

PROGRAMMABLE CONTROLLERS

FX2NC-4AD Analog input block

Thank you very much for purchasing this product.

In order to handle the product properly please read this manual thoroughly before starting to use the product.

User's Manual

MODEL	FX2NC-4AD
MANUAL Number	JY997D07801E
Date	April 2015

Guidelines for the Safety of the User and Protection of the FX2Nc-4AD special function block.

This manual should be used by trained and competent personnel. The definition of such a person or persons is as follows:

- a) Any engineer using the product associated with this manual, should be of a competent nature, trained and qualified to the local and national standards. These engineers should be fully aware of all aspects of safety with regards to automated equipment.
- b) Any commissioning or service engineer must be of a competent nature, trained and qualified to the local and national standards.
- c) All operators of the completed equipment should be trained to use this product in a safe and coordinated manner in compliance to established safety practices.

Note: The term 'completed equipment' refers to a third party constructed device which contains or uses the product associated with this manual.

●Note concerning the CE marking●

CE marking does not guarantee that an entire mechanical module produced in accordance with the contents of the notification comply with the following standards. Compliance to EMC standards of the entire mechanical module should be checked by the user / manufacturer.

Attention

• This product is designed for use in industrial applications.

Note

Authorized Representative in the European Community:
 Mitsubishi Electric Europe B.V.
 Gothaer Str. 8, 40880 Ratingen, Germany

Standards with which this product complies

Type: Programmable Controller (Open Type Equipment)

wioders . Froducts manufactured starting April 1st, 2003.		
Electromagnetic Compatibility Standards (EMC)	Remark	
EN61000-6-4:2007 Electromagnetic compatibility -Generic standards - Emission standard for Industrial environment	Compliance with all relevant aspects of the standard. (Radiated Emissions and Mains Terminal Voltage Emissions)	
EN61000-6-2:2005 Electromagnetic compatibility -Generic standards Immunity for industrial environments.	Compliance with all relevant aspects of the standard. (RF immunity, Fast transients, ESD, Conducted, Surges, Power magnetic fields, Voltage dips and Voltage interruptions)	
EN61131-2:2007 Programmable controllers -Equipment requirements and tests	Compliance with all relevant aspects of the standard, (Radiated Emissions, Conducted Emissions, Radiated electromagnetic field, Fast transient burst, Electrostatic discharge, Highenergy surge, Voltage drops and interruptions, Conducted RF, and Power frequency magnetic field)	

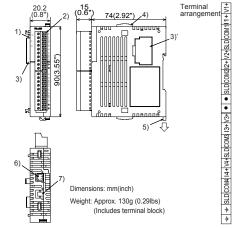
For more details please contact the local Mitsubishi Electric sales site.

- Notes for compliance to EMC regulation.

It is necessary to install the FX2NC-4AD in a shielded metal control panel. For further information manual concerning the FX Series, refer to the following table.

List of Further Information Manuals

Manual Name	Manual No.	Description
FX2NC Hardware Manual	JY992D76401	This manual contains hardware explanations of wiring, installation and specifications for the FX2NC Series programmable controllers.
FX3UC User's Manual - Hardware Edition	JY997D28701	This manual contains hardware explanations of wiring, installation and specifications for the FX3UC Series programmable controllers.
FX Programming Manual II	JY992D88101	This manual contains instruction explanations for the FX1s, FX1n, FX2n and FX2nc Series programmable controllers.
FX3S/FX3G/FX3GC/ FX3U/FX3UC Programming Manual	JY997D16601	This manual contains instruction explanations for the FXss, FXsd, FXsdc, FXsuc Series programmable controllers.


1. Introduction

The FX2NC-4AD analog input block (hereafter referred to as "FX2NC-4AD") converts 4 points of analog input values (voltage and current inputs) into digital values, and transfers them to the main unit.

The FX2NC-4AD can be connected to the FX2NC / FX3UC Series PLC.

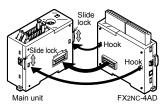
- A combination of voltage and current analog inputs selectable via the PLC TO instruction should be used to configure the individual input channels.
- 2) The voltage input range can be selected within -10 to 10V, alternatively, the current input range can be selected within -20 to 20mA and 4 to 20mA. The input characteristics can be adjusted for each channel (except when O=2, 5, 8 is set in BFM #0 that disables all changes to the offset or gain).
- 3) The resolution is 0.32 mV (20 V \times 1/6 $\bar{4}$,000) or 2.50 mV ($\bar{2}$ 0 V \times 1/8,000) when voltage input is used, and 1.25 μ A (40 mA \times 1/32,000) or 5.00 μ A (40 mA \times 1/8,000) when current input is used.
- Data transfer with the PLC is performed via the buffer memories of the FX2NC-4AD using FROM/TO instructions.

2. External Dimensions and Part Name

Accessory: Special function block number label, Power crossover cable FX2NC-10BPCB1

- Status indicator LED
 2) Terminal connector (European type)
- 3),3)'Extension port 4) Slide lock for extension block 5) DIN rail clip 6) Power supply connector (24V DC)
- 7) Power supply connector (Supply for extension block)
- The connector 3)' is equipped with a cover.
- Do not wire the terminals.
- Status indicator LED

Otatao indicator EED	
Indication Description	
PW	Lit while 5 V power is normally supplied from PLC.
24 V	Lit while 24 V power is normally supplied to the "24+" and "24-" power supply connector of the FX2NC-4AD.
A/D	Flashes during A/D conversion.


- Install the FX2NC-4AD on the right side of the main unit, extension block or special function block of the FX2NC / FX3UC Series PLC.
- DIN rail installation

The FX2nc-4AD can be installed on DIN rail DIN46277 (width: 35mm (1.38")). When removing the FX2nc-4AD, push downward on the DIN rail attachment hook.

For details, refer to the PLC main unit manual.

3. PLC Connection

When connecting the FX2NC-4AD to the FX2NC / FX3UC Series main unit or extension block, remove the extension port cover from the right side of the main unit or extension block, keep the slide lock in the main unit or extension block pulled upward, then align the hook in the FX2NC-4AD with the mounting hole in the former step of the main unit or extension block

Then push the slide lock downward to fix the FX2NC-4AD. When connecting two or more FX2NC-4AD units, connect an FX2NC-4AD unit to another FX2NC-4AD unit in the same way.

Up to four special function blocks or special function units in total can be connected to the FX2NC Series PLC including those connected to the FX2NC-CNV-IF

Up to eight special function blocks or special function units in total can be connected to the FXsuc'l Series PLC including those connected to the FXsuc-INV-IF or FXsuc-IPS-59.

For each connected special function block or special function unit, a unit number is assigned starting with 0 for the special function block and special function unit nearest to the main unit.

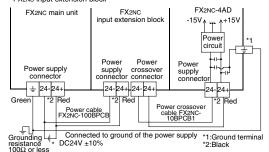
From the main unit, use FROM/TO instructions to read or write data stored in the FX2NC-4AD.

*1 Up to seven special function blocks or special function units in total can be connected to the FXsuc-32MT-LT(-2) PLC. Unit numbers assigned to special function units / blocks begins with No.1.

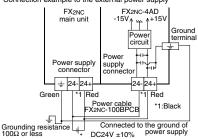
4. Wiring

4.1 Power supply wiring

Supply power (24V DC) to the FX2NC-4AD from the power supply connector. When using the power supply connector, the following power cables are available.


Power cables

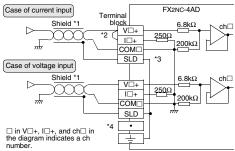
FX2NC-10BPCB1:


Power crossover cable (offered as an accessory for the FX2NC-4AD) FX2NC-100BPCB:

Power cable (offered as an accessory for the FX2NC-☆☆MT-D/UL, FX3uc-☆☆MT/D, FX3uc-16MR/D-T, FX3uc-32MT-LT(-2) [where ☆☆indicates: 16, 32, 64, 96]]

 Connection example with the power supply through crossover wiring to the FX2NC input extension block

2) Connection example to the external power supply



• Connect the " $\frac{1}{2}$ " terminal together with the ground terminal of the main unit to the ground of the power supply equipped with grounding resistance of 100 Ω or less

 For crossover wiring to the next block of the FX_{2NC}-4AD, remove the resin cover from the power crossover connector.

4.2 Input wiring

For terminal arrangement, refer to Chapter 2 of this manual.

- *1 When wiring the analog output cable, use a shielded two-core twisted cable, and separate it from other power cables and cables easily affected by induction
- *2 For current input, short-circuit the V□+ terminal and the I□+ terminal (□: Input channel No.).
- *3 The "SLD" terminal and " + " terminal are internally connected.
- *4 Do not wire the " . " terminal.

Terminal connector handling

The FX2NC-4AD is equipped with a terminal connector whose form is equivalent to that of the terminal connector type FX2NC/FX3UC PLC.

For the specifications of the suggested screwdriver, the dimensions of the cable terminal, the external dimensions of the bar terminal equipped with insulating sleeve, and applicable wiring, please refer to the PLC main unit manual.

5. Specifications

5.1 General specifications

The general specifications are equivalent to those of the main unit. (For details, refer to the PLC main unit manual.)

5.2 Power supply specifications

Item	Specifications	
Analog circuits	24 V DC±10%, 130 mA, externally supplied.	
Digital circuits	5 V DC, 50 mA, supplied from the PLC main unit using an extension port.	

5.3 Performance specifications

Item Specifications	
A/D conversion time	1 ms \times Number of used channels (If digital filter is used for one channel or more: 5 ms \times Number of used channels)
Isolated method	Photocoupler isolated analog input area from PLC. Trans isolated power supply from analog I/O. Channels are not isolated from each other.
Number of occupied I/O points	8 points (including input and output points)
Applicable PLC	FX2NC Series PLC (Up to four units can be connected including special function blocks and special function units connected to FX2NC-CNV-IF.)
Applicable PLC	FXsuc Series PLC ⁻¹ (UP to eight units can be connected including special function blocks and special function units connected to FXsuc-CNV-IF or FXsuc-IPS-5V.)
Built-in memory	EEPROM

*1 Up to seven units can be connected to the FX3UC-32MT-LT(-2) PLC.

