page 417
(d) 8 bits 8 bits

b15 >~ b8b7 - b0
(d) [8bits 8 bits

BExchanging the upper and lower bytes of 32-bit data

DSWAP

DSWAPP

b15 - b8b7 - b0 b15 - b8b7 - b0 Page 418
(d)+1 [8bhits | 8bits__| (d) [8bhits | 8bits_|

b15 - b8b7 - b0 b15 - b8b7 - b0
(d)+1 [8bits | 8bits | (d)[__8bits | 8bits |

ETransferring 1-bit data

MOVB

MOVBP

Stores the bit data specified by (s) in (d). Page 419

HParallel run (octal mode) (16-bit data)

PRUN

PRUNP

Handles device number specified by (s) in digit specification and (d) as octal, and stores into (d) Page 420
from (s).

HParallel run (octal mode) (32-bit data)

DPRUN

DPRUNP

Handles device number specified by (s) in digit specification and (d) as octal, and stores into (d) Page 422
from (s).

ETransferring n-bit data

BLKMOVB

BLKMOVBP

Block transfers bit data for (n) points from (s) to bit data for (n) points from (d). Page 424

3 CPU MODULE INSTRUCTION

3.2 Basic Instruction

3.3

Application Instruction

Rotation instruction

ERotating 16-bit data to the right

Instruction symbol Description Reference
ROR Rotates the 16-bit binary data to the right by (n) bit(s) (not including the carry flag). Page 426
b15 (d) b0 (SM700, SM8022)
RORP | +—7—|—>| ‘
e —
M
(1): (n) bit right rotation
RCR Rotates the 16-bit binary data to the right by (n) bit(s) (including the carry flag).
b15 (d) b0 (SM700, SM8022)
[N
RCRP | ?] '}
(1
(1): (n) bit right rotation
HRotating 16-bit data to the left
Instruction symbol Description Reference
ROL Rotates the 16-bit binary data to the left by (n) bit(s) (not including the carry flag). Page 429
(SM700, SM8022) b15 (d) b0
ROLP | F—H—* ‘
—
M
(1): (n) bit left rotation
RCL Rotates the 16-bit binary data to the left by (n) bit(s) (including the carry flag).
(SM700, SM8022) b15 (d) b0
|
RCLP | r 1 T
()
(1): (n) bit left rotation
ERotating 32-bit data to the right
Instruction symbol Description Reference
DROR Rotates the 32-bit binary data to the right by (n) bit(s) (not including the carry flag). Page 432
(d+1) (d)
b31 - b16b15 -~ b0 (SM700, SM8022)
DRORP ‘ ‘
 ——
()
(1): (n) bit right rotation
DRCR Rotates the 32-bit binary data to the right by (n) bit(s) (including the carry flag).
(d+1) (d)
b31 - b16b15 -~ b0 (SM700, SM8022)
DRCRP [N
£ | 1 T‘
M
(1): (n) bit right rotation
3 CPU MODULE INSTRUCTION 69

3.3 Application Instruction

HRotating 32-bit data to the left

Instruction symbol Description Reference
DROL Rotates the 32-bit binary data to the left by (n) bit(s) (not including the carry flag). Page 434
(d+1) (d)
(SM700, SM8022) b31 - b16b15 - b0
DROLP L [|
[N \ L
(1)
(1): (n) bit left rotation
DRCL Rotates the 32-bit binary data to the left by (n) bit(s) (including the carry flag).
(d+1) (d)
(SM700, SM8022) b31 - b16b15 - b0
DRCLP 1 I
r | [?
Q)
(1): (n) bit left rotation
Program branch instruction
EPointer branch
Instruction symbol Description Reference
CcJ When the input condition is met, jump to pointer (P) Page 436
CJP
BJumping to END
Instruction symbol Description Reference
GOEND When the input condition is met, jump to END instruction Page 440
Program execution control instruction
EDisabling/enabling interrupt programs
Instruction symbol Description Reference
DI Disables the execution of interrupt programs. Page 441
El Releases the execution disabled state of interrupt program.
EDisabling the interrupt program with specified priority or lower
Instruction symbol Description Reference
DI Disables the execution of the interrupt program with a priority specified by (s) or lower until the EI Page 443
instruction is executed.
Hinterrupt program mask
Instruction symbol Description Reference
IMASK Interrupt disable/enable settings Page 447
EDisabling/enabling the specified interrupt pointer
Instruction symbol Description Reference
SIMASK Disables/enables the interrupt pointer specified by (I) Page 449
HReturning from the interrupt program
Instruction symbol Description Reference
IRET Returns from the interrupt program to the sequence program Page 451
HResetting the watchdog timer
Instruction symbol Description Reference
WDT Resets the watchdog timer (WDT) in the program Page 454
WDTP

3 CPU MODULE INSTRUCTION
70 3.3 Application Instruction

Structuring instruction

HPerforming the FOR to NEXT instruction loop

Instruction symbol Description Reference
FOR Execute the instructions between FOR instruction and NEXT instruction (n) times Page 455
NEXT
HForcibly terminating the FOR to NEXT instruction loop
Instruction symbol Description Reference
BREAK Forcibly end execution between FOR instruction and NEXT instruction, and jump to pointer (P) Page 458
BREAKP
HCalling a subroutine program
Instruction symbol Description Reference
CALL Executes a subroutine program specified by (P) when the input condition is met. Page 460
CALLP
EReturning from the subroutine program
Instruction symbol Description Reference
RET Returns from the subroutine program. Page 465
SRET
ECalling a subroutine program
Instruction symbol Description Reference
XCALL Executes a subroutine program specified by (P) when the input condition is met. Page 466
Carry out non-execution processing for the subroutine program (P), when input conditions are not
met.
Data table operation instruction
HReading the oldest data from the data table
Instruction symbol Description Reference
SFRD o] Page 468
(s) P (s) P-1
(s)+1 v
SFRDP
P: Pointer
HReading the newest data from the data table
Instruction symbol Description Reference
PoP F— Page 471
(s) P (s) P-1
POPP
P: Pointer

3 CPU MODULE INSTRUCTION 1
3.3 Application Instruction 7

EWriting data to the data table

Instruction symbol Description Reference
STIR o Page 474
(@ P C P+
SFWRP
.
P: Pointer
HDeleting/inserting data from/to the data table
Instruction symbol Description Reference
FINS] — Page 476
(@ N (@ N+1
FINSP
* —
N: Number of stored data
FoEL) — Peqe 478
(d) N (d) N-1
FDELP
(n—>
N: Number of stored data
Reading/writing data instructions
BReading data from the data memory
Instruction symbol Description Reference
S.DEVLD Reads data from the device data storage file in data memory. Page 481
SP.DEVLD
EWriting data to the data memory
Instruction symbol Description Reference
SP.DEVST Writes the specified number of points of data to the device data storage file in data memory. Page 483

2 3 CPU MODULE INSTRUCTION
7 3.3 Application Instruction

File operation ins

tructions

HReading data from the specified file

Instruction symbol Processing details Reference
SP.FREAD Reads data from the specified file. Page 486
EWriting data to the specified file
Instruction symbol Processing details Reference
SP.FWRITE Writes data to the specified file. Page 512
HDeleting the specified file
Instruction symbol Processing details Reference
SP.FDELETE Deletes the specified file or folder. Page 535
HCopying the specified file
Instruction symbol Processing details Reference
SP.FCOPY Copies the specified file or folder. Page 543
EMoving the specified file
Instruction symbol Processing details Reference
SP.FMOVE Moves the specified file or folder. Page 553
ERenaming the specified file
Instruction symbol Processing details Reference
SP.FRENAME Renames the specified file or folder. Page 563
BAcquiring the status of the specified file
Instruction symbol Processing details Reference
SP.FSTATUS Acquires the status of the specified file or folder. Page 571
Extended file register operation instruction
HReading extended file register
Instruction symbol Description Reference
ERREAD Reads the current value of the extended file register (ER) to the file register (R) in the CPU built-in | Page 580
memory.
EWriting extended file register
Instruction symbol Description Reference
ERWRITE Writes the current value of the file register (R) in the CPU built-in memory to the extended file Page 583
register (ER).
EBatch initialization function of extended file register
Instruction symbol Description Reference
ERINIT Initialize all the points of the extended file register (ER) in a batch. Page 586

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

73

74

Character string operation instruction

EComparing chara

cter strings

Instruction symbol Description Reference
LD$=, AND$=, OR$= Compares the character string (s1) with the character string (s2) one character at a time."! Page 589
[Character string (s1)] = [Character string (s2)]: Conductive state
[Character string (s1)] # [Character string (s2)]: Non-Conductive state
LD$<>, AND$<>, OR$<> Compares the character string (s1) with the character string (s2) one character at a time."”
[Character string (s1)] # [Character string (s2)]: Conductive state
[Character string (s1)] = [Character string (s2)]: Non-Conductive state
LD$>, AND$>, OR$> Compares the character string (s1) with the character string (s2) one character at a time."!
[Character string (s1)] > [Character string (s2)]: Conductive state
[Character string (s1)] < [Character string (s2)]: Non-Conductive state
LD$<=, AND$<=, OR$<= Compares the character string (s1) with the character string (s2) one character at a time.™
[Character string (s1)] < [Character string (s2)]: Conductive state
[Character string (s1)] > [Character string (s2)]: Non-Conductive state
LD$<, AND$<, OR$< Compares the character string (s1) with the character string (s2) one character at a time."
[Character string (s1)] < [Character string (s2)]: Conductive state
[Character string (s1)] > [Character string (s2)]: Non-Conductive state
LD$>=, AND$>=, OR$> Compares the character string (s1) with the character string (s2) one character at a time."!
[Character string (s1)] > [Character string (s2)]: Conductive state
[Character string (s1)] < [Character string (s2)]: Non-Conductive state
*1 The following shows comparison conditions for comparing character strings.
- Match: All characters in the strings must match
- Larger string: In case of different character strings, character string with the larger character code
(If character string lengths are different, the longer character string)
- Smaller string: In case of different character strings, character string with the smaller character code
(If character string lengths are different, the shorter character string)
EConcatenating character strings
Instruction symbol Description Reference
$+ * In case of 2 operands Page 592
$+P Connect the character string specified by (s) to the end of the character string specified by (d), and
store in (d).
$+ * In case of 3 operands Page 594
$+P Connect the character string specified by (s2) to the end of the character string specified by (s1),
and store in (d).
HTransferring character strings
Instruction symbol Description Reference
$MOV Transfer the character strings specified by (s) to the devices specified by (d) onwards. Page 596
$MOVP
$MOV_WS Transfers the Unicode character strings in the device specified by (s) to the device specified by (d) | Page 598
$MOVP WS and later.
EConverting 16-bit/32-bit binary data to decimal ASCII
Instruction symbol Description Reference
BINDA Converts the 1 word binary value specified by (s) to 5 digits decimal ASCII value, and stores in the | Page 600
BINDAP word device specified by (d).
BINDA_U
BINDAP_U
DBINDA Converts the 2 word binary value specified by (s) to 10 digits decimal ASCII value, and stores in the | Page 605
DBINDAP word device area specified by (d) onwards.
DBINDA_U
DBINDAP_U

3 CPU MODULE INS

TRUCTION

3.3 Application Instruction

EConverting HEX code data to ASCII

Instruction symbol Description Reference
ASCI Converts the (n) characters within the HEX code data specified by (s) to ASCII, and stores in the Page 611
ASCIP device area specified by (d) onwards.

EConverting 16-bit/32-bit binary data to character string
Instruction symbol Description Reference
STR Converts the 1 word binary value specified by (s2) to the decimal character string with total number | Page 615
STRP of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in

the device specified by (d).
STR_U
STRP_U
DSTR Convert the 2 word binary value specified by (s2) to the decimal character string with total number | Page 618
DSTRP of digits and the number of digits in the decimal fraction part as specified in (s1), and stores this in
the device specified by (d).

DSTR_U
DSTRP_U

EConverting single-precision real number to character string
Instruction symbol Description Reference
ESTR Converts the single-precision real number data specified by (s1) to a character string, and store Page 621
ESTRP this in the device specified by (d).
DESTR
DESTRP

EConverting Unicode character string to Shift JIS character string
Instruction symbol Processing details Reference
WS2SJIS Converts the Unicode character string in the device specified by (s) to the shift JIS character string, | Page 628

WS2SJISP

and stores the converted data in the device specified by (d).

EConverting shift JIS character string to Unicode character string (without byte order mark)

Instruction symbol Processing details Reference
SJIS2WS Converts the shift JIS character string in the device specified by (s) to a Unicode character string, Page 631
SJIS2WSP and stores the converted data in the device specified by (d).

EConverting shift JIS to Unicode (with byte order mark)
Instruction symbol Processing details Reference
SJIS2WSB Converts the shift JIS character string in the device specified by (s) to the Unicode character string, | Page 634
SJIS2WSBP add a byte order mark to the head of the converted data, and stores it in the device specified by (d).

HDetecting a character string length
Instruction symbol Description Reference
LEN Stores the length of the character string data stored in the device specified by (s) in the device Page 637
LENP specified by (d).

BExtracting character string data from the right/left
Instruction symbol Description Reference
RIGHT Stores the (n) characters from the last character of the character string specified by (s) in the Page 639
RIGHTP device specified by (d).
LEFT Stores the (n) characters from the first character of the character string specified by (s) in the Page 642
LEFTP device specified by (d).

3 CPU MODULE INSTRUCTION
3.3 Application Instruction 75

76

BStoring/replacing the specified number of character strings

Instruction symbol Description Reference
MIDR Stores the specified number of characters from the position specified by (s2) of the character string | Page 645
MIDRP (s1) into the device specified by (d).
MIDW Stores the specified number of characters from the character string (s1) into the location specified | Page 648
MIDWP by (s2) of the character string (d).
ESearching character string
Instruction symbol Description Reference
INSTR Searches the character string in the device specified by (s2), starting from the (s3)th character, for | Page 652
INSTRP the character string in the device specified by (s1), and stores the matching location in the device
specified by (d).
Hinserting character string
Instruction symbol Description Reference
STRINS Inserts the character string data specified in (s1) at the position (s2)(Insert position) from the Page 655
STRINSP beginning of the character string data specified by (d).
HDeleting character string
Instruction symbol Description Reference
STRDEL From the head of the character string data specified in (d), delete (n2) characters from the location | Page 657
STRDELP specified as the character number (n1) (deletion start location).
Real number instruction
BEComparing single-precision real numbers
Instruction symbol Description Reference
LDE=, ANDE=, ORE= [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive Page 659
[(s1)+1, (s1)] # [(s2)*1, (s2)]: Non-Conductive
LDE<>, ANDE<>, ORE<> [(s1)+1, (s1)] # [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDE>, ANDE>, ORE> [(s1)*1, (s1)] > [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] < [(s2)*1, (s2)]: Non-Conductive
LDE<=, ANDE<=, ORE<= [(s1)*1, (s1)] < [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] > [(s2)+1, (s2)]: Non-Conductive
LDE<, ANDE<, ORE< [(s1)+1, (s1)] < [(s2)+1, (s2)]: Conductive
[(s1)*1, (s1)] = [(s2)+1, (s2)]: Non-Conductive
LDE>=, ANDE>=, ORE> [(s1)+1, (s1)] = [(s2)+1, (s2)]: Conductive
[(s1)+1, (s1)] < [(s2)+1, (s2)]: Non-Conductive
DECMP This instruction compares two data values (single-precision real numbers), and outputs the result Page 661
DECMPP (larger, smaller or equal) to three bit devices.
DEZCP This instruction compares two data values (single-precision real numbers), and outputs the result Page 663
DEZCPP (larger, smaller or data band) to three bit devices.

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

BAdding/subtracting single-precision real numbers

Instruction symbol Description Reference
E+ * In case of 2 operands Page 665
E+P [(d)+1, (d)] + [(s)*+1, ()] = [(d)*+1, (d)]
E+ « In case of 3 operands Page 667
E+P [(s1)+1, (s1)] + [(s2)+1, (s2)] - [(d)*+1, (d)]
DEADD Page 673
DEADDP
E- « In case of 2 operands Page 669
E-P [(d)+1, (d)] - [(s)*+1, ()] = [(d)+1, (d)]
E- « In case of 3 operands Page 671
E-P [(s1)+1, (s1)] - [(s2)+1, (s2)] - [(d)*+1, (d)]
DESUB Page 675
DESUBP

EMultiplying/dividing single-precision real numbers
Instruction symbol Description Reference
E* [(s1)+1, (s1)] x [(s2)*1, (s2)] = [(d)+1, (d)] Page 677
E*P
DEMUL Page 681
DEMULP
E/ [(s1)+1, (s1)] + [(s2)*1, (s2)] — quotient [(d)+1, (d)] Page 679
E/P
DEDIV Page 683
DEDIVP

EConverting 16-bit/32-bit signed binary data to single-precision real number
Instruction symbol Description Reference
INT2FLT Converts the 16-bit signed binary data in the device specified by (s) to single-precision real Page 685
INT2FLTP number, and stores the converted data in the device specified by (d).
DINT2FLT Converts the 32-bit signed binary data in the device specified by (s) to single-precision real Page 687
DINT2FLTP number, and stores the converted data in the device specified by (d).

EConverting 16-bit/32-bit unsigned binary data to single-precision real number

Instruction symbol Description Reference
UINT2FLT Converts the 16-bit unsigned binary data in the device specified by (s) to single-precision real Page 686
UINT2FLTP number, and stores the converted data in (d).
UDINT2FLT Converts the 32-bit unsigned binary data in the device specified by (s) to single-precision real Page 688
UDINT2FLTP number, and stores the converted data in (d).

HEConverting character string to single-precision real number
Instruction symbol Description Reference
EVAL Converts the character string specified by (s) to a single-precision real number, and stores the Page 689
EVALP converted data in (d).
DEVAL
DEVALP

EConverting binary floating point to decimal floating point
Instruction symbol Description Reference
DEBCD Converts the binary floating point specified by (s) into decimal floating point, and stores in (d). Page 694
DEBCDP

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

77

78

EConverting decimal floating point to binary floating point

Instruction symbol Description Reference
DEBIN Converts the decimal floating point specified by (s) into binary floating point, and stores in (d). Page 696
DEBINP

Hinverting the sign of single-precision real number
Instruction symbol Description Reference
ENEG @*1,d) (d+1, d) Page 698
ENEGP R
DENEG (1): Real number
DENEGP

HTransferring single-precision real number data
Instruction symbol Description Reference
EMOV (s+1, 5) (d+1, d) Page 700
EMOVP Q)]
DEMOV (1): Real number
DEMOVP

HCalculating the sine of single-precision real number
Instruction symbol Description Reference
SIN Sin [(s)*1, (s)] = [(d)+1, (d)] Page 702
SINP
DSIN
DSINP

HCalculating the cosine of single-precision real number
Instruction symbol Description Reference
CcOos Cos [(s)*1, (s)] = [(d)+1, (d)] Page 704
COSP
DCOS
DCOSP

HCalculating the tangent of single-precision real number
Instruction symbol Description Reference
TAN Tan [(s)+1, (s)] = [(d)*1, (d)] Page 706
TANP
DTAN
DTANP

ECalculating the arc sine of single-precision real number
Instruction symbol Description Reference
ASIN Sin [(s)+1, (s)] - [(d)+1, (d)] Page 708
ASINP
DASIN
DASINP

ECalculating the arc cosine of single-precision real number
Instruction symbol Description Reference
ACOS Cos™" [(s)+1, (s)] = [(d)*+1, (d)] Page 711
ACOSP
DACOS
DACOSP

3 CPU MODULE INS

TRUCTION

3.3 Application Instruction

ECalculating the arc tangent of single-precision real number

Instruction symbol Description Reference
ATAN Tan™ [(s)+1, (s)] = [(d)+1, (d)] Page 714
ATANP
DATAN
DATANP

EConverting single-precision real number angle to radian
Instruction symbol Description Reference
RAD (s+1,) (d+1, d) Page 716
RADP Converts from degrees to radians
DRAD
DRADP

EConverting single-precision real number radian to angle
Instruction symbol Description Reference
DEG (s+1, s) (d+1, d) Page 718
DEGP Converts from radians to degrees
DDEG
DDEGP

ECalculating the square root of single-precision real number
Instruction symbol Description Reference
DESQRP
ESQRT
ESQRTP

ECalculating the exponent of single-precision real number
Instruction symbol Description Reference
EXP el 6N ;5 [(d)+1, (d)] Page 722
EXPP
DEXP
DEXPP

ECalculating the natural logarithm of single-precision real number
Instruction symbol Description Reference
LOG Loggl(s)*1, (s)] = [(d)+1, (d)] Page 724
LOGP
DLOGE
DLOGEP

ECalculating the exponentiation of single-precision real number
Instruction symbol Description Reference
POW [(s1)+1, (s1)2*1 62N [(d)+1, (d)] Page 726
POWP

ECalculating the common logarithm of single-precision real number
Instruction symbol Description Reference
LOG10 logqol(s)*1, (s)] = [(d)+1, (d)] Page 728
LOG10P
DLOG10
DLOG10P

3 CPU MODULE INSTRUCTION 79

3.3 Application Instruction

80

BSearching the maximum value of single-precision real number

Instruction symbol Description Reference
EMAX These instructions search for the maximum value in the (n) points of single-precision real number | Page 730
EMAXP block data specified by the device starting from the one specified by (s), and store the maximum
value in the device area specified by (d).
BSearching the minimum value of single-precision real number
Instruction symbol Description Reference
EMIN These instructions search for the minimum value in the (n) points of single-precision real number Page 732
EMINP block data specified by the device starting from the one specified by (s), and store the minimum
value in the device areas specified by (d).
Random number instruction
EGenerating random number
Instruction symbol Description Reference
RND Generates a random number from 0 to 32767, and stores this in the device specified by (d). Page 734
RNDP
Index register operation instruction
ESaving/returning all data of the index register
Instruction symbol Description Reference
ZPUSH Saves the contents of index registers to the devices specified by (d) onwards. Page 736
ZPUSHP
ZPOP Reads the data in devices specified by (d) onwards to the index registers. Page 739
ZPOPP
ESaving/returning the selected data of the index register and long index register
Instruction symbol Description Reference
ZPUSH Saves the contents of the index registers and long index registers in the range specified by (s) to Page 740
ZPUSHP devices specified by (d) onwards.
ZPOP Reads data in the devices specified by (d) onwards to the index registers and long index registers. | Page 742
ZPOPP
Data control instruction
HEUpper and lower limit control of 16-bit/32-bit binary data
Instruction symbol Description Reference
LIMIT (s3) < (s1): The (s1) value is stored in (d) Page 743
(s1) < (s3) < (s2): The (s3) value is stored in (d)
LIMITP (s2) < (s3): The (s2) value is stored in (d)
LIMIT_U
LIMITP_U
DLIMIT [(s3)*+1, (s3)] < [(s1)+1, (s1)]: The [(s1)+1, (s1)] value is stored in [(d)+1, (d)] Page 745
[(s1)+1, (s1)] < [(s3)+1, (s3)] < [(s2)+1, (s2)]: The [(s3)+1, (s3)] value is stored in [(d)+1, (d)]
DLIMITP [(s2)+1, (s2)] < [(s3)+1, (s3)]: The [(s2)+1, (s2)] value is stored in [(d)+1, (d)]
DLIMIT_U
DLIMITP_U

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

EDead band control of 16-bit/32-bit binary data

Instruction symbol Description Reference

BAND When (s1) < (s3) < (s2): 0 — (d) Page 747
When (s3) < (s1): (s3) - (s1) —> (d)

BANDP When (s2) < (s3): (s3) - (s2) — (d)

BAND_U

BANDP_U

DBAND When [(s1)+1, (s1)] < [(s3)+1, (s3)] < [(s2)+1, (s2)]: 0 — (d+1, d) Page 749
When [(s3)+1, (s3)] < [(s1)+1, (s1)]: [(s3)+1, (s3)] - [(s1)+1, (s1)] - [(d)*+1, (d)]

DBANDP When [(s2)+1, (s2)] < [(s3)*1, (s3)]: [(53)*1, (3)] - [(52)*1, (52)] - [(c)*1, (d)]

DBAND_U

DBANDP_U

BZone control of 16-bit/32-bit binary data

Instruction symbol Description Reference

ZONE When (s3) =0: 0 — (d) Page 752
When (s3) > 0: (s3) + (s2) — (d)

ZONEP When (s3) < 0: (s3) + (s1) = (d)

ZONE_U

ZONEP_U

DZONE When [(s3)+1, (s3)] = 0: 0 — [(d)+1, (d)] Page 754
When [(s3)+1, (s3)] > 0: [(s3)+1, (s3)] + [(s2)+1, (s2)] > [(d)+1, (d)]

DZONEP When [(s3)+1, (s3)] < 0: [(s3)*+1, (s3)] + [(s1)*1, (s1)] - [(d)*1, (d)]

DZONE_U

DZONEP_U

EScaling 16-bit/32-bit binary data (point coordinates)

Instruction symbol Description Reference
SCL Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input | Page 756
value specified by (s1), and then stores the result in the device specified by (d).

SCLP The scaling conversion is executed based on the scaling conversion data stored in the device
SCL_U specified by (s2) onwards.
SCLP_U
DSCL Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input | Page 759
value specified by (s1), and then stores the result in the device specified by (d).
DSCLP The scaling conversion is executed based on the scaling conversion data stored in the device
DSCL_U specified by (s2) onwards.
DSCLP_U
BScaling 16-bit/32-bit binary data (XY coordinates)

Instruction symbol Description Reference
SCL2 Executes scaling using the scaling conversion data (16-bit data units) specified by (s2) for the input | Page 762
value specified by (s1), and then stores the result in the device specified by (d).

scLz2p The scaling conversion is executed based on the scaling conversion data stored in the device

scL2 U specified by (s2) onwards.

SCL2P_U

DSCL2 Executes scaling using the scaling conversion data (32-bit data units) specified by (s2) for the input | Page 766
value specified by (s1), and then stores the result in the device specified by (d).

bscCLzpP The scaling conversion is executed based on the scaling conversion data stored in the device

DSCL2 U specified by (s2) onwards.

DSCL2P_U

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

81

Special timer instruction

HTeaching timer

Instruction symbol Description Reference
TTMR (Ton) x (s)) Page 769
(s)=0:1, (s)=1:10, (s)=2:100
Ton: On time of TTMR
ESpecial function timer
Instruction symbol Description Reference
STMR The 4 points from the bit device specified by (d) operate as shown below, depending on the ON/ Page 772
OFF status of the input conditions for the STMR instruction:
(d)+0: Off delay timer output
(d)+1: One shot after off timer output
(d)+2: One shot after on timer output
(d)+3: On delay and off delay timer output
Special counter instruction
ESigned 32-bit bi-directional counters
Instruction symbol Description Reference
UDCNTF This instruction increments the current value of the counter specified by (d) by 1 when the Page 774
operation result up to UDCNTF instruction changes from OFF to ON, and when the counter
reaches the end of its count, NO contact becomes turns ON and NC contact becomes turns OFF.
When the long counter specified by (d) is a high-speed counter, up-counting and down-counting
are enabled.
Shortcut control instruction
ERotary table shortest direction control
Instruction symbol Description Reference
ROTC Rotates a rotary table with (n1) divisions from the stop position to the position specified by (s)+1in | Page 776
the shortest direction.
Ramp signal instruction
ERamp signal
Instruction symbol Description Reference
RAMPF Shifts the value from the one specified by (s1) to the one specified by (s2) in (n) scans. Page 779

The current value is stored in the device specified by (d1)+0.

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

Pulse related instruction

EMeasuring the density of 16 bit binary/32 bit binary pulses

Instruction symbol Description Reference
SPD Counts the pulse input from the device specified by (s1) for the duration of time specified by (s2), Page 782
DSPD and stores the count in the device specified by (d). Page 788
W16 bit binary/32 bit binary pulse output
Instruction symbol Description Reference
PLSY * When an FX3 compatible operand is specified Page 793
DPLSY This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by Page 801
(n) from the output number (Y) specified by (d).
* When an FX5 compatible operand is specified
This instruction outputs a pulse at a frequency specified by (s) for the number of times specified by
(n), from the output number (axis number) specified by (d).
H16 bit binary/32 bit binary pulse width modulation
Instruction symbol Description Reference
PWM Outputs the pulse of the cycle specified by (s2), for the ON time on specified by (s1), to the output | Page 809
DPWM number specified by (d). Page 816
Input matrix instruction
Hinput matrix
Instruction symbol Description Reference
MTR Reads matrix input as 8-point input x "n"-point output (transistor) in the time division method. Page 823
Initial State
Hinitial State
Instruction symbol Description Reference
IST Automatically controls the initial state and special relays in a step ladder program. Page 827
Drum sequence
l16-bit binary data absolute method
Instruction symbol Description Reference
ABSD Creates many output patterns corresponding to the current value of a counter. Page 838
W32-bit binary data absolute method
Instruction symbol Description Reference
DABSD Creates many output patterns corresponding to the current value of a counter. Page 840
HRelative method
Instruction symbol Description Reference
INCD This instruction compares the current value of a counter with the data table having (n) lines starting | Page 842
from (s1) (which occupies (n) lines x 1 device). If the counter value is equivalent to the table data,
the current output is reset, and the ON/OFF status of the specified sequential outputs is controlled.
Check code
BCheck code
Instruction symbol Description Reference
CCD This instruction calculates the sum data and horizontal parity value of data stored in (s) to (s)+(n)-1. | Page 845
CCDP The sum data is stored in (d), and the horizontal parity value is stored in (d)+1.

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

83

Data operation instruction

EMSearching 16-bit/32-bit data

Instruction symbol Description Reference
SERMM Searches for data same as (s2) in (s1). Page 848
E(S” + (s2)
SERMMP L I(n)
Tor(d) to (d)+4
(d) to (d)+4: Search result
DSERMM Searches for data same as (s2) in (s1). Page 850
32 bits
(s1) 2
DSERMMP : ! 1I(n) ! '
T (d)*1, (d) to (d)+9, (d)+8
(d)+1, (d) to (d)+9, (d)+8: Search result
EBit check of 16-bit/32-bit data
Instruction symbol Description Reference
SUM () Page 852
b15 ... b0
L]
SUMP
T —)
(d): Total number of 1s
DSUM s+1) (s) Page 854
LT]
DSUMP e C)
(d): Total number of 1s
EBit judgment of 16-bit data/32-bit data
Instruction symbol Description Reference
BON () Page 855
b15 b0
BONP | | | ‘
\—> (M
(1): b(n) ON — (d)=0On
b(n) OFF — (d)=0Off
DBON () Page 857
b31 b0
DBONP | | | ‘
\—> (M
(1): b(n) ON — (d)=0On
b(n) OFF — (d)=Off
BSearching the maximum value of 16-bit/32-bit data
Instruction symbol Description Reference
MAX This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and | Page 859
MAXP stores the maximum value in the device specified by (d).
MAX_U
MAXP_U
DMAX This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and | Page 861
DMAXP stores the maximum value in the device specified by (d).
DMAX_U
DMAXP_U

84

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

BSearching the minimum value of 16-bit/32-bit data

Instruction symbol Description Reference
MIN This instruction searches the data of (n) points from the device specified by (s) in 16-bit units, and | Page 863
MINP stores the minimum value in the device specified by (d).
MIN_U
MINP_U
DMIN This instruction searches the data of (n) points from the device specified by (s) in 32-bit units, and | Page 865
DMINP stores the minimum value in the device specified by (d).
DMIN_U
DMINP_U
ESorting 16-bit data
Instruction symbol Description Reference
SORTTBL In the data table (sorting source) having ((n1)x(n2)) points specified by (s), sorts the data lines in Page 867
SORTTBL U the ascending order based on the group data in the column number (n3), and stores the result in
- the data table (sorting result) having ((n1)x(n2)) points specified by (d).
ESorting 16-bit/32-bit data 2
Instruction symbol Description Reference
SORTTBL2 In the data table (sorting source) of 16-bit binary data having (n1xn2) points specified by (s), sorts | Page 870
SORTTBL2 U the data lines in the ascending order based on the group data in the column number (n3), and
- stores the result in the data table (sorting result) of 16-bit binary data having ((n1)x(n2)) points
specified by (d).
DSORTTBL2 In the data table (sorting source) of 32-bit binary data having (n1xn2) points specified by (s), sorts | Page 873
DSORTTBL2 U the data lines in the ascending order based on the group data in the column number (n3), and
- stores the result in the data table (sorting result) of 32-bit binary data having ((n1)x(n2)) points
specified by (d).
BAdding 16-bit data
Instruction symbol Description Reference
WSUM These instructions add the (n) points of 16-bit binary data in the device starting from the one Page 876
WSUM U specified by (s), and store the result in the device specified by (d).
WSUMP
WSUMP_U
BAdding 32-bit data
Instruction symbol Description Reference
DWSUM These instructions add the (n) points of 32-bit binary data in the device starting from the one Page 878
DWSUM U specified by (s), and store the result in the device specified by (d).
DWSUMP
DWSUMP_U
ECalculating the mean value of 16-bit/32-bit data
Instruction symbol Description Reference
MEAN These instructions calculate the mean value of (n) points (16-bit binary data) in the devices starting | Page 880
MEANP from the one specified by (s), and store the result in the device specified by (d).
MEAN_U
MEANP_U
DMEAN These instructions calculate the mean value of (n) points (32-bit binary data) in the devices starting | Page 882
DMEANP from the one specified by (s), and store the result in the device specified by (d).
DMEAN_U
DMEANP_U

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

85

86

HCalculating the square root of 16-bit/32-bit data

SQRT Page 884
SQRTP (s) - ()

DSQRT Page 886
DSQRTP /|/ (8)*1.(s) > (d)+1,(d)

BCRC calculation

CRC This instruction generates a CRC value for (n) 8-bit data (unit: byte) starting from the device

Page 887

CRCP specified by (s), and stores the CRC value to (d).

