

CR800 series controller
CR750/CR751 series controller

Ethernet Function Instruction Manual

Mitsubishi Electric Industrial Robot

BFP-A3379-B

 Revision History

Print Date Instruction Manual No. Revision Content

2015-03-18 BFP-A3379 First print

2017-04-28 BFP-A3379-A Descriptions about the CR800 controller have been added.

2017-11-10 BFP-A3379-B Descriptions about FR Series CC-Link IE Filed Network Basic function have
been added.

 Safety Precautions

Always read the following precautions and the separate "Safety
Manual" before starting use of the robot to learn the required
measures to be taken.

CAUTION All teaching work must be carried out by an operator who has received special
training.
(This also applies to maintenance work with the power source turned ON.)

→Enforcement of safety training

CAUTION For teaching work, prepare a work plan related to the methods and procedures
of operating the robot, and to the measures to be taken when an error occurs
or when restarting. Carry out work following this plan.
(This also applies to maintenance work with the power source turned ON.)

→Preparation of work plan

WARNING Prepare a device that allows operation to be stopped immediately during
teaching work.
(This also applies to maintenance work with the power source turned ON.)

→Setting of emergency stop switch

CAUTION During teaching work, place a sign indicating that teaching work is in progress
on the start switch, etc.
(This also applies to maintenance work with the power source turned ON.)

→Indication of teaching work in progress

DANGER Provide a fence or enclosure during operation to prevent contact of the operator
and robot.

→Installation of safety fence

CAUTION Establish a set signaling method to the related operators for starting work,
and follow this method.

→Signaling of operation start

CAUTION As a principle turn the power OFF during maintenance work. Place a sign
indicating that maintenance work is in progress on the start switch, etc.

→Indication of maintenance work in progress

CAUTION Before starting work, inspect the robot, emergency stop switch and other
related devices, etc., and confirm that there are no errors.

→Inspection before starting work

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

DANGER When automatic operation of the robot is performed using multiple control
devices (GOT, programmable controller, push-button switch), the interlocking
of operation rights of the devices, etc. must be designed by the customer.

CAUTION Use the robot within the environment given in the specifications. Failure to do
so could lead to faults or a drop of reliability.
(Temperature, humidity, atmosphere, noise environment, etc.)

CAUTION Transport the robot with the designated transportation posture. Transporting
the robot in a non-designated posture could lead to personal injuries or faults
from dropping.

CAUTION Always use the robot installed on a secure table. Use in an instable posture
could lead to positional deviation and vibration.

CAUTION Wire the cable as far away from noise sources as possible. If placed near a
noise source, positional deviation or malfunction could occur.

CAUTION Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

CAUTION Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

WARNING Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

WARNING Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

CAUTION Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

WARNING When carrying out teaching work in the robot's movement range, always secure
the priority right for the robot control. Failure to observe this could lead to
personal injuries or damage if the robot is started with external commands.

CAUTION Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

CAUTION After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with
peripheral devices because of programming mistakes, etc.

CAUTION Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to do
so could lead to personal injuries.

CAUTION Never carry out modifications based on personal judgments, non-designated
maintenance parts. Failure to observe this could lead to faults or failures.

WARNING When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or
fingers catching depending on the posture.

CAUTION Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF. If the robot controller main power is turned OFF during automatic
operation, the robot accuracy could be adversely affected. Also a dropped or
coasted robot arm could collide with peripheral devices.

CAUTION Do not turn OFF the robot controller's main power while rewriting the robot
controller's internal information, such as a program and parameter. Turning OFF
the robot controller's main power during automatic operation or program/parameter
writing could break the internal information of the robot controller.

DANGER Do not connect the Handy GOT when using the GOT direct connection function of
this product. Failure to observe this may result in property damage or bodily injury
because the Handy GOT can automatically operate the robot regardless of whether
the operation rights are enabled or not.

DANGER Do not connect the Handy GOT to a programmable controller when using an iQ
Platform compatible product with the CR750-Q/CR751-Q/CR800-R controller. Failure
to observe this may result in property damage or bodily injury because the Handy
GOT can automatically operate the robot regardless of whether the operation rights
are enabled or not.

DANGER Do not remove the SSCNET III cable while power is supplied to the multiple CPU
system or the servo amplifier when using an iQ Platform compatible product with the
CR750-Q/CR751-Q/CR800-R controller.. Do not look directly at light emitted from the
tip of SSCNET III connectors or SSCNET III cables of the Motion CPU or the servo
amplifier. Eye discomfort may be felt if exposed to the light.
(Reference: SSCNET III employs a Class 1 or equivalent light source as
specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

DANGER Do not remove the SSCNET III cable while power is supplied to the controller.
Do not look directly at light emitted from the tip of SSCNET III connectors or
SSCNET III cables. Eye discomfort may be felt if exposed to the light.
(Reference: SSCNET III employs a Class 1 or equivalent light source as
specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

DANGER Attach the cap to the SSCNET III connector after disconnecting the SSCNET III cable.
If the cap is not attached, dirt or dust may adhere to the connector pins, resulting in
deterioration connector properties, and leading to malfunction.

CAUTION Make sure there are no mistakes in the wiring. Connecting differently to the way
specified in the manual can result in errors, such as the emergency stop not
being released. In order to prevent errors occurring, please be sure to check
that all functions (such as the teaching box emergency stop, customer
emergency stop, and door switch) are working properly after the wiring setup
is completed.

CAUTION Use the network equipments (personal computer, USB hub, LAN hub, etc.)
confirmed by manufacturer. The thing unsuitable for the FA environment
(related with conformity, temperature or noise) exists in the equipments connected
to USB. When using network equipment, measures against the noise, such as
measures against EMI and the addition of the ferrite core, may be necessary.
Please fully confirm the operation by customer. Guarantee and maintenance
of the equipment on the market (usual office automation equipment) cannot
be performed.

Contents
1. Before use ... 1-1

1.1. How to use the instruction manual ... 1-1
1.1.1. Content of instruction manual .. 1-1

1.2. Terms used in the instruction manual .. 1-1
1.3. Confirmation of product ... 1-2
1.4. Ethernet function .. 1-2

1.4.1. Function of Ethernet ... 1-2
2. Preparation before use .. 2-1

2.1. Connection of Ethernet cable... 2-1
2.2. Parameter setting .. 2-3

2.2.1. Parameter list ... 2-3
2.2.2. Details of parameters ... 2-5
2.2.3. Parameter setting example 1 (When the Support Software is used) .. 2-8
2.2.4. Parameter setting example 2-1 (When the data link function is used: When the controller is the server)

 ... 2-9
2.2.5. Parameter setting example 2-2 (When the data link function is used: When the controller is the client)

 ... 2-10
2.2.6. Parameter setting example 3 (for using the real-time external control function) 2-11

2.3. Connection confirmation .. 2-12
2.3.1. Checking the connection with the Windows ping command... 2-12

3. Description of functions ... 3-1
3.1. Controller communication function ... 3-2

3.1.1. Connecting the controller and personal computer .. 3-2
3.1.2. Setting the personal computer network .. 3-2
3.1.3. Setting the controller parameters ... 3-2
3.1.4. Setting the personal computer support software communication ... 3-3
3.1.5. Communication .. 3-4

3.2. Data link function ... 3-5
3.2.1. MELFA-BASIC V/VI Commands .. 3-5
3.2.2. Using data link function .. 3-9
3.2.3. Ending .. 3-12

3.3. Real-time external control function .. 3-13
3.3.1. Explanation of command ... 3-15
3.3.2. Explanation of communication data packet .. 3-17
3.3.3. Using real-time external control function .. 3-21
3.3.4. Ending .. 3-23

3.4. Real-time monitor function ... 3-24
3.4.1. Overview .. 3-24

3.4.2. Supported version .. 3-25
3.4.3. Setup ... 3-26
3.4.4. Start of monitor / End of monitor .. 3-28
3.4.5. Explanation of communication data packet .. 3-29
3.4.6. Data type ID ... 3-32
3.4.7. Parameters .. 3-33
3.4.8. Error ... 3-33

3.5. SLMP Connection .. 3-34
3.5.1. Function Overview ... 3-34
3.5.2. Supported version .. 3-34
3.5.3. Specifications ... 3-34
3.5.4. Parameters .. 3-34
3.5.5. SLMP Communication Procedure .. 3-35
3.5.6. Message Format .. 3-37
3.5.7. Commands ... 3-45
3.5.8. End Code ... 3-80

3.6. CC-Link IE Field Network Basic function ... 3-81
3.6.1. Overview .. 3-81
3.6.2. Supported version .. 3-82
3.6.3. Specifications ... 3-82
3.6.4. Parameters .. 3-83
3.6.5. Support of robot I/O signals and link devices ... 3-84
3.6.6. Setup procedure .. 3-85

4. Appendix ... 4-1
4.1. Error list ... 4-1
4.2. Sample program .. 4-2

4.2.1. Sample program of data link .. 4-2
4.2.2. Sample program for real-time external control function ... 4-14

1 Before use

1-1

1. Before use

This chapter describes the confirmation items and cautionary items which must be read before practical use of the

Ethernet.

1.1. How to use the instruction manual

1.1.1. Content of instruction manual

Through the following configuration, this document introduces the Ethernet function. As for the functions available in the

standard robot controller and the operation method, please refer to the "Instruction Manual" provided with the robot

controller.

Table 1.1 Content of the instruction manual
Chapter Title Content

1 Before use In addition to the using method of the instruction manual, the confirmation items
and cautionary items are introduced to use the Ethernet function.

2 Preparation before use The preparatory work is introduced to use the Ethernet function. Referring to the
chapter, apply the cabling and wiring and confirm the other setting items.

3 Description of functions

Using the system configured in "2. Preparation before use" in this manual, it
introduces a series of the operating methods from the start-up to the stop.
Referring to each introduction, understand the basic operating method.
The following items will be introduced.
• Controller communication function (connection with computer support software
RT ToolBox2/3)
• Data link function (transmit values/text strings with the robot commands
Open/Print/Input)
• Real-time external control function (operation control using motion control cycles
from a computer)
• Real-time monitoring function (monitor the current position and more in real time
via a computer)
• SLMP connection (read from and write to a robot controller device by using
SLMP)
• CC-Link IE Field Network Basic function (send and receive transmissions by
using FA network)

4 Appendix Since the added errors when indexing the terms or using the Ethernet function are
herein described, refer to this chapter as necessary.

1.2. Terms used in the instruction manual

The following terms are used in this document.

(1) Ethernet function

The robot controller has various network functions that use the Ethernet.

(2) Network personal computer

The personal computer is a commercially available one which provides the network function, integrating the Ethernet

interface card. Windows XP / Windows 7 / Windows 8 / Windows10 are applicable as the operating system.

(3) MELFA-BASIC V/VI command

This is a type of robot language.

1 Before use

1-2

1.3. Confirmation of product

The standard configuration of the product supplied by the customer is as follows. Confirm the configuration.

In addition to the standard robot system configuration, the following is necessary. These devices are separately procured

by the customer.

No. Part name Type Qty.

1) Network personal computer

(Network interface is necessary.)

Personal computer operated by Windows

XP / Windows 7 / Windows 8 /

Windows10.

Computer with TCP/IP network functions,

such as Linux OS (Operation is not

verified.)

1 or more

2) Ethernet cable

(Select the straight cable or cross cable depending on the

connection system.)

Cable

1 or more

 Prepare the following as necessary.

3) Hub (Necessary if it is used in the LAN environment.) (Goods on the market) 1

4) Robot controller programming aiding tool corresponding to

Windows for Robot controller of our company

(An optional) Personal computer Support

Software

1

5) Application for network communication program production

corresponding to Windows

(Goods on the market) Microsoft.

Visual Studio etc.

1

1.4. Ethernet function

1.4.1. Function of Ethernet

The Ethernet installed as a standard on the robot controller has the following functions.

(1) The connections with 100BASE-TX (for CR750/CR751/CR800-R) and with 1000BASE-T (for CR800-D) are supported.

(2) TCP/IP protocol is used to allow the communication with the personal computer on the Ethernet.

(3) The sampling program (corresponding to Microsoft Visual Basic Express 2008/Visual C++ Express 2008) of the

personal computer is equipped.

The following is provided as the samples. (Refer to Chapter 4 Appendix.)

• The data link function is used to transmit and receive the variables of personal computer and robot (characters and

numerical values). (OPEN/INPUT#/PRINT#)

Here, approve that the result of the operation of the application which the customer produces on the basis of the

sample is out of the responsibility with our company.

1 Before use

1-3

(4) The three Ethernet functions are described below.

Refer to the section "3. Description of functions" for details on each function.
No. Outline of function Remarks Reference page

1) Controller communication function

Data can be communicated with the robot controller via

Ethernet. (Program upload/download, status monitor, etc.)

Personal computer support software (optional) is available as

an application.

* Communication with up to

16 clients is possible.

Chapter 1 General

Chapter 2 General

Chapter 3.1

Chapter 4.1

2) Data link function

The value and position data can be linked between the

robot program and personal computer using MELFA-BASIC

V/VI language (OPEN/PRINT/INPUT command).

* By changing the

communication open

destination COM No.,

communication with

applications in up to 8 clients

is possible.

Chapter 1 General

Chapter 2 General

Chapter 3.2

Chapter 4.1

Chapter 4.2.1

3) Real-time external control function

The position command data can be retrieved and operated at

the robot motion control cycle unit. Joint, XYZ or motor pulse

can be designated for the position data. It is also possible to

monitor the input/output signals or output the signals

simultaneously.

Control is started with the MXT command (MELFA-BASIC

V/VI language).

* The user must create an

application program on the

personal computer side to

control the robot.

* Communication is carried

out one-on-one.

* UDP communication is

used.

Chapter 1 General

Chapter 2 General

Chapter 3.3

Chapter 4.1

Chapter 4.2.2

4) Real-time monitoring function

The current position, speed at the tip of the arm, and other

measurements can be monitored by a PLC or computer in

real time at the robot motion control cycle unit.

* Use UDP. Chapter 1 General

Chapter 2 General

Chapter 3.4

Chapter 4.1

5) SLMP connection

The server functions of SLMP communications can be used

from the robot controller. Data can be read from and written

to a robot controller device from a PLC or computer via the

Ethernet.

* Supported by FR series

only. Not supported by F

series.

Chapter 1 General

Chapter 2 General

Chapter 3.5

Chapter 4.1

6) CC-Link IE Field Network Basic function

CC-Link IE Field Network Basic slave stations are supported,

and the signals and registers of robot controllers can be input

and output via regular communications (cyclic

correspondence) with a PLC, computer, or other master

station.

* Supported by FR series

only. Not supported by F

series.

Chapter 1 General

Chapter 2 General

Chapter 3.6

Chapter 4.1

CAUTION These functions can all be used simultaneously, but be aware that when the network handles

large loads, communications slow down and may not reflect real-time information.

1 Before use

1-4

* The personal computer used to communicate with the robot controller must be located on the same network.
Communication cannot be carried out over firewalls (from internet) or over gateways (from different adjacent network, etc.).
Consider operation with a method that communicates via a server (i.e., HTTP server, etc.) connected to the same network
as the robot controller. Pay special attention to safety and response in this case.

Ethernet

3) Real-time external control function
Transmission/reception of real-time
position data at control cycle

1) Controller communication function
Program creation, editing
Debugging startup support, maintenance

2) Data link function
Transmission/reception of
value and position data

Personal
computer
program

Personal
computer
program

Personal computer support software
(Mitsubishi option)

Data link application
(Customer-created)

Real-time external control application
(Customer-created)

Ethernet

3) Real-time external control function
Transmission/reception of real-time
position data at control cycle

1) Controller communication function
Program creation, editing
Debugging startup support,
maintenance

2) Data link function
Transmission/reception of
value and position data

Personal
computer
program

Personal
computer
program

Personal computer support software
(Mitsubishi option)

Data link application
(Customer-created)

Real-time external control application
(Customer-created)

2 Preparation before use

2-1

2. Preparation before use
What is done before use is described.

Connection of Ethernet cable … Refer to 2.1.

↓

Parameter setting … Refer to 2.2.

2.1. Connection of Ethernet cable
As shown below, connect the Ethernet cable to the connector.
When the hub is used, use the straight cable. Or when the personal computer and controller are connected to each other
one to one, use the cross cable.

<CR800-R controller>

Robot CPU unit front

LAN connect

<CR800-D controller> CR800-D controller front

LAN connect

2 Preparation before use

2-2

<CR750-Q/CR751-Q controller>

Robot CPU unit front

LAN connect

<CR750 controller> CR750 controller back

LAN connect

<CR751 controller>
CR751 controller front

LAN connect

2 Preparation before use

2-3

2.2. Parameter setting

Before use, it is necessary to set the following parameters. The parameters which are set on the robot controller are shown

in the following list. For the method to set the parameter, refer to the instruction manual of the controller.

CAUTION After changing the parameters, turn the power supply of the controller from OFF to ON. Unless

this is done, the changed parameters will not become valid.

2.2.1. Parameter list
The parameters are listed below. For details of the parameters, refer to "2.2.2. Details of parameters".

O ... Setting is necessary

- ... Setting is unnecessary

Parameter list
Parameter

name Details Number of
elements Default value

Controller
communication

function

Data link
function

Real-time
control
function

Real-time
monitoring

function
SLMP CC-Link

IEF Basic

NETIP IP address of robot controller Character
string 1

“192.168.0.20”
O O O O O -

NETMSK Sub-net-mask Character
string 1

“255.255.255.0”
O O O O O -

NETPORT Port No. Range 0 to 32767
For function expansion (reserved), ----------
Correspond to OPT 11-19 of COMDEV

(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 10

10000,
10001,
10002,
10003,
10004,
10005,
10006,
10007,
10008,
10009

O O O - - -

CPRCE11
CPRCE12
CPRCE13
CPRCE14
CPRCE15
CPRCE16
CPRCE17
CPRCE18
CPRCE19

Protocol 0: No-procedure
 1: Procedure, 2: Data link
(1: Procedure has currently no function.)
Correspond to OPT 11-19 of COMDEV

(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 9

0
0
0
0
0
0
0
0
0

- O - - - -

2 Preparation before use

2-4

Parameter
name Details Number of

elements Default value
Controller

communication
function

Data link
function

Real-time
control
function

Real-time
monitoring

function
SLMP CC-Link

IEF Basic

COMDEV

Definition of device corresponding to COM1: to 8
Definition of device corresponding to COM1:,
Definition of device corresponding to COM2:,
Definition of device corresponding to COM3:,
Definition of device corresponding to COM4:,
Definition of device corresponding to COM5:,
Definition of device corresponding to COM6:,
Definition of device corresponding to COM7:,
Definition of device corresponding to COM8: .
When the data link is applied, setting is
necessary.
OPT11 to OPT19 are allocated.

Character
string 8

,
,
,
,
,
,
,

- O - - - -

NETMODE

Server designation
(1: Server, 0: Client)

(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Numerical
value 9

1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1 ,
1

- O - - - -

NETHSTIP

The IP address of the data communication
destination server.
* It is valid if specified as the client by
NETMODE only.

(OPT11)
(OPT12)
(OPT13)
(OPT14)
(OPT15)
(OPT16)
(OPT17)
(OPT18)
(OPT19)

Character
string 9 .

192.168.0.2 ,
192.168.0.3 ,
192.168.0.4 ,
192.168.0.5 ,
192.168.0.6 ,
192.168.0.7 ,
192.168.0.8 ,
192.168.0.9 ,
192.168.0.10

- O - - - -

MXTTOUT Timeout time for executing real-time
external control command
(Multiple of 7.1msec, Set -1 to disable
timeout)

Value 1
(0-32767)

-1

- - O - - -

NETGW Gateway address Character
string 1

192.168.0.254
O O O O O -

MONMODE Real-time monitoring function,
enable/disable

Numerical
value 1

1
- - - O - -

MONPORT Real-time monitoring function, port number
(Inbound, outbound)

Numerical
value 2

12000, 0
- - - O - -

2 Preparation before use

2-5

2.2.2. Details of parameters

The parameters are herein described in details.

(1) NETIP (IP address of robot controller)

The IP address of the robot controller is set. IP address is like the address of the mail.

The format of IP address is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 192.168.0.1 or 10.97.11.31.

If the controller and network personal computer are directly connected to each other one-to-one, it is allowed to set default

value (a random value) but if it is connected to the local area network (LAN), IP address must be set as instructed by the

manager of customer's LAN system.