5.4 Voltage/current input specifications

Item	Voltage input	Current input
Analog input range	-10 to 10 V DC (input resistance: 200kΩ)	-20 to 20 mA DC, 4 to 20 mA DC (input resistance: 250Ω)

Item Voltage input		Current input	
Offset value*1	-10 to 9 V *2	-20 to 17 mA *3	
Gain value*1	-9 to 10 V *2	-17 to 30 mA *3	
Digital output	Effective numeric value (15 bits) + Sign (1 bit)	Effective numeric value (14 bits) + Sign (1 bit)	
Resolution	0.32 mV (20 V × 1/64,000) 2.50 mV (20 V × 1/8,000)	1.25 μ A (40 mA \times 1/32,000) 5.00 μ A (40 mA \times 1/8,000)	
Total accuracy	Ambient temperature: 25 °C ± 5 °C ±0.3% (±60 mV) against full scale 20 V Ambient temperature: 0 to +55 °C ±0.5% (±100 mV) against full scale 20 V	Ambient temperature: $25^{\circ}\text{C} \pm 5^{\circ}\text{C}$ $\pm 0.5\%$ ($\pm 200 \mu\text{A}$) against full scale 40 mA 4 to 20mA input is same ($\pm 200 \mu\text{A}$) Ambient temperature: 0 to $+55^{\circ}\text{C}$ $\pm 1\%$ ($\pm 400 \mu\text{A}$) against full scale 40 mA 4 to 20mA input is same ($\pm 400 \mu\text{A}$)	

^{*1} Even though the offset/gain value is adjusted, the resolution remains unchanged. The value cannot be changed when using the analog value direct mode

(when "Specifies input mode" is 2, 5, or 8).

6. Buffer Memory (BFM)

Data transfer between the FX2NC-4AD and the main unit is performed via buffer memories (hereafter referred to as "BFM") of the FX2NC-4AD. Each BFM consists of 1 word, 16 bits. BFM No. 0 to 1799 have assigned functionality, communication with these BFMs should be performed using TO/FROM instructions supplied by the main unit.

When the power is switched ON from OFF, the initial value is written to each BFM. Create a program for the PLC so that the desired contents are written to the BFMs every time the power of the PLC is turned ON.

(The contents stored in BFM #0, #19, #22, #41 to #44 and #51 to #54 are held in the built-in EEPROM, and kept against power failure.)

6.1 Buffer Memories (BFM) lists

BFM No.	Description	Initial value	
#0	Specifies input mode of CH1 to CH4.	H0000	
#1	Reserved	_	
#2	Number of averaging times for CH1 Setting range: 1 to 4,095 times	K1	
#3	Number of averaging times for CH2 Setting range: 1 to 4,095 times	K1	
#4	Number of averaging times for CH3 Setting range: 1 to 4,095 times	K1	
#5	Number of averaging times for CH4 Setting range: 1 to 4,095 times	K1	
#6	CH1: Digital filter setting Set range: 0 to 1,600	K0	
#7	CH2: Digital filter setting Set range: 0 to 1,600	K0	
#8	CH3: Digital filter setting Set range: 0 to 1,600	K0	
#9	CH4: Digital filter setting Set range: 0 to 1,600 K0		
#10	CH1 data (immediate data or average data) —		
#11	CH2 data (immediate data or average data) —		
#12	CH3 data (immediate data or average data) —		
#13	CH4 data (immediate data or average data) —		
:	Reserved	_	
#19	Disables setting change of I/O characteristics (BFM #0, BFM #21) and convenient functions (BFM #22). K1 Disables change: K2, Enables change: K1		
#20	Initializes functions. (Initializes functions at K1, then returns automatically to K0 after initialization is completed.)		
#21	Writes I/O characteristics. (Returns automatically to K0 after write of offset/gain K0 value is finished.)		
#22	Sets convenient functions (data addition, upper/ lower limit value detection, sudden change detection and minimum/maximum value hold).	K0	
i	Reserved	=	
#26	Upper/lower limit value error status (valid while BFM #22 b1 is ON)	K0	

BFM No.	Description	Initial value	
#27	A/D data sudden change detection status (valid while BFM #22 b2 is ON)	KO	
#28	Scale over status	K0	
#29	Error status	K0	
#30	Model code (K2070)	K2070	
#31	Reserved —		
#32	Operating time 0 to 64,800 (s) Subsequently, 64,800 is kept. Measurement starts when the power is turned on, and the measured value is reset when the power is turned off.	КО	
:	Reserved	_	
#41	CH1 offset data (mV or μA)	K0	
#42	CH2 offset data (mV or μA)	K0	
#43	CH3 offset data (mV or μA)	K0	
#44	CH4 offset data (mV or μA)	K0	
i	Reserved	_	
#51	CH1 gain data (mV or μA)	K5000	
#52	CH2 gain data (mV or μA)	K5000	
#53	CH3 gain data (mV or μA)	K5000	
#54	CH4 gain data (mV or μA)	K5000	
:	Reserved	_	
#61	CH1 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	K0	
#62	CH2 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	K0	
#63	CH3 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	КО	
#64	CH4 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)		
:	Reserved —		
#71	1 CH1 lower limit error set value (valid while BFM #22 b1 is ON) Minimum value insignange		
#72	CH2 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range	
#73	CH3 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range	
#74	CH4 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range	
ŧ	Reserved	_	
#81	CH1 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range	
#82	CH2 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range	
#83	CH3 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range	
#84	CH4 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range	
i	Reserved	_	
#91	CH1 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale	
#92	CH2 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale	
#93	CH3 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale	
#94	CH4 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale	
:	Reserved	_	

BFM No.	Des	cription	Initial value
#99	Clear of upper and lower limit value error and sudden change detection error		K0
#100	Reserved		_
#101	CH1 minimum value (vali	id while BFM #22 b3 is ON)	
#102	CH2 minimum value (vali	id while BFM #22 b3 is ON)	
#103	CH3 minimum value (vali	id while BFM #22 b3 is ON)	
#104	CH4 minimum value (vali	id while BFM #22 b3 is ON)	
i	Reserved		-
#109	Minimum value reset		K0
#110	Reserved		_
#111	CH1 maximum value (va		
#112	CH2 maximum value (va		
#113	CH3 maximum value (valid while BFM #22 b3 is ON)		
#114	CH4 maximum value (valid while BFM #22 b3 is ON)		
i	Reserved		_
#119	Maximum value reset		K0
i	Reserved		-
#198	Data history sampling time [Effective only for channels whose number of averaging times (BFM #2 to #5) is 1 and digital filter setting (BFM #6 to #9) is 0] Setting rance: 0 to 30,000 ms		К0
#199	Resets or stops data history. [Effective only for channels whose number of averaging times (BFM #2 to #5) is 1 and digital filter setting (BFM #6 to #9) is 0]		КО
#200	CH1 data history (1st value)	Data history sampling is effective only for channels	K0
:	:	whose number of averaging times (BFM #2 to #5) is 1	:
#1799	CH4 data history (400th value)	and digital filter setting (BFM #6 to #9) is 0.	K0

6.2 Details of buffer memories

BFM #0: Specifies input mode.

Specify the input mode of CH1 to CH4 by writing a numeric BFM#0 value to BFM #0.

The input mode specification declares, each BFM expressed as a 4-digit hexadecimal code, and each channel No. is assigned to each digit. Specify a numeric value 0 to F in each digit for each channel.

O=0: Voltage input mode (-10 to 10V \rightarrow -32000 to 32000), resolution 0.32mV

O=1: Voltage input mode (-10 to 10V \rightarrow -4000 to 4000), resolution 2.50mV O=2: Voltage input mode (-10 to $10V \rightarrow -10000$ to 10000), resolution 1mV

O=3: Current input mode (4 to 20mA \rightarrow 0 to 16000), resolution 1.25 μ A O=4: Current input mode (4 to 20 mA → 0 to 4000), resolution 5.00 μA

O=5: Current input mode (4mA to 20mA \rightarrow 4000 to 20000), resolution 1.25 μ A

O=6: Current input mode (-20 to 20 mA \rightarrow -16000 to 16000), resolution 1.25 μ A O=7: Current input mode (-20 to 20 mA \rightarrow -4000 to 4000), resolution 5.00 μ A

O=8: Current input mode (-20 to 20 mA \rightarrow -20000 to 20000), resolution 1.25 μ A O=9 to E:Unusable

O=F: Corresponding CH is not used.

• The input characteristics are changed automatically according to the setting of BFM #0. (The input characteristics can be changed to independent values except when O=2, 5, 8 is set in BFM #0 that disables all changes to the offset or gain.)

 It takes approximately 5 seconds to change the input mode (to change each set value).

Time interval of 5 seconds or more after changing the input mode until the write of each setting (TO instruction) is performed.

• Setting "HFFFF" to allocate all channels as unusable is not allowed.

BFM #2 to BFM #5: Number of averaging times

(Make sure to set the number of averaging times to "1" when using the digital

The allowable set range of the number of averaging times is 1 to 4.095. If the number of averaging times is set to "1", the immediate data (current value) is stored in BFM #10 to #13. Otherwise, BFM #10 to BFM #13 will be averaged depending on the value set in BFM #2 to BFM #5.

If the number of averaging times is set to "0" or less, "0" is written. If the number of averaging times is set to "4,096" or more, "4096" is written. In either case, number of averaging times setting error (BFM #29 b10) occurs. The initial set value is "1"

Average data update

• When the number of averaging times (BFM #2 to BFM #5) is set to "400" or less, the average (BFM #10 to BFM #13) is updated every time the A/D conversion processing is performed.

The update time is as follows:

Average data update time = (A/D conversion time) x Number of channels

• When the number of averaging times (BFM #2 to BFM #5) is set to "401" or more, the average (BFM #10 to BFM #13) is updated every time the A/ D conversion is performed by as many as the set number of averaging

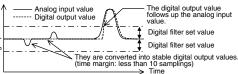
The update time is as follows:

Average data update time = (A/D conversion time) x Number of channels x Number of averaging times

In either case above, until the number of A/D conversion times reaches the set number of averaging times for the first time, the average at each time point is stored in BFM #10 to BFM #13.

BFM #6 to BFM #9: Digital filter setting

(Effective only when the number of averaging times is set to "1") Digital filter can be provided for each channel using the BFM #6 to #9. Data updating time is 5 ms x number of channels.


• "Digital filter value > Fluctuation of analog signal (time margin: less than 10 samplings)

Stabilized digital output value is stored in the BFM #10 to #13"

• "Digital filter value < Fluctuation of analog signal

Digital output value following the analog signal is stored in the BFM #10

Using this function, an unstable analog value can be converted to a stable digital value

The table below shows the relationship between the set value of BFM #6 to #9 and the operation

	Digital filter function is invalid. Set value error occurs (BFM #29 b11 turns ON.).	
Set value = 0	Digital filter function is invalid.	
1 ≤ Set value ≤ 1,600	Digital filter function is valid.	
1,600 < Set value	Digital filter function is invalid. Set value error occurs (BFM #29 b11 turns ON.).	

BFM #10 to BFM #13: Channel data

The A/D conversion data for each channel is written to BFM #10 to #13.

BFM #19: Disables setting change

BFM #19 enables or disables the setting change of the I/O characteristics (BFM #0, #41 to #44, #51 to #54), the convenient functions (BFM #22).

K1: Enables change (factory default).

K2: Disables change

BFM #20: Initializes functions

BFM #20 initializes all data stored in BFM #0 to BFM #1799, and sets the FX2NC-4AD to factory default

By initialization, the input characteristics are reset to the values set at factory default (voltage input, offset value K0, gain value K5000).

