ADVANCED AND EVER ADVANCING MITSUBISHI ELECTRIC

PROGRAMMABLE CONTROLLERS MELSEG-F

USER'S MANUAL

FX2N-485-BD COMMUNICATION BOARD

MITSUBISHI

Foreword

• This manual contains text, diagrams and explanations which will guide the reader in the correct installation and operation of the FX_{2N}-485-BD COMMUNICATION BOARD. It should be read and understood before attempting to install or use the unit.

Further information can be found in the FX PROGRAMMING MANUAL, FX_{2N} series hardware manuals and manual of FX-485PC-IF USER'S MANUAL.

• If in doubt at any stage during the installation of the FX2N-485-BD COMMUNICATION BOARD always consult a professional electrical engineer who is qualified and trained to the local and national standards.

MITSUBISHI

FX_{2N}-485-BD COMMUNICATION BOARD

USER'S MANUAL

Manual number:	
Manual revision:	
Date:	

JY992D66201 A JUNE 1997

Guidelines for the safety of the user and protection of the FX2N-485-BD COMMUNICATION BOARD.

This manual provides information for the installation and use of the FX_{2N}-485-BD COMMUNICATION BOARD. The manual has been written to be used by trained and competent personnel. The definition of such a person or persons is as follows;

- a) Any engineer who is responsible for the planning, design and construction of automatic equipment using the product associated with this manual should be of a competent nature, (trained and qualified to the local and national standards required to fulfill that role). These engineers should be fully aware of safety with regards to automated equipment.
- b) Any commissioning or service engineer must be of a competent nature, trained and qualified to the local and national standards required to fulfill that job. These engineers should also be trained in the use and maintenance of the completed product. This includes being completely familiar with all associated documentation for the said product. All maintenance should be carried out in accordance with established safety practices.
- c) All operators of the compliance product should be trained to use that product in a safe and coordinated manner in compliance to established safety practices. The operators should also be familiar with all documentation which is connected with the actual operation of the completed equipment.
- **Note:** The term 'completed equipment' refers to a third party constructed device which contains or uses the product associated with this manual.

Note's on the symbology used in this manual

At various times through out this manual certain symbols will be used to highlight points of information which are intended to ensure the users personal safety and protect the integrity of the equipment. Whenever any of the following symbols are encountered, its associated note must be read and understood. Each of the symbols used will now be listed with a brief description of its meaning.

Hardware warnings

1) Indicates that the identified danger WILL cause physical and property damage.

2) Indicates that the identified danger **POSSIBLY** cause physical and property damage.

3) Indicates a point of further interest or further explanation.

Software warnings

4) Indicates special care must be taken when using this element of software.

5) Indicates a special point of which the user of the associate software element should be aware.

6) Indicates a point of interest or further explanation.

CONTENTS

1. INTRODUCTION
1.1 External Dimensions
1.2 System Configuration
1.2.1 When Use No Protocol or Dedicated Protocol
1.2.2 When Use Parallel Link
1.2.3 When Use N:N Network
2. MOUNTING AND WIRING
2.1 Mounting Procedure
2.2 Cable and Terminal Resistor
2.2.1 Cable
2.2.2 Selection of Wiring
2.2.3 Terminal Resistor
2.2.4 Two-pair Wiring
2.2.5 One-pair Wiring
3. SPECIFICATION
3.1 General Specification
3.2 Power Supply Specification
3.3 Specification
4. COMMUNICATION FORMAT
4.1 Related Flag and Data Registers
4.2 Communication Format D8120
4.2.1 Example Program of Setting

7.3.1 Setting the Station No. (D8176)	4
7.3.2 Setting the Total Number of Slave Stations (D8177)	4
7.3.3 Setting the Refresh Range (D8178)	5
7.3.4 Setting retry count (D8178)	7
7.3.5 Setting comms time-out (D8179)	7
7.3.6 Program used for setting	8
7.4 Error Code	9
7.5 Examples Program	10
7.5.1 System Configuration	10
7.5.2 Operations	11
7.5.3 Example of Set Program	12
7.5.4 Example of Error Program	13
7.5.5 Example of Operation Program	14
8. DIAGNOSTICS	1
8.1 Common Items	1
8.2 Using the No Protocol	2
8.3 Using the Dedicated Protocol	3
8.4 Using the Parallel Link	4
8.5 Using the N:N network	5

1. INTRODUCTION

The communication board FX_{2N}-485-BD for RS485 (hereinafter referred to as "485BD") can be connected to the base unit of the FX_{2N} Series PC to be used for the following applications.