If any IP addresses are overlapped, the function will not properly operate. Therefore, take care to prevent it from being

overlapped with another during setting.

The personal computer used for communication with the robot controller.

(2) NETMSK (sub-net-mask)

Set the sub-net-mask of the robot controller. Among the IP addresses, the sub-net-mask is set to define the sub-net-work.

The format of the sub-net-mask is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 255.255.255.0 or 255.255.0.0.

As usual, it is allowed to set default value. If it is connected to the local area network (LAN), the sub-net-mask must be set

as instructed by the manager of customer's LAN system.

(3) NETPORT (port No.)

The port No. of the robot controller is set. The port No. is like the name of the mail.

For the nine elements, the port numbers are each expressed with a value.

The first element (element No. 1) is used for real-time control.

The second to ninth elements (elements No. 2 to 9) are used for the support software or data link.

Normally, the default value does not need to be changed. Make sure that the port numbers are not duplicated.

(4) CRRCE11 to 19 (protocol)

When using the data link function, the setup is necessary.

Sets the protocol (procedure) for communication. The protocol has three kinds of no-procedure, procedure and data link.

0... No-procedure: The protocol is applied to use the personal computer Support Software .

1... Procedure: Reserved. (Since it is not any function, don't set it by mistake.)

2... Data link: The protocol is used to use OPEN/INPUT/PRINT commands for communication.

2 Preparation before use

2-6

(5) COMDEV (Definition of devices corresponding to COM1: to 8)

When using the data link function, the setup is necessary.

Definition of device corresponding to COM1: to 8 is set. COM1: to 8 is used for OPEN command of the robot program.

Be sure to set it only when the data link is specified on setting of the protocol (CPRCE11 to 19).

The setting values of the Ethernet function correspond to the port Nos. which are set at the parameter NETPORT.

* In the following parameters NETOPORT (n) and COMDEV(n), n indicates the element No. of that parameter.

n The device name set
up by COMDEV(n)

1 OPT11
2 OPT12
3 OPT13
4 OPT14
5 OPT15
6 OPT16
7 OPT17
8 OPT18
9 OPT19

The port number specified by NETPORT(2)

Port number

The port number specified by NETPORT(3)
The port number specified by NETPORT(4)

The port number specified by NETPORT(9)
The port number specified by NETPORT(10)

The port number specified by NETPORT(5)
The port number specified by NETPORT(6)
The port number specified by NETPORT(7)
The port number specified by NETPORT(8)

For example, if the port No. specified at NETPORT(3) is allocated to the data link of COM:3, the following will be applied.

COMDEV(3) = OPT13 * OPT13 is set at 3rd element of COMDEV.

CPRCE13 = 2 * Set up as a data link.

(6) NETMODE (server specification)

Set up, when using the data link function.

Set the TCP/IP communication in the data link function of the robot controller as the server or the client.

It is necessary to change with the application of the equipment connected to the robot controller.

(7) NETHSTIP (The IP address of the server of the data communication point)

Set up, when using the robot controller as a client by the data link function.

Specify the IP address of the partner server which the robot controller connects by the data link function.

Set up, when only set the robot controller to the client by server specification of NETMODE.

(8) MXTTOUT (Timeout setting for executing real-time external control command)

This is changed when using real-time external control command and setting the timeout time for communication with the

robot controller.

Set a multiple of the control cycle (refer to the following).

Controller Control cycle

CR750/CR751 series Approx. 7.11 msec
CR800 series Approx. 3.5 msec (*If user mechanical is set, approx. 7.11 msec)

When the real-time external control command is executed, the timeout time during which no communication data is

received by the robot controller from the personal computer is counted up. If the count reaches the value set in MXTTOUT,

the operation will stop with the error (#7820). For example, to generate an error when there is no communication for

approx. 7 seconds, set 1000.

This setting is set to -1 (timeout disabled) as the default.

(9) NETGW (Gateway address)

Specify the gateway address to communicate with the PC of on other network.

2 Preparation before use

2-7

(10) MONPORT (Real-time monitoring function, port number)

Specify the inbound port number and the outbound port number of the real-time monitoring function. (0 to65535)

First element: Inbound port number

Second element: Outbound port number

Take note that 0 is a special value for the second element, which replies to the sender port number that is set in the UDP

header information of the packet data start that the robot controller has received.

When the Ethernet communication device is a Windows application, if the outbound port number is not designated on the

application side, it remains the initial value of 0.

To explicitly specify the port number to reply to, the value must be set on the Ethernet communication device. (Example:

12000, 12001)

(11) MONMODE (Real-time monitoring function, enable/disable)

Switch to enable or disable real-time monitoring.

0: Disable

1: Enable

CAUTION
If you change a port number from its initial value, be sure that it does not overlap with any

other port numbers. If there is any overlap, an error will occur when the controller starts, and

it will not work properly.

2 Preparation before use

2-8

2.2.3. Parameter setting example 1 (When the Support Software is used)

The setting example to use the Support Software is shown below.

Set the parameters for the robot controller, and the network for the personal computer OS being used.

Conditions for example 1

IP address of robot controller 192.168.0.20

IP address of personal computer 192.168.0.10

Port No. of robot controller 10001

Set the robot controller parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Parameter setting for example 1
Parameter Before/after

change Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (unchanged)

NETPORT Before 10001
After 10001 (unchanged)

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2 Preparation before use

2-9

2.2.4. Parameter setting example 2-1
(When the data link function is used: When the controller is the server)

Shows the example of the setting, when the controller is server by the data link function.

Conditions for example 2-1
Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10003
Communication line No.
<For MELFA-BASIC V/VI>
OPEN command COM No.

COM3:

Parameter setting for example 2-1
Parameter Before/after

change Parameter value

NETIP Before 192.168.0.20
after 192.168.0.20 (unchanged)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

after 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)

CPRCE13 Before 0
after 2

COMDEV Before , , , , , , ,
after , , OPT13, , , , ,

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2 Preparation before use

2-10

2.2.5. Parameter setting example 2-2
(When the data link function is used: When the controller is the client)

Shows the example of the setting, when the controller is client by the data link function.
Conditions for example 2-2

Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10003
Communication line No.
<For MELFA-BASIC V/VI>
OPEN command COM No.

COM3:

Parameter setting for example 2-2

Parameter Before/after
change Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (unchanged)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)

CPRCE13 Before 0
After 2

COMDEV Before , , , , , , ,
After , , OPT13, , , , ,

NETMODE Before 1,1,1,1,1,1,1,1,1
After 1,1,0,1,1,1,1,1,1

NETHSTIP
Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,

192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network
computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,
for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the
personal computer support software.

2 Preparation before use

2-11

2.2.6. Parameter setting example 3 (for using the real-time external control function)

An example of the settings for using the real-time external control function is shown below.

Conditions for example 3
Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10000

Parameter setting for example 3
Parameter Before/after

change Parameter value

NETIP Before 192.168.0.20
after 192.168.0.20 (unchanged)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

after 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)

MXTTOUT Before -1
after -1 (unchanged)

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Refer to the manuals enclosed with Windows, etc., for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2 Preparation before use

2-12

2.3. Connection confirmation

Before use, confirm the following items again.

Connection confirmation

No. Confirmation item Check

1 Is the teaching pendant securely fixed?

2 Is the Ethernet cable properly connected between the controller and personal computer? (Refer to 2.1 in this

manual.)

3 Is any proper Ethernet cable used?

(This cross cable is used to connect the personal computer and controller one-on-one. When using a hub

with LAN, use a straight cable.)

4 Is the parameter of the controller properly set? (Refer to 2.2 in this manual.)

5 Is the power supply of the controller turned off once after the parameter set?

2.3.1. Checking the connection with the Windows ping command

The method for checking the connection with the Windows ping command is shown below.

Start up the " MS-DOS Prompt " from the Windows " Start " - " Programs " menu, and designate the robot controller IP

address as shown below.

If the communication is normal, " Reply from ... " will appear as shown below.

If the communication is abnormal, " Request time out " will appear.

3 Description of functions

3-1

3. Description of functions

This chapter explains the methods for using the six Ethernet option functions with a system in which the controller and network

personal computer are connected with a one-on-one cross cable.

(1) Using the controller communication function ... Refer to Chapter 3.1

(2) Using the data link function ... Refer to Chapter 3.2

(3) Using the real-time external control function ... Refer to Chapter 3.3

(4) Using the real-time monitoring function ... Refer to Chapter 3.4

(5) Using SLMP ... Refer to Chapter 3.5

(6) Using the CC-Link IE Field Network Basic function ... Refer to Chapter 3.6

3 Description of functions

3-2

3.1. Controller communication function

The operations for communicating with the personal computer support software are explained in this section.

Connecting the controller and personal computer. … Refer to section 3.1.1

|

Setting the personal computer network. … Refer to section 3.1.2

|

Setting the controller parameters. … Refer to section 3.1.3

|

Starting the support software. … Refer to section 3.1.4

|

Communication. … Refer to section 3.1.5

|

Ending

3.1.1. Connecting the controller and personal computer

Connect the controller and the personal computer with the following Ethernet cable.

Controller Ethernet cable

CR750/CR751 series 100BASE-TX compatible cable
CR800-R series 100BASE-TX compatible cable
CR800-D series 1000BASE-TX compatible cable

Refer to the connection described in section "2.1 Ethernet cable".

3.1.2. Setting the personal computer network

Refer to section "2.2.3 Example of setting the parameters 1 (for using the support software)" and set the network.

3.1.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Name of parameter
to change

Before/after
changes Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (Default value)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

3 Description of functions

3-3

3.1.4. Setting the personal computer support software communication

Start the personal computer support software and make the communication settings. Set the communication method to

TCP/IP, and the IP Address to 192.168.0.20.

Refer to the instruction manual enclosed with the personal computer support software for details on setting the personal

computer support software.

3 Description of functions

3-4

3.1.5. Communication

Communicate with the personal computer support software.

Communication can be carried out with the Ethernet TCP/IP.

Refer to the instruction manual enclosed with the personal computer support software for details on using the personal

computer support software.

If communication is not possible, refer to section "2.3 Checking the connection" and check the state.

CAUTION
When the robot controller power is turned OFF and ON, the connection will be disconnected

and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3 Description of functions

3-5

3.2. Data link function
OPEN/PRINT/INPUT of the robot language can be used in the Ethernet.

For each robot language, refer to the instruction manual appended to the robot controller.

[Statement example] To set port No. 10003 as communication destination and open as #1

Set parameter COMDEV (element No. 3) to OPT13, NETPORT to 10003.

1 OPEN “COM3:” AS #1 ’Set port No.

2 INPUT #1, C1$ 'Read

3 PRINT #1, ”Reply”, C1$ ‘Writing

4 CLOSE #1 ‘Line closing

5 HLT ‘Stop

The data link function of the Ethernet has the two kinds shown below.

* Uses the robot controller as the server.

* Uses the robot controller as the client.

Controller2 Controller3

Computer

Computer1

Controller

Controller1 Controller2

192.168.0.20
(Server)

192.168.0.21
(Client)

Computer2

Controller1
COM2　　COM3 COM2　　COM3 COM2　　COM3

Two or more clients are not connectable with the one line number COMn.
Change the line number, when using the robot controller as the server and connecting two or more clients.

192.168.0.20
(Server)

192.168.0.20
(Server)

192.168.0.22
(Client)

192.168.0.21
(Client)

192.168.0.22
(Client)

192.168.0.21
(Client)

192.168.0.22
(Client)

3.2.1. MELFA-BASIC V/VI Commands

This section describes the robot language (MELFA-BASIC V/VI).

For more information about OPEN, CLOSE, INPUT# and PRINT# used for data linking, refer to the INSTRUCTION

MANUAL Detailed explanations of functions and operations.

3 Description of functions

3-6

M_OPEN

[Function]
Indicates whether or not the file has been opened.

[Format]

 <Numeric variable> = M_OPEN [(<file number>)]

[Terminology]

<Numeric variable> Specify a numeric variable to be assigned.
<File number> Specify a file number constant between 1 and 8 for the communication line that

was opened by the OPEN instruction. If omitted, 1 is set. If 9 or higher is
specified, an error occurs when executed.

[Reference Program]
1 ' Client Program ----------------
2 M1=0

3 M_TIMER(1)=0 ‘Resets the timer to 0.
4 *LOPEN:OPEN "COM2:" AS #1 ‘Opens the line.
5 IF M_TIMER(1)>10000.0 THEN *LERROR ‘Jumps when 10 seconds elapses.
6 IF M_OPEN(1)<>1 THEN GOTO *LOPEN ‘Loops if no connection is made.
7 DEF ACT 1,M_OPEN(1)=0 GOSUB *LHLT2 ‘Monitors the down state of the server using an interrupt.
8 ACT 1=1 ‘Starts monitoring.
9 *LOOP:M1=M1+1

10 IF M1<10 THEN C1$="MELFA" ELSE C1$="END" ‘Sends END after sending the “MELFA” string nine times.
11 PRINT #1,C1$ ‘Sends a character string.
12 INPUT #1,C2$ ‘Receives a character string.
13 IF C1$="END" THEN *LHLT ‘Jumps to CLOSE after sending “END.”
14 GOTO *LOOP ‘Loops.
15 *LHLT:CLOSE #1 ‘Closes the line.
16 HLT ‘Halts the program.
17 END ‘Ends.
18 *LERROR:ERROR 9100 ‘Generates error 9100 if no connection can be made to the

server.
19 CLOSE #1

20 HLT

21 END

22 ERROR 9101 ‘Generates error 9101 if the server is down during
processing.

23 *LHLT2:CLOSE #1

24 HLT

25 END

3 Description of functions

3-7

[Explanation]

(1) This command is used in a combination with the OPEN instruction. The following lists the meanings and values for the

types of the files specified by the OPEN instruction.

Type of file to be
opened Meaning Value

File Indicates whether or not the file has been
opened.
1 is always returned after executing the
OPEN instruction.

1: Already opened.
-1: The file number is undefined (not opened).

Communication line
Ethernet

Indicates whether
or not connection
is made with the
counterpart.

For server setting 1: Client is already connected.
0: Client is not connected.
-1: The file number is undefined (not opened).

For client setting 1: Already connected to the server. (Connection
has been made.)
0: Not connected to the server. (Connection has
not been made. Equivalent to when the server is
down after being opened.)
-1: The file number is undefined. (When the file

has not been opened, or has been opened
while the server is down.)

[Related Instruction]

OPEN

[Related Parameters]

COMDEV, CPRE**, NETMODE

3 Description of functions

3-8

C_COM

[Function]
Sets the parameters for the line to be opened by the OPEN instruction. This is used when the communication destination
is changed frequently.
* Character string type
* Only for a client with the Ethernet option.

[Format]

C_COM (<communication line number>) = “ETH: <server side IP address> [, <port number>]”

[Terminology]
ETH: An identifier to indicate that the target is an Ethernet
<Communication line number> The number of the COM to be specified by the OPEN instruction (The line type is

assigned by the COMDEV parameter.) Specify 1 through 8.
<Server side IP address> Server side IP address (May be omitted.)
<Port number> Port number on the server side (If omitted, the set value of the NETPORT parameter is

used.)

[Reference Program]
Example when OPT12 is set in the second element of the COMDEV parameter

1 C_COM(2)="ETH:192.168.0.10,10010" ' Set the IP address of the communication destination server
corresponding to communication line COM2

2 *LOPEN1:OPEN "COM2:" AS #1 ' As 192.168.0.10 and the port number as 10010, and then open the line.
3 IF M_OPEN(1)<>1 THEN *LOPEN1 ‘ Loops if unable to connect to the server.
4 PRINT #1, "HELLO" ‘ Sends a character string.
5 INPUT #1, C1$ ‘ Receives a character string.
6 CLOSE #1 ‘ Closes the line.
7 C_COM(2)="ETH:192.168.0.11,10011" ‘ Set the IP address of the communication destination server

corresponding to communication line COM2
8 *LOPEN2:OPEN "COM2:" AS #1 ‘ As 192.168.0.11 and the port number as 10011, and then open the line.
9 IF M_OPEN(1)<>1 THEN *LOPEN2 ‘ Loops if unable to connect to the server.
10 PRINT #1, C1$ ‘ Sends a character string.
11 INPUT #1, C2$ ‘ Receives a character string.
12 CLOSE #1 ‘ Closes the line.
13 HLT ‘ Halts the program.
14 END ‘ Ends.

[Description]
(1) It is not necessary to use this command when the communication counterpart of the robot controller is specified with the

NETHSTIP and NETPORT parameters and the specified communication counterpart will not be changed at all.
(2) Currently, this function is valid only for a client of a data link with the Ethernet.
(3) Because the communication parameters of the OPEN instruction are set, it is necessary to execute this command

before the OPEN instruction.
(4) When the power is turned on, the set values specified by the NETHSTIP and NETPORT parameters are used. When

this command is executed, the values specified by the parameters of this command are changed temporarily. They are
valid until the power is turned off. When the power is turned on again, the values revert to the original values set by the
parameters.

(5) If this command is executed after the OPEN instruction, the current open status will not change. In such a case, it is
necessary to close the line with the CLOSE instruction once, and then execute the OPEN instruction again.

(6) If an incorrect syntax is used, an error occurs when the program is executed, not when the program is edited.

[Related Parameters]

NETHSTIP, NETPORT

3 Description of functions

3-9

3.2.2. Using data link function

This section explains the operations for starting the sample program given in "4.2.1 Sample program for data link function"

and communicating with a system in which the controller and network personal computer are connected with a one-on-one

cross cable.

Connecting the controller and personal computer. … Refer to section 3.2.2.1

|

Setting the personal computer network. … Refer to section 3.2.2.2

|

Setting the controller parameters. … Refer to Chapter 3.2.2.3 (1)

Refer to Chapter 3.2.2.3 (2)

|

Starting the sample program. … Refer to section 3.2.2.4

|

Communication. … Refer to section 3.2.2.5

|

Ending … Refer to section 3.2.3

3.2.2.1. Connect the controller and personal computer.
Connect the controller and personal computer with a cross cable.

Refer to the connection described in section "2.1 Ethernet cable".

3.2.2.2. Setting the personal computer network.

Set one of the following clauses as reference corresponding to the customer's system configuration. (The controller is the

server or the client)

• 2.2.4 Parameter setting example 2-1 (When the data link function is used: When the controller is the server.)

• 2.2.5 Parameter setting example 2-2 (When the data link function is used: When the controller is the client.)

3 Description of functions

3-10

3.2.2.3. Setting the controller parameters.
The contents of the setting of parameter differ, when the robot controller is specified as server and client of TCP/IP

connection.

Turn ON the robot controller power, and set the parameters as shown below.

The NETIP/NETPORT parameters do not need to be changed when using the default values.

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

(1) When the controller is specified as the server

Parameter Before/after
change Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (unchanged)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)

CPRCE13 Before 0
After 2

COMDEV Before , , , , , , ,
After , , OPT13, , , , ,

(2) When the controller is specified as the client

Parameter Before/after
change Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (unchanged)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)

CPRCE13 Before 0
After 2

COMDEV Before , , , , , , ,
After , , OPT13, , , , ,

NETMODE Before 1,1,1,1,1,1,1,1,1
After 1,1,0,1,1,1,1,1,1

NETHSTIP
Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,

192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

3 Description of functions

3-11

3.2.2.4. Starting the sample program
The test program is an example for establishing a data link between the robot and personal computer. COM3 is used.

(1) Using the teaching pendant or personal computer support software, register the following robot program with an

appropriate program name.

<Robot program>

1) Example for MELFA-BASIC V
1 OPEN "COM3:" AS #1 ' Open as communication line COM3
2 PRINT #1,"START" ' Send START character string
3 *LOOP:INPUT #1,DATA ' Wait for reception of value in DATA variable
4 IF DATA<0 THEN GOTO *LEND ' If DATA is negative, jump to line 7 and end
5 PRINT #1,"DATA=";DATA ' Reply DATA = value
6 GOTO *LOOP ' Jump to line 3 and repeat
7 *LEND:PRINT #1,”END" ' Send END character string
8 END ' End

(2) Start the personal computer data link program

Refer to section "4.2.1 Sample program for data link function" and create the execution file. (The created execution file will

be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

Set the IP address and port No., click on the connection check box, and open the communication line with the controller.

If the Send button is not validated, check that the IP address matches NETIP set with the controller.

If the button is still not validated, refer to section "2.3 Checking the connection", and check the connection cable or restart

the controller and sample.exe.