K0: Normal

H0000

Ŭ_CH1

CH2

-CH3

K1: Executes initialization. (Writes K1, subsequently returns to K0 when initialization is completed.)

BFM #21: Writes I/O characteristics

Each channel No. is assigned to the lower 4 bits of BFM #21.

When a bit is set to ON, the offset data (BFM #41 to BFM #44) and the gain data (BFM #51 to BFM #54) of the assigned channel No. are written to the built-in memory (EEPROM)

Give the write command to two or more channels at a time. (When entering "HF", all channels are written to.)

When the write is completed, BFM #21 subsequently returns to K0. BFM21

b15, b14, b13, b12, b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0 Invalid

BFM #22: Sets convenient functions

The functions described below are assigned to b0 to b3 of BFM #22. When a bit is set to ON, the assigned function becomes valid.

When a bit is set to OFF, the assigned function becomes invalid

^{*2} The condition below must be met: 1 V ≤ (Gain - Offset)

^{*3} The condition below must be met: 3 mA ≤ (Gain - Offset) ≤ 30 mA

b0: Data addition function

The data (BFM #10 to BFM #13), minimum/maximum value (BFM #101 to BFM #104, BFM #111 to BFM #114) and data history (BFM #200 to BFM #1799) of each channel is the measured value added by the addition data (BFM #61 to BFM #64).

When using this function, enter the value added by the addition data (BFM #61 to BFM #64) to the lower limit value error set value (BFM #71 to BFM #74) and the upper limit value error set value (BFM #81 to BFM #84).

The addition data (BFM #61 to BFM #64) is not added to the scale over data (BFM #28).

b1: Upper/lower limit value detection function

When the A/D conversion data of each channel is outside the range of the lower limit value error set value (BFM #71 to BFM #74) to the upper limit value error set value (BFM #81 to BFM #84), the result is written to the upper/lower limit value error status (BFM #26).

b2: Sudden change detection function

When the data (BFM #10 to BFM #13) of each channel is updated, if the difference between the previous value and the new value is larger than the sudden change detection set value (BEM #91 to BEM #94). the result is written to the sudden change detection status (BFM #27).

b3: Minimum/maximum value hold function

The minimum value of the data (BFM #10 to BFM #13) of each channel is written to BFM #101 to BFM #104, and the maximum value is written to BFM #111 to BFM #114.

BFM #26: Upper/lower limit error status

The upper /lower limit value detection function (BFM#22 b1), writes detected errors to the corresponding bits in BFM#26 (see table). Upper and lower limit error status for the four channels is located in bit-pairs in the first 8hits of RFM#26

When the data (BFM #10 to BFM #13) of any channel is outside the range from the lower limit error value (BFM #71 to BFM #74) to the upper limit error value (BFM #81 to BFM #84), the corresponding bit turns ON.

When a bit turns ON, it remains ON until it is reset by BFM #99 or the power is turned OFF

Even while an upper/lower limit value error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated.

Bit No.	Channel No.	Description
b0	CH1	Lower limit error
b1	CHI	Upper limit error
b2	CH2	Lower limit error
b3	CHZ	Upper limit error
b4	CH3	Lower limit error
b5	CHS	Upper limit error
b6	CH4	Lower limit error
b7	U114	Upper limit error

BFM #27: A/D data sudden change detection status

The sudden change detection function (BFM#22 b2) writes detected errors to the corresponding bits in BFM#27. The sudden change detection status for negative or positive changes is located in the first 8bits of BFM#27 in bit-pairs.

When the data (BFM #10 to BFM #13) of each channel is updated, if the difference between the previous value and the new value is larger than the sudden change detection set value (BFM #91 to BFM #94), the corresponding bit in BFM #27 turns ON.

At this time, when the new value is larger than the previous value, a bit for the + direction turns ON. when the new value is smaller than the previous value, a bit for the - direction turns ON.

When a bit turns ON, it remains ON until it is reset by BFM #99 or the power is turned OFF.

Even while a sudden change error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated

Bit assignment of BFM #27

Bit No.	Channel No.	Description
b0	CH1	Sudden change error in - direction
b1	0111	Sudden change error in + direction
b2	CH2	Sudden change error in - direction
b3	UHZ	Sudden change error in + direction
b4	CH3	Sudden change error in - direction
b5	CHS	Sudden change error in + direction
b6	CH4	Sudden change error in - direction
b7	0114	Sudden change error in + direction

BFM #28: Scale over status

The result of the analog input value for each individual channel that has exceeded the input range will be written to BFM#28. Range in which input is available:

Voltage input mode	Current input mode ^{*1}
- 10.2V to 10.2V	- 20.4mA to 20.4mA

*1 The above table shows the available input range in the current input mode. A scale over status bit turns ON when the analog input value is -40.960mA or less or +40.940mA or more

Use the upper / lower limit detection function to detect the scale over status in the current input mode.

A bit will remain ON unless it is reset from switching the Power OFF or overwriting the ON bit with an OFF bit via a TO instruction. Even while a scale over error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated.

Bit assignment of BFM #28

Bit No.	Channel No.	Description
b0	CH1	Scale over: Less than lower limit
b1	OIII	Scale over: More than upper limit
b2	CH2	Scale over: Less than lower limit
b3	OHE	Scale over: More than upper limit
b4	CH3	Scale over: Less than lower limit
b5	CHS	Scale over: More than upper limit
b6	CH4	Scale over: Less than lower limit
b7	CH4	Scale over: More than upper limit

BFM #29: Frror status

Error information is assigned to each bit of BFM #29.

Rit accignment of REM #20

Bit No.	Assignment	Description
b0	Error detected	b0 is ON while either b2 to b4 is ON.
b1	_	_
b2	Power error	24V DC power is not correctly supplied. Check the wiring and supply voltage.
b3	Hardware error	FX2NC-4AD may have malfunctioned. Contact the nearest Mitsubishi Electric System Service center.
b4	A/D conversion value error	A/D conversion value is abnormal. Using the scale over data (BFM #28), check the channel in which the error has occurred.
b5	_	_
b6	BFM read/write disabled	This bit will be ON during the input characteristics change processing. While this bit is ON, correct A/D data will not read from o written to BFMs.
b7	_	_
b8	Set value error detected	This bit will be ON while either b9 to b15 is ON.
b9	Input mode setting error	Input mode (BFM #0) is incorrectly set. Set it within the range from 0 to 8.
b10	Number of averaging times setting error	Number of averaging times is incorrectly set. Set it within the range from 1 to 4,095.
b11	Digital filter setting error	The digital filter setting is incorrect. Reset within the range of 0 to 1,600.
b12	Sudden change detection set value error	Sudden change detection set value is incorrect. Set a correct value.
b13	Upper/lower limit set value error	Upper/lower limit set value is incorrect. Set a correct value.
b14	_	_
b15	Addition data setting error	Addition data is incorrectly set. Set it within range from -16,000 to 16,000.

BFM #30: Model code

BFM #30 stores a fixed value of "K2070".

BFM #32: Operating time

BFM #32 stores the continuous operating time for the FX2NC-4AD. Measurement starts when the power is turned ON, and the measured value is reset when the power is turned OFF.

The measurement range is from 0 to 64,800 (s). After that, 64,800 is kept.

BFM #41 to BFM #44: Offset data

BFM #51 to BFM #54: Gain data

Offset data: Analog input value when the digital value is "0" Gain data :Analog input value when the digital value is as shown below (The

digital value varies depending on the setting of the input mode.)

Standard digital value for offset and gain in each input mode

(A number in the input mode column indicates a value set in BEM #0.)

								. ,	
Input mode (BFM #0)	0	1	2	3	4	5	6	7	8
Standard offset value	0	0	-	0	0	-	0	0	-
Standard gain value	16000	2000		16000	4000	ı	16000	4000	•

- Set the offset and gain data for each channel
- Write the set value in units of "mV" for voltage input or "μA" for current input.
- Do not change the input characteristics when O=2, 5, 8 is set in BFM #0. (Even if a numerical value is written, it is ignored.)

Initial offeet/gain value (Unit, m)/ for valtage input uA for everent input)

initial onset/gain value (onit: inv lor voltage input, pr lor current input)									
Input mode (BFM #0)	0	1	2	3	4	5	6	7	8
Initial offset value	0		4000			0			
Initial gain value	5000			20000					

Setting range

	Voltage input	Current input
Offset data	-10000 to 9000 (mV)	-20000 to 17000 (μA)
Gain data	Gain value - Offset value = 1,000 to 10,000 (mV)	Gain value - Offset value = 3,000 to 30,000 (μA)

The actual effective input range is "-10 to 10 V" or "-20 to 20 mA".

BFM #61 to BFM #64: Addition data

When using the data addition function (BFM #22 b0), data (BFM #10 to BFM #13), minimum/maximum value (BFM #101 to BFM #104, BFM #111 to BFM #114) and data history (BFM #200 to BFM #1799) of each channel becomes the measured value added by the addition data (BFM #61 to BFM #64).

When using the data addition function, enter the value added by the addition data (BFM #61 to BFM #64) to the lower limit value error set value (BFM #71 to BFM #74) and the upper limit value error set value (BFM #81 to BFM #84). Setting range: -16.000 to 16.000

BFM #71 to BFM #74: Lower limit, error set value BFM #81 to BFM #88: Upper limit, error set value

When using the upper/lower limit value detection function (BFM #22 b1), write the lower limit value of each channel to BFM #71 to BFM #74 and the upper limit value of each channel to BFM #81 to BFM #84.

When using the data addition function (BFM #22 b0), enter the value added by the addition data to BFM #61 to BFM #64.

Setting range

The setting range will vary depending on the setting of the input mode (BFM #0). The table below shows the setting range for each input mode. Enter the set value as a digital value.

		Initial value		
Input mode (BFM #0)	Setting range	Lower limit	Upper limit	
0: Voltage input mode (-10 to 10 V → -32000 to 32000)	-32768 to 32767	-32768	32767	
1: Voltage input mode (-10 to 10 V → -4000 to 4000)	-4096 to 4095	-4096	4095	
2: Voltage input mode (-10 to 10 V → -10000 to 10000)	-10200 to 10200	-10200	10200	
3: Current input mode (4 to 20 mA → 0 to 16000)	-1 to 16383	-1	16383	
4: Current input mode (4 to 20 mA → 0 to 4000)	-1 to 4095	-1	4095	
5: Current input mode (4 to 20 mA → 4000 to 20000)	3999 to 20400	3999	20400	
6: Current input mode (-20 to 20 mA → -16000 to 16000)	-16384 to 16383	-16384	16383	
7: Current input mode (-20 to 20 mA → -4000 to 4000)	-4096 to 4095	-4096	4095	
8: Current input mode (-20 to 20 mA → -20000 to 20000)	-20400 to 20400	-20400	20400	

BFM #91 to BFM #94: Sudden change detection set value

When using the sudden change detection function (BFM #22 b2), enter the set value to judge the sudden change.