HEReading the indirect address

ADRSET (s) () Page 890

ADRSETP M
)

(1): Indirect address of the specified device
(2): Device name

BReading clock data

TRD 1) — (@+0 (d)+0: Year Page 892
(d)+1 (d)+1: Month
(d)+2 (d)+2: Day
TROP (d)+3 (d)+3: Hour
(d)+4 (d)+4: Minute
Eg;:g (d)+5: Seconds
(d)+6: Day of week
(1): Clock element

EWriting clock data

TWR

(d)+0

(d)+1

(d)+2

(d)+3

TWRP (d)+4

(d)+5

(d)+6

— (1)

(d)+0: Year

(d)+1: Month

(d)+2: Day

(d)+3: Hour

(d)+4: Minute
(d)+5: Seconds
(d)+6: Day of week
(1): (Clock element)

Page 894

BAdding clock data

TADD
(s1) (s2) (d)
hour hour hour
minute + minute | — | minute
TADDP seconds seconds seconds

Page 897

3 CPU MODULE INSTRUCTION

3.3 Application Instruction

ESubtracting clock data

Instruction symbol Description Reference
TSUB (s1) (s2) () Page 900
hour hour hour
TSUBP minute | - minute | — | minute
seconds seconds seconds
EConverting time data from hour/minute/second to seconds in 16 bits/32 bits
Instruction symbol Description Reference
HTOS) @ Page 903
hour ——
HTOSP minute | — [seconds]
seconds
DHTOS Page 905
) @1 @ ’
hour A
DHTOSP minute | — | seconds \
seconds
EConverting time data from seconds to hour/minute/second in 16 bits/32 bits
Instruction symbol Description Reference
STOH s)) Page 907
—— hour
STOHP [seconds\ — | minute
seconds
DSTOH Page 909
) @ ¢
— A hour
DSTOHP seconds e minute
seconds
EComparing date data
Instruction symbol Description Reference
LDDT=, ANDDT=, ORDT= (1) [year (s2) [year Page 911
(s1)+1| month = (s2)+1| month (1)
(s1)+2| day (s2)+2 | day
(1): Result
LDDT<>, ANDDT<>, (s1)[year (s2)| vyear
ORDT<> (s1)+1 | month <> (s2)+1| month o)
(s1)+2| day (s2)+2| day
(1): Result
LDDT>, ANDDT>, ORDT> (s1)[year (s2) [year
(s1)+1| month > (s2)+1 | month (1)
(s1)+2|_day (s2)+2 |__day
(1): Result
LDDT<:_’ ANDDT<=, (s1)| year (s2)| vyear
ORDT<= (s1)+1[month | <= (s2)+1 | month)
(s1)+2| day (s2)+2 | day
(1): Result
LDDT<, ANDDT<, ORDT< (1) [year (s2) [year
(s1)+1| month < (s2)+1 | month (1)
(s1)+2| day (s2)+2| day
(1): Result
LDDT):_’ ANDDT>=, (s1)[year (s2)[year
ORDT>= (s1)+1| month >= (s2)+1| month (1)
(s1)+2| day (s2)+2 | day
(1): Result

3 CPU MODULE INSTRUCTION
3.3 Application Instruction

87

EComparing time data

Instruction symbol Description Reference
LDTM=, ANDTM=, ORTM= N hour s2) [hour Page 914
(s1)+1| minute (s2)+1 | minute | — (1)
(s1)+2 [seconds (s2)+2 |seconds
(1): Result
I(')DR-I_—I_TAO'ANDTMO’ (s1)[hour (s2)[hour
<> (s1)+1| minute| <> (s2)+1| minute | —)
(s1)+2 |seconds (s2)+2 |seconds
(1): Result
LDTM>, ANDTM>, ORTM> 1) hour s2) T hour
(s1)+1| minute (s2)+1 | minute | — (1)
(s1)+2 |seconds (s2)+2 |seconds
(1): Result
(L)DTM<<=—’ ANDTM==, (s1)[_hour (s2)[hour
RTM<= (s1)+1| minute <= (s2)*1| minute | — (1)
(s1)+2 [seconds (s2)+2 |seconds
(1): Result
LDTM<, ANDTM<, ORTM< & hour s2) [hour
(s1)+1| minute (s2)+1| minute | — (1)
(s1)+2 |seconds (s2)+2 |seconds
(1): Result
LDTM>=_’ ANDTM>=, (s1)[hour (s2)[hour
ORTM>= (s1)+1 | minute >= (s2)+1| minute | — 1)
(s1)+2 [seconds (s2)+2 |seconds
(1): Result
BEComparing clock data
Instruction symbol Description Reference
TCMP Page 917
(s1) [hour (s4) hour 9
TCMPP (s2) [minute > (s4)*1| minute| =——> (d)=ON
(s3) [seconds (s4)+2 [seconds
(s1) [hour (s4) hour
(s2) | minute = (s4)*1| minute| ——> (d)+1=ON
(s3) |seconds (s4)+2 |seconds
(s1) [_hour (s4) hour
(s2) | minute < (s4)*1| minute| —==> (d)+2=ON
(s3) |seconds (s4)+2 |seconds
BComparing clock data zones
Instruction symbol Description Reference
TZCP Page 920
(s1) hour (s3) hour
(s1)+1 | minute| > (s3)+1| minute —> (d)=ON
(s1)+2 [seconds (s3)+2 |seconds
TZCPP (s1) hour (s3) hour (s2) hour
(s1)+1 | minute| < (s3)+1| minute | < (s2)+1| minute —> (d)+1=0ON
(s1)+2 |seconds (s3)+2 [seconds (s2)+2 [seconds
(s3) hour (s2) hour
(s3)+1 | minute| > (s2)+1| minute| ——> (d)+2=ON
(s3)+2 [seconds (s2)+2 [seconds
88 3 CPU MODULE INSTRUCTION

3.3 Application Instruction

Timing check instruction

HEGenerating timing pulses

Instruction symbol Description Reference
DUTY Page 923
@-J L I
(n1) (n2)
(n1): (n1) scans
(n2): (n2) scans
(d): SM420 to SM424, SM2330 to SM2334
EHour meter
Instruction symbol Description Reference
HOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the | Page 926
device specified by (d2) when the total ON time exceeds the time specified by (s) (16-bit binary
data), and stores the current value in units of 1 hour (16-bit binary data) to (d1), and the current
value that is less than one hour (16-bit binary data) to (d1)+1 in units of seconds.
DHOURM This instruction adds the time during which the input contact is ON in units of 1 hour, turns ON the | Page 928
device specified by (d2) when the total ON time exceeds the time specified by (s) (32-bit binary
data), and stores the current value in units of 1 hour (32-bit binary data) to (d1)+1 and (d1), and the
current value that is less than one hour (16-bit binary data) to (d1)+2 in units of seconds.
Module access instruction
HPerforming I/O refresh
Instruction symbol Description Reference
REF This instruction refreshes the relevant I/0 area during a scan. Page 930
REFP
RFS
RFSP
HReading 1-word/2-word data from another module (16-bit specification)
Instruction symbol Description Reference
FROM These instructions read the (n) word data from the buffer memory of the intelligent function module. | Page 932
FROMP
DFROM These instructions read the (n)x2 word data from the buffer memory of the intelligent function
DFROMP module.
EWriting 1-word/2-word data to another module (16-bit specification)
Instruction symbol Description Reference
TO These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 936
TOP
DTO These instructions write the (n)x2 word data to the buffer memory of the intelligent function module.
DTOP
HReading 1-word/2-word data from another module (32-bit specification)
Instruction symbol Description Reference
FROMD These instructions read the (n) word data from the buffer memory of the intelligent function module. | Page 939
FROMDP
DFROMD These instructions read the (n)x2 word data from the buffer memory of the intelligent function
DFROMDP module.
3 CPU MODULE INSTRUCTION 89

3.3 Application Instruction

90

HEWriting 1-word/2-word data to another module (32-bit specification)

Instruction symbol Description Reference
TOD These instructions write the (n) word data to the buffer memory of the intelligent function module. Page 942
TODP
DTOD These instructions write the (n)x2 word data to the buffer memory of the intelligent function module.
DTODP
Logging instructions
ESetting/resetting trigger logging
Instruction symbol Description Reference
LOGTRG Generates a trigger for trigger logging. Data sampled for the number of records (specified in the Page 945
trigger logging setting parameter using the engineering tool) are stored in the data logging file.
LOGTRGR Resets the trigger condition. Page 946
Real-time monitor function instruction
Instruction symbol Description Reference
RTM Monitors the data when the instruction is executed by using the real-time monitor function. Page 947
3.4 Step Ladder Instructions
Starts/Ends step ladder
Instruction symbol Description Reference
STL Start of step ladder Page 949
RETSTL End of step ladder
3.5 PID Control Instruction
PID control loop
Instruction symbol Description Reference
PID This instruction executes PID control which changes the output value according to the input Page 953

variation.

3 CPU MODULE INSTRUCTION
3.4 Step Ladder Instructions

3.6 SFC

Program Instructions

SFC control instructions

BChecking the status of a step

Instruction symbol Description Reference
LD [SO/BLO\SO] Outputs the status (active or inactive) of the specified step as the operation result. (Normally open | Page 956
contact instruction)
LDI [SO/BLO\SO] Outputs the status (active or inactive) of the specified step as the operation result. (Normally closed
contact instruction)
AND [SO/BLO\SO] Performs an AND operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Normally open contact series
connection instruction)
ANI [SO/BLO\SO] Performs an AND operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Normally closed contact series
connection instruction)
OR [SO/BLO\SO] Performs an OR operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Single normally open contact parallel
connection instruction)
ORI [SO/BLONSO] Performs an OR operation between the status (active or inactive) of the specified step and the
previous operation result(s), and output the operation result. (Single normally closed contact
parallel connection instruction)
BChecking the status of a block
Instruction symbol Description Reference
LD [BLO] Outputs the status (active or inactive) of the specified block as the operation result. (Normally open | Page 958
contact instruction)
LDI [BLO] Outputs the status (active or inactive) of the specified block as the operation result. (Normally
closed contact instruction)
AND [BLO] Performs an AND operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Normally open contact series
connection instruction)
ANI [BLO] Performs an AND operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Normally closed contact series
connection instruction)
OR [BLO] Performs an OR operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Single normally open contact parallel
connection instruction)
ORI [BLO] Performs an OR operation between the status (active or inactive) of the specified block and the
previous operation result(s), and output the operation result. (Single normally closed contact
parallel connection instruction)
EBatch-reading the status of steps
Instruction symbol Description Reference
MOV [KnSO/BLO\KnSO] Batch-reads (in units of 16-bit binary data) the status (active or inactive) of steps in the specified Page 960
MOVP [KnSC/BLOKnSO] block, and stores the read data in the specified device. (Kn: K1 to K4)
DMOV [KnSO/BLO\KnSO] Batch-reads (in units of 32-bit binary data) the status (active or inactive) of steps in the specified Page 963
DMOVP [KnSC/BLONKNSO] block, and stores the read data in the specified device. (Kn: K1 to K8)
BMOV [KnSO/BLO\KnSO] Batch-reads (in units of the specified number of words starting from the specified step) the status Page 966
BMOVP [KnSO/BLO\KnSO] (active or inactive) of steps in the specified block. (Kn: K1 to K4)
EStarting a block
Instruction symbol Description Reference
SET [BLO] Activates the specified block, and executes a step sequence starting from an initial step. Page 970
BEnding a block
Instruction symbol Description Reference
RST [BLO] Deactivates the specified block. Page 971

3 CPU MODULE INSTRUCTION
3.6 SFC Program Instructions

91

EPausing a block

PAUSE [BLO] Temporarily stops the step sequence in the specified block. Page 972

ERestarting a block

RSTART [BLO] Releases the temporary stop, and restarts the sequence from the step where the sequence was Page 974
stopped in the specified block.

BActivating a step

SET [SO/BLONSO] Activates the specified step. Page 976

EDeactivating a step

RST [SO/BLO\SO] Deactivates the specified step. Page 978

BActivating/deactivating a step

OUT [sO/BLO\SO] This instruction activates or deactivates the specified step. Page 980

EBatch-deactivating a step

ZRST [SO/BLO\SO] Batch-deactivates the steps in the specified range. Page 982

ZRSTP [SO/BLO\SO]

ECreating a dummy transition condition

TRAN A dummy output which satisfies a transition condition. Page 984

92 3 CPU MODULE INSTRUCTION
3.6 SFC Program Instructions

4 MODULE SPECIFIC INSTRUCTION

4.1

Network Common Instruction

Link dedicated instruction

HReading data from another station programmable controller

Instruction symbol

Description

Reference

GP.READ

Reads data from another station PLC device in units of words.

Page 988

HReading data from another station programmable controller (with notification

)

Instruction symbol Description Reference
GP.SREAD Reads data from another station PLC device in units of words. Page 994
When reading data has finished, a device of the other station is turned on.
(This makes it possible for the other station to recognize that data has been read by the GP.SREAD
instruction.)
EWriting data to another station programmable controller
Instruction symbol Description Reference
GP.WRITE Writes data to another station PLC device in units of words. Page 1000
EWriting data to another station programmable controller (with notification)
Instruction symbol Description Reference
GP.SWRITE Writes data to another station PLC device in units of words. Page 1008
When writing data has finished, a device in the other station is turned on.
(This makes it possible for the other station to recognize that data has been written by the
GP.SWRITE instruction.)
ESending data to another station programmable controller
Instruction symbol Description Reference
GP.SEND Sends data to another station PLC. Page 1016
HReceiving data from another station programmable controller
Instruction symbol Description Reference
GP.RECV Reads data received from another station PLC. (For the main routine program) Page 1024
4.2 Ethernet Instruction
Built-in Ethernet function instruction
HEOpening a connection
Instruction symbol Description Reference
SP.SOCOPEN This instruction opens the connection specified by (s1). Page 1030
HClosing a connection
Instruction symbol Description Reference
SP.SOCCLOSE This instruction closes the connection specified by (s1). (Closing a connection) Page 1033
Socket communication function instruction
HEReading receive data during the END processing
Instruction symbol Description Reference
SP.SOCRCV This instruction reads the received data of the connection specified by (s1) from the socket Page 1035

communication receive data area, during the END processing.

4 MODULE SPECIFIC INSTRUCTION
4.1 Network Common Instruction

93

94

ESending data

Instruction symbol Description Reference

SP.SOCSND This instruction sends the data set in (s3) to the target device of the connection specified by (s1). Page 1038
HMReading connection information

Instruction symbol Description Reference

SP.SOCCINF This instruction reads the connection information of the connection specified by (s1). Page 1041
HBReading socket communication receive data

Instruction symbol Description Reference

S.SOCRDATA This instruction reads the data of the number of words specified in (n) from the socket Page 1043

SP.SOCRDATA communication receive data area of the connection specified by (s1), and stores it to the device

specified by (d) onwards.

Predefined Protocol Support Function Instruction

BExecuting the protocols registered for the predefined protocol support function

Instruction symbol Description Reference
SP.ECPRTCL Executes the protocol specified by the communication protocol support tool of the engineering tool. | Page 1045
SLMP frame send instruction
ESending the SLMP frame
Instruction symbol Description Reference
SP.SLMPSND Sends SLMP messages to an SLMP-compatible device. Page 1049
File transfer function instruction
BSending FTP client files
Instruction symbol Description Reference
SP.FTPPUT Sends the CPU module file specified in (s2) to the FTP server folder specified in (s3). Page 1054
HRetrieving FTP client files
Instruction symbol Processing details Reference
SP.FTPGET Retrieves files on the FTP server, which are specified by (s2), to the folder path of the CPU module, | Page 1059
which is specified by (s3).
Ethernet module
HOpening a connection
Instruction symbol Description Reference
GP.OPEN This instruction establishes (opens) a connection with an external device for data communication. | Page 1064
EClosing a connection
Instruction symbol Description Reference
GP.CLOSE This instruction disconnects (closes) the connection from the external device during data Page 1067
communication.
BReading receive data
Instruction symbol Description Reference
GP.SOCRCV This instruction reads receive data from the external device through socket communications. Page 1069
ESending data
Instruction symbol Description Reference
GP.SOCSND This instruction sends data to the external device through socket communications Page 1071

4 MODULE SPECIFIC INSTRUCTION
4.2 Ethernet Instruction

4.3 CC-Link IE TSN Instructions

Own station number/IP address setting

Instruction symbol Description Reference
G.UINI Sets the station number and IP address for FX5-CCLGN-MS (own station). Page 1073
GP.UINI
Sending an SLMP Frame
Instruction symbol Description Reference
G.SLMPSND Sends an SLMP message to the SLMP-compatible device on the same network. Page 1076
GP.SLMPSND
4.4 cCC-Link IE Field Network Instruction
Setting parameters
Instruction symbol Description Reference
G.CCPASET Sets parameters in the FX5-CCLIEF (own station). Page 1085
GP.CCPASET Use the G(P).CCPASET instruction to set parameters in the following cases.
« If you want to change parameters without resetting the CPU module
« If you want to mount more intelligent device station modules than the number of modules set by
the engineering tool
Setting the station number to own station
Instruction symbol Description Reference
G.UINI Sets the station number in the FX5-CCLIEF (own station). Page 1088

GP.UINI

4 MODULE SPECIFIC INSTRUCTION
4.3 CC-Link IE TSN Instructions 95

96

4.5 High-speed Counter Instruction

High-speed processing instruction

ESetting 32-bit data comparison

Instruction symbol Description Reference
DHSCS Turns ON the bit device of (d) when the current value of the high-speed counter of CH specified by | Page 1091
(s2) is changed to the value specified by (s1).
HReset 32-bit data comparison
Instruction symbol Description Reference
DHSCR Turns OFF the bit device of (d) when the current value of the high-speed counter of CH specified Page 1094
by (s2) is changed to the value specified by (s1).
BEComparison of 32-bit data band
Instruction symbol Description Reference
DHSZ Compares whether the current value of the high-speed counter is within or outside the value range | Page 1097
specified by (s1) or (s2).
W Start/stop of the 16-bit/32-bit data high-speed I/O function
Instruction symbol Description Reference
HIOEN Start or stop high-speed I/O for the specified CH. Page 1100
HIOENP
DHIOEN Page 1104
DHIOENP
High-speed current value transfer instruction
EHigh-speed current value transfer of 16-bit/32-bit data
Instruction symbol Description Reference
HCMOV Transfers the current value of the high-speed I/O. Page 1108
HCMOVP
DHCMOV Page 1110
DHCMOVP

4 MODULE SPECIFIC INSTRUCTION
4.5 High-speed Counter Instruction

4.6

External Device Communication Instruction

Serial communication 2

Instruction symbol Description Reference
RS2 Sends/receives data by non-protocol communication. Page 1113
Inverter Communication Instruction
Hinverter operation monitoring (Status check)
Instruction symbol Description Reference
IVCK Reads the contents of the corresponding instruction code from the specified inverter station Page 1115
number.
Hinverter operations control (Drive)
Instruction symbol Description Reference
IVDR Writes the contents of the corresponding instruction code to the specified inverter station number. | Page 1117
Hinverter parameter read
Instruction symbol Description Reference
IVRD Reads a parameter from the specified inverter station number. Page 1119
Hinverter parameter write
Instruction symbol Description Reference
IVWR Writes a parameter to the specified inverter station number. Page 1121
Hinverter parameter block write
Instruction symbol Description Reference
IVBWR Writes the range of the specified data tables to the specified inverter station number in batch. Page 1123
Hinverter multi command
Instruction symbol Description Reference
IVMC Sends/receives data corresponding to the send/receive data type to/from the specified inverter Page 1125
station number.
MODBUS Communication Instruction
Instruction symbol Description Reference
ADPRW Sends the function code from the master to the slave of the MODBUS serial communication and Page 1127
reads or writes the data.
Predefined Protocol Support Function Instruction
Instruction symbol Description Reference
S.CPRTCL Executes the protocol specified by the communication protocol support tool of the engineering tool. | Page 1129
SP.CPRTCL

4 MODULE SPECIFIC INSTRUCTION
4.6 External Device Communication Instruction

97

98

4.7

Pos

itioning Instruction

Positioning instruction

BZero return(OPR)

with 16-bit/32- bit data DOG search

Instruction symbol Description Reference
DSZR * When FX3 compatible operand is specified Page 1134
DDSZR Specifies the proximity dog signal, zero signal and device (Y). Outputs a pulse with the specified Page 1138
device (Y) to perform the zero return operation.
* When FX5 operand is specified
Specifies the original position return speed, creep speed and axis number. Outputs a pulse with the
specified axis to perform the zero return operation.
W16-bit/32-bit data interrupt positioning
Instruction symbol Description Reference
DVIT « When FX3 compatible operand is specified Page 1140
DDVIT Performs interrupt positioning with the specified travel distance, speed, and device (Y). Page 1144
* When FX5 operand is specified
Performs interrupt positioning with the specified travel distance, speed, and axis number.
HPositioning by one table operation
Instruction symbol Description Reference
TBL * When FX3 compatible operand is specified Page 1148
Outputs 1 table operation from the table set by the parameter as pulse with specified device (Y).
* When FX5 operand is specified
Outputs 1 table operation from the table set by the parameter as pulse with specified axis number.
HPositioning by multiple table operation
Instruction symbol Description Reference
DRVTBL Outputs continuous multiple table operations from the table set by the parameter as pulse with Page 1150
specified axis number.
EMultiple axes concurrent drive positioning
Instruction symbol Description Reference
DRVMUL Outputs the table set by the parameter as pulse with specified multiple axes. Page 1152
W32-bit data ABS current value read
Instruction symbol Description Reference
DABS Reads the absolute position data of the servo amplifier. Page 1154
W16-bit/32-bit data variable speed pulse
Instruction symbol Description Reference
PLSV * When FX3 compatible operand is specified Page 1156
DPLSV Specifies the command speed and output device (Y) and uses the specified device (Y) to perform Page 1160
pulse output.
* When FX5 operand is specified
Specifies the command speed and performs pulse output with the specified axis number.
W16-bit/32-bit data relative positioning
Instruction symbol Description Reference
DRVI * When FX3 compatible operand is specified Page 1164
DDRVI Specifies the travel distance from the current position, speed and performs pulse output with the Page 1168

specified device (Y).

* When FX5 operand is specified

Specifies the travel distance from the current position, speed and performs pulse output with the
specified axis number.

4 MODULE SPECIFIC INSTRUCTION
4.7 Positioning Instruction

W16-bit/32-bit data

absolute positioning

Instruction symbol Description Reference
DRVA * When FX3 compatible operand is specified Page 1172
DDRVA Specifies the travel distance from the reference position, speed and performs pulse output with the Page 1176
specified device (Y).
* When FX5 operand is specified
Specifies the travel distance from the reference position, speed and performs pulse output with the
specified axis number.
Positioning module
HRestoring the absolute position
Instruction symbol Description Reference
G.ABRST1 Restores the absolute position of specified axis. Page 1180
G.ABRST2
EStarting the positioning
Instruction symbol Description Reference
GP.PSTRT1 Starts positioning of the specified axis. Page 1184
GP.PSTRT2
ETeaching
Instruction symbol Description Reference
GP.TEACH1 Performs teaching for the specified axis. Page 1187
GP.TEACH2
EBacking up module data (writing data to the flash ROM)
Instruction symbol Description Reference
GP.PFWRT Writes the positioning data and block start data in the buffer memory to the flash ROM. Page 1190
Hinitializing the module
Instruction symbol Description Reference
GP.PINIT Initializes the setting data in the buffer memory and flash ROM. Page 1193
4.8 BFM Device Read/ Write Instruction
Divided BFM Read
Instruction symbol Description Reference
RBFM Divides and reads data from the continuous buffer memory in the intelligent module. Page 1196
(This instruction cannot be used with the FX5 intelligent module.)
Divided BFM Write
Instruction symbol Description Reference
WBFM Divides and writes data to the continuous buffer memory in the intelligent module. Page 1200
(This instruction cannot be used with the FX5 intelligent module.)
4 MODULE SPECIFIC INSTRUCTION 99
4.8 BFM Device Read/ Write Instruction

5 STANDARD FUNCTIONS/FUNCTION BLOCKS

5.1 standard Functions

Type conversion functions

Converting BOOL to WORD/DWORD

Function symbol Description Reference
BOOL_TO_WORD Converts BOOL type data to WORD type data. Page 1204
BOOL_TO_WORD_E
BOOL_TO_DWORD Converts BOOL type data to DWORD type data. Page 1206
BOOL_TO_DWORD_E

Converting BOOL to INT/DINT
Function symbol Description Reference
BOOL_TO_INT Converts BOOL type data to INT type data. Page 1207
BOOL_TO_INT_E
BOOL_TO_DINT Converts BOOL type data to DINT type data. Page 1208
BOOL_TO_DINT_E

Converting BOOL to TIME
Function symbol Description Reference
BOOL_TO_TIME Converts BOOL type data to TIME type data. Page 1209
BOOL_TO_TIME_E

Converting BOOL to STRING
Function symbol Description Reference
BOOL_TO_STRING Converts BOOL type data to STRING type data. Page 1210
BOOL_TO_STRING_E

Converting WORD to BOOL
Function symbol Description Reference
WORD_TO_BOOL Converts WORD type data to BOOL type data. Page 1211
WORD_TO_BOOL_E

Converting WORD to DWORD
Function symbol Description Reference
WORD_TO_DWORD Converts WORD type data to DWORD type data. Page 1212
WORD_TO_DWORD_E

Converting WORD to INT/DINT
Function symbol Description Reference
WORD_TO_INT Converts WORD type data to INT type data. Page 1213
WORD_TO_INT_E
WORD_TO_DINT Converts WORD type data to DINT type data. Page 1214

WORD_TO_DINT_E

1 00 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

WORD_TO_TIME

WORD_TO_TIME_E

Converts WORD type data to TIME type data.

Page 1216

DWORD_TO_BOOL

DWORD_TO_BOOL_E

Converts DWORD type data to BOOL type data.

Page 1217

DWORD_TO_WORD

DWORD_TO_WORD_E

Converts DWORD type data to WORD type data.

Page 1218

DWORD_TO_INT Converts DWORD type data to INT type data. Page 1220
DWORD_TO_INT_E
DWORD_TO_DINT Converts DWORD type data to DINT type data. Page 1222

DWORD_TO_DINT_E

DWORD_TO_TIME

DWORD_TO_TIME_E

Converts DWORD type data to TIME type data.

Page 1223

INT_TO_BOOL

INT_TO_BOOL_E

Converts INT type data to BOOL type data.

Page 1224

INT_TO_WORD Converts INT type data to WORD type data. Page 1225
INT_TO_WORD_E
INT_TO_DWORD Converts INT type data to DWORD type data. Page 1226

INT_TO_DWORD_E

INT_TO_DINT

INT_TO_DINT_E

Converts INT type data to DINT type data.

Page 1228

5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

101

INT_TO_BCD

INT_TO_BCD_E

Converts INT type data to BCD type data.

Page 1229

INT_TO_REAL

INT_TO_REAL_E

Converts INT type data to REAL type data.

Page 1231

INT_TO_TIME

INT_TO_TIME_E

Converts INT type data to TIME type data.

Page 1232

INT_TO_STRING

INT_TO_STRING_E

Converts INT type data to STRING type data.

Page 1233

DINT_TO_BOOL

DINT_TO_BOOL_E

Converts DINT type data to BOOL type data.

Page 1235

DINT_TO_WORD Converts DINT type data to WORD type data. Page 1236
DINT_TO_WORD_E
DINT_TO_DWORD Converts DINT type data to DWORD type data. Page 1238

DINT_TO_DWORD_E

DINT_TO_INT

DINT_TO_INT_E

Converts DINT type data to INT type data.

Page 1239

DINT_TO_BCD

DINT_TO_BCD_E

Converts DINT type data to BCD type data.

Page 1241

DINT_TO_REAL

DINT_TO_REAL_E

Converts DINT type data to REAL type data.

Page 1243

1 02 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

Converting DINT to TIME

Function symbol Description Reference
DINT_TO_TIME Converts DINT type data to TIME type data. Page 1244
DINT_TO_TIME_E

Converting DINT to STRING
Function symbol Description Reference
DINT_TO_STRING Converts DINT type data to STRING type data. Page 1245
DINT_TO_STRING_E

Converting BCD to INT/DINT
Function symbol Description Reference
BCD_TO_INT Converts BCD type data to INT type data. Page 1247
BCD_TO_INT_E
BCD_TO_DINT Converts BCD type data to DINT type data. Page 1249
BCD_TO DINT_E

Converting REAL to INT/DINT
Function symbol Description Reference
REAL_TO_INT Converts REAL type data to INT type data. Page 1251
REAL_TO_INT_E
REAL_TO_DINT Converts REAL type data to DINT type data. Page 1253
REAL_TO _DINT_E

Converting REAL to STRING
Function symbol Description Reference
REAL_TO_STRING Converts REAL type data to STRING type data (exponent format). Page 1255
REAL_TO_STRING_E

Converting TIME to BOOL
Function symbol Description Reference
TIME_TO_BOOL Converts TIME type data to BOOL type data. Page 1258
TIME_TO_BOOL_E

Converting TIME to WORD/DWORD
Function symbol Description Reference
TIME_TO_WORD Converts TIME type data to WORD type data. Page 1259
TIME_TO_WORD_E
TIME_TO_DWORD Converts TIME type data to DWORD type data. Page 1260
TIME_TO_DWORD_E

Converting TIME to INT/DINT
Function symbol Description Reference
TIME_TO_INT Converts TIME type data to INT type data. Page 1261
TIME_TO_INT_E
TIME_TO_DINT Converts TIME type data to DINT type data. Page 1262
TIME_TO_DINT_E

5 STANDARD FUNCTIONS/FUNCTION BLOCKS

5.1 Standard Functions

103

Converting TIME to STRING

Function symbol Description Reference
TIME_TO_STRING Converts TIME type data to STRING type data. Page 1263
TIME_TO_STRING_E

Converting STRING to BOOL
Function symbol Description Reference
STRING_TO_ BOOL Converts STRING type data to BOOL type data. Page 1265
STRING_TO_BOOL_E

Converting STRING to INT/DINT
Function symbol Description Reference
STRING_TO_INT Converts STRING type data to INT type data. Page 1266
STRING_TO_INT_E
STRING_TO_DINT Converts STRING type data to DINT type data. Page 1268
STRING_TO_DINT_E

Converting STRING to REAL
Function symbol Description Reference
STRING_TO_REAL Converts STRING type data to REAL type data. Page 1270
STRING_TO_REAL_E

Converting STRING to TIME
Function symbol Description Reference
STRING_TO_TIME Converts STRING type data to TIME type data. Page 1273
STRING_TO_TIME_E

Converting bit array to INT/DINT
Function symbol Description Reference
BITARR_TO_INT Converts a bit array to INT type data for a specified number of bits. Page 1274
BITARR_TO_INT_E
BITARR_TO_DINT Converts a bit array to DINT type data for a specified number of bits. Page 1275
BITARR_TO_DINT_E

Converting INT/DINT to bit array
Function symbol Description Reference
INT_TO_BITARR Outputs low-order (n) bits of INT type data to a bit array. Page 1276
INT_TO_BITARR_E
DINT_TO_BITARR Outputs low-order (n) bits of DINT type data to a bit array. Page 1277
DINT_TO_BITARR_E

Bit array copy
Function symbol Description Reference
CPY_BITARR Copies specified number of bits of a bit array. Page 1278
CPY_BITARR_E

1 04 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

Reading the specified bit of word label

Function symbol Description Reference
GET_BIT_OF_INT Reads a value of a specified bit of INT type data. Page 1279
GET_BIT_OF_INT_E

Writing the specified bit of word label
Function symbol Description Reference
SET_BIT_OF_INT Writes a value to a specified bit of INT type data. Page 1280
SET BIT_OF_INT_E

Copying the specified bit of word label
Function symbol Description Reference
CPY_BIT_OF_INT Copies a specified bit of INT type data to a specified bit of another INT type data. Page 1281
CPY_BIT_OF_INT_E

Unnecessary of type conversion
Function symbol Description Reference
GET_BOOL_ADDR Converts a data type to the BOOL type. Page 1282
GET_INT_ADDR Converts a data type to the INT type.
GET_WORD_ADDR Converts a data type to the WORD type.