(3) Start the robot program.

Press the START button on the robot controller's operating panel, and start the robot program.

3 Description of functions

3-12

3.2.2.5. Communication

(1) When the robot controller program is started, first the following data will be sent to the personal computer.

"START"(CR) (CR) indicates the CR code.

(2) When the personal computer receives the data, the characters will appear in the received data area.

START•

(3) Send value data from the personal computer.

For example, input the value data 123 in the transmission data area, and click on the Send button with the mouse.

(4) When the robot controller receives the value data in the DATA variable, it will reply data to the personal computer.

DATA=123 will appear in the personal computer's received data area.

If communication cannot be carried out correctly, refer to section "2.3 Checking the connection" in this manual.

CAUTION

When the robot controller power is turned OFF and ON, the connection will be disconnected

and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3.2.3. Ending

(1) Press the END button on the robot controller operating panel, and enter cycle operation.

(2) Input the value -1 from the personal computer, and end the program.

(3) End the personal computer's sample program.

(4) Turn OFF the robot controller's power.

3 Description of functions

3-13

3.3. Real-time external control function
The robot motion movement control can retrieve the position command at real-time in cycle units, and move to the

commanded position. It is also possible to monitor the input/output signals or output the signals simultaneously.

Using the robot language MXT command, real-time communication (command/monitor) is carried out with communication.

 Motion movement control cycle (CR750/CR751 series: approx. 7.1 ms,

CR800 series: approx. 3.5 ms (If user mechanical is set, approx. 7.1 ms))

Command value calculation

Personal computer

Robot controller

Command position
transmission/reception

The following table lists the position command data for giving the target move position from the personal computer to the

robot for each hour of the motion operation control cycle, and the monitor data types from the robot.

For more information about communication data, see Section 3.3.1, “Command Explanation” and Section 3.3.2,

“Communication Data Packet Explanation” in this document.

Position command data type Monitor data type
[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data

[1] Rectangular coordinate data
[2] Joint coordinate data
[3] Motor pulse coordinate data
[4] Rectangular coordinate data (command value after filter processing)
[5] Joint coordinate data (command value after filter processing)
[6] Motor pulse coordinate data (after filter processing)
[7] Rectangular coordinate data (encoder feedback value)
[8] Joint coordinate data (encoder feedback value)
[9] Motor pulse coordinate data (encoder feedback value)
[10] Current command (%)
[11] Current feedback (%)

3 Description of functions

3-14

* Flow of real-time external control

Robot program end

Robot program start

Robot program start

Execute process only

when command is issued

Packet data

transmission

Application program end

Reception of packet data

Transmission of packet data

Ethernet initialization, socket

creation, etc.

Application program start

Creation of transmission
packet data

Robot program start

 Automatically

 repeated until end

 command is received
 End command received?

 Robot controller side Personal

Communication

packet data

3 Description of functions

3-15

3.3.1. Explanation of command

Either the MELFA-BASIC V command languages can be used with the real-time external control function.

Note that the meanings of the arguments differ for the MELFA-BASIC V commands. (Refer to following format and

terminology.)

Refer to section "3.3.2 Explanation of communication data packet" for details on the structure of the communication data

packet used with this function.

MXT (Move External)
[Function]

The absolute position data is retrieved from an external source at each controller control time (currently approx. 7.1msec),

and the robot is directly moved.

[Format]

MXT <File No.>, <Reply position data type> [, <Filter time constant>]

[Terminology]

<File No.> Describe a number between 1 and 8 assigned with the OPEN command.

 If the communication destination is not designated with the OPEN command, an

 error will occur, and communication will not be possible.

 In addition, data received from a source other than the communication destination

 will be ignored.

<Replay position data type> Designate the type of the position data to be received from the personal computer.

 A XYZ/joint/motor pulse can be designated.

0: XYZ coordinate data

 1: Joint coordinate data

 2: Motor pulse coordinate data

<Filter time constant> Designate the filter time constant (msec). If 0 is designated, the filter will not be

 applied. (0 will be set when omitted.) A filter is applied on the reception position

 data, an obtuse command value is created and output to the servo.

[Reference Program]

1 OPEN "ENET:192.168.0.2" AS #1 ‘Ethernet communication destination IP address

2 MOV P1 ‘Move to P1

3 MXT1,1,50 ‘Move with real-time external control with filter time constant set to

50msec

4 MOV P1 ‘Move to P1

5 HLT ‘Halt program

3 Description of functions

3-16

[Explanation]

* When the MXT command is executed, the position command for movement control can be retrieved from the personal

computer connected on the network. (One-on-one communication)

* One position command can be retrieved and operated at the operation control time (currently 7.1msec).

* Operation of MXT command

1) When this command is executed with the controller, the controller enters the command value reception enabled state.

2) When the controller receives the command value from the personal computer, it will output the received command

value to the servo within the next control process cycle.

3) After the command value is sent to the servo, the controller information, such as the current position is sent from the

controller to the personal computer.

4) A reply is made from the controller to the personal computer only when the command value from the personal

computer is sent to the controller.

5) If the data is not received, the current position is maintained.

6) When the real-time external command end command is received from the personal computer, the MXT command is

ended.

7) When the operation is stopped from the operating panel or external input, the MXT command will be halted, and the

transmission/reception will also be halted until restart.

* The timeout is designated with the parameter MXTTOUT.

* One randomly designated (head bit, bit width) input/output signal can be transmitted and received simultaneously with the

position data.

* A personal computer with sufficient processing speed must be used to command movement in the movement control time.

3 Description of functions

3-17

3.3.2. Explanation of communication data packet

The structure of the communication data packet used with the real-time external control function is explained in this section.

The same communication data packet for real-time external control is used for commanding the position and for monitoring.

The contents differ when transmitting (commanding) from the personal computer to the controller and when receiving

(monitoring) from the controller to the personal computer.

(1) Communication data packet.

Name Data type Explanation
Command unsigned short

(2-byte)
Designate the validity of the real-time external command, and the end.

0 // Real-time external command invalid
1 // Real-time external command valid
255 // Real-time external command end

Transmission data type
designation
SendType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of position data transmitted from the
personal computer.
There is no data at the first transmission.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

3 Description of functions

3-18

Name Data type Explanation

Reply data type
designation
RecvType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 // No data
1 // XYZ data
2 // Joint data
3 // Motor pulse data
4 // XYZ data (Position after filter process)
5 // Joint data (Position after filter process)
6 // Motor pulse data (Position after filter process)
7 // XYZ data (Encoder feedback value)
8 // Joint data (Encoder feedback value)
9 // Motor pulse data (Encoder feedback value)
10 // Current command [%]
11 // Current feedback [%]

* It is the same as RecvType. You may use whichever.

Reservation
reserve

unsigned short
(2byte)

Not used.

Position data
Pos / jnt / pls

POSE, JOINT or
PULSE (40-byte)

* Refer to strdef.h
in the sample
program for
details on each
data structure.

1) When transmitting (commanding) from the personal computer to the
controller, designate the command position data transmitted from the
personal computer.
Set this to the same data type as that designated for the transmission data
type designation.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the position data replied from the controller.
The data type is shown in SendType (= RecvType) .

The contents of data are common to command/monitor.

POSE // XYZ type [mm/rad]
JOINT // Joint type [rad]
PULSE // Motor pulse type [the pulse] or Current type [%].

3 Description of functions

3-19

Name Data type Explanation

Transmission
input/output signal data
designation

SendIOType

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal transmitted
from the personal computer.
Designate "No data" when not using this function.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the data type of the input/output signal replied
from the controller.

The contents of the data are common.

0 // No data
1 // Output signal
2 // Input signal

Reply input/output
signal data designation

RecvIOType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal replied from
the controller.
Designate "No data" when not using this function.

0 // No data
1 // Output signal
2 // Input signal

2) When receiving (monitoring) from the controller to the personal
computer, Not used.

Input/output signal data
BitTop
BitMask
IoData

unsigned short
unsigned short
unsigned short
(2-byte x 3)

1) When transmitting (commanding) from the personal computer to the
controller, designate the output signal data transmitted from the personal
computer.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the input/output signal data replied from the
controller.

The contents of the data are common.

BitTop; // Head bit No. of input or output signal
BitMask; // Bit mask pattern designation (valid only for

commanding)
IoData; // Input or output signal data value (for monitoring)

Output signal data value (for commanding)
* Data is 16-bit data

Timeout time counter
value

Tcount

unsigned short

(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, Not used.

2) When receiving (monitoring) from controller to personal computer, if the
timeout time parameter MXTTOUT is a value other than -1, this indicates
the No. of times communication with the controller was not possible. When
the No. of times is counted and reaches the maximum value, the value will
return to the minimum value 0, and the count will be repeated. This is set
to 0 when the MXT command is started.

Counter value for
communication data
 Ccount

unsigned long

(4-byte)

1) When transmitting (commanding) from the personal computer to the
controller.

2) When receiving (monitoring) from controller to personal computer, this
indicates the No. of communication times.

3 Description of functions

3-20

Name Data type Explanation

Reply data-type
specification addition
1
RecvType1

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Do not use it for instructions.

Reservation 1
reserve1

unsigned short
(2-byte)

Not used.

Data addition 1
pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Do not use it for instructions.

Reply data-type
specification addition
2
RecvType2

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Do not use it for instructions.

Reservation 2
Reserve2

unsigned short
(2-byte)

Not used.

Data addition 2
pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Do not use it for instructions.

Reply data-type
specification addition
3
RecvType3

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Do not use it for instructions.

Reservation 3
Reserve3

unsigned short
(2-byte)

Not used.

Data addition 3
pos / jnt / pls

Any of
POSE/JOINT/PU
LSE.

(40-byte)

It is the same as data of pos/jnt/pls.
Do not use it for instructions.

3 Description of functions

3-21

3.3.3. Using real-time external control function

This section explains the operations for starting the sample program given in "4.2.2 Sample program for real-time external

control function" and communicating with a system in which the controller and network personal computer are connected with

a one-on-one cross cable.

Connecting the controller and personal computer. … Refer to section 3.3.3.1

|

Setting the personal computer network. … Refer to section 3.3.3.2

|

Setting the controller parameters. … Refer to section 3.3.3.3

|

Starting the sample program. … Refer to section 3.3.3.4

|

Communication. … Refer to section 3.3.3.5

|

Ending … Refer to section 3.3.4

3.3.3.1. Connecting the controller and personal computer

Connect the controller and personal computer with a cross cable.

Refer to the connection described in section "2.1 Ethernet cable".

3.3.3.2. Setting the personal computer network

Refer to section "2.2.6 Example of setting the parameters 3 (for using the real-time external control function)" and set the

network.

3.3.3.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

Name of parameter
to change

Before/after
changes Parameter value

NETIP Before 192.168.0.20
After 192.168.0.20 (Default value)

NETPORT
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

MXTTOUT Before -1
After -1 (Default value)

3 Description of functions

3-22

3.3.3.4. Starting the sample program

The test program is an example of communicating in real-time between the robot and personal computer. The XYZ

position data X axis or joint position data J1 axis is commanded from the personal computer to the robot and controlled.

(1) Using the teaching pendant or personal computer support software, register the following robot program with an

appropriate program name.

<Robot program>

1) Example for MELFA-BASIC V
1 OPEN "ENET:192.168.0. 20" AS #1 ' Designate personal computer side IP address as Ethernet in file No. 1
2 MOV P1 ' Move to default position P1 (teach random position as P1)
3 MXT1,0 ' Move according to command value issued from file No. 1

Current XYZ position is replied from controller to personal computer
4 MOV P1 ' After external control mode ends, move to default position P1 with joint

interpolation
5 HLT ' Halt
6 END ' End

(2) Start the robot program.

Press the START button on the robot controller's operating panel, and start the robot program.

The robot will move to the default position P1, and real-time external control will be executed with the MXT command.

(3) Start the personal computer's real-time external control sample program.

Refer to section "4.2.2 Sample program for real-time external control function" and create the execution file. (The created

execution file will be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

3 Description of functions

3-23

3.3.3.5. Moving the robot

Specify and input the following values for the numerical value displayed on the screen according to the message of the

sample program.

*The IP address (192.168.0.20) of the robot controller of the connection point

*The port number (10001)

*The data type of command

*The data type of monitoring, etc.

Fit the data type of command to the argument of the MXT command of the robot program

Key operation is as follows. For details, refer to the sample program.
Key Contents
Z or X . The robot moves.
C The instruction value is set to 0 and the robot stops.
D Each time the MOVE key is pressed, change the display /

un-displaying of the monitor data
ENTER End the MXT command.

If the amount of instructions becomes too large or the movement range of the robot is exceeded, an error is

generated and the robot controller stops. In this case, reset the robot controller.

If communication cannot be carried out correctly, refer to section "2.3 Checking the connection", and check the connection
cable or restart the controller and sample.exe.

CAUTION
When the robot controller power is turned OFF and ON, the connection will be disconnected
and communication will be disabled.
In this case, end the application software on the personal computer once, and then
restart.

3.3.4. Ending

(1) Press the END button on the robot controller operating panel, and enter cycle operation.
(2) End the personal computer's sample program.
When the [ENTER] key is pressed, the MXT command will end, the robot will return to the default position, and the robot
program will stop.
The sample program will also end.
(3) Turn OFF the robot controller's power.

3 Description of functions

3-24

3.4. Real-time monitor function

3.4.1. Overview

In using such communication equipment as PLC and personal computers, this function is used to monitor orthogonal and

joint position data of the current position of the robot controller in real-time using Ethernet UDP communication.

3.4.1.1. CR800 series

R32TB or R56TB

PLC, PC, …
Ethernet communication device

Robot
FR Series

Controller
CR800

iQ-R Series
*R Type only

1000BASE-T
Ethernet Cable

System configuration (Example)

3 Description of functions

3-25

3.4.1.2. CR75n series

R32TB or R56TB

PLC, PC, …
Ethernet communication device

Robot
F Series

Q172DRCPU
*Q Type only

Controller
CR75ｘ-Q / CR75ｘ-D

10BASE-T/100BASE-TX
Ethernet Cable

System configuration (Example)

3.4.2. Supported version

Controller type Version Remarks

CR75x-Q Ver.R3n RT2 Oscillograph function corresponding Ver.R4b or later

CR75x-D Ver.S3n RT2 Oscillograph function corresponding Ver.R4b or later

The CR800 controller is supported by all the software versions.

3 Description of functions

3-26

3.4.3. Setup

It is a set-up procedure of example conditions.

3.4.3.1. CR800 series
List conditional example

IP address of Robot controller 192.168.0.20

IP address of PC 192.168.0.2

Port number for Real-time monitor 12000, 12001 Receive port = 12000 , Send port = 12001

(1) Connecting the controller and personal computer

Connect the Ethernet cable to the connector of the controller. When the hub is used, use the straight cable. Or when the

personal computer and controller are connected to each other one to one, use the cross cable.

R32TB or R56TB

PLC, PC, …
Ethernet communication device

Robot
FR Series

Controller
CR800

iQ-R Series
*R Type only

1000BASE-T
Ethernet Cable

(2) Setting the controller parameters

Set the parameters of the robot controller as shown in Table. For more information about parameters, see 3.4.7.

Parameter setting example

Parameter
Before/after

change
Parameter value

NETIP
before

192.168.0.20 (D type Robot controller)

192.168.0.10 (R type Robot controller)

after Same as above (unchanged)

MONMODE
before 0

after 1

MONPORT
before 12000, 0

after 12000, 12001* Only when a change is required

(3) Setting the personal computer

To suit your network, please perform the communication settings. Please specify the UDP protocol of Ethernet

communication.

3 Description of functions

3-27

3.4.3.2. CR75n series
Example of conditions

IP address of Robot controller 192.168.0.20 (D type Robot controller)

IP address of PC 192.168.0.2

Port number for Real-time monitor 12000, 12001 Receive port = 12000 , Send port = 12001

(1) Connecting the controller and personal computer

Connect the Ethernet cable to the connector of the controller. When the hub is used, use the straight cable. Or when the

personal computer and controller are connected to each other one to one, use the cross cable.

R32TB or R56TB

PLC, PC, …
Ethernet communication device

Robot
F Series

Q172DRCPU
*Q Type only

Controller
CR75ｘ-Q / CR75ｘ-D

10BASE-T/100BASE-TX
Ethernet Cable

(2) Setting the controller parameters

Set the parameters of the robot controller as shown in Table. For more information about parameters, see 3.4.7.

Parameter setting example

Parameter
Before/after

change
Parameter value

NETIP
before

192.168.0.20 (D type Robot controller)

192.168.100.1 (Q type Robot controller)

after Same as above (Default value)

MONMODE
before 0

after 1

MONPORT
before 12000, 0

after 12000, 12001* Only when a change is required

(3) Setting the personal computer

To suit your network, please perform the communication settings. Please specify the UDP protocol of Ethernet

communication.

3 Description of functions

3-28

3.4.4. Start of monitor / End of monitor

Explain start of monitor and end of the monitor.

(1) Start of monitor

Set the data type ID as a starting packet data, set data output start (1) on the command, you want to monitor the return

data type 1-4 In addition, it sends to the robot controller.

If the start packet data is accepted normally, the robot controller continuously sends reply packet data (output data) to the

Ethernet communication device by every control cycle of the robot controller (refer to the following).

Controller Control cycle (*1)

CR750/CR751 series Approx. 7.11 msec
CR800 series Approx. 3.5 msec (*If user mechanical is set, approx. 7.11 msec)

*1 Because it depends on the performance of the communication path and the communication device, the period is not

guaranteed.

(2) End of monitor

It will be sent to the robot controller by setting the data output end (255) to the command end packet data. If accepted, the

robot controller to exit the sending of the reply packet data.

If you want to change the type of output data on the monitor the way, it sends a start packet data.

About communication device
• Communication device is the only one. It is not possible to communicate with the other device of two or more.

• It is disconnected from the communication device in communication first, and then communicates with a corresponding later

Caution

The data output from the robot, for that is sent (UDP) communication via Ethernet without the

retransmission process, because there is the case that such noise environments, such as the

transmission of data or a wrong data dropout occurs, the guarantee of data is not possible.

Ethernet

Communication

Device

Robot

Controller

<Send packet data>
• Command (Start / End)
• Reply data type 1 to 4

(Data type ID)
• Input/Output signal number

<Reply packet data>
• Reply data 1 to 4
• Input/Output signal data

Until the end of monitor

3 Description of functions

3-29

3.4.5. Explanation of communication data packet

It describes the structure of the communication packet data to be used in real-time monitoring function. To the robot controller,

I will use the same packet structure on both send and receive from Ethernet communication device. Storage method of

data is little-endian. Real data in 32-bit real number is IEEE754 standard method. Data packet size is 196 bytes fixed.

Table 3-1 Data packet

Name Data type Explanation Address

Command unsigned short
2 byes

Specifies the start or end of the real-time monitoring function.
1 // Start of the real-time monitor
255 // End of the real-time monitor

0-1

Not used(reserve) 2 byes Not used 2-3

Reply data type 1 unsigned short
2 byes

1) Communication device → Robot controller
Specifies the <Data type ID> of the data that you want to monitor.

2) Robot controller → Communication device
 Echo back of send 1)

*Data type ID see [3.4.6 Data type ID]

4-5

Not used(reserve) 2 byes Not used 6-7

Reply data 1

Data structure
POSE, JOINT, PULSE,
ROBMON,
FORCE or FLOAT8
40 bytes

* Each data structure is
described in Table
Table 3-2, Table 3-3
Table 3-4, Table 3-5
Table 3-6, Table 3-7

1) E Communication device → Robot controller
Not used. Set to zero.

2) Robot controller → Communication device
The output data sent back from the controller.
Data type is seeing in the return data type.

*Data structure
POSE // XYZ type [mm/rad]
JOINT // Joint type [rad]
PULSE // Motor pulse type [pulse] or Current type[%]
FORCE // Force sensor type
ROBMON // Robot movement information
FLOAT8 // General purpose, float×8

8-47

Input signal number of
the top

* Ver.R4b/S4b or later

unsigned short
2 byes

1) Communication device → Robot controller
Input signal number of the top (0 to 32767)

2) Robot controller → Communication device

Echo back of send 1)

48-49

Output signal number
of the top

* Ver.R4b/S4b or later

unsigned short
2 byes

1) Communication device → Robot controller
Output signal number of the top (0 to 32767)

2) Robot controller → Communication device

Echo back of send 1)

50-51

Input signal data

* Ver.R4b/S4b or later

unsigned long
4 byes

1) Communication device → Robot controller
Not used. Set to zero.