When the data (BFM #10 to BFM #13) of each channel is updated, if the difference between the previous value and the new value is larger than the sudden change detection set value (BFM #91 to BFM #94), the result is written to the sudden change detection status (BFM #27).

Setting range

The setting range will vary depending on the setting of the input mode (BFM

The table below shows the setting range for each input mode.

Write the set value in a digital value

Input mode (BFM #0)	Setting range	Initial value				
0: Voltage input mode (-10 to 10 V → -32000 to 32000)	1 to 32767	3200				
1: Voltage input mode (-10 to 10 V → -4000 to 4000)	1 to 4095	400				
2: Voltage input mode (-10 to 10 V → -10000 to 10000)	1 to 10000	1000				
3: Current input mode (4 to 20 mA → 0 to 16000)	1 to 8191	800				
4: Current input mode (4 to 20 mA → 0 to 4000)	1 to 2047	200				
5: Current input mode (4 to 20 mA → 4000 to 20000)	1 to 8191	800				
6: Current input mode (-20 to 20 mA → -16000 to 16000)	1 to 16383	1600				
7: Current input mode (-20 to 20 mA → -4000 to 4000)	1 to 4095	400				
8: Current input mode (-20 to 20 mA → -20000 to 20000)	1 to 20000	2000				

BFM #99: Clears upper/lower limit value error and sudden change detection error

The commands to clear the lower and upper limit value error and the sudden change detection error are assigned to the lower three bits of BFM

The flag of the corresponding error status (BFM #26, BFM #27) is reset for all channels simultaneously when a bit is set to ON.

After the reset is finished, each bit of BFM #99 returns automatically to the

The setting of two or more clear commands to ON at the same time is possible

Bit assignment of BFM #99

Bit No.	Description
b0	Clears lower limit error.
b1	Clears upper limit error.
b2	Clears sudden change detection error.
b3 to b15	Unusable

BFM #101 to BFM #104: Minimum value BFM #111 to BFM #114: Maximum value

When using the minimum/maximum value hold function (BFM #22 b3), the minimum value of the data (BFM #10 to BFM #13) of each channel is written to BFM #101 to BFM #104, and the maximum value is written to BFM #111 to BFM #114

When using the data addition function (BFM #22 b0), the minimum/ maximum measured value will be added to the addition data (BFM #61 to BFM #64)

Initial value

Minimum/maximum value hold function is not used:K0

Minimum/maximum value hold function is used: Digital value when the nower is turned ON

BFM #109: Minimum value reset

BFM #119: Maximum value reset

When using the minimum/maximum value hold function (BFM #22 b3), BFM #109 clears the minimum value stored in BFM #101 to BFM #104, and BFM #119 clears the maximum value stored in BFM #111 to BFM

The channel No. that will be reset is assigned to each bit of BFM #109 and BFM #119. When a bit is set ON, minimum/maximum value of the assigned channel is cleared. (Setting two or more bits ON simultaneously is possible.)

Bit assignment

BFM #109	l	
----------	---	--

Ī	Bit No.	b15 to b4	b3	b2	b1	b0
	Channel No. (BFM No.)	Unusable	CH4 (#104)	CH3 (#103)	CH2 (#102)	CH1 (#101)
- T						
)	Bit No.	b15 to b4	b3	b2	b1	b0

BFM #119

Bit No.	b15 to b4	b3	b2	b1	b0
Channel No. (BFM No.)	Unusable	CH4 (#114)	CH3 (#113)	CH2 (#112)	CH1 (#111)

BFM #198: Data history sampling time

Set the data history sampling time. Setting range: 0 to 30,000 ms

Sampling cycle

When the set value is "0" :1 ms x Number of effective channels When the set value is "1" or more:Set value (ms) x Number of effective channels

BFM #199: Resets or stops data history

The data history reset function is assigned to the lower 4 bits of BFM #199. The data history stop function is assigned to the upper 4 bits of BFM #199.

Data history reset function

This function clears the sampled data history for each channel. The channel No. to be reset is assigned to each of the lower 4 bits of BFM

When a bit is set to ON, the data history (all contents from the 1st value to

the 400th value) of the assigned channel is cleared. (The setting of two or more bits to ON simultaneously is possible.)

When the clear operation is completed, each bit returns automatically to the OFF state

Assignment of lower 4 bits

Bit No.	b7 to b4	b3	b2	b1	ь0
Channel No.	Unusable	CH4	CH3	CH2	CH1

Data history stop function

This function will temporarily stop the data history for the individual channels. The channel No. to be temporarily stopped is assigned to each of the upper 4 bits of BFM #199. When a bit is set to ON, sampling of the data history of the assigned channel is temporarily stopped. (Setting two or more bits to ON at a time.)

When a bit is set to OFF, sampling of the data history of the assigned channel restarts

Bit No.	b15 to b12	b11	b10	b9	b8
Channel No.	Unusable	CH4	CH3	CH2	CH1

BFM #200 to BFM #1799: Data history

The A/D conversion value of each channel is sampled, and written to the BFMs shown below. The table below shows the assignment between the channel No. and the BFM No. Data is stored in ascending order of the BFM

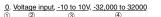
Up to 400 data history items are written for each channel. When the number of history items exceeds 400, the data is overwritten starting from the smallest RFM No.

The data history function is valid only for channels whose number of averaging times (BFM #2 to #5) is set to "1" and digital filter setting (BFM #6 to #9) is set to "0".

Assignment of channel No. and BFM No.

Channel	BFM No.					
No.	1st value	2nd value	3rd value	••••	400th value	
CH1	#200	#201	#202	••••	#599	
CH2	#600	#601	#602	••••	#999	
CH3	#1000	#1001	#1002	••••	#1399	
CH4	#1400	#1401	#1402	• • • • •	#1799	

. If a considerable amount of data history is read from the main unit using a FROM instruction, a watch dog timer error occurs in the main unit. In such a case, divide the required data history using multiple FROM instructions, and insert the WDT instruction (watch dog timer refresh instruction) after each FROM instruction


7. Adjustment of I/O Characteristics

For factory default, the FX2NC-4AD has standard I/O characteristics in accordance with each input mode (BFM #0).

In the voltage and current input mode, adjust the standard I/O characteristics for each channel. (Do not change the input characteristics when 2, 5, 8 is set in BEM #0.)

7.1 Standard I/O characteristics

The input mode of the standard I/O characteristics is abbreviated as shown

1): Input mode set in BFM #0 3: Analog input range

2: Input mode ④: Digital output range

Input

oltage -10V

0 to 16000

16400

16000

Digital value

0 4mA

Digital value

20400

20000

4000

Input

current

8p 80

0 4mA

-4000 to 4000

7. Current input, -20 to 20 mA,

Digital value 4080

4000

-20mA

5. Current input, 4 to 20 mA.

4,000 to 20,000 (Direct mode)

1. Voltage input. -10 to 10 V.

Digital value

4 080

4.000

3. Current input, 4 to 20 mA,

10V

Input

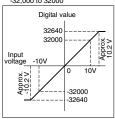
8

20mA

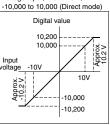
20mA Input

0 20mA

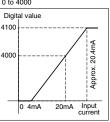
4000

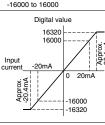

-4080

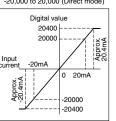
4,000


-4 080

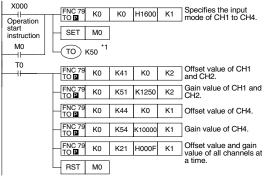
-4000 to 4000


0. Voltage input, -10 to 10 V. -32,000 to 32000


2. Voltage input, -10 to 10 V.


4. Current input, 4 to 20 mA, 0 to 4000

6. Current input, -20 to 20 mA, -16000 to 16000


8. Current input, -20 to 20 mA, -20,000 to 20,000 (Direct mode)

7.2 Adjustment of I/O characteristics

Adjust the I/O characteristics using the buffer memories in the FX2NC-4AD. Firstly, enter the input mode to BFM #0, then enter the offset data to BFM #41 to BFM #44, subsequently enter the gain data to BFM #51 to BFM #54. Update the offset data and the gain data for each channel using BFM #21.

Example program (Adjustment of CH1, CH2 and CH4)

- *1 It takes approximately 5 seconds to change the input mode (BFM #0) (to change each set value)
- Assure that a time interval of 5 seconds or more is held after a change of the input mode until execution of write of each setting (TO instruction).
- The I/O characteristics can be written (BFM #21) to either channel, or two or more channels simultaneously.

8. Example program

This section introduces an example program to read analog data from the FX2NC-4AD and connecting to digital data in the PLC.

Condition

System configuration: The FX2NC-4AD is connected as a special function block nearest to the FX2NC Series PLC main unit (unit No. 0).

Input mode:

CH1 and CH2: Mode 0 (voltage input, -10 to 10 V → -32000 to 32000) CH3 and CH4: Mode 3 (current input, 4 to 20 mA → 0 to 16000)

Number of averaging times: 1 (initial value) in each channel I/O characteristics:

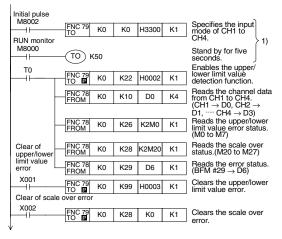
Standard I/O characteristics (initial value) in each channel

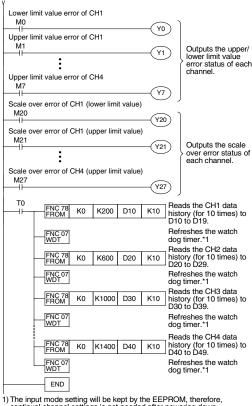
Convenient function: Upper/lower limit value detection function is used. Data history function:

Used while sampling time is set to 0ms (initial value).

CH1 to CH4: Sampling time = 1ms × 4 (Number of effective channels) = 4ms I/O assignment:

Clears the upper/lower limit value error. X001


X002 Clears the scale over error


Y000 to Y007: Output the upper/lower limit value error status of each

channel.

Y020 to Y027: Output scale over status of each channel.

Example program

- continual channel settings is not needed after powering down.
- *1 When multiple data history items are read, the scan time of the PLC becomes longer.

In the FX2Nc Series PLC, when the scan time exceeds 200 ms, the CPU error indicator lamp lights and the PLC stops.

When reading many data history items, divide data history items to be read using two or more FROM instructions, then insert the WDT (watch dog timer refresh) instruction between FROM instructions.

This manual confers no industrial property rights or any rights of any other kind. nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

Mitsubishi will not be held liable for damage caused by factors found not to be the cause of Mitsubishi; opportunity loss or lost profits caused by faults in the Mitsubishi products; damage, secondary damage, accident compensation caused by special factors unpredictable by Mitsubishi; damages to products other than Mitsubishi products; and to other duties

♠ For safe use

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi Electric
- This product has been manufactured under strict quality control. However when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN

PROGRAMMABLE CONTROLLERS

FX2NC-4AD Analog input block

Thank you very much for purchasing this product.