Standard functions of one numeric variable

Absolute value
Function symbol Description Reference
ABS Outputs the absolute value of an input value. Page 1283
ABS_E

Square root
Function symbol Description Reference
SQRT Outputs the square root of an input value. Page 1285
SQRT_E

Natural logarithm operation
Function symbol Description Reference
LN Outputs the natural logarithm operation result of an input value. Page 1286
LN_E

Calculating the common logarithm
Function symbol Description Reference
LOG Outputs the operation result of the common logarithm (the logarithm whose base is 10) of an input | Page 1287
LOG E value.

Exponential operation
Function symbol Description Reference
EXP Outputs the exponential operation result of an input value. Page 1289

EXP_E

5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

105

SIN Outputs the sine of the angle of an input value.

Page 1290

CcOos Outputs the cosine of the angle of an input value.

Page 1291

TAN Outputs the tangent of the angle value of an input value.

Page 1292

ASIN Outputs the arc sine value of an input value.
ASIN_E

Page 1294

ACOS Outputs the arc cosine value of an input value.

ACOS_E

Page 1296

ATAN Outputs the arc tangent value of an input value.
ATAN_E

Page 1298

Standard arithmetic functions

ADD Outputs the sum of input values ((s1) + (s2) + ... + (s28)).

Page 1300

MUL Outputs the product of input values ((s1) x (s2) x ... x (s28)).

Page 1302

SuB Outputs the difference of input values ((s1) - (s2)).

SUB_E

Page 1304

1 06 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

Division

Function symbol Description Reference
DIV Outputs the quotient of input values ((s1) + (s2)). Page 1306
DIV_E

Remainder
Function symbol Description Reference
MOD Outputs the remainder of input values ((s1) + (s2)). Page 1308
MOD_E

Exponentiation
Function symbol Description Reference
EXPT Outputs the exponentiation of an input value. Page 1310
EXPT_E

Move operation
Function symbol Description Reference
MOVE Assigns an input value to (d). Page 1312
MOVE_E

Standard bit shift functions

Shifting n-bit data to left/right
Function symbol Description Reference
SHL Shifts an input value leftward by (n) bits and outputs the result. Page 1314
SHL_E
SHR Shifts an input value rightward by (n) bits and outputs the result. Page 1316
SHR_E

Rotating n-bit data to left/right
Function symbol Description Reference
ROL Rotates an input value leftward by (n) bits and outputs the result. Page 1318
ROL_E
ROR Rotates an input value rightward by (n) bits and outputs the result. Page 1320
ROR_E

Standard bitwise boolean functions

AND operation, OR operation, XOR operation, NOT operation
Function symbol Description Reference
AND Outputs the logical product of input values. Page 1322
AND_E
OR Outputs the logical sum of input values.
OR_E
XOR Outputs the exclusive logical sum of input values.
XOR_E
NOT Outputs the logical negation of input values. Page 1324
NOT_E

5 STANDARD FUNCTIONS/FUNCTION BLOCKS

5.1 Standard Functions 1 07

Standard selection functions

Outputs a selected input value.

Page 1325

Outputs the maximum value of an input value.
MAX_E
MIN Outputs the minimum value of an input value.
MIN_E

Page 1327

LIMIT

LIMIT_E

Outputs an input value controlled with the upper and lower limits.

Page 1329

MUX

MUX_E

Outputs one of multiple input values.

Page 1331

Standard comparison functions

GT E

GE

Outputs the data comparison result of input values.

Page 1333

Page 1335

1 08 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

Standard character string functions

Character string length detection

Function symbol Description Reference
LEN Detects the length of an input character string and outputs the result. Page 1337
LEN_E

Extracting character string data from the left/right
Function symbol Description Reference
LEFT Outputs specified number of characters from the left of input character string data. Page 1339
LEFT_E
RIGHT Outputs specified number of characters from the right of input character string data.
RIGHT_E

Extract mid string
Function symbol Description Reference
MID Outputs specified number of characters from an arbitrary position of an input character string. Page 1341
MID_E

String concatenation
Function symbol Description Reference
CONCAT Concatenates character strings and output the result. Page 1343
CONCAT_E

Inserting character string
Function symbol Description Reference
INSERT Inserts a character string into another character string and output the result. Page 1345
INSERT_E

Deleting character string
Function symbol Description Reference
DELETE Deletes an arbitrary range of a character string and outputs the result. Page 1347
DELETE_E

Replacing character string
Function symbol Description Reference
REPLACE Replaces an arbitrary range of a character string and outputs the result. Page 1349
REPLACE_E

Searching character string
Function symbol Description Reference
FIND Searches for a character string and outputs the result. Page 1352
FIND_E

5 STANDARD FUNCTIONS/FUNCTION BLOCKS 1
5.1 Standard Functions 09

Time data functions

ADD_TIME Outputs the sum of input values (time data) ((s1) + (s2)). Page 1354
ADD_TIME_E

SUB_TIME Outputs the difference of input values (time data) ((s1) - (s2)). Page 1356
SUB_TIME_E

MUL_TIME Outputs the product of input values (time data) ((s1) x (s2)). Page 1358
MUL_TIME_E

DIV_TIME Outputs the quotient of input values (time data) ((s1) + (s2)). Page 1360
DIV_TIME_E

1 10 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.1 Standard Functions

5.2

Standard Function Blocks

Bistable functio

n blocks

Bistable function blocks (set priority)

Function block symbol Description Reference
SR Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Set priority) Page 1364
SR _E

Bistable function blocks (reset priority)
Function block symbol Description Reference
RS Judges two input values and outputs 1 (TRUE) or 0 (FALSE). (Reset priority) Page 1366
RS_E

Edge detection function blocks

Rising edge detector
Function block symbol Description Reference
R_TRIG Detects the rising edge of a signal, and outputs a pulse signal. Page 1368
R TRIG_E

Falling edge detector
Function block symbol Description Reference
F_TRIG Detects the falling edge of a signal, and outputs a pulse signal. Page 1370
F_TRIG_E

Counter function blocks

Up counter
Function block symbol Description Reference
CTU Counts up the number of times of rising of a signal. Page 1372
CTU E

Down counter
Function block symbol Description Reference
CTD Counts down the number of times of rising of a signal. Page 1374
CTD_E

Up/Down counter
Function block symbol Description Reference
CTUD Counts up/down the number of times of rising of a signal. Page 1376
CTUD_E

Counter function block
Function block symbol Description Reference
COUNTER_FB_M Counts up the number of times of rising of a signal from (s3) to (s2). Page 1379

5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.2 Standard Function Blocks

111

Timer function blocks

S

TP E

TP_10

TP_10_E

Keeps ON a signal for specified duration. Page 1381

TON

TON_E

TON_10

TON_10_E

Turns ON a signal after a specified time. Page 1383

TOF

TOF_E

TOF_10

TOF_10_E

Turns OFF a signal after a specified time. Page 1385

TIMER_1_FB_M

TIMER_10_FB_M

TIMER_100_FB_M

TIMER_CONT_FB_M

TIMER_CONTHS_FB_M

When the execution condition is established, these function blocks start the timer count to the | Page 1387
set time.

1 1 2 5 STANDARD FUNCTIONS/FUNCTION BLOCKS
5.2 Standard Function Blocks

PART 3

PART 3 CPU MODULE
INSTRUCTIONS

This part consists of the following chapters.

6 SEQUENCE INSTRUCTIONS

7 BASIC INSTRUCTIONS

8 APPLICATION INSTRUCTION

9 STEP LADDER INSTRUCTIONS

10 PID CONTROL INSTRUCTION

11 SFC PROGRAM INSTRUCTIONS

113

6 SEQUENCE INSTRUCTIONS

6.1 Contact Instructions

Operation start, series connection, parallel connection

LD, LDI, AND, ANI, OR, ORI

» LD: NO contact operation start instruction/LDI: NC contact operation start instruction

These instructions capture the ON/OFF information of the device specified by (s), and use that as the operation result.

» AND: NO contact series connection instruction/ANI: NC contact series connection instruction

These instructions capture the ON/OFF information of the device specified by (s), AND with the operation result so far, and

use the result as the operation result.

* OR: NO contact parallel connection instruction/ORI: NC contact parallel instruction
These instructions capture the ON/OFF information of the device specified by (s), OR with the operation result so far, and use
the result as the operation result.

Ladder diagram

Structured text

This becomes a assignment statement, operator, control syntax, etc.

—is—
o8 In the ST language, there are sometimes no instructions (symbols) that
LD R directly correspond to contacts such as LD, AND, and OR.
'__(s) When programming using assignment statements, express as shown in the
LD i following example.
L Example
i Y1:=(X0 OR X1) AND X2 AND NOT X3;
C e Y2:=NOT X4 OR NOT X5;
AND | | [|
I -
o
ANI £ i_/'/'_.
||
L1
OR O
1
||
[
ORI i (s) i
|
FBD/LD

In the FBD/LD language, contact is used as well as the Ladder diagram.

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Device used as a contact — Bit ANY_BOOL
BApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L SM, |T,ST,C,D,W, |uDeO |z Lc |[Lz |specification [y TE $ (DX)
F, B, SB, S SD, SW,R
(s) o) e) o) —) — — — — — o)

6 SEQUENCE INSTRUCTIONS
114

6.1 Contact Instructions

Processing. details
ELD, LDI

» The LD instruction is the NO contact operation start instruction, and the LDI instruction is the NC contact operation start
instruction. These instructions capture the ON/OFF information ! of the specified device, and use the result as the
operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.

[Ex]

* LD instruction (NO contact operation start) * LDl instruction (NC contact operation start)

LD instruction LDl instruction

X0 | X0
— YO W YO

Timing chart Timing chart
X0 ON ON X0
EAND, ANI

* The AND instruction is NO contact series connection instruction and the ANI instruction is NC contact series connection
instruction. These instructions capture the ON/OFF information” of the specified bit device, AND with the operation result
so far, and use the result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.
» There is no limitation to the number of series contacts. Any number of contacts can use this instructions consecutively.

« Output to other coils through contacts after the OUT instruction is called cascade output, and these outputs can be
repeated any number of times as long as their order is correct.

[Ex]

* AND instruction » ANl instruction
(series connection of NO contacts) (series connection of NC contacts)

AND instruction ANl instruction

| X2 X0 | X2 X0
| i} i} @*{ | it HF @—{
ON

Timing chart Timing chart
LD instruction | x2 ON ON LD instruction | xo ON
— 1
!
1
AND instruction | x0 ON ON ANlinstruction | xq ON ON i
|
-
v3 ON v3 ON ON

6 SEQUENCE INSTRUCTIONS 11
6.1 Contact Instructions 5

HOR, ORI

» The OR instruction is NO contact parallel connection and the ORI instruction is NC contact parallel connection. These
instructions capture the ON/OFF information”? of the specified device, OR with the operation result so far, and use the
result as the operation result.

*1 When bits of word devices are specified, devices turn ON/OFF by the 1/0 status of the specified bit.
» These instructions are connected in parallel from the step with this instruction to the previous step with the LD and LDI
instruction.

* There is no limitation in the number of parallel connections.

Point/@

» When bits of word devices are specified, bits are specified in hexadecimal. (For example, b11 of DO is
specified by "D0.B".)

[Ex]

* OR instruction * ORI instruction
(parallel connection of NO contacts) (parallel connection of NC contacts)

X0 LD instruction LD instruction
i Y0 I @—{
| X1 | OR instruction X2 ORI instruction

(Y4
AT

x
o

Timing chart Timing chart

LD instruction| X0 _ON ON LD instruction| X0 ON ON

OR instruction| x4 ON ON ORlinstruction| X2 ON ON ON

1
R .
Yo oN| [oN ON Y1 ON ON ON

Operation.error

There is no operation error.

1 1 6 6 SEQUENCE INSTRUCTIONS
6.1 Contact Instructions

Pulse operation start, pulse series connection, pulse parallel
connection

LDP, LDF, ANDP, ANDF, ORP, ORF

» LDP: Rising edge pulse operation start instruction

This becomes conductive (ON) only at the rising edge (OFF to ON) of the bit device specified by (s).

» LDF: Falling edge pulse operation start instruction

This becomes conductive (ON) only at the falling edge (ON to OFF) of the bit device specified by (s).

» ANDP: Rising edge pulse series connection instruction/ANDF: Falling edge pulse series connection instruction

This instruction ANDs the bit device specified by (s) with the operation result so far, and uses the result as the operation

result.
* ORP: Rising edge pulse parallel connection/ORF: Falling edge pulse parallel connection
This instruction ORs the bit device specified by (s) with the operation result so far, and uses the result as the operation result.

Ladder diagram Structured text
WS FNO—LoHEN
:=LDF(EN,s);
LDP ENO:=ANDP(EN.s);
“S FNO—ORM(EN),
= ,S);
LDF _|:|l ENO:=ORF(EN,s);

O |

|| 1| 4]
ANDP | | |_|T —

ANDF —F |_|l }

ORP _|:|(?-) H_
™

FBD/LD

C—1
— EN ENO —

h— S

Setting data

EDescriptions, ranges, and data types

Operand Remarks Range Data type Data type (label)
(s) Device used as a contact — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

6 SEQUENCE INSTRUCTIONS 11
6.1 Contact Instructions 7

BEApplicable devices

118

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, SM, |T,ST,C,D,W, |um\GO Lc |Lz |specification [y Tp (DX)
F, B, SB, S SD, SW, R

(s) O O O — O — — — — — o

Processing details
ELDP, LDF

» The LDP instruction is the rising edge pulse operation start instruction, and becomes conductive (ON) only at the rising
edge (OFF to ON) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive
(ON) only when the status of the specified bit changes to 0—1. When only the LDP instruction is programmed, operation is
the same as the conversion of the instruction under execution to pulse instruction (OP).

The following figure shows an example when a ladder using the LDP instruction is replaced with a ladder not using the LDP
instruction.

X0 X0
t—— mov | kKo [Do }—{I::> F—{ movp]| ko | Do }—{

» The LDF instruction is the falling edge pulse operation start instruction, and becomes conductive (ON) at the falling edge
(ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction becomes conductive only
when the status of the specified bit changes to 1—-0.

BANDP, ANDF

» The ANDP instruction is the rising edge pulse series connection instruction, and the ANDF instruction is the falling edge
pulse series connection. These instructions AND with the operation result so far, and uses the result as the operation result.
The table below shows the ON/OFF information used by these instructions.

Device specified by ANDP, ANDF ANDP status ANDF status
Bit device Bit specification of word device

OFF to ON 01 ON OFF

OFF 0 OFF OFF

ON 1 OFF OFF

ON to OFF 1-0 OFF ON

6 SEQUENCE INSTRUCTIONS
6.1 Contact Instructions

- ANDP instruction (series connection of rising edge pulse)

SM400 X2 _
|—| [{AL @—{

Timing chart
SM400

[0 nstuction] 2

ON during
one operation
cycle

"
i
=3

M1

- ANDF instruction (series connection of falling edge pulse)

M

Timing chart

[ANDF instructor] x2
ON during
one operation
M1 cycle

HORP, ORF

» The ORP instruction is the rising edge pulse parallel connection instruction, and the ORF instruction is the falling edge

g

Iy

pulse parallel connection instruction. These instructions OR with the operation result so far, and use the result as the
operation result. The table below shows the ON/OFF information used by these instructions.

OFF to ON 01 ON OFF
OFF 0 OFF OFF
ON 1 OFF OFF
ON to OFF 1-0 OFF ON

- Program example

» LDP and ORP instructions (initial logical operation of rising edge pulse, and parallel connection of rising edge pulse)

xo [LDPinstruction |

Al MO
X1J _

A

Timing chart

o TReNE
X1 I

|

ON during
one operation
wo _ I ode ||

In the example shown above, MO is ON during only one operation cycle when X0 or X1 turn from OFF to ON.

6 SEQUENCE INSTRUCTIONS 119
6.1 Contact Instructions

« LDF and OREF instructions (initial logical operation of falling edge pulse, and parallel connection of falling edge pulse)

xo [LDFinstructon]

Vi MO
X1J
vi—I [ORF instruction |
Timing chart
[OF nsiructon] x0 [
[GRE nsiucton] - [ov] [jo]|
ON during i i i

one operation
MO - . ; cycle

In the example shown above, MO is ON during only one operation cycle when X0 or X1 turn from ON to OFF.

Operation.error

There is no operation error.

1 20 6 SEQUENCE INSTRUCTIONS
6.1 Contact Instructions

Pulse NOT operation start, pulse NOT series connection, pulse
NOT parallel connection

LDPI, LDFI, ANDPI, ANDFI, ORPI, ORFI

» LDPI: Rising edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at OFF, ON and the falling edge (ON to OFF) of the bit device specified by (s).

» LDFI: Falling edge pulse NOT operation start instruction

This instruction becomes conductive (ON) at the rising edge (OFF to ON), OFF and ON of the bit device specified by (s).

» ANDPI: Rising edge pulse NOT series connection instruction/ANDFI: Falling edge pulse NOT series connection instruction

This instruction ANDs the bit devices specified by (s) with the operation result so far, and uses the result as the operation
result.

* ORPI: Rising edge pulse NOT parallel connection instruction/ORFI: Falling edge pulse NOT parallel connection instruction
This instruction ORs the bit devices specified by (s) with the operation result so far, and uses the result as the operation result.

Ladder diagram Structured text
e ENO:=LDPI(EN,s);
LDPI ENO:=LDFI(EN,s);
e ENO:=ANDPI(EN,s);
'__(s)_ ENO:=ANDFI(EN,s);
LDFI : ENO:=ORPI(EN,s);
vl ENO:=ORFI(EN,s);
C
| | |
ANDPI || |_/I/T/I/I_,

ANDFI — A+ |_j,H”

|
[
ORPI !_ ()]

ORFI s 1
| |
A1
FBD/LD
C.—1
— EN ENO —

— s

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Device used as a contact — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

6 SEQUENCE INSTRUCTIONS 1 21
6.1 Contact Instructions

BEApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M L SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $ (DX)
F,B, SB, S SD, SW, R

(s) O O O — O — — — — — o

Processing details
ELDPI, LDFI

» The LDPI instruction is the rising edge pulse NOT operation start instruction, and becomes conductive (ON) at OFF, ON
and the falling edge (ON to OFF) of the specified bit device. When word devices are specified by bits, this instruction
becomes conductive when the status of the specified bit is 0, 1, and when it changes 1—-0.

» The LDFI instruction is the falling edge pulse NOT operation start instruction, and becomes conductive (ON) at the rising
edge (OFF to ON), OFF and ON of the specified bit device. When word devices are specified by bits, this instruction
becomes conductive (ON) when the status of the specified bit is 0, 1, and when it changes 0—1. The table below shows the
ON/OFF information used by these instructions.

Device specified by LDPI, LDFI LDPI status LDFI status
Bit device Bit specification of word device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 1-0 ON OFF

EANDPI, ANDFI

» The ANDPI instruction is the rising edge pulse NOT series connection instruction, and the ANDFI instruction is the falling
edge pulse NOT series connection instruction. These instructions AND with the operation result so far, and use the result
as the operation result. The table below shows the ON/OFF information used by these instructions.

Device specified by ANDPI, ANDFI

ANDPI status

ANDFI status

Bit device Bit specification of word device

OFF to ON 01 OFF ON
OFF 0 ON ON
ON 1 ON ON
ON to OFF 150 ON OFF

HORPI, ORFI

» The ORPI instruction is the rising edge pulse NOT parallel connection instruction, and the ORFI instruction is the falling
edge pulse NOT parallel connection instruction. These instructions OR with the operation result so far, and use the result
as the operation result. The table below shows the ON/OFF information used by these instructions.

Device specified by ORPI, ORFI ORPI status ORFI status
Bit device Bit specification of word device

OFF to ON 01 OFF ON

OFF 0 ON ON

ON 1 ON ON

ON to OFF 1-0 ON OFF

Operation.error

There is no operation error.

122

6.1 Contact Instructions

6 SEQUENCE INSTRUCTIONS

6.2 Association Instruction

Ladder block series/parallel connection

ANB, ORB

These instructions AND or OR the A and B blocks, and use the result as the operation result.

Ladder diagram Structured text

A B Not supported.

ANB

ORB

A: A block
B: B block

FBD/LD

Not supported.

Processing. details
EANB

« This instruction ANDs the A and B blocks, and uses the result as the operation result.
» The symbol of this instruction is not NO contact symbol but a connection symbol.

[Ex]

ANB instruction (series connection of ladder block)

Parallel block

6 SEQUENCE INSTRUCTIONS

6.2 Association Instruction

123

HORB

* This instruction ORs the A and B blocks, and uses the result as the operation result.

* This instruction connects the ladder blocks of two contacts or more in parallel. For parallel connection of only one contact,
use the OR and ORI instructions; there is no need to use this instruction.

» The symbol of this instruction is not NO contact symbol but a connection symbol.

Point}’

» The number of parallel circuits that can be connected by the ORB instruction is not limited. (when the
recommended program is used)

» The ORB instruction can be used by one operation. However, note that the LD instruction and the LDI
instruction can repeatedly be used 8 times or less. (when the recommended program is not used)

Circuit program List program
X0 X1 Appropriate program Inappropriate program
! e @ 0 LD X0 0 LD X0
1 AND X1 1 AND X1
2 LD X2 2 LD X2
3 AND X3 3 AND X3
4 ORB <+ 4 LDl X4
5 LDI X4 5 AND X5
6 AND X5 6 ORB <+
7 ORB <« 7 ORB <+
- - 8 OUT Y6 8 OUT Y6

Serial circuit block

Operation.error

There is no operation error.

124 6 SEQUENCE INSTRUCTIONS
6.2 Association Instruction

Storing/reading/clearing the operation resulit

MPS, MRD, MPP

* MPS: This instruction stores the preceding operation result (ON/OFF) to memory.

* MRD, MPP: These instructions read the operation result stored by the MPS instruction, and executes operations from the
next step using that operation result.

Ladder diagram Structured text

ENO:=MPS(EN);
MPS

MRD
MPP

ENO:=MRD(EN);
FBD/LD

ENO:=MPP(EN);

Co—

— EN ENO —

Processing. details
EMPS

« This instruction stores the preceding operation result (ON/OFF) to memory.
+ This instruction can be used up to 16 times consecutively. When MPP instruction is used in between, the number of uses of
MPS instruction is decremented by 1.
EMRD
« This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next
step using that operation result.
EMPP

« This instruction reads the operation result stored by the MPS instruction to memory, and executes operations from the next
step using that operation result.

* This instruction clears the operation result stored by the MPS instruction from memory.
» The number of uses of MPS instruction is decremented by 1.

[Ex]

MPS

X4 X5
it i @ Use MPS instruction to store the intermediate result of operation, and then drive the output Y2.

X6
7%—H—@— Use MRD instruction to read the stored data, and then drive the output Y3.
MRD

7 MRD instruction can be programmed as many times as necessary.

MRD X7 () In the final output circuit, use MPP instruction instead of MRD instruction.
/Z MPP instruction reads the stored data described above, and then resets it.
MPP

6 SEQUENCE INSTRUCTIONS 1 2
6.2 Association Instruction 5

Program example

» Continuous use of MPS instruction - once
Only one stack is used in this example.

MPS
X0 X1 g X2
—1 I 1 @—
MPP
MPS

|
I,
P

MPP
MPS
X6 % X7
X10
Pl O
MRD X1
7" On
MRD X12
—|I Oﬁ

AN

MPP

» Continuous use of MPS instruction - once (both ANB and ORB used)

MPS
X0 é X1
—| 1 @7
X2
—
X3 X4
7—1: It @—
MRD X5 X6
— J

X7

= O
MPP X10
X11

1 26 6 SEQUENCE INSTRUCTIONS
6.2 Association Instruction

» Continuous use of MPS instruction - twice
X0 X1 X2
—1 /Z 1t ; It @
MPS | MPS X3 (>
MPPz
X4 X5
7 On
MPS X6

MPP C

* Continuous use of MPS instruction - four times

MPP

MPS instruction is used three times in programming.

MPS MPS MPS MPS
X0 é X1 £ X2 \é X3 i X4
— i} i} f} :

MPP

iy

BHE®C

MPP

MPP

4

MPP

By changing the circuit as follows, the same contents can be programmed easily without MPS instruction.

[
HEHOE

Operation. error

There is no operation error.

6 SEQUENCE INSTRUCTIONS 1 2
6.2 Association Instruction 7

Inverting the operation result

INV

This instruction inverts the operation result up to this instruction.

Ladder diagram Structured text
| —_— ENO:=INV(EN);
| : |
T
FBD/LD
C.— 1
— EN ENO (—

Processing. details

» This instruction inverts the operation result up to this instruction.

Operation result up to the INV instruction Operation result after execution of INV instruction
OFF ON
ON OFF

Operation.error

There is no operation error.

Point >

« This instruction operates using the operation result so far. Hence, use it at the same position as the AND

instruction. This instruction cannot be used at positions where the LD and OR instructions are programmed.

« If a ladder block is used, the operation result is inverted within the range of the ladder block. When

operating a ladder with this instruction and the ANB instruction, pay attention to the inversion range.

i

Y10

'). Inversion range

For details ANB instruction, refer to the following.
= Page 123 ANB, ORB

[END

6 SEQUENCE INSTRUCTIONS
128

6.2 Association Instruction

Converting the operation result into a pulse

MEP, MEF

* MEP: This instruction turns ON at the rising edge of the operation result up to the MEP instruction and turns OFF in other
instances.

« MEF: This instruction turns ON at the falling edge of the operation result up to the MEF instruction and turns OFF in other
instances.

Ladder diagram Structured text
—_—— ENO:=MEP(EN);

MEP || i] ENO:=MEF(EN);
!

ver —| H———

FBD/LD

C— 1
— EN ENO (—

Processing. details
EMEP

« This instruction turns ON (conductive state) at the rising edge (OFF to ON) of the operation result up to this instruction. This

instruction turns OFF (non-conductive state) in instances other than the rising edge of the operation result up to this
instruction.

» Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.
EMEF

* This instruction turns ON (conductive state) at the falling edge (ON to OFF) of the operation result up to this instruction.

This instruction turns OFF (non-conductive state) in instances other than the falling edge of the operation result up to this
instruction.

» Use of this instruction makes conversion to pulse easier when multiple contacts are connected in series.

Operation.error

There is no operation error.

f%m&g

« If an indexed contact is converted to pulse by the subroutine program and the FOR to NEXT instructions,
etc., these instructions may not function properly.

» These instructions operate using the operation result so far. Hence, use them at the same position as the
AND instruction. These instructions cannot be used at positions where the LD and OR instructions are
programmed.

6 SEQUENCE INSTRUCTIONS 1 2
6.2 Association Instruction 9

6.3

Output Instructions

Out (excluding the timer, counter and annunciator)

ouT

This instruction outputs the operation result up to this instruction to the specified device.

Ladder diagram

Structured text

ENO:=OUT(EN,d);

()]
N
FBD/LD
C_— 1
— EN ENO (—
d —
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) Number of the device that turns ON/OFF — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uDO\eO |z Lc |Lz | specification [y g $ e
F,B, SB, S SD, SW, R
(d) O'1 O*Z O’S — "4 — — — — — @)

*1 When using F, refer to =5 Page 139 OUT F.

*2 When using T, ST, refer to [~ Page 132 OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST.
When using C, refer to == Page 135 OUT C.

*3 Only the FX5 intelligent function module can be specified.

*4 When using LC, refer to (==~ Page 137 OUT LC.

Processing details

+ This instruction outputs the operation result up to this instruction to the specified device.

Condition Operation result Coillspecified bit
When bit device is used OFF OFF

ON ON
When bit of word device is specified OFF 0

ON 1

130

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

F

X1

Drive contact of
OUT instruction
X0
0 1 YO
A

M100

ot

Timing chart

v _ [ONEE| e

[oWTmsweion] vo | ov | Jov]|
SIS I

F

There is no operation error.

6 SEQUENCE INSTRUCTIONS 1 31
6.3 Output Instructions

Timer

OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST, OUTHS ST

The timer counts up to the set value when the operation result up to the OUT instruction is ON and the coil of the timer/

retentive timer specified by (d) turns ON. When the timer times up, NO contact becomes conductive and NC contact becomes

non conductive.

Ladder diagram

Structured text

—C =] @] vaue }_{

ENO:=OUT_T(EN,Coil,Value);
ENO:=OUTH(EN,Coil,Value);
ENO:=OUTHS(EN,Coil,Value);

FBD/LD

C—
— EN ENO
— Cail
—1 Value

("OUT_T", "OUTH", "OUTHS" enters [.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d)*1 Timer Number — Timer/retentive timer ANY™3
(Set value)? | Timer set value 0to 32767 16-bit unsigned ANY16™
binary*4
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 In the case of the ST language and the FBD/LD language, d displays as Coil.
*2 In the case of the ST language and the FBD/LD language, Set value displays as Value.
*3 Only timer type/retentive timer type label can be used.
*4 In the case of the OUT_T instruction of the ST language and the FBD/LD language , data type is ANY_INT.
Digit specified bit type label cannot be used.
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,w, |uOweO |z Lc |Lz | seecification [y [$
F, B, SB, S SD, SW, R
(d) - o™ - - - - - - - - -
(Set value) — 0" O — — — — o — — —

*1 Only T and ST can be used.
*2 T, ST, and C cannot be used.
*3 Only decimal constant (K) can be used.

132

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Processing. details

» These instructions count up to the set value when the operation result up to the OUT instruction is ON and the coil of the
timer/retentive timer specified by (d) turns ON. When the timer reaches the end of its count (current value > set value), NO
contact becomes conductive and NC contact becomes non-conductive.

» Operation is as follows when the operation result up to the OUT instruction changes from ON to OFF.

Timer type Timer coil Current timer Before time-out After time-out
value NO contact NC contact NO contact NC contact
Timer off 0 Non-Conductive Conductive state Non-Conductive Conductive state
state state
Retentive timer off Holds current value | Non-Conductive Conductive state Conductive state Non-Conductive
state state

« After the timer times up, clear the current value of the retentive timer and turn the contact off by the RST instruction.