(1) Data transfer using the no protocol

Data communication with diversified RS232C units including personal computers, bar code readers and printers can be performed via the RS485 (422) converter using the no protocol. In this application, data is sent or received using the data registers specified by the RS instruction because the 485BD does not have a buffer memory. For the setting and program examples, refer to Chapters 5 and 6. For the RS instruction, refer to the FX Programming Manual.

(2) Data transfer using the dedicated protocol

Data transfer with RS485 (422) units can be performed on the 1:N basis using the dedicated protocol. For the contents of the dedicated protocol used in this application, refer to the FX-485PC-IF User's Manual.

(3) Data transfer using the parallel link

Data transfer with an FX_{2N} programmable controller can be performed on the 1:1 basis for 100 auxiliary relays and 10 data registers. For the setting and program examples, refer to Chapter 7.

(4) Data transfer using the N:N network

Data transfer with FX_{2N} programmable controllers can be performed on the N:N basis. For the setting, the number of transferred data and program examples, refer to Chapter 8.

1.1 External Dimensions

Dimensions : mm (inches) Accessory : M3 self-tapping screws \times 2, Terminal resistor 330 Ω \times 2 110 Ω \times 1

- ① Mounting holes (2- ϕ 4.0(0.16"))
- 2 Connector for programmable controller
- ③ SD LED : Flashes at high speed during sending.
- ④ RD LED : Flashes at high speed during sending.

⑤ Terminals to connect RS485 unit The top face of this terminal block is higher than the top face of the panel cover of the programmable controller by approximately 7 mm.

- · · ·

1.2 System Configuration

1.2.1 When Use No Protocol or Dedicated Protocol

When use 485BD in the system, total extension distance 50m. (No use : max. 500m) When use dedicated protocol, max. 16 stations including A series programmable controller.

1.2.2 When Use Parallel Link

When use 485BD in the system, this distance 50m. (No use : max. 500m)

1.2.3 When Use N:N Network

2. MOUNTING AND WIRING

2.1 Mounting Procedure

Turn off the power of the programmable controller, and mount the 485BD using the following procedure.

- ① Remove the panel cover from the top face of the base unit.
- ② Connect the connector for programmable controller provided on the 485BD to the board mounting connector provided on the base unit.
- ③ Fix the 485BD to the base unit using the M3 self-tapping screws supplied. Tightening torque: 0.3 to 0.6 Nm (3 to 6 kgf•cm)
- ④ Remove the cut out on the left of the panel cover using a tool such as nippers or cutters so that the terminal block can. The top face of this terminal block is higher than the top face of the panel cover of the programmable controller by approximately 7 mm.

2.2 Cable and Terminal Resistor

2.2.1 Cable

To connect the RS485 (422) unit, use a shielded twist-pair cable. The cable model must be the AWG 26 to 16, and the maximum tightening torque must be 0.6 Nm (6 kgf•cm). If a cable other than the AWG 26 to 16 is used, normal communication cannot be assured because the terminal may be imperfectly contacted. It is recommended to insert a cable integrated by the crimping tool into the terminal.

Total extension distance 50m (No use : max. 500m), max.8 stations.

2.2.2 Selection of Wiring

- (1) When two-pair wiring is required.
 - 1) When an RS422 unit is connected.
 - 2) When N:N network no use.
 - 3) When the dedicated protocol is used and high speed response is equired (when the transmission sentence wait time is required to be 70 ms or less). For the transmission sentence wait time, refer to the users manual of the FX-485PC-IF.
 - When the on-demand function of the dedicated protocol is used. However, the RS485/422 unit must be connected to the 485BD on the one-to-one basis.
 - 5) When wiring is added to the system which has been already constructed using two-pair wiring.
- (2) When one-pair wiring is required.
 - 1) When wiring is added to the system which has been already constructed using one-pair wiring.
 - 2) When N:N network use.
 - 3) When two-pair wiring is not necessary.

2.2.3 Terminal Resistor

Provide the terminal resistor at the both ends of the line as described in Paragraphs 2-3 and 2-4.

1) In the case of two-pair wiring, connect the terminal resistor $(330 \ \Omega, 1/4 \ W)$ between terminals SDA and SDB as well as between terminals RDA and RDB. Use the resistors offered as accessories of the 485BD.

2) In the case of one-pair wiring, connect the terminal resistor (110 Ω , 1/2 W) between termials RDA and RDB. Use the resistors offered as accessories of the 485BD.

2.2.4 Two-pair Wiring

- *1 R is the terminating resistance. Connect the terminating resistance (330 Ω) between terminals SDA and SDB, and terminals RDA and RDB.
- *2 Shield of connect the 485BD to shielded twist-pair cable must be connected to ground (100 Ω or less). When use parallel link, ground both side. When use no protocol or dedicated protocol, ground one side.
- *3 Connect terminal FG to each terminal of the programmable controller main body grounded with resistance of 100 Ω or less. However, as for the computer link unit of the A series programmable controller, see the manual of the computer link unit.
- *4 When use RS232/485 or RS232/422 adapter, please the adapter use FX-485PC-IF.

2.2.5 One-pair Wiring

- *1 R is the terminating resistance. Connect the terminating resistance (110 Ω) between terminals SDA and SDB.
- *2 Shield of connect the 485BD to shielded twist-pair cable must be connected to ground (100 Ω or less). When use parallel link, ground both side. When use no protocol or dedicated protocol, ground one side.
- *3 Connect terminal FG to each terminal of the programmable controller main body grounded with resistance of 100 Ω or less. However, as for the computer link unit of the A series PC, see the manual of the computer link unit.
- *4 When use RS232/485 or RS232/422 adapter, please the adapter use FX-485PC-IF.

3. SPECIFICATION

3.1 General Specification

General specifications is same as those for the FX_{2N} series programmable controller.

3.2 Power Supply Specification

5V DC, 60 mA is supplied as the power from the programmable controller.

3.3 Specification

Transmission standard	Conforming to RS485 and RS422		
Transmission distance	Max. 50 m		
LED indicators	SD, RD		
Communication method	Half-duplex communication system		
Protocol	Dedicated protocol (format 1 or format 4), No protocol, Parallel link, N:N network		
Sported baud rate	Dedicated protocol and no protocol Parallel link N:N network	: 300 ~ 19,200 (bps) : 19,200 (bps) : 38,400 (bps)	
Isolation	No isolation		

4. COMMUNICATION FORMAT

This chapter contains diagnostic devices (related flags and data registers) and communication format use with no protocol and dedicated protocol communications. For details of the RS instruction, refer to the FX PROGRAMMING MANUAL. For details of the dedicated protocol, refer to the users manual of the FX-485PC-IF.

4.1 Related Flag and Data Registers

Diagnostic devices	Operation	
M8121	Data transmission delayed (RS instruction)	
M8122	Data transmission flag (RS instruction)	
M8123	Finished receiving data (RS instruction)	
M8124	Carrier detection flag (RSinstructionI)	
M8126	Global flag (dedicated protocol)	
M8127	On demand handshake flag (dedicated protocol)	
M8128	On demand error flag (dedicated protocol)	
M8129	On demand Byte/Word flag (dedicated protocol)	
M8161	Selection of 8 bit operations for applied instructions ASC, RS, ASCI, HEX, CCD (RS instruction)	

Diagnostic devices	Operation
D8120	Communications format (RS instruction, dedicated protocol)
D8121	Local station number (dedicated protocol)
D8122	Amount of remaining data to be transmitted (RS instruction)
D8123	Amount of remaining data already received (RS instruction)
D8124	Data header <default (02h)="" stx=""> (RS instruction)</default>
D8125	Data terminator <default (03h)="" etx=""> (RS instruction)</default>
D8127	On demand head device register (dedicated protocol)
D8128	On demand data length register (dedicated protocol)
D8129	Data network 'time-out' timer value (dedicated protocol)

4.2 Communication Format D8120

To send and receive the data between the RS485 (422) unit using the 485BD, the communication format including the transmission speed (baud rate) and the parity must be consistent between the 485BD and the RS485 unit.

The communication format can be set using the parameters or the contents of the special data register D8120 of the FX_{2N} programmable controller. Make sure to set appropriately the communication format in accordance with the RS485 (422) unit used. For the setting method using the parameters of the FX_{2N} programmable controller, refer to the manual of the peripheral unit used.

Make sure to turn off the power of the programmable controller and turn it on again after modifying the setting.