In order to handle the product properly please read this manual thoroughly

User's Manual FX2NC-4AD

Date April 2015 for the Safety of the User and Protection of the FX2NC-4AD

MANUAL Number JY997D07801E

MODEL

Guidelines for the Safety of the User and Protection of the FX2Nc-4AD special function block.

This manual should be used by trained and competent personnel. The definition of such a person or persons is as follows:

a) Any engineer using the product associated with this manual, should be of a competent nature, trained and qualified to the local and national standards. These engineers should be fully aware of all aspects of safety with regards to automated equipment.

b) Any commissioning or service engineer must be of a competent nature.

b) Any commissioning or service engineer must be of a competent nature, trained and qualified to the local and national standards.

c) All operators of the completed equipment should be trained to use this product in a safe and coordinated manner in compliance to established safety practices.

term 'completed equipment' refers to a third party constructed ce which contains or uses the product associated with this manual.

●Note concerning the CE marking●
CE marking does not guarantee that an entire mechanical module produced in accordance with the contents of the notification comply with the following standards. Compliance to EMC standards of the entire mechanical module should be checked by the user / manufacturer.

· This product is designed for use in industrial applications

Note

 Authorized Representative in the European Community: Mitsubishi Electric Europe B.V. Gothaer Str. 8, 40880 Ratingen, Germany

Standards with which this product complies
Type: Programmable Controller (Open Type Equipment)
Models: Products manufactured starting April 1st, 2003.

Electromagnetic Compatibility Standards (EMC)	Remark
EN61000-6-4:2007 Electromagnetic compatibility -Generic standards - Emission standard for Industrial environment	Compliance with all relevant aspects of the standard. (Radiated Emissions and Mains Terminal Voltage Emissions)
EN61000-6-2:2005 Electromagnetic compatibility -Generic standards Immunity for industrial environments.	Compliance with all relevant aspects of the standard. (RF immunity, Fast transients, ESD, Conducted, Surges, Power magnetic fields, Voltage dips and Voltage interruptions)
EN61131-2:2007 Programmable controllers -Equipment requirements and tests	Compliance with all relevant aspects of the standard. (Radiated Emissions, Conducted Emissions, Radiated electromagnetic field, Fast transient burst, Electrostatic discharge, Highenergy surge, Voltage drops and interruptions, Conducted RF, and Power frequency magnetic field)

For more details please contact the local misistability electric sales site.

- Notes for compliance to EMC regulation.
It is necessary to install the FX≥nc-4AD in a shielded metal control panel.
For further information manual concerning the FX Series, refer to the following table

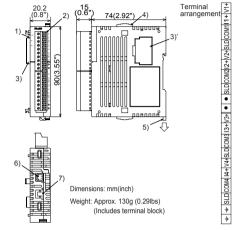
List of Further Information Manuals

Manual Name	Manual No.	Description
FX2NC Hardware Manual	JY992D76401	This manual contains hardware explanations of wiring, installation and specifications for the FX2NC Series programmable controllers.
FX3UC User's Manual - Hardware Edition	JY997D28701	This manual contains hardware explanations of wiring, installation and specifications for the FX3UC Series programmable controllers.
FX Programming Manual II	JY992D88101	This manual contains instruction explanations for the FX1s, FX1N, FX2N and FX2NC Series programmable controllers.
FX3s/FX3g/FX3gc/ FX3u/FX3uc Programming Manual	JY997D16601	This manual contains instruction explanations for the FX3s, FX3d, FX3dc, FX3u, FX3uC Series programmable controllers.

1. Introduction

The FX2nc-4AD analog input block (hereafter referred to as "FX2nc-4AD") converts 4 points of analog input values (voltage and current inputs) into digital values, and transfers them to the main unit.

The FX2nc-4AD can be connected to the FX2nc / FX3uc Series PLC.


1) A combination of voltage and current analog inputs selectable via the PLC TO instruction should be used to configure the individual input channels.

2) The voltage input range can be selected within -10 to 10 v, alternatively, the current input range can be selected within -20 to 20mA and 4 to 20mA. The input characteristics can be adjusted for each channel (except when O=2, 5, 8 is set in BFM #0 that disables all changes to the offset or gain).

3) The resolution is 0.32 mV (20 V \times 1/64,000) or 2.50 mV (20 V \times 1/8,000) when voltage input is used, and 1.25 μA (40 mA \times 1/32,000) or 5.00 μA (40 mA \times 1/

8,000) when current input is used.
4) Data transfer with the PLC is performed via the buffer memories of the FX2NC-4AD using FROM/TO instructions.

2. External Dimensions and Part Name

Accessory: Special function block number label,
Power crossover cable FX2nc-10BPCB1

1) Status indicator LED 2) Terminal connector (European type)
3),3) Extension port 4) Slide lock for extension block
5) DIN rail clip 6) Power supply connector (24V DC)
7) Power supply connector (Supply for extension block)
The connector 3) is equipped with a cover.

Do not wire the terminals.

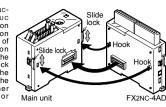
Status indicator LED

Indication	Description			
PW	Lit while 5 V power is normally supplied from PLC.			
24 V	Lit while 24 V power is normally supplied to the "24+" and "24-" power supply connector of the FX2NC-4AD.			
A/D Flashes during A/D conversion.				

special function block of the FX2NC / FX3UC Series PLC.

DIN rail installation
 The FX2nc-4AD can be installed on DIN rail DIN46277 (width: 35mm (1.38")).
 When removing the FX2nc-4AD, push downward on the DIN rail attachment back.

Description


A/D data sudden change detection status (valid while

Initial value

For details, refer to the PLC main unit manual.

3. PLC Connection

When connecting the FX2NC 4AD to the FX2NC / FX3UC Series main unit or extension Series main unit or extension block, remove the extension port cover from the right side of the main unit or extension block, keep the slide lock in the main unit or extension block willed ways of the series of t pulled upward, then align the hook in the FX2NC-4AD with the mounting hole in the former step of the main unit or

extension block.

The push the slide lock downward to fix the FX2nc-4AD. When connecting two or more FX2nc-4AD units, connect an FX2nc-4AD unit to another FX2nc-4AD.

unit in the same way.

Up to four special function blocks or special function units in total can be connected to the FX:nc Series PLC including those connected to the FX:nc

CNV-IF.

Up to eight special function blocks or special function units in total can be connected to the FXauc-1 Series PLC including those connected to the FXauc-CNV-IF or FXauc-IPS-5V.

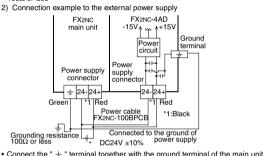
For each connected special function block or special function unit, a unit number is assigned starting with 0 for the special function block and special function unit nearest to the main unit.

From the main unit, use FROM/TO instructions to read or write data stored in the FXauc-4AD.

*1 Up to seven special function blocks or special function units in total can be connected to the FXsuc-32MT-LT(-2) PLC. Unit numbers assigned to special function units / blocks begins with No.1.

4. Wiring

4.1 Power supply wiring

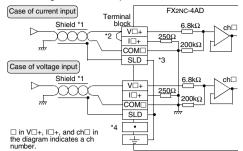

Supply power (24V DC) to the FX2NC-4AD from the power supply connector. When using the power supply connector, the following power cables are available Power cables

FX2NC-10BPCB1: Power crossover of er cable (offered as an accessory for the FX2NC-4AD) Power crossover c FX_{2NC}-100BPCB:

Power cable (offered as an accessory for the FX2NC-☆☆MT-D/UL, FX3UC-☆☆MT/D, FX3UC-16MR/D-T, FX3UC-32MT-LT(-2) [where ☆☆indicates: 16, 32, 64, 961) Connection example with the power supply through crossover wiring to the FX2Nc input extension block

FX2NC-4AD FX_{2NC} main unit FX_{2NC} input extension block -15V Power circuit Power supply crossover onnector connector Power supply connect Power supply

<u>+</u> 24-24+ 24-24+ 24-24+ 24-24 Power cable FX2NC-100BPCB Grounding Connected to ground of the power supply *1:Ground terminal resistance DC24V ±10% 2:Black



to the ground of the power supply equipped with grounding resistance of 100 Ω or less.

For crossover wiring to the next block of the FX2NC-4AD, remove the resin cover from the power crossover connector.

4.2 Input wiring

For terminal arrangement, refer to Chapter 2 of this manual

*1 When wiring the analog output cable, use a shielded two-core twisted cable, and separate it from other power cables and cables easily affected by induction.

*2 For current input, short-circuit the V□+ terminal and the I□+ terminal

*3 The "SLD" terminal and " \pm " terminal are internally connected.

*4 Do not wire the " • " terminal

Terminal connector handling The FX2NC-4AD is equipped with a terminal connector whose form is equivalent to that of the terminal connector type FX2NC/FX3UC PLC. For the specifications of the suggested screwdriver, the dimensions of the cable terminal, the external dimensions of the bar terminal equipped with

insulating sleeve, and applicable wiring, please refer to the PLC main unit manual 5. Specifications

5.1 General specifications

The general specifications are equivalent to those of the main unit. (For details, refer to the PLC main unit manual.)

5.2 Power supply specifications

ı	Item	Specifications			
Analog circuits		24 V DC±10%, 130 mA, externally supplied.			
	Digital circuits	$5\ V$ DC, $50\ mA,$ supplied from the PLC main unit using an extension port.			
	5.3 Performance specifications				

item	Specifications				
A/D conversion time	1 ms \times Number of used channels (If digital filter is used for one channel or more: 5 ms \times Number of used channels)				
Isolated method	Photocoupler isolated analog input area from PLC. Trans isolated power supply from analog I/O. Channels are not isolated from each other.				
Number of occupied I/O points	8 points (including input and output points)				
	FX2NC Series PLC (Up to four units can be connected including special function blocks and special function units connected to FX2NC-CNV-IF.)				
Applicable PLC	FX3uc Series PLC ⁻¹ (UP to eight units can be connected including special function blocks and special function units connected to FX2nc-CNV-IF or FX3uc-IPS-5V.)				
Built-in memory	EEPROM				

1 Up to seven units can be connected to the FX3UC-32MT-LT(-2) PLC

5.4 Voltage/current input specifications

Item	Voltage input	Current input
Analog input		-20 to 20 mA DC, 4 to 20 mA DC
range	(input resistance: $200k\Omega$)	(input resistance: 250Ω)