» The following processing is executed when the OUT instruction is executed:
* The coil in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF

* The contact in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions turns ON/OFF
* The current value in the OUT T, OUTH T, OUTHS T, OUT ST, OUTH ST and OUTHS ST instructions changes

* When the OUT T instruction is skipped using the CJ instruction, etc. while the OUT T and OUT ST instructions are ON,

these instructions do not update the current value or turn ON/OFF the contacts.

* When the same OUT T and OUT ST instructions are executed in the same scan twice or more, these instructions update

the current value for the same number of times of execution.

Point/®

Values used for timers can be set in the range 1 to 32767. Actual timer constants are as follows since the
OUT, OUTH, and OUTHS instructions operate as 100 ms, 10 ms, and 1 ms timers, respectively.

» OUT instruction: 0.1 to 3276.7 seconds

* OUTH instruction: 0.01 to 327.67 seconds

* OUTHS instruction: 0.001 to 32.767 seconds
For the counting method, refer to the following.
LTIMELSEC iQ-F FX5 User's Manual (Application)

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

133

Program example

The set value is required after OUT instruction for the coil of a timer or counter.
The set value can be specified directly by a decimal number (K) or indirectly using a data register (D) or file register (R).
« Direct specification

X0 The set value of a timer or counter can be
" out 0 K30 M specified directly by a decimal number (K).
X1
By ouT T K30 |
ouT Cco K50 |
* Indirect specification
X0 The set value of a timer or counter can be set by
t out T10 D10 a data register (D) or file register (R). At this
time, the current value of the data register (D) or
SM400 file register (R) is regarded as the set value of
{f MOV K5 D20 .
the timer or counter.
SM400 . .
I MOV K30 R15 It |s. necessary t.o wrltg the set value to a data
register (D) or file register (R) used for the set
X1 value by MOV instruction, DSW instruction or
I} ouT T11 R15 | indicator before driving the timer or counter.
ouT C10 D20
* Indexing

Devices used in OUT instruction can be indexed with index registers (Z and LZ).
(State relays (S), long counter (LC), and "DO.b" cannot be indexed.)

24 words in total as the number of points of Z and LZ are available for indexing.

oz0 When a used device is an input (X) or output (Y), the value of an index register (Z and
LZ) is converted into an octal number, and then added.

Example: When the value of Z0 is 20, Y24 turns ON or OFF.

« Bit specification of word devices
A bit in data register (D) can be specified as a device used in OUT instruction.

When specifying a bit in data register, input "." after a data register (D) number, and then
| X0 input a bit number (0 to F) consecutively.
DO0.3 Only 16-bit data registers are available.
Specify a bit number as "0, 1, 2, ... 9, A, B, ... F" from the least significant bit.
Example: In the example shown on the left, the bit 3 of DO turns ON or OFF when X0
turns ON or OFF.

Operation.error

Error code Description
(SD0/SD8067)
3405H A negative value is specified for the timer value.

1 34 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Counter

ouTC

This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT
instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and

NC contact becomes non-conductive.

Ladder diagram

Structured text

—C =] @] vaue }_{

Value: Set value

ENO:=OUT_C(EN,Coil,Value);

FBD/LD
C—
— EN ENO —
— Cail
—1 Value

("OUT_C" enters O.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d)*1 Counter Number — Counter ANY'3
(Set value)'2 Counter set value 0 to 32767 16-bit unsigned binary ANY_INT*4
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 In the case of the ST language and the FBD/LD language, d displays as Coil.
*2 In the case of the ST language and the FBD/LD language, Set value displays as Value.
*3 Only counter type label can be used.
*4 Digit specified bit type label cannot be used.
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz | seecification [y [$
F, B, SB, S SD, SW, R
(d) - o’ - i i - = = |-
(Set value) — 072 O — — — o — — —

*1 Only C can be used.
*2 T, ST, and C cannot be used.
*3 Only decimal constant (K) can be used.

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

135

Processing. details

« This instruction increments the current value of the counter specified by (d) by 1 when the operation result up to OUT
instruction changes from OFF to ON, and when the counter reaches the end of its count (current value > set value), NO
contact becomes conductive and NC contact becomes non-conductive.

» The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

« After a count up, the count value and contact status do not change until the RST instruction is executed.

* When the set value is 0, the same processing as for set value 1 is performed.

Operation.error

Error code Description
(SD0/SD8067)
3405H A negative value is specified for the set value.

136

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Long counter

OUTLC

This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the OUT
instruction changes from OFF to ON, and when the counter reaches the end of its count, NO contact becomes conductive and

NC contact becomes non-conductive.

Ladder diagram

Structured text

—C =] @] vaue }_{

Value: Set value

ENO:=OUT_C(EN,Coil,Value);

FBD/LD
C—
— EN ENO —
— Cail
—1 Value

("OUT_C" enters O.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d)*1 Long counter number — Long counter ANY'3
(Set value)'2 Long counter set value 0 to 4294967295 32-bit unsigned binary ANY_INT*4
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 In the case of the ST language and the FBD/LD language, d displays as Coil.
*2 In the case of the ST language and the FBD/LD language, Set value displays as Value.
*3 Only long counter type label can be used.
*4 Digit specified bit type label cannot be used.
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz | seecification [y [$
F, B, SB, S SD, SW, R
(d) — — — —) — — — — —
(Set value) — o O — — — 0" — — —

*1 T, ST, and C cannot be used.
*2 Only decimal constant (K) can be used.

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

137

Processing. details

« This instruction increments the current value of the long counter specified by (d) by 1 when the operation result up to the
OUT instruction changes from OFF to ON, and when the counter reaches the end of its count (current value > set value),
NO contact becomes conductive and NC contact becomes non-conductive.

» The counter does not count while the operation result remains on. (Count input does not need to be converted to pulses.)

« After a count up, the count value and contact status do not change until the RST or ZRST instruction is executed.

* When the set value is 0, the same processing as for set value 1 is performed.

» When signed (-2147483648 to + 2147483647) or high speed counter is assigned to the LC, the UDCNTF instruction is
used. For the UDCNTF instruction, refer to [~ Page 774 UDCNTF.

Operation.error

Error code Description
(SD0/SD8067)
2821H When the high speed counter is assigned to the specification long counter.

138

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Annunciator

OUTF

This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

Ladder diagram Structured text
| ENO:=OUT(EN,d);
@
FBD/LD
C— 1
— EN ENO (—

d —

("OUT" enters O.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Annunciator number that turns ON — Bit —"1 (ANY_BOOL)
EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 Regardless of the program language to be used, the data type is specified by a device. Do not specify a label.

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $
F, B, SB, S SD, SW, R

(A o - — - = = |- - = = |-

*1 Only F can be used.

Processing details

« This instruction outputs the operation result up to the OUT F instruction to the specified annunciator.

* Operation is as follows when annunciator (F) is turned ON by the OUT F instruction.
* The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).

* The content of SD63 is incremented by 1.
» When the content of SD63 is 16 (16 annunciators are already on), the annunciator number that turns ON is not stored in
SD64 to SD79 even if a new annunciator turns ON.

+ Operation is as follows when annunciator (F) is turned OFF by the OUT F instruction:
* The coil turns OFF, but the contents of SD64 to SD79 do not change.
* To delete an annunciator that has turned OFF by the OUT F instruction from SD64 to SD79, use the RST F instruction.

HRelated devices

Device Name Description

SD62 Annunciator (F) Detection No. This register stores the earliest detected annunciator (F) No.
SD63 Annunciator (F) Detection Number This register stores the number of annunciator (F) detections.
SD64 to SD79 Annunciator (F) Detection No. table This register stores the annunciator (F) detection No.

6 SEQUENCE INSTRUCTIONS 1
6.3 Output Instructions 39

Operation.error

There is no operation error.

140 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Setting devices (excluding annunciator)

SET

The status of the device specified by (d) changes as follows when the execution command turns ON.

+ Bit device: Turns the coils and contacts ON.
« Bit specification of word device: Set the specified bit to 1.

Structured text
ENO:=SET(EN,d);

Ladder diagram

I)
FBD/LD

C—1
—{ EN ENO —

d —

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Bit device number/ Bit specification of word device to be set (turns ON) | — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M,L,SM, |T,ST,C,D,W, |umeO Lc |[Lz |specification [y TE $ (bY)
F,B, SB, S SD, SW, R

(d) o™ o o - — — — - - O

*1 When using F, refer to (==~ Page 145.
*2 T, ST, and C cannot be used.
*3 Only the FX5 intelligent function module can be used.

Processing. details

» The status of the specified device changes as follows when the execution command turns ON.

Device Device status

Bit devices Turns coils and contacts ON.

Bit specification of word device Sets the specified bit to 1.

» A device that is turned ON is held on even if the execution command turns OFF. Devices that are turned ON by the SET
instruction can be turned OFF by the RST instruction.

ON

1l
L

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

X5 OFF

X7

F———— RrsT | Y10

X7 OFF

)

* When the execution command is OFF, the device status does not change.

141

Precautions

When the SET and RST instructions are executed on the same output relay (Y), the result of the instruction nearer the END
instruction (end of program) is output.

Operation.error

There is no operation error.

142 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Resetting devices (excluding annunciator)

RST

The status of the device specified by (d) changes as follows when the RST input turns ON.

« Bit devices: Turns the coils and contacts OFF.

* Timers, counters: Sets the current value to 0, and turns contacts OFF.

« Bit specification of word device: Sets the specified bit to 0.

» Word devices, module access devices, index registers: Sets content to 0.

Ladder diagram

Structured text

ENO:=RST(EN,d);
———
FBD/LD
C._— 1
—{ EN ENO |—
d —
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(d) Bit device number/ bit specification of word device to be Bit/word/double word | ANY_ELEMENTARY"'
reset, or word device number to be reset
EN Execution condition Bit BOOL
ENO Execution result Bit BOOL
*1 Digit specified bit type label cannot be used.
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uDd\GcO Lc |Lz | specification [y g $ e
F, B, SB, S SD, SW, R
(d) o @) o7 @) ¢} @) — — — @)

*1 When using F, refer to (=5 Page 147.
Digit specified bit device cannot be used.

*2 Only the FX5 intelligent function module can use digit specification of bit devices.

Processing. details

» The status of the specified device changes as follows when the execution command turns ON.

Device

Device status

Bit devices

Turns coils and contacts OFF.

Timers, counters

Sets the current value to 0, and turns contacts OFF.

Bit specification of word device

Set the specified bit to 0.

Word devices, module access device, index registers

Sets content to 0.

* When the execution command is OFF, the device status does not change.

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

143

» Function when a word device is specified by the RST instruction is the same as the following circuit.

X10 X10
F———— RsT | Dso |::> F— wmov | ko | Dso

Precautions

When the RST instruction for a timer or counter is executed by a program containing a jump or by a subroutine program or
interrupt program, the timer or counter is held in a reset state, and the timer or counter may not work normally.

Operation.error

There is no operation error.

144 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Setting annunciator

This instruction turns ON the specified annunciator.

ENO:=SET(EN,d);

Co—

("SET" enters O.)

EDescriptions, ranges, and data types

Annunciator number (F number) that is set - (ANY_BOOL)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

*1 Regardless of the program language to be used, the data type is specified by a device. Do not specify a label.

HMApplicable devices

*1 Only F can be used.

6 SEQUENCE INSTRUCTIONS 14
6.3 Output Instructions 5

Processing. details

* This instruction turns ON the annunciator specified by (d) when the execution command turns ON.

+ Operation is as follows when annunciator (F) is turned ON.
* The annunciator number (F number) that turns ON is stored in special registers (SD64 to SD79).
* The content of SD63 is incremented by 1.

* When the content of SD63 is 16 (16 annunciators are already ON), the annunciator number that turns ON is not stored in
SD64 to SD79 even if a new annunciator turns ON.

SD63 16 SD63 16

SD64 233 SD64 233

SD65 90 1) SD65 90

SD66 700 |:> SD66 700 ~ (2)
e o~

sSD78 145 sSD78 145

SD79 1027 SD79 1027

(1): F30 is turned ON.
(2): Does not change.

HRelated devices

Device Name Description

SD62 Annunciator (F) Detection No. This register stores the earliest detected annunciator (F) No.
SD63 Annunciator (F) Detection Number This register stores the number of annunciator (F) detections.
SD64 to SD79 Annunciator (F) Detection No. table This register stores the annunciator (F) detection No.

Operation.error

There is no operation error.

146 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Resetting annunciator

This instruction turns OFF the specified annunciator.

ENO:=RST(EN,d);

Co—

— EN ENO —

d (—

("RST" enters O.)

EDescriptions, ranges, and data types

Annunciator number (F number) that is reset ANY_ELEMENTARY
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

*1 Only F can be used.

6 SEQUENCE INSTRUCTIONS 147
6.3 Output Instructions

Processing. details

« This instruction turns OFF the annunciator specified by (d) when the execution command turns ON.

» An annunciator number (F number) that turns OFF is deleted from special registers (SD64 to SD79) and the content of
SDG63 is decremented by 1.

* When the content of SD63 is 16, annunciator numbers are deleted from SD64 to SD79 by the RST instruction. Also, if an
annunciator not registered in SD64 to SD79 turns ON, its number is registered. When there are two or more unregistered
numbers, this instruction adds the numbers starting from the smallest annunciator number. SD63 is not decremented by 1
when the numbers not registered in SD64 to SD79 are turned OFF.

SD63 16 SD63 16 or 15 «— (2
SD64 233 SD64 233
SD65 90 (1) SD65 700 «— (3)
SD66 700 |::> SD66 28 — (4)
SD67 28 —

— SD77 145
sD78 145 SD78 1027
SD79 1027 SD79 — (5)

(1): FOO is reset.

(2): When F number that is not registered in SD79 is stored, this remains as 16. When SD79 is 0, the number is decremented by -1 to become 15.
(3): The F number in SD66 is shifted to this area.

(4): F number of SD67 is stored.

(5): Not registered F number or 0 is stored.

HRelated devices

Device Name Description

SD62 Annunciator (F) Detection No. This register stores the earliest detected annunciator (F) No.
SD63 Annunciator (F) Detection Number This register stores the number of annunciator (F) detections.
SD64 to SD79 Annunciator (F) Detection No. table This register stores the annunciator (F) detection No.

Operation.error

There is no operation error.

148 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Setting annunciator (with check time)

ANS

This instruction sets the annunciator (F device).

Ladder diagram

Structured text

—C—d[e|m]w@ }—{

ENO:=ANS(EN,s,n,d);

FBD/LD
C._— 1
— EN ENO —
— s d —
Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Timer number for evaluation time — 16-bit signed binary ANY 16
(n) Evaluation time data 1to 32767 16-bit unsigned binary | ANY16_U
(d) Annunciator device to be set — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz | seecification [y [p $
F,B, SB, S SD, SW, R
(s) — o1 — — — — o — — — —
(n) @) O @) O — — @) @) — — —
(@) o - - - |- |- |- - |- = |-

*1 Only T can be used.
*2 Only F can be used.

Processing details

* This instruction sets (d) when the command input remains ON continuously for the evaluation time [(n)x100 ms, (s)] or
more. This instruction resets the current value of (s) evaluation timer and does not set (d) when the command time is less
than the evaluation time [(n)x100 ms]. Also, this instruction resets the evaluation timer when the command input turns OFF.

’—‘m'—I

as [e | o | @ |

(1): Less than

(2): Equivalent to or longer than the evaluation time ((n) x 100 ms or more)

the evaluation time ((n) x less than 100 ms)

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

149

HRelated devices

Device Name Description

SM8049 ON status annunciator smallest number When SM8049 is turned ON, SM8048 and SD8049 are enabled.
enabled

SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.

SD8049 ON status annunciator smallest number The smallest number of the F devices that are operating is stored.

Program example

+ Displaying a fault number using an annunciator

When the program for external fault diagnosis shown below is created and the content of SD8049 (smallest state relay
number in the ON status) is monitored, the smallest state relay number in the ON status from F90 to F92 is displayed.

If two or more faults are present at the same time, the next smallest fault number is displayed after the fault of the smallest
fault number is cleared.

SM400

il @— When SM8049 turns ON, monitoring becomes valid.
RUN monitor

Y5 X0 If the forward end detection input X0 does not turn

————3#— ANS TO K10 [F9o ON within 1 second after the forward movement output

Forward Forward Y5 is driven, F90 turns ON.
movement end

X1 X2 If both the upper limit input X1 and the lower limit

i # ANS ™ K20 | F91 | input X2 are OFF for 2 seconds or more due to a dog
Upper Lower error, F91 turns ON.
limit limit

X3 X4 The switch X4 is set to ON in one operation cycle of

i 4 ANS T2 | K100 1 F92 111 the machine. If the switch X4 is not set to ON while

Continuous - Cycle the continuous operation mode input X3 is ON in the

X5 machine whose tact time is less than 10 seconds, F92
—— | @ turns ON.
Forward
movement
SHoee @ When one among F90 to F92 turns ON, SM8048 turns
Annunciator ON and the fault display output Y6 turns ON.
ON Fault display
X.7 A state relay which was set to ON by the external fault
Re;et ANRP 14 diagnosis program is set to OFF by the reset button

X7. Every time X7 is set to ON, an operation state
relay in the ON status with the smallest device number
is reset (set to OFF) in turn.

Operation.error

There is no operation error.

1 0 6 SEQUENCE INSTRUCTIONS
5 6.3 Output Instructions

Resetting annunciator (smallest number reset)

ANR(P)

This instruction resets the lowest number annunciator (F device) in the ON status.

Ladder diagram

Structured text

ENO:=ANR(EN);

— ENO:=ANRP(EN);
C.—1
FBD/LD
C.—1
—1 EN ENO |—

Processing details

» Annunciator (F device) that is operating (in ON status) is reset when the command input turns ON.
This instruction resets the annunciator with the smallest number when multiple annunciators are ON. If the command input is
turned ON again, this instruction resets the annunciator with the next smallest number among annunciators (F devices) that

are operating.

ANR

-

HRelated devices

Device Name Description

SM8049 On status annunciator smallest number When SM8049 is turned ON, SM8048 and SD8049 are enabled.
enabled

SM8048 Annunciator operation When one of the F devices is operating, SM8048 turns ON.

SD8049 On status annunciator smallest number The smallest number of the F devices that are operating is stored.

Precautions

* When ANR instruction is used, annunciators in the ON status are reset in turn in each operation cycle.
» This is executed for only 1 operation cycle (only once) when the ANRP instruction is used.

Program example

For a program example, refer to [~ Page 149 Setting annunciator (with check time).

Operation.error

There is no error.

6 SEQUENCE INSTRUCTIONS 1 1
6.3 Output Instructions 5

Rising edge output

This instruction turns ON the device specified by (d) for one scan when the PLS command turns from OFF to ON, and turns
OFF in other cases.

ENO:=PLS(EN,d);

[)
C— 1
— EN ENO [—

EDescriptions, ranges, and data types

(d) Device to be converted to pulse — Bit ANY_BOOL
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

*1 T, ST, and C cannot be used.
*2 Only the FX5 intelligent function module can be used.

152 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Processing. details

* This instruction turns ON the specified device for one scan when the PLS command turns from OFF to ON, and turns OFF
in other cases. When there is one PLS instruction programmed for the device specified by (d) during a scan, the specified
device turns ON for one scan.

ON

X5 OFF —T u

X5
F——{ Ps | o T‘ﬁ\
MO OFF T_\—
Sc Sc
Sc: 1 scan

« If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLS instruction, the PLS instruction
will not be executed even if the switch is set to RUN again.

X0
|—{ PLS ‘ MO
LDX0O . (3)
END 0 l;PLS M,(/END l l: PLS MO l END

ON ‘ M)

X0 OFF | ‘ ON ’ ‘
MO OFF | | "

| L |

1) 1 scan of PLS MO
2) CPU module operation stop time
3) Set the RUN/STOP/RESET switch on the CPU module to RUN—-STOP.

(
(
(
(4) Set the RUN/STOP/RESET switch on the CPU module to STOP—RUN.

Precautions

* When write during RUN is completed for a circuit including a rising edge instruction (LDP/ANDP/ORP instruction), the
instruction is not executed regardless of the ON/OFF status of the target device of the rising edge instruction. Also, in the
case of a rising edge instruction (PLS instruction), the instruction is not executed regardless of the ON/OFF status of the
device that is set as the operation condition. The instruction is executed when the target device and the device in the
operation conditions is set from OFF to ON again.

* Note that the device specified by (d) sometimes turns ON for one scan or more when the PLS instruction is made to jump
by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Program. example

Timing chart

X0 X0 ON
——_—_
ON during one
PLS instruction MO > |f operation cycle

In the figure above, MO is ON during only one operation cycle when X0 changes from OFF to ON.

Operation.error

There is no operation error.

6 SEQUENCE INSTRUCTIONS 1
6.3 Output Instructions 53

Falling edge output

PLF

This instruction turns ON the device specified by (d) for one scan when the PLF command turns from ON to OFF, and turns
OFF in other cases.

Ladder diagram Structured text

ENO:=PLF(EN,d);

———
FBD/LD

[
— EN ENO —

d —

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Device to be converted to pulse — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M, L, SM, |T,ST,C,D,wW, |uOeO |z Lc |Lz |specification [y Tp $ (bY)
F, B, SB, S SD, SW, R

(d) o o1 02 — — — — — - — o

*1 T, ST, and C cannot be used.
*2 Only the FX5 intelligent function module can be used.

Processing. details

* This instruction turns ON the specified device for one scan when the PLF command turns OFF from ON, and turns OFF in
other cases. When there is one PLF instruction programmed for the device specified by (d) during a scan, the specified
device turns ON for one scan.

ON

X5 OFF N
At @
Sl e

Sc Sc

Sc: 1 scan

« If the RUN/STOP/RESET switch is changed from RUN to STOP after execution of the PLF instruction, the PLF instruction
will not be executed even if the switch is set to RUN again.

1 4 6 SEQUENCE INSTRUCTIONS
5 6.3 Output Instructions

Precautions

» When write during RUN is completed for a circuit including a falling edge instruction (LDF/ANDF/OREF instruction), the
instruction is not executed regardless of the ON/OFF status of the target device of the falling edge instruction. Also, in the
case of a falling edge instruction (PLF instruction), the instruction is not executed regardless of the ON/OFF status of the
device that is set as the operation condition. The instruction is executed when the target device and the device in the
operation conditions is set from ON to OFF again.

* Note that the device specified by (d) sometimes turns ON for one scan or more when the PLF instruction is made to jump
by the CJ instruction or the executed subroutine program was not called by the CALL(P) instruction.

Operation.error

There is no operation error.

6 SEQUENCE INSTRUCTIONS 1
6.3 Output Instructions 55

Inverting the bit device output

This instruction reverses the output status of the device specified by (d) when the execution command changes from OFF to

ENO:=FF(EN,d);

EDescriptions, ranges, and data types

(d) Device number to be reversed Bit ANY_BOOL
EN Execution condition Bit BOOL
ENO Execution result Bit BOOL

HMApplicable devices

*1 T, ST, and C cannot be used.

*2 Only the FX5 intelligent function module can be used.

Processing detail

+ This instruction reverses the state of the device specified by (d) when the execution command changes from OFF to ON.

Bit devices OFF ON
ON OFF
Bit specification of word device 0 1
1 0

- Operation error

There is no operation error.

156 6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

Inverting the bit device output

ALT(P)

These instructions reverse (ON «> OFF) bit devices when input turns ON.

Ladder diagram

Structured text

ENO:=ALT(EN,d);
ENO:=ALTP(EN,d);

(I)
FBD/LD

C._— 1
— en ENO [—

d —

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Bit device number whose output is alternated — Bit

EN Execution condition — Bit

ENO Execution result — Bit

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X, Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z Lc |[Lz |specification [y TE
F, B, SB, S SD, SW, R

(d) o} o 02 — — — — — — —

*1 T, ST, and C cannot be used.
*2 Only the FX5 intelligent function module can be used.

Processing details

BAlternating output (1-step)

The bit device specified by (d) is reversed ON «> OFF each time the command input changes from OFF to ON.

X1 X1 ON ON ON
(d) ON N

ALTP (d)

EDivision output (according to alternating output (2-step))
The ALTP instruction can be used in multiple combinations to perform division output.

)

X1
—AF————— ALTP MO
v (1) (d)

MO
—AF———— ALTP M1

M1 (d)

(1): Specify the same device

g

X1 _’|‘ON| TNoN | \ON | T\oN
MO (d) |;4 ON |; ;Z ON ;

6 SEQUENCE INSTRUCTIONS
6.3 Output Instructions

157

Precautions

When the CPU module is programmed with the ALT instruction, reversal operation is performed at every operation cycle. To
perform reversal operation by command ON/OFF, either use the ALTP instruction (pulse execution type) or set a command
contact as LDP etc. (pulse execution type).

Operation.error

There is no operation error.

1 8 6 SEQUENCE INSTRUCTIONS
5 6.3 Output Instructions

6.4 Shift Instructions

Shifting bit devices

SFT(P)

* In case of bit device:

These instructions shift the ON/OFF status of the device before the device specified by (d) to the device specified by (d).

» When bit of word device is specified:

These instructions shift the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d).

Ladder diagram

Structured text

ENO:=SFT(EN,d);
ENO:=SFTP(EN,d);

FBD/LD

C—1
— EN ENO —

d —

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(d) Head device number to be shifted — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uOeO |z Lc |Lz | specification [y g $ e
F, B, SB, S SD, SW, R

(d) o o — — - — — — — — ¢)

*1 T, ST, and C cannot be used.

6 SEQUENCE INSTRUCTIONS 1
6.4 Shift Instructions 59

Processing. details

Hin case of bit device
« This instruction shifts the ON/OFF status of the device before the device specified by (d) to the device specified by (d). The
device before the device specified by (d) turns OFF.

[Ex]

When M11 is specified by the SFTP instruction and the SFTP instruction is executed, the ON/OFF status of M10 is shifted to
M11 and M10 is turned OFF.

» Turn ON the first device to be shifted by the SET instruction.

* When the SFT(P) instruction is used consecutively, create the program to start from the device with the largest number.

) 9 ,

Mo M15 M14 M13 M12 M11 M10 M9 M8
—F——{ sfp | M4 | m[ofofoJofof[1]1]0]

////x—o
@[oJofofoft1][of[1]0]

——{ sFrre | wmis Y A =)
@[ofofof1]ojof1]o]
——{ sk [w2z H o@[ofolo[1 o1 [1]0]

x5 & x x x—0
®loJo[1]of1[of[1]0]

1 sFrp | M1 H Y A R =)
@[o[1]o]1]o]o]1]o]

X2 Y A
— 1 ser | mo H ®[ofo[1]ofo]o]1]0]

(1): X2 ON

(2): After the 1st shift input
(3): After the 2nd shift input
(4): X2 ON

(5): After the 3rd shift input
(6): After the 4th shift input
(7): After the 5th shift input
(8): First device of shift

(9): Shift range

EWhen bit of word device is specified:
+ This instruction shifts the 1/0 status of the bit before the bit specified by (d) to the bit specified by (d). The bit before the bit
specified by (d) becomes 0.

When DO0.5 (bit 5 (b5) of DO0) is specified by the SFT(P) instruction and the SFT(P) instruction is executed, the 1/0 status of b4
of the DO is shifted to b5 and b4 is set to 0.

b15 b5bd - bO
) [o[1]ofo[1]o[o[o]1]1]o]1]o]o0[0[1]

DO rO
@ lo]1]o]o]1]o]0]o[1]1]1]0]0]0]0]1]

(1): Before shift execution
(2): After shift execution

Operation.error

Error code Description
(SD0/SD8067)
2820H The device specified by (d) exceeds the corresponding device range.

1 60 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting 16-bit data to the right by n bit(s)

SFR(P)

These instructions shift the 16-bit data in the device specified by (d) to the right by (n) bit(s).

Ladder diagram Structured text
ENO:=SFR(EN,n,d);

| I:.:]') | =) }_{ ENO:=SFRP(EN,n,d);

FBD/LD
C._— 1
— en ENO [—

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number where the shift-target data is stored | — 16-bit signed binary ANY 16
(n) Number of shifts Oto 15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $
F,B, SB, S SD, SW, R

(d) O O O O - — O — - — —

(n) O O O O — — O O — — —

Processing. details

+ This instruction shifts the 16-bit data in the device specified by (d) to the right by (n) bit(s) from the most significant bit. The
(n) bit(s) from the most significant bit is/are filled with O(s).
When (n)=6

b15 b14 b13 b12 b11b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
@ 110170101170l 101,0[1017170

\

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

@lojortojofoto ;1 117011170, 1,1

(SM700, SM8022)

0

6 SEQUENCE INSTRUCTIONS 1 1
6.4 Shift Instructions 6

* When (d) is a bit device, bits are shifted to the right within the device range specified by digit specification.
When (n)=4

Y23 - Y20Y17 -+ Y14Y13 - Y10

[170,1/0[1,0,1,0]/1,01]0]

T

Y23 Y20'Y17 Y14Y13 - (SM700, SM8022)
[oj0;0/0[1,0/1,0][1,0 1]0]
%{—J

0

» Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bits are shifted to the right by the
remainder value of (n)+16. For example, when (n) is 18, data is shifted by 2 bits to the right because 18 divided by 16
equals 1 with a remainder of 2.

HRelated devices

Device Name Description
SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.
SM8022

Program example

In the program example shown below, the contents of Y10 to Y23 are shifted rightward by the number of bits specified by DO
when X20 turns ON.

I X20
I SFRP | Kav10 DO
Y23 - Y20 YA7 - Y14 Y13 -~ Y10
[1 0170117071701 011 0]
A6 J

o0 [2]
P N Carry flag
Y23 Y20 Y17 Y14 Y13 Y10 (SM700, SM8022)
[o/o0o 0 0170 170170711 0]
%r—/
Become “0”.

Operation.error

There is no operation error.

6 SEQUENCE INSTRUCTIONS

1 62 6.4 Shift Instructions

Shifting 16-bit data to the left by n bit(s)

SFL(P)

These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s).

Ladder diagram Structured text
ENO:=SFL(EN,n,d);

| I:.:]') | =) }_{ ENO:=SFLP(EN,n,d);

FBD/LD
C._— 1
— en ENO [—

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number where the shift-target data is stored | — 16-bit signed binary ANY 16
(n) Number of shifts Oto 15 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $
F,B, SB, S SD, SW, R

(d) O O O O - — O — - — —

(n) O O O O — — O O — — —

Processing. details

» These instructions shift the 16-bit data in the device specified by (d) to the left by (n) bit(s) from the least significant bit. (n)
bits from the least significant bit are filled with "0".
When (n)=8

b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0
1 | | I | |

[1itiritfoioititfoiojoiof1ititit]

i

b15 b14 b13 b12 b11b10 b9 b8 b7 b6 b5 b4 b3 b2 bl b0
0,0,0;0/1,1,1/1]0;0,0,0[0,0;0/0] @

(SM700, SM8022)

0

6 SEQUENCE INSTRUCTIONS 1
6.4 Shift Instructions 63

* When (d) is a bit device, bit(s) are shifted to the left within the device range specified by digit specification.

When (n)=3
X17 X14 X13 X10
[0 0] 107011
N —
(SM700, SM8022) X17 X14 X13X12 - X10
[1,0/0/1[1,0,0 0]
%—/

» Specify any value between 0 and 15 for (n). If a value 16 or larger is specified for (n), bit(s) are shifted to the left by the
remainder value of (n)+16. For example, when (n) is 18, data is shifted by 2 bits to the left because 18 divided by 16 equals

1 with a remainder of 2.

HRelated devices

Device Name Description
SM700 Carry ON/OFF according to the status (1/0) of the (n-1)th bit.
SM8022

Program example

In the program example shown below, the contents of Y10 to Y17 are shifted leftward by the number of bits specified by DO

when X20 turns ON.

| X20
| it SFLP K2Y10 DO
Y17 Y14 Y13 Y10
00 1 0! 1,1]
x/ 00
Carry flag

(SM700, SM8022)

Y14 Y13 Y12

Y10

1!