Bit No. Meaning	Meaning	Contents	
	wearing	0 (OFF)	1 (ON)
b0	Data length	7 bit	8 bit
b1 b2	Parity	b2,b1 (0, 0) : None (0, 1) : Odd	b2,b1 (1, 1) : Even
b3	Stop bit	1 bit	2 bit
b4 b5 b6 b7	Baud rate (bps)	b7,b6,b5,b4 (0, 0, 1, 1): 300 (0, 1, 0, 0): 600 (0, 1, 0, 1): 1,200 (0, 1, 1, 0): 2,400	b7,b6,b5,b4 (0, 1, 1, 1) : 4,800 (1, 0, 0, 0) : 9,600 (1, 0, 0, 1) : 19,200

Bit No. Meaning	Meaning	Contents	
	0 (OFF)	1 (ON)	
b8	Header character *1	None	D8124 *2
b9	Terminator character *1	None	D8125 *3
b10	Control line type I *4	None	H/W
b11	DTR check (Control line) *4	Send and Receive	Receive
b12	Control line type II *4	None	H/W
b13	Sum check *5	Sum check code is not added	Sum check code is added automatically
b14	Protocol	No protocol	Dedicated protocol
b15	Transmission control protocol *5	Protocol format 1	Protocol format 4

*1 Make sure to set it to "0" when the dedicated protocol is used.

- *2 It is effective exclusively when the no protocol (RS instruction) is selected, and the initial value is STX (02H: Can be modified by the user).
- *3 It is effective exclusively when the no protocol (RS instruction) is selected, and the initial value is ETX (03H: Can be modified by the user).
- *4 Make sure to set in to (b10, b11, b12) = (1, 1, 0) in the case of the no protocol (RS instruction), and (b10, b11, b12) = (0, 0, 0) in the case of the dedicated protocol.
- *5 Make sure to set it to "0" when the no protocol is used.

MITSUBISHI

4.2.1 Example Program of Setting

The communication format is set by special data register D8120. Setting the communication format using D8120 is effective only at the time the RS instruction is driven, and therefore if changed after driving, it is not actually accepted.

An example of setting D8120 is shown below.

H1B8E= 0001 1011 1000 1110 (binary) The settings for the above program are as right.

Data length	7 bit
Parity	Even
Stop bit	2 bit
Baud rate	9,600 bps
Protocol	No protocol
Header character	Use
Terminator character	Use
DTR check	Receive
Control line	H/W of type II use (Type I does not use)

5. RS EXAMPLE PROGRAM

This example program use RS instruction.

5.1 Printer

When the printer having the RS232C interface is connected to the 485BD via the RS232C/485 signal converter (FX-485PC-IF), and the data sent from the programmable controller is printed

5.1.1 System Configuration

For communication between the printer and the FX-485PC-IF, use the cable which is consistent with the connector pin assignment of the printer used. For wiring between the FX-485PC-IF and the 485BD, refer to Section 2. For the FX-485PC-IF, refer to the users manual of the FX-485PC-IF.

FX2N-485-BD COMMUNICATION BOARD

5.1.2 Communication Format

The communication format of the serial printer is as follows.

Data length	8 bit
Parity	Even
Stop bit	2 bit
Baud rate	2,400 bps
Protocol	No protocol
Header character	Not use
Terminator character	Not use
DTR check	Receive
Control line	H/W of type II use (Type I does not use)

5.1.3 Example Program (1)

MITSUBISHI

5

5.2 Personal Computer

When the printer having the RS232C interface is connected to the 485BD via the RS232C/485 signal converter (FX-485PC-IF), and the data sent from the programmable controller is printed

5.2.1 System Configuration

For communication between the printer and the FX-485PC-IF, use the cable which is consistent with the connector pin assignment of the printer used. For wiring between the FX-485PC-IF and the 485BD, refer to Section 2.

For the FX-485PC-IF, refer to the users manual of the FX-485PC-IF

Note : Preparation of software

Use ordinary communication software (terminal emulator) or dedicated program in the personal computer.

5.2.2 Communication Format

The communication format of the programmable controller for this example is as follows.

If the communication format of the software can not be adjusted this setting, adjusted the programmable controller and the software to be the same.

Data length	8 bit
Parity	Even
Stop bit	2 bit
Baud rate	2,400 bps
Protocol	No protocol
Header character	Not use
Terminator character	Not use
DTR check	Receive
Control line	H/W of type II use (Type I does not use)

5.2.3 Example Program (2)

AMITSUBISHI

6. PARALLEL LINK

This section describes how to use the parallel link when the programmable controllers are connected on the 1:1 basis.

6.1 Parallel Link

The parallel link refers to the link with which the programmable controllers are connected each other by the wiring described in Chapter 2, and the data is automatically transferred between them using the special auxiliary relays.

6.2 Outline

Two modes, the normal mode and the high speed mode, are offered for the parallel link. The special auxiliary relay M8162 recognizes the type of mode. The master station and the slave station are set by the special auxiliary relays M8070 and M8071.