Voltage input Current input -10 to 9 V * -20 to 17 mA *3 value* -9 to 10 V * -17 to 30 mA *3 ain value numeric value (14 bits) -Effective numeric value (1 bits) + Sign (1 bit) Digital output Sign (1 bit) 1.25 µA (40 mA × 1/32,000) 0.32 mV (20 V × 1/64,000) 2.50 mV (20 V × 1/8,000) Resolution 5.00 µA (40 mA × 1/8,000) mbient temperature: 25°C ± 5°C Ambient temperature: $25 \,^{\circ}\text{C} \pm 5 \,^{\circ}\text{C}$ $\pm 0.3\%$ ($\pm 60 \,\text{mV}$) against full scale 20 V Ambient temperature: $0 \text{ to } +55 \,^{\circ}\text{C}$ $\pm 0.5\%$ ($\pm 100 \,\text{mV}$) against full scale 20 V ±0.5% (±200 µA) against full scale 40 mA 4 to 20mA input is same (±200 μΑ) Ambient temperature: 0 to +55°C Total ±1% (±400 μA) against full scale 40 mA 4 to 20mA input is same (±400 full scale 20 V μA)

- *1 Even though the offset/gain value is adjusted, the resolution remains The value cannot be changed when using the analog value direct mode (when "Specifies input mode" is 2, 5, or 8).
- *2 The condition below must be met: 1 V \leq (Gain Offset) *3 The condition below must be met: 3 mA \leq (Gain Offset) \leq 30 mA
- 6. Buffer Memory (BFM)

Data transfer between the FX2NC-4AD and the main unit is performed via buffer memories (hereafter referred to as "BFM") of the FX2NC-4AD. Each BFM consists of 1 word, 16 bits. BFM No. 0 to 1799 have assigned

Each BFM consists of 1 word, 16 bits. BFM No. 0 to 1799 have assigned functionality, communication with these BFMs should be performed using TO/FROM instructions supplied by the main unit. When the power is switched ON from OFF, the initial value is written to each BFM. Create a program for the PLC so that the desired contents are written to the BFMs every time the power of the PLC is turned ON. (The contents stored in BFM #0, #19, #22, #41 to #44 and #51 to #54 are held in the built-in EEPROM, and kept against power failure.)

6.1 Buffer Memories (BFM) lists

BFM No.	Description	Initial value
#0	Specifies input mode of CH1 to CH4.	H0000
#1	Reserved	_
#2	Number of averaging times for CH1 Setting range: 1 to 4,095 times	K1
#3	Number of averaging times for CH2 Setting range: 1 to 4,095 times	K1
#4	Number of averaging times for CH3 Setting range: 1 to 4,095 times	K1
#5	Number of averaging times for CH4 Setting range: 1 to 4,095 times	K1
#6	CH1: Digital filter setting Set range: 0 to 1,600	K0
#7	CH2: Digital filter setting Set range: 0 to 1,600	K0
#8	CH3: Digital filter setting Set range: 0 to 1,600	K0
#9	CH4: Digital filter setting Set range: 0 to 1,600	K0
#10	CH1 data (immediate data or average data)	_
#11	CH2 data (immediate data or average data)	_
#12	CH3 data (immediate data or average data)	_
#13	CH4 data (immediate data or average data)	_
:	Reserved	_
#19	Disables setting change of I/O characteristics (BFM #0, BFM #21) and convenient functions (BFM #22). Disables change: K2, Enables change: K1	K1
#20	Initializes functions. (Initializes functions at K1, then returns automatically to K0 after initialization is completed.)	K0
#21	Writes I/O characteristics. (Returns automatically to K0 after write of offset/gain value is finished.)	Ко
#22	Sets convenient functions (data addition, upper/ lower limit value detection, sudden change detection and minimum/maximum value hold).	Ко
i	Reserved	_
#26	Upper/lower limit value error status (valid while BFM #22 b1 is ON)	K0

#27	A/D data sudden change detection status (valid while BFM #22 b2 is ON)	КО
#28	Scale over status	КО
#29	Error status	КО
#30	Model code (K2070)	K2070
#31	Reserved	_
#32	Operating time 0 to 64,800 (s) Subsequently, 64,800 is kept. Measurement starts when the power is turned on, and the measured value is reset when the power is turned off.	КО
i	Reserved	_
#41	CH1 offset data (mV or μA)	K0
#42	CH2 offset data (mV or μA)	K0
#43	CH3 offset data (mV or μA)	KO
#44	CH4 offset data (mV or μA)	КО
:	Reserved	_
#51	CH1 gain data (mV or μA)	K5000
#52	CH2 gain data (mV or μA)	K5000
#53	CH3 gain data (mV or μA)	K5000
#54	CH4 gain data (mV or μA)	K5000
:	Reserved	_
#61	CH1 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	K0
#62	CH2 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	K0
#63	CH3 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	КО
#64	CH4 addition data Setting range: -16,000 to 16,000 (valid while BFM #22 b0 is ON)	K0
•	Reserved	_
#71	CH1 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range
#72	CH2 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range
#73	CH3 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range
#74	CH4 lower limit error set value (valid while BFM #22 b1 is ON)	Minimum digital value inside input range
i	Reserved	_
#81	CH1 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range
#82	CH2 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range
#83	CH3 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range
#84	CH4 upper limit error set value (valid while BFM #22 b1 is ON)	Maximum digital value inside input range
:	Reserved	
#91	CH1 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale
#92	CH2 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale
#93	CH3 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale
#94	CH4 sudden change detection set value Setting range: 1 to 50% of full scale (valid while BFM #22 b2 is ON)	5% of full scale
:	Reserved	_

No.			Initial value		
#99	Clear of upper and lower change detection error	r limit value error and sudden	КО		
#100	Reserved		_		
#101	CH1 minimum value (val				
#102	CH2 minimum value (val	id while BFM #22 b3 is ON)			
#103	CH3 minimum value (val	lid while BFM #22 b3 is ON)			
#104	CH4 minimum value (val	lid while BFM #22 b3 is ON)			
i	Reserved		_		
#109	Minimum value reset		K0		
#110	Reserved		_		
#111	CH1 maximum value (va	lid while BFM #22 b3 is ON)			
#112	CH2 maximum value (va	lid while BFM #22 b3 is ON)			
#113	CH3 maximum value (va				
#114	CH4 maximum value (va				
i	Reserved	_			
#119	Maximum value reset		K0		
i	Reserved		_		
#198	Data history sampling tir [Effective only for channel averaging times (BFM #2 setting (BFM #6 to #9) is Setting range: 0 to 30,00	els whose number of 2 to #5) is 1 and digital filter s 0]	КО		
#199	Resets or stops data his [Effective only for channel averaging times (BFM #2 setting (BFM #6 to #9) is	els whose number of 2 to #5) is 1 and digital filter	КО		
#200	CH1 data history (1st value)	Data history sampling is effective only for channels	КО		
i	i	whose number of averaging times (BFM #2 to #5) is 1	:		
#1799	CH4 data history (400th value)	and digital filter setting (BFM #6 to #9) is 0.	K0		

BFM #0: Specifies input mode.

Specify the input mode of CH1 to CH4 by writing a numeric value to BFM #0. The input mode specification declares, each BFM expressed

as a 4-digit hexadecimal code, and each channel No. is assigned to each digit. Specify a numeric value 0 to F in O=0: Voltage input mode (-10 to 10V \rightarrow -32000 to 32000), resolution 0.32mV

resolution 0.32mV O=1: Voltage input mode (-10 to 10V \rightarrow -4000 to 4000), resolution 2.50mV O=2: Voltage input mode (-10 to 10V \rightarrow -10000 to 10000), resolution 1mV O=3: Current input mode (4 to 20mA \rightarrow 0 to 16000), resolution 1.25 μ A O=4: Current input mode (4 to 20 mA \rightarrow 0 to 4000), resolution 5.00 μ A C=5: Current input mode (4mA to 20mA \rightarrow 4000 to 20000), resolution 1.25 μ A 0=6: Current input mode (-20 to 20 mA \rightarrow -16000 to 16000), resolution 1.25 μ A 0=7: Current input mode (-20 to 20 mA \rightarrow -4000 to 4000), resolution 5.00 μ A 0=8: Current input mode (-20 to 20 mA \rightarrow -20000 to 20000), resolution 5.01 μ A 0=9 to E:Unusable 0=F: Corresponding CH is not used.

The input characteristics are changed automatically according to the setting of BFM #0. (The input characteristics can be changed to independent values except when O=2, 5, 8 is set in BFM #0 that disables all changes to the offset or

• It takes approximately 5 seconds to change the input mode (to change each set value).
Time interval of 5 seconds or more after changing the input mode until the write of each setting (TO instruction) is performed.

· Setting "HFFFF" to allocate all channels as unusable is

BFM #2 to BFM #5: Number of averaging times (Make sure to set the number of averaging times to

The allowable set range of the number of averaging times is 1 to 4,095 If the number of averaging times is set to "1", the immediate data (current value) is stored in BFM #10 to #13. Otherwise, BFM #10 to BFM #13 will be averaged

depending on the value set in BFM #2 to BFM #5.

If the number of averaging times is set to "0" or less, "0" is written. If the number of averaging times is set to "4.096" or more, "4096" is written. In either case, number of averaging times is set to "4.096" or more, "4096" is written. In either case, number of averaging times setting error (BFM #29 b10) occurs. The initial set value is "1".

Average data update

When the number of averaging times (BFM #2 to BFM #5) is set to "400" or less, the average (BFM #10 to BFM #13) is updated every time the A/D conversion processing is performed.
The update time is as follows:
Average data update time = (A/D conversion time) x Number of channels

When the number of averaging times (BFM #2 to BFM #5) is set to "401" or more, the average (BFM #10 to BFM #13) is updated every time the A/D conversion is performed by as many as the set number of averaging

times.
The update time is as follows:
Average data update time = (A/D conversion time) x Number of channels

x Number of averaging times In either case above, until the number of A/D conversion times reaches the set number of averaging times for the first time, the average at each time point is stored in BFM #10 to BFM #13.

BFM #6 to BFM #9: Digital filter setting

(Effective only when the number of averaging times is set to "1")
Digital filter can be provided for each channel using the BFM #6 to #9. Data

updating time is 5 ms \times number of channels. "Digital filter value > Fluctuation of analog signal

(time margin: less than 10 samplings)
Stabilized digital output value is stored in the BFM #10 to #13"

"Digital filter value < Fluctuation of analog signal Digital output value following the analog signal is stored in the BFM #10 to #13"

Using this function, an unstable analog value can be converted to a stable digital value. Analog input value Digital output value value. Digital filter set value Digital filter set value They are converted into stable digital output values (time margin: less than 10 samplings)

The table below shows the relationship between the set value of BFM #6 to

	Digital filter function is invalid. Set value error occurs (BFM #29 b11 turns ON.).
Set value = 0	Digital filter function is invalid.
1 ≤ Set value ≤ 1,600	Digital filter function is valid.
	Digital filter function is invalid. Set value error occurs (BFM #29 b11 turns ON.).

BFM #10 to BFM #13: Channel data

The A/D conversion data for each channel is written to BFM #10 to #13

BFM #19: Disables setting change
BFM #19 enables or disables the setting change of the I/O characteristics
(BFM #0, #41 to #44, #51 to #54), the convenient functions (BFM #22).