00

1|1

00|

Operation.error

There is no operation error.

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

164

%(_/

Become “0".

Shifting n-bit data to the right by 1 bit

BSFR(P)

These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

Ladder diagram Structured text

ENO:=BSFR(EN,n,d);
ENO:=BSFRP(EN,n,d);

—C—ad]e|n }—{

FBD/LD
C._— 1
— en ENO [—

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number to be shifted — Bit ANY_BOOL
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz | specification [y [E $
F,B, SB, S SD, SW, R
(d) O o — — — — — — — — —
(n) O O O O — — O @) — — —

*1 T, ST, and C cannot be used.

Processing details

» These instructions shift (n) point(s) of data to the right by 1 bit from the device specified by (d).

(n) »

(d)+(n 1) (d)+(n 2) (d)+(n 3) (d)+2 (d)+1 (d)

(d)y+(n-1) (d)+(n-2) (d)+(n-3) - (d)+2 (SM700)

Lo [+ [1 [§] o 1 1]

0

» The value of the device specified by (d) + (n-1) becomes 0.
HRelated devices

Device Name Description

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

6 SEQUENCE INSTRUCTIONS

6.4 Shift Instructions

165

2820H The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

166 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-bit data to the left by 1 bit

BSFL(P)

These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

Ladder diagram Structured text

ENO:=BSFL(EN,n,d);

| I:.:-:|| @ |) }{ ENO:=BSFLP(EN,n,d);

FBD/LD
C._— 1
— en ENO [—

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number to be shifted — Bit ANY_BOOL

(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $
F, B, SB, S SD, SW, R

(d) o o — — — — — — — — —

(n) O O O O — — O O — — —

*1 T, ST, and C cannot be used.

Processing details

» These instructions shift (n) point(s) of data to the left by 1 bit from the device specified by (d).

e (n) g
(d)+(n 1) (d) +(n 2) +(n 3) c (d)2 (d)+1 (d)
SM?OO) /(n . (d)+ o 2) (@Hn-3) - ()2 (d)+

O\SS|1 1 0|

(I

» The value of the device specified by (d) becomes 0.

HRelated devices

Device Name Description

SM700 Carry ON/OFF according to the status (1/0) of the (d) bit.

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

167

2820H The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

168 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-word data to the right by 1 word

DSFR(P)

These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

Ladder diagram Structured text

ENO:=DSFR(EN,n,d);

| I:.:-:|| @ |) }{ ENO:=DSFRP(EN,n,d);

FBD/LD
C._— 1
— en ENO [—

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(d) Head device number to be shifted — Word ANY16
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDeO |z Lc |Lz |specification [y Tp $
F,B, SB, S SD, SW, R

(d) — O — — — — O — — — —

(n) O O O O — — O O — — —

Processing. details

» These instructions shift (n) point(s) of data to the right by 1 word from the device specified by (d).

> (n) %
()+(n 1) (d)+(n 2) (d)+(n 3) (d)+2 (d)+1 (d)
+(n- 1) (d)*(n-2) (d)+(n-3) (d)*+(n- 4 e (d)*)
0 ss5 | 212 [325 100 50

Lo

» The value of the device specified by (d) + (n-1) becomes 0.

Operation.error

Error code Description
(SD0/SD8067)
2820H The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

6 SEQUENCE INSTRUCTIONS 1
6.4 Shift Instructions 69

Shifting n-word data to the left by 1 word

These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

ENO:=DSFL(EN,n,d);
ENO:=DSFLP(EN,n,d);

—C—ad]e|n }—{

Co—

EDescriptions, ranges, and data types

Head device number to be shifted Word ANY16
(n) Number of devices to be shifted 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BApplicable devices
@ - o - |- - = = =
(n) @] O O — @) — — —

|

» These instructions shift (n) point(s) of data to the left by 1 word from the device specified by (d).

(n)

I‘(d)*‘(lrl-1) (d)+(n-2) (d)+(n-3) - (d)*2

555 | 120 | 325 [\(] 100

K

7

d+(n-1) (@*n-2) - (A3 (d)+2

120 | 325 [((] 100 | 50

» The value of the device specified by (d) becomes 0.

F

Lo

2820H The (n) points of data starting from the device specified by (d) exceed in the corresponding device.

170 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-bit(s) data to the right by (n) bit(s)

SFTR(P)

These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d).

Ladder diagram

Structured text

—Cc=de|w |(n1)|(n2)}—{

ENO:=SFTR(EN,s,n1,n2,d);
ENO:=SFTRP(EN,s,n1,n2,d);

FBD/LD
C._— 1
— en ENO [—

— ni

— n2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Bit ANY_BOOL
(d) Head device number to be shifted — Bit ANY_BOOL
(n1)" Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)'1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Set so that n2<n1.
HEApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDweO |z Lc |Lz | secification [y [$
F, B, SB, S SD, SW, R
(s) @) on — — — — o2 | — — —
(d) O o — — — — — — — —
(n1) @) O @) O — — @) — — —
(n2) @) O @) O — — @) — — —

*1 T, ST, and C cannot be used.
*2 Only 0 or 1 can be used.

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

171

Processing. details

» These instructions shift (n1) bits of data to the right by (n2) bit(s) from the device specified by (d). After the shift, (n2) points
from (s) are set into (n2) points from (d)+(n1-n2).

* When KO is specified for (s), set Os for (n2) points of bits from (d)+(n1-n2) after the shift.

* When K1 is specified for (s), set 1s for (n2) points of bits from (d)+(n1-n2) after the shift.

e 1 N
I (n1) (n2) !

A+ (d#8 (A7 (A6 ()5 (A4 (A3 (@2 (1 (d)
L+ T+ [+ T o[+ [+ [+ 1[0 0]

\

(s)¥3 (s)¥2 (s)*1 (s) (d)¥5 (d)+4 (d)+3 (d)+¥2 (d)+1 (d)

Lo [o[o[o 1+ [1+ [1+ [o 1 [1]
(1)

(1): When (s)=KaO, it is 0.

Operation.error

Error code Description
(SD0/SD8067)
2820H The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821H The transfer source data (s) overlaps with shift device (d).

3405H A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

1 72 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-bit data to the left by n bit(s)

SFTL(P)

These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d).

Ladder diagram

Structured text

—Cc=de|w |(n1)|(n2)}—{

ENO:=SFTL(EN,s,n1,n2,d);
ENO:=SFTLP(EN,s,n1,n2,d);

FBD/LD
C._— 1
— en ENO [—

— ni

— n2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Bit ANY_BOOL
(d) Head device number to be shifted — Bit ANY_BOOL
(n1)" Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)'1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Set so that n2<n1.
HEApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,wW, |uDweO |z Lc |Lz | secification [y [$
F, B, SB, S SD, SW, R
(s) @) on — — — — o2 | — — —
(d) O o — — — — — — — —
(n1) @) O @) O — — @) — — —
(n2) @) O @) O — — @) — — —

*1 T, ST, and C cannot be used.
*2 Only 0 or 1 can be used.

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

173

Processing. details

» These instructions shift (n1) bits of data to the left by (n2) bit(s) from the device specified by (d). After the shift, (n2) points
from (s) are set into (n2) points from (d).

* When KO is specified for (s), set Os for (n2) points of bits from (d) after the shift.

* When K1 is specified for (s), set 1s for (n2) points of bits from (d) after the shift.

le 1 bl

) (n2) " B
(d)+9 (d)+8 (d)+7 (d)+6 (d)+5 (d)+4 (d)+3 (d)+2 (d)+1 (d)

Lo [+ [1+ ol + 7 1+ +[1+ [o] 1]

——

@+9 (A48 (AT (A6 (A5 (s (3 (s)F2 (1 (9)
[1+ 1T 1+] +] o] +] o] of] of ol o]

(1)

(1): When (s)=KaO, it is 0.

Operation.error

Error code Description

(SD0/SD8067)

2820H The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.
The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821H The transfer source data (s) overlaps with shift device (d).

3405H A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

1 74 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-word data to the right by n word(s)

WSFR(P)

This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d).

Ladder diagram

Structured text

—Cc=de|w |(n1)|(n2)}—{

ENO:=WSFR(EN,s,n1,n2,d);
ENO:=WSFRP(EN,s,n1,n2,d);

FBD/LD
C._— 1
— EN ENO (—
pu— s d —
— nl
— n2
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Word ANY16
(d) Head device number to be shifted — Word ANY 16
(n1)" Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)'1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Set so that n2<n1.
HEApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z Lc |[Lz |specification [y TE $
F, B, SB, S SD, SW, R
(s) @) @) @) @) — — @) @) — — —
(d) O (@) @) (@) — — @) — — — —
(n1) @) @) (@] O — — @) @) — — —
(n2) @) @) @) @) — — @) @) — — —

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

175

Processing. details

* This instruction shifts (n1) words of data to the right by (n2) word(s) from the device specified by (d). After the shift, (n2)
points from (s) are set into (n2) points from (d)+(n1-n2).

« This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for
(s)-

« (1) -

(n2)

(d+8 ()7 (d6 (5 (d)+4 (d)+3 ()2 (d)+1 (d)

[30FH | 1EH [100H | oH | 1FFH | 10H | 1FH [7FFH | 2AH |

\

(s)¥3 (s)+2 (s)+1 (s) (d)+4 (d)+3 (d)+2 (d)+1 (d)
[oH | od [od | oH | 30FH | 1EH [100H | oH | 1FFH |

* When the value specified for (n1) or (n2) is 0, the processing is not performed.

Program example

« Shifting devices with digit specification

X0
F—— WSFRP K1X0 K1YO0 K4 K2
T T

I—I— Specify the same digit for devices with digit specification.

LA Make sure that the number of digits is
14 Y equivalent (KnOOOO)
[X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0 | X
(3) Ql : : e
|Y171Y16‘Y151Y141Y131Y121Y111Y10‘Y7:Y6‘Y5:Y4‘Y3:Y2‘Y1‘Y0|
Wu
2 (@)
Operation.error

Error code Description

(SD0/SD8067)

2820H The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821H The transfer source data (s) overlaps with shift device (d).

3405H A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

1 76 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

Shifting n-word data to the left by n word(s)

WSFL(P)

This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d).

Ladder diagram

Structured text

—Cc=de|w |(n1)|(n2)}—{

ENO:=WSFL(EN,s,n1,n2,d);
ENO:=WSFLP(EN,s,n1,n2,d);

FBD/LD
C._— 1
— EN ENO (—
pu— s d —
— nl
— n2
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Head device number stored to the shift data after the shift | — Word ANY16
(d) Head device number to be shifted — Word ANY 16
(n1)" Data length of shift data 0 to 65535 16-bit unsigned binary | ANY16_U
(n2)'1 Number of shifts 0 to 65535 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
*1 Set so that n2<n1.
HEApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z Lc |[Lz |specification [y TE $
F, B, SB, S SD, SW, R
(s) @) @) @) @) — — @) @) — — —
(d) O (@) @) (@) — — @) — — — —
(n1) @) @) (@] O — — @) @) — — —
(n2) @) @) @) @) — — @) @) — — —

6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

177

Processing. details

« This instruction shifts (n1) words of data to the left by (n2) word(s) from the device specified by (d). After the shift, (n2)
points from (s) are set into (n2) points from (d).
« This instruction sets the specified value for (n2) points of devices from (d) + (n1-n2) after the shift when K is specified for

(s).
e (n1) g
(n2)
(d)+8 (A7 (d)¥6 (d)¥6 (d)+4 (d)+3 (d)+2 (d)+1 (d)
[tFFH | 10H [oH [7FFH | 3AH [1FH | 30H | OH | FFH |
(d)+8 (A7 (d)*6 (d)¥5 (d)+4 (s)¥3 (s)¥2 (s)+1 (s)
[3an | 11 [30H | o | FFH | oH | o [oH [oH |

* When the value specified for (n1) or (n2) is 0, the processing is not performed.

Program. example

« Shifting devices with digit specification

X0
— WSFLP K1X0 K1Y0 K4 K2
T T

I—l— Specify the same digit for devices with digit specification.

Make sure that the number of digits are J{

equivalent (KnOOOO) 14 Y

X X7 | X6 | X5 | X4 | X3 | X2 | X1 | X0]
- ~ : : :)‘3)

Operation.error

Error code Description
(SD0/SD8067)
2820H The (n2) points of data starting from the device specified by (s) exceed in the corresponding device.

The (n1) points of data starting from the device specified by (d) exceed in the corresponding device.

2821H The transfer source data (s) overlaps with shift device (d).

3405H A constant other than KO or K1 is specified when the constant (s) is specified.

The values specified in (n1) and (n2) are such that (n1)<(n2).

1 78 6 SEQUENCE INSTRUCTIONS
6.4 Shift Instructions

6.5 Master Control Instruction

Setting/resetting the master control

MC, MCR

* MC: This instruction starts master control.

* MCR: This instruction ends master control.

Ladder diagram Structured text

ENO:=MC(EN,n,d);

M _| |_| C— | N | « l_ ENO:=MCR(EN,n);

MCR

(1): Master control ladder

FBD/LD
MC MCR
L1 L1
— EN ENO (— — EN ENO (—
— N d [— — N

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(N Nesting Oto 14 Device name ANY16_S

(d) Number of device to be turned ON — Bit ANY_BOOL

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 In the case of the ST language and the FBD/LD language, N displays as n.
HMApplicable devices

Operand | Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, | T,ST,C,D,w, |uO\cO |z LC |Lz | specification [y g $ N |[py
F, B, SB, S SD, SW, R

(N) - - - - - - - - - - O -

(d) o o™ — — — — — — - — — |0

*1 T, ST, and C cannot be used.

6 SEQUENCE INSTRUCTIONS 1
6.5 Master Control Instruction 79

Processing. details

These instructions create program with efficient ladder switching by opening/closing common buses in ladders.
Ladder using master control is illustrated below.
(Left: Display on the engineering tool, Right: Actual operation)

N T

X0
e T]

Mo MO |
N1—— MO N1Z= MO
X1 X3 MI7 @ X1 X3 MI7 @
M5 E> M5 @
— | (va0) L va0)—9
X6 X4 X6 X4

| mcr | N1 M | mcr | N1

X10

X10

©)
®

(1) Executed only when X0 is on

EMC

* When the execution command of the MC instruction turns ON at the start of master control, the operation result between
the MC and MCR instructions is as per the instructions (according to ladder). When the execution command of MC
instruction turns OFF, the operation result between the MC and MCR instructions becomes as follows.

Device Device status
Timer The count value becomes 0, and both coils and contacts turn OFF.
Counters, retentive timers Coils turn OFF but the current status of both count values and contacts is maintained.
Devices in OUT instruction Forcibly turned OFF.
Devices in SET and RST instructions Current status is maintained.
Devices in SFT(P) instruction
Devices in basic instructions and applied
instructions
O
Pomt/'

When an instruction (e.g. FOR to NEXT instructions etc.) not requiring NO contact instruction is programmed
in a ladder using master control, the CPU module executes that instruction regardless of the execution
command of this instruction.

+ With this instruction, the same nesting (N) number can be used as many times as necessary by changing the device
specified by (d).

* When this instruction is ON, the coil of the device specified by (d) turns ON. Also, the coil becomes a double coil when the
same device is used by the OUT instruction, for example. So, do not use the device specified by (d) in other instructions.

EMCR

« This instruction indicates the end of the master control range by the master control release instruction.

Do not prefix this instruction with NO contact instruction.

» Use these (MC and MCR) instructions with same nesting number as a pair. Note, however, that when this instruction is
nested at a single location, all master controls can be ended by just one (N) number, the smallest number. (Refer to
Caution.)

1 80 6 SEQUENCE INSTRUCTIONS
6.5 Master Control Instruction

Point/®

Master control instructions can be used in a nested fashion. Each master control section is distinguished by
nesting (N). Nesting is available within the range NO to N14.

A nested structure allows you to create a ladder for successively restricting program execution conditions.
A nested structure ladder is illustrated as follows:

(Left: Display on the engineering tool, Right: Actual operation)

.l -
NO ==M15 NO M15
i (H | O«}m)
- Mc [N1 [m16 i MC] N1 [M16
N1 Z=M16 M16
i1 }(2)

O @

i

N2 ==M17 =M17

il (H) @}(3)
e Orfe

-y (OH - O—«}m)

} 4)

|—|=
1) Executed when Ais ON

2) Executed when A and B are ON

3) Executed when A, B, and C are ON
4) Regardless of A, B, and C

—_~ o~~~

6 SEQUENCE INSTRUCTIONS 1 1
6.5 Master Control Instruction 8

Precautions

« If an instruction (e.g. LD, LDI) to be connected to the bus is not programmed following the MC instruction, a program
structure error (error code: 33E0) occurs.

» These instructions cannot be used in FOR to NEXT, STL to RETSTL, P to RET (SRET), and | to IRET. Also, do not block by
I, IRET, FEND, END, RET (SRET), RETSTL, etc. Addition by write during RUN mode results in an error.

* Nesting up to 15 levels (NO to N14) is possible. When nesting instructions, the MC instruction is used starting from the
smallest (N) number and the MCR instruction is started starting from the biggest number. Programming in reverse order
does not produce a nested structure and hence the CPU module cannot execute operations properly.

* When the MCR instruction is nested at a single location, all master controls can be ended by just one nesting (N) number,
the smallest number.

X1 X1
— Mc | No [M15 [Mc] No [M15
NO==M15 NO=M15
N O | O
X2 X2
— MC| N1 [M16 [MC| N1 [M16
N1T=M16 N1T=M16
= - | O
X3 I:> X3
— 1 Mc | N2 [m17 I MC[N2 [M17
N2 = M17 N2 =M17
& O = O
mr| N2 | mer] NO |
| o O
I I

= I
ol |19
|l |3
O [[
ol |=

Operation.error

There is no operation error.

1 82 6 SEQUENCE INSTRUCTIONS
6.5 Master Control Instruction

6.6 Termination Instructions

Ending the main routine program

FEND

This instruction is used to branch operation of the sequence program by the CJ instruction or to divide the main routine
program into a subroutine program or an interrupt program.

Ladder diagram Structured text
Not supported.
C._— 1
FBD/LD

Not supported.

Processing. details

« This instruction branches operation of the sequence program by the CJ instruction or dividing the main routine program into
subroutine programs and interrupt programs.

* When this instruction is executed, program execution returns to the program at step 0 after output processing, input
processing and refreshing of the watchdog timer.

» The sequence program from this instruction onwards can also be displayed as ladder by the engineering tool.

(Left: When the CJ instruction is used, Right: When there are subroutine programs and interrupt programs)

: - o -

A

A

— |/
M L ®

A pr
B
FEND
-
e c
A
[enp |
END
FEND L1

END

A: Main routine program

B: Subroutine program

C: Interrupt Program

(1): Operation when the CJ instruction is not executed
(2): Jump by the CJ instruction

(3): Operation when the CJ instruction has been executed

6 SEQUENCE INSTRUCTIONS 1
6.6 Termination Instructions 83

Program. example

» Example in which outputs in the subroutine are latched

In the following program example, the counter CO is provided to count X1. When X0 is input, the subroutine PO is executed
only in one scan, and then the counter is reset and Y7 is output.

X0
! CALLP PO
X1
I ouT Co K10 |
FEND [
X0
PO I RST co
@
RET
Timing chart

subroutine PO
triggered by X0

Execution of %l—ie Subroutine is executed.
|
|
|

X1
| %/—J

I Because the reset instruction
Counter

3 . for CO is valid, the current value
Current 2 is reset. of CO remains unchanged even
value of CO 1 / if pulses are input.

|

RST

Cco /I\ Remains reset.
|

Y7

Y7 is being output. \‘

Outputs are held.

1 84 6 SEQUENCE INSTRUCTIONS
6.6 Termination Instructions

« Example for resetting outputs in the subroutine

i1 CALLP PO =
X1
1t ouT Co K10 |+
:_ B _XE __ _1' Y7 is reset at an arbitrary timin
| i RST YT v Aming.
1
e e ———_ |
FEND -
(A)
PO i1 RST COo =
F R e]
! SM401 I (B)
: RUNI Imonitor RST 0 M : The preceding RST CO instruction is
L (normally OFF) : deactivated in the subroutine.
0}
RET —
Timing chart
e|—|e Subroutine is executed.
Execution of PO is
triggered by X0
X1 |
4
Current value
of CO
Counter is reset (part Counter reset instruction is deactivated

EgT (A) in above program).%ﬂe (part (B) in above program).

Y7 Ti

el

Y7 is reset.
X2 A

Operation.error

Error code Description
(SD0/SD8067)
3340H The FEND instruction is executed before the NEXT instruction after the FOR instruction is executed.
3381H The FEND instruction is executed before the RET instruction after the CALL(P) instruction is executed.
33E3H The FEND instruction is programmed between FOR-NEXT.
33E4H The FEND instruction is programmed between MC-MCR.
33E5H The FEND instruction is programmed between STL-RETSTL.
33E7H The FEND instruction is programmed between I-IRET.
3100H The FEND instruction is programmed in standby type program.
The FEND instruction is programmed in FB file.

6 SEQUENCE INSTRUCTIONS
6.6 Termination Instructions

185

Ending the sequence program

END

This instruction indicates the end of a program.

Ladder diagram Structured text
Not supported.
C— 1
FBD/LD
Not supported.

Processing details

« This instruction indicates the end of all programs including the main routine program, subroutine program, and interrupt
program. When this instruction is executed, the CPU module ends execution of the currently executing program.

O

END

v

(1): Sequence program

» The first time the RUN is started, execution begins from this instruction.

» This instruction cannot be programmed midway during the main sequence program. When this processing is required
midway during the program, use the FEND instruction.

» When programming is performed using the engineering tool in ladder edit mode, the END instruction is automatically input
and cannot be edited.

» The following illustrates how the END and FEND instructions are used properly when a program contains a main routine
program, subroutine program, and interrupt program.

A
FEND > (1)
B
D
c
END > @

A: Main routine program

B: Subroutine program

C: Interrupt Program

D: Main sequence program area
(1): FEND instruction is required.
(2): END instruction is required.

1 86 6 SEQUENCE INSTRUCTIONS
6.6 Termination Instructions

Point/©

The END instruction executed while a program is divided into multiple program blocks indicates the end of a
program block.

The END instruction executed for END processing is executed at the end of the last executed program
registered in the program settings.

Operation.error

Error code Description

(SD0/SD8067)

3340H The END instruction is executed before the NEXT instruction after the FOR instruction is executed.
3381H The END instruction is executed before the RET instruction after the CALL(P) instruction is executed.
33E3H The END instruction is programmed between FOR-NEXT.

33E4H The END instruction is programmed between MC-MCR.

33E5H The END instruction is programmed between STL-RETSTL.

33E7H The END instruction is programmed between I-IRET.

6 SEQUENCE INSTRUCTIONS 1
6.6 Termination Instructions 87

6.7

Stop Instruction

Stopping the sequence program

STOP

This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This
operation is the same as setting the switch to STOP.)

Ladder diagram

Structured text

ENO:=STOP(EN);

C._— 1
FBD/LD
C_— 1
— En ENO [—

Processing details

« This instruction resets outputs (Y) and stops operation of the CPU module when the execution command turns ON. (This
operation is the same as setting the switch to STOP.)
« To restart operation of the CPU module after this instruction is executed, return the switch from RUN—-STOP and set it to

RUN again.

Operation.error

Error code Description

(SD0/SD8067)

3340H The STOP instruction is executed before the NEXT instruction is executed after the FOR instruction is executed.

3381H The STOP instruction is executed before the RET instruction is executed after the CALL(P) or XCALL(P) instruction is executed.
3582H The STOP instruction is executed before the IRET instruction is executed in the interruption program.

1 88 6 SEQUENCE INSTRUCTIONS
6.7 Stop Instruction

[BASIC INSTRUCTIONS

7.1 Comparison Operation Instructions

Comparing 16-bit binary data

LDO(_U), ANDO(_U), ORO(_U)

These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the 16-
bit binary data in the device specified by (s2). (Devices are used as NO contacts.)

Ladder diagram

Structured text"’

WL T L= O] en [f—
ANDC I —{ L. |60 | 62—

OR[C 7]

— Lo 0] 0] 2

("=(_U)", "<>(_U)", ">(_U)", "<=(_U)", "<(_U)", ">=(_U)" enters OI.)

ENO:=LD_O(EN,s1,s2);
ENO:=AND_[O(EN,s1,s2);
ENO:=OR_O(EN,s1,s2);

ENO:=LD_0O_U(EN,s1,s2);
ENO:=AND_[O_U(EN,s1,s2);
ENO:=OR_0O_U(EN,s1,s2);

("EQ", "NE", "GT", "LE", "LT", "GE" enters D.)*Z

FBD/LD
5ol I AND[- 7] orR[__ 7]
— EN ENO — — EN ENO — — EN ENO —
— s1 — s1 — s1
— s2 — s2 — s2

("_EQ(_UY", "_NE(_U)", "_GT(_U)", "_LE(_U)", "_LT(_U)", "_GE(_U)" enters O.)"2

*1 Supported by engineering tool version "1.035M" and later.
*2 EQis=NEis<> GTis > LEis <= LTis <, and GE is >=.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | LDO, ANDO, Comparison data or device where the -32768 to +32767 16-bit signed binary ANY16_S
ORO comparison data is stored
LbO_v, 0 to 65535 16-bit unsigned binary | ANY16_U
ANDO_U,
ORO_U
(s2) | LDO, ANDO, Comparison data or device where the -32768 to +32767 16-bit signed binary ANY16_S
ORO comparison data is stored
LDO_U, 0 to 65535 16-bit unsigned binary | ANY16_U
ANDO_U,
ORO_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

7 BASIC INSTRUCTIONS 1
7.1 Comparison Operation Instructions 89

BEApplicable devices

(s1) O O O O — — @) @) — — —
(s2) O O O O — — @) ©) — — —

» These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2). (Devices are used as NO contacts.)
+ The following table lists the comparison operation results of each instruction.

=(_V) (s1)=(s2) Conductive state
<>(_U) (s1)#(s2)

>(_U) (s1)>(s2)

<=(_Y) (s1)=(s2)

<(Y) (s1)<(s2)

>=(_U) (s1)=(s2)

=(_VU) (s1)#(s2) Non-conductive state
<>(_V) (s1)=(s2)

>(_U) (s1)<(s2)

<=(_V) (s1)>(s2)

<(_Y) (s1)>(s2)

>=(_V) (s1)<(s2)

1 90 7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

Precautions

» When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for
comparison. (Excluding unsigned operation)

Program example

- LDO(_V)
LD= C10 K200 When the current value of C10 is "200", Y10 turns ON.
X1
LD> D200 k30 b+ seT | yi1 |4 When the content value of D200 is "-29" or higher and X1 is
ON, Y11 is set.
When the content value of LC20 is less than "K678493" or
LDD> K678493 LC20 M30 when M3 turns ON, M50 turns ON.
M3
—i
« ANDO(_U)
X0 : im "
L anD- K200 c10 When X0 is ON and the current value of C10 is "200",
Y10 turns ON.
>|(: AND< K10 0o | vin U When X1 is OFF and the content value of DO is not "-10",
“ g - SET Y11 is set.
)|<|2 ANDD> | k678493 D10 M50 When X2 is ON, and the contents value of D11 and D10 are
less than "K678493", or when M3 turns ON, M50 turns ON.
M3
—i
« ORO(_U)
_)|(,1 o When X1 turns ON or when the current value of
' C10is "200", YO turns ON.
OR= K200 Cc10
_)|<|2 N!?O When X2 and M30 turn ON or when the contents value
: i ME0 1 of D101 and D100 are more than "K100000", M60
turns ON.
ORD>= D100 | K100000

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 1 1
7.1 Comparison Operation Instructions 9

Comparing 32-bit binary data

LDDL(_U), ANDDLI(_U), ORDO(_U)

These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the 32-
bit binary data in the device specified by (s2). (Devices are used as NO contacts)

Ladder diagram

Structured text”!

(o] I

AND[T~ 7]

OR[__ 7]

e I L e—

— O e] —

[

("D=(_U)", "D<>(_U)", "D>(_V)", "D<=(_U)", "D<(_U)", "D>=(_U)" enters [.)

ENO:=LDD_[O(EN,s1,s2);
ENO:=ANDD_[(EN,s1,s2);
ENO:=ORD_O(EN,s1,s2);

ENO:=LDD_O_U(EN,s1,s2);
ENO:=ANDD_O_U(EN,s1,s2);
ENO:=ORD_[A_U(EN,s1,s2);

("EQ", "NE", "GT", "LE", "LT", "GE" enters D_)’Z

FBD/LD
Ro) IR AND [7] orR[C.__]
— EN ENO — — EN ENO [— — EN ENO —
— si — s1 — s1
— s2 — s2 — s2

("D_EQ(_U)", "D_NE(_U)", "D_GT(_U)"

,"D_LE(_U)", "D_LT(_U)", "D_GE(_U)" enters 0.)2

*1 Supported by engineering tool version "1.035M" and later.
*2 EQis=NEis<> GTis>, LEis <= LTis <, and GE is >=.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | LDDO, Comparison data or head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
ANDDO, ORDO | comparison data is stored
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
(s2) | LDDO, Comparison data or head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
ANDDO, ORDO | comparison data is stored
LDDO_U, 0 to 4294967295 32-bit unsigned binary | ANY32_U
ANDDO_U,
ORDO_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

192

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

BEApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

Processing. details

» These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2). (Devices are used as NO contacts)
» The following table lists the comparison operation results of each instruction.

Instruction symbol Condition Result
D=(_U) (s1)=(s2) Conductive state
D<>(_U) (s1)#(s2)
D>(_U) (s1)>(s2)
D<=(_U) (s1)<(s2)
D<(_U) (s1)<(s2)
D>=(_U) (s1)=(s2)
D=(_U) (s1)#(s2) Non-conductive state
D<>(_U) (s1)=(s2)
D>(_U) (s1)=(s2)
D<=(_U) (s1)>(s2)
D<(_U) (s1)=(s2)
D>=(_U) (s1)<(s2)
Precautions

» When the most significant bit is "1" in the data stored in (s1) or (s2), it is regarded as a negative binary value for
comparison. (Excluding unsigned operation)

» For comparison of 32-bit counter (LC), specify an instruction (LDD=, etc.) that handles 32-bit data. If an instruction (LD=,
etc.) that handles 16-bit data is specified, a program error or operation error occurs. (Same applies for index device (LZ) as
well.)

Program example

For a program example, refer to [~ Page 189 Comparing 16-bit binary data.

Operation. error

There is no operation error.

7 BASIC INSTRUCTIONS 1
7.1 Comparison Operation Instructions 93

194

Comparison output 16-bit binary data

CMP(P)(_VU)

These instructions perform a comparison operation between the 16-bit binary data in the devices specified by (s1) and (s2).

Ladder diagram

Structured text

— L d[en|ea]| @ }—{

ENO:=CMP(EN,s1,s2,d);
ENO:=CMPP(EN,s1,s2,d);

ENO:=CMP_U(EN,s1,52,d);
ENO:=CMPP_U(EN,s1,52,d);

FBD/LD

C— 1
— EN ENO —
— si d |—
— s2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | CMP(P) Comparison value data or the device where -32768 to +32767 16-bit signed binary ANY16_S
CMP(P)_U the comparison value data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | CMP(P) Comparison source data or the device where -32768 to +32767 16-bit signed binary ANY16_S
CMP(P)_U the comparison source data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) The starting bit device to which the comparison | — Bit ANYBIT_ARRAY
result is output (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\GO |z Lc |[Lz |specification ['y TE $
F, B, SB, S SD, SW, R
(s1) (@) O (@) (@) — — O O — — —
(s2) (@) O (@) (@) — — O O — — —
(d) O o — — — — - - - — —
*1 T, ST, and C cannot be used.

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

Processing. details

» These instructions perform a comparison operation between the 16-bit binary data in the device specified by (s1) and the

16-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is

turned ON.