6.2.1 Normal Mode (Special auxiliary relay M8162: OFF)

Time required for data transfer: 70 for reciprocation + Operation cycle of master station + Operation cycle of slave station (ms)

6.2.2 High Speed Mode (Special auxiliary relay M8162: ON)

Time required for data transfer: 20 for reciprocation + Operation cycle of master station

+ Operation cycle of slave station (ms)

6.3 Example Program (3)

6.3.1 Normal Mode

The ON/OFF states of the inputs X000 to X007 in the master station is output to the Y000 to the Y007 in the slave station (①). When the calculation result (D0 + D2) in the master station is 100 or less, the Y010 in the slave station is turned on (②). The ON/OFF status of the M0 to the M7 in the slave station is output to the Y000 to the Y007 in the master station (③). The D10 value in the slave station is set to the timer (T0) in the master station (④).

6

6.3.2 High Speed Mode

When the calculation result (D0 + D2) in the master station is 100 or less, the Y010 in the slave station is turned on (). The D10 value in the slave station is set to the timer (T0) in the master station ().

Master station

Slave atation

7. N:N NETWORK

7.1 Outline

The N:N link is a network for up to eight FX_{2N} Series programmable controllers. In the network, data transfer is automatically performed among the programmable controllers for the devices determined in the refresh range. The devices in the refresh range can be monitored by all the stations. However, the data writing operation and the ON/OFF operation are enabled in its own station exclusively.

7.2 Related Flags and Data Registers

7.2.1 Special Auxiliary Relays

Attribute	Special auxiliary relays	Name	Description	Response type	
w	M8038	N:N network parameter setting	Used to set N:N network parameters	M, L	
R	M8063	Network parameter error	When network parameter error is in master station, this is ON.	M, L	
R	M8183	Communication error of Master station	When communication error is in master station, this is ON. *1	L	
R	M8184 to M8190 *2	Communication error of Slave station	When communication error is in slave station, this is ON. *1	M, L	
R	M8191	Data communication	When communicate to other station, this is ON.	M, L	

R : Ready only W : Write only M : Master station L : Slave station

- *1 The number of communication errors occurred in its own station cannot be counted in the CPU error status, the program error status or the stop status.
- *2 No. in accordance with the slave station No. Example: Slave station No. 1 is M8184, Slave station No. 2 is M8185, Slave station No. 3 is M8186

7.2.2 Special Data Registers

Attribute	Special data registers	Name	Description	Response type
R	D8173	Station No.	Saves its own station No.	M, L
R	D8174	Total number of slave stations	Saves total number of slave stations	M, L
R	D8175	Refresh range	Saves refresh range	M, L
W	D8176	Station number setting	Sets its own station No.	M, L
W	D8177	Total slave station number setting	Sets total number of slave stations	М
W	D8178	Refresh range setting	Sets refresh range	М
W	D8179	Retry count setting	Sets retry count	М
W	D8180	Comms time-out setting	Sets comms time-out	М
R	D8201	Current network scan time	Saves current network scan time	M, L
R	D8202	Maximum network scan time	Saves maxiomum network scan time	M, L
R	D8203	Number of communication error at master station	Number of communication error at master station *1	L
R	D8204 to D8210 *2	Number of communication error at slave station	Number of communication error at slave station *1	M, L
R	D8211	Code of communication error at master station	Code of communication error at master station	L
R	D8212 to D8218 *2	Code of communication error at slave station	Code of communication error at slave station	M, L

R : Ready only W : Write only M : Master station L : Slave station

*1 The number of communication errors occurred in its own station cannot be counted in the CPU error status, the program error status or the stop status.

*2 No. in accordance with the station No.

Example: Slave station No. 1 is D8204, D8212, Slave station No. 2 is D8205, D8213, Slave station No. 3 is D8206, D8214

MITSUBISHI

7.3 Setting

Each setting for the N:N network becomes valid when the program is run or when the power of the programmable controller is turned on.

7.3.1 Setting the Station No. (D8176)

Set a value 0 to 7 to the special data register D8176.

Set value	Decryption
0	Master station
1 to 7	Salve station No. Example : 1 is Slave station No. 1, 2 is Slave station No. 2

7.3.2 Setting the Total Number of Slave Stations (D8177)

Set a value 1 to 7 to the special data register D8177. (Default = 7) This setting is not required for the slave station.

Set value	Description	
1	1 slave station	
2	2 slave station	
:	:	
7	7 slave station	

7.3.3 Setting the Refresh Range (D8178)

Set a value 0 to 2 to the special data register D8178. (Default = 0) This setting is not requires for the slave station.