2) Robot controller → Communication device

Input signal data(0x00000000-0xffffffff)

52-53

Output signal data

* Ver.R4b/S4b or later

unsigned long
4 byes

1) Communication device → Robot controller
Not used. Set to zero.

2) Robot controller → Communication device

Output signal data(0x00000000-0xffffffff)

56-57

Communication data
counter

unsigned long
4 byes

1) Communication device → Robot controller
Not used. Set to zero.

2) Robot controller → Communication device

The number of communications. To return to the minimum
value 0 and the maximum value by integrating.

60-63

Reply data type 2 unsigned short
2 byes Same Reply data type 1 64-65

Not used(reserve) 2 byes Not used 66-67

Reply data 2
POSE, JOINT, PULSE,
ROBMON,
FORCE or FLOAT8 40 bytes

Same Reply data 1 68-107

Reply data type 3 unsigned short
2 byes Same Reply data type 1 108-109

Not used (reserve) 2 byes Not used 110-111

Reply data 3
POSE, JOINT, PULSE,
ROBMON,
FORCE or FLOAT8 40 bytes

Same Reply data 1 112-151

Reply data type 4 unsigned short 2 byes Same Reply data type 1 152-153
Not used (reserve) 2 byes Not used 154-155

Reply data 4
POSE, JOINT, PULSE,
ROBMON,
FORCE or FLOAT8 40 bytes

Same Reply data 1 156-195

3 Description of functions

3-30

Table 3-2 POSE (XYZ) data structure

X element 4 bytes
float

XYZ data [mm / rad], 40 bytes
* Data type 1 and 7 is unit of radians.
 Data type 1001 and 1007 is unit of degrees.

Y element 4 bytes
float

Z element 4 bytes
float

A element 4 bytes
float

B element 4 bytes
float

C element 4 bytes
float

L1 element 4 bytes
float

L2 element 4 bytes
float

FL1(Structure flag 1) 4 bytes
long

FL2(Structure flag 2) 4 bytes
long

Table 3-3 JOINT data structure
J1 element 4 bytes

float

Joint data [rad], 32 bytes
* Data type 2 and 8 is unit of radians.
 Data type 1002 and 1008 is unit of degrees.

J2 element 4 bytes
float

J3 element 4 bytes
float

J4 element 4 bytes
float

J5 element 4 bytes
float

J6 element 4 bytes
float

J7 element 4 bytes
float

J8 element 4 bytes
float

Not used 8 bytes Not used. Value is zero.

Table 3-4 PULSE (Pulse/%) data structure
M1 element 4 bytes

long

Motor pulse data or current data [0.1% rate] , 32 bytes

M2 element 4 bytes
long

M3 element 4 bytes
long

M4 element 4 bytes
long

M5 element 4 bytes
long

M6 element 4 bytes
long

M7 element 4 bytes
long

M8 element 4 bytes
long

Not used 8 bytes Not used. Value is zero.

3 Description of functions

3-31

Table 3-5 FORCE (N/Nm) data structure
F1 element 4 bytes

float

Force sensor data[N, Nm] , 32 bytes

F2 element 4 bytes
float

F3 element 4 bytes
float

F4 element 4 bytes
float

F5 element 4 bytes
float

F6 element 4 bytes
float

Not used 16 bytes Not used. Value is zero.

Table 3-6 ROBMON (Robot information) data structure
Tool point speed
(feedback)

4 bytes
float Speed of a tool center point (feedback) [mm/s]

Remaining distance
(feedback)

4 bytes
float

The remaining distance to the target position (in
mm) while the robot is moving (feedback).

Tool point speed
(command)

4 bytes
float

Speed of a tool center point (command)
Same as status variable values “M_RSpd”

Remaining distance
(command)

4 bytes
float

The remaining distance to the target position (in mm) while the robot is moving
(command).
Same as status variable values “M_RDst”.

Gap of command and
feedback

4 bytes
float

The gap of a command position and a feedback position.
Same as status variable values “M_Fbd”.

Transport factor (command) 2 bytes
integer Speed of a tool center point (feedback)

Acceleration state
(command)

2 bytes
integer

The current acceleration/deceleration status. (command)
[0=Stopped,1=Accelerating, 2= Constant speed, 3= Decelerating]
Same as status variable values “M_AclSts”.

Step number 2 bytes
integer

Step number (Only slot 1), (1-32767)

Program name 6 bytes
character

Program name (Only slot 1)
Max Program name is 6 characters

Controller temperature 2 bytes
integer

Controller temperature [0.1°C]

Not used 2 bytes

Not used.

Monitoring counter 4 bytes
long

After power-on, +1 is counted from 0 in an operation control cycle unit (64/9 (*1)).
The counting repeats in the range of 0 to 4294967295.

(*1) CR750/CR751 series: approx. 7.111 ms, CR800 series: approx. 3.5 ms (If user mechanical is set, approx. 7.1 ms)

Table 3-7 FLOAT8 (short real) data structure
float 1 4 bytes

float

float (short real), 32 bytes

float 2 4 bytes
float

float 3 4 bytes
float

float 4 4 bytes
float

float 5 4 bytes
float

float 6 4 bytes
float

float 7 4 bytes
float

float 8 4 bytes
float

Not used 8 bytes Not used. Value is zero.

3 Description of functions

3-32

3.4.6. Data type ID

The type of data that can be monitored in real-time monitor function.

Table 3-8 Data type ID
ID Contents Data structure Ver.
0 no data –

R3n/S3n or
later

1 XYZ position (Command) *Angle in radians POSE
2 Joint position (Command) *Angle in radians JOINT
3 Motor pulse position (Command) PULSE (Long×8)
7 XYZ position (Feedback) *Angle in radians POSE
8 Joint position (Feedback) *Angle in radians JOINT
9 Motor pulse position (Feedback) PULSE (Long×8)
10 Current command [0.1% rate] PULSE (Long×8)
11 Current feedback [0.1% rate] PULSE (Long×8)
12 Robot information ROBMON

13 Position droop PULSE (Long×8)

R4b/S4b or
later

14 Speed (Command) [rpm] PULSE (Long×8)
15 Speed (Feedback) [rpm] PULSE (Long×8)
16 Axis load level [%] FLOAT8(Float×8)
17 Encoder temperature [°C] PULSE (Long×8)
18 Encoder misscount PULSE
19 Motor voltage [V] PULSE (Long×8)
20 Regeneration level [%] PULSE (Long×8)
21 Tolerable command + [0.1% rate] PULSE (Long×8)
22 Tolerable command - [0.1% rate] PULSE (Long×8)
23 RMS current [0.1% rate] PULSE (Long×8)

101 Force sensor current position xyz[N]abc[Nm] FORCE (Float×8)

R3n/S3n or
later

102 Force sensor original data (after offset cancel) xyz[N]abc[Nm] FORCE (Float×8)
103 Force sensor original data (before offset cancel) xyz[N]abc[Nm] FORCE (Float×8)
104 Position command of the force sensor correction POSE
111 COL presumed torque [0.1% rate] PULSE (Long×8)
112 COL threshold + [0.1% rate] PULSE (Long×8)
113 COL threshold - [0.1% rate] PULSE (Long×8)

1001 XYZ position (Command) *Angle in degrees POSE

R4b/S4b or
later

1002 Joint position (Command) *Angle in degrees JOINT
1007 XYZ position (Feedback) *Angle in degrees POSE
1008 Joint position (Feedback) *Angle in degrees JOINT
1010 Current command [Arms] FLOAT8 (Float×8)
1011 Current feedback [Arms] FLOAT8 (Float×8)
1012 Tolerable command + [Arms] FLOAT8 (Float×8)
1013 Tolerable command - [Arms] FLOAT8 (Float×8)
1014 RMS current [Arms] FLOAT8 (Float×8)

3 Description of functions

3-33

3.4.7. Parameters

Table 3-9 Parameter
Parameter Parameter

name
No. of
arrays Details explanation Factory setting

Ethernet
real-time
monitor

MONMODE Integer 1

Switch to enable or disable real-time monitoring
function
0: Disable
1: Enable

1

MONPORT Integer 2

Specify the receive port number and the send port
number of real-time monitor function.
(0 to 65535)

First element: Receive port number
Second element: Send port number

Second element:
0 is special value, reply to the sender port number
that is set to UDP header information in the packet
data start the robot controller has received

12000, 0

3.4.8. Error

Table 3-10 Error

Error number Error cause and measures

L.7810

Error
message

NETPORT/MONPORT parameter error

Cause The element of NETPORT(1) and MONPORT(1/2) overlap.

Measures Please set not to overlap to another port number.

Detail
UDP port number to be used for real-time monitoring function and real-time
external control is duplicated. That you cannot use the same port number,
please change to a different port number.

3 Description of functions

3-34

3.5. SLMP Connection

3.5.1. Function Overview

Please note that the functions listed here apply only to the FR series, and not the F series.

SLMP is a common protocol for seamless communication between applications. Users do not have to be concerned with

network layers or boundaries. SLMP communications are available among devices that can transfer messages by SLMP

(programmable controllers, personal computers, HMIs and others). (For the details of the SLMP compatibility of external

devices, refer to the Instruction Manual of external devices.)

The FR Series supports the SLMP communication server function.

3.5.2. Supported version

Controller type Version Remarks

CR800-R

CR800-D

All versions CR75x-Q and CR75x-D are not supported

3.5.3. Specifications

The following section describes the specifications of the SLMP-compatible device and SLMP communication.

3.5.3.1. SLMP Specifications
The SLMP specifications for the message sent by an external device or with the communication protocol support function

are as follows.

Item Communication data
code Description Reference

SLMP ∙ ASCII code
∙ Binary code

This is the same message format as that for
MC protocol QnA-compatible 3E frame and
4E frame.

3.5.6.1 Request Message

Compared to communication with ASCII code, communication with binary code involves approximately half the amount of

communication data.

3.5.4. Parameters

Specify settings with the following parameters.

Parameter
name

No. of arrays
No. of

characters
Description Factory setting

SLMPPORT Integer 1 Set the SLMP server communication port No. (1024 to 65535) 45237

SLMPCP Integer 1
Set the SLMP server communication protocol.
0: TCP
1: UDP

1

SLMPNWNO Integer 1 Set the SLMP network number. (1 to 239) 1
SLMPNDID Integer 1 Set the SLMP station number. (1 to 120) 1

3 Description of functions

3-35

3.5.5. SLMP Communication Procedure

An external device and an SLMP-compatible device communicate as follows.

3.5.5.1. Using TCP/IP
The following is the communication procedure when performing SLMP communication with TCP/IP.

With TCP/IP, connections are established when updating, and whether data is received normally or not is checked to

ensure reliability of data. However, the line load is high as compared to UDP/IP.

External device SLMP-compatible device

The external device issues a connection request
to the robot. (Active open)

Upon establishment of the connection, the external
device sends a request message to the robot.

The external device receives the response message
from the robot and confirms the operation result.

The external device issues a close request
to the robot and closes the communication.

The robot accepts the close request from the
external device and closes the communication.

3 Description of functions

3-36

3.5.5.2. Using UDP/IP
The following is the communication procedure when performing SLMP communication with UDP/IP.

With UDP/IP, connections are not established when communication is executed, and whether data is received normally or

not is not checked. Therefore, the line load is low. However, data is less reliable as compared to TCP/IP.

External device SLMP-compatible device

The external device sends a request message
to the robot.

The external device receives the response message
from the robot and confirms the operation result.

3 Description of functions

3-37

3.5.6. Message Format

The following section describes the SLMP message format.

3.5.6.1. Request Message
The following is the format of a request message sent from an external device to an SLMP-compatible device.

 Header

This is the header for TCP/IP or UDP/IP. The header is added by the external device before transmission. Note that

the header is normally added automatically by the external device.

 Subheader

This will differ depending on whether a serial No. is added.

The serial No. is an arbitrary number for message recognition added at the external device. When a serial No. is

added and a request message sent, the same serial No. is added to the response message. Serial Nos. are used

when multiple request messages are sent from an external device to the same SLMP-compatible device.

When adding a serial No. to the request message

(When the serial No. is 1234H) When not adding a serial No. to the request message

 Use and manage serial Nos. at the external device side.

 When transmitting the message in ASCII code, the serial No. is stored in the order from higher-order byte to

lower-order byte.

 When transmitting the message in binary code, the serial No. is stored in the order from lower-order byte to

higher-order byte.

Serial No.

Serial No.

(Fixed value)

ASCII code

Binary code

(Fixed value)

(Fixed value) (Fixed value)

(Fixed value)

(Fixed value)

Binary code

ASCII code

3 Description of functions

3-38

 Request destination network No., request destination station No.

Specify the access destination network No. and station No. Specify the network No. and station No. in hexadecimal.

Send the request destination network No. and request destination station No. in the order from higher-order byte to

lower-order byte.

• Network No. range

Host station: 00H

Other station: 01H to EFH (1 to 239)

• Station No. range

Host station: FFH (when the network No. is 00H)

Other station: 01H to 78H (1 to 120)

The host station has a network No. of 00H and a station No. of FFH. Other stations have other values.

The request data addressed to the own station is received regardless of the network No. and station

No. settings.

Furthermore, the request data addressed to the other stations is received when the SLMPNWNO and

SLMPNDID settings are the same.

Example

ASCII code

Binary code

ASCII code

Binary code

When 1AH(26) is specified as the request destination network No.

When 1AH(26) is specified as the request destination station No.

3 Description of functions

3-39

 Destination unit I/O No.

Specify the access destination unit (fixed to 03FFH).

• When performing data communication in ASCII code

Send data in the order higher-order byte to lower-order byte.

• When performing data communication in binary code

Send data in the order lower-order byte to higher-order byte.

 Request destination multidrop station No.

Specify the access destination multidrop station (fixed to 00H).

ASCII code

Binary code

When 03FFH is specified as the request destination unit I/O No.

Example

Example

ASCII code

Binary code

When 0 is specified as the request destination multidrop station No.

3 Description of functions

3-40

 Request data length

Specify the data length from the monitoring timer to the request data in hexadecimal. (Units: bytes)

• When performing data communication in ASCII code

Send data in the order from higher-order byte to lower-order byte.

• When performing data communication in binary code

Send data in the order from lower-order byte to higher-order byte.

 Monitoring timer

Not used (fixed to 0000H)

Request data
length

Monitoring
timer

Request data

Hexadecimal (unit: bytes)

ASCII code

Binary code

When the request data length is 24 bytes

Example

ASCII code

Binary code

When 10H specified for monitoring timer

Example

3 Description of functions

3-41

3.5.6.2. Response Message Format
The following is the format of a response message sent from an SLMP-compatible device to an external device.

(Normal completion)

(Failed completion)

* The following items contain the same information described in section 3.5.6.1 of this manual.

 Request destination network No.

 Request destination station No.

 Request destination unit I/O No.

 Request destination multidrop station No.

3 Description of functions

3-42

 Header

Contains the Ethernet header.

 Subheader

Contains the subheader for the request message.

When adding a serial No. to the request message
(when the serial No. is 1234H) When not adding a serial No. to the request message

• When performing data communication in ASCII code

Serial Nos. are stored in the order from higher-order byte to lower-order byte.

• When performing data communication in binary code

Serial Nos. are stored in the order from lower-order byte to higher-order byte.

Serial No.

Serial No.

(Fixed value)

ASCII code

Binary code

(Fixed value)

(Fixed value) (Fixed value)

(Fixed value)

(Fixed value)

Binary code

ASCII code

3 Description of functions

3-43

 Response data length

The data length from the end code to the response data (successful completion) or error information (failed

completion) is stored in hexadecimal. (Units: bytes)

• When performing data communication in ASCII code

Send data in the order from higher-order byte to lower-order byte.

• When performing data communication in binary code

Send data in the order from lower-order byte to higher-order byte.

(Normal completion)

(Failed completion)

Request data
length

Request data
length

End code Response data

Network
No.
(respond-
ing
station)

Station
No.
(respond-
ing
station)

Subcommand End code Destinati
on
multidrop
station
No.

Command

Error information

Destination unit
I/O No.

Hexadecimal (unit: bytes)

Hexadecimal (unit: bytes)

ASCII code

Binary code

When the response data length is 22 bytes

Example

3 Description of functions

3-44

 End code

The command processing result is stored.

The value "0" is stored for normal completion. An error code is stored for abnormal completion. (See section 3.5.8 of

this manual.)

Successful completion Failed completion (0400H)

• When performing data communication in ASCII code

The command processing result is stored in the order from higher-order byte to lower-order byte.

• When performing data communication in binary code

The command processing result is stored in the order from lower-order byte to higher-order byte.

 Response data

When the command is completed successfully, data such as the read data corresponding to the command is stored.

Refer to the "Response data" section in the command description for details on response data.

 Error information

The command and the subcommand, etc. for which an error occurred are stored.

ASCII code

Binary code

ASCII code

Binary code

3 Description of functions

3-45

3.5.7. Commands

The following section describes SLMP commands.

Refer to section 3.5.6 of this manual for details on message formats for other than the command sections.

 Request message format

(1) 3.5.6.1 Request Message

(2) Request data contains both commands and subcommands. Refer to section 3.5.7.2 onward in this manual for details.

 Response message format

 Normal completion

(1) 3.5.6.2 Response Message Format

(2) Refer to section 3.5.7.2 onward in this manual.

 Failed completion

Refer to section 3.5.6.2 onward in this manual.

Header Subheader Destina-
tion
network
No.

Destina-
tion
station
No.

Destination
unit I/O No.

Destina-
tion
multi-
drop
station
No.

Request data
length

Monitoring
timer

Request data Footer

Header Subheader Destina-
tion
network
No.

Destina-
tion
station
No.

Destination
unit I/O No.

Destina-
tion
multi-
drop
station
No.

Response data
length

End code Response data Footer

3 Description of functions

3-46

3.5.7.1. List of Commands
The following is a list of commands. The following "Subcommands" will differ depending on the device specified. Refer to

section 3.5.7.2 onward in this manual.

Item
Command Subcommand Description Reference

Category Operation
Device Read 0401 001

003
The value is read in bit devices (with
consecutive device numbers) in 1-bit units.

3.5.7.2.2 Read

000
002

● The value is read in bit devices (with
consecutive device numbers) in 16-bit units.

● The value is read in word devices (with
consecutive device numbers) in 1-word units.

Write 1401 001
003

The value is written to bit devices (with
consecutive device numbers) in 1-bit units.

3.5.7.2.3 Write

000
002

● The value is written to bit devices (with
consecutive device numbers) in 16-bit units.

● The value is written to word devices (with
consecutive device numbers) in 1-word units.

Read
Random

0403 000
002

The value is read in the devices with the
specified numbers. The devices with
non-consecutive numbers can be specified.
The value is read from the word devices in
1-word or 2-word units.

3.5.7.2.4 Read
Random

Write
Random

1402 001
003

The value is written to the bit devices with the
specified device numbers (each set of 1 bits
has a device number). The devices with
non-consecutive numbers can be specified.

3.5.7.2.5 Write
Random

000
002

● The value is written to the bit devices with the
specified device numbers (each set of 16 bits
has a device number). The devices with
non-consecutive numbers can be specified.

● The value is written to the word devices with
the specified device numbers (each word or
each set of two words has a device number).
The devices with non-consecutive numbers
can be specified.

Self Test 0619 0000 Performs a test to determine whether
communication with external devices is normal.

3.5.7.3 Self Test
(Loopback Test)

3 Description of functions

3-47

3.5.7.2. Device (Device Access)
The following section describes commands used to perform device reading and writing.

3.5.7.2.1. Data Used in Commands

 Device code

Access destination devices are specified in request data with the following device codes.

For subcommands 0001 and 0000, specify the device code enclosed in parentheses ().

Device Category
Device code

Device No. range Remarks ASCII
code *1

Binary
code

Special relay
(SM)

Bit SM**
(SM)

0091H
(91H)

SM0 to
SM4095

Decimal —

Special register
(SD)

Word SD**
(SD)

00A9H
(A9H)

SD0 to
SD4095

Decimal —

Input (X) Bit X***
(X*)

009CH
(9CH)

R type:
X0 to XFFF
D type:
X0 to X1FFF

Hexadecimal —

Output (Y) Y***
(Y*)

009DH
(9DH)

R type:
Y0 to YFFF
D type:
Y0 to Y1FFF

Hexadecimal —

Internal relay
(M)

M***
(M*)

0090H
(90H)

M0 to M18431 Decimal Cannot be specified with D
type.