* (s1) and (s2) are handled as binary values within the range of above data setting.

+ Large and small comparison is executed algebraically.
* With sign...-10 (FFF6H) < 2 (0002H)
« Without sign...32767 (7TFFFH) < 65280 (FFOOH)

w Lo

(1M

(1): Even if the command input turns OFF and the CMP instruction is not executed, (d) to (d)+2 latches the status just before the command input turns from ON

to OFF.

Precautions

X0 '

—— CMP (s1) (s2) (d) ' :
[! , ,
oo : :
| —— | Turns ON in the case of (s1)>(s2). (s2) 48 (s1)! d
, . ' .

ot C) I [
E —i— E Turns ON in the case of (s1)=(s2). W E E
@2 (d)+1 L
: 1, Turns ON in the case of (s1)<(s2). e !
b il Wl Latched
(d)+2 :

N

Latched

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Program example

* When comparing the current value of a counter

X0

CMP

K100

C20 MO

MO
—

M1
—

M2
—

YO turns ON in the case of
"K100 > C20 (Current value)". C20

Y1 turns ON in the case of
"K100 = C20 (Current value)".

MO

M1

Y2 turns ON in the case of —

"K100 < C20 (Current value)". M2

MO is M1 is M2 is
latched latched latched
in the ON in the ON in the ON
status. status. status.

If it is necessary to clear the comparison result when the instruction is not executed, add the following contents under the

above program.

X0
ZRST

MO

M2

MO to M2 are reset.

Operation.error

Error code Description
(SD0/SD8067)
2820H The range of 3 points of data starting from the device specified by (d) exceeds said device.

7 BASIC INSTRUCTIONS 1
7.1 Comparison Operation Instructions 95

196

Comparison output 32-bit binary data

DCMP(P)(_V)

These instructions perform a comparison operation between the 32-bit binary data in the devices specified by (s1) and (s2).

Ladder diagram

Structured text

— L d[en|ea]| @ }—{

ENO:=DCMP(EN,s1,s2,d);

ENO:=DCMPP(EN,s1,s2,d);

ENO:=DCMP_U(EN,s1,s2,d);
ENO:=DCMPP_U(EN,s1,s2,d);

FBD/LD

C— 1
— EN ENO —
— si d |—
— s2

Setting data

EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) | DCMP(P) Comparison value data or the head device -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DCMP(P)_U | Where the comparison value data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DCMP(P) Comparison source data or the head device -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DCMP(P)_U | Where the comparison source data is stored [4, 4294967295 32-bit unsigned binary | ANY32_U
(d) The starting bit device to which the comparison | — Bit ANYBIT_ARRAY
result is output (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\GO |z Lc |[Lz |specification ['y TE $
F,B, SB, S SD, SW, R
(s1) e) o))))) o) o) — — —
(s2) e) o))))) o) o) — — —
(d) O o — — — — - - - — —
*1 T, ST, and C cannot be used.

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

Processing. details

» These instructions perform a comparison operation between the 32-bit binary data in the device specified by (s1) and the
32-bit binary data in the device specified by (s2) and according to the result (small, equal, large), (d), (d) + 1, or (d) + 2 is
turned ON.

* (s1) and (s2) are handled as binary values within the range of above data setting.

+ Large and small comparison is executed algebraically.
* With sign...-125400 (FFFE1628H) < 224566 (00036D36H)
« Without sign... 16776690 (OOFFFDF2H) < 4294967176 (FFFFFF88H)

X0 X0
—— DCMP (s1) (s2) (d) '
== . ;
I :
, 1| Turns ON in the case of (s1)>(s2). (s2) :
1 1 1 :
ARG (d) : ;
: —F— | Turns ON in the case of (s1)=(s2). H H
1 1 ! :
bl @2 (d)+1 N :
—F— | Turns ON in the case of (s1)<(s2). !
U (s1)<(s2) LatcheLi]
(d)+2 !
<t
Latched

M
(1): Even if the command input turns OFF and the DCMP instruction is not executed, (d) to (d)+2 latches the status just before the command input turns from
ON to OFF.

Precautions

Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation.error

Error code Description
(SD0/SD8067)
2820H The range of 3 points of data starting from the device specified by (d) exceeds said device.

7 BASIC INSTRUCTIONS 1
7.1 Comparison Operation Instructions 97

Comparing 16-bit binary data band

ZCP(P)(_V)

These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit
binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and
output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Ladder diagram Structured text

ENO:=ZCP(EN,s1,s2,s3,d);
ENO:=ZCPP(EN,s1,s2,s3,d);

ENO:=ZCP_U(EN,s1,s2,s3,d);
ENO:=ZCPP_U(EN,s1,s2,s3,d);

— .=][] 6] @ }—{

FBD/LD

C—
— EN ENO —
— s1 d —

— s2

— s3

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | ZCP(P) Lower limit comparison data or the device -32768 to +32767 16-bit signed binary ANY16_S
ZCP(P)_U where the comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | ZCP(P) Upper limit comparison data or the device -32768 to +32767 16-bit signed binary ANY16_S
ZCP(P)_U where the comparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s3) | ZCP(P) Comparison source data or the device where -32768 to +32767 16-bit signed binary ANY16_S
ZCP(P)_U the comparison source data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) The starting bit device to which the comparison | — Bit ANYBIT_ARRAY
result is output (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,C,D,w, |umeO |z LC |Lz | specification [y [p $
F,B, SB, S SD, SW, R
(s1) O @) O O — — @) @) — — —
(s2) O @) O O — — @) @) — — —
(s3) O @) O O — — @) @) — — —
(d) o o - - - - — — — - —

*1 T, ST, and C cannot be used.

Processing details

» These instructions perform a comparison operation on the 16-bit binary data in the device specified by (s1) and the 16-bit
binary data in the device specified by (s2) with the 16-bit binary data in the device specified by comparison source (s3), and
according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are
handled as binary values within the range of above data setting. Large and small comparison is executed algebraically.

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

198

+ Large and small comparison is executed algebraically.
« With sign...-10 (FFF6H) < 2 (0002H) < 10 (000AH)
« Without sign...0 (0000H) < 32767 (7FFFH) < 40000 (9C40H)

X0
—t ZCP (s1) (s2) (s3) (d)

(d)
—F—— Turns ON in the case of (s1)>(s3).
(d)+1
F—F——Turns ON in the case of (s1)(s3)<(s2).

(d)+2
——— Turns ON in the case of (s3)>(s2).

T

Q)
(1): Even if the command input turns OFF and the ZCP instruction is not executed, (d) to (d)+2 latches the status just before the command input turns from ON
to OFF.

Precautions

» Set (s1) to a value less than (s2).
When the lower comparison value (s1) is larger than the upper comparison value (s2)

X0

ZCP K120 K100 C30 M3

|: It is handled as K120
M3 Y3 ON in th f o0
turns in the case o
’_® "K120 > C30 (Current value)". M3
M4 Y4 t ON in th f
urns in the case o
"K120 = C30 (Current value)". M4
M5 . M5
Y5 turns ON in the case of
"K120 < C30 (Current value)".

» Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Program example

When the lower comparison value (s1) is smaller than the upper comparison value (s2)

X0
X0
I ZCP K100 K120 C30 M3
M3 Y3t ON in th f
urns in the case o
"K100 > C30 (Current value)". C30
M4)
Y4 turns ON in the case of M3
"K100 < C30 (Current value) < K120".
M5 M4
Y5 turns ON in the case of
"K120 < C30 (Current value)". M5
Operation.error
Error code Description
(SD0/SD8067)
2820H The range of 3 points of data starting from the device specified by (d) exceeds said device.

7 BASIC INSTRUCTIONS 1
7.1 Comparison Operation Instructions 99

Comparing 32-bit binary data band

DZCP(P)(_U)

These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit

binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and

output the comparison result (below, within zone, above) to the device specified by (d) onwards.

Ladder diagram

Structured text

— .=][] 6] @ }—{

ENO:=DZCP(EN,s1,s2,s3,d);
ENO:=DZCPP(EN,s1,s2,s3,d);

ENO:=DZCP_U(EN,s1,s2,s3,d);
ENO:=DZCPP_U(EN,s1,s2,s3,d);

FBD/LD

C—1
— EN ENO —
— s d —
— s2
— s3

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DZCP(P) Lower limit comparison data or the head device | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

pzcp(P) U | Where the comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DZCP(P) Upper limit comparison data or the head device | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

DzCP(P) U | Where the comparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s3) | DZCP(P) Comparison source data or the head device -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

Dzcp(P) U | Where the comparison source data is stored | 4, 4594967205 32-bit unsigned binary | ANY32_U
(d) The starting bit device to which the comparison | — Bit ANYBIT_ARRAY

result is output (Number of elements: 3)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X, Y,M,L,SM, |T,ST,C,D,W, | uO\GO |z Lc |[Lz |specification ey T $
F,B, SB, S SD, SW, R

(s1) (@) O (@) (@) (@) (@) O O — — —
(s2) (@) O (@) (@) (@) (@) O O — — —
(s3) (@) (@] (@) (@) (@) (@) O O — — —
(d) O o - - - - — — — - —
*1 T, ST, and C cannot be used.

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

200

Processing. details

» These instructions perform a comparison operation on the 32-bit binary data in the device specified by (s1) and the 32-bit
binary data in the device specified by (s2) with the 32-bit binary data in the device specified by comparison source (s3), and
according to the comparison result (below, within zone, above), (d), (d) + 1, or (d) + 2 is turned ON. (s1), (s2), and (s3) are
handled as binary values within the range of above data setting.

+ Large and small comparison is executed algebraically.
« With sign...-125400 (FFFE1628H) < 22466 (000057C2H) < 1015444 (000F7E94H)
« Without sign...0 (00000000H) < 2147483647 (7TFFFFFFFH) < 4026531840 (FOO00000H)

X0
— DzCcP | (s1) | (s2) | (s3) (d)

(d)

—F—— Turns ON in the case of (s1)>(s3).
(d)+1

F—AF——Turns ON in the case of (s1)(s3)<(s2).

(d)+2
—{—— Turns ON in the case of (s3)>(s2).

T

()
(1): Even if the command input turns OFF and the DZCP instruction is not executed, (d) to (d)+2 latches the status just before the command input turns from ON
to OFF.

Precautions

+ Set (s1) to a value less than (s2).
» Three devices are occupied from the device specified in (d). Make sure that these devices are not used in other controls.

Operation.error

Error code Description
(SD0/SD8067)
2820H The range of 3 points of data starting from the device specified by (d) exceeds said device.

7 BASIC INSTRUCTIONS 2 1
7.1 Comparison Operation Instructions 0

Comparing 16-bit binary block data

BKCMPL(P)(_U)

These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the

one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the

operation result in the device specified by (d).

Ladder diagram

Structured text™!

— = d]en|ea] @ | m }—{

("BKCMP=(P)(_U)", "BKCMP<>(P)(_U)", "BKCMP>(P)(_U)",
"BKCMP<=(P)(_U)", "BKCMP<(P)(_U)", "BKCMP>=(P)(_U)" enters [1.)

ENO:=BKCMP_[O(EN,s1,s2,n,d); ENO:=BKCMP_O_U(EN,s1,s2,n,d);
ENO:=BKCMP_OP(EN,s1,s2,n,d); | ENO:=BKCMP_OP_U(EN,s1,s2,n,d);

("EQ", "NE", "GT", "LE", "LT", "GE" enters |:|.)*2

FBD/LD

L1
— EN ENO |—
— st d —

— s2

h— n

("BKCMP_EQ(P)(_U)", "BKCMP_NE(P)(_U)", "BKCMP_GT(P)(_U)", "BKCMP_LE(P)(_U)", "BKCMP_LT(P)(_U)", "BKCMP_GE(P)(_U)" enters [1.)2

*1 Supported by engineering tool version "1.035M" and later.

*2 EQis=,NEis<> GTis >, LEis <=, LTis <, and GE is >=.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | BKCMPO(P) Comparison data or the device where the -32768 to +32767 16-bit signed binary ANY16_S
BKCMPO(P)_U | Somparison data is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | BKCMPO(P) Device where the comparison source data is — 16-bit signed binary ANY16_S
BKCMPLOI(P)_U | Stored — 16-bit unsigned binary | ANY16_U
(d) Head device storing comparison result — Bit ANY_BOOL
(n) Number of data to be compared 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uOwO |z LC |Lz | specification [y [$
F,B, SB, S SD, SW, R
(s1) — o — — — — O O — — —
(s2) — @) — — — — @) — — — —
(d) ¢} o — — — — — — — — —
(n) O @) O O — — @) @) — — —

*1 T, ST, and C cannot be used.

202 7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

Processing. details

» These instructions perform a comparison operation between (n) point(s) of 16-bit binary data in the device starting from the

one specified by (s1) and (n) point(s) of 16-bit binary data in the device starting from the one specified by (s2), and store the

comparison result in (n) point(s) of data starting from the device specified by (d).

» The relevant devices of (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison

conditions are met and turned OFF when the comparison conditions are not met.

b15 b0 b15 b0
(s1) 1234 (BIN) (s2) 5321 (BIN) (d) OFF (0)
(s1)+1 5678 (BIN) (s2)+1 3399 (BIN) (d)+1 ON (1)
(s1)+2 5000 BIN (s2)+2 5678 (BIN) (d)+2 OFF (0)
: é(”: %“’ﬂ - ="
(s1)+(n-2) | 7777 (BIN) (s2)+(n-2) | 6543 (BIN) (d)+(n-2) | ON (1)
(s1)+(n-1) [4321 (BIN) (s2)+(n-1) | 1200 (BIN) (d)+(n-1) | ON (1)
» Comparison operation is performed in units of 16 bits.
» A constant can be directly specified in (s1).
b15 b0
(s2) 32000 (BIN) (d) ON (1)
(s2)+1 4321 (BIN) (d)+1 OFF (0)
(s2)+2 32000 (BIN) (dy+2 ON (1)
(s1) | 32000 (BIN)| | = | . — (n) |:> . — (n)
(s2)+(n-2) | 1234 (BIN) (dy+(n-2) | OFF (0)
(s2)+(n-1) | 5678 (BIN) (d)*+(n-1) | OFF (0)
» The following table lists the comparison operation results of each instruction.
Instruction symbol Condition Result
BKCMP=(P)(_U) (s1)=(s2) on(1)
BKCMP<>(P)(_U) (s1)%(s2)
BKCMP>(P)(_U) (s1)>(s2)
BKCMP<=(P)(_U) (s1)(s2)
BKCMP<(P)(_U) (s1)<(s2)
BKCMP>=(P)(_U) (s1)=(s2)
BKCMP=(P)(_U) (s1)#(s2) Off(0)
BKCMP<>(P)(_U) (s1)=(s2)
BKCMP>(P)(_U) (s1)<(s2)
BKCMP<=(P)(_U) (s1)>(s2)
BKCMP<(P)(_U) (s1)>(s2)
BKCMP>=(P)(_U) (s1)<(s2)

* When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block
comparison signal) turns ON.

7.1 Comparison Operation Instructions

7 BASIC INSTRUCTIONS

203

Program example

* In the program shown below, four 16-bit binary data starting from D100 are compared with four 16-bit binary data starting
from D200 by BKCMP=instruction when X20 is set to ON, and the comparison result is stored in four points starting from
M10. When the comparison result is "ON (1)" in all of the four points starting from M10, SM8090 turns ON and YO is set to

ON.
X20
BKCMP= D100 D200 M10 K4
SM8090
t YO
Block comparison signal
Comparison result
D100 K1000 D200 K1000 M10 ON
D101 K2000 D201 K2000 : M11 ON
D102 K3000 EI D202 K5000 M12 OFF
D103 K4000 D203 K4000 M13 ON
YO OFF

(When all of M10 to M13 are ON, YO0 is set to ON.)
* In the program shown below, the constant K1000 is compared with four data starting from D10 when X10 is set to ON, and
the comparison result is stored in b4 to b7 of DO.

X10
F——— BKCMP<> [K1000 D10 D0.4 K4

b15 b7 .. b4 .. b0
DO before operation |0 111010[0101110[0101110[0101070

D10 K2000
D11 K1000 @
K1000 <
[oo] I T
b15 b7 ... b4 ... bo
D13 K2222 . T T T T T T T T T T T T
DO after operation [0111010]01011:10[1101011]0101010
Operation.error
Error code Description
(SD0/SD8067)
2820H The (n) point(s) starting from the device specified by (s1), (s2), and (d) exceeds said device.
2821H When (d) specifies "DO.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s1) overlap.
When (d) specifies "DO.b", the data register of (d) and the (n) point(s) of data starting from the device specified by (s2) overlap.

204 7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

Comparing 32-bit binary block data

DBKCMPL(P)(_U)

These instructions perform a comparison operation between the (n) point(s) of 32-bit binary data starting from the device

specified by (s1) and the (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the operation

result in the device specified by (d).

Ladder diagram

Structured text'!

— = d]en|ea] @ | m }—{

("DBKCMP=(P)(_U)", "DBKCMP<>(P)(_U)", "DBKCMP>(P)(_U)",

"DBKCMP<=(P)(_U)", "DBKCMP<(P)(_U)", "DBKCMP>=(P)(_U)" enters [1.)

ENO:=DBKCMP_[O(EN,s1,s2,n,d);
ENO:=DBKCMP_OP(EN,s1,s2,n,d);

ENO:=DBKCMP_O_U(EN,s1,s2,n,d);
ENO:=DBKCMP_OP_U(EN,s1,s2,n,d);

("EQ", "NE", "GT", "LE", "LT", "GE" enters D')*Z

FBD/LD

EN

s1

s2

n

Co—

ENO

d —

("DBKCMP_EQ(P)(_U)", "DBKCMP_NE(P)(_U)", "DBKCMP_GT(P)(_U)", "DBKCMP_LE(P)(_U)", "DBKCMP_LT(P)(_U)", "DBKCMP_GE(P)(_U)" enters [1.)"2

*1 Supported by engineering tool version "1.035M" and later.
*2 EQis=NEis<> GTis > LEis <= LTis <, and GE is >=.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DBKCMPO(P) Comparison data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DBKCMPO(P)_U | comPparison data is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DBKCMPO(P) Head device where the comparison source — 32-bit signed binary ANY32_S
DBKCMPOI(P)_U | data is stored — 32-bit unsigned binary | ANY32_U
(d) Head device storing comparison result — Bit ANY_BOOL
(n) Number of data to be compared 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\cO LC |Lz | specification [y [$
F,B, SB, S SD, SW, R
(s1) — @) — — O — @) O — — —
(s2) — @) — — O — @) — — — —
(d) e} o — — — — — — — — —
(n) O @) O — — @) @) — — —

*1 T, ST, and C cannot be used.

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

205

Processing. details

» These instructions perform a comparison operation between (n) point(s) of 32-bit binary data starting from the device
specified by (s1) and (n) point(s) of 32-bit binary data starting from the device specified by (s2), and store the comparison
result in (n) point(s) of data starting from the device specified by (d).

» The relevant devices of (n) point(s) of data starting from the device specified by (d) are turned ON when the comparison
conditions are met and turned OFF when the comparison conditions are not met.

b31 b0 b31 b0
(s1)+1, (s1) 1090 (BIN) (s2)+1, (s2) 1000 (BIN) (d) OFF (0)
(s1)+3, (s1)+2 2080 (BIN) (s2)+3, (s2)+2 2000 (BIN) (d)+1 OFF (0)
(s1)+5, (s1)+4 5060 (BIN)| (n) | | (s2)+5, (s2)+4 5060 (BIN) | (n) |:> (@)+2 ON 1| o
(s1)+(2n-1), (s1)+(2n-2) | 1106 (BIN) (s2)+(2n-1), (s2)+(2n-2) | 1106 (BIN) (d)*+(n-1) | ON ©)
« Comparison operation is performed in units of 32 bits.
+ A constant can be directly specified in (s1).
b31 b0
(s2)+1, (s2) 32700 (BIN) (d) ON 1)

b31 -~ b0 (s2)+3, (s2)+2 40000 (BIN) (d)+1 OFF (0)

1t sh [a2800 @] [>= | 625 (s2+4 |a2800 @IN)| () () (@2 | ON LING)

: : /_/ : /_/
(s2)+(2n-1), (s2)+(2n-2) | 2147400 (BIN) (d)*(n-1) | OFF (0)

« (d) is specified outside the device range of (n) point(s) of data starting from the one specified by (s1) and outside the device

range of (n) point(s) of data starting from the one specified by (s2).

» The following table lists the comparison operation results of each instruction.

Instruction symbol Condition Result
DBKCMP=(P)(_U) (s1)=(s2) On(1)
DBKCMP<>(P)(_U) (s1)#(s2)

DBKCMP>(P)(_U) (s1)>(s2)

DBKCMP<=(P)(_U) (s1)<(s2)

DBKCMP<(P)(_U) (s1)<(s2)

DBKCMP>=(P)(_U) (s1)x(s2)

DBKCMP=(P)(_U) (s1)#(s2) Off(0)
DBKCMP<>(P)(_U) (s1)=(s2)

DBKCMP>(P)(_U) (s1)<(s2)

DBKCMP<=(P)(_U) (s1)>(s2)

DBKCMP<(P)(_U) (s1)2(s2)

DBKCMP>=(P)(_U) (s1)<(s2)

* When the comparison operation result is all ON (1) in all (n) point(s) starting from (d), SM704 and SM8090 (block

comparison signal) turns ON.

Precautions

If a 32-bit counter (high-speed counter included) is used, make sure to compare using the 32-bit operation (DBKCMP=,
DBKCMP>, DBKCMP<, etc.).

7 BASIC INSTRUCTIONS
7.1 Comparison Operation Instructions

206

Operation.error

Error code Description

(SD0/SD8067)

2820H The (n) x 2 points of data starting from the device specified by (s1) and (s2) or the (n) point(s) of data starting from the device specified by
(d) exceeds said device.

2821H When (d) specifies "DO.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n) x 2 points of
data starting from the device specified by (s1) overlap.
When (d) specifies "DO.b", the (n) point(s) of data starting from the device specified by (d) and the device range of the (n) x 2 points of
data starting from the device specified by (s2) overlap.

Point >

When bit is specified for word device, devices other than the bit-specified word devices where operation result

is stored will not change.

D10.F

D10.0

0!0!1!0]1!

101

0111

‘00

D10.F

D10.0

0i0!1!0]1!

1o

111

‘00

7 BASIC INSTRUCTIONS 2
7.1 Comparison Operation Instructions 07

7.2

Arithmetic Operation Instructions

Adding 16-bit binary data

+(P)(_UV) instruction and ADD(P)(_U) instruction can be used for addition of 16-bit binary data.

+(P)(_U) [using two operands]

These instructions add the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C=0le e }—{

Not supported

=5~ Page 210 +(P)(_U) [using three operands]

FBD/LD

Not supported.

=~ Page 210 +(P)(_U) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) +(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
+(P)_U is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device where the data to which another is -32768 to +32767 16-bit signed binary ANY16_S
+P)_U added is stored 0 to 65535 16-bit unsigned binary | ANY16_U
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |umeO |z LC |Lz | specification [y [$
F,B,SB, S SD, SW, R
(s) 0 o} 0 0 — — o} o} — — —
(d) 0 o} 0 0 — — o} — — — —

208

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions add the 16-bit binary data in the device specified by (s) to the 16-bit binary data in the device specified
by (d), and store the addition result in the device specified by (d).

(@) (s) (d)

6912 (BIN) |

b15 - bo b15 .- bo b1
[sers@IN) | + | 1234BIN) ||

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of +(P)

(d) (s) (d)

b15 - bo b15 - bo b15 - bo
[sarereN) | o+ | 2 (BIN) | > -ser67BIN) |
A ©) @

A} 8 A A
b15 - b0 b15 b0 b15 - bo
[sres@N) | o+ | 2 (BIN) | =>[32766 BIN) |
In case of +(P)(_U)

(E) (s) (d)

A s A A
b15 - b0 b15 bo b15 - bo
[ess3s@EIN) | o+ | 2 (BIN) | > | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 09

+(P)(_U) [using three operands]

These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=PLUS(EN,s1,s2,d); ENO:=PLUS_U(EN,s1,s2,d);

— ENO:=PLUSP(EN,s1,52,d); ENO:=PLUSP_U(EN,s1,s2,d);
—Jc=a]en][] @ }—{ ‘) -V)
FBD/LD

C—
— EN ENO |—
— s1 d —
— s2

("PLUS", "PLUSP", "PLUS_U", "PLUSP_U" enters [I.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | +(P) Augend data or the device where the data to -32768 to +32767 16-bit signed binary ANY16_S
+(P)_U which another is added is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | +(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
+P)_U is added to anather is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) +(P) Device for storing the operation result — 16-bit signed binary ANY16_S
+(P)_U — 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, uO\eO |z Lc |[Lz |specification ['y TE $
F, B, SB, S SD, SW, R
(s1) (@) O (@) (@) — — O O — — —
(s2) (@) O (@) (@) — — O O — — —
(d) (@) (@] (@) (@) — — O — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

210

Processing. details

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).

(1) (s2) (d)

6912 (BIN) |

b15 - bo b15 .- bo b1
[sers@IN) | + | 1234BIN) ||

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of +(P)

(s1) (s2) (d)

b15 - bo b15 - b0 b15 - b0

[soreraN) | o+ | 2 (BIN) | > -ser67(BIN) |
(s1) (2) @

A} s A A

b15 - bo b15 bo b15 - bo

[sres@N) | o+ | 2 (BIN) | =>[32766 BIN) |

In case of +(P)(_U)

(s1) (s2) @)

b15 - b0 b15 bo b15 - bo
[ess3s@N) | o+ | 2 (BIN) | => | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 21 1
7.2 Arithmetic Operation Instructions

ADD(P)(_V)

These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text™!
ENO:=ADDP(EN,s1,52,d); ENO:=ADD_U(EN,s1,52,d);

— ENO:=ADDP_U(EN,s1,52,d);
—Jc=a]en][] @ }—{ - :
FBD/LD"

C.—/a
— En ENO |—
— s1 d —
— s2

("ADDP", "ADD_U", "ADDP_U" enters [1.)

*1 The ADD instruction is not supported by the ST language and the FBD/LD language. Use ADD of the standard function.
=~ Page 1300 ADD(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | ADD(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
ADD(P)_U is added to anather is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | ADD(P) Addend data or the device where the data that | -32768 to +32767 16-bit signed binary ANY16_S
ADD(P)_U is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) ADD(P) Device for storing the operation result — 16-bit signed binary ANY16_S
ADD(P)_U — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification ey TE $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O — — O — — — _

Processing. details

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).

(1) (s2) (d)

b15 - bo b15 - bo b15 - bo
[sera@N) | + [1234BIN) [T>[6912(BIN) |

21 2 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
Zero Flag Zero Flag Zero Flag
VAR WA
-2, -1,0, -32768 < 1,01 —4—> 32767, 0, 1,2
Borrow flag / \ Carry flag
The most significant The most significant
bit of data becomes "1". bit of data becomes "0".
Precautions

HEWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the addition result

changes in every operation cycle if a continuous operation type ADD instruction is used.

X1
—]

ADD

DO K25 DO (D0)+25 — (DO)

HDifference between ADD(P) instruction, +(P) instruction, and INC(P) instruction in a program

for adding "+1"
When ADD(P) instruction is used to add 1 to the contents of DO every time X1 turns from OFF to ON, ADD(P) instruction is

similar to +(P) instruction and INC(P) instruction described later except for the contents shown in the table below

ADD(P) instruction +(P) instruction, INC(P) instruction
Flag (zero, borrow or carry) Operates Does not operate
Operation result ‘ (s)+1=(d) +32767 >0 > +1 > +2 >... +32767 — -32768 — -32767 —...
Program. example
X1
—— ADDP DO K1 DO (DO)+1—(D0)

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 21
7.2 Arithmetic Operation Instructions 3

214

Subtracting 16-bit binary data

-(P)(_U) instruction and SUB(P)(_U) instruction can be used for subtraction of 16-bit binary data.

-(P)(_U) [using two operands]

These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device
specified by (s), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C=d]le|w }—{

Not supported

I~ Page 216 -(P)(_U) [using three operands]

FBD/LD

Not supported.

=~ Page 216 -(P)(_U) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) -(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
«P)_U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device where the data from which anotheris to | -32768 to +32767 16-bit signed binary ANY16_S
“P)U be subtracted is stored 0 to 65535 16-bit unsigned binary | ANY16_U
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |uDeO |z Lc |Lz |sepecification [y [$
F,B, SB, S SD, SW, R
(s) O O O O — — @) @) — — —
(d) O (©] O O — — @) — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device
specified by (s), and store the subtraction result in the device specified by (d).

(@) (s) (d)

4444 BIN) |

b15 - bo b15 .- bo b1
[sers@N) | - | 1234BIN) ||

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of -(P)

@ ©) @
b15 - bo b15 b0 b15 - bo
[sres@N) | - | 2 (BIN) | =>[32766 BIN) |
(d) (s) (d)
/—)% /—J A
b15 - bo b15 - b0 b15 - bo
[sare7BIN) | - | -2 (BIN) | > -sere7BIN)]
In case of -(P)(_U)
@ ©) @
b15 - bo b15 b0 b15 - bo
| 0 (BIN) | - | 1 (BIN) |>] ess35(8IN) |
(d) (s) (d)
b15 - bo b15 - bo b15 - bo
[o@N | - [essss@N) > 1@N |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 21
7.2 Arithmetic Operation Instructions 5

-(P)(_U) [using three operands]

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C.=3O]en| 62| @ }—{

ENO:=MINUS(EN,s1,s2,d);
ENO:=MINUSP(EN,s1,52,d);

ENO:=MINUS_U(EN,s1,52,d);
ENO:=MINUSP_U(EN,s1,52,d);

FBD/LD

— s1

— s2

L1

EN

ENO

d

("MINUS", "MINUSP", "MINUS_U", "MINUSP_U" enters [.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | -(P) Minuend data or the device where the data -32768 to +32767 16-bit signed binary ANY16_S
«P)_U from which another is to be subtracted is 0 to 65535 16-bit unsigned binary | ANY16_U
stored
(s2) | -(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
«P)_U to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) -(P) Device for storing the operation result — 16-bit signed binary ANY16_S
-(P)_U — 16-bit unsigned binary | ANY16_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |umeO |z Lc |Lz [seecification [y y [[g
F,B, SB, S SD, SW, R
(s1) O @) O O — — @) @) — — —
(s2) O @) O O — — @) @) — — —
(d) O @) O O — — @) — — — —

216

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(1) (s2) (d)

4444 BIN) |

b15 - bo b15 .- bo b1
[sers@N) | - | 1234BIN) ||

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of -(P)

(s1) (s2) @
b15 - bo b15 b0 b15 - bo
[seres@N) | - | 2 (BIN) | =>[32766 BIN) |

(s1) (s2) (d)

/—J AL
b15 - bo b15 - bo b15 - bo
[sare7BIN) | - | -2 (BIN) | > -sere7(BIN)]
In case of -(P)(_U)

(SA1) (s2) (d)
b15 - bo b15 - bo b15 - bo
| 0 (BIN) | - | 1(BIN) | > es535(BIN)]

(s1) (s2) @
b15 - bo b15 b0 b15 - bo
| 0 (BIN) | - | ess35IN) || 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 21
7.2 Arithmetic Operation Instructions 7

SUB(P)(_U)

These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text"’!
ENO:=SUBP(EN,s1,s2,d); ENO:=SUB_U(EN,s1,s2,d);

— ENO:=SUBP_U(EN,s1,52,d);
—Jc=a]en][] @ }—{ -)
FBD/LD™

C.—1
— EN ENO |—
— st d —
— s2

("SUBP", "SUB_U", "SUBP_U" enters [1.)

*1 The SUB instruction is not supported by the ST language and the FBD/LD language. Use SUB of the standard function.
=~ Page 1304 SUB(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | SUB(P) Minuend data or the device where the data -32768 to +32767 16-bit signed binary ANY16_S
SUB(P)_U from which another is to be subtracted is 0 to 65535 16-bit unsigned binary | ANY16_U

stored

(s2) | SUB(P) Subtrahend data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
SUB(P)_U o be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) SUB(P) Device for storing the operation result — 16-bit signed binary ANY16_S
SUB(P)_U — 16-bit unsigned binary | ANY16_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,Cc,D,w, |uOeO |z LCc |Lz |seecification [y [$
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) 0 o} 0 0 — — o} o} — — —

(d) O ©} O O — — O — — — _

Processing details

» These instructions subtract the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(s1) (s2) (d)

A} r A A
b15 - b0 b15 bo b15 - bO
[sers@N) | - | 1234@IN) | T> | 444aBIN)]

21 8 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
Zero Flag Zero Flag Zero Flag
A
-2, -1,0, -32768 < 1,01 —4—> 32767, 0,1,2
D VAV I N2
Borrow flag / \ Carry flag
The most significant The most significant
bit of data becomes "1". bit of data becomes "0".

Precautions

HEWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

X1
—]

SUB

DO K25 DO (D0)-25 — (DO)

HDifference between SUB(P) instruction, -(P) instruction, and DEC(P) instruction in a program

for subtracting "-1"
When SUB(P) instruction is used to subtract 1 from the contents of DO every time X1 turns from OFF to ON, SUB(P)

instruction is similar to -(P) instruction and DEC(P) instruction described later except for the contents shown in the table below

SUB(P) instruction -(P) instruction, DEC(P) instruction
Flag (zero, borrow or carry) Operates Does not operate
Operation result ‘ (s)-1=(d) -32768 >0 > -1 > -2 ... -32768 — +32767 — +32766 —...

Program. example

X1
—

SUBP

DO K1 DO A{ (D0)-1—(D0)

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 21
7.2 Arithmetic Operation Instructions 9

Adding 32-bit binary data

D+(P)(_U) instruction and DADD(P)(_U) instruction can be used for addition of 32-bit binary data.

D+(P)(_U) [using two operands]

These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified by

(s), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C=d]le|w }—{

Not supported
I~ Page 222 D+(P)(_U) [using three operands]

FBD/LD

Not supported.

=~ Page 222 D+(P)(_U) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) D+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Head device where the data to which another | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |uDeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R
(s) O O O O O O O O — — —
(d) O O O O O O O — — — —

220

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details
» These instructions add the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device specified

by (s), and store the addition result in the device specified by (d).
(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 - b0 b31 - b16b15 - b0

| sersoo@IN) | + | 123456 (BIN) | > | 691346 (BIN) |

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D+(P)

(d)+1 (d) (s)+1 (s) (d)+1 (d)
— — " — "

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[2147483647 BIN) | + | 2 (BIN) | > [2147483647 (BIN)]

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16b15 b0 b31 - b16b15 = b0 b31 - b16 b15 - b0
[-2147483648 BIN)| + | 2 (BIN) | > | 2147483646 (BIN) |

In case of D+(P)(_U)

(d)+1 (d) (s)+1 (s) (d)+1 (d)
— — " — "

b31 -~ b16b15 ~ b0 b31 -~ b16b15 = b0 b31 -~ b16 b15 ~ b0
[4204967295 BIN)| + | 2 (BIN) | > | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 221
7.2 Arithmetic Operation Instructions

D+(P)(_U) [using three operands]

These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified

by (s2), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C.=3O]en| 62| @ }—{

ENO:=DPLUS(EN,s1,52,d);
ENO:=DPLUSP(EN,s1,52,d);

ENO:=DPLUS_U(EN,s1,s2,d);
ENO:=DPLUSP_U(EN,s1,s2,d);

FBD/LD

L1

EN ENO

s1

s2

d

("DPLUS", "DPLUSP", "DPLUS_U", "DPLUSP_U" enters [1.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D+(P) Augend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U data to which another is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D+(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
D+(P)_U — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HMApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\GO |z Lc |[Lz |specification ['y TE $
F,B, SB, S SD, SW, R
(s1) (@) O (@) (@) (@) (@) O O — — —
(s2) (@) O (@) (@) (@) (@) O O — — —
(d) (@) (@] (@) (@) (@) (@) (@] — — — —

222

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16b15 - b0 b31 - b16b15 - b0 b31 - b16b15 - b0

| sersoo@IN) | + | 123456 (BIN) | > | 691346 (BIN) |

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag
(SM700, SM8022) does not turn ON.

In case of D+(P)

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— — — "

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[2147483647 BIN) | + | 2 (BIN) | > [2147483647 (BIN)]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16b15 b0 b31 - b16b15 = b0 b31 - b16 b15 - b0
[-2147483648 BIN)| + | 2 (BIN) | > | 2147483646 (BIN) |

In case of D+(P)(_U)
(s1)+1 (s1) (s2)+1 (s2) (d)+1 ()

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 - b0
[4294967295 BIN)| + | 2 (BIN) | > | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 22
7.2 Arithmetic Operation Instructions 3

DADD(P)(_U)

These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DADD(EN,s1,s2,d); ENO:=DADD_U(EN,s1,s2,d);

— ENO:=DADDP(EN,s1,52,d); ENO:=DADDP_U(EN,s1,s2,d);
—Jc=a]en][] @ }—{ (: o)
FBD/LD

C— 1
— EN ENO |—
— st d —
— s2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | DADD(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DADD(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

(s2) | DADD(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DADD(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

(d) DADD(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DADD(P)_U — 32-bit unsigned binary | ANY32_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) O O O O O O O — — — —

Processing. details

» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the addition result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

— — —

b31 - b16b15 - b0 b31 - b16b15 ~ b0 b31 = b16 b15 = b0
[sersoo@IN) | + | 123456 BIN) | > | 691346 (BIN) |

224 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description

SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.

SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.

The most significant

The most significant

bit of data becomes "\ \/ bit of data becomes "0".

AN

-2, -1, 0, -2147483648 < wL 2147483647, 0, 1,2

Borrow flag

Precautions

Zero Flag Carry flag

HEWhen DADD instruction is used

When specifying word devices, a device for the lower-order 16-bits is specified first, and then a word device with the next
device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even

number.

HEWhen specifying the same device in the source and destination

The same device number can be specified for both the source and the destination. In this case, note that the addition result
changes in every operation cycle if a continuous operation type ADD instruction is used.

X1
—— DADD DO

K25 DO (D1, D0)+25 — (D1, DO)

EDifference between

DADD(P) instruction, D+(P) instruction, and DINC(P) instruction in a

program for adding "+1"
When DADD(P) instruction is used to add 1 to the contents of DO every time X1 turns from OFF to ON, DADD(P) instruction is

similar to D+(P) instruction and DINC(P) instruction described later except for the contents shown in the table below.

DADD(P) instruction D+(P) instruction, DINC(P) instruction
Flag (zero, borrow or carry) Operates Does not operate
Operation result ‘ (s)+1=(d) +2147483647 >0 > +1 > +2 ... +2147483647 — -2147483648 — 2147483647 —...

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 22
7.2 Arithmetic Operation Instructions 5

Subtracting 32-bit binary data

D-(P)(_U) instruction and DSUB(P)(_U) instruction can be used for subtraction of 32-bit binary data.

D-(P)(_U) [using two operands]

These instructions subtract the 16-bit binary data in the device specified by (d) and the 16-bit binary data in the device

specified by (s), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C=d]le|w }—{

Not supported
== Page 228 D-(P)(_U) [using three operands]

FBD/LD

Not supported.

=~ Page 228 D-(P)(_U) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) D-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D-(P)_U data to be subtracted from another is stored [y 1, 4594967295 32-bit unsigned binary | ANY32_U
(d) D-(P) Head device where the data from which -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D-(P)_U another is to be subtracted is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |uDeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R
(s) O O O O O O O O — — —
(d) O O O O O O O — — — —

226

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions subtract the 32-bit binary data in the device specified by (d) and the 32-bit binary data in the device
specified by (s), and store the subtraction result in the device specified by (d).

(d)+1 (d) (s)+1 (s) (d)+1 (d)
/_)%f_)% /_)H/_)H e \
b31 - b16 b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[sersoo®IN) | - | 123456 BIN) | > | 444434 BIN) |

» When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.
In case of D-(P)

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16b15 -~ b0 b31 - b16b15 -~ b0 b31 - b16 b15 - b0
[2147483648 BIN)| - | 2 (BIN) | > [2147483646 (BIN) |
(d)+1 (d) (s)*+1 (s) (d)+1 (d)
b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[2147483647 BIN) | - | 2(BIN) | 2> [-2147483647 (BIN) |

In case of D-(P)(_U)
(d)+1 (d) (s)+1 (s) (d)+1 (d)
— — —

b31 - b16 b15 == b0 b31 = b16b15 = b0 b31 - b16 b15 = b0
| 0 (BIN) | - | 1 (BIN) | > [4294967295 (BIN) |

(d)+1 (d) (s)+1 (s) (d)+1 (d)

b31 - b16 b15 -~ b0 b31 - b16b15 -~ b0 b31 - b16 b15 - b0
| 0 (BIN) | - | 4294967295 (BIN) | > | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 22
7.2 Arithmetic Operation Instructions 7

D-(P)(_U) [using three operands]

These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DMINUS(EN,s1,s2,d); ENO:=DMINUS_U(EN,s1,s2,d);

— ENO:=DMINUSP(EN,s1,s2,d); ENO:=DMINUSP_U(EN,s1,52,d);
—Jc=a]en][] @ }—{ () -)
FBD/LD

C—
— EN ENO |—
— s1 d —
— s2

("DMINUS", "DMINUSP", "DMINUS_U", "DMINUSP_U" enters [.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D-(P) Minuend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U data from which another is to be subtracted is 0 to 4294967295 32-bit unsigned binary | ANY32_U

stored

(s2) | D-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S

D-(P)_U data to be subtracted from another is stored [y 1, 4594967295 32-bit unsigned binary | ANY32_U
(d) D-(P) Head device for storing the operation result — 32-bit signed binary ANY32_S

D-(P)_U — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uoOeO |z Lc |Lz |seecification [y Tg $
F, B, SB, S SD, SW, R

(s1) 0) 0 0 0 0)) — — —

(s2) 0 o 0 0 0 0 o} o} — — —

(d) 0 o} 0 0 0 0 O — — — —

228 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(s1)+1 (31) (52)+1 (52) (d)+1 (d)
/_)%f_)% /_)H/_)H e \
b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16b15 = b0
[sersoo®IN) | - | 123456 (BIN) | > | 444434 BIN) |

* When underflow or overflow occurs in the operation result, the following processing is executed. In this case, the carry flag

(SM700, SM8022) does not turn ON.
In case of D-(P)

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— — —

b31 - b16b15 = b0 b31 - b16b15 = b0 b31 - b16 b15 = b0
[-2147483648 BIN)| - | 2 (BIN) | > [2147483646 (BIN) |

(st (s1) (s2+1 (s2) (d)+1 (d)

b31 - b16 b15 ~ b0 b31 - b16b15 ~ b0 b31 - b16 b15 ~ b
[2147483647 BIN) | - | -2 (BIN) | > [2147483647 (BIN)]

In case of D-(P)(_U)
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 - b0
| 0 (BIN) | - | 1 (BIN) | > | 4294967295 (BIN) |

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— — —

b31 - b16b15 = b0 b31 b16b15 = b0 b31 - b16b15 b0
| 0 (BIN) | - [4294967295 BIN) | > | 1 (BIN) |

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 22
7.2 Arithmetic Operation Instructions 9

DSUB(P)(_U)

These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the result in the device specified by (d).

Ladder diagram

Structured text

—C.=3O]en| 62| @ }—{

ENO:=DSUB(EN,s1,s2,d);
ENO:=DSUBP(EN,s1,s2,d);

ENO:=DSUB_U(EN,s1,s2,d);
ENO:=DSUBP_U(EN,s1,s2,d);

FBD/LD

— s1

— s2

EN

L1

ENO

d

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DSUB(P) Minuend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DSUB(P)_U data from which another is to be subtracted is [1, 4594967295 32-bit unsigned binary | ANY32_U
stored
(s2) | DSUB(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DSUB(P)_U data to be subtracted from another is stored [4594967295 32-bit unsigned binary | ANY32_U
(d) DSUB(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DSUB(P)_U — 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\GO |z Lc |[Lz |specification ['y TE $
F,B, SB, S SD, SW, R
(s1) (@) O (@) (@) (@) (@) O O — — —
(s2) (@) (@] (@) (@) (@) (@) (@] O — — —
(d) (@) (@] (@) (@) (@) (@) O — — — —

Processing. details

» These instructions subtract the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the subtraction result in the device specified by (d).

(s1)+1

b31 - b

(s1)

16 b15 - b0

(s2)+1 (s2) (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 -

b0

[567890 (BIN)

| => |

123456 (BIN)

444434 (BIN)

230

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

HRelationship between the flag operation and the sign (positive or negative) of a numeric value

Device Name Description
SM700, SM8022 Carry When the operation result exceeds the upper limit of the data setting range, the carry flag is turned ON.
SM8020 Zero When the operation result is 0, the zero flag is turned ON.
SM8021 Borrow When the operation result is less than the lower limit of the data setting range, the borrow flag is turned ON.
The most significant The most significant
bit of data becomes 1\/ \/bit of data becomes "0".
Zero Flag Zero Flag
YA L ERY
-2, -1, 0, -2147483648 < 101 — > 2147483647, 0,1, 2
R
Borrow flag Zero Flag Carry flag
Precautions

HEWhen the DSUB instruction is used

When specifying word devices, a device is specified for the lower-order 16-bits first, and then a word device with the next
device number is set for the higher-order 16 bits. To prevent number overlap, it is recommended to always specify an even
number.

HEWhen specifying the same device in the source and destination
The same device number can be specified for both the source and the destination. In this case, note that the subtraction result

changes in every operation cycle if a continuous operation type SUB instruction is used.

X1
—{ DsuB DO K25 DO (D1, D0)-25 — (D1, DO)

HDifference between DSUB(P) instruction, D-(P) instruction, and DDEC(P) instruction in a

program for subtracting "-1"
When DSUB(P) instruction is used to subtract 1 from the contents of DO every time X1 turns from OFF to ON, SUB(P)

instruction is similar to D-(P) instruction and DDEC(P) instruction described later except for the contents shown in the table

below:
DSUB(P) instruction D-(P) instruction, DDEC(P) instruction
Flag (zero, borrow or carry) Operates Does not operate
Operation result ‘ (s)-1=(d) -2147483648 >0 > -1 > -2 >... -2147483648 — +2147483647 — +2147483646 — ...

Operation.error

There is no operation error.

7 BASIC INSTRUCTIONS 2 1
7.2 Arithmetic Operation Instructions 3

Multiplying 16-bit binary data

*(P)(_V) instruction and MUL(P)(_U) instruction can be used for multiplication of 16-bit binary data.

*(P)(LV)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text’!
ENO:=MULTI(EN,s1,52,d); ENO:=MULTI_U(EN,s1,52,d);

— ENO:=MULTIP(EN,s1,52,d); ENO:=MULTIP_U(EN, s1,52,d);
— . a[en|e]| @ }—{ (’ U)
FBD/LD

C.—1
— EN ENO [—
— si d —
— s2

("MULTI", "MULTIP", "MULTI_U", "MULTIP_U" enters O.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | *(P) Multiplicand data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
“(P)_U to be multiplied by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | *(P) Multiplier data or the device where the data by | -32768 to +32767 16-bit signed binary ANY16_S
*(P)_U which another is to be multiplied is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) *(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
*(P)_U 32-bit unsigned binary | ANY32_U
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O O O O — — — —

232 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).

(s1) (s2) (d)+1 (d)
A N\ —
b15 - b0 b15 - bo b31 = b16b15 = bO
[sera@IN) | x | 1234®IN) | >| 7006652 (BIN) |

* When (d) is a bit device, lower-order bit is specified first.

[Ex]

Multiplication result when (d) is a bit device
* K1 ... Lower 4 bits (b0 to b3)
* K4 ... Lower 16 bits (b0 to b15)
* K8 ... Lower 32 bits (b0 to b31)

Operation.error

Error code Description
(SD0/SD8067)
2820H The device range specified by (d) exceeds the corresponding device range.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 33

MUL(P)(_U)

These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text"’!
ENO:=MULP(EN,s1,52,d); ENO:=MUL_U(EN,s1,52,d);

— ENO:=MULP_U(EN,s1,52,d);
—Jc=aen][] @ }—{ .)
FBD/LD"

C.—/a
— En ENO |—
— s1 d —
— s2

("MULP", "MUL_U", "MULP_U" enters 0.)

*1 The MUL instruction is not supported by the ST language and the FBD/LD language. Use MUL of the standard function.
=~ Page 1302 MUL(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | MUL(P) Multiplicand data or the device where the data | -32768 to +32767 16-bit signed binary ANY16_S
MUL(P)_U to be multiplied by another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | MUL(P) Multiplier data or the device where the data by | -32768 to +32767 16-bit signed binary ANY16_S
MUL(P)_U which another is to be multiplied is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) MUL(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
MUL(P)_U 32-bit unsigned binary | ANY32_U

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification ey TE $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O O O O — — — —

Processing. details

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).

(s1) (s2) (d)+1 (d)
A N —

b15 - bo b15 - bo b31 = b16b15 = bO

[se7a@IN) | x | 1234BIN) | > [7006652 (BIN) |

234 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

 Nibble can be specified ranging from K1 to K8 for (d).

[Ex]

For example, when K2 is specified, only the lower-order 8 bits can be obtained out of the product (32 bits).

(s1) (s2) (d)
X0
— MUL K53 K15 K2Y0
s K53(0035H) |
X
s2) | K15(000FH) |
When command contact is ON
| K795(031BH) |
‘I’_ Sign bit (0: Positive, 1: Negative)
Y37 Y36 Y35 .. Y13 Y12 Y11 Y10 Y7 Y6 Y5 Y4 Y3 Y2 Y1 YO0
@ {o0otitoitof. .. totot1ri1loelo]lo] 1] 1]o] 1] 1]
| A J
N N
Q] 2)
(1): Not output
(2): K2Y0 operation result is output.
HRelated flag
Device Name Description
SM8304 Zero When the operation result is 0, the zero flag is turned ON.

Program example

X0
— MUL DO D2 D4 (DO) x (D2) — (D5, D4)
8 9 72

Operation.error

Error code Description
(SD0/SD8067)
2820H The device range specified by (d) exceeds the corresponding device range.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 35

Dividing 16-bit binary data

/(P)(_U) instruction and DIV(P)(_U) instruction can be used for division of 16-bit binary data.

I(P)(_V)

These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text’!
ENO:=DIVISION(EN, s1,52,d); ENO:=DIVISION_U(EN,s1,52,d);

— ENO:=DIVISIONP(EN s1,52,d); ENO:=DIVISIONP_U(EN,s1,52,d);
— . a[en|e]| @ }—{ () -)
FBDILD

C.—1
— EN ENO [—
— si d —
— s2

("DIVISION", "DIVISIONP", "DIVISION_U", "DIVISIONP_U" enters [1.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | /(P) Dividend data or the device where the data to | -32768 to +32767 16-bit signed binary ANY16_S
(P)_U be divided by anather is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | /(P) Divisor data or the device where the data by -32768 to +32767 16-bit signed binary ANY16_S
I(P)_U which another s to be divided is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) 1(P) Head device for storing the operation result — 32-bit signed binary ANY16_S_ARRAY
(Number of elements: 2)
/(P)_U 32-bit unsigned binary | ANY16_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uoOeO |z Lc |Lz |seecification [y Tg $
F, B, SB, S SD, SW, R

(s1) 0) 0 0 — —)) — — —

(s2) 0 O 0) — —) O — — —

(d) 0 o} 0 0 0 0 o} — — — —

236 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

(s1) (s2) (d) (d)+1
A} r A A} /—H
b5 .. bo b15 b0 b15 - b0 b15- b0
[sers@N) | = | 123a@IN) | > [4@IN) | [742BIN)

(d): Quotient
(d)+1: Remainder
« For the division result, 32-bit is used for word device to store the quotient and remainder and 16-bit is used for bit device to

store quotient only.
* Quotient...... Stored in the lower 16 bits.

* Remainder...... Stored in the upper 16 bits. (This data can be stored for word device only.)

Operation.error

Error code Description

(SD0/SD8067)

2820H The device range specified by (d) exceeds the corresponding device range.
3400H 0 is specified for (s2) value.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 37

DIV(P)(_U)

These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text"!
ENO:=DIVP(EN,s1,52,d); ENO:=DIV_U(EN,s1,52,d);

— ENO:=DIVP_U(EN,s1,52,d);
—Jc=aen][] @ }—{ -)
FBD/LD"

C.—/a
— En ENO |—
— s1 d —
— s2

("DIVP", "DIV_U", "DIVP_U" enters [.)

*1 The DIV instruction is not supported by the ST language and the FBD/LD language. Use DIV of the standard function.
=~ Page 1306 DIV(_E)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DIV(P) Dividend data or the device where the datato | -32768 to +32767 16-bit signed binary ANY16_S
DIV(P)_U be divided by anather is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(s2) | DIV(P) Divisor data or the device where the data by -32768 to +32767 16-bit signed binary ANY16_S
DIV(P)_U which another is to be divided is stored 0 to 65535 16-bit unsigned binary | ANY16_U
(d) DIV(P) Head device for storing the operation result — 32-bit signed binary ANY16_S_ARRAY
(quotient, remainder) (Number of elements: 2)
DIV(P)_U 32-bit unsigned binary | ANY16_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |uDeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O O O O — — — —

238 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

(s1) (s2) (d) (d)+1
N - N /—H /—H
b15 - bo b15 - bo b15 - b0 b15- b0
[sers@N) | = | 123a@IN) | > [4@IN) | [742BIN)
(d): Quotient

(d)+1: Remainder

» Two devices in total starting from the one specified by (d) are used to store the division result. Make sure that these two

devices are not used for another control.
* Quotient...... Stored in the lower 16 bits.

* Remainder...... Stored in the upper 16 bits.

HRelated flag

Device Name Description

SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

SM8304 Zero When the operation result is 0, the zero flag is turned ON.

SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.
Precautions

HOperation result
» The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.

» The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

HDevice specified by (d)

» The remainder is not obtained when a bit device is specified with digit specification.

Program. example

X0
— DIV

DO

(D0) =+ (D2) — (D4) - (D5)
100 33 3 1

D2 D4

‘{ Dividend Divisor Quotient Remainder

Operation.error

Error code Description

(SD0/SD8067)

2820H The device range specified by (d) exceeds the corresponding device range.

3400H 0 is specified for (s2) value.

3403H The data type of the data setting is signed data and the operation result exceeds 32767.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 39

240

Multiplying 32-bit binary data

D*(P)(_U) instruction and DMUL(P)(_U) instruction can be used for multiplication of 32-bit binary data.

D*(P)(_V)

These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram

Structured text"’!

— L. d[en]e2] @ }—{

ENO:=DMULTI(EN,s1,s2,n,d);
ENO:=DMULTIP(EN,s1,s2,n,d);

ENO:=DMULTI_U(EN,s1,s2,n,d);
ENO:=DMULTIP_U(EN,s1,s2,n,d);

FBD/LD

C—
— EN ENO —
— si d —
— s2

("DMULTI", "DMULTIP",

"DMULTI_U", "DMULTIP_U" enters 00.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D*(P) Multiplicand data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D*(P)_U data to be multiplied by anather is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D*(P) Multiplier data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
D*(P)_U data by which another is to be multiplied is 0 to 4294967295 32-bit unsigned binary | ANY32_U
stored
(d) D*(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements: 2)
D*(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z LC |Lz | specification [y [$
F, B, SB, S SD, SW, R
(s1) O @) O O O O @) @) — — —
(s2) O @) O O O O @) @) — — —
(d) O @) — — O — @) — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d+3 ()2 (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 b0 b63 - b48 b47 -+ b32b31 - b16 b15 - b0

[567800 BIN) | x [123456 BIN) | > | 70109427840 (BIN) |

* When (d) is a bit device, only the lower 32 bits of the multiplication result are stored and the upper 32 bits cannot be
specified. If the upper 32 bits data of the multiplication operation result are required, temporarily store the result in a word
device, and transfer the data stored in word device ((d)+2) and ((d)+3) to the specified bit devices.

[Ex]

Multiplication result when (d) is a bit device
* K1 ... Lower 4 bits (b0 to b3)
* K4 ... Lower 16 bits (b0 to b15)
« K8 ... Lower 32 bits (b0 to b31)

Operation.error

Error code Description
(SD0/SD8067)
2820H The device range specified by (d) exceeds the corresponding device range.

7 BASIC INSTRUCTIONS 241
7.2 Arithmetic Operation Instructions

DMUL(P)(_U)

These instructions multiply the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DMUL(EN,s1,s2,d); ENO:=DMUL_U(EN,s1,s2,d);

— ENO:=DMULP(EN,s1,52,d); ENO:=DMULP_U(EN,s1,s2,d);
—Jc=a]en][] @ }—{ () -)
FBD/LD

C—
— EN ENO |—
— s1 d —
— s2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DMUL(P) Multiplicand data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DMUL(P)_ U | data to be multiplied by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DMUL(P) Multiplier data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DMUL(P)_U | data by which another is to be multiplied is 0 to 4294967295 32-bit unsigned binary | ANY32_U
stored
(d) DMUL(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements: 2)
DMUL(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) O O O — O — O — — — —

242 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Processing. details

» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the multiplication result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d#*3 (@)+2 (d)+1 (d)

b31 - b16b15 = b0 b31 - b16b15 = b0 b63 - b48 b47 -~ b32b31 = b16 b15 = b0
[sersoo@IN) | x | 123456 BIN) | > | 70109427840 (BIN) |

* When nibble is specified ranging from K1 to K8 for (d), the result is obtained only for the lower-order 32 bits, and is not
obtained for the higher-order 32 bits. Transfer the data to word devices once, then execute the operation.

(s1) (s2) (d)

X0
] (D51,050) (D103,D102,0101,D100)
}—H— DMUL D50 K150 D100 K100 x K150 — K15000
D100 — Y17 to YO
DMOV D100 K8Y0 | D101 — Output to Y37 to Y20
D102 — Y57 to Y40
DMov D102 | K8Y40 | hy03_, Output to Y77 to Y60
HRelated flag
Device Name Description
SM8304 Zero When the operation result is 0, the zero flag is turned ON.
Precautions

» Even if word devices are used, the operation result (64 bits binary data) cannot be monitored at one time. In such a case, a
floating point operation is recommended.

Program example

X1 (D1, DO) x (D3, D2)—(D7, D6, D5, D4)
F— DMUL Do D2 D4 1756 327 574212
Operation.error
Error code Description
(SD0/SD8067)
2820H The device range specified by (d) exceeds the corresponding device range.

7 BASIC INSTRUCTIONS 24
7.2 Arithmetic Operation Instructions 3

Dividing 32-bit binary data

D/(P)(_U) instruction and DDIV(P)(_U) instruction can be used for division of 32-bit binary data.

D/(P)(_V)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text’!
ENO:=DDIVISION(EN,s1,52,d); ENO:=DDIVISION_U(EN,s1,52,d);

— ENO:=DDIVISIONP(EN,s1,52,d); ENO:=DDIVISIONP_U(EN,s1,52,d);
— L. d[en]e2] @ }—{ () -)
FBDILD

C.—1
— EN ENO [—
— s1 d —
— s2

("DDIVISION", "DDIVISIONP", "DDIVISION_U", "DDIVISIONP_U" enters [1.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | D/(P) Dividend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DI(P)_U data to be divided by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | D/(P) Divisor data or the head device where the data | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DI(P)_U by which another is fo be divided is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) D/(P) Head device for storing the operation result — 64-bit signed binary ANY32_ARRAY
DI(P)_U 64-bit unsigned binary | (Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) e} o} — — o} — e} — — — —

Processing details

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

(s)+1 (s1) (s2)+1 (s2) (d)+1 () (d)+3 (d)+2
b31 - b16b15 - b0 b31 - b16b15 - b0 b31 - b16b15 = b0 b31 -~ b16b15 = b0
[sersooeINy | + [123456 (BIN) | > 4a@®N) | [74086 (BIN) |

* For the division result of word device, 64-bit binary is used to store the quotient and remainder. For bit device, 32-bit binary
is used to store quotient only.

244 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

- Operation error

2820H The device range specified by (d) exceeds the corresponding device range.
3400H 0 is specified for (s2) value.

7 BASIC INSTRUCTIONS 24
7.2 Arithmetic Operation Instructions 5

DDIV(P)(_U)

These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device specified
by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DDIV(EN,s1,s2,d); ENO:=DDIV_U(EN,s1,s2,d);

— ENO:=DDIVP(EN,s1,s2,d); ENO:=DDIVP_U(EN,s1,52,d);
—Jc=a]en][] @ }—{ ‘) -)
FBD/LD

C—
— EN ENO |—
— s1 d —
— s2

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DDIV(P) Dividend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DDIvV(P)_U | datato be divided by another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DDIV(P) Divisor data or the head device where the data | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DDIV(P)_U | Dy which another s to be divided is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DDIV(P) Head device for storing the operation result — 64-bit signed binary ANY32_S_ARRAY
(Number of elements: 2)
DDIV(P)_U 64-bit unsigned binary | ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |uDeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) O O O — O — O — — — —

Processing. details

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the division result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d) (d)+3 (dy+2
— " — — " — "
b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 -~ b16 b15 - b0 b31 - b16 b15 - b0
[serseo@IN) | + | 123456 BIN) | > | 4 (BIN) | [74066 BIN) |
HRelated flag
Device Name Description
SM700 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.
SM8304 Zero When the operation result is 0, the zero flag is turned ON.
SM8306 Carry When the operation result of the signed operation exceeds 32767, the carry flag is turned ON.

246 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Precautions

HOperation result
» The most significant bit of the quotient and remainder indicates the sign (positive: 0, negative: 1), respectively.

» The quotient is negative when either (s1) or (s2) is negative. The remainder is negative when the (s1) is negative.

EDevice specified by (d)

« The remainder is not obtained when a bit device is specified with digit specification.

Program. example

X1 Dividend Divisor Quotient = Remainder
— DDIV DO D2 D4 (D1, DO) + (D3, D2)—(D5, D4) - (D7, D6)
100000 3333 30 10
Operation.error
Error code Description
(SD0/SD8067)
2820H The device range specified by (d) exceeds the corresponding device range.
3400H 0 is specified for (s2) value.
3403H Signed operation is performed and the operation result exceeds 2147483647.

7 BASIC INSTRUCTIONS 24
7.2 Arithmetic Operation Instructions 7

Adding BCD 4-digit data

B+(P) [using two operands]

These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text
Not supported
| Co—] | (s) | d) }{ =5~ Page 249 B+(P) [using three operands]
FBD/LD
Not supported.
=~ Page 249 B+(P) [using three operands]
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s) Addend data or the device where the data that is added to | 0 to 9999 BCD 4-digit ANY16
another is stored
(d) Device where the data to which another is added is stored | 0 to 9999 BCD 4-digit ANY16
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uOweO |z Lc |Lz | seecification [y g $
F, B, SB, S SD, SW, R
(s) (@) (@] O O — — @) @) — — —
(d) O (©] (@) (@) — — @) — — — —

Processing details
» These instructions add the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified
by (s), and store the addition result in the device specified by (d).

(d) (s) (d)
—_— A A

[s[el7l8] + [1]2[a[a]c>[6fo][1]2]
« If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

[6[afal2f« [3[s][s[a]r>[ofo]1]5]

Operation.error

Error code Description

(SD/SD8067)

3405H BCD data in the device specified by (s) is outside of the valid range (0 to 9999).
BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

248 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

B+(P) [using three operands]

These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified by

(s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=BPLUS(EN,s1,s2,d);
— ENO:=BPLUSP(EN,s1,s2,d);
—Jc=aen][] @ }—{ (ENsTs2.4)
FBD/LD
C—
— EN ENO |—
— s1 d —
— s2

("BPLUS", "BPLUSP" enters [1.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Augend data or the device where the data to which 0 to 9999 BCD 4-digit ANY16
another is added is stored
(s2) Addend data or the device where the data that is added to | 0 to 9999 BCD 4-digit ANY16
another is stored
(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O — — O — — — —

Processing. details

» These instructions add the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device specified
by (s2), and store the addition result in the device specified by (d).

(s1) (s2) (d)
/—/% AL ~ A
[slef7[s] + [1]2]af[a]c>[6]o]1]2]

« If the addition result exceeds 9999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.
[6[afsfa] + [s][s]els|c>[ofol1]5]

Operation.error

Error code Description

(SD0/SD8067)

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

7 BASIC INSTRUCTIONS 24
7.2 Arithmetic Operation Instructions 9

Subtracting BCD 4-digit data

B-(P) [using two operands]

These instructions subtract the BCD 4-digit data in the device specified by (d) and the BCD 4-digit data in the device specified
by (s), and store the result in the device specified by (d).

Ladder diagram

Structured text

— L=

e | @ }—{

Not supported

=5~ Page 251 B-(P) [using three operands]

FBD/LD

Not supported.
=~ Page 251 B-(P) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Subtrahend data or the device where the data to be 0 to 9999 BCD 4-digit ANY16
subtracted from another is stored
(d) Device where the data from which another is to be 0 to 9999 BCD 4-digit ANY16
subtracted is stored
EApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uOwO |z Lc |[Lz |specification ['y TE $
F, B, SB, S SD, SW, R
(s) (@) O (@) (@) — — O O — — —
(d) (@) O (@) (@) — — @) — — — —

Processing details

» These instructions subtract the BCD 4-digit data in the device specified by (s) and the BCD 4-digit data in the device
specified by (d), and store the subtraction result in the device specified by (d).

@) @
(—% N N
|0|\2\3\4|Q>|0\4\4\4|

lole[7[8] -
l » 0 is entered.

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.
[ofolol1] - [ofofof[s|=>[ofofo]s]

Operation.error

Error code
(SD0/SD8067)

3405H

Description

BCD data in the device specified by (s) is outside of the valid range (0 to 9999).

BCD data in the device specified by (d) is outside of the valid range (0 to 9999).

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

250

B-(P) [using three operands]

These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device
specified by (s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=BMINUS(EN,s1,s2,d);
— ENO:=BMINUSP(EN,s1,s2,d);
—Jc=a]en[e] @ }—{ ()
FBD/LD
C—
— EN ENO |—
— s1 d —
— s2

("BMINUS", "BMINUSP" enters [1.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Minuend data or the device where the data from which 0 to 9999 BCD 4-digit ANY16
another is to be subtracted is stored
(s2) Subtrahend data or the device where the data to be 0 to 9999 BCD 4-digit ANY16
subtracted from another is stored
(d) Device for storing the operation result 0 to 9999 BCD 4-digit ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O — — O O — — —

(s2) O O O O — — O O — — —

(d) O O O O — — O — — — —

Processing. details
» These instructions subtract the BCD 4-digit data in the device specified by (s1) and the BCD 4-digit data in the device
specified by (s2), and store the subtraction result in the device specified by (d).

(s1) (s2) (d)
/—/% AL N A
|f|>\6\7|8|-|o\2\3|4|z>|ol4\4l4|

» 0is entered.

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[olofola1] - [ofofo[3fr>[ofo]o]s]

7 BASIC INSTRUCTIONS 2 1
7.2 Arithmetic Operation Instructions 5

- Operation error

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

252 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Adding BCD 8-digit data

DB+(P) [using two operands]

These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified by
(s), and store the result in the device specified by (d).

Ladder diagram Structured text

—C=0le | @ }—{

FBD/LD

Not supported.
IS~ Page 254 DB+(P) [using three operands]

Not supported
=5~ Page 254 DB+(P) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Addend data or the head device where the data that is 0 to 99999999 BCD 8-digit ANY32
added to another is stored
(d) Head device where the data to which another data is 0 to 99999999 BCD 8-digit ANY32
added is stored
EApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\GO |z Lc |[Lz |specification ['y TE $
F, B, SB, S SD, SW, R
(s) (@) O (@) (@) (@) (@) O O — — —
(d) (@) O (@) (@) (@) (@) O — — — —

Processing details

» These instructions add the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified
by (s), and store the addition result in the device specified by (d).
(d)+1 ()

(s)+1 (s) (d)+1 (d)

[o[s]e]7[1[o[e[s] + [o[o[3]2]3]4]s[6] => [1]0[1]s]4]5]2]4]

(d)+1, (s)+1
Upper 4 digits

‘ » 0 is entered.

(d), (s)

Lower 4 digits

« If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

[s]o]o[o[o]ofo[o] + [o]1]6]s[4[3[2[1] > [o]o]6]s]4]3[2]1]

Operation. error

Error code Description
(SD0/SD8067)
3405H BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

253

DB+(P) [using three operands]

These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified by
(s2), and store the result in the device specified by (d).

Ladder diagram Structured text
ENO:=DBPLUS(EN,s1,s2,d);
— ENO:=DBPLUSP(EN,s1,s2,d);
—Jc=alen]e] @ }—{ ()
FBD/LD
C—
— EN ENO |—
— s1 d —
— s2

("DBPLUS", "DBPLUSP" enters [1.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Augend data or the head device where the data to which 0 to 99999999 BCD 8-digit ANY32
another is added is stored
(s2) Addend data or the head device where the data that is 0 to 99999999 BCD 8-digit ANY32
added to another is stored
(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) O O O O O O O — — — —

Processing. details

» These instructions add the BCD 8-digit data in the device specified by (s1) and the BCD 8-digit data in the device specified
by (s2), and store the addition result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
f—)%/_)% f—)%/_)%
s[e[7]slo[1]2[3] + [o]1]2]3[4]s[6[7] => [5]8[0]2[3]6[9]0]
0 is entered.
(d)+1, (s1)+1, (s2)+1 (d), (s1), (s2)
Upper 4 digits Lower 4 digits

« If the addition result exceeds 99999999, carry is ignored. In this case, the carry flag (SM700) does not turn ON.

[s]o]o[o[o]ofo[o] + [o]1]6]5[4[3]2[1] > [o]o]6]5]4]3[2]1]

254 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

- Operation error

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 55

Subtracting BCD 8-digit data

DB-(P) [using two operands]

These instructions subtract the BCD 8-digit data in the device specified by (d) and the BCD 8-digit data in the device specified
by (s), and store the result in the device specified by (d).

Ladder diagram Structured text

Not supported
=5~ Page 257 DB-(P) [using three operands]

—C=0le | @ }—{

FBD/LD

Not supported.
=~ Page 257 DB-(P) [using three operands]

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s) Subtrahend data or the head device where the data to be | 0 to 99999999 BCD 8-digit ANY32
subtracted from another is stored
(d) Minuend data or the head device where the data from 0 to 99999999 BCD 8-digit ANY32
which another is to be subtracted is stored
EApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uDeO |z LC |Lz | specification [y [$
F, B, SB, S SD, SW, R
(s) O @) O O O O @) @) — — —
(d) O @) O O O O @) — — — —

256

Processing details

» These instructions subtract the BCD 8-digit data specified by (d) and the BCD 8-digit data specified by (s), and store the
results in the device specified by (d).
(d)+1 ()

(s)+1 (s) (d)+1 (d)

lofo]s[7]1]o[e]e] - [o]o[3]2[3]4]s[6] > [o]s[5]4]7[6]1]2]

‘ » 0 is entered.

(d)+1, (s)+1 (d), (s)

Upper 4 digits Lower 4 digits

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[1]2]3[4]s]e[7[8] - [1]2]s]4]s[e[7]o] > [o]s[o]o]0]s[o]9]

Operation.error

Error code Description
(SD0/SD8067)
3405H BCD data in the device specified by (s) is outside of the valid range (0 to 99999999).

BCD data in the device specified by (d) is outside of the valid range (0 to 99999999).

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

DB-(P) [using three operands]

These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

Ladder diagram Structured text
ENO:=DBMINUS(EN,s1,s2,d);
— ENO:=DBMINUSP(EN,s1,s2,d);
—Jc=a]en][] @ }—{ ()
FBD/LD
C—
— EN ENO |—
— s1 d —
— s2

("DBMINUS", "DBMINUSP" enters [1.)

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) Minuend data or the head device where the data from 0 to 99999999 BCD 8-digit ANY32
which another is to be subtracted is stored
(s2) Subtrahend data or the head device where the data to be | 0 to 99999999 BCD 8-digit ANY32
subtracted from another is stored
(d) Head device for storing the operation result 0 to 99999999 BCD 8-digit ANY32
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL

HMApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,sT,c,D,w, |umeO |z Lc |Lz |specification [y Tg $
F, B, SB, S SD, SW, R

(s1) O O O O O O O O — — —

(s2) O O O O O O O O — — —

(d) O O O O O O O — — — —

Processing. details

» These instructions subtract the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
f—)%/_)% f—)%/_)%
s[e[7]8lo[1]2[3] - [o]1]2]3[4]s[6[7] => [5]5]5]5[4]5[5]e]
0 is entered.
(d)+1, (s1)+1, (s2)+1 (d), (s1), (s2)
Upper 4 digits Lower 4 digits

« If an underflow occurs, the result will be as follows. In this case, the carry flag (SM700) does not turn ON.

[1]2]3[4]s]e[7[8] - [1]2]s]4]s[e[7]o] > [o]s[]o]0]s[o]9]

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 57

- Operation error

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

258 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Multiplying BCD 4-digit data

B*(P)

These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the
results in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ }—{
FBD/LD
C._— 1
— EN ENO (—
— st d —
— s2
("BMULTI", "BMULTIP" enters O.)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Multiplicand data or the device where the data to be 0 to 9999 BCD 4-digit ANY 16
multiplied by another is stored
(s2) Multiplier data or the device where the data by which 0 to 9999 BCD 4-digit ANY 16
another is to be multiplied is stored
(d) Head device for storing the operation result — BCD 8-digit ANY32
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uOweO |z LC |Lz | seecification [y [$
F, B, SB, S SD, SW, R
(s1) O @) O O — — @) @) — — —
(s2) O @) O O — — @) @) — — —
(d) O @) O O O O @) — — — —

Processing. details

» These instructions multiply the BCD 4-digit data specified by (s1) and the BCD 4-digit data specified by (s2), and store the

multiplication results in the device specified by (d). ((d)+1: Upper 4 digits, (d): Lower 4 digits)

(s1)

/—J%

(s2)

A

(d)+1

(d)

[s]el7

| 8 |

s
~[olsl7[efc>[ofafol7[[3[o]2]8]

0 is entered.

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

259

- Operation error

2820H The device specified by (d) exceeds the corresponding device range.
3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

260 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Dividing BCD 4-digit data

B/(P)

These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the results
in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ }—{
FBD/LD
C._— 1
— EN ENO (—
— st d —
— s2
("BDIVISION", "BDIVISIONP" enters .)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Dividend data or the device where the data to be divided 0 to 9999 BCD 4-digit ANY16
by another is stored
(s2) Divisor data or the device where the data by which 0 to 9999 BCD 4-digit ANY16
another is to be divided is stored
(d) Head device for storing the operation result — BCD 8-digit ANY16_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z LC |Lz | specification [y [$
F, B, SB, S SD, SW, R
(s1) O @) O O — — @) @) — — —
(s2) O @) O O — — @) @) — — —
(d) O @) O O O O @) — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

261

Processing. details

» These instructions divide the BCD 4-digit data specified by (s1) by the BCD 4-digit data specified by (s2), and store the
results of division in the device specified by (d).

(s1) (s2) @ (@+1
A A A -
[s[ef[7[8] +[ofs]7]e|=>[o]ofofef[ofaf2]2]

0 is entered.

(d): Quotient
(d)+1: Remainder

» The results of division are stored as quotient and remainder using 32 bit(s).
*» Quotient (BCD 4-digit): Stored in lower 16 bit(s).
* Remainder (BCD 4-digit): Stored in upper 16 bit(s).

« If (d) is specified by bit device, remainder of division results is not stored.

Operation.error

Error code Description

(SD0/SD8067)

2820H The device specified by (d) exceeds the corresponding device range.

3400H 0 is specified for (s2) value.

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 9999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 9999).

262 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Multip

lying BCD 8-digit data

DB*(P)

These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the
results in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ }—{
FBD/LD
C._— 1
— EN ENO —
— st d —
— s2
("DBMULTI", "DBMULTIP" enters O.)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Multiplicand data or the head device where the data to be | 0 to 99999999 BCD 8-digit ANY32
multiplied by another is stored
(s2) Multiplier data or the head device where the data by which | 0 to 99999999 BCD 8-digit ANY32
another is to be multiplied is stored
(d) Head device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, |uO\eO |z LC |Lz | specification [y [$
F, B, SB, S SD, SW, R
(s1) O @) O O O O @) @) — — —
(s2) O @) O O O O @) @) — — —
(d) O @) — — O — @) — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

263

Processing. details
» These instructions multiply the BCD 8-digit data specified by (s1) and the BCD 8-digit data specified by (s2), and store the

multiplication results in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)

A A

s N\ N\
[olofolof[ofofolof «~[ofofofof[ofofo]s]

(d)+3 (d)+2 (d)+1 (d)

- - - -
C>lofolofof[ofolofs]lofofofo][ofoo]1]

* When (d) is a bit device, only the lower 8 nibbles (32 bits) of the multiplication result are stored, and the higher 8 nibbles (32

bits) cannot be specified.

[Ex]

Multiplication result when (d) is a bit device
« K1 ... Lower 1 nibble (b0 to b3)
* K4 ... Lower 4 nibble (b0 to b15)
« K8 ... Lower 8 nibble (b0 to b31)

Operation.error

Error code Description

(SD0/SD8067)

2820H The device specified by (d) exceeds the corresponding device range.

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

264 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Dividing BCD 8-digit data

DB/(P)

These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the results
in the device specified by (d).

Ladder diagram Structured text
Not supported
— = d]en|ea] @ }—{
FBD/LD
C._— 1
— EN ENO (—
— st d —
— s2
("DBDIVISION", "DBDIVISIONP" enters 0.)
Setting data
EDescriptions, ranges, and data types
Operand Description Range Data type Data type (label)
(s1) Dividend data or the head device where the data to be 0 to 99999999 BCD 8-digit ANY32
divided by another is stored
(s2) Divisor data or the head device where the data by which 0 to 99999999 BCD 8-digit ANY32
another is to be divided is stored
(d) Head device for storing the operation result — BCD 16-digit ANY32_ARRAY
(Number of elements: 2)
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
HApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M,L,SM, |T,ST,C,D,W, | uO\GO LC |Lz | specification [y [$
F, B, SB, S SD, SW, R
(s1) O @) O O O @) @) — — —
(s2) O @) O O O @) @) — — —
(d) O @) — O — @) — — — —

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

265

Processing. details

» These instructions divide the BCD 8-digit data specified by (s1) by the BCD 8-digit data specified by (s2), and store the
results of division in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2)
[s[el7r[sf[ofr1[afs]+[ofr[ofa][afs[6]7]
0 is entered.
Quotient (d)+1 (d) Remainder (d)+3 (d)+2
- - - -

m>lolofofof[ofofa]s] lof1]2[3f[3]eofs]
(d)+1, (d)+3 (d), (d)+2
Upper 4 digits Lower 4 digits

» The results of division are stored as quotient and remainder using 64 bit(s) binary.
» Quotient (BCD 8-digit): Stored in lower 32 bit(s).
* Remainder (BCD 8-digit): Stored in upper 32 bit(s).

« If (d) is specified by bit device, remainder of division results is not stored.

Operation.error

Error code Description

(SD0/SD8067)

2820H The device specified by (d) exceeds the corresponding device range.

3400H 0 is specified for (s2) value.

3405H BCD data in the device specified by (s1) is outside of the valid range (0 to 99999999).
BCD data in the device specified by (s2) is outside of the valid range (0 to 99999999).

266 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Adding 16-bit binary block data

BK+(P)(_U)

These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary

data from the device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text"!
ENO:=BKPLUS(EN,s1,s2,n,d); ENO:=BKPLUS_U(EN,s1,s2,n,d);
pp— ENO:=BKPLUSP(EN,s1,s2,n,d); ENO:=BKPLUSP_U(EN,s1,s2,n,d);
—C.”Oen || @ | o
FBD/LD
C— 1
— EN ENO |—
— st d —

— s2

h— n

("BKPLUS", "BKPLUSP", "BKPLUS_U", "BKPLUSP_U" enters [1.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | BK+(P) Head device where the data to which another | -32768 to +32767 16-bit signed binary ANY16_S
BK+(P)_U data is added is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | BK+(P) Addend data or the head device where the -32768 to +32767 16-bit signed binary ANY16_S
BK+(P)_U data that is added to another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) BK+(P) Head device for storing the operation result — 16-bit signed binary ANY16_S
BK+(P)_U — 16-bit unsigned binary | ANY16_U

(n) Number of addition data 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |T,ST,C,D,W, |uO\eO |z Lc |Lz | specification [\ [$
F, B, SB, S SD, SW, R

(s1) — O — — — — O — — — —

(s2) — o) — — — — o o — — —

(d) — o — — — — o — — — —

(n) o o o o - |= o o — — =

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 67

Processing. details

» These instructions add (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit binary
data from the device specified by (s2), and store the results of addition in the device specified by (d).
+ Block addition is performed in units of 16-bits.

[Ex]

If device is specified for (s2) (signed)

b15 - b0 b15 - b0 b15 - b0
(s1) 1234 (BIN) (s2) 4000 (BIN) (d) 5234 (BIN)
(s1)+1 4567 (BIN) (s2)+1 1234 (BIN) (d)+1 5801 (BIN)
1)+2 -2000 BIN 2)+2 -1234 (BIN d)+2 -3234 BIN
v Ol e]y oy o o],
H /_/ H /_/ H /_/
(s1)+(n-2) |-1234 (BIN) (s2)+(n-2) | 5000 (BIN) (d)+(n-2) | 3766 (BIN)
(s1)*+(n-1) | 4000 (BIN) (s2)+(n-1) | 4321 (BIN) (d)+(n-1) | 8321 (BIN)

If constant is specified for (s2) (signed)

b15 - b0 b15 -+ b0
(s1) 1234 (BIN) (d) 5555 (BIN)
(s1)+1 4567 (BIN) b5 - bo (d)+1 8888 (BIN)
(s1)+2 2000 (BIN) (d)y+2 2321 (BIN)

(n) + (s2) | 4321 (BIN) n)

: — = : ———
(s1)+(n-2) [-1234 (BIN) (d)y+(n-2) | 3087 (BIN)
(s1)+(n-1) | 4000 (BIN) (d)+(n-1) | 8321 (BIN)

« If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.
If signed is specified If unsigned is specified
K32767 . K2 |:,‘> K-32767 K65535 . Ki Ko
(7FFFH) (0002H) (8001H) (FFFFH) (0001H) (0000H)
K-32767 K-2 K32767
(8001H) © (FFFEH) ':|'> (TFFFH)

Program example

In the program shown below, the specified number of data stored in D150 to DO are added to the specified number of data
stored in D100 to DO when X20 is set to ON, and the operation result is stored in D200 and later.

X20
}—H—— BK+ D100 D150 D200 DO *‘ When DO is "4"
b15 ... b0 b15 ... b0 b15 ... b0
D100 6789 D150 1234 D200 8023
D101 7821 D151 2032 :> D201 9853
+
D102 5432 D152 -3252 D202 2180
D103 3520 D153 -1000 D203 2520

o[7]

Operation.error

Error code Description

(SD0/SD8067)

2820H The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821H The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

268 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Subtracting 16-bit binary block data

BK-(P)(_U)

These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit

binary data from the device specified by (s2), and store the results in the device specified by (d).

Ladder diagram Structured text"!
ENO:=BKMINUS(EN,s1,s2,n,d); ENO:=BKMINUS_U(EN,s1,s2,n,d);
pp— ENO:=BKMINUSP(EN,s1,s2,n,d); ENO:=BKMINUSP_U(EN,s1,s2,n,d);
—C.”Oen || @ | o
FBD/LD
C— 1
— EN ENO |—
— st d —

— s2

h— n

("BKMINUS", "BKMINUSP", "BKMINUS_U", "BKMINUSP_U" enters O.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | BK-(P) Head device where the data from which -32768 to +32767 16-bit signed binary ANY16_S
BK-(P)_U another is to be subtracted is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(s2) | BK-(P) Subtrahend data or the head device where the | -32768 to +32767 16-bit signed binary ANY16_S
BK-(P)_U data to be subtracted from another is stored 0 to 65535 16-bit unsigned binary | ANY16_U

(d) BK-(P) Head device for storing the operation result — 16-bit signed binary ANY16_S
BK-(P)_U — 16-bit unsigned binary | ANY16_U

(n) Number of subtraction data 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |T,ST,C,D,W, |uO\eO |z Lc |Lz | specification [\ [$
F, B, SB, S SD, SW, R

(s1) — O — — — — O — — — —

(s2) — o) — — — — o o — — —

(d) — o — — — — o — — — —

(n) o o o o - |= o o — — =

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 69

Processing. details

» These instructions subtract (n) point(s) of 16-bit binary data from the device specified by (s1) and the (n) point(s) of 16-bit
binary data from the device specified by (s2), and store the subtraction results in the device specified by (d).
* Block subtraction is performed in 16-bit units.

[Ex]

If device has been specified for (s2)

b15 - b0 b15 - b0 b15 - b0
(s) 8765 (BIN) (s2) 1234 (BIN) (d) 7531 (BIN)

(s1)+1 8888 (BIN) (s2)+1 5678 (BIN) (d)+1 3210 (BIN) T
(d)+2 551 (BIN)

o~ o~ : T~

(s1)*+(n-2) | 5000 (BIN) (s2)+(n-2) [4321 (BIN) @d)*+n-2) | 679 (BIN)

1)+2 | 9325 (BN T 2)+2 | 9876 (BIN
('S) ()(n)) (.S) ()(n) I:>

(s1)+(n-1) | 4352 (BIN) (s2)+(n-1) | 4000 (BIN) (d)+(n-1) | 352 (BIN)

If constant is specified for (s2)

b15 - b0 b15 - b0
(s1) 8765 (BIN) (d) -115 (BIN)
(s1)+1 8888 (BIN) b15 o bO (d)+1 8 (BIN)
oz e GN]G o g ew] o) 97 PG,
: — : —
(s1)+(n-2) | 5000 (BIN) (d)+(n-2) |-3880 (BIN)
(s1)*+(n-1)| 4352 (BIN) (d)+(n-1) | -4528 (BIN)

« If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does

not turn ON.
If signed is specified If unsigned is specified
K-32767 K2 : K32766 Ko K1 K65535
(8001H) ~ (0002H) (TFFEH) (0000H) =~ (0001H) ':|,> (FFFFH)
K32767 K-2 K-32767
(TFFFH) =~ (FFFEH) ':|'> (8001H)

Program example

In the program shown below, the constant "K8765" is subtracted from the data stored in D100 to D102 when X10 is set to ON,
and the operation result is stored in D200 to D202.

X10
P BK-P D100 K8765 D200 K3

b15 - b0 b15 - b0
D100 K12345 D200 K3580

b15 - b0
D101 K8701 - K8765 |:> D201 K-64

D102 K3502 D202 K-5263

Operation.error

Error code Description

(SD0/SD8067)

2820H The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821H The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

270 7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

Adding 32-bit binary block data

DBK+(P)(_U)

These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary

data from the device specified by (s2), and store the results of addition in the device specified by (d).

Structured text’

ENO:=DBKPLUS(EN,s1,s2,n,d);
ENO:=DBKPLUSP(EN,s1,s2,n,d);

Ladder diagram

—C.”Oen || @ | o }—{

ENO:=DBKPLUS_U(EN,s1,s2,n,d);
ENO:=DBKPLUSP_U(EN,s1,s2,n,d);

FBD/LD

C._—1
— EN ENO —
— s d —

— s2

h— n

("DBKPLUS", "DBKPLUSP", "DBKPLUS_U", "DBKPLUSP_U" enters O.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)
(s1) | DBK+(P) Head device where the data to which another | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DBK+(P)_U is added is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(s2) | DBK+(P) Addend data or the head device where the -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DBK+(P)_U data that is added to another is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U
(d) DBK+(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DBK+(P)_U — 32-bit unsigned binary | ANY32_U
(n) Number of addition data 0 to 65535 16-bit unsigned binary | ANY16
EN Execution condition — Bit BOOL
ENO Execution result — Bit BOOL
BApplicable devices
Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |T,ST,C,D,W, uOeO |z Lc |[Lz |specification ['y TE $
F, B, SB, S SD, SW, R
(s1) — @) — — @) — @) — — — —
(s2) — (@] — — (@) — @) @) — — —
(d) — (@] — — O — @) — — — —
(n) @) @) @) @) — — @) @) — — —

Processing. details

» These instructions add (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit binary

data from the device specified by (s2), and store the results of addition

* Block addition is performed in 32-bit units.

in the device specified by (d).

7 BASIC INSTRUCTIONS
7.2 Arithmetic Operation Instructions

271

[Ex]

If device is specified for (s2) (signed)

b31 - b0 b31 - b0 b31 - b0
(s1)+1, (s1) -30000 (BIN) (s2)+1, (s2) 50000 (BIN) (d)+1, (d) 20000 (BIN)
(s1)+3, (s1)+2 40000 (BIN) T (s2)+3, (s2)+2 20000 (BIN) T (d)+3, (d)+2 60000 (BIN) T
(s1)+5, (s1)+4 -50000 (BIN)| (n) + (s2)+5, (s2)+4 -10000 (BIN) | (n) |:> (d)+5, (d)+4 -60000 (BIN) | (n)
: : — ; ; T : :
(s1)+(2n-1), (s1)+(2n-2) | 60000 (BIN) AL (s2)+(2n-1), (s2)+(2n-2) | -20000 (BIN) (d)+(2n-1), (d)+(2n-2) | 40000 (BIN) AL
If constant is specified for (s2) (signed)

b31 - b0 b31 - b0
(s1)+1, (s1) -30000 (BIN) (d)*+1, (d) 20000 (BIN)
(s1)+3, (s1)+2 40000 (BIN) T b31 - b0 (d)+3, (d)+2 90000 (BIN) T
(s1)+5, (s1)+4 -50000 (BIN)| (n) + (s2)+1,(s2) |50000 (BIN) |:> (d)+5, (d)+4 0 (BIN)| (n)
; ; o : 5]
(s1)*+(2n-1), (s1)+(2n-2) | 60000 (BIN) AL (d)+(2n-1), (d)+(2n-2) | 110000 (BIN) AL

» Operation is enabled when (s1) or (s2) have been specified by same device as (d) (perfect match). An error occurs if the
device range of (n) point(s) from (s1) or (s2) partially matches (overlaps) the device range of (n) point(s) from (d).

[Ex]

If 4 points of the device from (s2) and (d) match

b31 =+ b0 b31 =+ b0 b31 - b0
W1, WO D1, DO
W3, W2 D3, D2)
W5, w4 D5, D4
W7, W6 D7, D6

(1)Because it is a perfect match, operation is possible.

If 4 points of the device from (s2), (d) match partially

b31 -+ b0 b31 -+ b0
W1, Wo D1, DO b31 = b0
W3, W2 D3, D2
W5, W4 D5, D4 (1)
W7, W6 D7, D6
D9, D8

(1)An operation error occurs if they partially match.
« If the value specified for (n) is 0, processing is not performed.

« If an underflow or overflow occurs for operation result, the result will be as follows. In this case, the carry flag (SM700) does
not turn ON.

If signed is specified If unsigned is specified
K2147483647 = K2 K-2147483647 K4204967295 | K1 KO
(7TFFFFFFFH) (00000002H) :D (80000001H) (FFFFFFFFH) (00000001H) (00000000H)
K-2147483647 K-2 K2147483647
(80000001H) (FFFFFFFEH) (TFFFFFFFH)
Operation.error
Error code Description
(SD0/SD8067)
2820H The range of (n) point(s) of data starting from the device specified by (s1), (s2), or (d) exceed the corresponding device range.
2821H The device range for (n) point(s) beginning from (s1) overlaps with that of (n) point(s) starting from (d).

(Does not apply when same device has been specified for (s1) and (d).)

The device range for (n) point(s) beginning from (s2) overlaps with that of (n) point(s) starting from (d).
(Does not apply when same device has been specified for (s2) and (d).)

7 BASIC INSTRUCTIONS
272

7.2 Arithmetic Operation Instructions

Subtracting 32-bit binary block data

DBK-(P)(_U)

These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit

binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).

Ladder diagram Structured text"!
ENO:=DBKMINUS(EN,s1,s2,n,d); ENO:=DBKMINUS_U(EN,s1,s2,n,d);
pp— ENO:=DBKMINUSP(EN,s1,s2,n,d); | ENO:=DBKMINUSP_U(EN,s1,s2,n,d);
—C.”Oen || @ | o
FBD/LD
C— 1
— EN ENO |—
— st d —

— s2

h— n

("DBKMINUS", "DBKMINUSP", "DBKMINUS_U", "DBKMINUSP_U" enters [1.)

*1 Supported by engineering tool version "1.035M" and later.

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type Data type (label)

(s1) | DBK-(P) Head device where the data from which -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DBK-(P)_U another is to be subtracted is stored 0 to 4294967295 32-bit unsigned binary | ANY32_U

(s2) | DBK-(P) Subtrahend data or the head device where the | -2147483648 to +2147483647 | 32-bit signed binary ANY32_S
DBK-(P)_U data to be subtracted from another is stored [1, 4594967295 32-bit unsigned binary | ANY32_U

(d) DBK-(P) Head device for storing the operation result — 32-bit signed binary ANY32_S
DBK-(P)_U — 32-bit unsigned binary | ANY32_U

(n) Number of subtraction data 0 to 65535 16-bit unsigned binary | ANY16

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

BApplicable devices

Operand Bit Word Double word | Indirect Constant Others
X,Y,M, L, SM, |T,ST,C,D,W, |uO\eO |z Lc |Lz | specification [\ [$
F, B, SB, S SD, SW, R

(s1) — o — — o — o — — - |-

(s2) — o — — o — o o — - |-

d) — o — — o — o — — - |-

(n) o o o o - |= o o — — —

Processing. details

» These instructions subtract (n) point(s) of 32-bit binary data from the device specified by (s1) and the (n) point(s) of 32-bit
binary data from the device specified by (s2), and store the results of subtraction in the device specified by (d).
* Block subtraction is performed in 32-bit units.

7 BASIC INSTRUCTIONS 2
7.2 Arithmetic Operation Instructions 73

[Ex]

If device is specified for (s2) (signed)

b31 - b0 b31 - b0 b31 - b0
(s1)+1, (s1) 55555 (BIN) (s2)+1, (s2) 44445 (BIN) d+1, (d) -1000000 (BIN)
(s1)+#3, (s1)+2 33333 (BIN) (s2)+3, (s2)+2 3333 (BIN) (@d+3, (d)+2 30000 (BIN)
(s1)+5, (s1)+4 44444 (BIN)| (n) - (s2)+5, (s2)+4 -10000 (BIN) | (n) |:> (d)+5, (d)+4 54444 (BIN)
: : e : : e ——

(s1)+(2n-1), (s1)+(2n-2) | 13579 (BIN) AL (s2)+(2n-1), (s2)+(2n-2) | 12345 (BIN) AL

If constant is specified for (s2) (signed)

(n)
H : /_/
(d)+(2n-1), (d)+(2n-2) 1234 (BIN)

b31 - b0 b31 -+ b0
(s1)+1, (s1) -99999 (BIN) (d)+1, (d) -109998 (BIN)
(s1)+3, (s1)+2 99999 (BIN) T b31 - b0 (d)+3, (d)+2 90000 (BIN)
(s1)+5, (s1)+4 -59999 (BIN)| (n) - (s2)+1, (s2) |:> (d)+5, (d)+4 69998 (BIN) | (n)
; ; = : : = i
(s1)+(2n