The devices used in each pattern are occupied by all the stations for the N:N network.

Communication	Refresh range			
device	Pattern 0	Pattern 1	Pattern 2	
Bit device (M)	0 point	32 points	64 points	
Word device (D)	4 points	4 points	8 points	

1) In the case of pattern 0

	Device No.		
Station No.	Bit device (M)	Word device (D)	
	0 point	4 points	
No. 0		D0 to D3	
No. 1		D10 to D13	
No. 2		D20 to D23	
No. 3		D30 to D33	
No. 4		D40 to D43	
No. 5		D50 to D53	
No. 6		D60 to D63	
No. 7		D70 to D73	

2) In the case of pattern 1

	Device No.			
Station No.	Bit device (M)	Word device (D)		
	32 points	4 points		
No. 0	M1000 to M1031	D0 to D3		
No. 1	M1064 to M1095	D10 to D13		
No. 2	M1128 to M1159	D20 to D23		
No. 3	M1192 to M1223	D30 to D33		
No. 4	M1256 to M1287	D40 to D43		
No. 5	M1320 to M1351	D50 to D53		
No. 6	M1384 to M1415	D60 to D63		
No. 7	M1448 to M1479	D70 to D73		

3) In the case of pattern 2

	Device No.			
Station No.	Bit device (M)	Word device (D)		
	0 point	8 points		
No. 0	M1000 to M1063	D0 to D7		
No. 1	M1064 to M11127	D10 to D17		
No. 2	M1128 to M1191	D20 to D27		
No. 3	M1192 to M1255	D30 to D37		
No. 4	M1256 to M1319	D40 to D47		
No. 5	M1320 to M1383	D50 to D57		
No. 6	M1384 to M1447	D60 to D67		
No. 7	M1448 to M1511	D70 to D77		

Setting retry count (D8178)

Set a value 0 to 10 to the special data register D8178. (Default = 3) This setting is not required for the slave station.

If master station try to communicate the slave station this retry count or over, communication error occur in the station.

7.3.5 Setting comms time-out (D8179)

7.3.4

Set value 5 to 255 to the special data register D8179. (Default = 5)

This value multiply by 10 (ms) is time of comms time-out.

Comms time-out is time-out of communication time between the master station and slave station.

Program used for setting

Make sure to write the program above from the 0th step as the N:N network parameter setting program.

This program is not required to be executed because it becomes effective automatically when it is programmed in this position.

Note: Setting of the parameters for the N:N network is started at the 0th step (LD M8038), and finished when any instruction or device other than the program above is processed.

7

7.4 Error Code

When station occur communication error, special auxiliary relays (M8183 to M8191) of communication error is ON in the station And the error code put into special data registers (D8211 to 8218). This error code is following the table.

Error code	Meaning	Error station	Check station	Description	Checking points
01H	Comms time-out error	L	М	After master station send request to slave station, no answer passing comms time-out.	Check wiring, power of programmable controller, RUN/STOP state (RUN is OK)
02H	Station No. error	L	М	Station No. is not agreement between the master station and the slave station.	Check wiring
03H	Comms counter error	L	М	Communication counter is not agreement between the master station and the slave station.	Check Wiring
04H	Comms format error	L	M, L	Communication format is not right from slave station.	Check wiring, power of programmable controller, RUN/STOP state (RUN is OK), station No. setting
11H	Comms time-out error	М	L	After slave station send answer to master station, master station do not send request to next slave station.	Check wiring, power of programmable controller, RUN/STOP state (RUN is OK)
14H	Comms format error	М	L	Communication format is not right from master station.	Check wiring, power of programmable controller, RUN/STOP state (RUN is OK), station No. setting
21H	No slave error	L	L *1	The station No. is not in this network.	Check station No. setting.
22H	Station No. error	L	L *1	Station No. is not agreement between the master station and the slave station.	Check wiring
23H	Comms counter error	L	L *1	Communication counter is not agreement between the master station and the slave station.	Check wiring
31H	Not receive comms parameter error	L	L *2	When slave station receive request from master station before communication parameter.	Check wiring, power of programmable controller, RUN/STOP state (RUN is OK)

M : Master station L : Slave station

*1 Another slave station

*2 Self station

7.5.1 System Configuration

1) Refresh range: 32 bit devices and 4 word devices (Pattern 1)

- 2) Retry count : 3 times
- 3) comms time-out : 5 (50 ms)

7.5.2 Operations

The following operations are performed in the system configuration above.

- ① The input points X000 to X003 (M1000 to M1003) in the master station are output to the output points Y010 to Y013 in the stations Nos. 1 and 2.
- ② The input points X000 to X003 (M1064 to M1067) in the station No. 1 are output to the output points Y014 to Y017 in the master station and the station No. 2.
- ③ The input points X000 to X003 (M1128 to M1131) in the station No. 2 are output to the output points Y020 to Y023 in the master station and the station No. 1.
- ④ The data register D1 in the master station is specified as the set value of the counter C1 in the station No. 1. The contact (M1070) status of the counter C1 is reflected on the output point Y005 in the master station.
- ⑤ The data register D2 in the master station is specified as the set value of the counter C2 in the station No. 2. The contact (M1140) status of the counter C2 is reflected on the output point Y006 in the master station.
- (6) The value of the data register D10 in the station No. 1 and the value of the data register D20 in the station No. 2 are added in the master station, and saved to the data register D3.
- The value of the data register D0 in the master station and the value of the data register D20 in the station No.
 2 are added in the station No. 1, and saved to the data register D11.
- The value of the data register D0 in the master station and the value of the data register D10 in the station No.
 1 are added in the station No. 2, and saved to the data register D21.

7.5.3 Example of Set Program

For the set program for the master station and the stations Nos. 1 and 2, refer to Section 7.3.6 program.

	Master station	Slave station No. 1	Slave station No. 2	Remarks
D8176	К0	K1	K2	Station No.
D8177	K2			Total slave station : 2 stastions
D8178	К1			Refresh range : Pattern 1
D8179	КЗ			Retry count : 3 times (default)
D8180	K5			comms time-out : 50 ms (default)

7

7.5.4 Example of Error Program

Continued to a),b) or c) in "7.5.5 Program".

7.5.5 Example of Operation Program

a) Program of master station

7

b) Program of slave station No.1

c) Program of slave station No.2

8. DIAGNOSTICS

- Confirm the connection with the programmable controller by checking the status of the RD LED and SD LED provided on the 485BD.
 - When the these LEDs is lighted (ON), connection between the 485BD and the programmable controller is correct.
 - When the these LEDs is extinguished (OFF), connect the 485BD to the programmable controller using the procedure described in Chapter 2.
- 2) Check whether the VRRD or VRSC instruction is used in the program. If it is used, delete it, turn off the power of the programmable controller, then turn it on again.

8.2 Using the No Protocol

- 1) Check the status of the RD LED and the SD LED provided on each 485BD.
 - If the RD LED is not lighted when data is received, check the wiring.
 - If the SD LED is not lighted when data is sent, check the confirm the connection with the programmable controller
- 2) When setting for the N:N network (Section 7.3.5 program) is included in the program, delete the setting, turn off the power of the programmable controller, then turn it on again.
- 3) When the special auxiliary relay M8070 or M8071 is turned on, turn if off using a peripheral unit, turn off the power of the programmable controller, then turn it on again.
- 4) Make sure that the communication format is equivalent between an external unit (RS232C unit) and the programmable controller (D8120). If it is different, correct the setting of the communication parameters in the external unit or correct the contents of the D8120 in the programmable controller. When the D8120 is corrected, restart the RS instruction. When the communication parameters are corrected, turn off the power of the programmable controller and turn it on again.
- 5) Confirm the timing of data transmission. For example, before sending the data, make sure that the counterpart equipment is ready for receiving the data.
- 6) When a terminator is not used, make sure that the data quantity to be sent is consistent with the data quantity to be received. If they are not consistent each other, let them be consistent. (If the data quantity to be sent is changed, use a terminator.)
- 7) Make sure that external units are operating correctly.
- 8) Make sure that the send data format is equivalent to the receive data format. If they are different, let them be equivalent.
- When two or more RS instructions are used in the program, make sure that only one RS instruction is executed in one operation cycle. Make sure that the RS instruction does not become OFF (unexecuted status) while data is received or sent.

MITSUBISHI

8.3 Using the Dedicated Protocol

- 1) Check the status of the RD LED and the SD LED provided on each 485 BD.
 - If both of them are lighted and extinguished, nothing is wrong.
 - If the RD LED is lighted/extinguished but the SD LED is not lighted/extinguished (not lighted at all), check the setting of the station No. and the transmission rate (baud rate).
 - If the RD LED is not lighted/extinguished, check the wiring and confirm the connection with the programmable controller.
- 2) When setting for the N:N network (Section 7.3.5 program) is included in the program, delete the setting, turn off the power of the programmable controller, then turn it on again.
- 3) Make sure that the communication format is equivalent between an external unit (RS232C unit) and the programmable controller (D8120). If it is different, correct the setting of the communication parameters in the external unit or correct the contents of the D8120 in the programmable controller. When the D8120 is corrected, turn off the power of the programmable controller and turn it on again.
- 4) Make sure that the communication target programmable controller station No. is equivalent to the station No. specified in the communication procedure. If they are different, let them be equivalent.
- 5) Make sure that the communication procedure is performed correctly. If it is not performed correctly, correct the setting in the computer.
- 6) Make sure that the communication procedure is performed correctly. If it is not performed correctly, correct the setting in the computer.
- 7) When the RS instruction is used in the program, delete it, turn off the power of the programmable controller, then turn it on again.
- 8) When the special auxiliary relay M8070 or M8071 is turned on, turn if off using a peripheral unit, turn off the power of the programmable controller, then turn it on again.

8

8.4 Using the Parallel Link

- 1) Check the status of the RD LED and the SD LED provided on each 485 BD.
 - If both of them are lighted and extinguished, nothing is wrong.
 - If the RD LED is lighted/extinguished but the SD LED is not lighted/extinguished (not lighted at all), check the setting of the master station and the slave stations.
 - If the RD LED is not lighted/extinguished, check the wiring.
- 2) When setting for the N:N network (Section 7.3.5 program) is included in the program, delete the setting, turn off the power of the programmable controller, then turn it on again.
- 3) When the special data register D8120 for the communication format or the parameters for the communication setting are used or when the value of the D8120 is not 0, perform the following.
 - When the D8120 is used in the program, delete it, turn off the power of the programmable controller, then turn it on again.
 - Check the value of the D8120 using a peripheral unit. If it is not 0, set it to 0 using the peripheral unit, turn off the power of the programmable controller, then turn it on again.
 - When the parameters for the communication setting are used, initialize them using a peripheral unit.
- 4) When the RS instruction is used in the program, delete it, turn off the power of the programmable controller, then turn it on again.
- 5) Make sure that the master station and the slave stations are set correctly. If the setting is incorrect, correct it.
- 6) Make sure that the devices for the master station and the slave stations are handled correctly. If they are handled incorrectly, correct the program so that they are handled correctly.

8.5 Using the N:N network

- 1) Check the status of the RD LED and the SD LED provided on each 485 BD.
 - If both of them are lighted and extinguished, nothing is wrong.
 - If the RD LED is lighted/extinguished but the SD LED is not lighted/extinguished (not lighted at all), check the setting of the station No., the transmission rate (baud rate) and the total number of slave stations.
 - If the RD LED is not lighted/extinguished, check the wiring.
- 2) When the special auxiliary relay M8070 or M8071 is turned on, turn it off using a peripheral unit, turn off the power of the programmable controller, then turn it on again.
- 3) When the RS instruction is used in the program, delete it, turn off the power of the programmable controller, then turn it on again.
- 4) When the special data register D8120 for the communication format or the parameters for the communication setting are used or when the value of the D8120 is not 0, perform the following.
 - When the D8120 is used in the program, delete it, turn off the power of the programmable controller, then turn it on again.
 - Check the value of the D8120 using a peripheral unit. If it is not 0, set it to 0 using the peripheral unit, turn off the power of the programmable controller, then turn it on again.
 - · When the parameters for the communication setting are used, initialize them using a peripheral unit.
- 5) Make sure that the sequence error (special auxiliary relays M8183 to M8190) in each slave station is not turned on and that the special auxiliary relay M8191 is not turned off. If one of the M8183 to the M8190 is turned on or if the M8191 is turned off, check the error code of special data registers D8211 to D8218. Please see the following section 7.4.

Under no circumstances will MITSUBISHI ELECTRIC be liable responsible for any consequential damage that may arise as a result of the installation or use of this equipment.

All examples and diagrams shown in this manual are intended only as an aid to understanding the text, not to guarantee operation. MITSUBISHI ELECTRIC will accept no responsibility for actual use of the product based on these illustrative examples.

Owing to the very great variety in possible application of this equipment, you must satisfy yourself as to its suitability for your specific application.

MITSUBISHI

USER'S MANUAL

FX2N-485-BD COMMUNICATION BOARD

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: MITSUBISHI DENKI BLDG MARUNOUCHI TOKYO 100 TELEX: J24532 CABLE MELCO TOKYO HIMEJI WORKS: 840, CHIYODA CHO, HIMEJI, JAPAN

JY992D66201A (MEE 9706) Effective JUN. 1997 Specifications are subject to change without notice.