K1: Enables change (factory default). K2: Disables change

BFM #20: Initializes functions

BFM #20 initializes all data stored in BFM #0 to BFM #1799, and sets the

FX: #20 initializes all data stoled if brivi #0 to brivi #1799, and sets the FX: #20 for for for default.

By initialization, the input characteristics are reset to the values set at factory default (voltage input, offset value K0, gain value K5000).

K0: Normal

K1: Executes initialization. (Writes K1, subsequently returns to K0 when initialization is completed.)

BFM #21: Writes I/O characteristics

Each channel No. is assigned to the lower 4 bits of BFM #21. When a bit is set to ON, the offset data (BFM #41 to BFM #44) and the gain data (BFM #51 to BFM #54) of the assigned channel No. are written to the

built-in memory (EEPROM).

Give the write command to two or more channels at a time. (When entering "HF", all channels are written to.)

When the write is completed, BFM #21 subsequently returns to K0.

b15, b14, b13, b12, b11, b10, b9, b8, b7, b6, b5, b4, b3, b2, b1, b0

BFM #22: Sets convenient functions

The functions described below are assigned to b0 to b3 of BFM #22. When a bit is set to ON, the assigned function becomes valid.

When a bit is set to OFF, the assigned function becomes invalid

#71 to BFM #74) and the upper limit value error set value (BFM #81 to BFM #84).

The addition data (BFM #61 to BFM #64) is not added to the scale over

The addition data (BFM #61 to BFM #64) is not added to the scale over data (BFM #28).

Upper/lower limit value detection function
When the A/D conversion data of each channel is outside the range of the lower limit value error set value (BFM #71 to BFM #74) to the upper limit value error set value (BFM #81 to BFM #84), the result is written to the upper/lower limit value error status (BFM #26).

be: Sudden change detection function

When the data (BFM #10 to BFM #13) of each channel is updated, if
the difference between the previous value and the new value is larger
than the sudden change detection set value (BFM #91 to BFM #94),
the result is written to the sudden change detection status (BFM #27).

Whiston Sudden Change detection status (BFM #27).

b3: Minimum/maximum value hold function
The minimum value of the data (BFM #10 to BFM #13) of each channel is written to BFM #101 to BFM #104, and the maximum value is written

to BFM #111 to BFM #114.

BFM #26: Upper/lower limit error status

The upper /lower limit value detection function (BFM#22 b1), writes detected errors to the corresponding bits in BFM#26 (see table). Upper and lower limit error status for the four channels is located in bit-pairs in the first

Botts of BFM#26. When the data (BFM #10 to BFM #13) of any channel is outside the range from the lower limit error value (BFM #71 to BFM #74) to the upper limit error value (BFM #81 to BFM #84), the corresponding bit turns ON. When a bit turns ON, it remains ON until it is reset by BFM #99 or the power is turned OFF.

power is turned OFF.
Even while an upper/lower limit value error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated.

Bit assignment of BFM #26

Bit No.	Channel No.	Description	
b0	CH1	Lower limit error	
b1	CHI	Upper limit error	
b2	CH2	Lower limit error	
b3		Upper limit error	
b4	CH3	Lower limit error	
b5	CH3	Upper limit error	
b6	CH4	Lower limit error	
b7	CH4	Upper limit error	

The sudden change detection function (BFM#22 b2) writes detected errors to the corresponding bits in BFM#27. The sudden change detection status for negative or positive changes is located in the first 8bits of BFM#27 in bit policy.

When the data (BFM #10 to BFM #13) of each channel is updated, if the difference between the previous value and the new value is larger than the sudden change detection set value (BFM #91 to BFM #94), the

corresponding bit in BFM #27 turns ON.

At this time, when the new value is larger than the previous value, a bit for the + direction turns ON, when the new value is smaller than the previous value, a bit for the - direction turns ON.

When a bit turns ON, it remains ON until it is reset by BFM #99 or the

when a bit turns Ors, it remains of same and power is turned OFF.

Even while a sudden change error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated.

Bit assignment of BFM #27

Bit No.	Channel No.	Description
b0	CH1	Sudden change error in - direction
b1	0111	Sudden change error in + direction
b2	CH2	Sudden change error in - direction
b3	OTIZ	Sudden change error in + direction
b4	СНЗ	Sudden change error in - direction
b5	0110	Sudden change error in + direction
b6	CH4	Sudden change error in - direction
b7	0174	Sudden change error in + direction
,	•	

BFM #28: Scale over status

The result of the analog input value for each individual channel that has exceeded the input range will be written to BFM#28.

Range in which input is available:

• •	
Voltage input mode	Current input mode*1
- 10.2V to 10.2V	- 20.4mA to 20.4mA

*1 The above table shows the available input range in the current input mode. A scale over status bit turns ON when the analog input value is -40.960mA or less Use the upper / lower limit detection function to detect the scale over status in

the current input mode. A bit will remain ON unless it is reset from switching the Power OFF or

overwriting the ON bit with an OFF bit via a TO instruction. Even while a scale over error is detected, the data (BFM #10 to BFM #13) of each channel continues to be updated.

it assignment of BFM #28							
Bit No.	Channel No.	Description					
b0	CH1	Scale over: Less than lower limit					
b1	CHI	Scale over: More than upper limit					
b2	CH2	Scale over: Less than lower limit					
b3	CH2	Scale over: More than upper limit					
b4	CH3	Scale over: Less than lower limit					
b5	CH3	Scale over: More than upper limit					
b6	CHA	Scale over: Less than lower limit					
b7	CH4	Scale over: More than upper limit					

BFM #29: Error status

Error information is assigned to each bit of BFM #29.

	Bit as	signment of BFM #29
I	Bit No.	Assignment

Bit No.	Assignment	Description
b0	Error detected	b0 is ON while either b2 to b4 is ON.
b1	_	_
b2	Power error	24V DC power is not correctly supplied. Check the wiring and supply voltage.
b3	Hardware error	FX2NC-4AD may have malfunctioned. Contact the nearest Mitsubishi Electric System Service center.
b4	A/D conversion value error	A/D conversion value is abnormal. Using the scale over data (BFM #28), check the channel in which the error has occurred.
b5	_	_
b6	BFM read/write disabled	This bit will be ON during the input characteristics change processing. While this bit is ON, correct A/D data will not read from o written to BFMs.
b7	_	_
b8	Set value error detected	This bit will be ON while either b9 to b15 is ON.
b9	Input mode setting error	Input mode (BFM #0) is incorrectly set. Set it within the range from 0 to 8.
b10	Number of averaging times setting error	Number of averaging times is incorrectly set. Set it within the range from 1 to 4,095.
b11	Digital filter setting error	The digital filter setting is incorrect. Reset within the range of 0 to 1,600.
b12	Sudden change detection set value error	Sudden change detection set value is incorrect. Set a correct value.
b13	Upper/lower limit set value error	Upper/lower limit set value is incorrect. Set a correct value.
b14	_	_
b15	Addition data setting error	Addition data is incorrectly set. Set it within range from -16,000 to 16,000.

BFM #30: Model code

BFM #30 stores a fixed value of "K2070"

BFM #32: Operating time
BFM #32 stores the continuous operating time for the FXenc-4AD.
Measurement starts when the power is turned ON, and the measured value is reset when the power is turned OFF.
The measurement range is from 0 to 64,800 (s). After that, 64,800 is kept.

BFM #41 to BFM #44: Offset data BFM #51 to BFM #54: Gain data

Offset data: Analog input value when the digital value is "0"
Gain data: Analog input value when the digital value is as shown below (The digital value varies depending on the setting of the input mode.)

Standard digital value for offset and gain in each input mode

(A number in the input mode column indicates a value set in BFM #0.)									
Input mode (BFM #0) 0 1 2 3 4 5 6 7 8									
Standard offset value	0	0	-	0	0	-	0	0	-
Standard gain value	16000	2000	-	16000	4000	-	16000	4000	-

- · Set the offset and gain data for each channel.
- \bullet Write the set value in units of "mV" for voltage input or " μA " for current in Do not change the input characteristics when O=2, 5, 8 is set in BFM #0. (Even if a numerical value is written, it is ignored.)

Initial offset/gain value (Unit: mV for voltage input, µA for current input)

'	oltage	input				Curre	ent inp	out		
Setting range										
Initial gain value		5000				200	000			
Initial offset value		0			4000			0		
input mode (Brivi #0)	U	'	~	3	4	5	0	,	0	

Gain value - Offset value = 3,000 to 30,000 (μ A)

10000 to 9000 (mV) -20000 to 17000 (μA) Offset data

The actual effective input range is "-10 to 10 V" or "-20 to 20 mA" BFM #61 to BFM #64: Addition data

When using the data addition function (BFM #22 b0), data (BFM #10 to BFM #13), minimum/maximum value (BFM #101 to BFM #104, BFM #111 to BFM #114) and data history (BFM #200 to BFM #179) of each channel becomes the measured value added by the addition data (BFM #61 to BFM #64). When using the data addition function, enter the value added by the addition data (BFM #61 to BFM #64) to the lower limit value error set value (BFM #71 to BFM #74) and the upper limit value error set value (BFM #81 to BFM #84). Setting range: -16,000 to 16,000

BFM #71 to BFM #74: Lower limit, error set value

Gain value - Offset value = 1,000 to 10,000 (mV)

BFM #81 to BFM #88: Upper limit, error set value When using the upper/lower limit value detection function (BFM #22 b1), write the lower limit value of each channel to BFM #71 to BFM #74 and the upper limit

value of each channel to BFM #81 to BFM #84.

When using the data addition function (BFM #22 b0), enter the value added by the addition data to BFM #61 to BFM #64.

Setting range

The setting range will vary depending on the setting of the input mode (BFM #0). The table below shows the setting range for each input mode. Enter the set

	Initial value		
Setting range	Lower limit	Upper limit	
-32768 to 32767	-32768	32767	
-4096 to 4095	-4096	4095	
-10200 to 10200	-10200	10200	
-1 to 16383	-1	16383	
-1 to 4095	-1	4095	
3999 to 20400	3999	20400	
-16384 to 16383	-16384	16383	
-4096 to 4095	-4096	4095	
-20400 to 20400	-20400	20400	
	-32768 to 32767 -4096 to 4095 -10200 to 10200 -1 to 16383 -1 to 4095 3999 to 20400 -16384 to 16383 -4096 to 4095 -20400 to	Setting range Lower limit -32768 to 32767 -32768 -4096 to 4095 -4096 -10200 to 10200 -10200 -1 to 16383 -1 -1 to 4095 -1 3999 to 20400 3999 -16384 to 16383 -16384 -4096 to 4095 -4096 -20400 to 20400 -90400	

BFM #91 to BFM #94: Sudden change detection set value

When using the sudden change detection function (BFM #22 b2), enter the set value to judge the sudden change

When the data (BFM #10 to BFM #13) of each channel is updated, if the difference between the previous value and the new value is larger than the sudden change detection set value (BFM #91 to BFM #94), the result is written to the sudden change detection status (BFM #27).