Data register (D) Word D***
(D*)

00A8H
(A8H)

D0 to D5119 Decimal —

CPU buffer
memory access
device

See section 3.5.7.2.6 of this manual. Cannot be specified with D
type.

*1: When performing data communication in ASCII code, specify device codes with 4 digits for subcommands 003 and

002. For device codes with 3 digits or less, add an asterisk (*) (ASCII code: 2AH) or a space (ASCII code: 20H) after

the device code.

Specify device codes with 2 digits for subcommands 001 and 000. For device codes with 1 digit, add an asterisk

(*) (ASCII code: 2AH) or a space (ASCII code: 20H) after the device code.

3 Description of functions

3-48

• When performing data communication in ASCII code

Use device codes by converting them to ASCII code (2 or 4 digits), and send them in the order higher-order byte to

lower-order byte. Use codes in upper case characters for letters of the alphabet.

With subcommands 0003, 0002 and 0001, 0000, the number of digits converted to ASCII code will differ.
Subcommand Number of digits Example
0003
0002

Conversion to 4 ASCII
code digits

0001
0000

Conversion to 2 ASCII
code digits

1: Send input relay device codes in order from "X". Note that asterisks () from the second character onward may

also be specified with a space (code: 20H).

• When performing data communication in binary code

Use numerical values (1 or 2 bytes), and send data in the order lower-order byte to higher-order byte.

With subcommands 0003, 0002 and 0001, 0000, the data size of the numerical values will differ.
Subcommand Number of digits Example
0003
0002

2 bytes

0001
0000

1 byte

If input (X) (4 digits) *1

If input (X) (2 digits) *1

If input (X) (2 bytes)

If input (X) (1 byte)

3 Description of functions

3-49

 First device No. (device No.)

Specify the device No. for reading/writing data. When consecutive devices are specified, specify the first device No.

Specify the first device No. in decimal or hexadecimal depending on the device type.

• When performing data communication in ASCII code

Use device Nos. by converting them to ASCII code (6 or 8 digits), and send them in the order higher-order byte to

lower-order byte.

With subcommands 0003, 0002 and 0001, 0000, the number of digits converted to ASCII code will differ.

Subcommand Number of digits Example
0003
0002

Conversion to 8 ASCII
code digits

0001
0000

Conversion to 6 ASCII
code digits

*1: Send in order from 0. The higher-order digit 0 can also be specified with a space (code: 20H).

• When performing data communication in binary code

Use numerical values (3 or 4 bytes), and send data in the order from lower-order byte to higher-order byte. When

the device No. is a decimal device, convert it to a hexadecimal value and send.

With subcommands 0003, 0002 and 0001, 0000, the data size of the numerical values will differ.

Subcommand Number of
digits Example

0003
0002

4 bytes

0001
0000

3 bytes

*1: The device number for internal relay M1234 is in decimal, and must therefore be converted to hexadecimal. This

will be 000004D2H, and should be sent in the order D2H, 04H, 00H, 00H. This will be 00001234H for link relay

B1234, and should be sent in the order 34H, 12H, 00H, 00H.

*2: The device number for internal relay M1234 is in decimal, and must therefore be converted to hexadecimal. This

will be 0004D2H, and should be sent in the order D2H, 04H, 00H. This will be 001234H for link relay B1234, and

should be sent in the order 34H, 12H, 00H.

If device No. is 1234 (8 digits) *1

If device No. is 1234 (6 digits) *1

If internal relay M1234, link relay B1234 (4 bytes) *1

If internal relay M1234, link relay B1234 (3 bytes) *2

3 Description of functions

3-50

 Number of devices

Specify the number of devices for reading/writing data.

• When performing data communication in ASCII code

Use the number of devices by converting them to 4 ASCII code digits (hexadecimal), and send them in the order

from higher-order byte to lower-order byte. Use codes in upper case characters when specifying letters of the

alphabet.

• When performing data communication in binary code

Use a 2-byte numerical value to indicate the number of processing devices, and send in the order from lower-order

byte to higher-order byte.

20 devices

Example

Number of devices: 5 / 20

5 devices

5 devices

Number of devices: 5 / 20

Example

20 devices

3 Description of functions

3-51

 Read data / write data

The value read from the device is stored for reading. The value to be written to the device is stored for writing.

The data arrangement will differ depending on the bit unit (subcommand: 001, 003) or word unit (subcommand:

000, 002).

• In bit units (subcommand: 001, 003)

When performing data communication in ASCII code, send data for the number of specified devices from the

specified start device in the order from higher-order byte to lower-order byte. The ON state is denoted as "31H" (1),

and the OFF state is denoted as "30H" (0). Use codes in upper case characters when specifying letters of the

alphabet.

When performing data communication in binary code, specify a single device with 4 bits, and send data for the

number of specified devices from the specified start device in the order from higher-order byte to lower-order byte.

The ON state is denoted as "1", and the OFF state is denoted as "0".

Example

ON/OFF state of five devices starting from M10

Device
code Head device

Number of
devices Data

Example

ON/OFF state of five devices starting from M10

Device
code

Head
device

Number of
devices Data

"0" is shown when the number of
points is an odd number.

3 Description of functions

3-52

• In word units (subcommand: 000, 002)

When performing data communication in ASCII code, send data with 1 word in 4-bit units in the order from

higher-order byte to lower-order byte. Data is expressed in hexadecimal.

Use codes in upper case characters when specifying letters of the alphabet.

When word devices for reading data contain other than integers (real numbers, character strings),

stored values are read as integer values.

● When D0 to D1 contains a real number (0.75), D0 = 0000H, and D1 = 3F40H.
● When D2 to D3 contains a character string ("12AB"), D2 = 3231H, and D3 = 4241H.

Example

ON/OFF state of 32 devices starting from M16

Device
code Head device

Number of
devices Data

"0002" is shown for the number of devices because
the word device is specified in 16-bit units.

Data

Example

Data stored in D350/D351

Device
code Head device

Number of
devices Data Data

The data in D350 is
56ABH (22187 in
decimal).

The data in D351 is
170FH (5903 in
decimal).

3 Description of functions

3-53

When bit devices are handled in word units when performing data communication in binary code, a single device is

specified with a 1 bit as shown in the following example. Data is stored in the order from lower-order byte (bit 0 to bit 7) to
higher-order byte (bit 8 to bit 15).

When word devices are used, 1 word is specified in 16 bits as follows. Data is stored in the order from lower-order byte

(bit 0 to bit 7) to higher-order byte (bit 8 to bit 15).

When reading, do so after replacing values stored in the response data with higher/lower-order bytes at the user side.

When writing, store request data after replacing the values to be written with higher/lower-order bytes at the user side.

Example

ON/OFF state of 32 devices starting from M16

Head
device

Number of
devices Data

Device
code Data

"02" is shown for the number of devices because
the word device is specified in 16-bit units.

Example

Data stored in D350/D351

Device
code

Head
device

Number
of

devices Data Data

Stored values for
request or
response data

The data in D351 is 170FH
(5903 in decimal).

Values to be read
or written

The data in D350 is 56ABH
(22187 in decimal).

3 Description of functions

3-54

• Precautions

When performing data communication with ASCII data, process as follows when passing character strings from

external devices to the CPU module.

The procedure for converting data received by SLMP-compatible devices from external devices to binary code

data, and writing it to a specified device is described below.

1. Expand character strings sent from external devices to 2-byte code per one character.

2. Rearrange the character strings expanded to 2-byte code per one character, and send them to the

SLMP-compatible device.

3. Write the data sent to the SLMP-compatible device to the specified device.

The following is an example of a case where a character string ("18AF") received from an external device is

converted to binary code data, and written to D0 to D1.

1. Expand the character string ("18AF") sent from the external device to 2-byte code per one character.

2. Rearrange the character strings expanded to 2-byte code per one character, and send them to the

SLMP-compatible device.

3. Write the "38314641" data sent to the SLMP-compatible device to D0 to D1.

When word devices for reading data contain other than integers (real numbers, character strings),

stored values are read as integer values.

● When D0 to D1 contains a real number (0.75), D0 = 0000H, and D1 = 3F40H.

● When D2 to D3 contains a character string ("12AB"), D2 = 3231H, and D3 = 4241H.

All codes

Received data
converted to binary
code and written

Numbers expressing
value for each byte

3 Description of functions

3-55

 Number of devices for bit access

This is the data required to specify the number of devices accessed in bit units.

• When performing data communication in ASCII code

Convert the number of devices to 2 ASCII code digits (hexadecimal), and send them in the order from higher-order

byte to lower-order byte. Use codes in upper case characters if specifying letters of the alphabet.

• When performing data communication in binary code

Convert the number of devices to hexadecimal and send.

20 devices

Example

Number of devices: 5 / 20

5 devices

20 devices

Example

Number of devices: 5 / 20

5 devices

3 Description of functions

3-56

3.5.7.2.2. Read (Command: 0401)

Read the data from devices.

 Request data

• Subcommand

Item
Subcommand *1

ASCII code Binary code
When reading data
in bit units

When reading data
in word units

*1: Use subcommand 008 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008, the message format will differ. (Reading, writing by

specifying device extension)

• Device code

Specify the type of device to be read.

• First device No.

Specify the first number of the device to be read.

or

or

or

or

or

or

or

or

Subcommand Device
code

First device No. Number of
devices

Sub-
command

Device
code

First device
No.

Number
of devices

Binary

3 Description of functions

3-57

• Number of devices

Specify the number of devices to be read.

Item
Number of devices

ASCII code Binary code
When reading data in bit units 1 to 3584 devices 1 to 7168 devices
When reading data in word units 1 to 960 devices

 Response data

The value read from the device is stored in hexadecimal. The data order will differ depending on whether it is in ASCII

code or binary code.

3 Description of functions

3-58

 Communication example (when reading data in bit units)

Read M100 to M107.

• When performing data communication in ASCII code

• When performing data communication in binary code

Subcommand
Device
code First device No.

Number of
devices

(Request data)

(Response data)

Sub-
command

Device
code

First device
No.

Number of
devices

(Request data)

(Response data)

3 Description of functions

3-59

 Communication example (when reading data in word units (bit device))

• Read M100 to M131 (data for two words).

• When performing data communication in binary code

Subcommand
Device
code First device No.

Number of
devices

(Request data)

(Response data)

Sub-
command

Device
code

First device
No.

Number of
devices

(Request data)

(Response data)

3 Description of functions

3-60

 Communication example (when reading data in word units (word device))

Read values D100 to D102.

Here D100 = 4660 (1234H), D101 = 2 (2H), and D102 = 7663 (1DEFH).

• When performing data communication in ASCII code

• When performing data communication in binary code

Subcommand
Device
code First device No.

Number of
devices

(Request data)

(Response data)

Sub-
command

Device
code

First device
No.

Number of
devices

(Request data)

(Response data)

3 Description of functions

3-61

3.5.7.2.3. Write (Command: 1401)

Write the data to devices.

 Request data

• Subcommand

Item
Subcommand *1

ASCII code Binary code
When writing data in
bit units

When writing values
in word units

*1: Use subcommand 008 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008, the message format will differ. (Reading, writing by
specifying device extension)

• Device code

Specify the type of device to be written.

• First device No.

Specify the first number of the device to be written.

Subcommand First device No. Device
code

Number of
devices

Number
of
devices

Write data

Sub-
command

First device
No.

Device
code Write data

Binary

or

or

or

or

or

or

or

or

3 Description of functions

3-62

• Number of devices

Specify the number of devices to be written.

Item
Number of devices

ASCII code Binary code
When writing data in bit units 1 to 3584 devices 1 to 7168 devices
When writing data in word units 1 to 960 devices

• Write data

Specify the value to be written to all the devices specified in "Number of devices" in the request data.

 Request data

There is no Write command response data.

 Communication example (when writing data in bit units)

Write values to M100 to M107.

• When performing data communication in ASCII code

• When performing data communication in binary code

 Communication example (when writing data in word units (bit device))

Write values to M100 to M131 (data for two words).

• When performing data communication in ASCII code

(Request data)

Subcommand
Device
code First device No. Number of devices Write data

(Request data)

Sub-
command

Device
code

First device
No.

Number of
devices Write data

(Request data)

Subcommand
Device
code First device No. Number of devices Write data

3 Description of functions

3-63

• When performing data communication in binary code

 Communication example (when writing data in word units (word device))

Write 6549 (1995H) for D100, 4610 (1202H) for D101, and 4400 (1130H) for D102.

• When performing data communication in ASCII code

• When performing data communication in binary code

(Request data)

Sub-
command

Device
code

First device
No.

Number of
devices Write data

(Request data)

Subcommand
Device
code First device No. Number of devices Write data

(Request data)

Sub-
command

Device
code

First device
No.

Number of
devices Write data

3 Description of functions

3-64

3.5.7.2.4. Read Random (Command: 0403)

The value is read in the devices with the specified numbers. The devices with non-consecutive numbers can be specified.

 Request data

Specify the devices for the specified number
of devices.

Specify the devices for the specified number
of devices.

Specify the devices for the specified number
of devices.

Subcommand
Number of
devices
for word
access

Sub-
command

Number of
devices
for double-
word
access

Number of
devices
for word
access

Device No.

Number of
devices
for double-
word
access

Device No.

Device No. Device No.

Device
code

Device
No.

Device
No.

Device
No.

Device
No.

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Word access

Double-word access

Word access Double-word access

Binary

1 1

1 1

1 1 1 1

3 Description of functions

3-65

• Subcommand

Subcommand *1
ASCII code Binary code

*1: Use subcommand 008 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008, the message format will differ. (Reading, writing by

specifying device extension)

• Number of word access devices, number of double-word access devices

Specify the number of devices to be read with 1 byte (binary code) or 2 bytes (2 digits) (ASCII code).

Subcommand Item Description
0002 Number of devices for

word access
Specify the number of devices for 1 word access.
The applicable units are 16-bit units for bit devices,
and 1-word units for word devices.

Number of devices for
double-word access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices,
and 2-word units for word devices.

0000 Number of devices for
word access

Specify the number of devices for 1 word access.
The applicable units are 16-bit units for bit devices,
and 1-word units for word devices.

Number of devices for
double-word access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices,
and 2-word units for word devices.

or

or

or

or

3 Description of functions

3-66

• Device code, device number

Specify devices to be read in the order word access, double-word access.

Item Description
Word access Specify devices based on the number set in the request data for word access.

It is not necessary to specify devices when "0" is set.
Double-word access Specify devices based on the number set in the request data for double-word

access. It is not necessary to specify devices when "0" is set.

 Response data

Values for read devices are stored in hexadecimal. The data order will differ depending on whether it is in ASCII code

or binary code.

Data in the devices specified for
word access

Data in the devices specified for
double-word access

Word access Double-word access

Read data 1 Read data 1 Read data 2 Read data 2

3 Description of functions

3-67

 Communication example

With word access, read D0, D1, M100 to M115, and X20 to X2F, and with double-word access, read D1500 to D1501,

Y160 to Y17F, and M1111 to M1142.

Here D0 = 6549 (1995H), D1 = 4610 (1202H), D1500 = 20302 (4F4EH), and D1501 = 19540 (4C54H).

• When performing data communication in ASCII code

(Request data)

Subcommand

(Response data)

Number
of

devices
for word
access

Device
code Device No.

Word access
Read data 1

Number of
devices

for
double-

word
access

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Device No. Device No. Device No.

Device No. Device No. Device No.

Word access
Read data 2

Word access
Read data 3

Word access
Read data 4

Double-word access
Read data 1

Double-word access
Read data 2

Double-word access
Read data 3

Double-word access read data 3

Double-word access read data 2 Word access read data 3

Word access read data 4

3 Description of functions

3-68

• When performing data communication in binary code

(Request data)

Sub-
command

Number of
devices for

word
access

Number of
devices for

double-
word access

Device
No.

Device
No.

Device
No.

Device
No.

Device
No.

Device
No.

Device
No.

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

(Response data)
Word

access
Read
data 1

Word
access
Read
data 2

Word
access
Read
data 3

Word
access
Read
data 4

Double-word
access

Read data 1

Double-word
access

Read data 2

Double-word
access

Read data 3

Double-word access read data 3

Double-word access read data 2 Word access read data 3

Word access read data 4

3 Description of functions

3-69

3.5.7.2.5. Write Random (Command: 1402)

The value is written in the devices with the specified numbers. The devices with non-consecutive numbers can be

specified.

 Request data

Writing data in bit units
Specify the devices for the specified number of devices.

Subcommand

Specify the devices for the specified number of devices.

Specify the devices for the specified number of devices.

Specify the devices for the specified number of devices.

Specify the devices for the specified number of devices.

Specify the devices for the specified number of devices.

Device
code

Sub-
command

Subcommand

Number of
devices
for bit

access

Sub-
command

Number of
devices
for bit

access

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Device
code

Device No. Device No.

Device
No.

Device
No.

Device No.

Device No.

Device
No.

Device
No.

Set/
reset

Set/
reset

Set/
reset

Set/
reset

Number
of devices
for word
access

Writing data in word units

Number
of devices
for word
access

Number of
devices for
double-
word
access

Number of
devices for
double-
word
access

Write data

Write data

Write data Write
data

Double-word access

Word access

Double-word access Word access

1 1

1 1

1

1

1

1

Binary

Binary

3 Description of functions

3-70

• Subcommand

Item
Subcommand *1

ASCII code Binary code
When writing data in
bit units

When writing data in
word units

*1: Use subcommand 008 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008, the message format will differ. (Reading, writing by

specifying device extension)

• Number of devices for bit access, Number of devices for word access, Number of devices for double-word access

Specify the number of target devices.

Subcommand Item Description
0003
0002

Number of devices
for bit access

Specify the number of bit devices in 1-bit units.

Number of devices
for word access

Specify the number of devices for 1 word access.
The applicable units are 16-bit units for bit devices, and
1-word units for word devices.

Number of devices
for double-word
access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices, and
2-word units for word devices.

0001
0000

Number of devices
for bit access

Specify the number of bit devices in 1-bit units.

Number of devices
for word access

Specify the number of devices for 1 word access.
The applicable units are 16-bit units for bit devices, and
1-word units for word devices.

Number of devices
for double-word
access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices, and
2-word units for word devices.

or

or

or

or

or

or

or

or

3 Description of functions

3-71

• Device code, Device No., Write data

Specify devices to be written.

When writing data in bit units, specify bit devices.

Specify write data in hexadecimal.

Item Description
Word access Specify devices based on the number set in the request data for word access. It

is not necessary to specify devices when "0" is set.
Double-word access Specify devices based on the number set in the request data for double-word

access. It is not necessary to specify devices when "0" is set.

• Set/reset

Specify ON/OFF for bit devices.

Item Subcommand
Data to be written

Remarks When
turned ON

When turned
OFF

ASCII code 0003
0002

"0001" "0000" Send 4 digits in order from "0"

0001
0000

"01" "00" Send 2 digits in order from "0"

Binary code 0003
0002

0100H 0000H Either of the 2-byte numerical values
on the left is sent.

0001
0000

01H 00H Either of the 1-byte numerical values
on the left is sent.

 Response data

There is no Write Random command response data.

3 Description of functions

3-72

 Communication example (when writing data in bit units)

Turn M50 OFF, and turn Y2F ON.

• When performing data communication in ASCII code

• When performing data communication in binary code

(Request data)

Subcommand

Number
of

devices
for bit

access
Device
code

Device
code

Set/
reset Device No. Device No.

Set/
reset

(Request data)

Sub-
command

Number of
devices for
bit access

Device
code

Device
code

Device No. Device No.

Set/
reset

Set/
reset

3 Description of functions

3-73

 Communication example (when writing data in word units)

Write values to devices as follows.

Item Device to be written
Word access D0, D1, M100 to M115, X20 to X2F
Double-word access D1500 to D1501, Y160 to Y17F, M1111 to M1142

• When performing data communication in ASCII code

(Request data)

Subcommand

Number of
devices for

word
access

Device
code Write data Device No. Device No.

Number of
devices for

double-
word

access

Data 1

Device
code Write data

Data 2

Data 3

Data 4

Data 1

Data 2

Data 3

Data 4

3 Description of functions

3-74

• When performing data communication in binary code

(Request data)

Sub-
command

Number of
devices for

word
access

Device
code Device No.

Number of
devices for

double-
word access

Data 1 Write
data

Data 2

Data 3 Data 4

Data 1

Data 2

Data 3

Data 4

Device No.
Device
code

Write
data

3 Description of functions

3-75

3.5.7.2.6. Accessing CPU Buffer Memory Access Devices

Access RCPU buffer memory.

 Request data

For Read (Command: 0401), refer to the following example. For other commands, with the exception of device codes,

start device numbers, and device numbers, access based on the format for each command.

CPU module access device and request data compatibility is as follows.

• Command

Access is possible with the following commands.
Item

Command
Category Operation

Device Read 0401
Write 1401
Read Random 0403
Write Random 1402

Device code First device
No. or device
No.

Extension
designation

Subcommand Command

Command
Sub-
command

Device code Number of
devices

Device code

Device
code

Device
code

Number
of
devices

First device No. or
device No.

First device No. or
device No.

Binary code

First device No.
or device No.

First device No.
or device No.

No extension
specified

No extension
specified

Extension specified

Extension specified

Extension
designation

Extension
designation

3 Description of functions

3-76

• Subcommand
ASCII code Binary code

• Extension designation

Specify the CPU module start I/O number.

ASCII code Binary code
Specify the start I/O number in hexadecimal (3 ASCII
code digits). When the start I/O number is expressed
with 4 digits, specify with the first 3 digits.

Specify the start I/O number in hexadecimal (2 bytes).
When the start I/O number is expressed with 4 digits,
specify with the first 3 digits.

The start I/O numbers for the specified CPU modules are as follows.

CPU module CPU No. Start I/O number
CPU No.1 03E0H
CPU No.2 03E1H
CPU No.3 03E2H
CPU No.4 03E3H

3 Description of functions

3-77

• Device code

Specify the following device codes.

Device Category

Device code

Device No. range ASCII code Binary code
MELSEC iQ-R

series *1
MELSEC iQ-R

series
CPU buffer
memory

Word G*** 00ABH Specify within the range of
device numbers held by the
access destination unit.

Decimal

CPU buffer
memory fixed
cycle area

HG** 002EH

1: For ASCII code, specify device codes with 4 digits. For device codes with 3 digits or less, add an asterisk ()

(ASCII code: 2AH) or a space (ASCII code: 20H) after the device code.

• Start device or device number

Specify the start device or device number in decimal.

Specify the subcommand 0032/0082 device number (ASCII code) with 10 bytes (10 digits).

 Response data

The same applies if no extension is specified.

 Communication example

The start I/O number accesses the 03E0H CPU module buffer memory (address: 1).

Show the request data when performing communication with ASCII code.

• When performing data communication in ASCII code

• When performing data communication in binary code

First device No. or
device No.

Device
code Subcommand

(Request data)

Extension
designation

Device
code Subcommand

(Request data)

First device No.
or device No.

Extension
designation

3 Description of functions

3-78

3.5.7.3. Self Test (Loopback Test) (Command: 0619)
Perform a test to determine whether communication between external devices and Ethernet-equipped modules is normal.

By performing a loopback test, it is possible to confirm whether the connection with the external device is correct, and

whether data communication is functioning properly.

* Loopback tests can only be performed for Ethernet-equipped modules connected to external devices. Loopback tests

cannot be used for other station modules connected via a network.

 Request data

• Subcommand

Subcommand
ASCII code Binary code

• Loopback data quantity

Specify the "Loopback data" quantity in bytes. The range that can be specified is 1 to 960 bytes.

Example

When the loopback data quantity is 5 bytes

When using ASCII, convert the number of bytes to 4 ASCII code digits (hexadecimal), and send them in the order

from higher-order byte to lower-order byte.

When using binary code, send the number of 2-byte characters indicating the number of bytes in the order from

lower-order byte to higher-order byte.

• Loopback data

Specify the data sent and received when performing a loopback test.

When performing data communication in ASCII code, specify a 1-byte character string ("0" to "9", "A" to "F") for

data with maximum of 960 characters, and send from the start.

When performing data communication in binary code, convert the 1-byte character ("0" to "9", "A" to "F") code to a

1-byte numerical value, and send data with maximum of 960 bytes from the starting character code.

Subcommand

Sub-
command

Binary code

Loopback data
quantity

Loopback
data

quantity

Loopback data

Loopback data

3 Description of functions

3-79

 Request data

The same content as that in the "Loopback data quantity" and "Loopback data" specified in the request message is

stored.

 Communication example

Perform a loopback test with loopback data "ABCDE".

• When performing data communication in ASCII code

• When performing data communication in binary code

Binary code

Loopback data
quantity

Loopback
data

quantity

Loopback data

Loopback data

Subcommand

(Request data)

(Response data)

Loopback data
quantity Loopback data

Loopback data
quantity Loopback data

Sub-
command

(Request data)

(Response data)

Loopback
data

quantity Loopback data

Loopback
data

quantity Loopback data

3 Description of functions

3-80

3.5.8. End Code

The following is a list of stored end codes.

Code category End code Description Processing details
Processing
success

0000H The request was successfully processed. Indicates that the request was correctly
processed.

Standard error C059H ● The command or subcommand is specified
incorrectly.

● A command other than the prescribed sequence
was received.

Review the command and subcommand,
and send again.

C05CH The request message has an error. Review the request content, and send
again.

C061H The request data length is inconsistent with the
number of data.

Review the request data content or
request data length, and send again.

CEE1H The request message size exceeds the allowable
range.

Review the request content, and send
again.

CEE2H The response message size exceeds the
allowable range.

Review the request content, and send
again.

3 Description of functions

3-81

3.6. CC-Link IE Field Network Basic function

3.6.1. Overview
The FR series supports this function. It is not supported by the F series.

CC-Link IE Field Network Basic is an FA network to which general-purpose Ethernet was applied.

For the MELFA FR series, CC-Link IE Field Network Basic slave stations are supported, and the signals and registers of

robot controllers can be input and output via regular communications (cyclic correspondence) with a PLC, computer, or

other master station.

PLC CPUs in the MELSEC iQ-R/iQ-F/Q/L series and robot controllers in the MELFA FR series have Ethernet built-in as

standard, so they do not require dedicated options. This allows system construction with minimal configuration, thereby

saving space and reducing the cost.

Because CC-Link IE Field Network Basic has application software that runs on a general-purpose Ethernet protocol stack,

TCP/IP transmissions can intermingle. Therefore, the products that support CC-Link IE Field Network Basic and the

products that support Ethernet can be connected by a single cable, which makes it easy to construct the system however

you want.

Master
PLC CPU/computer, etc.

Slave
Robot controller

Link device Signal

Register

Commercial
switching hub

Wi-Fi Router

Ethernet

Remote I/O Robot Display Inverter Servo Solenoid
valve

Label
printer

Barcode
reader

Weight
checker

3 Description of functions

3-82

3.6.2. Supported version
Controller type Version Remarks

CR800-R

CR800-D

A1d or later CR75x-Q and CR75x-D are not supported

Computer support

SW

Version Remarks

RT ToolBox3 1.10L or later

3.6.3. Specifications
The communication specifications of CC-Link IE Field Network Basic are described below.

3.6.3.1. Communication specifications

The communication specifications of the robot are as follows.

Item Description

Transmission speed 100Mbps

Communication method UDP/IP

Port number 61450

IP address 192.168.0.20 (initial value, set with NETIP parameters)

Number of occupied stations Up to four slave stations

Connection cable Standard Ethernet cable, category 5e or higher (STP cable)

CC-Link IE Field version 2.00

Maximum

number of link

points

Remote input, RX (*1) Number of occupied stations×64 points

 Remote output, RY (*2) Number of occupied stations×64 points

 Remote register, RWr (*3) Number of occupied stations×32 points

 Remote register, RWw (*4) Number of occupied stations×32 points

(*1) Remote input, RX: Information input from slave to master through bitwise operations.

(*2) Remote output, RY: Information output from master to slave through bitwise operations.

(*3) Remote register, RWr: Information input from slave to master through 16-bit (1 word) operations.

(*4) Remote register, RWw: Information output from master to slave through 16-bit (1 word) operations.

3 Description of functions

3-83

3.6.4. Parameters

Specify settings with the following parameters.

Parameter
Parameter

name

No. of arrays

No. of characters
Description Factory setting

CC-Link IE Field Network
Basic function, switch
enable/disable

CCLBENA

Integer 1
Enable the CC-Link IE Field Network Basic function.

 0: Disable / 1: Enable
0 (disable)

CC-Link IE Field Network
Basic function, setting at
data link error

CCLBCLR Integer 1 When the data link malfunctions, specify whether
the input status of CC-Link IE Field Network Basic
is cleared to OFF or 0 or is retained.

 0: Clear input / 1: Retain input

0 (clear input)

3 Description of functions

3-84

3.6.5. Support of robot I/O signals and link devices

The support of robot I/O signals and link devices for RX/RY and RWr/RWw are indicated here.

As shown below, the link relays RX/RY and link registers RWr/RWw of a master station's link device interacts with the I/O

signals (6000 to max. 6255) and I/O registers (6000 to max. 6127) of each robot. Even if the station number changes, the

I/O signals of the robot are the same. Also, the number of stations occupied by a robot can be set from 1 to 4, designated

by the setting for number of stations occupied by master stations.

Number of

stations

occupied

by robot

Input

Output

Bitwise device 1 word device

Points
Link relay

RX/RY (*1)

I/O signal

Points
Link register

RWr/RWw (*2)

I/O register

Start End Start End

1

Input 64
RY0 to

RY3F
6000 6063 32

RWw0 to

RWw1F
6000 6031

Output 64
RX0 to

RX3F
6000 6063 32

RWw0 to

RWw1F
6000 6031

2

Input 128
RY0 to

RY7F
6000 6127 64

RWw0 to

RWw3F
6000 6063

Output 128
RX0 to

RX7F
6000 6127 64

RWw0 to

RWw3F
6000 6063

3

Input 192
RY0 to

RYBF
6000 6191 96

RWw0 to

RWw5F
6000 6095

Output 192
RX0 to

RXBF
6000 6191 96

RWw0 to

RWw5F
6000 6095

4

Input 256
RY0 to

RYFF
6000 6255 128

RWw0 to

RWw7F
6000 6127

Output 256
RX0 to

RXFF
6000 6255 128

RWw0 to

RWw7F
6000 6127

(*1) Remote input, RX: Information input from slave to master through bitwise operations.

Remote output, RY: Information output from master to slave through bitwise operations.

(*2) Remote register, RWr: Information input from slave to master through 16-bit (1 word) operations.

Remote register, RWw: Information output from master to slave through 16-bit (1 word) operations.

3 Description of functions

3-85

3.6.6. Setup procedure

The steps up to using the CC-Link IE Field Network Basic function are indicated here.

The system configuration used as an example in this description has MELSEC PLC R16CPU as the master station and FR

series robot FV-4FR-D as the slave station.

Confirm the operation by using the General Purpose Signal window and Register window on RT ToolBox3. Refer to the

instruction manual of RT ToolBox3 for how to use signal monitoring, how to operate the robot program, and so on.

Network configuration ➡ Chapter 3.6.6.1

Build the network and then set the necessary parameters.

Network diagnostics ➡ Chapter 3.6.6.2

Run network diagnostics to confirm whether normal communication is possible

with the state of the connection cables and the parameters that were set.

Programming ➡ Chapter 3.6.6.3

Write the program.

3 Description of functions

3-86

3.6.6.1. Network configuration

Build the network like in the following figure using 100BASE-TX Ethernet cables, and then set the necessary

parameters.

Here the master station is a PLC, and the slave station is a robot, with one of each.

(1) Master station

IP address of PLC R16CPU: 192.168.0.39 / Subnet mask: 255.255.255.0

(2) Slave station

IP address of robot controller: 192.168.0.20 / Subnet mask: 255.255.255.0

CAUTION

• For the CR800-R type, the Ethernet connector is used with the R16RTCPU unit. An

Ethernet connector cannot be used with the CR800-R robot controller.

• The PLC CPU acting as the master station must have a firmware version that supports the

CC-Link IE Field Network Basic function. Refer to the website or manual of each device for

details.

100BASE-TX
Ethernet

<CR800-D type>

192.168.0.39

GX Works3
RT ToolBox3

HUB

192.168.0.20

Master station (PCL, computer, etc.)

Slave station (robot CR800-D)

Fiber optic cable
SSCNET III/H

<CR800-R type>

HUB GX Works3
RT ToolBox3

Master station (PCL, computer, etc.)

192.168.0.39

100BASE-TX
Ethernet

192.168.0.20

Slave station (robot CR800-R)

3 Description of functions

3-87

■ Slave station parameter settings

1. In RT ToolBox3, open "Online" → "Parameter" → "Ethernet", and set the IP address of the robot.

Here, the initial value 192.168.0.20 is being used. If you do not change the initial value, it is not necessary to

press Write.

2. Next, open "Online" → "Parameter" → "Field Network Parameter" → "CC-Link IE Field Basic", and change the

function selection to "Enable". Lastly, press "Write" and then reset the power of the robot controller.

3 Description of functions

3-88

■ Master station parameter settings

Set the parameters as follows.

1. In GX Works3, open "Parameter" → "Module Parameter" → "Own Node Settings". Then set the IP address of

PLC R16CPU under "IP Address", and press "Apply" to finalize the settings. Next, go to "Online" → "Write to

PLC" to write the parameters and establish Ethernet communication. Finally, reset the power and restart.

3 Description of functions

3-89

2. In GX Works3, go to "CC-Link IEF Basic Setting" in "Module Parameter" and set "Enable" for whether to use or

not to use the CC-Link IEF Basic Setting. Then open "<Detailed Setting>" beside the network configuration

settings. Here select "Detect Now". When the automatic detection is complete, the detected slave stations will be

displayed. In the following example, STA#1 for CR800-R is added.

3 Description of functions

3-90

3. Press "Close with Reflecting the Setting" and then select "Yes" on the confirmation dialog box that is displayed.

4. Refresh the settings.

Here the RX/RY/RWr/RWw devices on the link side are assigned to the desired devices on the CPU side.

In the following example RX0 to RX3F (64 points) is assigned to B0 to B3F; RY0 to RY3F (64 points) is assigned

to B1000 to B103F; RWr0 to RWr1F (32 points) is assigned to W0 to W1F; and RWw0 to RWw1F (32 points) is

assigned to W1000 to W101F.

3 Description of functions

3-91

5. Finally, go to the menu bar's "Online" → "Write to PLC", and press "Execute" to write the parameters to the PLC

CPU. When the writing is complete, reset the power and restart.

The settings are now complete. Next, run network diagnostics to confirm whether normal communications are

possible.

3 Description of functions

3-92

3.6.6.2. Network diagnostics

By using CC-Link IEF Basic Diagnostics, confirm whether normal communication is possible with the state of the

connection cables and the parameters that were set.

In GX Works3, select "Diagnostics" → "CC-Link IEF Basic Diagnostics" to open the diagnostics screen.

3 Description of functions

3-93

After the robot slave station has established proper communication with the master station, if the master station goes

down or the wiring becomes disconnected and communication with the master station is blocked, error 7870 is issued

on the robot controller.

The error number of the robot controller and its details can be checked on the error monitor screen of RT ToolBox3.

For the PLC CPU master station, the station with the error can be confirmed in the network status section of the

CC-Link IEF Basic Diagnostics screen in GX Works3.

3 Description of functions

3-94

3.6.6.3. Programming

Write the program.

In the following example, the signal and register value output by the robot program of the robot controller is returned

by the PLC CPU's ladder program and reflected in the robot's input signal and register.

(1) Robot controller: Robot program example

(2) PLC CPU: Ladder program example

Output signal 6000 to 6063

Output register 6000 to 6031

Input signal 6000 to 6063

Input register 6000 to 6031

Link relay B0 to B3F

Link register W0 to W3F

Link relay B1000 to B103F

Link register W1000 to W103F

RX0 to RX3F

RWr0 to RWr1F

RY0 to RY3F

RWw0 to RWw1F

PLC CPU Robot controller
<Example>

Refresh Link
Scan

Returns with ladder logic

4 Appendix

4-1

4. Appendix

4.1. Error list

The errors which occur only when the Ethernet function is used are listed as follows.

Error No. Error causes and remedies

7810

 Parameter ***** setting error of Ethernet interface parameter.

Cause) ***** parameter is wrongly set. (The parameter name is input in *****.)

Measures) Check the setting content of the parameter.

7820

 MXT Command time out.

Cause) The time set in parameter MXTTOUT was exceeded.

Measures) Check parameter MXTTOUT.

7840

 Received MXT command data illegal.

Cause) The command argument and data type do not match.

Measures) Check the contents of the command and the communication data packet to be transmitted.

7860

 Setting error of SLMP parameter.

Cause) The communication port numbers (parameter: SLMPPORT) overlap with another function.

Measures) Change the parameters so that the communication port numbers to not overlap with another

function.

7870

 CC-Link IE Field Network Basic communication error.

Cause) Communication using CC-Link IE Field Network Basic has been disconnected.

Measures) Check whether the network cable is connected, and check the settings for time out on the

master side and other parameters.

For the other errors except these, refer to the errors list of the instruction manual of the controller.

4 Appendix

4-2

4.2. Sample program

This is the sample program of the Ethernet function.

4.2.1. Sample program of data link

The sample program to do the data link with Microsoft Visual Studio Express Visual Basic (hereafter written as VB) is

herein described.

The program creation is briefly introduced with the following procedure.

For details of VB operation and application producing method, refer to the instruction manual of this software.

(1) Preparation of Winsock control

(2) Production of form screen

(3) Program (Form1.frm)

There is the program following 2 passages. Use either according to the customer's system.

1) Program for the clients (when using the personal computer as the client and using the controller as the server).

2) Program for the server (when using the personal computer as the server and using the controller as the client).

* About the work of 1) 2), the client and the server are the same.

(1) Preparation of project

Create a Windows Forms application with VB.

4 Appendix

4-3

(2) Sample is a form of figure (Created by copying the sample)

Copy files to vbsample folder.
• Form1.Designer.vb

• Form1.vb

Be careful not to confuse the client and the server.

Each text files saved from pdf manual.

■ Form1.Designer.vb (Form for the client)

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.
 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 Try
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 Finally
 MyBase.Dispose(disposing)
 End Try
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.components = New System.ComponentModel.Container
 Me.Button1 = New System.Windows.Forms.Button
 Me.Check1 = New System.Windows.Forms.CheckBox
 Me.Text4 = New System.Windows.Forms.TextBox
 Me.Text3 = New System.Windows.Forms.TextBox
 Me.Text2 = New System.Windows.Forms.TextBox

4 Appendix

4-4

 Me.Text1 = New System.Windows.Forms.TextBox
 Me.Label4 = New System.Windows.Forms.Label
 Me.Label3 = New System.Windows.Forms.Label
 Me.Label2 = New System.Windows.Forms.Label
 Me.Label1 = New System.Windows.Forms.Label
 Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
 Me.SuspendLayout()
 '
 'Button1
 '
 Me.Button1.BackColor = System.Drawing.SystemColors.Control
 Me.Button1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Button1.Location = New System.Drawing.Point(264, 72)
 Me.Button1.Name = "Button1"
 Me.Button1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Button1.Size = New System.Drawing.Size(49, 25)
 Me.Button1.TabIndex = 16
 Me.Button1.Text = "Send"
 Me.Button1.UseVisualStyleBackColor = False
 '
 'Check1
 '
 Me.Check1.BackColor = System.Drawing.SystemColors.Control
 Me.Check1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Check1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Check1.Location = New System.Drawing.Point(264, 24)
 Me.Check1.Name = "Check1"
 Me.Check1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Check1.Size = New System.Drawing.Size(49, 25)
 Me.Check1.TabIndex = 14
 Me.Check1.Text = "Connection"
 Me.Check1.UseVisualStyleBackColor = False
 '
 'Text4
 '
 Me.Text4.AcceptsReturn = True
 Me.Text4.AcceptsTab = True
 Me.Text4.BackColor = System.Drawing.SystemColors.Window
 Me.Text4.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text4.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text4.Location = New System.Drawing.Point(8, 120)
 Me.Text4.MaxLength = 0
 Me.Text4.Multiline = True
 Me.Text4.Name = "Text4"
 Me.Text4.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text4.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
 Me.Text4.Size = New System.Drawing.Size(305, 121)
 Me.Text4.TabIndex = 17
 '
 'Text3
 '
 Me.Text3.AcceptsReturn = True
 Me.Text3.BackColor = System.Drawing.SystemColors.Window
 Me.Text3.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text3.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text3.Location = New System.Drawing.Point(8, 72)
 Me.Text3.MaxLength = 0
 Me.Text3.Name = "Text3"
 Me.Text3.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text3.Size = New System.Drawing.Size(249, 19)

4 Appendix

4-5

 Me.Text3.TabIndex = 15
 '
 'Text2
 '
 Me.Text2.AcceptsReturn = True
 Me.Text2.BackColor = System.Drawing.SystemColors.Window
 Me.Text2.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text2.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text2.Location = New System.Drawing.Point(152, 24)
 Me.Text2.MaxLength = 0
 Me.Text2.Name = "Text2"
 Me.Text2.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text2.Size = New System.Drawing.Size(105, 19)
 Me.Text2.TabIndex = 13
 Me.Text2.Text = "10003"
 '
 'Text1
 '
 Me.Text1.AcceptsReturn = True
 Me.Text1.BackColor = System.Drawing.SystemColors.Window
 Me.Text1.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text1.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text1.Location = New System.Drawing.Point(8, 24)
 Me.Text1.MaxLength = 0
 Me.Text1.Name = "Text1"
 Me.Text1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text1.Size = New System.Drawing.Size(137, 19)
 Me.Text1.TabIndex = 12
 Me.Text1.Text = "192.168.0.1"
 '
 'Label4
 '
 Me.Label4.BackColor = System.Drawing.SystemColors.Control
 Me.Label4.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label4.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label4.Location = New System.Drawing.Point(8, 104)
 Me.Label4.Name = "Label4"
 Me.Label4.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label4.Size = New System.Drawing.Size(65, 13)
 Me.Label4.TabIndex = 19
 Me.Label4.Text = "Receive data"
 '
 'Label3
 '
 Me.Label3.BackColor = System.Drawing.SystemColors.Control
 Me.Label3.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label3.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label3.Location = New System.Drawing.Point(8, 56)
 Me.Label3.Name = "Label3"
 Me.Label3.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label3.Size = New System.Drawing.Size(65, 13)
 Me.Label3.TabIndex = 18
 Me.Label3.Text = "Send data"
 '
 'Label2
 '
 Me.Label2.BackColor = System.Drawing.SystemColors.Control
 Me.Label2.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label2.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label2.Location = New System.Drawing.Point(152, 8)
 Me.Label2.Name = "Label2"

4 Appendix

4-6

 Me.Label2.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label2.Size = New System.Drawing.Size(65, 13)
 Me.Label2.TabIndex = 11
 Me.Label2.Text = "Port No."
 '
 'Label1
 '
 Me.Label1.BackColor = System.Drawing.SystemColors.Control
 Me.Label1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label1.Location = New System.Drawing.Point(8, 8)
 Me.Label1.Name = "Label1"
 Me.Label1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label1.Size = New System.Drawing.Size(73, 17)
 Me.Label1.TabIndex = 10
 Me.Label1.Text = "IP address"
 '
 'Timer1
 '
 Me.Timer1.Interval = 50
 '
 'Form1
 '
 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 12.0!)
 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
 Me.ClientSize = New System.Drawing.Size(320, 253)
 Me.Controls.Add(Me.Button1)
 Me.Controls.Add(Me.Check1)
 Me.Controls.Add(Me.Text4)
 Me.Controls.Add(Me.Text3)
 Me.Controls.Add(Me.Text2)
 Me.Controls.Add(Me.Text1)
 Me.Controls.Add(Me.Label4)
 Me.Controls.Add(Me.Label3)
 Me.Controls.Add(Me.Label2)
 Me.Controls.Add(Me.Label1)
 Me.Name = "Form1"
 Me.Text = "Data link (client)"
 Me.ResumeLayout(False)
 Me.PerformLayout()

 End Sub
 Public WithEvents Button1 As System.Windows.Forms.Button
 Public WithEvents Check1 As System.Windows.Forms.CheckBox
 Public WithEvents Text4 As System.Windows.Forms.TextBox
 Public WithEvents Text3 As System.Windows.Forms.TextBox
 Public WithEvents Text2 As System.Windows.Forms.TextBox
 Public WithEvents Text1 As System.Windows.Forms.TextBox
 Public WithEvents Label4 As System.Windows.Forms.Label
 Public WithEvents Label3 As System.Windows.Forms.Label
 Public WithEvents Label2 As System.Windows.Forms.Label
 Public WithEvents Label1 As System.Windows.Forms.Label
 Friend WithEvents Timer1 As System.Windows.Forms.Timer

End Class

4 Appendix

4-7

■ Form1.vb (Program for the client)

Imports System
Imports System.Net.Sockets

Public Class Form1

 Private Client As TcpClient

 Private Sub Check1_CheckStateChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles Check1.CheckStateChanged
 ' Process for Connect or Disconnect
 Try
 If Check1.CheckState = CheckState.Checked Then
 Client = New TcpClient()
 Client.Connect(Text1.Text, Convert.ToInt32(Text2.Text)) 'Connect
 Button1.Enabled = Client.Connected
 Timer1.Enabled = Client.Connected
 Else
 Timer1.Enabled = False
 Button1.Enabled = False
 Client.GetStream().Close() 'Disconnect
 Client.Close()
 End If
 Catch ex As Exception
 Check1.Checked = False
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
 'Send process
 Try
 Dim SendBuf As Byte() = System.Text.Encoding.Default.GetBytes(Text3.Text)
 Dim Stream As NetworkStream = Client.GetStream()
 Stream.Write(SendBuf, 0, SendBuf.Length)
 Catch ex As Exception
 Client = Nothing
 Timer1.Enabled = False
 Button1.Enabled = False
 Check1.Checked = False
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick
 'Receive process
 Try
 Dim Stream As NetworkStream = Client.GetStream()
 If Stream.DataAvailable Then
 Dim bytes(1000) As Byte
 Dim strReceivedData As String = ""
 Dim datalength = Stream.Read(bytes, 0, bytes.Length)
 strReceivedData = System.Text.Encoding.Default.GetString(bytes).Substring(0, datalength)
 Text4.AppendText(strReceivedData)
 Text4.AppendText(System.Environment.NewLine)
 End If
 Catch ex As Exception

4 Appendix

4-8

 Client = Nothing
 Timer1.Enabled = False
 Button1.Enabled = False
 Check1.Checked = False
 '
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub
End Class

■ Form1.Designer.vb (Form for the server)

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
 Inherits System.Windows.Forms.Form

 'Form overrides dispose to clean up the component list.
 <System.Diagnostics.DebuggerNonUserCode()> _
 Protected Overrides Sub Dispose(ByVal disposing As Boolean)
 Try
 If disposing AndAlso components IsNot Nothing Then
 components.Dispose()
 End If
 Finally
 MyBase.Dispose(disposing)
 End Try
 End Sub

 'Required by the Windows Form Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Windows Form Designer
 'It can be modified using the Windows Form Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> _
 Private Sub InitializeComponent()
 Me.components = New System.ComponentModel.Container
 Me.Button1 = New System.Windows.Forms.Button
 Me.Check1 = New System.Windows.Forms.CheckBox
 Me.Text4 = New System.Windows.Forms.TextBox
 Me.Text3 = New System.Windows.Forms.TextBox
 Me.Text2 = New System.Windows.Forms.TextBox
 Me.Text1 = New System.Windows.Forms.TextBox
 Me.Label4 = New System.Windows.Forms.Label
 Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
 Me.Label3 = New System.Windows.Forms.Label
 Me.Label2 = New System.Windows.Forms.Label
 Me.Label1 = New System.Windows.Forms.Label
 Me.SuspendLayout()
 '
 'Button1
 '
 Me.Button1.BackColor = System.Drawing.SystemColors.Control
 Me.Button1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Button1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Button1.Location = New System.Drawing.Point(264, 72)
 Me.Button1.Name = "Button1"
 Me.Button1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Button1.Size = New System.Drawing.Size(49, 25)

4 Appendix

4-9

 Me.Button1.TabIndex = 26
 Me.Button1.Text = "Send"
 Me.Button1.UseVisualStyleBackColor = False
 '
 'Check1
 '
 Me.Check1.BackColor = System.Drawing.SystemColors.Control
 Me.Check1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Check1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Check1.Location = New System.Drawing.Point(264, 24)
 Me.Check1.Name = "Check1"
 Me.Check1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Check1.Size = New System.Drawing.Size(49, 25)
 Me.Check1.TabIndex = 24
 Me.Check1.Text = "Connection"
 Me.Check1.UseVisualStyleBackColor = False
 '
 'Text4
 '
 Me.Text4.AcceptsReturn = True
 Me.Text4.BackColor = System.Drawing.SystemColors.Window
 Me.Text4.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text4.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text4.Location = New System.Drawing.Point(8, 120)
 Me.Text4.MaxLength = 0
 Me.Text4.Multiline = True
 Me.Text4.Name = "Text4"
 Me.Text4.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text4.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
 Me.Text4.Size = New System.Drawing.Size(305, 121)
 Me.Text4.TabIndex = 27
 '
 'Text3
 '
 Me.Text3.AcceptsReturn = True
 Me.Text3.BackColor = System.Drawing.SystemColors.Window
 Me.Text3.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text3.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text3.Location = New System.Drawing.Point(8, 72)
 Me.Text3.MaxLength = 0
 Me.Text3.Name = "Text3"
 Me.Text3.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text3.Size = New System.Drawing.Size(249, 19)
 Me.Text3.TabIndex = 25
 '
 'Text2
 '
 Me.Text2.AcceptsReturn = True
 Me.Text2.BackColor = System.Drawing.SystemColors.Window
 Me.Text2.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text2.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text2.Location = New System.Drawing.Point(152, 24)
 Me.Text2.MaxLength = 0
 Me.Text2.Name = "Text2"
 Me.Text2.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text2.Size = New System.Drawing.Size(105, 19)
 Me.Text2.TabIndex = 23
 Me.Text2.Text = "10003"
 '
 'Text1
 '

4 Appendix

4-10

 Me.Text1.AcceptsReturn = True
 Me.Text1.BackColor = System.Drawing.SystemColors.Window
 Me.Text1.Cursor = System.Windows.Forms.Cursors.IBeam
 Me.Text1.ForeColor = System.Drawing.SystemColors.WindowText
 Me.Text1.Location = New System.Drawing.Point(8, 24)
 Me.Text1.MaxLength = 0
 Me.Text1.Name = "Text1"
 Me.Text1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Text1.Size = New System.Drawing.Size(137, 19)
 Me.Text1.TabIndex = 22
 '
 'Label4
 '
 Me.Label4.BackColor = System.Drawing.SystemColors.Control
 Me.Label4.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label4.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label4.Location = New System.Drawing.Point(8, 104)
 Me.Label4.Name = "Label4"
 Me.Label4.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label4.Size = New System.Drawing.Size(65, 13)
 Me.Label4.TabIndex = 29
 Me.Label4.Text = "Receive data"
 '
 'Timer1
 '
 Me.Timer1.Interval = 50
 '
 'Label3
 '
 Me.Label3.BackColor = System.Drawing.SystemColors.Control
 Me.Label3.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label3.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label3.Location = New System.Drawing.Point(8, 56)
 Me.Label3.Name = "Label3"
 Me.Label3.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label3.Size = New System.Drawing.Size(65, 13)
 Me.Label3.TabIndex = 28
 Me.Label3.Text = "Send data"
 '
 'Label2
 '
 Me.Label2.BackColor = System.Drawing.SystemColors.Control
 Me.Label2.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label2.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label2.Location = New System.Drawing.Point(152, 8)
 Me.Label2.Name = "Label2"
 Me.Label2.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label2.Size = New System.Drawing.Size(65, 13)
 Me.Label2.TabIndex = 21
 Me.Label2.Text = "Port No."
 '
 'Label1
 '
 Me.Label1.BackColor = System.Drawing.SystemColors.Control
 Me.Label1.Cursor = System.Windows.Forms.Cursors.Default
 Me.Label1.ForeColor = System.Drawing.SystemColors.ControlText
 Me.Label1.Location = New System.Drawing.Point(8, 8)
 Me.Label1.Name = "Label1"
 Me.Label1.RightToLeft = System.Windows.Forms.RightToLeft.No
 Me.Label1.Size = New System.Drawing.Size(73, 17)
 Me.Label1.TabIndex = 20

4 Appendix

4-11

 Me.Label1.Text = "IP address"
 '
 'Form1
 '
 Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 12.0!)
 Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
 Me.ClientSize = New System.Drawing.Size(320, 253)
 Me.Controls.Add(Me.Button1)
 Me.Controls.Add(Me.Check1)
 Me.Controls.Add(Me.Text4)
 Me.Controls.Add(Me.Text3)
 Me.Controls.Add(Me.Text2)
 Me.Controls.Add(Me.Text1)
 Me.Controls.Add(Me.Label4)
 Me.Controls.Add(Me.Label3)
 Me.Controls.Add(Me.Label2)
 Me.Controls.Add(Me.Label1)
 Me.Name = "Form1"
 Me.Text = "Data link (server)"
 Me.ResumeLayout(False)
 Me.PerformLayout()

 End Sub
 Public WithEvents Button1 As System.Windows.Forms.Button
 Public WithEvents Check1 As System.Windows.Forms.CheckBox
 Public WithEvents Text4 As System.Windows.Forms.TextBox
 Public WithEvents Text3 As System.Windows.Forms.TextBox
 Public WithEvents Text2 As System.Windows.Forms.TextBox
 Public WithEvents Text1 As System.Windows.Forms.TextBox
 Public WithEvents Label4 As System.Windows.Forms.Label
 Friend WithEvents Timer1 As System.Windows.Forms.Timer
 Public WithEvents Label3 As System.Windows.Forms.Label
 Public WithEvents Label2 As System.Windows.Forms.Label
 Public WithEvents Label1 As System.Windows.Forms.Label

 End Class

■ Form1.vb (Program for the server)

Imports System
Imports System.Net
Imports System.Net.Sockets
Imports System.Net.NetworkInformation
Imports System.Text

Public Class Form1

 Private Listener As TcpListener
 Private Client As TcpClient

 Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
 Text1.Enabled = False 'Disable IP address
 Text3.Enabled = False 'Disable Send data
 Button1.Enabled = False 'Disable Send button
 End Sub

 Private Sub Check1_CheckStateChanged (ByVal sender As System.Object, ByVal e As System.EventArgs)
 Handles Check1.CheckStateChanged
 'Process for Connect
 Try

4 Appendix

4-12

 If Check1.CheckState = CheckState.Checked Then
 Dim interfaces As NetworkInterface()
 Dim _currentInterface As NetworkInterface

 'Get local IP address
 interfaces = NetworkInterface.GetAllNetworkInterfaces
 For Each NetworkInterface As NetworkInterface In interfaces
 If NetworkInterface.Name = "Local Area Connection" Then
 _currentInterface = NetworkInterface
 Dim properties As IPInterfaceProperties
 properties = _currentInterface.GetIPProperties

 If properties.UnicastAddresses.Count > 0 Then
 For Each info As UnicastIPAddressInformation In properties.UnicastAddresses
 Text1.Text = info.Address.ToString
 Next
 End If
 End If
 Next

 'Wait connection from client
 Listener = New TcpListener(IPAddress.Parse(Text1.Text), Convert.ToInt32(Text2.Text))
 Timer1.Start()
 Listener.Start()
 Else
 Client = Nothing
 Timer1.Stop()
 Button1.Enabled = False 'Disable send button
 Text3.Enabled = False
 Listener.Stop() 'Stop listen
 End If
 Catch ex As Exception
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
 'Send text
 Try
 Dim SendBuf As Byte() = System.Text.Encoding.Default.GetBytes(Text3.Text)
 Dim Stream As NetworkStream = Client.GetStream()
 Stream.Write(SendBuf, 0, SendBuf.Length)
 Catch ex As Exception
 'Disconnect
 Client = Nothing

 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub

 Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick
 'Receive process
 Try
 '
 If Client Is Nothing Then
 '
 If Listener.Pending = False Then
 Text1.Enabled = False 'Disable IP address edit
 Text3.Enabled = False 'Disable send text edit

4 Appendix

4-13

 Button1.Enabled = False 'Disable send button
 Else
 Client = Listener.AcceptTcpClient() 'Connect with client
 Text1.Enabled = True 'Enable IP address edit
 Text3.Enabled = True 'Enable send text edit
 Button1.Enabled = True 'Enable send button
 End If
 Else
 'Receive data
 Try
 Dim Stream As NetworkStream = Client.GetStream
 If Stream.DataAvailable Then
 Dim bytes(1000) As Byte
 Dim strReceivedData As String = ""
 Dim datalength = Stream.Read(bytes, 0, bytes.Length)
 strReceivedData = System.Text.Encoding.Default.GetString(bytes).Substring(0, datalength)
 Text4.AppendText(strReceivedData)
 Text4.AppendText(System.Environment.NewLine)
 End If
 Catch ex As Exception
 'Disconnect
 Client = Nothing
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End If

 Catch ex As Exception
 MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
 MessageBoxDefaultButton.Button1)
 End Try
 End Sub

End Class

4 Appendix

4-14

4.2.2. Sample program for real-time external control function

A sample program that establishes a data link using Microsoft Visual Studio Express Visual C++ (hereinafter VC) is shown

below.

The procedures for creating the program are briefly explained below.

Refer to the software manuals for details on operating VC and creating the application.

(1) Create new project

(2) Create program sample.cpp/strdef.h

(1) Create new project

Start VC, and create a new project. Set the name to Win32 Console Application.

4 Appendix

4-15

Using the project setting, add wsock32.lib to the object/library module.

Copy files to sample folder.
• strdef.h
･ sample.cpp

Each text files saved from pdf manual.

4 Appendix

4-16

■ Header file strdef.h
//**
// Real-time control sample program
// Communication packet data structure definition header file
//**
// strdef.h

#define VER_H7

/***/
/* Joint coordinate system (Set unused axis to 0) */
/* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/**/
typedef struct{
 float j1; // J1 axis angle (radian)
 float j2; // J2 axis angle (radian)
 float j3; // J3 axis angle (radian)
 float j4; // J4 axis angle (radian)
 float j5; // J5 axis angle (radian)
 float j6; // J6 axis angle (radian)
 float j7; // Additional axis 1 (J7 axis angle) (radian)
 float j8; // Additional axis 2 (J8 axis angle) (radian)
} JOINT;

/***/
/* XYZ coordinate system (Set unused axis to 0) */
/* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/**/
typedef struct{
 float x; // X axis coordinate value (mm)
 float y; // Y axis coordinate value (mm)
 float z; // Z axis coordinate value (mm)
 float a; // A axis coordinate value (radian)
 float b; // B axis coordinate value (radian)
 float c; // C axis coordinate value (radian)
 float l1; // Additional axis 1 (mm or radian)
 float l2; // Additional axis 2 (mm or radian)
} WORLD;

typedef struct{
 WORLD w;
 unsigned int sflg1; // Structural flag 1
 unsigned int sflg2; // Structural flag 2
} POSE;

/***/
/* Pulse coordinate system (Set unused axis to 0) */
/* These coordinates express each joint */
/* with a motor pulse value. */
/***/
typedef struct{
 long p1; // Motor 1 axis
 long p2; // Motor 2 axis
 long p3; // Motor 3 axis
 long p4; // Motor 4 axis
 long p5; // Motor 5 axis
 long p6; // Motor 6 axis
 long p7; // Additional axis 1 (Motor 7 axis)

4 Appendix

4-17

 long p8; // Additional axis 2 (Motor 8 axis)
} PULSE;

/**/
/* Real-time function communication data packet */
/**/
typedef struct enet_rtcmd_str {
 unsigned short Command; // Command
#define MXT_CMD_NULL 0 // Real-time external command invalid
#define MXT_CMD_MOVE 1 // Real-time external command valid
#define MXT_CMD_END 255 // Real-time external command end

 unsigned short SendType; // Command data type designation
 unsigned short RecvType; // Monitor data type designation
 //////////// Command or monitor data type ///
#define MXT_TYP_NULL 0 // No data
 // For the command and monitor ////////////////////
#define MXT_TYP_POSE 1 // XYZ data
#define MXT_TYP_JOINT 2 // Joint data
#define MXT_TYP_PULSE 3 // pulse data
 ///////////// For position related monitor ///
#define MXT_TYP_FPOSE 4 // XYZ data (after filter process)
#define MXT_TYP_FJOINT 5 // Joint data (after filter process)
#define MXT_TYP_FPULSE 6 // Pulse data (after filter process)
#define MXT_TYP_FB_POSE 7 // XYZ data (Encoder feedback value)
#define MXT_TYP_FB_JOINT 8 // Joint data (Encoder feedback value)
#define MXT_TYP_FB_PULSE 9 // Pulse data (Encoder feedback value)
 // For current related monitors ////////////////////
#define MXT_TYP_CMDCUR 10 // Electric current command
#define MXT_TYP_FBKCUR 11 // Electric current feedback

 union rtdata { // Command data
 POSE pos; // XYZ type [mm/rad]
 JOINT jnt; // Joint type [rad]
 PULSE pls; // Pulse type [pls]
 long lng1[8]; // Integer type [% / non-unit]
 } dat;

 unsigned short SendIOType; // Send input/output signal data designation
 unsigned short RecvIOType; // Return input/output signal data designation

#define MXT_IO_NULL 0 // No data
#define MXT_IO_OUT 1 // Output signal
#define MXT_IO_IN 2 // Input signal

 unsigned short BitTop; // Head bit No.
 unsigned short BitMask; // Transmission bit mask pattern designation (0x0001-0xffff)
 unsigned short IoData; // Input/output signal data (0x0000-0xffff)

 unsigned short TCount; // Timeout time counter value
 unsigned long CCount; // Transmission data counter value

 unsigned short RecvType1; // Reply data-type specification 1
 union rtdata1 { // Monitor data 1
 POSE pos1; // XYZ type [mm/rad]
 JOINT jnt1; // JOINT type [mm/rad]
 PULSE pls1; // PULSE type [mm/rad]
 long lng1[8]; // Integer type [% / non-unit]
 } dat1;

 unsigned short RecvType2; // Reply data-type specification 2

4 Appendix

4-18

 union rtdata2 { // Monitor data 2
 POSE pos2; // XYZ type [mm/rad]
 JOINT jnt2; // JOINT type [mm/rad]
 PULSE pls2; // PULSE type [mm/rad] or Integer type [% / non-unit]
 long lng2[8]; // Integer type [% / non-unit]
 } dat2;

 unsigned short RecvType3; // Reply data-type specification 3
 union rtdata3 { // Monitor data 3
 POSE pos3; // XYZ type [mm/rad]
 JOINT jnt3; // JOINT type [mm/rad]
 PULSE pls3; // PULSE type [mm/rad] or Integer type [% / non-unit]
 long lng3[8]; // Integer type [% / non-unit]
 } dat3;

} MXTCMD;

■ Source file sample.cpp
// sample.cpp

// Change the definition in the "strdef.h" file by the S/W version of the controller.
// Refer to the "strdef.h" file for details.
//

#define _CRT_SECURE_NO_WARNINGS

#include <windows.h>
#include <iostream>
#include <winsock.h>
#include <stdio.h>
#include <conio.h>
#include <string.h>
#include <math.h>
#include "strdef.h"
#define NO_FLAGS_SET 0

#define MAXBUFLEN 512

using namespace std;

INT main(VOID)
{
 WSADATA Data;
 SOCKADDR_IN destSockAddr;
 SOCKET destSocket;
 unsigned long destAddr;
 int status;
 int numsnt;
 int numrcv;
 char sendText[MAXBUFLEN];
 char recvText[MAXBUFLEN];
 char dst_ip_address[MAXBUFLEN];
 unsigned short port;
 char msg[MAXBUFLEN];
 char buf[MAXBUFLEN];
 char type,type_mon[4];
 unsigned short IOSendType=0; // Send input/output signal data designation
 unsigned short IORecvType=0; // Reply input/output signal data designation
 unsigned short IOBitTop=0;

4 Appendix

4-19

 unsigned short IOBitMask=0xffff;
 unsigned short IOBitData=0;

 cout << " Input connection destination IP address (192.168.0.20) ->";
 cin.getline(dst_ip_address, MAXBUFLEN);
 if(dst_ip_address[0]==0) strcpy(dst_ip_address, "192.168.0.20");

 cout << " Input connection destination port No. (10000) -> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) port=atoi(msg);
 else port=10000;

 cout << " Use input/output signal?([Y] / [N])-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0 && (msg[0]=='Y' || msg[0]=='y')) {
 cout << " What is target? Input signal/output signal([I]nput / [O]utput)-> ";
 cin.getline(msg, MAXBUFLEN);
 switch(msg[0]) {
 case 'O': // Set target to output signal
 case 'o':
 IOSendType = MXT_IO_OUT;
 IORecvType = MXT_IO_OUT;
 break;
 case 'I': // Set target to input signal
 case 'i':
 default:
 IOSendType = MXT_IO_NULL;
 IORecvType = MXT_IO_IN;
 break;
 }

 cout << " Input head bit No. (0 to 32767)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) IOBitTop = atoi(msg);
 else IOBitTop = 0;

 if(IOSendType==MXT_IO_OUT) { // Only for output signal
 cout << " Input bit mask pattern for output as hexadecimal (0000 to FFFF)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitMask);
 else IOBitMask = 0;
 cout << " Input bit data for output as hexadecimal (0000 to FFFF)-> ";
 cin.getline(msg, MAXBUFLEN);
 if(msg[0]!=0) sscanf(msg,"%4x",&IOBitData);
 else IOBitData = 0;
 }
}
cout << "--- Input the data type of command. ---¥n";
cout << "[0: None / 1: XYZ / 2:JOINT / 3: PULSE]¥n";
cout << "-- please input the number -- [0] - [3]-> ";
cin.getline(msg, MAXBUFLEN);
type = atoi(msg);

for(int k=0; k<4; k++) {
 sprintf(msg,"--- input the data type of monitor (%d-th) ---¥n", k);
 cout << msg;
 cout << "[0: None]¥n";
 cout << "[1: XYZ / 2:JOINT / 3: PULSE] Command value¥n";
 cout << "[4: XYZ/ 5: JOINT/ 6: PULSE] Command value after the filter process¥n";
 cout << "[7: XYZ/ 5:JOINT/ 6:PULSE] Feedback value.¥n";
 cout << "[10: Electric current value / 11: Electric current feedback] ... Electric current value.¥n";

4 Appendix

4-20

 cout << "Input the numeral [0] to [11] -> ";
 cin.getline(msg, MAXBUFLEN);
 type_mon[k] = atoi(msg);
}
sprintf(msg, "IP=%s / PORT=%d / Send Type=%d / Monitor Type0/1/2/3=%d/%d/%d/%d", dst_ip_address, port , type,
type_mon[0], type_mon[1], type_mon[2], type_mon[3]);
cout << msg << endl;

cout << "[Enter]= End / [d]= Monitor data display";
cout << "[z/x]= Increment/decrement first command data transmitted by the delta amount. ";

cout << " Is it all right? [Enter] / [Ctrl+C] ";
cin.getline(msg, MAXBUFLEN);

// Windows Socket DLL initialization
status=WSAStartup(MAKEWORD(1, 1), &Data);
if (status != 0)
cerr << "ERROR: WSAStartup unsuccessful" << endl;

// IP address, port, etc., setting
memset(&destSockAddr, 0, sizeof(destSockAddr));
destAddr=inet_addr(dst_ip_address);
memcpy(&destSockAddr.sin_addr, &destAddr, sizeof(destAddr));
destSockAddr.sin_port=htons(port);
destSockAddr.sin_family=AF_INET;

// Socket creation
destSocket=socket(AF_INET, SOCK_DGRAM, 0);
if (destSocket == INVALID_SOCKET) {
 cerr << "ERROR: socket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
}

MXTCMD MXTsend;
MXTCMD MXTrecv;
JOINT jnt_now;
POSE pos_now;
PULSE pls_now;

unsigned long counter = 0;
int loop = 1;
int disp = 0;
int disp_data = 0;
int ch;
float delta=(float)0.0;
long ratio=1;
int retry;
 fd_set SockSet; // Socket group used with select
 timeval sTimeOut; // For timeout setting

memset(&MXTsend, 0, sizeof(MXTsend));
memset(&jnt_now, 0, sizeof(JOINT));
memset(&pos_now, 0, sizeof(POSE));
memset(&pls_now, 0, sizeof(PULSE));

while(loop) {

 memset(&MXTsend, 0, sizeof(MXTsend));

4 Appendix

4-21

 memset(&MXTrecv, 0, sizeof(MXTrecv));

 // Transmission data creation
 if(loop==1) { // Only first time
 MXTsend.Command = MXT_CMD_NULL;
 MXTsend.SendType = MXT_TYP_NULL;
 MXTsend.RecvType = type;
 MXTsend.SendIOType = MXT_IO_NULL;
 MXTsend.RecvIOType = IOSendType;
 MXTsend.CCount = counter = 0;
 }
 else { // Second and following times
 MXTsend.Command = MXT_CMD_MOVE;
 MXTsend.SendType = type;
 MXTsend.RecvType = type_mon[0];
 MXTsend.RecvType1= type_mon[1];
 MXTsend.RecvType2= type_mon[2];
 MXTsend.RecvType3= type_mon[3];
 switch(type) {
 case MXT_TYP_JOINT:
 memcpy(&MXTsend.dat.jnt, &jnt_now, sizeof(JOINT));
 MXTsend.dat.jnt.j1 += (float)(delta*ratio*3.141592/180.0);
 break;
 case MXT_TYP_POSE:
 memcpy(&MXTsend.dat.pos, &pos_now, sizeof(POSE));
 MXTsend.dat.pos.w.x += (delta*ratio);
 break;
 case MXT_TYP_PULSE:
 memcpy(&MXTsend.dat.pls, &pls_now, sizeof(PULSE));
 MXTsend.dat.pls.p1 += (long)((delta*ratio)*10);
 break;
 default:
 break;
 }
 MXTsend.SendIOType = IOSendType;
 MXTsend.RecvIOType = IORecvType;
 MXTsend.BitTop = IOBitTop;
 MXTsend.BitMask =IOBitMask;
 MXTsend.IoData = IOBitData;
 MXTsend.CCount = counter;
 }

 // Keyboard input
 // [Enter]=End / [d]= Display the monitor data, or none / [0/1/2/3]= Change of monitor data display
 // [z/x]=Increment/decrement first command data transmitted by the delta amount
 while(_kbhit()!=0) {
 ch=_getch();
 switch(ch) {
 case 0x0d:
 MXTsend.Command = MXT_CMD_END;
 loop = 0;
 break;
 case 'Z':
 case 'z':
 delta += (float)0.1;
 break;
 case 'X':
 case 'x':
 delta -= (float)0.1;
 break;
 case 'C':

4 Appendix

4-22

 case 'c':
 delta = (float)0.0;
 break;
 case 'd':
 disp = ~disp;
 break;
 case '0': case '1': case '2': case '3':
 disp_data = ch - '0';
 break;
 }
 }

 memset(sendText, 0, MAXBUFLEN);
 memcpy(sendText, &MXTsend, sizeof(MXTsend));
 if(disp) {
 sprintf(buf, "Send (%ld):",counter);
 cout << buf << endl;
 }
 numsnt=sendto(destSocket, sendText, sizeof(MXTCMD), NO_FLAGS_SET, (LPSOCKADDR) &destSockAddr,
 sizeof(destSockAddr));
 if (numsnt != sizeof(MXTCMD)) {
 cerr << "ERROR: sendto unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }

 memset(recvText, 0, MAXBUFLEN);

 retry = 1; // No. of reception retries
 while(retry) {
 FD_ZERO(&SockSet); // SockSet initialization
 FD_SET(destSocket, &SockSet); // Socket registration
 sTimeOut.tv_sec = 1; // Transmission timeout setting (sec)
 sTimeOut.tv_usec = 0; // (micro sec)
 status = select(0, &SockSet, (fd_set *)NULL, (fd_set *)NULL, &sTimeOut);
 if(status == SOCKET_ERROR) {
 return(1);
 }
 if((status > 0) && (FD_ISSET(destSocket, &SockSet) != 0)) { // If it receives by the time-out
 numrcv=recvfrom(destSocket, recvText, MAXBUFLEN, NO_FLAGS_SET, NULL, NULL);
 if (numrcv == SOCKET_ERROR) {
 cerr << "ERROR: recvfrom unsuccessful" << endl;
 status=closesocket(destSocket);
 if (status == SOCKET_ERROR)
 cerr << "ERROR: closesocket unsuccessful" << endl;
 status=WSACleanup();
 if (status == SOCKET_ERROR)
 cerr << "ERROR: WSACleanup unsuccessful" << endl;
 return(1);
 }
 memcpy(&MXTrecv, recvText, sizeof(MXTrecv));
 char str[10];
 if(MXTrecv.SendIOType==MXT_IO_IN) sprintf(str,"IN%04x", MXTrecv.IoData);
 else if(MXTrecv.SendIOType==MXT_IO_OUT) sprintf(str,"OT%04x", MXTrecv.IoData);
 else sprintf(str,"------");

4 Appendix

4-23

 int DispType;
 void *DispData;
 switch(disp_data) {
 case 0:
 DispType = MXTrecv.RecvType;
 DispData = &MXTrecv.dat;
 break;
 case 1:
 DispType = MXTrecv.RecvType1;
 DispData = &MXTrecv.dat1;
 break;
 case 2:
 DispType = MXTrecv.RecvType2;
 DispData = &MXTrecv.dat2;
 break;
 case 3:
 DispType = MXTrecv.RecvType3;
 DispData = &MXTrecv.dat3;
 break;
 default:
 break;
 }

 switch(DispType) {
 case MXT_TYP_JOINT:
 case MXT_TYP_FJOINT:
 case MXT_TYP_FB_JOINT:
 if(loop==1) {
 memcpy(&jnt_now, DispData, sizeof(JOINT));
 loop = 2;
 }
 if(disp) {
 JOINT *j=(JOINT*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d
 Type(JOINT)=%d¥n %7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,j->j1, j->j2, j->j3 ,j->j4, j->j5, j->j6, j->j7, j->j8, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_POSE:
 case MXT_TYP_FPOSE:
 case MXT_TYP_FB_POSE:
 if(loop==1) {
 memcpy(&pos_now, &MXTrecv.dat.pos, sizeof(POSE));
 loop = 2;
 }
 if(disp) {
 POSE *p=(POSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d
 Type(POSE)=%d¥n %7.2f,%7.2f,%7.2f,%7.2f,%7.2f,%7.2f, %04x,%04x (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,p->w.x, p->w.y, p->w.z, p->w.a, p->w.b, p->w.c, p->sflg1, p->sflg2, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_PULSE:
 case MXT_TYP_FPULSE:
 case MXT_TYP_FB_PULSE:
 case MXT_TYP_CMDCUR:
 case MXT_TYP_FBKCUR:

4 Appendix

4-24

 if(loop==1) {
 memcpy(&pls_now, &MXTrecv.dat.pls, sizeof(PULSE));
 loop = 2;
 }
 if(disp) {
 PULSE *l=(PULSE*)DispData;
 sprintf(buf, "Receive (%ld): TCount=%d
 Type(PULSE/OTHER)=%d¥n %ld,%ld,%ld,%ld,%ld,%ld,%ld,%ld (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount,DispType
 ,l->p1, l->p2, l->p3, l->p4, l->p5, l->p6, l->p7, l->p8, str);
 cout << buf << endl;
 }
 break;
 case MXT_TYP_NULL:
 if(loop==1) {
 loop = 2;
 }
 if(disp) {
 sprintf(buf, "Receive (%ld): TCount=%d Type(NULL)=%d¥n (%s)"
 ,MXTrecv.CCount,MXTrecv.TCount, DispType, str);
 cout << buf << endl;
 }
 break;
 default:
 cout << "Bad data type.¥n" << endl;
 break;
 }
 counter++; // Count up only when communication is successful
 retry=0; // Leave reception loop
 }
 else { // Reception timeout
 cout << "... Receive Timeout! <Push [Enter] to stop the program>" << endl;
 retry--; // No. of retries subtraction
 if(retry==0) loop=0; // End program if No. of retries is 0
 }
} /* while(retry) */

} /* while(loop) */

// End
cout << "/// End /// ";
sprintf(buf, "counter = %ld", counter);
cout << buf << endl;

// Close socket
status=closesocket(destSocket);
if (status == SOCKET_ERROR)

cerr << "ERROR: closesocket unsuccessful" << endl;
status=WSACleanup();
if (status == SOCKET_ERROR)

cerr << "ERROR: WSACleanup unsuccessful" << endl;

return 0;

}

Nov., 2017 MEE Printed in Japan on recycled paper. Specifications are subject to change without notice.

	1. Before use
	1.1. How to use the instruction manual
	1.1.1. Content of instruction manual

	1.2. Terms used in the instruction manual
	1.3. Confirmation of product
	1.4. Ethernet function
	1.4.1. Function of Ethernet

	2. Preparation before use
	2.1. Connection of Ethernet cable
	2.2. Parameter setting
	2.2.1. Parameter list
	2.2.2. Details of parameters
	2.2.3. Parameter setting example 1 (When the Support Software is used)
	2.2.4. Parameter setting example 2-1 (When the data link function is used: When the controller is the server)
	2.2.5. Parameter setting example 2-2 (When the data link function is used: When the controller is the client)
	2.2.6. Parameter setting example 3 (for using the real-time external control function)

	2.3. Connection confirmation
	2.3.1. Checking the connection with the Windows ping command

	3. Description of functions
	3.1. Controller communication function
	3.1.1. Connecting the controller and personal computer
	3.1.2. Setting the personal computer network
	3.1.3. Setting the controller parameters
	3.1.4. Setting the personal computer support software communication
	3.1.5. Communication

	3.2. Data link function
	3.2.1. MELFA-BASIC V/VI Commands
	3.2.2. Using data link function
	3.2.2.1. Connect the controller and personal computer.
	3.2.2.2. Setting the personal computer network.
	3.2.2.3. Setting the controller parameters.
	3.2.2.4. Starting the sample program
	3.2.2.5. Communication

	3.2.3. Ending

	3.3. Real-time external control function
	3.3.1. Explanation of command
	3.3.2. Explanation of communication data packet
	3.3.3. Using real-time external control function
	3.3.3.1. Connecting the controller and personal computer
	3.3.3.2. Setting the personal computer network
	3.3.3.3. Setting the controller parameters
	3.3.3.4. Starting the sample program
	3.3.3.5. Moving the robot

	3.3.4. Ending

	3.4. Real-time monitor function
	3.4.1. Overview
	3.4.1.1. CR800 series
	3.4.1.2. CR75n series

	3.4.2. Supported version
	3.4.3. Setup
	3.4.3.1. CR800 series
	3.4.3.2. CR75n series

	3.4.4. Start of monitor / End of monitor
	3.4.5. Explanation of communication data packet
	3.4.6. Data type ID
	3.4.7. Parameters
	3.4.8. Error

	3.5. SLMP Connection
	3.5.1. Function Overview
	3.5.2. Supported version
	3.5.3. Specifications
	3.5.3.1. SLMP Specifications

	3.5.4. Parameters
	3.5.5. SLMP Communication Procedure
	3.5.5.1. Using TCP/IP
	3.5.5.2. Using UDP/IP

	3.5.6. Message Format
	3.5.6.1. Request Message
	3.5.6.2. Response Message Format

	3.5.7. Commands
	3.5.7.1. List of Commands
	3.5.7.2. Device (Device Access)
	3.5.7.2.1. Data Used in Commands
	3.5.7.2.2. Read (Command: 0401)
	3.5.7.2.3. Write (Command: 1401)
	3.5.7.2.4. Read Random (Command: 0403)
	3.5.7.2.5. Write Random (Command: 1402)
	3.5.7.2.6. Accessing CPU Buffer Memory Access Devices

	3.5.7.3. Self Test (Loopback Test) (Command: 0619)

	3.5.8. End Code

	3.6. CC-Link IE Field Network Basic function
	3.6.1. Overview
	3.6.2. Supported version
	3.6.3. Specifications
	3.6.3.1. Communication specifications

	3.6.4. Parameters
	3.6.5. Support of robot I/O signals and link devices
	3.6.6. Setup procedure
	3.6.6.1. Network configuration
	3.6.6.2. Network diagnostics
	3.6.6.3. Programming

	4. Appendix
	4.1. Error list
	4.2. Sample program
	4.2.1. Sample program of data link
	4.2.2. Sample program for real-time external control function