Setting range

The setting range will vary depending on the setting of the input mode (BFM

The table below shows the setting range for each input mode. Write the set value in a digital value

Input mode (BFM #0)	Setting range	Initial value
0: Voltage input mode (-10 to 10 V → -32000 to 32000)	1 to 32767	3200
1: Voltage input mode (-10 to 10 V → -4000 to 4000)	1 to 4095	400
2: Voltage input mode (-10 to 10 V → -10000 to 10000)	1 to 10000	1000
3: Current input mode (4 to 20 mA → 0 to 16000)	1 to 8191	800
4: Current input mode (4 to 20 mA → 0 to 4000)	1 to 2047	200
5: Current input mode (4 to 20 mA → 4000 to 20000)	1 to 8191	800
6: Current input mode (-20 to 20 mA → -16000 to 16000)	1 to 16383	1600
7: Current input mode (-20 to 20 mA → -4000 to 4000)	1 to 4095	400
8: Current input mode (-20 to 20 mA → -20000 to 20000)	1 to 20000	2000

BFM #99: Clears upper/lower limit value error and sudden change detection error

The commands to clear the lower and upper limit value error and the sudden change detection error are assigned to the lower three bits of BFM

The flag of the corresponding error status (BFM #26, BFM #27) is reset for all channels simultaneously when a bit is set to ON.

After the reset is finished, each bit of BFM #99 returns automatically to the OFF state.

The setting of two or more clear commands to ON at the same time is

Bit assignment of BFM #99

Bit No.	Description
b0	Clears lower limit error.
b1	Clears upper limit error.
b2	Clears sudden change detection error.
b3 to b15	Unusable

BFM #101 to BFM #104: Minimum value BFM #111 to BFM #114: Maximum value

When using the minimum/maximum value hold function (BFM #22 b3), the minimum value of the data (BFM #10 to BFM #13) of each channel is written to BFM #101 to BFM #104, and the maximum value is written to BFM #111 to BFM #114.

When using the data addition function (BFM #22 b0), the minimum/ maximum measured value will be added to the addition data (BFM #61 to Initial value

Minimum/maximum value hold function is not used:K0 Minimum/maximum value hold function is used: Digital value when the

power is turned ON

BFM #109: Minimum value reset BFM #119: Maximum value reset

When using the minimum/maximum value hold function (BFM #22 b3), BFM #109 clears the minimum value stored in BFM #101 to BFM #104, and BFM #119 clears the maximum value stored in BFM #111 to BFM

#114.
The channel No. that will be reset is assigned to each bit of BFM #109 and BFM #119. When a bit is set ON, minimum/maximum value of the assigned channel is cleared. (Setting two or more bits ON simultaneously is passible). possible.)

on assignment							
BFM #109	Bit No.	b15 to b4	b3	b2	b1	b0	
	Channel No. (BFM No.)	Unusable	CH4 (#104)	CH3 (#103)	CH2 (#102)	CH1 (#101)	
BFM #119	Bit No.	b15 to b4	b3	b2	b1	b0	
	Channel No. (BFM No.)	Unusable	CH4 (#114)	CH3 (#113)	CH2 (#112)	CH1 (#111)	

BFM #198: Data history sampling time

Set the data history sampling time. Setting range: 0 to 30,000 ms

When the set value is "0" :1 ms x Number of effective channels

When the set value is "1" or more:Set value (ms) x Number of effective channels

BFM #199: Resets or stops data history

The data history reset function is assigned to the lower 4 bits of BFM #199. The data history stop function is assigned to the upper 4 bits of BFM #199. Data history reset function
This function clears the sampled data history for each channel.
The channel No. to be reset is assigned to each of the lower 4 bits of BFM #199.

#199. When a bit is set to ON, the data history (all contents from the 1st value to the 400th value) of the assigned channel is cleared. (The setting of two or more bits to ON simultaneously is possible.) When the clear operation is completed, each bit returns automatically to the OFF state.

Assignment of lower 4 bits

7 to b4	b3	b2	b1	b0
nusable	CH4	СНЗ	CH2	CH1
		nusable CH4	nusable CH4 CH3	nusable CH4 CH3 CH2

This function will temporarily stop the data history for the individual channels. The channel No. to be temporarily stopped is assigned to each of the upper 4 bits of BFM #199. When a bit is set to ON, sampling of the data history of the assigned channel is temporarily stopped. (Setting two or more bits to ON at a time.)

When a bit is set to OFF, sampling of the data history of the assigned channel restarts.

Assignment of upper 4 bits							
Bit No.	b15 to b12	b11	b10	b9	b8		
Channel No	Linueable	CH4	CH3	CH2	CH1		

BFM #200 to BFM #1799: Data history

The A/D conversion value of each channel is sampled, and written to the BFMs shown below. The table below shows the assignment between the channel No. and the BFM No. Data is stored in ascending order of the BFM

Up to 400 data history items are written for each channel. When the be smallest BFM No. number of history items exceeds 400, the data is overwritten starting from the smallest BFM No.

The data history function is valid only for channels whose number of averaging times (BFM #2 to #5) is set to "1" and digital filter setting (BFM

Assignment of channel No. and BFM No.

Channel	BFM NO.						
No.	1st value	2nd value	3rd value	••••	400th value		
CH1	#200	#201	#202	••••	#599		
CH2	#600	#601	#602	••••	#999		
CH3	#1000	#1001	#1002	••••	#1399		
CH4	#1400	#1401	#1402	••••	#1799		
- 16							

If a considerable amount of data history is read from the main unit using a FROM instruction, a watch dog timer error occurs in the main unit In such a case, divide the required data history using multiple FROM instructions, and insert the WDT instruction (watch dog timer refresh instruction) after each FROM instruction

7. Adjustment of I/O Characteristics

For factory default, the FX2NC-4AD has standard I/O characteristics in

accordance with each input mode (BFM #0).

In the voltage and current input mode, adjust the standard I/O characteristics for each channel. (Do not change the input characteristics when 2, 5, 8 is set in BEM #0.)

7.1 Standard I/O characteristics

The input mode of the standard I/O characteristics is abbreviated as shown

2: Input mode

Input oltage

④: Digital output range

-4000 to 4000

1. Voltage input, -10 to 10 V,

Digital value

4.080

4,000

10V

Input

20.4mA

Input

20mA

-4080

20mA

-10V

3. Current input, 4 to 20 mA, 0 to 16000

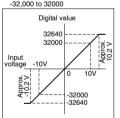
4,000 to 20,000 (Direct mode)

Digital value

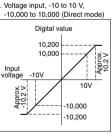
Digital value

0 4mA

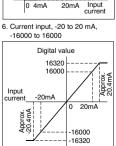
-4000 to 4000


7. Current input. -20 to 20 mA

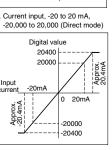
Digital value


4080 4000

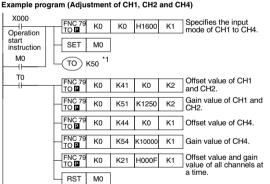
4000


- 0. Voltage input, -10 to 10V, -32,000 to 32000
- ①: Input mode set in BFM #0 ③: Analog input range
- 0. Voltage input, -10 to 10 V, -32,000 to 32000

2. Voltage input, -10 to 10 V, -10,000 to 10,000 (Direct mode) Digital value 10,200 10,00 Input oltage -10V 10V



4. Current input, 4 to 20 mA, 0 to 4000 Digital value 4100 --4000 Approx


0 4mA

8. Current input, -20 to 20 mA,

7.2 Adjustment of I/O characteristics

Adjust the I/O characteristics using the buffer memories in the FX2nc-4AD. Firstly, enter the input mode to BFM #0, then enter the offset data to BFM #41 to BFM #44, subsequently enter the gain data to BFM #51 to BFM #54. Update the offset data and the gain data for each channel using BFM #21.

- *1 It takes approximately 5 seconds to change the input mode (BFM #0) (to change each set value).

 Assure that a time interval of 5 seconds or more is held after a change of the
- input mode until execution of write of each setting (TO instruction). The I/O characteristics can be written (BFM #21) to either channel, or two or more channels simultaneously.

8. Example program

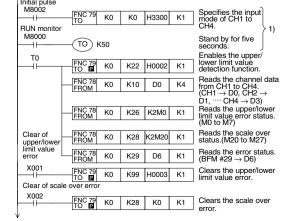
This section introduces an example program to read analog data from the FX2NC-4AD and connecting to digital data in the PLC.

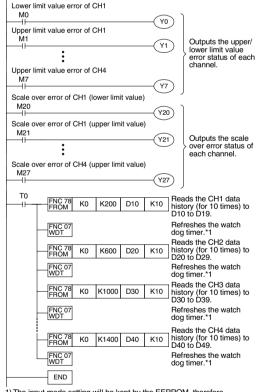
Condition

System configuration:
The FX2nc-4AD is connected as a special function block nearest to the FX2nc Series PLC main unit (unit No. 0).

Input mode: CH1 and CH2: Mode 0 (voltage input, -10 to 10 V \rightarrow -32000 to 32000) CH3 and CH4: Mode 3 (current input, 4 to 20 mA → 0 to 160 Number of averaging times: 1 (initial value) in each channel I/O characteristics:

Standard I/O characteristics (initial value) in each channel Convenient function: Upper/lo Data history function: ction function is used


Used while sampling time is set to 0ms (initial value). CH1 to CH4: Sampling time = 1ms \times 4 (Number of effective channels) = 4ms I/O assignment:


... Clears the upper/lower limit value error Clears the scale over error Y000 to Y007: Output the upper/lower limit value error status of each

channel.

Y020 to Y027: Output scale over status of each channel.

Example program

- 1) The input mode setting will be kept by the EEPROM, therefore continual channel settings is not needed after powering down.
- *1 When multiple data history items are read, the scan time of the PLC

becomes longer. In the FX≥NC Series PLC, when the scan time exceeds 200 ms, the CPU error indicator lamp lights and the PLC stops. When reading many data history items, divide data history items to be read using two or more FROM instructions, then insert the WDT (watch dog timer refresh) instruction between FROM instructions.

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual. Warranty

warranty
Mitsubishi will not be held liable for damage caused by factors found not to be
the cause of Mitsubishi; opportunity loss or lost profits caused by faults in the
Mitsubishi products; damage, secondary damage, accident compensation
caused by special factors unpredictable by Mitsubishi; damages to products
other than Mitsubishi products; and to other duties.

for safe use

- This product has been manufactured as a general-purpose part for general industries, and has not been designed or manufactured to be incorporated in a device or system used in purposes related to human life.

 Before using the product for special purposes such as nuclear power, electric power, aerospace, medicine or passenger movement vehicles, consult with Mitsubishi Electric.

 This product has been propulatived under strict quality control. However, This product has been manufactured under strict quality control. However
 - when installing the product where major accidents or losses could occur if the product fails, install appropriate backup or failsafe functions in the system.

MITSUBISHI ELECTRIC CORPORATION HEAD OFFICE: TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN