& MITSUBISHI
ELECTRIC
Mitsubishi Electric Industrial Robot

CR800 series controller
CR750/CR751 series controller

Ethernet Function Instruction Manual

MCELIFA
I BFP-A3379-8 I

W Revision Histor

Print Date Instruction Manual No. Revision Content
2015-03-18 BFP-A3379 First print
2017-04-28 BFP-A3379-A Descriptions about the CR800 controller have been added.
2017-11-10 BFP-A3379-B Descriptions about FR Series CC-Link IE Filed Network Basic function have

been added.

Always read the following precautions and the separate "Safety
Manual" before starting use of the robot to learn the required
measures to be taken.

A Safety Precautions

ACAUTION

ACAUTION

AWARNING

ACAUTION

ADANGER
ACAUTION
ACAUTION
ACAUTION

All teaching work must be carried out by an operator who has received special

training.

(This also applies to maintenance work with the power source turned ON.)
—Enforcement of safety training

For teaching work, prepare a work plan related to the methods and procedures

of operating the robot, and to the measures to be taken when an error occurs

or when restarting. Carry out work following this plan.

(This also applies to maintenance work with the power source turned ON.)
—Preparation of work plan

Prepare a device that allows operation to be stopped immediately during

teaching work.

(This also applies to maintenance work with the power source turned ON.)
—Setting of emergency stop switch

During teaching work, place a sign indicating that teaching work is in progress

on the start switch, etc.

(This also applies to maintenance work with the power source turned ON.)
—Indication of teaching work in progress

Provide a fence or enclosure during operation to prevent contact of the operator
and robot.
—Installation of safety fence

Establish a set signaling method to the related operators for starting work,
and follow this method.
—Signaling of operation start

As a principle turn the power OFF during maintenance work. Place a sign
indicating that maintenance work is in progress on the start switch, etc.
—Indication of maintenance work in progress

Before starting work, inspect the robot, emergency stop switch and other
related devices, etc., and confirm that there are no errors.
—Inspection before starting work

The points of the precautions given in the separate "Safety Manual" are given below.
Refer to the actual "Safety Manual" for details.

ADANGER

ACAUTION
ACAUTION

Acaurion
ACAUTION
ACAUTION
Acaurion

AWARNING

AWARNING
ACAUTION
AWARNING

ACAUTION

When automatic operation of the robot is performed using multiple control
devices (GOT, programmable controller, push-button switch), the interlocking
of operation rights of the devices, etc. must be designed by the customer.

Use the robot within the environment given in the specifications. Failure to do
so could lead to faults or a drop of reliability.
(Temperature, humidity, atmosphere, noise environment, etc.)

Transport the robot with the designated transportation posture. Transporting
the robot in a non-designated posture could lead to personal injuries or faults
from dropping.

Always use the robot installed on a secure table. Use in an instable posture
could lead to positional deviation and vibration.

Wire the cable as far away from noise sources as possible. If placed near a
noise source, positional deviation or malfunction could occur.

Do not apply excessive force on the connector or excessively bend the cable.
Failure to observe this could lead to contact defects or wire breakage.

Make sure that the workpiece weight, including the hand, does not exceed the
rated load or tolerable torque. Exceeding these values could lead to alarms or
faults.

Securely install the hand and tool, and securely grasp the workpiece. Failure to
observe this could lead to personal injuries or damage if the object comes off or
flies off during operation.

Securely ground the robot and controller. Failure to observe this could lead to
malfunctioning by noise or to electric shock accidents.

Indicate the operation state during robot operation. Failure to indicate the state
could lead to operators approaching the robot or to incorrect operation.

When carrying out teaching work in the robot's movement range, always secure
the priority right for the robot control. Failure to observe this could lead to
personal injuries or damage if the robot is started with external commands.

Keep the jog speed as low as possible, and always watch the robot. Failure to do
so could lead to interference with the workpiece or peripheral devices.

ACAUTION
ACAUTION

ACAUTION
AWARNING

ACAUTION

ACAUTION

ADANGER

ADANGER

ADANGER

ADANGER

After editing the program, always confirm the operation with step operation before
starting automatic operation. Failure to do so could lead to interference with
peripheral devices because of programming mistakes, etc.

Make sure that if the safety fence entrance door is opened during automatic
operation, the door is locked or that the robot will automatically stop. Failure to do
so could lead to personal injuries.

Never carry out modifications based on personal judgments, non-designated
maintenance parts. Failure to observe this could lead to faults or failures.

When the robot arm has to be moved by hand from an external area, do not place
hands or fingers in the openings. Failure to observe this could lead to hands or
fingers catching depending on the posture.

Do not stop the robot or apply emergency stop by turning the robot controller's
main power OFF. If the robot controller main power is turned OFF during automatic
operation, the robot accuracy could be adversely affected. Also a dropped or
coasted robot arm could collide with peripheral devices.

Do not turn OFF the robot controller's main power while rewriting the robot
controller's internal information, such as a program and parameter. Turning OFF
the robot controller's main power during automatic operation or program/parameter
writing could break the internal information of the robot controller.

Do not connect the Handy GOT when using the GOT direct connection function of
this product. Failure to observe this may result in property damage or bodily injury
because the Handy GOT can automatically operate the robot regardless of whether
the operation rights are enabled or not.

Do not connect the Handy GOT to a programmable controller when using an iQ
Platform compatible product with the CR750-Q/CR751-Q/CR800-R controller. Failure
to observe this may result in property damage or bodily injury because the Handy
GOT can automatically operate the robot regardless of whether the operation rights
are enabled or not.

Do not remove the SSCNET Ill cable while power is supplied to the multiple CPU
system or the servo amplifier when using an iQ Platform compatible product with the
CR750-Q/CR751-Q/CR800-R controller.. Do not look directly at light emitted from the
tip of SSCNET Il connectors or SSCNET lll cables of the Motion CPU or the servo
amplifier. Eye discomfort may be felt if exposed to the light.

(Reference: SSCNET IIl employs a Class 1 or equivalent light source as

specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

Do not remove the SSCNET Ill cable while power is supplied to the controller.
Do not look directly at light emitted from the tip of SSCNET IIl connectors or
SSCNET lll cables. Eye discomfort may be felt if exposed to the light.
(Reference: SSCNET IIl employs a Class 1 or equivalent light source as
specified in JIS C 6802 and IEC60825-1 (domestic standards in Japan).)

ADANGER Attach the cap to the SSCNET Ill connector after disconnecting the SSCNET Il cable.
If the cap is not attached, dirt or dust may adhere to the connector pins, resulting in
deterioration connector properties, and leading to malfunction.

ACAUTlON Make sure there are no mistakes in the wiring. Connecting differently to the way
specified in the manual can result in errors, such as the emergency stop not
being released. In order to prevent errors occurring, please be sure to check
that all functions (such as the teaching box emergency stop, customer
emergency stop, and door switch) are working properly after the wiring setup
is completed.

ACAUTlON Use the network equipments (personal computer, USB hub, LAN hub, etc.)
confirmed by manufacturer. The thing unsuitable for the FA environment
(related with conformity, temperature or noise) exists in the equipments connected
to USB. When using network equipment, measures against the noise, such as
measures against EMI and the addition of the ferrite core, may be necessary.
Please fully confirm the operation by customer. Guarantee and maintenance
of the equipment on the market (usual office automation equipment) cannot
be performed.

Contents

L =1 Lo (= UL T PSP PP PR 1-1
1.1. How to use the inStruction ManUaL..............oooiiiiiiiii e 1-1
1.1.1. Content of INSrUCION MANUALooiuiiiiiii e 1-1

1.2. Terms used in the INSruCtioN MaNUALoouiiiiiiii e 1-1

1.3. Confirmation Of PrOAUCTooiiii ettt 1-2

1.4, ETNEIrNEt FUNCHION. ...ttt e et e s st e e e bt e e eatee e e nanees 1-2
1.4.1. FUNCHON Of ETNEINEL.......oiiiii e et 1-2

2. Preparation DEOIE USE........couiiii ittt e et e bt e ettt e e e e e e e b et 2-1
2.1. Connection Of EtherNet Cable.ooi it 2-1

2.2, Parameter SEHHINGueiiieiiiiii ettt e e s 2-3
2.2, Parameter liSt..... ..ot s 2-3

2.2.2. Details Of PArameIErSccoouuiii e 2-5

2.2.3. Parameter setting example 1 (When the Support Software is used)...........cccccevviiiiiiiiiicc e, 2-8

2.2.4. Parameter setting example 2-1 (When the data link function is used: When the controller is the server)

... 2-10
2.2.6. Parameter setting example 3 (for using the real-time external control function)cccccceee 2-11

2.3. ConNECtion CONFIMMATIONcoiiiiiiii ettt e et e e et e e e nanes 2-12
2.3.1. Checking the connection with the Windows ping command.............ccocuiriiiiiiiniiee e 2-12

3. DESCrIPLION OF FUNCHIONS ...ttt ettt e et e e et e e es e e e s e s b e e e e et e e e snee e e e naneee s 3-1
3.1. Controller communiCation FUNCHON...........oiiiiiiii et 3-2
3.1.1. Connecting the controller and personal COMPULET..........c.uiiiiiiiiiiiiie e 3-2
3.1.2. Setting the personal ComMPULEr NEIWOTK...........c.uiiiiiiiiiiiiiie e 3-2
3.1.3. Setting the controller PAramMELErSooouiiiiiie e 3-2
3.1.4. Setting the personal computer support software communication..............cocccceiiiiiiiii i, 3-3

B T IR ST 00T 410 0] (o= o 1o PO S UU PP PR PP 3-4

3.2, Data liNK FUNCHION ...ttt e a bt e e ettt e st e e e eab e e e et b e e e st e e e e naneee s 3-5
3.2.1. MELFA-BASIC V/VI COMMANGSuiiiiiieiiiieiiiesitieaiee st e tee st e atee st e steesnteesteesnbeesnseesnneeaseesnneean 3-5
3.2.2. Using data liNK fUNCHIONeiiiiiiii et e e s 3-9

R T2 T = o 1o SRS 3-12

3.3. Real-time external control FUNCHIONooiiiiiii e 3-13
3.3.1. Explanation of COMMANG ..o 3-15
3.3.2. Explanation of communication data packet...............cccoiiiiiiiiiii 3-17
3.3.3. Using real-time external control fUNCONoooiiiiiiiii e 3-21

TR 2 = o T 1o o SRS 3-23

3.4. Real-time mONItOr FUNCHIONoiiiii ettt e e 3-24

B A OVEIVIBW ...ttt ettt s et st e et e e s et e e e e e s e e e st e st e s e e e e s e as 3-24

3.4.2. SUPPOIEA VEISION ...ttt et e e e et e e et e e e ra e e e et e e e nan e e e es 3-25

R G TS 1= (U] o TP P PP PT ST PUPRP 3-26
3.4.4. Start of monitor / ENd of MONIONoiiiiiii e e 3-28
3.4.5. Explanation of communication data packet...............cooiiiiiiiiii 3-29
3.4.6. DAA tYPE ID ... et 3-32
34,7, PArameEEIS ..ot e e e et e 3-33
IR T 4 (o TP TSP PR STPUPRP 3-33

3.5, SLIMP CONNECHIONteie ettt e e bt e e et e e st e e ek et e et et e e sane e e e e b b e e e nnn e e e e nanees 3-34
3.5.1. FUNCHON OVEIVIEW ...ttt ettt ettt e e e et e e e e e 3-34
3.5.2. SUPPOEA VEISION ...ttt et e e et et e et e e e e e b e e e e e e 3-34
3.5.3. SPECITICALIONS ...t 3-34
3.5.4. Parametersoo ot e et e s 3-34
3.5.5. SLMP Communication ProCEAUIEcoocuiiiiiiiicii ettt 3-35
3.5.6. MESSAGE FOIMALcciiiiiiiiiii et e et e et 3-37
3.5, 7. COMIMEANGS. ...ttt e et e e ettt e et e e ea et e e e bt e e e st et e e nan e e e e e b e e e nnne e e e 3-45
BN S I = oo I 07 oo =S PRSPPI 3-80

3.6. CC-Link IE Field Network Basic fFUNCHONcooiiiiiiiiii e 3-81
310,71, OVEBIVIEW ...ttt ettt et et e e ettt oot e e eh et e e e b et e e et e e e e e e e b e e e et e 3-81
3.6.2. SUPPOIEA VEISION ...ttt et e e e et e e et e e e e e et e e e nsne e e e nanees 3-82
3.6.3. SPECITICALIONS ...t 3-82
3.6.4. PaArametersooo it e s 3-83
3.6.5. Support of robot 1/0O signals and lINK deVICESoeiiiiiiiiiiiii e 3-84
3.6.6. SELUP PrOCEAUIE ..ottt et e et e et e s e e e et e e e nnne e e e 3-85

S N oo 11 o To) RSO UPRTRR 4-1
o R = 4 (o Tl 1] SO PP PSP PPRR 4-1
4.2, SAMPIE PrOGIAIM ...eiiiitiee ettt e e e bt e et et e e e bt e e ek et e e et et e e ean et e e e bt e e eab et e e san e e e e abne e e nannneeenanees 4-2
4.2.1. Sample program of data lINKeeiiiii et e e e e e 4-2

4.2.2. Sample program for real-time external control fUNCHION ..., 4-14

1 Before use

1. Before use

This chapter describes the confirmation items and cautionary items which must be read before practical use of the

Ethernet.

1.1. How to use the instruction manual

1.1.1. Content of instruction manual

Through the following configuration, this document introduces the Ethernet function. As for the functions available in the
standard robot controller and the operation method, please refer to the "Instruction Manual" provided with the robot

controller.

Table 1.1 Content of the instruction manual

Chapter Title Content

In addition to the using method of the instruction manual, the confirmation items

! Before use and cautionary items are introduced to use the Ethernet function.

The preparatory work is introduced to use the Ethernet function. Referring to the

2 Preparation before use chapter, apply the cabling and wiring and confirm the other setting items.

Using the system configured in "2. Preparation before use" in this manual, it
introduces a series of the operating methods from the start-up to the stop.
Referring to each introduction, understand the basic operating method.

The following items will be introduced.

- Controller communication function (connection with computer support software
RT ToolBox2/3)

- Data link function (transmit values/text strings with the robot commands
Open/Print/Input)

- Real-time external control function (operation control using motion control cycles
from a computer)

- Real-time monitoring function (monitor the current position and more in real time
via a computer)

- SLMP connection (read from and write to a robot controller device by using
SLMP)

- CC-Link IE Field Network Basic function (send and receive transmissions by
using FA network)

3 Description of functions

Since the added errors when indexing the terms or using the Ethernet function are
herein described, refer to this chapter as necessary.

4 Appendix

1.2. Terms used in the instruction manual

The following terms are used in this document.

(1) Ethernet function
The robot controller has various network functions that use the Ethernet.

(2) Network personal computer
The personal computer is a commercially available one which provides the network function, integrating the Ethernet
interface card. Windows XP / Windows 7 / Windows 8 / Windows10 are applicable as the operating system.

(3) MELFA-BASIC V/VI command

This is a type of robot language.

11

1 Before use

1.3. Confirmation of product

by the customer.

The standard configuration of the product supplied by the customer is as follows. Confirm the configuration.

In addition to the standard robot system configuration, the following is necessary. These devices are separately procured

No. Part name Type Qty.
1) | Network personal computer Personal computer operated by Windows 1 or more
(Network interface is necessary.) XP / Windows 7 / Windows 8 /
Windows10.
Computer with TCP/IP network functions,
such as Linux OS (Operation is not
verified.)
2) | Ethernet cable Cable 1 or more
(Select the straight cable or cross cable depending on the
connection system.)

Prepare the following as necessary.

3) | Hub (Necessary if it is used in the LAN environment.) (Goods on the market) 1

4) | Robot controller programming aiding tool corresponding to (An optional) Personal computer Support 1
Windows for Robot controller of our company Software

5) | Application for network communication program production (Goods on the market) Microsoft. 1
corresponding to Windows Visual Studio etc.

1.4. Ethernet function

1.4.1. Function of Ethernet

The Ethernet installed as a standard on the robot controller has the following functions.

(1) The connections with 100BASE-TX (for CR750/CR751/CR800-R) and with 1000BASE-T (for CR800-D) are supported.

(2) TCP/IP protocol is used to allow the communication with the personal computer on the Ethernet.
(3) The sampling program (corresponding to Microsoft Visual Basic Express 2008/Visual C++ Express 2008) of the
personal computer is equipped.

The following is provided as the samples. (Refer to Chapter 4 Appendix.)

* The data link function is used to transmit and receive the variables of personal computer and robot (characters and

numerical values). (OPEN/INPUT#/PRINT#)
Here, approve that the result of the operation of the application which the customer produces on the basis of the

sample is out of the responsibility with our company.

1-2

(4) The three Ethernet functions are described below.

Refer to the section "3. Description of functions" for details on each function.

1 Before use

No. | Outline of function Remarks Reference page
1) | Controller communication function * Communication with up to Chapter 1 General
Data can be communicated with the robot controller via 16 clients is possible. Chapter 2 General
Ethernet. (Program upload/download, status monitor, etc.) Chapter 3.1
Personal computer support software (optional) is available as Chapter 4.1
an application.
2) | Data link function * By changing the Chapter 1 General
The value and position data can be linked between the communication open Chapter 2 General
robot program and personal computer using MELFA-BASIC destination COM No., Chapter 3.2
V/VI language (OPEN/PRINT/INPUT command). communication with Chapter 4.1
applications in up to 8 clients | Chapter 4.2.1
is possible.

3) | Real-time external control function * The user must create an Chapter 1 General
The position command data can be retrieved and operated at | application program on the Chapter 2 General
the robot motion control cycle unit. Joint, XYZ or motor pulse personal computer side to Chapter 3.3
can be designated for the position data. It is also possible to control the robot. Chapter 4.1
monitor the input/output signals or output the signals * Communication is carried Chapter 4.2.2
simultaneously. out one-on-one.

Control is started with the MXT command (MELFA-BASIC * UDP communication is
V/VI language). used.

4) | Real-time monitoring function * Use UDP. Chapter 1 General
The current position, speed at the tip of the arm, and other Chapter 2 General
measurements can be monitored by a PLC or computer in Chapter 3.4
real time at the robot motion control cycle unit. Chapter 4.1

5) | SLMP connection * Supported by FR series Chapter 1 General
The server functions of SLMP communications can be used only. Not supported by F Chapter 2 General
from the robot controller. Data can be read from and written series. Chapter 3.5
to a robot controller device from a PLC or computer via the Chapter 4.1
Ethernet.

6) | CC-Link IE Field Network Basic function * Supported by FR series Chapter 1 General
CC-Link IE Field Network Basic slave stations are supported, | only. Not supported by F Chapter 2 General
and the signals and registers of robot controllers can be input | series. Chapter 3.6
and output via regular communications (cyclic Chapter 4.1
correspondence) with a PLC, computer, or other master
station.

Q CAUTION These functions can all be used simultaneously, but be aware that when the network handles

large loads, communications slow down and may not reflect real-time information.

1-3

1 Before use

* The personal computer used to communicate with the robot controller must be located on the same network.
Communication cannot be carried out over firewalls (from internet) or over gateways (from different adjacent network, etc.).
Consider operation with a method that communicates via a server (i.e., HTTP server, etc.) connected to the same network
as the robot controller. Pay special attention to safety and response in this case.

Ethernet

;- =

1) Controller communication function 2) Data link function

Program creation, editing Transmission/reception of) Real-time gxt?rnal cqntrolffunctign

Debugging startup support, value and position data Transmission/reception of real-time

maintenance position data at control cycle
LR MELSOFT

Integrated FA Software

Robot Total Engineering Support Software i

RT ToolBox3 YR

Version 1,004 B Personal Personal
V™ computer computer
Personal computer support software Data link application Real-time external control application
(Mitsubishi option) (Customer-created) (Customer-created)

Ethernet
1) Controller communication function 2) Data link function . .
Program creation, editing Transmission/reception of) I_I?_eal-tlm.e gxt?rnal cqntrolffunclztlgn
Debugging startup support, maintenance value and position data ransmission reception of real-time
position data at control cycle
Sl e
RT ToolBox2 = F
oo Eromerna S o N Personal Personal
= J computer computer
program program
Personal computer support software Data link application Real-time external control application
(Mitsubishi option) (Customer-created) (Customer-created)

2 Preparation before use

2. Preparation before use

What is done before use is described.

Connection of Ethernet cable ... Refer to 2.1.
J
Parameter setting ... Referto 2.2.

2.1. Connection of Ethernet cable
As shown below, connect the Ethernet cable to the connector.
When the hub is used, use the straight cable. Or when the personal computer and controller are connected to each other

one to one, use the cross cable.

CR800-D controller front

<CR800-D controller>

"""
.Q‘msm.
|
T E i
EXT1 RIO) CR800

<CR800-R controller>
Robot CPU unit front

& s -
W ELECTRC POWER RAch

vvvvv

vvvvv

LAN connect

2 Preparation before use

<CR750 controller> CR750 controller back

CRY751 controller front

<CR751 controller>

\:[u e TN

)
o

<CR750-Q/CR751-Q controller>
Robot CPU unit front

2.2. Parameter setting

2 Preparation before use

Before use, it is necessary to set the following parameters. The parameters which are set on the robot controller are shown

in the following list. For the method to set the parameter, refer to the instruction manual of the controller.

é CAUTION After changing the parameters, turn the power supply of the controller from OFF to ON. Unless

this is done, the changed parameters will not become valid.

2.2.1. Parameter list

The parameters are listed below. For details of the parameters, refer to "2.2.2. Details of parameters".

Parameter list

O ... Setting is necessary

- ... Setting is unnecessary

Controller . Real-time Real-time ’
Parameter Details Number of Default value | communication Data !|nk control monitoring SLMP CC'L'"‘.‘
name elements . function . . |EF Basic
function function function
NETIP IP address of robot controller Character | “192.168.0.20"
string 1 (0] (0] O O o
NETMSK Sub-net-mask Character | “255.255.255.0"
string 1 (0] (0] O O o
NETPORT | Port No. Range 0 to 32767 Numerical
For function expansion (reserved), ---------- value 10
Correspond to OPT 11-19 of COMDEV 10000,
(OPT11) 10001,
(OPT12) 10002,
(OPT13) 10003,
(OPT14) 10004, (0] (@] 0 - -
(OPT15) 10005,
(OPT16) 10006,
(OPT17) 10007,
(OPT18) 10008,
(OPT19) 10009
Protocol 0: No-procedure Numerical
1: Procedure, 2: Data link value 9
(1: Procedure has currently no function.)
CPRCE11 Correspond to OPT 11-19 of COMDEV
CPRCE12 (OPT11) 0
CPRCE13 (OPT12) 0
CPRCE14 (OPT13) 0) o }))
CPRCE15 (OPT14) 0
CPRCE16 (OPT15) 0
CPRCE17 (OPT16) 0
CPRCE18 (OPT17) 0
CPRCE19 (OPT18) 0
(OPT19) 0

2-3

2 Preparation before use

Controller . Real-time Real-time .
Parameter Details Number of Default value | communication Data !|nk control monitoring SLMP CC'L'"‘.(
name elements . function . . |EF Basic
function function function
COMDEV Definition of device corresponding to COM1:to 8 | Character
Definition of device corresponding to COM1:, string 8
Definition of device corresponding to COM2:, ,
Definition of device corresponding to COM3;, ,
Definition of device corresponding to COM4:,
Definition of device corresponding to COMS5:, ,) o))))
Definition of device corresponding to COM6:, ,
Definition of device corresponding to COM7:,
Definition of device corresponding to COMS: .
When the data link is applied, setting is
necessary.
OPT11 to OPT19 are allocated.
NETMODE | Server designation Numerical
(1: Server, 0: Client) value 9
(OPT11) 1,
(OPT12) 1,
(OPT13) 1,
(OPT14) 1,) o })))
(OPT15) 1,
(OPT16) 1,
(OPT17) 1,
(OPT18) 1,
(OPT19) 1
NETHSTIP | The IP address of the data communication Character
destination server. string 9 .
* Itis valid if specified as the client by
NETMODE only.
(OPT11) 192.168.0.2,
(OPT12) 192.168.0.3,
(OPT13) 192.168.0.4) o))))
(OPT14) 192.168.0.5,
(OPT15) 192.168.0.6
(OPT16) 192.168.0.7,
(OPT17) 192.168.0.8,
(OPT18) 192.168.0.9,
(OPT19) 192.168.0.10
MXTTOUT | Timeout time for executing real-time Value 1 -1
external control command (0-32767)
(Multiple of 7.1msec, Set -1 to disable - - (0] - - -
timeout)
NETGW Gateway address Character | 192.168.0.254
string 1 O (0] (6] (0] (0] -
MONMODE | Real-time monitoring function, Numerical 1
enable/disable value 1 - - -) - -
MONPORT | Real-time monitoring function, port number [Numerical 12000, 0
(Inbound, outbound) value 2 - - - 0] - -

2-4

2 Preparation before use

2.2.2. Details of parameters

The parameters are herein described in details.

(1) NETIP (IP address of robot controller)

The IP address of the robot controller is set. IP address is like the address of the mail.

The format of IP address is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 192.168.0.1 or 10.97.11.31.

If the controller and network personal computer are directly connected to each other one-to-one, it is allowed to set default
value (a random value) but if it is connected to the local area network (LAN), IP address must be set as instructed by the
manager of customer's LAN system.

If any IP addresses are overlapped, the function will not properly operate. Therefore, take care to prevent it from being
overlapped with another during setting.

The personal computer used for communication with the robot controller.

(2) NETMSK (sub-net-mask)

Set the sub-net-mask of the robot controller. Among the IP addresses, the sub-net-mask is set to define the sub-net-work.
The format of the sub-net-mask is composed of 4 numbers of 0 to 255 and the dot (.) between the numbers.

For example, it is set as 255.255.255.0 or 255.255.0.0.

As usual, it is allowed to set default value. If it is connected to the local area network (LAN), the sub-net-mask must be set

as instructed by the manager of customer's LAN system.

(3) NETPORT (port No.)

The port No. of the robot controller is set. The port No. is like the name of the mail.

For the nine elements, the port numbers are each expressed with a value.

The first element (element No. 1) is used for real-time control.

The second to ninth elements (elements No. 2 to 9) are used for the support software or data link.

Normally, the default value does not need to be changed. Make sure that the port numbers are not duplicated.

(4) CRRCE11 to 19 (protocol)

When using the data link function, the setup is necessary.

Sets the protocol (procedure) for communication. The protocol has three kinds of no-procedure, procedure and data link.
0... No-procedure: The protocol is applied to use the personal computer Support Software .

1... Procedure: Reserved. (Since it is not any function, don't set it by mistake.)

2... Data link: The protocol is used to use OPEN/INPUT/PRINT commands for communication.

2-5

2 Preparation before use

2-6

(5) COMDEYV (Definition of devices corresponding to COM1: to 8)

When using the data link function, the setup is necessary.

Definition of device corresponding to COM1: to 8 is set. COM1: to 8 is used for OPEN command of the robot program.
Be sure to set it only when the data link is specified on setting of the protocol (CPRCE11 to 19).

The setting values of the Ethernet function correspond to the port Nos. which are set at the parameter NETPORT.

* In the following parameters NETOPORT (n) and COMDEV(n), n indicates the element No. of that parameter.

The device name set

n up by COMDEV/(n) Port number

1 OPT11 The port number specified by NETPORT(2)
2 OPT12 The port number specified by NETPORT(3)
3 OPT13 The port number specified by NETPORT(4)
4 OPT14 The port number specified by NETPORT(5)
5 OPT15 The port number specified by NETPORT(6)
6 OPT16 The port number specified by NETPORT(7)
7 OPT17 The port number specified by NETPORT(8)
8 OPT18 The port number specified by NETPORT(9)
9 OPT19 The port number specified by NETPORT(10)

For example, if the port No. specified at NETPORT(3) is allocated to the data link of COM:3, the following will be applied.
COMDEV(3) = OPT13 * OPT13 is set at 3rd element of COMDEV.
CPRCE13=2 * Set up as a data link.

(6) NETMODE (server specification)
Set up, when using the data link function.
Set the TCP/IP communication in the data link function of the robot controller as the server or the client.

It is necessary to change with the application of the equipment connected to the robot controller.

(7) NETHSTIP (The IP address of the server of the data communication point)

Set up, when using the robot controller as a client by the data link function.

Specify the IP address of the partner server which the robot controller connects by the data link function.
Set up, when only set the robot controller to the client by server specification of NETMODE.

(8) MXTTOUT (Timeout setting for executing real-time external control command)
This is changed when using real-time external control command and setting the timeout time for communication with the
robot controller.

Set a multiple of the control cycle (refer to the following).

Controller Control cycle
CR750/CR751 series Approx. 7.11 msec
CR800 series Approx. 3.5 msec (*If user mechanical is set, approx. 7.11 msec)

When the real-time external control command is executed, the timeout time during which no communication data is
received by the robot controller from the personal computer is counted up. If the count reaches the value set in MXTTOUT,
the operation will stop with the error (#7820). For example, to generate an error when there is no communication for
approx. 7 seconds, set 1000.

This setting is set to -1 (timeout disabled) as the default.

(9) NETGW (Gateway address)
Specify the gateway address to communicate with the PC of on other network.

2 Preparation before use

(10) MONPORT (Real-time monitoring function, port number)

Specify the inbound port number and the outbound port number of the real-time monitoring function. (0 to65535)

First element: Inbound port number

Second element: Outbound port number

Take note that 0 is a special value for the second element, which replies to the sender port number that is set in the UDP
header information of the packet data start that the robot controller has received.

When the Ethernet communication device is a Windows application, if the outbound port number is not designated on the
application side, it remains the initial value of 0.

To explicitly specify the port number to reply to, the value must be set on the Ethernet communication device. (Example:
12000, 12001)

(11) MONMODE (Real-time monitoring function, enable/disable)
Switch to enable or disable real-time monitoring.

0: Disable

1: Enable

If you change a port number from its initial value, be sure that it does not overlap with any

ACAUTION other port numbers. If there is any overlap, an error will occur when the controller starts, and

it will not work properly.

2-7

2 Preparation before use

2.2.3. Parameter setting example 1 (When the Support Software is used)

The setting example to use the Support Software is shown below.

Set the parameters for the robot controller, and the network for the personal computer OS being used.

Conditions for example 1

IP address of robot controller 192.168.0.20

IP address of personal computer | 192.168.0.10

Port No. of robot controller 10001

Set the robot controller parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Parameter setting for example 1

Parameter Before/after Parameter value
change
Before 192.168.0.20
NETIP After 192.168.0.20 (unchanged)
Before 10001
NETPORT After 10001 (unchanged)

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

Internet Protocol Version 4 (TCP/IPvd) Properties @

General

‘fou can get IP settings assigned automatically if your network supports
this capability, Otherwise, you need to ask your network administrator
for the appropriate IP settings.

Obtain an IP address automatically
@ Use the following IP address:

IP address: 192,168, 0 ., 20
Subnet mask: 255,255 .255. 0
Default gateway: 192,188 . 0 . 254

Obtain DMS server address automatically

@ Use the following DNS server addresses:

Preferred DNS server:

Alternate DNS server:

Advanced...

oK. | | Cancel |

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network
computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2-8

2 Preparation before use

2.2.4. Parameter setting example 2-1

(When the data link function is used: When the controller is the server)

Shows the example of the setting, when the controller is server by the data link function.

Conditions for example 2-1

Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10003

Communication line No.
<For MELFA-BASIC V/VI>
OPEN command COM No. COM3:

Parameter setting for example 2-1

Parameter Before/after Parameter value
change
Before 192.168.0.20
NETIP after 192.168.0.20 (unchanged)
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT after 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)
Before 0
CPRCE13 after >
Before
COMDEV after ,, OPT13,, ,,,

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

Internet Protocol Version 4 (TCP/IPw) Properties @

General

You can get IP settings assigned automatically if your network supparts
thiz capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

Obtain an IP address automatically
@) Uge the following IP address:

IP address: 192 .168 . 0 . 20
Subnet mask: 255,255,255, 0
Default gateway: 192 . 168 . 0 . 254

btain DMS server address automatically

@ Use the following DNS server addresses:
Preferred DNS server:

Alternate DNS server:

Advanced...

oK | Cancel |

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network

computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,

for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2 Preparation before use

2.2.5. Parameter setting example 2-2

(When the data link function is used: When the controller is the client)

Shows the example of the setting, when the controller is client by the data link function.
Conditions for example 2-2

Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10003

Communication line No.
<For MELFA-BASIC V/VI>

OPEN command COM No. COM3:
Parameter setting for example 2-2

Before/after
Parameter Parameter value

change

Before 192.168.0.20
NETIP After 192.168.0.20 (unchanged)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

(unchanged)

Before 0
CPRCE13 After 2

Before
COMDEV After ,, OPT13,,,,,

Before 1,1,1,1,1,1,1,1,1
NETMODE Atter | 140441111

Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,
NETHSTIP 192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,

192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

Internet Protocol Version 4 (TCP/IPvd) Properties @

General

‘fou can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

Obtain an IP address automatically
@ Use the following IP address:

IP address: 192 . 168 . 0 . 20
Subnet mask: 255,255 .255. 0
Default gateway: 192 . 168 . 0 . 254

@ Useg the following DNS server addresses:
Preferred DNS server:

Alternate DNS server:

Adyanced...

Eook | Cancel |

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network
computer). Because the set-up screen differs with versions of Windows, refer to the manuals enclosed with Windows, etc.,
for details on setting this address.

Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the
personal computer support software.

2410

2 Preparation before use

2.2.6. Parameter setting example 3 (for using the real-time external control function)
An example of the settings for using the real-time external control function is shown below.

Conditions for example 3

Robot controller IP address 192.168.0.20
Personal computer IP address 192.168.0.10
Robot controller port No. 10000

Parameter setting for example 3

Parameter Before/after Parameter value

change

Before 192.168.0.20

NETIP after 192.168.0.20 (unchanged)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

NETPORT after 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)
MXTTOUT Before | -1
after -1 (unchanged)

Next, set the personal computer IP address to 192.168.0.10. Set this value on the Network Properties screen.

Internet Protocol Version 4 (TCP/IPvd) Properties @

General

‘fou can get IP settings assigned automatically if your network supports
this capability. Otherwise, you need to ask your network administrator
for the appropriate IP settings.

~) Obtain an IP address automatically
@) Use the following IP address:

IP address: 192 . 168 . 0 . 20
Subnet mask: 255,255 .255. 0
Default gateway: 192 . 168 . 0 . 254

Obtain DNS server address automatically

@ Use the following DNS server addresses:
Preferred DNS server:

Alternate DNS server:

Advanced...

OK. |I Cancel I

The personal computer IP address is set with the Windows TCP/IP Property Network setting (property in network
computer). Refer to the manuals enclosed with Windows, etc., for details on setting this address.
Refer to the instruction manuals enclosed with the personal computer support software for details on setting and using the

personal computer support software.

2-11

2 Preparation before use

2.3. Connection confirmation

Before use, confirm the following items again.

Connection confirmation

No. Confirmation item Check
1 Is the teaching pendant securely fixed?
2 Is the Ethernet cable properly connected between the controller and personal computer? (Refer to 2.1 in this
manual.)
3 Is any proper Ethernet cable used?

(This cross cable is used to connect the personal computer and controller one-on-one. When using a hub

with LAN, use a straight cable.)

4 Is the parameter of the controller properly set? (Refer to 2.2 in this manual.)

5 Is the power supply of the controller turned off once after the parameter set?

2.3.1. Checking the connection with the Windows ping command

The method for checking the connection with the Windows ping command is shown below.

Start up the " MS-DOS Prompt " from the Windows " Start " - " Programs " menu, and designate the robot controller IP
address as shown below.

If the communication is normal, " Reply from ... " will appear as shown below.

If the communication is abnormal, " Request time out " will appear.

ammand prampt

If the communication is not proper,

‘Reauest time” out will be displayed.

212

3. Description of functions

3 Description of functions

This chapter explains the methods for using the six Ethernet option functions with a system in which the controller and network

personal computer are connected with a one-on-one cross cable.

(1) Using the controller communication function

(2) Using the data link function

(3) Using the real-time external control function

(4) Using the real-time monitoring function

(5) Using SLMP

(6) Using the CC-Link IE Field Network Basic function

.. Refer to Chapter 3.1
.. Refer to Chapter 3.2
.. Refer to Chapter 3.3
.. Refer to Chapter 3.4
.. Refer to Chapter 3.5
.. Refer to Chapter 3.6

3-1

3 Description of functions

3.1. Controller communication function

The operations for communicating with the personal computer support software are explained in this section.

Connecting the controller and personal computer. ... Refer to section 3.1.1
|
Setting the personal computer network. ... Refer to section 3.1.2
|
Setting the controller parameters. ... Refer to section 3.1.3
|
Starting the support software. ... Refer to section 3.1.4
|
Communication. ... Refer to section 3.1.5
|
Ending

3.1.1. Connecting the controller and personal computer

Connect the controller and the personal computer with the following Ethernet cable.

Controller Ethernet cable
CR750/CR751 series 100BASE-TX compatible cable
CR800-R series 100BASE-TX compatible cable
CR800-D series 1000BASE-TX compatible cable

Refer to the connection described in section "2.1 Ethernet cable".

3.1.2. Setting the personal computer network

Refer to section "2.2.3 Example of setting the parameters 1 (for using the support software)" and set the network.

3.1.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

Name of parameter | Before/after

Parameter value
to change changes

NETIP Before 192.168.0.20

After 192.168.0.20 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(Default value)

After setting the parameters, turn the robot controller power OFF and ON.
Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

3-2

3 Description of functions

3.1.4. Setting the personal computer support software communication

Start the personal computer support software and make the communication settings. Set the communication method to

TCP/IP, and the IP Address to 192.168.0.20.

AT

Integrated FA Software

RT ToolBox2

Robot Total Engineering Support Software

COPYRIGHTE2008 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

A MITSUBISHI
ELECTRIC
Integrated FA Software

Robot Total Engineering Support Software

RT ToolBox3

Version 1.00A

©2016 MITSUBISHI ELECTRIC CORPORATION ALL RIGHTS RESERVED

Edit Project T - -

Project name: RC1

Communication setting

R/Ctype: | CRND-7x¢/CR7Sx-D -
Method: [Tepime -]
1P Address=192.168.0.20 .

Port=10001 |
Send Timeout=5000msec
Recieve Timeout=30000msec

Model Selection for Offline

Robot model: RV7F-D

Language: MELFA-BASIC V ']

Travel base setting for display

Only travel base information for display is set here. To change the
movement range of the travel axis, change the parameters.

Detail...

Travel base: Not used

Set the additional axis parameter of the simulation automatically
by the content of the above setting.

Please clear the checkbox when you set the parameter of the
additional axis by rmanualty.

Lo]|

Cancel

TCP/IP Communication Protocol

IP Address: 192.168.0.20
| Port: 10001
Transmission
| Timeout Time : soop (msec)
| Reception
Timeout Time : 30000 (msec)
| Mumber of
Retries : 0

|

Cancel

MELSOFT

Refer to the instruction manual enclosed with the personal computer support software for details on setting the personal

computer support software.

3 Description of functions

3.1.5. Communication

Communicate with the personal computer support software.

Communication can be carried out with the Ethernet TCP/IP.

“w (1/1) - Communication Server2

Line State : |Hu:-|:u:ut[T CPAP)Cannecting

Commurication |
State

Fabat; |-| : j

Robot Inforrmation |

Refer to the instruction manual enclosed with the personal computer support software for details on using the personal
computer support software.

If communication is not possible, refer to section "2.3 Checking the connection" and check the state.

When the robot controller power is turned OFF and ON, the connection will be disconnected

ﬁ CAUTION and communication will be disabled.

In this case, end the application software on the personal computer once, and then
restart.

3 Description of functions

3.2. Data link function

OPEN/PRINT/INPUT of the robot language can be used in the Ethernet.
For each robot language, refer to the instruction manual appended to the robot controller.

[Statement example] To set port No. 10003 as communication destination and open as #1
Set parameter COMDEYV (element No. 3) to OPT13, NETPORT to 10003.

1 OPEN “COM3:” AS #1 'Set port No.
2 INPUT #1, C1$ 'Read

3 PRINT #1, "Reply”, C1$ ‘Writing

4 CLOSE #1 ‘Line closing
5HLT ‘Stop

Position, value, character

t'ansn|$|mlm tbn - IP Address LU0 Port Noo 5686568600604
ep « 19216801 10003

CSenddsts LiDlllllllillllilll
|

b [=I=DCED 5000000060000002605009636050

;= = —- o - 9 | o
CR800/CR75x robot controller Windows personal
Robot program Ethernet computer application
The data link function of the Ethernet has the two kinds shown below.
* Uses the robot controller as the server.
* Uses the robot controller as the client.
192.168.0.20 192.168.0.20 192.168.0.20
(Server) (Server) (Server)
=9 i
1T 111 i1
1y coM2 COM3 COM2 COM3 i’ com2 com3
Controller Controllert
I 1T I I
111 1Tl 1Tl e
L Bl == 11 1111 11 M
Computer1 Computer2 Controller1 Controller2 Controller2 Controller3
192.168.0.21 192.168.0.22 192.168.0.21 192.168.0.22 192.168.0.21 192.168.0.22
(Client) (Client) (Client) (Client) (Client) (Client)

Two or more clients are not connectable with the one line number COMn.
Change the line number, when using the robot controller as the server and connecting two or more clients.

3.2.1. MELFA-BASIC V/VI Commands

This section describes the robot language (MELFA-BASIC V/VI).
For more information about OPEN, CLOSE, INPUT# and PRINT# used for data linking, refer to the INSTRUCTION
MANUAL Detailed explanations of functions and operations.

3 Description of functions

3-6

M_OPEN

[Function]
Indicates whether or not the file has been opened.

[Format]

<Numeric variable> = M_OPEN [(<file number>)]

[Terminology]

<Numeric variable>
<File number>

Specify a numeric variable to be assigned.
Specify a file number constant between 1 and 8 for the communication line that

was opened by the OPEN instruction. If omitted, 1 is set. If 9 or higher is
specified, an error occurs when executed.

[Reference Program]
1' Client Program ----------------
2 M1=0
3 M_TIMER(1)=0
4 *LOPEN:OPEN "COM2:" AS #1
5IF M_TIMER(1)>10000.0 THEN *LERROR
6 IF M_OPEN(1)<>1 THEN GOTO *LOPEN
7 DEF ACT 1,M_OPEN(1)=0 GOSUB *LHLT2
8 ACT 1=1
9 *LOOP:M1=M1+1
10 IF M1<10 THEN C1$="MELFA" ELSE C1$="END"
11 PRINT #1,C1$
12 INPUT #1,C2%
13 IF C1$="END" THEN *LHLT
14 GOTO *LOOP
15 *LHLT:CLOSE #1
16 HLT
17 END
18 *LERROR:ERROR 9100

19 CLOSE #1
20 HLT

21 END

22 ERROR 9101

23 *LHLT2:CLOSE #1
24 HLT
25 END

‘Resets the timer to 0.

‘Opens the line.

‘Jumps when 10 seconds elapses.

‘Loops if no connection is made.

‘Monitors the down state of the server using an interrupt.
‘Starts monitoring.

‘Sends END after sending the “MELFA” string nine times.

‘Sends a character string.

‘Receives a character string.

‘Jumps to CLOSE after sending “END.”

‘Loops.

‘Closes the line.

‘Halts the program.

‘Ends.

‘Generates error 9100 if no connection can be made to the
server.

‘Generates error 9101 if the server is down during
processing.

[Explanation]

(1) This command is used in a combination with the OPEN instruction.

types of the files specified by the OPEN instruction.

3 Description of functions

The following lists the meanings and values for the

Type of file to be
opened

Meaning

Value

File

Indicates whether or not the file has been
opened.

1 is always returned after executing the
OPEN instruction.

1: Already opened.
-1: The file number is undefined (not opened).

Communication line
Ethernet

Indicates whether | For server setting
or not connection
is made with the

1: Client is already connected.
0: Client is not connected.
-1: The file number is undefined (not opened).

counterpart. For client setting

1: Already connected to the server. (Connection

has been made.)

0: Not connected to the server. (Connection has

not been made. Equivalent to when the server is

down after being opened.)

-1: The file number is undefined. (When the file
has not been opened, or has been opened
while the server is down.)

[Related Instruction]
OPEN

[Related Parameters]

COMDEV, CPRE**, NETMODE

3-7

3 Description of functions

3-8

Cc com

[Function]
Sets the parameters for the line to be opened by the OPEN instruction. This is used when the communication destination
is changed frequently.
* Character string type
* Only for a client with the Ethernet option.

[Format]

C_COM (<communication line number>) = “ETH: <server side IP address> [, <port number>]"

[Terminology]
ETH: An identifier to indicate that the target is an Ethernet
<Communication line number> The number of the COM to be specified by the OPEN instruction (The line type is
assigned by the COMDEYV parameter.) Specify 1 through 8.

<Server side IP address> Server side IP address (May be omitted.)
<Port number> Port number on the server side (If omitted, the set value of the NETPORT parameter is
used.)

[Reference Program]
Example when OPT12 is set in the second element of the COMDEYV parameter

1 C_COM(2)="ETH:192.168.0.10,10010" ' Set the IP address of the communication destination server
corresponding to communication line COM2

2 *LOPEN1:OPEN "COM2:" AS #1 "As 192.168.0.10 and the port number as 10010, and then open the line.
3 IF M_OPEN(1)<>1 THEN *LOPEN"1 ‘ Loops if unable to connect to the server.
4 PRINT #1, "HELLO" ‘ Sends a character string.
5 INPUT #1, C1$ ‘ Receives a character string.
6 CLOSE #1 ‘ Closes the line.
7 C_COM(2)="ETH:192.168.0.11,10011" ‘ Set the IP address of the communication destination server
corresponding to communication line COM2
8 *LOPEN2:0OPEN "COM2:" AS #1 ‘As 192.168.0.11 and the port number as 10011, and then open the line.
9 IF M_OPEN(1)<>1 THEN *LOPEN2 ‘ Loops if unable to connect to the server.
10 PRINT #1, C1$ ‘ Sends a character string.
11 INPUT #1, C2$ ‘ Receives a character string.
12 CLOSE #1 ‘ Closes the line.
13 HLT ‘ Halts the program.
14 END ‘ Ends.
[Description]

(1) Itis not necessary to use this command when the communication counterpart of the robot controller is specified with the
NETHSTIP and NETPORT parameters and the specified communication counterpart will not be changed at all.

(2) Currently, this function is valid only for a client of a data link with the Ethernet.

(3) Because the communication parameters of the OPEN instruction are set, it is necessary to execute this command
before the OPEN instruction.

(4) When the power is turned on, the set values specified by the NETHSTIP and NETPORT parameters are used. When
this command is executed, the values specified by the parameters of this command are changed temporarily. They are
valid until the power is turned off. When the power is turned on again, the values revert to the original values set by the
parameters.

(5) If this command is executed after the OPEN instruction, the current open status will not change. In such a case, it is
necessary to close the line with the CLOSE instruction once, and then execute the OPEN instruction again.

(6) If an incorrect syntax is used, an error occurs when the program is executed, not when the program is edited.

[Related Parameters]
NETHSTIP, NETPORT

3.2.2. Using data link function

This section explains the operations for starting the sample program given in "4.2.1 Sample program for data link function"

and communicating with a system in which the controller and network personal computer are connected with a one-on-one

cross cable.

Connecting the controller and personal computer.

Setting the personal computer network.

Setting the controller parameters.

Starting the sample program.

Communication.

Ending

3.2.2.1. Connect the controller and personal computer.

3 Description of functions

.. Refer to section 3.2.2.1

.. Refer to section 3.2.2.2

.. Refer to Chapter 3.2.2.3 (1)

Refer to Chapter 3.2.2.3 (2)

.. Refer to section 3.2.2.4

.. Refer to section 3.2.2.5

.. Refer to section 3.2.3

Connect the controller and personal computer with a cross cable.

Refer to the connection described in section "2.1 Ethernet cable".

3.2.2.2. Setting the personal computer network.

Set one of the following clauses as reference corresponding to the customer's system configuration. (The controller is the

server or the client)

» 2.2.4 Parameter setting example 2-1 (When the data link function is used: When the controller is the server.)

» 2.2.5 Parameter setting example 2-2 (When the data link function is used: When the controller is the client.)

3 Description of functions

3.2.2.3. Setting the controller parameters.
The contents of the setting of parameter differ, when the robot controller is specified as server and client of TCP/IP
connection.
Turn ON the robot controller power, and set the parameters as shown below.
The NETIP/NETPORT parameters do not need to be changed when using the default values.
After setting the parameters, turn the robot controller power OFF and ON.

3-10

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

(1) When the controller is specified as the server

Parameter Before/after Parameter value
change
Before 192.168.0.20
NETIP After 192.168.0.20 (unchanged)
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)
Before 0
CPRCE13 After >
Before
COMDEV After | .. OPT13,....

(2) When the controller is specified as the client

Parameter Before/after Parameter value
change
Before 192.168.0.20
NETIP After 192.168.0.20 (unchanged)
Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
NETPORT After 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009
(unchanged)
Before 0
CPRCE13 After 2
Before
COMDEV After ,, OPT13,,,,,
Before 1,1,1,1,1,11.1.1
NETMODE After 1,1,0,1,1,1,1,1,1
Before 192.168.0.2, 192.168.0.3, 192.168.0.4, 192.168.0.5, 192.168.0.6,
NETHSTIP 192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10
After 192.168.0.2, 192.168.0.3, 192.168.0.2, 192.168.0.5, 192.168.0.6,
192.168.0.7, 192.168.0.8, 192.168.0.9, 192.168.0.10

3 Description of functions

3.2.2.4. Starting the sample program

The test program is an example for establishing a data link between the robot and personal computer. COM3 is used.

(1) Using the teaching pendant or personal computer support software, register the following robot program with an
appropriate program name.

<Robot program>

1) Example for MELFA-BASIC V

1 OPEN "COM3:" AS #1 ' Open as communication line COM3

2 PRINT #1,"START" ' Send START character string

3 *LOOP:INPUT #1,DATA ' Wait for reception of value in DATA variable
4 |F DATA<O THEN GOTO *LEND ' If DATA is negative, jump to line 7 and end
5 PRINT #1,"DATA=";DATA ' Reply DATA = value

6 GOTO *LOOP ' Jump to line 3 and repeat

7 *LEND:PRINT #1,”"END" ' Send END character string

8 END 'End

(2) Start the personal computer data link program

Refer to section "4.2.1 Sample program for data link function" and create the execution file. (The created execution file will
be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

Set the IP address and port No., click on the connection check box, and open the communication line with the controller.
If the Send button is not validated, check that the IP address matches NETIP set with the controller.

If the button is still not validated, refer to section "2.3 Checking the connection", and check the connection cable or restart

the controller and sample.exe.

(3) Start the robot program.

Press the START button on the robot controller's operating panel, and start the robot program.

. Data link

IF Address Fort Mo

I'I 9216801 10003 ¥ Connection)
Send data

I'I 23

Fecieve data

START- =
DATA=+123- .
DATA=+123-
DATA=+123-

3-11

3 Description of functions

3.2.2.5. Communication

(1) When the robot controller program is started, first the following data will be sent to the personal computer.
"START"(CR) (CR) indicates the CR code.

(2) When the personal computer receives the data, the characters will appear in the received data area.

START-

(3) Send value data from the personal computer.

For example, input the value data 123 in the transmission data area, and click on the Send button with the mouse.
(4) When the robot controller receives the value data in the DATA variable, it will reply data to the personal computer.
DATA=123 will appear in the personal computer's received data area.

If communication cannot be carried out correctly, refer to section "2.3 Checking the connection" in this manual.

When the robot controller power is turned OFF and ON, the connection will be disconnected

Q CAUTION and communication will be disabled.

In this case, end the application software on the personal computer once, and then
restart.

3.2.3. Ending

3-12

(1) Press the END button on the robot controller operating panel, and enter cycle operation.
(2) Input the value -1 from the personal computer, and end the program.

(3) End the personal computer's sample program.

)

(4) Turn OFF the robot controller's power.

3 Description of functions

3.3. Real-time external control function

The robot motion movement control can retrieve the position command at real-time in cycle units, and move to the
commanded position. It is also possible to monitor the input/output signals or output the signals simultaneously.

Using the robot language MXT command, real-time communication (command/monitor) is carried out with communication.

Realtime extemal control packet S
data * transmission/reception

v

Wh: = =--—-
—, -

CR800/CR75x robot controller Ethernet Windows personal
Robot program computer application

Motion movement control cycle (CR750/CR751 series: approx. 7.1 ms,

CR800 series: approx. 3.5 ms (If user mechanical is set, approx. 7.1 ms))

wtoonater (| [1 [1 [1 []
ﬂN w H] Kﬂﬁ

Command position
transmission/reception

>

Command value calculation

The following table lists the position command data for giving the target move position from the personal computer to the
robot for each hour of the motion operation control cycle, and the monitor data types from the robot.
For more information about communication data, see Section 3.3.1, “Command Explanation” and Section 3.3.2,

“Communication Data Packet Explanation” in this document.

Position command data type Monitor data type
[1] Rectangular coordinate data [1] Rectangular coordinate data
[2] Joint coordinate data [2] Joint coordinate data

[3] Motor pulse coordinate data [3] Motor pulse coordinate data

[4] Rectangular coordinate data (command value after filter processing)
[5] Joint coordinate data (command value after filter processing)

[6] Motor pulse coordinate data (after filter processing)

[7] Rectangular coordinate data (encoder feedback value)

[8] Joint coordinate data (encoder feedback value)

[9] Motor pulse coordinate data (encoder feedback value)

[10] Current command (%)

[11] Current feedback (%)

3-13

3 Description of functions

* Flow of real-time external control
Robot controller side

[Robot program start]

Robot program start

> Robot program start

Automatically Execute process only
repeated until end when command is issued
command is received

[~ Packet data

transmission

—

Communication
packet data

A4

[Robot program end]

3-14

—

Personal

[Application program start]

A\ 4

Ethernet initialization, socket

creation, etc.

N EEEEEE——

\ 4
/ Creation of transmission
packet data

v

Transmission of packet data

mnd received?

/

Reception of packet data

N—

Y

[Application program end]

3.3.1. Explanation of command

3 Description of functions

Either the MELFA-BASIC V command languages can be used with the real-time external control function.
Note that the meanings of the arguments differ for the MELFA-BASIC V commands. (Refer to following format and

terminology.)

Refer to section "3.3.2 Explanation of communication data packet" for details on the structure of the communication data

packet used with this function.

MXT (Move External)

[Function]

The absolute position data is retrieved from an external source at each controller control time (currently approx. 7.1msec),

and the robot is directly moved.

[Format]

MXT <File No.>, <Reply position data type> [, <Filter time constant>]

[Terminology]
<File No.>

<Replay position data type>

<Filter time constant>

[Reference Program]

Describe a number between 1 and 8 assigned with the OPEN command.
If the communication destination is not designated with the OPEN command, an
error will occur, and communication will not be possible.
In addition, data received from a source other than the communication destination
will be ignored.
Designate the type of the position data to be received from the personal computer.
A XYZ/joint/motor pulse can be designated.

0: XYZ coordinate data

1: Joint coordinate data

2: Motor pulse coordinate data
Designate the filter time constant (msec). If 0 is designated, the filter will not be
applied. (0 will be set when omitted.) A filter is applied on the reception position
data, an obtuse command value is created and output to the servo.

1 OPEN "ENET:192.168.0.2" AS #1 ‘Ethernet communication destination IP address

2 MOV P1 ‘Move to P1

3 MXT1,1,50 ‘Move with real-time external control with filter time constant set to
50msec

4 MOV P1 ‘Move to P1

5HLT ‘Halt program

3-15

3 Description of functions

[Explanation]
* When the MXT command is executed, the position command for movement control can be retrieved from the personal
computer connected on the network. (One-on-one communication)
* One position command can be retrieved and operated at the operation control time (currently 7.1msec).
* Operation of MXT command
1) When this command is executed with the controller, the controller enters the command value reception enabled state.
2) When the controller receives the command value from the personal computer, it will output the received command
value to the servo within the next control process cycle.
3) After the command value is sent to the servo, the controller information, such as the current position is sent from the
controller to the personal computer.
4) A reply is made from the controller to the personal computer only when the command value from the personal
computer is sent to the controller.
5) If the data is not received, the current position is maintained.
6) When the real-time external command end command is received from the personal computer, the MXT command is
ended.
7) When the operation is stopped from the operating panel or external input, the MXT command will be halted, and the
transmission/reception will also be halted until restart.
* The timeout is designated with the parameter MXTTOUT.
* One randomly designated (head bit, bit width) input/output signal can be transmitted and received simultaneously with the
position data.
* A personal computer with sufficient processing speed must be used to command movement in the movement control time.

3-16

3 Description of functions

3.3.2. Explanation of communication data packet

The structure of the communication data packet used with the real-time external control function is explained in this section.
The same communication data packet for real-time external control is used for commanding the position and for monitoring.
The contents differ when transmitting (commanding) from the personal computer to the controller and when receiving
(monitoring) from the controller to the personal computer.

(1) Communication data packet.

Name Data type Explanation
Command unsigned short Designate the validity of the real-time external command, and the end.
(2-byte) 0 Il Real-time external command invalid

1 1l Real-time external command valid

255 /I Real-time external command end
Transmission data type | unsigned short 1) When transmitting (commanding) from the personal computer to the
designation (2-byte) controller, designate the type of position data transmitted from the
SendType personal computer.

There is no data at the first transmission.

0 /l No data

1 /I XYZ data

2 /l Joint data

3 /I Motor pulse data

2) When receiving (monitoring) from the controller to the personal
computer, indicate the type of position data replied from the controller.

0 /I No data

1 /I XYZ data

2 /I Joint data

3 /I Motor pulse data

4 /I XYZ data (Position after filter process)

5 /I Joint data (Position after filter process)

6 /I Motor pulse data (Position after filter process)
7 Il XYZ data (Encoder feedback value)

8 Il Joint data (Encoder feedback value)

©

I/l Motor pulse data (Encoder feedback value)
10 I/l Current command [%)]
1 Il Current feedback [%]

* It is the same as RecvType. You may use whichever.

3-17

3 Description of functions

Name

Data type

Explanation

Reply data type
designation
RecvType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the type of data replied from the controller.
0 /I No data
/I XYZ data
/I Joint data
/I pulse data
/I XYZ data (Position after filter process)
/I Joint data (Position after filter process)
/I Motor pulse data (Position after filter process)
I XYZ data (Encoder feedback value)
Il Joint data (Encoder feedback value)
Il Motor pulse data (Encoder feedback value)
Il Current command [%]
Il Current feedback [%]

= =2 000N~ WN =

- O

2) When receiving (monitoring) from the controller to the personal

computer, indicate the type of position data replied from the controller.
0 /I No data

/I XYZ data

/I Joint data

/I Motor pulse data

/I XYZ data (Position after filter process)

/I Joint data (Position after filter process)

/I Motor pulse data (Position after filter process)

I XYZ data (Encoder feedback value)

Il Joint data (Encoder feedback value)

/I Motor pulse data (Encoder feedback value)
10 /I Current command [%]
1 Il Current feedback [%]

* It is the same as RecvType. You may use whichever.

O ~NO OB OWON -

©

Reservation
reserve

unsigned short
(2byte)

Not used.

Position data
Pos / jnt/ pls

POSE, JOINT or
PULSE (40-byte)

* Refer to strdef.h
in the sample
program for
details on each
data structure.

1) When transmitting (commanding) from the personal computer to the
controller, designate the command position data transmitted from the
personal computer.

Set this to the same data type as that designated for the transmission data
type designation.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the position data replied from the controller.
The data type is shown in SendType (= RecvType) .

The contents of data are common to command/monitor.
POSE // XYZ type [mm/rad]
JOINT // Joint type [rad]
PULSE // Motor pulse type [the pulse] or Current type [%].

3-18

3 Description of functions

Name

Data type

Explanation

Transmission

input/output signal data

designation
SendlOType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal transmitted
from the personal computer.

Designate "No data" when not using this function.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the data type of the input/output signal replied

from the controller.

The contents of the data are common.

0 /I No data
1 /I Output signal
2 /I Input signal

Reply input/output
signal data designation
RecviOType

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, designate the data type of the input/output signal replied from
the controller.

Designate "No data" when not using this function.

0 /I No data
1 /I Output signal
2 /I Input signal

2) When receiving (monitoring) from the controller to the personal
computer, Not used.

Input/output signal data
BitTop
BitMask
loData

unsigned short
unsigned short
unsigned short
(2-byte x 3)

1) When transmitting (commanding) from the personal computer to the
controller, designate the output signal data transmitted from the personal
computer.

2) When receiving (monitoring) from the controller to the personal
computer, this indicates the input/output signal data replied from the
controller.

The contents of the data are common.
BitTop; // Head bit No. of input or output signal
BitMask; // Bit mask pattern designation (valid only for
commanding)
/I Input or output signal data value (for monitoring)
Output signal data value (for commanding)
* Data is 16-bit data

loData;

Timeout time counter
value
Tcount

unsigned short
(2-byte)

1) When transmitting (commanding) from the personal computer to the
controller, Not used.

2) When receiving (monitoring) from controller to personal computer, if the
timeout time parameter MXTTOUT is a value other than -1, this indicates
the No. of times communication with the controller was not possible. When
the No. of times is counted and reaches the maximum value, the value will
return to the minimum value 0, and the count will be repeated. This is set
to 0 when the MXT command is started.

Counter value for
communication data
Ccount

unsigned long
(4-byte)

1) When transmitting (commanding) from the personal computer to the
controller.

2) When receiving (monitoring) from controller to personal computer, this
indicates the No. of communication times.

3-19

3 Description of functions

Name

Data type

Explanation

Reply data-type
specification addition
1

unsigned short
(2-byte)

It is the same as reply data-type specification (RecvType).
Do not use it for instructions.

RecvType1
Reservation 1 unsigned short Not used.
reservel (2-byte)
Data addition 1 Any of It is the same as data of pos/jnt/pls.

pos /jnt/ pls

POSE/JOINT/PU
LSE.

Do not use it for instructions.

(40-byte)
Reply data-type unsigned short It is the same as reply data-type specification (RecvType).
specification addition (2-byte) Do not use it for instructions.

2

RecvType2
Reservation 2 unsigned short Not used.

Reserve2 (2-byte)
Data addition 2 Any of It is the same as data of pos/jnt/pls.

pos / jnt/ pls POSE/JOINT/PU | Do not use it for instructions.

LSE.
(40-byte)

Reply data-type unsigned short It is the same as reply data-type specification (RecvType).
specification addition (2-byte) Do not use it for instructions.

3

RecvType3

Reservation 3 unsigned short Not used.
Reserve3 (2-byte)

Data addition 3 Any of It is the same as data of pos/jnt/pls.
pos / jnt/ pls POSE/JOINT/PU | Do not use it for instructions.

LSE.
(40-byte)

3-20

3.3.3. Using real-time external control function

3 Description of functions

This section explains the operations for starting the sample program given in "4.2.2 Sample program for real-time external

control function" and communicating with a system in which the controller and network personal computer are connected with

a one-on-one cross cable.

Connecting the controller and personal computer.

Setting the personal computer network.

Setting the controller parameters.

Starting the sample program.

Communication.

Ending

3.3.3.1. Connecting the controller and personal computer

.. Refer to section 3.3.3.1

.. Refer to section 3.3.3.2

.. Refer to section 3.3.3.3

.. Refer to section 3.3.3.4

.. Refer to section 3.3.3.5

.. Refer to section 3.3.4

Connect the controller and personal computer with a cross cable.

Refer to the connection described in section "2.1 Ethernet cable".

3.3.3.2. Setting the personal computer network

Refer to section "2.2.6 Example of setting the parameters 3 (for using the real-time external control function)" and set the

network.

3.3.3.3. Setting the controller parameters

Turn ON the robot controller power, and set the parameters as shown below.

If the default settings are to be used, the parameters do not need to be changed.

After setting the parameters, turn the robot controller power OFF and ON.

Refer to the instruction manual enclosed with the robot controller for details on setting the parameters.

Name of parameter | Before/after
to change changes

Parameter value

Before 192.168.0.20

NETIP

After 192.168.0.20 (Default value)

Before 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

NETPORT 10000,10001,10002,10003,10004,10005,10006,10007,10008,10009

After (Default value)
Before -1
MXTTOUT After | -1 (Default value)

3-21

3 Description of functions

3.3.3.4. Starting the sample program

3-22

The test program is an example of communicating in real-time between the robot and personal computer. The XYZ

position data X axis or joint position data J1 axis is commanded from the personal computer to the robot and controlled.
(1) Using the teaching pendant or personal computer support software, register the following robot program with an
appropriate program name.

<Robot program>

Example for MELFA-BASIC V

-

1 OPEN "ENET:192.168.0. 20" AS #1 ' Designate personal computer side IP address as Ethernet in file No. 1

2 MOV P1 ' Move to default position P1 (teach random position as P1)

3 MXT1,0 ' Move according to command value issued from file No. 1
Current XYZ position is replied from controller to personal computer

4 MOV P1 ' After external control mode ends, move to default position P1 with joint
interpolation

5HLT ' Halt

6 END ' End

(2) Start the robot program.
Press the START button on the robot controller's operating panel, and start the robot program.

The robot will move to the default position P1, and real-time external control will be executed with the MXT command.

(3) Start the personal computer's real-time external control sample program.

Refer to section "4.2.2 Sample program for real-time external control function" and create the execution file. (The created
execution file will be sample.exe.)

Start Windows Explorer, and double-click on sample.exe.

3.3.3.5. Moving the robot

3 Description of functions

Specify and input the following values for the numerical value displayed on the screen according to the message of the

sample program.

*The IP address (192.168.0.20) of the robot controller of the connection point
*The port number (10001)

*The data type of command

*The data type of monitoring, etc.

Fit the data type of command to the argument of the MXT command of the robot program

Key operation is as follows. For details, refer to the sample program.

Key

Contents

ZorX.

The robot moves.

Cc

The instruction value is set to 0 and the robot stops.

D

Each time the MOVE key is pressed, change the display /
un-displaying of the monitor data

ENTER

End the MXT command.

If the amount of instructions becomes too large or the movement range of the robot is exceeded, an error is

generated and the robot controller stops. In this case, reset the robot controller.
ammand prarmpt

If communication cannot be carried out correctly, refer to section "2.3 Checking the connection”, and check the connection
cable or restart the controller and sample.exe.

/A\CAUTION

3.3.4. Ending

When the robot controller power is turned OFF and ON, the connection will be disconnected
and communication will be disabled.

In this case, end the application software on the personal computer once, and then
restart.

(1) Press the END button on the robot controller operating panel, and enter cycle operation.
(2) End the personal computer's sample program.
When the [ENTER] key is pressed, the MXT command will end, the robot will return to the default position, and the robot

program will stop.

The sample program will also end.
(3) Turn OFF the robot controller's power.

3-23

3 Description of functions

3.4. Real-time monitor function

3.4.1. Overview

In using such communication equipment as PLC and personal computers, this function is used to monitor orthogonal and
joint position data of the current position of the robot controller in real-time using Ethernet UDP communication.

3.4.1.1. CR800 series

3-24

..\:ﬁ'

iQ-R Series \‘A\ 7]
*R Type only ’]
fl ‘ Robot .
v, icati - M. FR Series -
Ethernet communication device
n
S
1000BASE-T
Ethernet Cable p

- ®
a _ " |

Controller
CR800

R32TB or R56TB

System configuration (Example)

3 Description of functions

3.4.1.2. CR75n series

Q172DRCPU
*Q Type onl

PLC, PC, ... ‘

10BASE-T/100BASE-TX
Ethernet Cable

Controller
CR75x-Q/ CR75x-D

R32TB or R56TB

System configuration (Example)

3.4.2. Supported version

Controller type Version Remarks
CR75x-Q Ver.R3n RT2 Oscillograph function corresponding Ver.R4b or later
CR75x-D Ver.S3n RT2 Oscillograph function corresponding Ver.R4b or later

The CR800 controller is supported by all the software versions.

3-25

3 Description of functions

3.4.3. Setup

It is a set-up procedure of example conditions.

3.4.3.1. CR800 series

List conditional example

IP address of Robot controller 192.168.0.20
IP address of PC 192.168.0.2
Port number for Real-time monitor 12000, 12001 Receive port = 12000, Send port = 12001

(1) Connecting the controller and personal computer
Connect the Ethernet cable to the connector of the controller. When the hub is used, use the straight cable. Or when the
personal computer and controller are connected to each other one to one, use the cross cable.

iQ-R Series 1 ’
*R Type only ‘ ‘ 1

s a

Robot N
FR Series

. 1
1000BASE-T " \
Ethernet Cable #

Controller
CR800

R32TB or R56TB

(2) Setting the controller parameters

Set the parameters of the robot controller as shown in Table. For more information about parameters, see 3.4.7.

Parameter setting example

Before/after
Parameter Parameter value
change
192.168.0.20 (D type Robot controller)
before
NETIP 192.168.0.10 (R type Robot controller)
after Same as above (unchanged)
before 0
MONMODE
after 1
before 12000, 0
MONPORT
after 12000, 12001* Only when a change is required

(3) Setting the personal computer
To suit your network, please perform the communication settings. Please specify the UDP protocol of Ethernet

communication.

3-26

3 Description of functions

3.4.3.2. CR75n series

Example of conditions

IP address of Robot controller 192.168.0.20 (D type Robot controller)
IP address of PC 192.168.0.2
Port number for Real-time monitor 12000, 12001 Receive port = 12000, Send port = 12001

(1) Connecting the controller and personal computer
Connect the Ethernet cable to the connector of the controller. When the hub is used, use the straight cable. Or when the
personal computer and controller are connected to each other one to one, use the cross cable.

Q172DRCPU A Gl Y
*Q Type onl Wi i

PLC, PC, ... [
Ethernet communication device

10BASE-T/100BASE-TX
Ethernet Cable

Controller
CR75x-Q / CR75x-D

R32TB or R56TB

(2) Setting the controller parameters

Set the parameters of the robot controller as shown in Table. For more information about parameters, see 3.4.7.

Parameter setting example

Before/after
Parameter Parameter value
change
192.168.0.20 (D type Robot controller)
before
NETIP 192.168.100.1 (Q type Robot controller)
after Same as above (Default value)
before 0
MONMODE
after 1
before 12000, 0
MONPORT
after 12000, 12001* Only when a change is required

(3) Setting the personal computer
To suit your network, please perform the communication settings. Please specify the UDP protocol of Ethernet
communication.

3-27

3 Description of functions

3.4.4. Start of monitor / End of monitor

Explain start of monitor and end of the monitor.

(1) Start of monitor

Set the data type ID as a starting packet data, set data output start (1) on the command, you want to monitor the return
data type 1-4 In addition, it sends to the robot controller.

If the start packet data is accepted normally, the robot controller continuously sends reply packet data (output data) to the

Ethernet communication device by every control cycle of the robot controller (refer to the following).

Controller Control cycle (*1)
CR750/CR751 series Approx. 7.11 msec
CR800 series Approx. 3.5 msec (*If user mechanical is set, approx. 7.11 msec)

*1 Because it depends on the performance of the communication path and the communication device, the period is not

guaranteed.
(2) End of monitor
It will be sent to the robot controller by setting the data output end (255) to the command end packet data. If accepted, the

robot controller to exit the sending of the reply packet data.

If you want to change the type of output data on the monitor the way, it sends a start packet data.

Ethernet <Send packet data> Robot

* Command (Start / End)

Communication * Reply data type 1 to 4 Controller

(Data type ID)
* Input/Output signal number

Device

<Reply packet data>
* Reply data 1to 4
* Input/Output signal data

A

Until the end of monitor

About communication device
« Communication device is the only one. It is not possible to communicate with the other device of two or more.
+ It is disconnected from the communication device in communication first, and then communicates with a corresponding later

The data output from the robot, for that is sent (UDP) communication via Ethernet without the
ﬁca utlon retransmission process, because there is the case that such noise environments, such as the
transmission of data or a wrong data dropout occurs, the guarantee of data is not possible.

3-28

3 Description of functions

3.4.5. Explanation of communication data packet

It describes the structure of the communication packet data to be used in real-time monitoring function. To the robot controller,

| will use the same packet structure on both send and receive from Ethernet communication device. Storage method of

data is little-endian. Real data in 32-bit real number is IEEE754 standard method. Data packet size is 196 bytes fixed.

Table 3-1 Data packet

Name Data type Explanation Address
unsigned short Specifies the start or end of the real-time monitoring function.
Command 2 byes 1 /I Start of the real-time monitor 0-1
255 // End of the real-time monitor
Not used(reserve) 2 byes Not used 2-3
1) Communication device — Robot controller
Specifies the <Data type ID> of the data that you want to monitor.
unsigned short
Reply data type 1 2 byes 2) Robot controller — Communication device 4-5
Echo back of send 1)
*Data type ID see [3.4.6 Data type ID]
Not used(reserve) 2 byes Not used 6-7
1) E Communication device — Robot controller
Data structure Not used. Set to zero.
POSE, JOINT, PULSE,
ROBMON, 2) Robot controller — Communication device
FORCE or FLOATS8 The output data sent back from the controller.
40 bytes Data type is seeing in the return data type.
Reply data 1 *Data structure 8-47
* Each data structure is POSE /I XYZ type [mm/rad]
described in Table JOINT I/ Joint type [rad]
Table 3-2, Table 3-3 PULSE /I Motor pulse type [pulse] or Current type[%]
Table 3-4, Table 3-5 FORCE /I Force sensor type
Table 3-6, Table 3-7 ROBMON // Robot movement information
FLOATS8 /| General purpose, floatx8
Input signal number of 1) Communication device — Robot controller
the top unsigned short Input signal number of the top (0 to 32767) 48.49
2 byes 2) Robot controller — Communication device
* Ver.R4b/S4b or later Echo back of send 1)
Output signal number 1) Communication device — Robot controller
of the top unsigned short Output signal number of the top (0 to 32767) 50.51
2 byes 2) Robot controller — Communication device
* Ver.R4b/S4b or later Echo back of send 1)
. 1) Communication device — Robot controller
Input signal data unsigned long Not used. Set to zero. 52.53
*Ver.R4b/S4b or later | 4 PYeS 2) Robot controller — Communication device
Input signal data(0x00000000-0xffffffff)
. 1) Communication device — Robot controller
Output signal data unsigned long Not used. Set to zero. 56.57
*Ver.R4b/S4b or later | 4 PYeS 2) Robot controller — Communication device
Output signal data(0x00000000-0xffffffff)
1) Communication device — Robot controller
Not used. Set to zero.
Communication data unsigned long o)
counter 4 byes 2) Robot controller — Communication device o 60-63
The number of communications. To return to the minimum
value 0 and the maximum value by integrating.
Reply data type 2 ;nbs;geged short Same Reply data type 1 64-65
Not used(reserve) 2 byes Not used 66-67
POSE, JOINT, PULSE,
Reply data 2 ROBMON, Same Reply data 1 68-107
FORCE or FLOATS8 40 bytes
Reply data type 3 ;nbs)llgeged short Same Reply data type 1 108-109
Not used (reserve) 2 byes Not used 110-111
POSE, JOINT, PULSE,
Reply data 3 ROBMON, Same Reply data 1 112-151
FORCE or FLOATS8 40 bytes
Reply data type 4 unsigned short 2 byes Same Reply data type 1 152-153
Not used (reserve) 2 byes Not used 154-155
POSE, JOINT, PULSE,
Reply data 4 ROBMON, Same Reply data 1 156-195
FORCE or FLOATS8 40 bytes

3-29

3 Description of functions

Table 3-2 POSE (XYZ) data structure

X element 4 bytes
float
Y element 4 bytes
float
Z element 4 bytes
float
A element 4 bytes
float
4 byt
B element floa); es XYZ data [mm / rad], 40 bytes
4 byt * Data type 1 and 7 is unit of radians.
C element roa{ es Data type 1001 and 1007 is unit of degrees.
L1 element 4 bytes
float
L2 element 4 bytes
float
FLA(Structure flag 1) f;:;tes
FL2(Structure flag 2) It:gtes
Table 3-3 JOINT data structure
J1 element 4 bytes
float
J2 element 4 bytes
float
J3 element 4 bytes
float
4 byt
J4 element ﬂoaxi s Joint data [rad], 32 bytes
4 bvi * Data type 2 and 8 is unit of radians.
J5 element floa); es Data type 1002 and 1008 is unit of degrees.
J6 element 4 bytes
float
J7 element 4 bytes
float
J8 element 4 bytes
float
Not used 8 bytes Not used. Value is zero.
Table 3-4 PULSE (Pulse/%) data structure
M1 element 4 bytes
long
M2 element 4 bytes
long
M3 element 4 bytes
long
M4 element I‘t):ytes
9 Motor pulse data or current data [0.1% rate] , 32 bytes
4 bytes
M5 element
long
M6 element 4 bytes
long
M7 element 4 bytes
long
M8 element 4 bytes
long
Not used 8 bytes Not used. Value is zero.

3-30

3 Description of functions

Table 3-5 FORCE (N/Nm) data structure

F1 element 4 bytes
float
F2 element 4 bytes
float
F3 element ;1loba);tes
Force sensor data[N, Nm] , 32 bytes
4 bytes
F4 element
float
F5 element 4 bytes
float
F6 element 4 bytes
float
Not used 16 bytes Not used. Value is zero.

Table 3-6 ROBMON (Robot information) data structure

;I;SZLEZ?;)SPBM ;1loba);tes Speed of a tool center point (feedback) [mm/s]
Remaining distance 4 bytes The remaining distance to the target position (in
(feedback) float mm) while the robot is moving (feedback).
Tool point speed 4 bytes Speed of a tool center point (command)
(command) float Same as status variable values “M_RSpd”
Remaining distance 4 bytes The remaining distance to the target position (in mm) while the robot is moving
(command) float (command). .

Same as status variable values “M_RDst".
Gap of command and | 4 bytes The gap of a command position and a feedback position.
feedback float Same as status variable values “M_Fbd”.
Transport factor (command) itbeﬁZf Speed of a tool center point (feedback)

. The current acceleration/deceleration status. (command)
Acceleration state 2 bytes _ -) _ _ .
(command) integer [O—Stopped,1—Accglerat|ng, 2= ?onstant s”peed, 3= Decelerating]

Same as status variable values “M_AclSts”.
Step number 2 bytes Step number (Only slot 1), (1-32767)
integer
Program name 6 bytes Program name (Only slot 1)
character Max Program name is 6 characters
Controller temperature 2 bytes Controller temperature [0.1°C]
integer
Not used 2 bytes Not used.
Monitoring counter 4 bytes After power-on, +1 is counted from 0 in an operation control cycle unit (64/9 (*1)).
long The counting repeats in the range of 0 to 4294967295.

(*1) CR750/CR751 series: approx. 7.111 ms, CR800 series: approx. 3.5 ms (If user mechanical is set, approx. 7.1 ms)

Table 3-7 FLOATS (short real) data structure

float 1 4 bytes
float
float 2 4 bytes
float
float 3 4 bytes
float
float 4 4 bytes
float 5 ios;tes float (short real), 32 bytes
float
float 6 4 bytes
float
float 7 4 bytes
float
float 8 4 bytes
float
Not used 8 bytes Not used. Value is zero.

3 Description of functions

3.4.6. Data type ID

The type of data that can be monitored in real-time monitor function.

Table 3-8 Data type ID

ID Contents Data structure Ver.

0 no data —

1 XYZ position (Command) *Angle in radians POSE

2 Joint position (Command) *Angle in radians JOINT

3 Motor pulse position (Command) PULSE (Longx8)

7 XYZ position (Feedback) *Angle in radians POSE R3n/S3n or
8 Joint position (Feedback) *Angle in radians JOINT later

9 Motor pulse position (Feedback) PULSE (Longx8)

10 Current command [0.1% rate] PULSE (Longx8)

11 Current feedback [0.1% rate] PULSE (Longx8)

12 Robot information ROBMON

13 Position droop PULSE (Longx8)

14 Speed (Command) [rpm] PULSE (Longx8)

15 Speed (Feedback) [rpm] PULSE (Longx8)

16 Axis load level [%] FLOAT8(Floatx8)

17 Encoder temperature [°C] PULSE (Longx8)

18 Encoder misscount PULSE E?gsllb or
19 Motor voltage [V] PULSE (Longx8)

20 Regeneration level [%] PULSE (Longx8)

21 Tolerable command + [0.1% rate] PULSE (Longx8)

22 Tolerable command - [0.1% rate] PULSE (Longx8)

23 RMS current [0.1% rate] PULSE (Longx8)

101 Force sensor current position xyz[N]Jabc[Nm] FORCE (Floatx8)

102 Force sensor original data (after offset cancel) xyz[N]Jabc[Nm] FORCE (Floatx8)

103 Force sensor original data (before offset cancel) xyz[N]Jabc[Nm] FORCE (Floatx8) R3n/S3n or
104 Position command of the force sensor correction POSE later

111 COL presumed torque [0.1% rate] PULSE (Longx8)

112 COL threshold + [0.1% rate] PULSE (Longx8)

113 COL threshold - [0.1% rate] PULSE (Longx8)

1001 | XYZ position (Command) *Angle in degrees POSE

1002 | Joint position (Command) *Angle in degrees JOINT

1007 | XYZ position (Feedback) *Angle in degrees POSE

1008 | Joint position (Feedback) *Angle in degrees JOINT RA4b/S4b o
1010 | Current command [Arms] FLOATS8 (Floatx8) later

1011 | Current feedback [Arms] FLOATS8 (Floatx8)

1012 | Tolerable command + [Arms] FLOATS (Floatx8)

1013 | Tolerable command - [Arms] FLOATS (Floatx8)

1014 | RMS current [Arms] FLOATS8 (Floatx8)

3-32

3.4.7. Parameters

Table 3-9 Parameter

3 Description of functions

Parameter

Parameter
name

No. of
arrays

Details explanation

Factory setting

MONMODE Integer 1

function
0: Disable
1: Enable

Switch to enable or disable real-time monitoring

Ethernet
real-time
monitor

MONPORT

number of real-time monitor function.
(0 to 65535)

First element: Receive port number

Integer 2 Second element: Send port number

Second element:

data start the robot controller has received

Specify the receive port number and the send port

0 is special value, reply to the sender port number
that is set to UDP header information in the packet

12000, 0

3.4.8. Error

Table 3-10 Error

Error number

L.7810

Error cause and measures
Error
NETPORT/MONPORT parameter error
message
Cause The element of NETPORT(1) and MONPORT(1/2) overlap.
Measures Please set not to overlap to another port number.
UDP port number to be used for real-time monitoring function and real-time
Detail external control is duplicated. That you cannot use the same port number,
please change to a different port number.

3-33

3 Description of functions

3.5. SLMP Connection

3.5.1. Function Overview

Please note that the functions listed here apply only to the FR series, and not the F series.

SLMP is a common protocol for seamless communication between applications. Users do not have to be concerned with
network layers or boundaries. SLMP communications are available among devices that can transfer messages by SLMP
(programmable controllers, personal computers, HMIs and others). (For the details of the SLMP compatibility of external
devices, refer to the Instruction Manual of external devices.)

The FR Series supports the SLMP communication server function.

3.5.2. Supported version

Controller type Version Remarks
CR800-R All versions CR75x-Q and CR75x-D are not supported
CR800-D

3.5.3. Specifications

The following section describes the specifications of the SLMP-compatible device and SLMP communication.

3.5.3.1. SLMP Specifications
The SLMP specifications for the message sent by an external device or with the communication protocol support function

are as follows.

Item Communication data Description Reference
code
SLMP - ASCII code This is the same message format as that for | 3.5.6.1 Request Message
- Binary code MC protocol QnA-compatible 3E frame and
4E frame.

Compared to communication with ASCII code, communication with binary code involves approximately half the amount of

communication data.

3.5.4. Parameters

Specify settings with the following parameters.

Parameter No. of arrays
No. of Description Factory setting
name
characters

SLMPPORT |Integer 1 Set the SLMP server communication port No. (1024 to 65535) |45237

Set the SLMP server communication protocol.
SLMPCP Integer 1 0: TCP 1

1: UDP
SLMPNWNO | Integer 1 Set the SLMP network number. (1 to 239) 1
SLMPNDID Integer 1 Set the SLMP station number. (1 to 120) 1

3-34

3 Description of functions

3.5.5. SLMP Communication Procedure

An external device and an SLMP-compatible device communicate as follows.

3.5.5.1. Using TCP/IP
The following is the communication procedure when performing SLMP communication with TCP/IP.
With TCP/IP, connections are established when updating, and whether data is received normally or not is checked to

ensure reliability of data. However, the line load is high as compared to UDP/IP.
External device SLMP-compatible device

Connection request

Connecting operation

The external device issues a connection request

The inverter accepis the connection request from
to the robot. (Active open)

the external device. (Passive open)

Execution of the operation

I‘_

TN N Y SR
|4—

Upon establishment of the connection, the external

) According to the request message sent from
device sends a request message to the robot.

the external device, the inverier executes
reading, writing, or other operation.

[Sending a request message J
Returning a response message J

The process is repeated as needed.

Upon completion of the operation, the inverter sends
aresponse message to the external device.

Closing the connection

Closing the connection

The external device issues a close request
to the robot and closes the communication.

The robot accepts the close request from the
external device and closes the communication.

\ J/ P \ /

Receiving the response message
E—

The external device receives the response message

from the robot and confirms the operation result.

3-35

3 Description of functions

3.5.5.2. Using UDP/IP
The following is the communication procedure when performing SLMP communication with UDP/IP.
With UDP/IP, connections are not established when communication is executed, and whether data is received normally or
not is not checked. Therefore, the line load is low. However, data is less reliable as compared to TCP/IP.

External device SLMP-compatible device

Sending a request message Execution of the operation

According to the request message sent from
the external device, the inverter executes a reading,
writing, or other operation.

|

I The external device sends a request message
to the robot.

The process is repeated as needed.

Receiving the response message Returning a response message

|4—

| Upon completion of the operation, the inverter sends

The external device receives the response message
a response message fo the external device.

from the robot and confirms the operation result.

End of the communication

The extemmal device executes the closing operation
1o close the communication.

3-36

3 Description of functions

3.5.6. Message Format

The following section describes the SLMP message format.

3.5.6.1. Request Message

The following is the format of a request message sent from an external device to an SLMP-compatible device.

Header Subheader Destination | Destination| Destination unit |Destination| Request data Monitoring timer | Request data Footer
network |stafion | IO No. multicrop | jength
No. No. station No.
B Header

This is the header for TCP/IP or UDP/IP. The header is added by the external device before transmission. Note that
the header is normally added automatically by the external device.

B Subheader
This will differ depending on whether a serial No. is added.
The serial No. is an arbitrary number for message recognition added at the external device. When a serial No. is
added and a request message sent, the same serial No. is added to the response message. Serial Nos. are used
when multiple request messages are sent from an external device to the same SLMP-compatible device.

When adding a serial No. to the request message

(When the serial No. is 1234H) When not adding a serial No. to the request message
(Fixed value) (Fixed value) (Fixed value)
ASCII code E 4 0 01 2 3 4|00 0 0 ASCllcode (5 0 0 0
3'.';-||3'1-||3Cl-||m-| 3"-||32-||33-|I3'1-| m-.lm-ulm-ulm-u 354,300 | 300 30H
Serial No.

(Fixed value)

(Fixed value) (Fixed value)

Binary code
Binary code

50+ 00

Sdet) 00+ | 3det | 124 | 00 000
Serial No.

® Use and manage serial Nos. at the external device side.

® When transmitting the message in ASCII code, the serial No. is stored in the order from higher-order byte to
lower-order byte.

® When transmitting the message in binary code, the serial No. is stored in the order from lower-order byte to
higher-order byte.

3-37

3 Description of functions

B Request destination network No., request destination station No.
Specify the access destination network No. and station No. Specify the network No. and station No. in hexadecimal.

Send the request destination network No. and request destination station No. in the order from higher-order byte to
lower-order byte.

¢ Network No. range
Host station: 00H
Other station: 01H to EFH (1 to 239)
¢ Station No. range
Host station: FFH (when the network No. is 00H)
Other station: 01H to 78H (1 to 120)

Example

When 1AH(26) is specified as the request destination network No.

ASCII code 1 A
3u 414

Binary code
1AH

When 1AH(26) is specified as the request destination station No.

ASCII code 1 A
3u (41H

Binary code

The host station has a network No. of 00H and a station No. of FFH. Other stations have other values.

The request data addressed to the own station is received regardless of the network No. and station
No. settings.

Furthermore, the request data addressed to the other stations is received when the SLMPNWNO and

SLMPNDID settings are the same.

3-38

B Destination unit I/O No.

Specify the access destination unit (fixed to 03FFH).

Example

When 03FFH is specified as the request destination unit I/0O No.

ASCII code 0 3 F F
300 | 331 (4B | B
Binary code
FF I'Cl?n-l

¢ When performing data communication in ASCII code

Send data in the order higher-order byte to lower-order byte.
e When performing data communication in binary code

Send data in the order lower-order byte to higher-order byte.

B Request destination multidrop station No.

Specify the access destination multidrop station (fixed to 00H).

Example)

When 0 is specified as the request destination multidrop station No.

ASCII code 0 0
Bt 304
Binary code
00

3 Description of functions

3-39

3 Description of functions

B Request data length
Specify the data length from the monitoring timer to the request data in hexadecimal. (Units: bytes)

Request data Monitoring Request data
length timer

] | |

Hexadecimal (unit: bytes)

Example

When the request data length is 24 bytes

ASCII code 00 1 8
3ﬂ1|301|3’1|351

Binary code

184, 001

e When performing data communication in ASCII code
Send data in the order from higher-order byte to lower-order byte.
e When performing data communication in binary code

Send data in the order from lower-order byte to higher-order byte.

B Monitoring timer
Not used (fixed to 0000H)

When 10H specified for monitoring timer

ASCII code 0 010
300 | 300 | 30 | 304

Binary code

A0 | 00w

3-40

3.5.6.2. Response Message Format
The following is the format of a response message sent from an SLMP-compatible device to an external device.

(Normal completion)

3 Description of functions

Header Subheader Destination | Destination| Desination unit |Destination| Response data | End code Response dafa Footer
network |station No. | IO No. mulfidrop | jength
No. station No.
(Failed completion)
Header Subheader Destination | Destinaion| Destination unit | Destination| Response data
network | station 1/ No. mulfidrop | jength
No No station
’ ’ T H
H
H
E End code Nefwork | Station Destination unit |Destination | Command Subcommand Footer
: No. No. 10 No. mulickop
LU {responding| {responding station No.
station) station)
L
~

Error information

* The following items contain the same information described in section 3.5.6.1 of this manual.

Request destination network No.

Request destination station No.

Request destination unit 1/0 No.

Request destination multidrop station No.

3-41

3 Description of functions

B Header

Contains the Ethernet header.

B Subheader
Contains the subheader for the request message.

When adding a serial No. to the request message

(when the serial No. is 1234H)

When not adding a serial No. to the request message

ASCII code

Binary code

(Fixed value)

(Fixed value)

(Fixed value)

(Fixed value)

3 124

D, 00H

00+ , 00w

Serial No.

D4 001 2 3 4]0 000
Al | 3 | 30 | 30| 31H | 32-|| 34 |3‘1 H | 304 |3CI-| |3CI-||3CI-|
Serial No.

(Fixed value)

ASCII code Do 0o
A | 300 304 30w
(Fixed value)
Binary code
DOx | O

¢ When performing data communication in ASCII code

Serial Nos. are stored in the order from higher-order byte to lower-order byte.

¢ When performing data communication in binary code

Serial Nos. are stored in the order from lower-order byte to higher-order byte.

3-42

3 Description of functions

B Response data length
The data length from the end code to the response data (successful completion) or error information (failed

completion) is stored in hexadecimal. (Units: bytes)
(Normal completion)

Request data End code Response data
length

T | |

Hexadecimal (unit: bytes)

(Failed completion)

l Hexadecimal (unit: bytes)

Request data |End code Network ﬁtation Destination unit |Destinati | Command Subcommand
length No. 0- 1/0 No. on

(respond- |(respond- multidrop

ing ing station

station) [station) No.

y
"

Error information

Example

When the response data length is 22 bytes

ASCII code 0 0 1 8
300) 300 | 30 3B

Binary code

"51|C'CI-|

¢ When performing data communication in ASCII code

Send data in the order from higher-order byte to lower-order byte.
e When performing data communication in binary code

Send data in the order from lower-order byte to higher-order byte.

3-43

3 Description of functions

B End code

The command processing result is stored.

The value "0" is stored for normal completion. An error code is stored for abnormal completion. (See section 3.5.8 of
this manual.)

Successful completion Failed completion (0400H)
ASCII code 00O 0 0 ASCII code 0 4 0 0
30 30w, 3w 30 B o 30 | 3
Binary code Binary code
004, O D0 0

3-44

¢ When performing data communication in ASCII code
The command processing result is stored in the order from higher-order byte to lower-order byte.
e When performing data communication in binary code

The command processing result is stored in the order from lower-order byte to higher-order byte.

Response data

When the command is completed successfully, data such as the read data corresponding to the command is stored.
Refer to the "Response data" section in the command description for details on response data.

Error information

The command and the subcommand, etc. for which an error occurred are stored.

3 Description of functions

3.5.7. Commands

The following section describes SLMP commands.
Refer to section 3.5.6 of this manual for details on message formats for other than the command sections.

B Request message format
(1) 3.5.6.1 Request Message
(2) Request data contains both commands and subcommands. Refer to section 3.5.7.2 onward in this manual for details.

" (2) 1)
~ . ~ A ~r A N
Header | Subheader Destina- {Z_)estina- Destination R}eﬁtina- Request data | Monitoring Request data ——
tion ion " i v
network [station unit /0 No. mutti- |'ength timer
No. No. drop
station
No.

B Response message format
® Normal completion
(1) 3.5.6.2 Response Message Format

(2) Refer to section 3.5.7.2 onward in this manual.

(1) 2 "
s m y > (_J_\
Header | Subheader |Destina- EeSti”a' Destination ?:rf“”a' Response data| End code Response data Footer
tion ion . i
network [station unit /0 No. multi- length
No. No. drop
station
No.

® Failed completion
Refer to section 3.5.6.2 onward in this manual.

3-45

3 Description of functions

3.5.7.1. List of Commands

The following is a list of commands. The following "Subcommands" will differ depending on the device specified. Refer to

section 3.5.7.2 onward in this manual.

Item - Command | Subcommand Description Reference
Category | Operation
Device Read 0401 001 The value is read in bit devices (with 3.5.7.2.2 Read
003 consecutive device numbers) in 1-bit units.
0010 e The value is read in bit devices (with
0012 consecutive device numbers) in 16-bit units.
e The value is read in word devices (with
consecutive device numbers) in 1-word units.
Write 1401 0o The value is written to bit devices (with 3.5.7.2.3 Write
o013 consecutive device numbers) in 1-bit units.
0010 e The value is written to bit devices (with
oot2 consecutive device numbers) in 16-bit units.
e The value is written to word devices (with
consecutive device numbers) in 1-word units.
Read 0403 ootlo The value is read in the devices with the 3.5.7.2.4 Read
Random o002 specified numbers. The devices with Random
non-consecutive numbers can be specified.
The value is read from the word devices in
1-word or 2-word units.
Write 1402 001 The value is written to the bit devices with the 3.5.7.2.5 Write
Random 003 specified device numbers (each set of 1 bits Random
has a device number). The devices with
non-consecutive numbers can be specified.
0010 e The value is written to the bit devices with the
0012 specified device numbers (each set of 16 bits
has a device number). The devices with
non-consecutive numbers can be specified.
e The value is written to the word devices with
the specified device numbers (each word or
each set of two words has a device number).
The devices with non-consecutive numbers
can be specified.
Self Test 0619 0000 Performs a test to determine whether 3.5.7.3 Self Test
communication with external devices is normal. | (Loopback Test)

3-46

3.5.7.2. Device (Device Access)
The following section describes commands used to perform device reading and writing.

3.5.7.2.1.

Data Used in Commands

® Device code

Access destination devices are specified in request data with the following device codes.
For subcommands 0001 and 0000, specify the device code enclosed in parentheses ().

3 Description of functions

Device code
Device Category | ASCII Binary Device No. range Remarks
code *1 code
Special relay Bit SM** 0091H SMO to Decimal —
(SM) (SM) (91H) SM4095
Special register | Word SD** 00A9H SDO to Decimal —
(SD) (SD) (A9H) SD4095
Input (X) Bit X 009CH R type: Hexadecimal | —
(X*) (9CH) X0 to XFFF
D type:
X0 to X1FFF
Output (Y) Y 009DH R type: Hexadecimal | —
(Y*) (9DH) Y0 to YFFF
D type:
Y0 to YAFFF
Internal relay M*** 0090H MO to M18431 | Decimal Cannot be specified with D
(M) (M%) (90H) type.
Data register (D) | Word D*** 00A8H DO to D5119 Decimal —
(D¥) (A8H)
CPU buffer See section 3.5.7.2.6 of this manual. Cannot be specified with D
memory access type.
device

*1: When performing data communication in ASCII code, specify device codes with 4 digits for subcommands 00CJ3 and
000J2. For device codes with 3 digits or less, add an asterisk (*) (ASCII code: 2AH) or a space (ASCII code: 20H) after

the device code.

Specify device codes with 2 digits for subcommands 0011 and 00C10. For device codes with 1 digit, add an asterisk
(*) (ASCII code: 2AH) or a space (ASCII code: 20H) after the device code.

3-47

3 Description of functions

e When performing data communication in ASCII code
Use device codes by converting them to ASCII code (2 or 4 digits), and send them in the order higher-order byte to

lower-order byte. Use codes in upper case characters for letters of the alphabet.

With subcommands 0003, 0002 and 0001, 0000, the number of digits converted to ASCII code will differ.
Example

Number of digits

Subcommand
Conversion to 4 ASCII

If input (X) (4 digits) ™

0003
0002 code digits
X s |- -
58H 24H|28H 2aH
0001 Conversion to 2 ASCII If input (X) (2 digits) ™
0000 code digits
:{ *
58+ | 2AH

1: Send input relay device codes in order from "X". Note that asterisks () from the second character onward may

also be specified with a space (code: 20H).

e When performing data communication in binary code
Use numerical values (1 or 2 bytes), and send data in the order lower-order byte to higher-order byte.

With subcommands 0003, 0002 and 0001, 0000, the data size of the numerical values will differ.
Subcommand Number of digits Example
0003 2 bytes If input (X) (2 bytes)
0002

CH| 00H
0001 1 byte If input (X) (1 byte)
0000
Al

3-48

3 Description of functions

First device No. (device No.)

Specify the device No. for reading/writing data. When consecutive devices are specified, specify the first device No.
Specify the first device No. in decimal or hexadecimal depending on the device type.

e When performing data communication in ASCII code

Use device Nos. by converting them to ASCII code (6 or 8 digits), and send them in the order higher-order byte to
lower-order byte.

With subcommands 0003, 0002 and 0001, 0000, the number of digits converted to ASCII code will differ.

Subcommand Number of digits Example
0003 Conversion to 8 ASCII If device No. is 1234 (8 digits) ™
0002 code digits

o o0 0 0 1 2 3 4
30H 30H | 30H 30H 31H | 32H 33H 34H

0001 Conversion to 6 ASCII If device No. is 1234 (6 digits)
0000 code digits

oo 1 2 3 4

F0H) 304 e EEH S0 M

*1: Send in order from 0. The higher-order digit 0 can also be specified with a space (code: 20H).

¢ When performing data communication in binary code
Use numerical values (3 or 4 bytes), and send data in the order from lower-order byte to higher-order byte. When
the device No. is a decimal device, convert it to a hexadecimal value and send.
With subcommands 0003, 0002 and 0001, 0000, the data size of the numerical values will differ.

Subcommand Nu?b_er of Example
igits
0003 4 bytes If internal relay M1234, link relay B1234 (4 bytes) ™
0002
M1234 B1234

D2H, 04H , O0H , DOH 34H, 12H, DOH , 0OH
0001 3 bytes If internal relay M1234, link relay B1234 (3 bytes) 2
0000

M1234 B1234

D2+ ! e |0Cl-| =2 B | 124 |0Cl-|

*1: The device number for internal relay M1234 is in decimal, and must therefore be converted to hexadecimal. This
will be 000004D2H, and should be sent in the order D2H, 04H, 00H, 00H. This will be 00001234H for link relay
B1234, and should be sent in the order 34H, 12H, O0OH, O0H.

*2: The device number for internal relay M1234 is in decimal, and must therefore be converted to hexadecimal. This
will be 0004D2H, and should be sent in the order D2H, 04H, 00H. This will be 001234H for link relay B1234, and
should be sent in the order 34H, 12H, O0H.

3-49

3 Description of functions

® Number of devices

Specify the number of devices for reading/writing data.

e When performing data communication in ASCII code
Use the number of devices by converting them to 4 ASCII code digits (hexadecimal), and send them in the order
from higher-order byte to lower-order byte. Use codes in upper case characters when specifying letters of the
alphabet.
Example

Number of devices: 5/ 20

5 devices 20 devices
0 0 0 & 0 o 1 4
3{'31|3{J1|3\:’J1|3b1 3(31,3-01,3'1|3-11

e When performing data communication in binary code
Use a 2-byte numerical value to indicate the number of processing devices, and send in the order from lower-order
byte to higher-order byte.

Number of devices: 5/ 20

5 devices 20 devices

054 | 00+ 144 | O

3-50

3 Description of functions

® Read data / write data

The value read from the device is stored for reading. The value to be written to the device is stored for writing.

The data arrangement will differ depending on the bit unit (subcommand: 0011, 003) or word unit (subcommand:
0010, ood2).

¢ In bit units (subcommand: 0011, 0033)

When performing data communication in ASCII code, send data for the number of specified devices from the
specified start device in the order from higher-order byte to lower-order byte. The ON state is denoted as "31H" (1),

and the OFF state is denoted as "30H" (0). Use codes in upper case characters when specifying letters of the
alphabet.

Example|

ON/OFF state of five devices starting from M10

Device Number of
code Head device devices Data
f j 7
I'. ! |I
| i
II". M = : o 0 ¢ 0 1 O]JO O O 5|1 0 1 0 1 Y

J quIZAHIBCH.304I304I304I3'-1I304 S0H 30H 30H 35H|31H 304 31H 30H 314

—— M14=0N
L M13=0OFF
M12 = ON
M11 = OFF
M10 = ON

When performing data communication in binary code, specify a single device with 4 bits, and send data for the
number of specified devices from the specified start device in the order from higher-order byte to lower-order byte.
The ON state is denoted as "1", and the OFF state is denoted as "0".

Example

ON/OFF state of five devices starting from M10

Head Device Number of
device code devices Data

| ' |
) |oAd 00H00H] 204|054 00W| 104 10M 10M ;
Y YIEEL]

"0" is shown when the number of
points is an odd number.

M14 = ON
- M13=0FF
L Mmi2=0N
L M11:=OFF
M10 = ON

3-51

3 Description of functions

3-52

e In word units (subcommand: 0010, 0012)
When performing data communication in ASCII code, send data with 1 word in 4-bit units in the order from

higher-order byte to lower-order byte. Data is expressed in hexadecimal.

Use codes in upper case characters when specifying letters of the alphabet.

Example

ON/OFF state of 32 devices starting from M16

~"0002" is shown for the number of devices because

. the word device is specified in 16-bit units.
Device Number of

code Head device devices Data Data

M .0 0 0 0 1 &0 0 0 2|A B 1 2|3 4 C D

dD-llzﬁHEEﬂqI 30 30M 30H 31H 364 | 304 30M 30H 33W |41 424 31H 324|334 344 434 d44dH /

Ll S

A B, 1 4 2 3 , 4 4 C 4. D
DD DIADIY0110 10 b9 bA| DT bE DS ba|bd B2 b1 BOJoEbEbRLIdD1IDI00S BA|DT bE DS b |bd B2 b1 B0

IR CHORIRI CIEHIR] CHIRNE) CHEIRIRI CHRREHI KRR KIRETIR] i
M31 — M16 iMq? —~ M3z
Example|

Data stored in D350/D351

Device . Number of
code Head device devices Data Data

o - i o 0 0 3 5 0J0 0 0 2|5 6 A B|1 T 0 F
| : \

i |
i 2AHI30H 30H 30H 33H 35H 30H]30H 30 30H 32H|35H 36H 4 1H 426|314 3TH 30H 464

The data in D350 is The data in D351 is
56ABH (22187 in 170FH (5903 in
decimal). decimal).

When word devices for reading data contain other than integers (real numbers, character strings),
stored values are read as integer values.

When DO to D1 contains a real number (0.75), DO = 0000H, and D1 = 3F40H.

When D2 to D3 contains a character string ("12AB"), D2 = 3231H, and D3 = 4241H.

3 Description of functions

When bit devices are handled in word units when performing data communication in binary code, a single device is
specified with a 1 bit as shown in the following example. Data is stored in the order from lower-order byte (bit O to bit 7) to
higher-order byte (bit 8 to bit 15).

Example

ON/OFF state of 32 devices starting from M16
"02" is shown for the number of devices because
l_ the word device is specified in 16-bit units.

Head Device Number of
device code devices Data Data

Q04 J02H 00H 124 ABH|CDH 344

N

1 2 A B G D 3 4

of b b5 b2|bd B2 D1 DOPBLRLELE|MNDN6LY bELF b6 b5 bbbl b2 b1 BO|DIELR DT AIA0 N 0N 08 :J.II D OFF

1=0N

E;E;E;1 E;E;1;E1;E;1;E1;E;1;1 1;1;[!;[!1;1;[!;1 E;E;1;1 E;1;E;E
M23 o~ M6 M3 o~ M24 [M3S o~ M3ZTM4T . M40
1 1 1

When word devices are used, 1 word is specified in 16 bits as follows. Data is stored in the order from lower-order byte
(bit O to bit 7) to higher-order byte (bit 8 to bit 15).

When reading, do so after replacing values stored in the response data with higher/lower-order bytes at the user side.
When writing, store request data after replacing the values to be written with higher/lower-order bytes at the user side.

Example

Data stored in D350/D351
Number
Head Device of
device code devices Data Data

I GEH _{'.'l‘ 1_\')&1 ABy |02 Im-i AE--|I5$-| jO P I‘ TH
Stored values for ¥ . ¥ ¥ . l
request or [A B | 5 6 || o R 7
response data iy . - N - y

Values to be read T :
or written | 3 ” o F |

ks

The data in D350 is 56ABH The data in D351 is 170FH
(22187 in decimal). (5903 in decimal).

3-53

3 Description of functions

3-54

When word devices for reading data contain other than integers (real numbers, character strings),
stored values are read as integer values.

e When DO to D1 contains a real number (0.75), DO = 0000H, and D1 = 3F40H.

e When D2 to D3 contains a character string ("12AB"), D2 = 3231H, and D3 = 4241H.

¢ Precautions
When performing data communication with ASCII data, process as follows when passing character strings from
external devices to the CPU module.
The procedure for converting data received by SLMP-compatible devices from external devices to binary code
data, and writing it to a specified device is described below.
1. Expand character strings sent from external devices to 2-byte code per one character.
2. Rearrange the character strings expanded to 2-byte code per one character, and send them to the
SLMP-compatible device.
3. Write the data sent to the SLMP-compatible device to the specified device.

The following is an example of a case where a character string ("18AF") received from an external device is
converted to binary code data, and written to DO to D1.
1. Expand the character string ("18AF") sent from the external device to 2-byte code per one character.
"y "g " A“ =
All codes 3u 38w 46iu

/\/\/\./\

33m 31 334 384 34u 314 34
wop nqn wg ngr g nqn wgm "E"

2. Rearrange the character strings expanded to 2-byte code per one character, and send them to the
SLMP-compatible device.

"31 38 41 46" ["38314641"

Jj B B N

3. Write the "38314641" data sent to the SLMP-compatible device to DO to D1.

Received data 38 3 1 4641
converted to binary =+ =«
code and written l l l l l l l
383w 4 6 4
-
b15 b0 bi15 b0
I T T T T T
a1 801301 416101411
l 1 1 l 1 1
; (D0) (D1)
Numbers expressing N " ")
value for each byte
"g" "{" "F* "An

3 Description of functions

® Number of devices for bit access

This is the data required to specify the number of devices accessed in bit units.

¢ When performing data communication in ASCII code
Convert the number of devices to 2 ASCII code digits (hexadecimal), and send them in the order from higher-order
byte to lower-order byte. Use codes in upper case characters if specifying letters of the alphabet.
Example

Number of devices: 5/ 20

5 devices 20 devices
0 & 1 4
30n | 35 31n) 3

¢ When performing data communication in binary code
Convert the number of devices to hexadecimal and send.
Example

Number of devices: 5/ 20

5 devices 20 devices

3-55

3 Description of functions

3.5.7.2.2. Read (Command: 0401)
Read the data from devices.

B Request data

ASCI

0 4 0 1 Subcommand [Pevice . First device No Number of
code ’ devices

30H ;34H [30H | 31H L 1] 1 1 1

Binary

Sub- |First device |[Device [Number
command|No. code of devices

01H , 04H] 1

e Subcommand

Subcommand *1
Item -
ASCIl code Binary code
When reading data
in bit units o o o 1 or o 0o & 1 or
304) 30H) 304 31H 30 | 30n | 3B4 , 3w 0u | 00H Bin | OO
o o0 o0 3 or 0 o0 8 3 or
30H | 30H | 30H | 33H 30H , 30H, 38H | 33H 03H , O0H 823H, DOH
When reading data
in word units O 0O 0 0 or 0O 0 & 0 or
300 | 30m) 300 | 304 300 | 304) 384 304 00: | 00 Bln | O
o o0 0o 2 or 0 o 8 2 or
30H | 30H | 30H | 33H 30H | 30H | 38H | 32H 0ZH | 00H #2H, 00H

*1: Use subcommand 008 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 0081, the message format will differ. (Reading, writing by

specifying device extension)

¢ Device code
Specify the type of device to be read.

o First device No.
Specify the first number of the device to be read.

3-56

e Number of devices

Specify the number of devices to be read.

3 Description of functions

Item

Number of devices

ASCII code

Binary code

When reading data in bit units

1 to 3584 devices

1 to 7168 devices

When reading data in word units

1 to 960 devices

B Response data

The value read from the device is stored in hexadecimal. The data order will differ depending on whether it is in ASCII

code or binary code.

3-57

3 Description of functions

3-58

B Communication example (when reading data in bit units)

Read M100 to M107.

¢ When performing data communication in AISCII code

(Request data)
Device . . Number of
Subcommand code First device No. devices

0 4 0 9|0 0O 0 1M ({0 O O 1 0 OO0 O 0 8

?ﬂﬂ1|341|3ﬂ1|3'1 30k |3Cl-| |3'Cl-| |3'1 d|:|1|2p5\.1 30k |3CI-||3CI-|| 3'1|3Cl-||3ﬂ1 30k | 30k |3'Cl-| |3-B--|
(Response data)

o 0 0 1 0 0 1 0=0FF
1=0N

30H 30H | 30H | 31H 30H 30H 31H 31H

M100

M107

e When performing data communication in binary code

(Request data)

Sub-
command
1
!

Device
code
First device 1 Number of
No. I devices

O1h 044 | 01 004

Edet | 000 | 004 | B0

08 | 0D

(Response data)

O0H [01H [B0H | 11H

M100

0 = OFF
1=0N

L— mi07
M106
M101

3 Description of functions

B Communication example (when reading data in word units (bit device))

e Read M100 to M131 (data for two words).

(Request data)
Device Number of
devices

Subcommand code First device No.

c oo 0fM |0 0O O0CM1T O O[O0 O 0O 2
B0+ Bdn 304 39k [304 304 304 | 30n [4Dn | 2Ax [S04 300 300 31k 300 304 | 304 | 304 Bl | B

(Response data)

1 2 3 4|0 0 0 2

3MH 33H 33H 34H|30H 30H 30H 32H

-i1 2 3 4 1]] i 2 o= OFF
B[R ol T T T Blel sl Tleb Te] 3= S
M115 MO | M131 M116

¢ When performing data communication in binary code

(Request data)
Device
command code

! First device ! Number of
I No. 1 devices

Sub-

Bt | D04 O | 90w | 024 OO

O | Odet | 004 | 004

(Response data)

34H 12H 02H 0OH

3 . 1] 2 0 2 0 0

0 = OFF
\'J|Cl|"|‘ \'J|‘ |CI|{J G|{J|CI|‘ \'J|\'J|‘ |\'J G|CI|G|{J \'J|\'J|‘ |\'J G|{J|CI|{J G|{J|'CI|CI 1=0N
M107 .. M100!M115 . M108IM123 _ M116:M131 _ M124

3-59

3 Description of functions

3-60

B Communication example (when reading data in word units (word device))
Read values D100 to D102.
Here D100 = 4660 (1234H), D101 = 2 (2H), and D102 = 7663 (1DEFH).
e When performing data communication in ASCII code

(Request data)
Device Number of
Subcommand code First device No. devices
o 4 0 1|0 0O O O|D *|O0 O OC 1 0O OO0 O 0©0 3

B0 344 30n 314 300 304 300 30H | 4k 2Ad | 300 30n 30n | 310 306, 3

30 | 304 30 | 334

(Response data)

12 3 4|0 0 0 21 D E F

e 33 33 e | 300 304 30w 33| 3e dde 45 dBa
b A AN r
W A A

D100 D101 D102

e When performing data communication in binary code
(Request data)

Device
command code
I First device 1 Number of
1 I .
i No. 1 devices

Sub-

Olr) Odet |00) OO0k | B 000 | D0 | A | (30) 0D

(Response data)

e 124 024 004 |ERa 10H
'1-______;-" "-__Y__/"h_

D100 D101

v
D102

3.5.7.2.3. Write (Command: 1401)
Write the data to devices.
B Request data

3 Description of functions

ASCI
1 4 0 1 Subcommand Device First device No. Numper of Write data
code devices
31H) 34H) 30H) 31H I I I I I I
Binary
Sub- First device |Device Nfumber | .
command |No code] Write data
: devices
01H [14H | |
e Subcommand
Subcommand *1
Item -
ASCIl code Binary code
When writing data in
bit units 0o 0o 0 1 oo |0D 0 & 1 or
300, 300, 300, 314 300) 30n 384 3k 014 | 00H b | 0D
o o0 0 3 or o o0 & 3 or
30H | 30H, 30H | 33H 30H, 30H, 28H |, 33H 03H | 00H 83H , 00H
When writing values
in word units 0o 0 0 0 or 0o 0 & 0 or
3\31|3-Cl1|301|301 3ﬂ1|301|351|301 001|m1 m1|m1
0 o0 o0 2 or o 0 8 2 or
30H | 30H, 30H , 32H 30H | 30H, 38H | 32H 02H 00H 82H | 00H

*1: Use subcommand 008[] if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008L], the message format will differ. (Reading, writing by

specifying device extension)

¢ Device code
Specify the type of device to be written.

o First device No.
Specify the first number of the device to be written.

3-61

3 Description of functions

e Number of devices
Specify the number of devices to be written.

Item

Number of devices

ASCII code

Binary code

When writing data in bit units

1 to 3584 devices

1 to 7168 device

When writing data in word units

1 to 960 devices

o Write data

Specify the value to be written to all the devices specified in "Number of devices" in the request data.

B Request data
There is no Write command response data.

B Communication example (when writing data in bit units)
Write values to M100 to M107.
¢ When performing data communication in ASCII code

(Request data)
Device
Subcommand code First device No. Number of devices Write data
i 4 0 1(0 0 0 1M =)0 O O 1 0 Of0O O O B8(1T 1 0 0O 1 o o
ey [0 |34|- |3!:l|- | M | 3 | Ik | Ik | M -1-'_'l|-|?_ﬂ.|- Ik |3!:~- L Ik | i | Ik |3!:\- o | Ik |3!:\- | | 3w | M II\ Ik | M | 3I|-|3!:u- |3!:\-
100 fu M10T g = OFF
O
¢ When performing data communication in binary code
(Request data)
Sub- Device
code
comr'pand First device | Number of)
i No. : | devices Writedata
0 =0FF
O 1 [01 | 000 | Gia) D06) 0K | 900 | OB) 0008 | 1%) OO0 1104 OO 1=0H
L L— w7
- M10G
.
MDD
B Communication example (when writing data in word units (bit device))
Write values to M100 to M131 (data for two words).
¢ When performing data communication in ASCII code
(Request data)
Device
Subcommand code First device No. Number of devices Write data
i 4 0 1(0 00 OfM =)0 O O 1 0 OO0 O O 2|2 3 4 7T A B 89 &
ey [0 | e |3l:u- |3I|- Ik | Ik |3!:l|- |3=:\- -1-'_'l|-|?_ﬂ.|- Ik |3!:~- | Ik | s |3D¢- |3!:\- ks | Ik |3!:l|-| e | T2 1 T |h|- |3i"|- |-1-I|- |-1nZ|-|3'EI|- |3£i-
2 3 4 7 A B &
-:.|-:.|||-:. -:.|-:.|||| -:n|||-:n|-:n -:.|| 1]1 ||-:.|| |-:| |||:-||| 1 ||-:n|-:n| 1 -:n|||||-:n o= 0FF
1=0N
M115 Y, MO0 {131 (W) Mi16

3-62

3 Description of functions

e When performing data communication in binary code

(Request data)
Sub- Device
code
comrlnand First device Number of

! .
! No. - I devices Write data

06 1 s |04) O | Bha | Ok) O | S0 | 086) OOk | 47) 256) 56 Al

4 7
|:|||:| |:||1|1

=
il

0

=

F

2 9 6 A B
IZI|1 1 IZI|IZI|1|IZI IZI|IZI|1 1 1|IZI+J|1 IZI|1|1|IZI 1|IZI|1|IZI 1|IZI|1|1 L

MA0T ™ M‘-:-:ih'l‘ 15 M‘-:ai M1Z3 ™ M 'aiwr T M2

(]
=

B Communication example (when writing data in word units (word device))
Write 6549 (1995H) for D100, 4610 (1202H) for D101, and 4400 (1130H) for D102.
e When performing data communication in ASCII code
(Request data)

Device
Subcommand code First device No. Number of devices Write data

i 40 1(0 00 O *|j0 Q0110 O0f(0 OO0 3f(71T 8 898 51 20 2 11 3 0
M) B 30 I | B | B0 0 Bha | e Diaa | B0 00 B0) I) B0 B0 | B0he) B0 B0, The | I, e D5 B Bl T D0 T B, M TR s
. v M, g M, iy 4

D100 D1 D102

¢ When performing data communication in binary code

(Request data)
Sub- Device
code
comr'pand First device | Number of

i No. | devices Write data

Ok 1 s | OO0 | 000 | dis) OO0) 000K | s | O) OOCRs | 908 | 1880 O) 120 30 1K
[N — L ——
D100 D101 D102

3-63

3 Description of functions

3.5.7.2.4. Read Random (Command: 0403)
The value is read in the devices with the specified numbers. The devices with non-consecutive numbers can be specified.

|
Request data Specify the devices for the specified number

of devices.
) | ¥ |
ASCH [|
Number of
Z,:\Tct:g of ljovicos Word access
- . H . T
0 4 o0 3 Subcommand |¢ o fo(I;rlszouble Device ! . Device | N o
access |ccess |code | Device No. code ! evice No.
A0H [34H | 30H | 33H]]]] 1 : !
L _\(_ A o A
1 1
e
! 1 1
! A A
1 v
1
i Double-word access
1
1 T T
Lo Device | . Device i)
code i Device No. code i Device No.
| F Y
Specify the devices for the specified number
of devices.
Specify the devices for the specified number
of devices.
. | 4 || k4 |
Binary | I |
Number of Word access Double-word access
Sub- Number of |4eyices
command [98ViceS Ifor double- : S : | . . | . - i -
forword |yvord Device iDevice | Device iDevice | Device iDevice .| Device iDevice
B3 04 access access No. Icode No. icode No. icode No. rcode
1= 1 1 1 n 1
A A A A
'S ' ' 'S
1 1 1 1

3-64

e Subcommand

3 Description of functions

Subcommand *1
ASCII code Binary code
0 0 0 o0 or 0o 0 & 0 or
304, 304, 300, 3 30w | 30H | 384 | 30w 00+ | ODw B0 | 0D
o o0 o 2 or o o 8 2 or
30H, 30H, 30H | 324 30H 30H | 28H | 32H 02H , 00H 82H | 0OH

*1:

Use subcommand 00801 if accessing a link direct device, module access device, or CPU buffer memory

access device. When the subcommand is set to 008, the message format will differ. (Reading, writing by

specifying device extension)

o Number of word access devices, number of double-word access devices
Specify the number of devices to be read with 1 byte (binary code) or 2 bytes (2 digits) (ASCII code).

word access

Subcommand Item Description
0002 Number of devices for Specify the number of devices for 1 word access.
word access The applicable units are 16-bit units for bit devices,
and 1-word units for word devices.
Number of devices for Specify the number of devices for 2 word access.
double-word access The applicable units are 32-bit units for bit devices,
and 2-word units for word devices.
0000 Number of devices for Specify the number of devices for 1 word access.

The applicable units are 16-bit units for bit devices,
and 1-word units for word devices.

Number of devices for
double-word access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices,
and 2-word units for word devices.

3-65

3 Description of functions

e Device code, device number

Specify devices to be read in the order word access, double-word access.
Item

Description

Word access Specify devices based on the number set in the request data for word access.

It is not necessary to specify devices when "0" is set.

Double-word access Specify devices based on the number set in the request data for double-word

access. It is not necessary to specify devices when "0" is set.

B Response data

Values for read devices are stored in hexadecimal. The data order will differ depending on whether it is in ASCII code
or binary code.

Data in the devices specified for Data in the devices specified for
[word access I double-word access |
I | I
Word access Double-word access

Read data 1 Read data 2 Read data 1 Read data 2

3-66

B Communication example

3 Description of functions

With word access, read DO, D1, M100 to M115, and X20 to X2F, and with double-word access, read D1500 to D1501,

Y160 to Y17F, and M1111 to M11

42.

Here DO = 6549 (1995H), D1 = 4610 (1202H), D1500 = 20302 (4F4EH), and D1501 = 19540 (4C54H).

¢ When performing data communication in ASCII code

(Request data) N Nuber of
UMDET jeyices
o for
devices double-
for word word
Subcommand gecess access
o 4 0 3(0 OO0 O|0O 4|0 3]|-—
ke | B, 30 F8a | 300) 306 | 300 30 | 306, 3 | 30 | 33 i
1
i Device Device Device] Device)
i code Device No. code Device No. code Device No. code Device No.
‘{o *io oo oo of|TwNioO O ODOO|M*ioo0o0 10 0flx *ioo0o0o0 20
s s | 300 306 300 30 30ee 300 | S s | 306 30 30 3 30 300 [400 20 | 300 300 300 306, 300 306 | 58 2 | 300 300 30 306 | The 3
| Device " Device 7 Device
1 code Device No. code Device No. code Device No.
1 T T T
I 1 I I
Llo *to o1 5 0 0|y *ioo0o0 16 oflmM =10 01 11 1
ddis Bus | 30u) A0, Tha Bhee | W00) 00 | SE0s s) B0hs) D00 B00e s | B | 00s [B0 s | B0ke B0 W0 M) B, B

(Response data)

Word access Word access Word access Word access

Readdata1 Readdata?2 Readdata3 Read data4
i 9 9 (1 2 0 212 0 3 0|4 &8 4 89| _____ '
i | T | 394-| 35 | ¥ |32|- | 304-| T2 | Tda |3D¢- | 33|-| 3 | 3 |3&- | 34|-| T i
. - VN - N - VN -) i
(] TO MA115 ~ M100 X2F ~ ¥20 1
1 — - — - - - I
E D1501 01500 Y¥ATF ~ Y160 M1142 ~ M1111
1 A A . A
i [N F kT N N,
1
1
[4 C 5 4 4 F 4 E|IC 3 DEB 8 A F|IBE ADDEBILCUB 7
B A3 35 B, M) D6y B 450 | A% 300 | ey 480 4 B0 A0 | s | 43 400 A | ddis) 4B 4 | 4B | BT

Double-word access

Read data

Word access read data 3

Dou
1

ble-word access

Read data 2 Read data 3

Double-word access read data 2

Double-word access

2 0 3 0 C F
o L et o # o=0FF b - L et ¥ 0-OFF
-:||-:||1|-:| -:||-:||-:||-:| -:||-:||1|1 -:||-:||-:||-:| 1=0N 1|1|-:||-:| -:||-:||a-~..|1|-:| 1|1|1|1 1=0n
M115 e #1100 Y17F T Y160
Word access read data 4 Double-word access read data 3
4 8 4 g B B 7
% 1t i Lt b ™ 0=0FF & et — = bt i L I
-:||1|-:||-:| 1|-:||-:||-:| -:||1|-:||-:| 1|-:||-:||1 1=0N 1|-:||1|1 1|-:||1|~-.d|-:| 1|-:||1|1 -:||1|1|1 on
o ~ et M1 142 .y Mi111

3-67

3 Description of functions

e When performing data communication in binary

(Request data) Number of \mper of
devices for devices for

word double-
access word access

Sub- i
command ’
0% | O | OO) D06 | O | O3 i

No. code No. code No. code

code

Device Device Device Device Device Device Device Device

No. code

OO0k | 00k | Auls | 00 OOk | O | €520 | s 0010 | 00| 30

20 00 00 |90k

Device Device Device Device Device Device

No. code No. code No. code
: i | |
EDChe s | 0% LA | 1500 e | 00K 1 900 | e, Ois | DM } 0
(Response data)
Word Word Word Word
access access access access Double-word Double-word Double-word
Read Read Read Read access access access
data1 data2 data3 data4 Readdata1 Read data 2 Read data 3
== I19¢- D.ZI-I 135 | 30 Im- 45 |-1-&- 4-1':|-|-1-'-|- IM- |-1-'L7|- .ﬂ.'-l-IH-'Bu- I'J':l- |C3¥- B IH-G- I'.'l'_'n-l =178
\.VJ\._\(_J'___J"LV.-"_V_J'-.VJM. v A e -
0] TO M115 X2F D1500 D150 Y1TF M1141
M100 X20 Y160 M1111
Word access read data 3 Double-word access read data 2
3 L] 2 L] A F H 3
= M -
-:||-:||1|1 -:||-:||-:||-:| -:||-:||1|-:| -:||-:||-:||-:| Ton tlo]1[of1|1]1]1] — |1|a]e]o[o]o]1]
MIGF "~ MI00IMI1S ™ Mi08 YIS T YIE0) VYITF ™ YITH
Word access read data 4 Double-word access read data 3
4 g 4 8 E 7 B A
-:|| 1|-:||-:| 1|-:||-:||1 -:||1|-:||-:| 1|-:||-:||-:| 0=0FF 1|-:||1|1 -:||1 | 1|1 — 1|-:||1|1 1|-:||1|-:|
1=0N
nIT T T M1118 o MI111 Mi142 e M1135

3-68

T =1

T =]

oo

oQ

3.5.7.2.5. Write Random (Command: 1402)

The value is written in the devices with the specified numbers. The devices with non-consecutive numbers can be

specified.

Request data

Writing data in bit units

v

3 Description of functions

Specify the devices for the specified number of devices.

ASC [
Number of : ' : '
devi ice | ' ice) :
Subcommand | fortit | Pevice ! Device No. 1Set/ Device | Device No. 1Set/
1 4 0 2 access | code ! ireset [code ! ireset
MH34H oH®BH| . i i i L
\ . r
b R
1 1
Specify the devices for the specified number of devices.
Bi | ‘* |
Inary [|
Number of . E E . i E
Sub- devices Device Device Set/ Device Device 'Set/
command for bit 1 1 N 1 1
s | No. icode Ireset 0. ‘code lreset
02H 144 . i i i i
., A
R '
1 1
Writing data in word units
Specify the devices for the specified number of devices.
| v |
ASC [I
Number 2‘:\;}3’;’% Word access
Subcommand grdv‘j;’irzes double- [~ | i e,
1 4 0 2 access ;Vgcrgss e | Device No. i Write data i
31"'Ial)-hl3:h|32h 1 1 1 1 code I ! 1 1 1 !
. y i
A i
1 i
R e ks 1
i 1
! A
| ‘ >
E Double-word access
oo Device ! ; :
code i Device No. i Write data
! !]] 1]] 1]
| :
| 4

Specify the devices for the specified number of devices.

Specify the devices for the specified number of devices.

' | !

Binary | - A "
Numper ~ [Numeer of Word access Double-word access
Sub- |of devices |d8Vices for T T T T
command. tor word dwgl:g'e' Device !Device !|Write Device |Device | Write datal
access | -oce No. icode 1data No. icode |
02H | 14H 1 : : 1 : : 1 1 1
i\ A |
L | 'y |
1

Specify the devices for the specified number of devices.

3-69

3 Description of functions

e Subcommand

Subcommand *1
Item -
ASCII code Binary code
When writing data in
bit units o o 0o 1 or 0o o & 1 or
300) 30) 30v | e 30n | 30k | 3B | e 016 | 00+ Bln | OO
o o 0 3 or 0 0 B8 3 or
30H | 30H , 30H , 33H 30H | 30H | 38H , 33H 03H | 00H &3H , O0H
When writing data in
word units 0 0O 0 0 or 0 0 & 0 or
304 | 304 | 30- | 30w 30w | 3(::-., 38 | 30w 00 IC!CI-| Bil- | L]
o o o 2 or 0 0 8 2 or
30H, 30H, 30H , 32H 30H , 30H | 38H | 32H 02H | 00H 82H, 0OH

*1: Use subcommand 0080 if accessing a link direct device, module access device, or CPU buffer memory
access device. When the subcommand is set to 0081, the message format will differ. (Reading, writing by

specifying device extension)

o Number of devices for bit access, Number of devices for word access, Number of devices for double-word access

Specify the number of target devices.

Subcommand Item Description
0003 Number of devices | Specify the number of bit devices in 1-bit units.
0002 for bit access

Number of devices | Specify the number of devices for 1 word access.

3-70

for word access

The applicable units are 16-bit units for bit devices, and
1-word units for word devices.

Number of devices
for double-word
access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices, and
2-word units for word devices.

0001
0000

Number of devices
for bit access

Specify the number of bit devices in 1-bit units.

Number of devices
for word access

Specify the number of devices for 1 word access.
The applicable units are 16-bit units for bit devices, and
1-word units for word devices.

Number of devices
for double-word
access

Specify the number of devices for 2 word access.
The applicable units are 32-bit units for bit devices, and
2-word units for word devices.

e Device code, Device No., Write data

Specify devices to be written.

When writing data in bit units, specify bit devices.

Specify write data in hexadecimal.

3 Description of functions

Item

Description

Word access

Specify devices based on the number set in the request data for word access. It
is not necessary to specify devices when "0" is set.

Double-word access

Specify devices based on the number set in the request data for double-word
access. It is not necessary to specify devices when "0" is set.

e Set/reset

Specify ON/OFF for bit devices.

Data to be written
Item Subcommand When When turned Remarks
turned ON OFF
ASCII code 0003 "0001" "0000" Send 4 digits in order from "0"
0002
0001 "01" "00" Send 2 digits in order from "0"
0000
Binary code 0003 0100H 0000H Either of the 2-byte numerical values
0002 on the left is sent.
0001 01H 00H Either of the 1-byte numerical values
0000 on the left is sent.

B Response data

There is no Write Random command response data.

3-71

3 Description of functions

3-72

B Communication example (when writing data in bit units)

Turn M50 OFF, and turn Y2F ON.

e When performing data communication in ASCII code

(Request data) Number
of
devices
for bit Device Set/ Device Set/
Subcommand gccess code Device No. reset code Device No. reset
1 40 2|00 o0 1|0 2|m *looo0o o0 5 o0loo|y *{looo0 o032 Filo 1
31|-|34|-|3!:l|-|32|- 332\-|3!:~-|3!:u-|31|- 3!:\-|32|- -1-'_'n-|?_ﬂ.|-! -|3!:\-|3!:\-|3!:\-|3'a-|3!:~-!3l:\-|3=:\- :-9:-|Zﬂ.|-!3!:\-|3!:\-|3=:\-|3=:\-|32|-|-1-5|-!3=:l|-|31|-

¢ When performing data communication in binary code

(Request data)
Number of
devices for Device Set/ Device
bit access code reset code
Sub- | ! :
command | Device No. Device No.

Set/
reset

o2 14| 010 00 | 02 | 330 00 | 0001 90 1 00k] 260 000 | 00 a0 01

B Communication example (when writing data in word units)

Write values to devices as follows.

3 Description of functions

Item

Device to be written

Word access

DO, D1, M100 to M115, X20 to X2F

Double-word access

D1500 to D1501, Y160 to Y17F, M1111 to M1142

e When performing data communication in ASCII code

(Request data) Number of
Number of devices for
devices for double-
word word
Subcommand access access
1 4 0 00 o0 0|0 4|0 3|
i, B 30 33 | 30 B0 300, 30 | 30, 3dee [300 3 i
i~ "Device o o . " Device I
! code Device No. ‘Write data code Device No. Write data
! 1 H 1 1
i.|lp *io 00 00 0{05 5 0|(D*0000O0O01:057 5[____
e Zhoa | 30he | 300 300 B0 Fhe 300 | Bhe Bhe | B 3000 | e Do | B0 B | Bhe Bhe | B0 Fha | B0 B | HFie | B :
i | Data 1 Data 2
1
1
: : : : :
LM o 00 10 O}0 &5 4 O0|X |0 0O O '32'3{'3533_____'
400 2| 30| 304 306 e 306 3006 | 304 e, s 30 | BB e | 300 I 30 30 | The | 30 | 300, B |, BMe TN !
1
- - - - - - - - - []
i | Data 3 |
i , , ! !
: 1 H 1 1
|p *i0o 01 50 0i0D 4 39 12 0 2|¥ *i{0o 0O 16 0i{2 3 75 2 607
e e | 30 306 3 35 306 30w | 306 34 336 35 I 300, 304 30w | 50 2 | 306) 304 306 Flk 36 | 30 | B0 336 TP 3N b6 3 30k 3T
f— - - - - - - - - - - - -
i | Data 4
! T
| : v
M *i0 01 11 110 4 2 5 0 4 7 5
4B Zhia] e) 30 e Fe Fhie F i] 300 B | B 35 304 e | T B
R o0 | 5 | 2 R 3 R [T
Data1 [Taleolol i ToT o Data3 [T Tl ool Tl ool 0=0FF
LI O GGE N RS G0 REG ANk
M115 T YITF ™ Y178 Y187 T Y160
7 5
Data 2 Data 4 ol o[a[a[1| @ = OFF
T LT 33

M1 118 e W11

3-73

3 Description of functions

3-74

e When performing data communication in binary code

0 = 0OFF
1=0N

0 =0FfF
1=0N

(Request data)
Number of Number of
devices for devices for
word double-
access word access
sub- %]
command %
02 14 | O) 00 | O | 03
Device Write Device Write Data 1 Data 2
Device No. code data Device No. code data I—l I—l
HE 1 1 1 1 1 1
I | | | | |
1 1 1 1 1 1 1
P P | oo
Ok | OO | O | A | 500 | 0% | O) OOk 0k | A8 | T | O [B OO | OO 1 900 140i 0% | 20 00 | O3 1900 183 0%
Data 3 Data 4
I I I
[[[
I I I
I I I
DG | 0% | O) Ay O | 1200 | 30) Odia | B0 | 0%) O 1906 1 0T) Das) T | 20 (5700 Odie) OO 1 906 1 Ts | O | 254) Os
4 0 0 5 0= OFF [7 z 3
. - i # 1=0H 3 S e — = = =y o -
Data1 [af 1] o | alolalal 1ol Data 3 |d|a|ajofal 1] 1)1 10—~ |1]a|a] 1]a]a|o 1
o o]efele EREEE EEEE! | I |
M107T o~ MI0DMIIS o~ M0 Y167 "~ Y160 ¥1TF - Y178
8 3 0 5 0= OFF 7]l 5 N o] 4 |
—_ % i ot . [RIEE= ' s = = = = e -
Data2 [+]ofofofo]o | -:|-: -:|-: 0 | Data4 [of1]1]1]o] 1|o]sfol——|:]o]o|o]o]e] 1]e]e
3T g KN KF X8 M1118 T M1111 M114Z " M1135

3.5.7.2.6. Accessing CPU Buffer Memory Access Devices
Access RCPU buffer memory.
B Request data

3 Description of functions

For Read (Command: 0401), refer to the following example. For other commands, with the exception of device codes,

start device numbers, and device numbers, access based on the format for each command.

ASCII
; First device No. or
No extension Device code . Number of
specified Command Subcommand device No. devices
1 | 1 1 1 1 — | 1 1 1 1 1 1 | 1 — 1 1 1
Extension specified o o | Extension o o o o | Devicecode First device No. or 5 0 0 0
designation device No.
30H, 20H L 11 |zoH 20H 20H 30H A A T T T T 30H | 30H (30H, 30H
Binary code
. i i i Number
No extension Sub- First device No. |Device
specified Commeand | command | or device No. [code g{avices
1 1 _ 1 1 1 | - 1
Extension specified F"Zt device No. | pevice Extension
or device No. code 9
00H, 00H L | 00H 00H | FAH
CPU module access device and request data compatibility is as follows.
Extension Device code First device
designation No. or device
No.
e Command
Access is possible with the following commands.
Item
- Command
Category Operation
Device Read 0401
Write 1401
Read Random 0403
Write Random 1402

3-75

3 Description of functions

3-76

e Subcommand

ASCII code Binary code
0o o 8 2
30H , 30H , 38H | 32H 82H, 00H

e Extension designation
Specify the CPU module start I/O number.

ASCII code

Binary code

Specify the start /O number in hexadecimal (3 ASCII
code digits). When the start I/O number is expressed
with 4 digits, specify with the first 3 digits.

3

55H Z3H 45H

E O

Specify the start I/O number in hexadecimal (2 bytes).
When the start /0O number is expressed with 4 digits,
specify with the first 3 digits.

ECH | 03H

The start I/O numbers for the specified CPU modules are as follows.

CPU module CPU No. Start 1/0 number
CPU No.1 03EOH
CPU No.2 03E1H
CPU No.3 03E2H
CPU No .4 03E3H

3 Description of functions

e Device code

Specify the following device codes.

Device code
Device Category ASCII code Binary code Device No. range
MELSEC iQ-R | MELSEC iQ-R
series *1 series
CPU buffer Word G*** 00ABH Specify within the range of | Decimal
memory device numbers held by the
CPU buffer HG** 002EH access destination unit.
memory fixed
cycle area

1: For ASCII code, specify device codes with 4 digits. For device codes with 3 digits or less, add an asterisk ()
(ASCII code: 2AH) or a space (ASCII code: 20H) after the device code.

o Start device or device number
Specify the start device or device number in decimal.
Specify the subcommand 0032/0082 device number (ASCII code) with 10 bytes (10 digits).

B Response data

The same applies if no extension is specified.

B Communication example
The start I/O number accesses the 03EOH CPU module buffer memory (address: 1).
Show the request data when performing communication with ASCII code.

¢ When performing data communication in ASCII code
(Request data)

Extension Device First device No. or
Subcommand designation code device No.

iy s = -| iy e -| iy iy iy - . " " iy s i e -| iy iy s i 4 -| iy iy s
o 0 8 2|0 I v 3 E oo 0 O O |G o ¢ 0 0 0 0 O 0 O o o 0o 0

30H 30H | 38H 32H (304 30H |55H 33H 455 30H [30H | 30H 30H 30 [47H 20H @AM 20H]|30H | 30H 30H , 30H 304 30H , 30H 304 | 30H , 31H | 304 304, 30H 304

¢ When performing data communication in binary code

(Request data)
First device No. Device Extension
Subcommand ordevice No. cnde designation

=2 o0 (00 H 00 (014 00H | 00H o0H JasH 00H oo 0oH | EoH o3 | Fad

3-77

3 Description of functions

3.5.7.3. Self Test (Loopback Test) (Command: 0619)

3-78

Perform a test to determine whether communication between external devices and Ethernet-equipped modules is normal.
By performing a loopback test, it is possible to confirm whether the connection with the external device is correct, and
whether data communication is functioning properly.

* Loopback tests can only be performed for Ethernet-equipped modules connected to external devices. Loopback tests

cannot be used for other station modules connected via a network.

B Request data

ASCI
Loopback data
0 & 1 9 | Subcommand quantity Loopback data

30H | 36H | 31H 38H . L L .
Binary code

Sub- Loopback

command | data | Loopback data

quantity
19H 0&H | |
e Subcommand
Subcommand
ASCII code Binary code
o 0 0 0
300) 30k 300 3m 00k | O

e Loopback data quantity
Specify the "Loopback data" quantity in bytes. The range that can be specified is 1 to 960 bytes.

Example

When the loopback data quantity is 5 bytes

When using ASCII, convert the number of bytes to 4 ASCII code digits (hexadecimal), and send them in the order
from higher-order byte to lower-order byte.

0o 0 0 5
30H, 30H 30H 35H

When using binary code, send the number of 2-byte characters indicating the number of bytes in the order from

lower-order byte to higher-order byte.

05H | 00H

¢ Loopback data
Specify the data sent and received when performing a loopback test.
When performing data communication in ASCII code, specify a 1-byte character string ("0" to "9", "A" to "F") for
data with maximum of 960 characters, and send from the start.
When performing data communication in binary code, convert the 1-byte character ("0" to "9", "A" to "F") code to a

1-byte numerical value, and send data with maximum of 960 bytes from the starting character code.

B Request data

3 Description of functions

The same content as that in the "Loopback data quantity" and "Loopback data" specified in the request message is

stored.
ASCII
Loopback data
quantity Loopback data
1 1 1
Binary code
Loopback
data | Loopback data
quantity
1

B Communication example

Perform a loopback test with loopback data "ABCDE".

e When performing data communication in ASCII code

(Request data)
Loopback data
Subcommand quantity Loopback data
0o 66 1 8|0 O 0 OO0 O O 5(A B C D E

30H 38H 31H 30H

30H 30H | 30H 30H

30H 30H 30H 35H

d'H|d2H|43H|ddH|45H

(Response data)

Loopback data
quantity Loopback data
60 0 0 5(A B € D E

30H | 30H 30H | 35H

41H 42H 43H 44H 45H

e When performing data communication in binary code

(Request data)
Loopback
Sub- data
command quantity Loopback data
A B C D E
18H | 06H | 00H |, DOH | 05H, 00H |41H [42H | 43H , 44H | 45H

(Respoﬁse data)

Loopback
data
quantity Loopback data
A B C D E
05H O0H | 41H |43H | 43H 44H | 45H

3-79

3 Description of functions

3.5.8. End Code

The following is a list of stored end codes.

Code category | End code Description Processing details
Processing 0000H The request was successfully processed. Indicates that the request was correctly
success processed.
Standard error | CO59H e The command or subcommand is specified Review the command and subcommand,
incorrectly. and send again.
e A command other than the prescribed sequence
was received.
CO05CH The request message has an error. Review the request content, and send
again.
C061H The request data length is inconsistent with the Review the request data content or
number of data. request data length, and send again.
CEE1H The request message size exceeds the allowable | Review the request content, and send
range. again.
CEE2H The response message size exceeds the Review the request content, and send

allowable range.

again.

3-80

3 Description of functions

3.6. CC-Link IE Field Network Basic function

3.6.1. Overview
The FR series supports this function. It is not supported by the F series.
CC-Link IE Field Network Basic is an FA network to which general-purpose Ethernet was applied.
For the MELFA FR series, CC-Link |IE Field Network Basic slave stations are supported, and the signals and registers of
robot controllers can be input and output via regular communications (cyclic correspondence) with a PLC, computer, or

other master station.

Master Slave
PLC CPU/computer, etc. Robot controller
Link device Signal
Register

PLC CPUs in the MELSEC iQ-R/iQ-F/Q/L series and robot controllers in the MELFA FR series have Ethernet built-in as
standard, so they do not require dedicated options. This allows system construction with minimal configuration, thereby
saving space and reducing the cost.

Because CC-Link IE Field Network Basic has application software that runs on a general-purpose Ethernet protocol stack,
TCP/IP transmissions can intermingle. Therefore, the products that support CC-Link IE Field Network Basic and the

products that support Ethernet can be connected by a single cable, which makes it easy to construct the system however

you want.
;'F:_ - J Commercial
=y switching hub
Wi-Fi Router
CC-Link IE [dield Basic
Ethernet
o] T T
o
MELSEC iQR HIFLSEELEL, e ‘ —
MELSEC iQ F HELSEEL..... 'y i u:
i ”‘E«n o 2
Remote 0 Robot Display Inverter Servo Solenoid Label Barcode Weight
valve printer reader checker

3-81

3 Description of functions

3.6.2. Supported version

Controller type Version Remarks
CR800-R A1d or later CR75x-Q and CR75x-D are not supported
CR800-D
Computer support Version Remarks
SW
RT ToolBox3 1.10L or later

3.6.3. Specifications

The communication specifications of CC-Link IE Field Network Basic are described below.

3.6.3.1. Communication specifications

The communication specifications of the robot are as follows.

ltem Description
Transmission speed 100Mbps
Communication method UDP/IP
Port number 61450
IP address 192.168.0.20 (initial value, set with NETIP parameters)

Number of occupied stations

Up to four slave stations

Connection cable

Standard Ethernet cable, category 5e or higher (STP cable)

CC-Link IE Field version

2.00

Maximum Remote input, RX (*1)
number of link

points

Number of occupied stationsx64 points

Remote output, RY (*2)

Number of occupied stationsx64 points

Remote register, RWr (*3)

Number of occupied stationsx32 points

Remote register, RWw (*4)

Number of occupied stationsx32 points

*1) Remote input, RX: Information input from slave to master through bitwise operations.

*3) Remote register, RWr: Information input from slave to master through 16-bit (1 word) operations.

(*1)
(*2) Remote output, RY: Information output from master to slave through bitwise operations.
(*3)
(*4)

*4) Remote register, RWw: Information output from master to slave through 16-bit (1 word) operations.

3-82

3.6.4. Parameters

Specify settings with the following parameters.

3 Description of functions

Parameter | No. of arrays
Parameter Description Factory setting
name No. of characters
-Link IE Field N k LBENA I 1
CC-Link IE Field Networ ce nteger Enable the CC-Link IE Field Network Basic function. _
Basic function, switch . 0 (disable)
. 0: Disable / 1: Enable
enable/disable
CC-Link IE Field Network CCLBCLR Integer 1 When the data link malfunctions, specify whether

Basic function, setting at
data link error

the input status of CC-Link IE Field Network Basic
is cleared to OFF or O or is retained.
0: Clear input / 1: Retain input

0 (clear input)

3-83

3 Description of functions

3.6.5. Support of robot I/O signals and link devices

The support of robot I/0 signals and link devices for RX/RY and RWr/RWw are indicated here.

As shown below, the link relays RX/RY and link registers RWr/RWw of a master station's link device interacts with the I/O
signals (6000 to max. 6255) and /O registers (6000 to max. 6127) of each robot. Even if the station number changes, the
1/O signals of the robot are the same. Also, the number of stations occupied by a robot can be set from 1 to 4, designated

by the setting for number of stations occupied by master stations.

Number of Bitwise device 1 word device
stations Input I/0 signal /O register
] Link relay Link register
occupied | Output | Points Points
RX/RY (*1) Start End RWr/RWw (*2) Start End
by robot
RYO to RWwO to
Input 64 6000 6063 32 6000 6031
RY3F RWw1F
1
RXO0 to RWwO to
Output 64 6000 6063 32 6000 6031
RX3F RWw1F
RYO to RWwO to
Input 128 6000 6127 64 6000 6063
RY7F RWw3F
2
RXO0 to RWwO to
Output | 128 6000 6127 64 6000 6063
RX7F RWw3F
RYO to RWwO to
Input 192 6000 6191 96 6000 6095
RYBF RWw5F
3
RXO0 to RWwO to
Output | 192 6000 6191 96 6000 6095
RXBF RWw5F
RYO to RWwO to
Input 256 6000 6255 128 6000 6127
RYFF RWw7F
4
RXO0 to RWwO to
Output | 256 6000 6255 128 6000 6127
RXFF RWw7F

(*1) Remote input, RX: Information input from slave to master through bitwise operations.
Remote output, RY: Information output from master to slave through bitwise operations.
(*2) Remote register, RWr: Information input from slave to master through 16-bit (1 word) operations.

Remote register, RWw: Information output from master to slave through 16-bit (1 word) operations.

3-84

3 Description of functions

3.6.6. Setup procedure

The steps up to using the CC-Link IE Field Network Basic function are indicated here.
The system configuration used as an example in this description has MELSEC PLC R16CPU as the master station and FR

series robot FV-4FR-D as the slave station.

Network configuration =»Chapter 3.6.6.1

Build the network and then set the necessary parameters.

v

Network diagnostics =Chapter 3.6.6.2

Run network diagnostics to confirm whether normal communication is possible

with the state of the connection cables and the parameters that were set.

v

Programming =Chapter 3.6.6.3

Write the program.

Confirm the operation by using the General Purpose Signal window and Register window on RT ToolBox3. Refer to the

instruction manual of RT ToolBox3 for how to use signal monitoring, how to operate the robot program, and so on.

Monitor

Forced
output

5 Register(CC-Link) 1:RCL = x

Input Register:
No. | pec| Hex | No. | pec| Hex |
6000 1 o001 5000 1 o001
6001 2 0002 5001
6002
6003

3
4
6004 5
6005 6 0006 6005
7
8

6006
6007
6008 9 o009 5008 ° o009
o 6009 10 o00A 6009 10 000a
78 6010 1 0008 6010 11 0008
0 6011 2 oooc 6011 12 o00c
0 6012 13 0000 6012 13 000D
0 6013 14 000E 6013 14 000E
o 6014 15 000F 6014 15 o00F
6015 16 0010 6015 16 o010

Monior
Pseudo-Input Seitng Forced-Output

Resdy 20Rows 4 Columns

3-85

3 Description of functions

3.6.6.1. Network configuration
Build the network like in the following figure using 100BASE-TX Ethernet cables, and then set the necessary
parameters.

Here the master station is a PLC, and the slave station is a robot, with one of each.

HUB GX Works3 HUB GX Works3
RT ToolBox3 RT ToolBox3

Master station (PCL, computer, etc.) i End Master station (PCL, computer, etc.) J‘fh"‘
- =2 an =
192.168.0.39 192.168.0.39
100BASE-TX
100BASE-TX L Ethernet
Ethernet .
Fiber optic cable
e SSCNET III/H
192.168.0.2 192.168.0.20
Slave station (robot CR800-D)
Slave station (robot CR800-R)
<CR800-D type> <CR800-R type>

(1) Master station
IP address of PLC R16CPU: 192.168.0.39 / Subnet mask: 255.255.255.0
(2) Slave station

IP address of robot controller: 192.168.0.20 / Subnet mask: 255.255.255.0

* For the CR800-R type, the Ethernet connector is used with the R16RTCPU unit. An

Ethernet connector cannot be used with the CR800-R robot controller.

ACAUTION * The PLC CPU acting as the master station must have a firmware version that supports the

CC-Link IE Field Network Basic function. Refer to the website or manual of each device for

details.

3-86

3 Description of functions

m Slave station parameter settings

1. In RT ToolBox3, open "Online" — "Parameter" — "Ethernet", and set the IP address of the robot.
Here, the initial value 192.168.0.20 is being used. If you do not change the initial value, it is not necessary to
press Write.

S0 | T < wee | o
B import | 2 Edit

Offline Online i Document

it
Document

192 .168 . 0 . 20
Device & Lne

Resne ontor
Real-time External Command 2 192 . 168 . 0 . 254

2. Next, open "Online" — "Parameter" — "Field Network Parameter" — "CC-Link IE Field Basic", and change the

function selection to "Enable". Lastly, press "Write" and then reset the power of the robot controller.

fome. e Help

mEOX . Gue) 1M M @ QB E

New Open Save Close Delete ofine Oniine it
as Xoeete Preview
print

3-87

3 Description of functions

m Master station parameter settings
Set the parameters as follows.
1. In GX Works3, open "Parameter" — "Module Parameter" — "Own Node Settings". Then set the IP address of
PLC R16CPU under "IP Address", and press "Apply" to finalize the settings. Next, go to "Online" — "Write to

PLC" to write the parameters and establish Ethernet communication. Finally, reset the power and restart.

8 MELSOFT GX Works3 (Untitled Project) - [ROACPU Module Parameter] - o X
cject Edt Find/Reploce Convert View Online Debug Disgnostcs Tool Window _Help _sx
ELEIR) DD RRE AaFARRRE A5 ERL RO |im 06N .]
g O0IhGE & BRGS0 6Tk O .

: 155 ROACPU Module Parameter X

Tem

Settine
[rput e Settie Eem o Sewrcn | | |5 e

Parameter Satting Method Parameter Editor e
“F B2 2P Address
> P Sottes IPAddress N I
@ Own Nods Settines. T T
s ittings Defautt Gateway

External Device Confievration Enable/Disable Online Chanee Dissble All (SLMF)
4 Aplication Settings Communication Data Gode Binary

Openine Methad Do Nat Open by Froea
-1 GG-Link IEF Basic Setting

To Use or Not to Use OC-Lirk IEF Basic Setting ~ Disable

Network Gonfiguration Settings. <Detailed Setting>
Refresh Settings. <Detailed Setting>
=1 External Device Gonfiewation

External Device Gonfiguration <Detailed Setting>

POULst [Favorites | History | Module] Library

Find and Replace
4 Find Device/Label

(Entire Projects) -
Find Device/Label
Find Next AlFnd

—
+ Find/Replace Options

Set the IP adcress of the ovn node e Tl

Ensure, that the omn node and the extenal device to be commurioated ith have the same clsss \1d subnet adtress.

P sddress I not Set.the. mockal cperatee wih followine TP sodrese.

R 1ENT] PORT: 16216940

RI71EN71 PORTS 1021680.410

GPU buift-in Ethermet port 142168230

For redndant system. he TP address is used forthe system A

[Setting range]

~Empty (no settine)
+00.0.1 to 223985956 254 (in decimal)

Tem List Find Result Check Restore the Default Settines
& Navigation JIE es

[YRR LIS ® input the Configuration Detail

3-88

3 Description of functions

In GX Works3, go to "CC-Link IEF Basic Setting" in "Module Parameter" and set "Enable" for whether to use or

not to use the CC-Link IEF Basic Setting. Then open "<Detailed Setting>" beside the network configuration

settings. Here select "Detect Now". When the automatic detection is complete, the detected slave stations will be

displayed. In the following example, STA#1 for CR800-R is added.

|
Project Edit Find/Replace Convert View Online Debug Disgnostics Tool Window Help

DEAdle XDRea RRHSINARARRE A5 RLR @A ¢ E
wE 00 R & BE D2 6B BE
Navigation Xl ProgPou [PRG] LD] 1 ROCPU Module Parameter X

|| 5 a0

in| 1 QOIS v

G EEE

i; le Configuration [Fpat Tiem 1o Searc] |y E L Setting Ly \X‘ W X | ar
Program Porameter Setting Method Parameter Editor Disply Target: A
18 Initial % & 5 IP Address

1P Address [CRTREET

= it Scan 5 (@ Bosic Seftnes
= D MAN —_

Subnet Mask.

T~Zizable Online Change Disable Al (SLMP)
Commanication Tade Binary
Opening Methad Do ot Open by Program

|51 GG~Link IEF Basic Setting
o Use or Not o Use GC-Link IEF Basic Setting | nable

Network Confrgwation Settings T T

Refresh Settines o

|- External Device Confiaration

External Device Configuration 8

I

CC i Basic Configuation Edit_View Close with Discardingthe Sting Closewith Refectingth Seting

Detect Now

‘Connected Count | 0

x

Link Scan Settng

Secton | Find Modu 4 ¥

RURY Settng RWW/RWr Settng | oy

to- Modelfame AN paints Start | End |points| Start | End |Vo.

~Link IEF Basic Module (General)

N Host Station \aster Station

MELSOFT GX WoN

The informatiNof the connected module wil be read and the
configuration wiNg displayed.
Doyou want to exeNe?

Set the setting for cyclic ransmission
Set the Station No. Number of Occupied Statiors, T
o set the CO-Link IE Fisld Network Basc. i ¢ et

- The configuration curraNy displayed will be cleared and the
information is updated to B\aformation of the connscted module.

- Please refect the communicati\getting to save station, when the IP
address is changed after Detect Now

- Please execute it after Detect Now fONding the CC-Link IEF Basic
module(general).

Host Station

Check Restore the Defaul

Iem List Find Result

Detect Now

g Navigation

Executing Detect Now...

&
§ CCLink EF Basic Configuration it View Close with Discarding the Setting Close with Reflecting the Setting
Detect flow Link Scan Setting
Comnected Count. [T
a
B RURY e RWW/RWr Settng | o
o, Model ame 5Taz| staton Type
= Points Start| End |ponts| Start | End | No.| J//Ge.tnk IEF Basic Module (General)
m [Host station 0 Master Station

[| 1 Mocule With No Profle Foun| 1 _Save Station _ 54 #ZCcupied Station) 0000 003F 32 0000 001,

I o Process completed.

Please delete the unneceszary save station i necesza
And the following parameter will be changed to default value.
Please change it i necessary.

- Station No.

- Points of R/RY Setting

Link Scen Setting

CREN-R

; oupt

[The folowing profie cannot be found.
| [Statn No.: 1, Manufacturer Code: 3, Model llame Code: 19552]

|Some functions are restricted in this status. To remove the restriction, please register the profle above.

|When usng the module without removing the restrictin, the modul s displayed as "Module With No Profile Found".

|When “Module With No Proflle Found" s displayed, please regster the same language used i menu display of the currently executed workspace or an Englsh profie.
\When 3 supported language profle oes not exst, use a CC-Link IEF Basic module(genera).

3-89

3 Description of functions

3-90

3.

Press "Close with Reflecting the Setting" and then select "Yes" on the confirmation dialog box that is displayed.

BB} CC-Link IEF Basic Configuration m] ®

¢ CC-Link IEF Basic Configuration Edit View CIusewilhD’\s(ardnglheSEﬂin]@

Detect Now Link Scan Setting
‘Connected Count 1

Model Name 3TA#| Station Type I

i Module List x

CC-Link IEF Basic Selection | Find Modu 4 *

RX/RY Setting | | Rwww/rwr setting | oy
Points [stare [En| [points| start [End |No.| {5 o pink IEF Basic Module (General)

No.

0 Host Station 0 Master Station

54 (1 Occupied Station)| 0000 0000

MELSOFT GX Works3

Link Scan Setting which is set to greup No. that [s not used in CC-Link

IEF Basic configuration will be initialized.

Do you want to execute?

Host: Station

STA#0
All Connected
Count:1

Total STA#:1

g Outgul

The following profile cannot be found.

- [Station No.: 1, Manufacturer Code: 3, Model Name Code: 19552]

Some functions are restricted in this status. To remove the restriction, please register the profile above.

'When using the module without removing the restriction, the module is displayed as "Module Wich No Profile Found".

‘When "Madule With No Profile Found"” is displayed, please register the same language used in menu display of the currently executed workspace or an English profile.
‘When a supported language profile does not exist, use a CC-Link IEF Basic module{general).

Refresh the settings.

Here the RX/RY/RWr/RWw devices on the link side are assigned to the desired devices on the CPU side.

In the following example RX0 to RX3F (64 points) is assigned to BO to B3F; RY0 to RY3F (64 points) is assigned
to B1000 to B103F; RWr0 to RWr1F (32 points) is assigned to W0 to W1F; and RWwO0 to RWw1F (32 points) is
assigned to W1000 to W101F.

MELSOFT GX Works3 ...nk IE Filed BASIC)¥E{88 B 771/l ¥CCLink_IEF_Basic.gu2 - [RO4CPU Module Parameter]

roject Edit Find/Replace Convert View Online Debug Diagnostics Tool Window Help

BAS|e AL LR IR BT EIEER °

- | 5= | g8 A 5 T I ting Hem (Find POU) E1

L% Module Parameter Find and

B Mavigation

N ==l Y-

FIEIEEIAE R R =L T

o &L ROACPU Module Parameter X

- x| e o X
Display Target: A v

[t The Setting e to Search] i

5 gz [Link Side [CPU Side
} Device Name | Points | Start | End

0000

(=49 Basic Settings
Oun Node Settines
CG-Link IEF Basic Settings IR 6400000 00037 000
External Device Gonfieuration |Re 5200000 000IF 00000
(@ Aeplication Settings i a2 00000 0001F Specify Devi

E

68 00000) 0003F

POU List | Favorites | History | Module | Library

4R Find Device/Label -

(Entire Projects)

Find Device/Label

Find Next Al Find

+ Find/Replace Options
Set the Refresh,

The setting is necessary to transfer data automatically between the link device (FX/RY/Fulk/Riw) and GPU devics (user device,
file reister, and refresh data regicter)

Ta set the GC-Link IE Field Metwark Basic, it is required to set the Network Gonfiguration Settings and Refresh Settine.

Hem List Find Result Check ‘ ‘ Restore the Default Settings
e Lis

Eal 1l Find and Replace [E

3 Description of functions

5. Finally, go to the menu bar's "Online" — "Write to PLC", and press "Execute" to write the parameters to the PLC

CPU. When the writing is complete, reset the power and restart.

Online Data Operation - X

Display ~ Setting Related Functions

= Y -

| Parameter + Program(F) | | SelectAll | Lesend

M - ST

* CPU Built-inMemory B sD Memory Card (@ mntelligent Function Module

| OpenjClose AT} | Deselect Al(N) |

Module Name/Data Name B & oewi Title Last Change Size (Byte) ~

' CCLink _IEF_Basic

&% Parameter
- System Parameter/CPU Parameter 12/14/2017 11:54:4... |Not Calculated
&} Module Parameter | 12/14/2017 12:42:4... |Not Calculated
B Memoary Card Parameter 12{14/2017 10:52:3... |Not Calculated

M|EOO e

{40 Remote Password m] 12/14/2017 11:544... |Not Calculated
= #% Global Label O
4% Global Label Setting] 12/14/2017 10:52:4... |Not Calculated
= f4 Program] | Detal
B vam m] 12/14/2017 11:544... |Not Calculated
= @ Device Memory 0
& man] | et 12/14/2017 10:52:4... |- v
| Display Memory Capacity \§\|
Memory Capacity
Program Memory Fras
I | 158/160KE
Legend Data Memory Free
B o= | 1505/2045KB
| Devica/Label Memory {File Storage Arez) Fras
192/256KB
B E— |
B ot 5D Mamery Card Free
‘ | woa
Iy [= || [=

The settings are now complete. Next, run network diagnostics to confirm whether normal communications are

possible.

3-91

3 Description of functions

3.6.6.2. Network diagnostics

3-92

By using CC-Link IEF Basic Diagnostics, confirm whether normal communication is possible with the state of the
connection cables and the parameters that were set.

In GX Works3, select "Diagnostics" — "CC-Link IEF Basic Diagnostics" to open the diagnostics screen.

28 MELSOFT GX Works3 (Untitled Project) - [ProgPou [PRG] [LD] 115tep] - o X

i Project Edit Find/Replace Convert View Online Debug ool Window Help

LI 5 B T s e |] Sy Moniton.
A Ser ‘Device Monitor...
Rl IR W
PR S T | T o 3 oMb 2 My s | ModuleDisgnostics CPU Disgnostis)..
Ethemet Diagnostics...
CC-Link IE Control Diagnostics (Optical Cable)... Find POU ﬁ @ ‘ é
(Find POU)
CC-Link IE Control Diagnostics (Twisted Pair Cable)..

‘CC-Link IE Field Diagnosti L I — e e e rwary

CC-Link IEF Basic Diagnostics. Display Target: Al ~
MELSECNET Uiagnostics... L e W00 | SEQUENCE INSTRUCTIONS P
o 5

Association instructions

Output instructions
Shift instructions

| CC-Link Diagnostics...
|

Master Control instructions

Termination instructions

Stop instruction
Ignored instructions
BASICINSTRUCTIONS
Comparison Operation instructions
Aithetic Overgtion instruction

POU List [Favorites | History | Module | Library

SJiFind Device/Label v

(Entire Projects) o]
Fid Devee/Label
Find Next Al Find

= Find/Replace Options

ind and Replac < [T e

™ & Navigation

CC-Link IEF Basic Diagnostics X

CC_LI’r-,k IEEield Change IP Address Display
Basic

® DEC OHEX m Monitoring Start Monitoring | Stop Monitoring

EEE)Slatmns P Address | 192.168.0.39 Error Code

(Parameter’

— Rough Diagnostics
Link Scan Time/Error Stations

Error Details...

Group No.1 Present 8 |ms Maximum 9| ms Minimum 7| ms Eror Stns: 0 Unfixed Stns: 0
Group No.2 Present = |ms Maximum | ms Minimum -~ |ms -
Group No.3 Present - |ms Maximum - |ms Minimum = [ms -
Group No.4 Present —|ms Maximum —|ms Minimum — [ms -

— Detailed Diagnostics

Dizgnostics Target Group Group MNo.1 v

Station No. Occpd Stns Reserved Station P Address Transmission Status Disconnections Time-out Count The Latest Eror | Error Details

1 1 Mo Setting 192.168.0.20 Transmitting 0 o No Error Error Detazils...

Clear Latest Error Code Close

3 Description of functions

After the robot slave station has established proper communication with the master station, if the master station goes
down or the wiring becomes disconnected and communication with the master station is blocked, error 7870 is issued
on the robot controller.

The error number of the robot controller and its details can be checked on the error monitor screen of RT ToolBox3.

2 S RT ToolBoxd - Stopping... Error 1RCT
] vonier
®®®®
St stop | sttt
i
Statstop | Statstop Al
@ Eror 1RCL X Properties 3
O cRenoR Rl
8 0 Monitor
‘E e %I Stopping... Error 1:RCL
I offine -
%"; ena No. | Error Message | pate Time. Level Prog
£ Overatonpanel 7870 CCLnk IEF Basic Comm. Enor(1) 17-12-14 131820 Hgh
11 pree
S
B pamee Error Detail
- [RobotMovenent

73 SotRun State Error #: \wmmuu Hcomk IEF Basic Comm. Error(1)

Program

& Movementstste
Eventatory
o

Cause:

Faiure in the CC-Link IEF Commuication. ‘

© @ Sonal Recovery:

Check the wimng and parameter setting on the master station. ‘

[VELFA Vision
0 10 Simuator

C———————— s

For the PLC CPU master station, the station with the error can be confirmed in the network status section of the

CC-Link IEF Basic Diagnostics screen in GX Works3.

CC-Link IEF Ba

51 lagnestics
- f - Change IP Address Display
CC-Link IE Getd e i 0 ©

Total Slave Stations

— Rough Diagnostics
Link Scan Time/Error Stations

Stopping Start Monitoring . Stop Monftoring

Error Detaik...

Group No.1 Present 0| ms Maximum 8| ms Minimum 7 | ms
Group No.2 Present = |ms Maxirmum = |ms Minimum = |ms -
Group No.3 Present — | ms Maximum — | ms Minimum — | ms -
Group No.4 Present - |ms Maximum - | ms Minimum = | ms -
— Detailed Diagnostics
Diagnostics Target Group Group No.1 ~
Station No. Occpd Stns | Reserved Station 1P Address Transmission Status | Disconnections Time-out Count | The Latest Error | Error Details

192.168.0.20

Error Detal...

Clear Latest Error Code

Station No. 1

Error Code | CFE8

Error Details | Type: Network Error
- There is no response from slave station.

Cormective - Check the slave station disconnection detection setting in
Actions master station parameter (Network Configuration Settings).
- Check the existence status of slave station in network.

- Check the slve station which is disconnected.

- Take noise reduction measures.

Close

3-93

3 Description of functions

3.6.6.3. Programming

Write the program.

In the following example, the signal and register value output by the robot program of the robot controller is returned

by the PLC CPU's ladder program and reflected in the robot's input signal and register.

<Example>
Robot controller PLC CPU

Output signal 6000 to 6063 I RXO0 to RX3F I Link relay

BO to B3F
W0 to W3F

Output register 6000 to 6031 RWTr0 to RWr1F Link register
Link Refresh

‘ Scan ’
Input signal 6000 to 6063 RYO0 to RY3F « Link relay
Input register 6000 to 6031 RWw0 to RWw1F Link register

B1000 to B103F
W1000 to W103F

(1) Robot controller: Robot program example

B Program 1:RC1 1.r (Online) [MELFA-BASIC VI]

=

For M1=&000 To &0&3
M_Out (M1)=1

Dly 1

Hext M1

'

For M1=6000 To &031
M DOut (M1)=M1-8000+1
Dly 1

Next M1

'

e L

115 For M1=6000 To 6063
12| M_Out (M1)=0

13 D1y 1

14{-Next M1

16{] For M1=6000 To &031
17i| M_DOut (M1)=0

18/ D1y 1

1% -Next M1

End

[adg | [edt | o | Robot [tRvFRR -] [cetcurentpos. | |

Name X ¥ 4 A B C L1 L2

4 [4
X¥Z Alt+X |Joint Alt+] | Work Coordinate Alt+W

(2) PLC CPU: Ladder program example

Returns with ladder logic

At] ProgPou [PRG] [LD] 115tep =8 E=R=
Write - 1 [2 [3 | 4 5 6 7 8 | o 10 u | 12
SHZ00
1 o | [LBWOV. . K450 K4B1000 K4
2 [EMOV wo WI000 Kaz
3 (9) [END 1

3-94

4 Appendix

4. Appendix

4.1. Error list

The errors which occur only when the Ethernet function is used are listed as follows.

Error No. Error causes and remedies
[| Parameter ***** setting error of Ethernet interface parameter.
Cause) ***** parameter is wrongly set. (The parameter name is input in *****.)
7810 Measures) Check the setting content of the parameter.
[| MXT Command time out.
Cause) The time set in parameter MXTTOUT was exceeded.
7820 Measures) Check parameter MXTTOUT.
[| Received MXT command data illegal.
Cause) The command argument and data type do not match.
7649 Measures) Check the contents of the command and the communication data packet to be transmitted.
B Setting error of SLMP parameter.
Cause) The communication port numbers (parameter: SLMPPORT) overlap with another function.
7850 Measures) Change the parameters so that the communication port numbers to not overlap with another
function.
B CC-Link IE Field Network Basic communication error.
Cause) Communication using CC-Link IE Field Network Basic has been disconnected.
7870 Measures) Check whether the network cable is connected, and check the settings for time out on the
master side and other parameters.

For the other errors except these, refer to the errors list of the instruction manual of the controller.

4-1

4 Appendix

4.2. Sample program

This is the sample program of the Ethernet function.

4.2.1. Sample program of data link

The sample program to do the data link with Microsoft Visual Studio Express Visual Basic (hereafter written as VB) is

herein described.

The program creation is briefly introduced with the following procedure.

For details of VB operation and application producing method, refer to the instruction manual of this software.

(1) Preparation of Winsock control

(2) Production of form screen

(3) Program (Form1.frm)
There is the program following 2 passages. Use either according to the customer's system.
1) Program for the clients (when using the personal computer as the client and using the controller as the server).
2) Program for the server (when using the personal computer as the server and using the controller as the client).
* About the work of 1) 2), the client and the server are the same.

(1) Preparation of project
Create a Windows Forms application with VB.

New Project . [
b Recent _NET Framework 4.5 | Sort by: | Default - [l Search Installed Templates (Ctrl+E) @ -

4 Installed .
Windows Forms Application Visual Basic Type: Visual Basic
-

A project for creating an application with

VB
J WPF Application Visual Basic a Windows user interface
«my
Windows Desktop VE
| Cloud ﬁ Conscle Application Wisual Basic
Reporting n!\m
Class Library Wisual Basic
Silverlight £
Test Ve
= ‘nﬁi! Class Library (Portable) Wisual Basic
| WCF :
VB
Workflow @ Silverlight Application Visual Basic
I Wisual C2
) - VB
b Wisual C++ é!g Silverlight Class Library Wisual Basic
I Visual F&
VB
SQL Server GI. WCF Service Application Visual Basic
b JavaScript
Python > et Microsoft Azure SDK for .NET Visusl Basic
b TypeScript
b Other Project Types [D Azure Mobile Service Visual Basic
-
’ -V s))
I+ Online an | Artivity lihrans Visnal Rasic

Click here to go online and find templates.

Location: sers¥kaS4369¥documents¥visual studic 2013¥Projects v|

Solution name: |:| Create directory for solution

[] Add to source contral

Cancel

(2) Sample is a form of figure

IF addre=s Paort Mo,
19216801 10003 1 Can
Send data

Send
Feceive

Copy files to vbsample folder.

+ Form1.Designer.vb

* Form1.vb

Be careful not to confuse the client and the server.

Each text files saved from pdf manual.

m Form1.Designer.vb (Form for the client)

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
Inherits System.Windows.Forms.Form

'Form overrides dispose to clean up the component list.
<System.Diagnostics.DebuggerNonUserCode()> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)
Try
If disposing AndAlso components IsNot Nothing Then
components.Dispose()
End If
Finally
MyBase.Dispose(disposing)
End Try
End Sub

'Required by the Windows Form Designer
Private components As System.ComponentModel.IContainer

'NOTE: The following procedure is required by the Windows Form Designer

"It can be modified using the Windows Form Designer.

'Do not modify it using the code editor.

<System.Diagnostics.DebuggerStepThrough()> _

Private Sub InitializeComponent()
Me.components = New System.ComponentModel.Container
Me.Button1 = New System.Windows.Forms.Button
Me.Check1 = New System.Windows.Forms.CheckBox
Me.Text4 = New System.Windows.Forms.TextBox
Me.Text3 = New System.Windows.Forms.TextBox
Me.Text2 = New System.Windows.Forms.TextBox

4 Appendix

4-3

4 Appendix

Me.Text1 = New System.Windows.Forms.TextBox

Me.Label4 = New System.Windows.Forms.Label

Me.Label3 = New System.Windows.Forms.Label

Me.Label2 = New System.Windows.Forms.Label

Me.Label1 = New System.Windows.Forms.Label

Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
Me.SuspendLayout()

'Button

Me.Button1.BackColor = System.Drawing.SystemColors.Control
Me.Button1.Cursor = System.Windows.Forms.Cursors.Default
Me.Button1.ForeColor = System.Drawing.SystemColors.ControlText
Me.Button1.Location = New System.Drawing.Point(264, 72)
Me.Button1.Name = "Button1"

Me.Button1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Button1.Size = New System.Drawing.Size(49, 25)
Me.Button1.Tablndex = 16

Me.Button1.Text = "Send"

Me.Button1.UseVisualStyleBackColor = False

'Check1

Me.Check1.BackColor = System.Drawing.SystemColors.Control
Me.Check1.Cursor = System.Windows.Forms.Cursors.Default
Me.Check1.ForeColor = System.Drawing.SystemColors.Control Text
Me.Check1.Location = New System.Drawing.Point(264, 24)
Me.Check1.Name = "Check1"

Me.Check1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Check1.Size = New System.Drawing.Size(49, 25)
Me.Check1.Tablndex = 14

Me.Check1.Text = "Connection"
Me.Check1.UseVisualStyleBackColor = False

"Text4

Me.Text4.AcceptsReturn = True

Me.Text4.AcceptsTab = True

Me.Text4.BackColor = System.Drawing.SystemColors.Window
Me.Text4.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text4.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text4.Location = New System.Drawing.Point(8, 120)
Me.Text4.MaxLength = 0

Me.Text4.Multiline = True

Me.Text4.Name = "Text4"

Me.Text4.RightTolLeft = System.Windows.Forms.RightToLeft.No
Me.Text4.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
Me.Text4.Size = New System.Drawing.Size(305, 121)
Me.Text4.Tabindex = 17

Text3

Me.Text3.AcceptsReturn = True

Me.Text3.BackColor = System.Drawing.SystemColors.Window
Me.Text3.Cursor = System.Windows.Forms.Cursors.IBeam
Me.Text3.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text3.Location = New System.Drawing.Point(8, 72)
Me.Text3.MaxLength =0

Me.Text3.Name = "Text3"

Me.Text3.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text3.Size = New System.Drawing.Size(249, 19)

Me.Text3.Tablndex = 15
"Text2

Me.Text2.AcceptsReturn = True

Me.Text2.BackColor = System.Drawing.SystemColors.Window
Me.Text2.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text2.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text2.Location = New System.Drawing.Point(152, 24)
Me.Text2.MaxLength = 0

Me.Text2.Name = "Text2"

Me.Text2.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text2.Size = New System.Drawing.Size(105, 19)
Me.Text2.Tabindex = 13

Me.Text2.Text = "10003"

Text1

Me.Text1.AcceptsReturn = True

Me.Text1.BackColor = System.Drawing.SystemColors.Window
Me.Text1.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text1.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text1.Location = New System.Drawing.Point(8, 24)
Me.Text1.MaxLength = 0

Me.Text1.Name = "Text1"

Me.Text1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text1.Size = New System.Drawing.Size(137, 19)
Me.Text1.Tablndex = 12

Me.Text1.Text ="192.168.0.1"

'Label4

Me.Label4.BackColor = System.Drawing.SystemColors.Control
Me.Label4.Cursor = System.Windows.Forms.Cursors.Default
Me.Label4.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label4.Location = New System.Drawing.Point(8, 104)
Me.Label4.Name = "Label4"

Me.Label4.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Label4.Size = New System.Drawing.Size(65, 13)
Me.Label4.Tablndex = 19

Me.Label4.Text = "Receive data"

'Label3

Me.Label3.BackColor = System.Drawing.SystemColors.Control
Me.Label3.Cursor = System.Windows.Forms.Cursors.Default
Me.Label3.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label3.Location = New System.Drawing.Point(8, 56)
Me.Label3.Name = "Label3"

Me.Label3.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Label3.Size = New System.Drawing.Size(65, 13)
Me.Label3.Tablndex = 18

Me.Label3.Text = "Send data"

'Label2

Me.Label2.BackColor = System.Drawing.SystemColors.Control
Me.Label2.Cursor = System.Windows.Forms.Cursors.Default
Me.Label2.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label2.Location = New System.Drawing.Point(152, 8)
Me.Label2.Name = "Label2"

4 Appendix

4-5

4 Appendix

4-6

Me.Label2.RightTolLeft = System.Windows.Forms.RightToLeft.No

Me.Label2.Size = New System.Drawing.Size(65, 13)
Me.Label2.Tabindex = 11
Me.Label2.Text = "Port No."

'Label

Me.Label1.BackColor = System.Drawing.SystemColors.Control
Me.Label1.Cursor = System.Windows.Forms.Cursors.Default

Me.Label1.ForeColor = System.Drawing.SystemColors.ControlText

Me.Label1.Location = New System.Drawing.Point(8, 8)
Me.Label1.Name = "Label1"

Me.Label1.RightToLeft = System.Windows.Forms.RightToLeft.No

Me.Label1.Size = New System.Drawing.Size(73, 17)
Me.Label1.Tablndex = 10
Me.Label1.Text = "IP address"

"Timer1

Me.Timer1.Interval = 50

'Form1

Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 12.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font

Me.ClientSize = New System.Drawing.Size(320, 253)
Me.Controls.Add(Me.Button1)
Me.Controls.Add(Me.Check1)
Me.Controls.Add(Me.Text4)
Me.Controls.Add(Me.Text3)
Me.Controls.Add(Me.Text2)
Me.Controls.Add(Me.Text1)
Me.Controls.Add(Me.Label4)
Me.Controls.Add(Me.Label3)
Me.Controls.Add(Me.Label2)
Me.Controls.Add(Me.Label1)
Me.Name = "Form1"

Me.Text = "Data link (client)"
Me.ResumelLayout(False)
Me.PerformLayout()

End Sub

Public WithEvents Button1 As System.Windows.Forms.Button
Public WithEvents Check1 As System.Windows.Forms.CheckBox
Public WithEvents Text4 As System.Windows.Forms.TextBox
Public WithEvents Text3 As System.Windows.Forms.TextBox
Public WithEvents Text2 As System.Windows.Forms.TextBox
Public WithEvents Text1 As System.Windows.Forms.TextBox
Public WithEvents Label4 As System.Windows.Forms.Label
Public WithEvents Label3 As System.Windows.Forms.Label
Public WithEvents Label2 As System.Windows.Forms.Label
Public WithEvents Label1 As System.Windows.Forms.Label
Friend WithEvents Timer1 As System.Windows.Forms.Timer

End Class

4 Appendix

m Form1.vb (Program for the client)

Imports System
Imports System.Net.Sockets

Public Class Form1
Private Client As TcpClient

Private Sub Check1_CheckStateChanged(ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Check1.CheckStateChanged
' Process for Connect or Disconnect
Try
If Check1.CheckState = CheckState.Checked Then
Client = New TcpClient()
Client.Connect(Text1.Text, Convert.Tolnt32(Text2.Text)) 'Connect
Button1.Enabled = Client.Connected
Timer1.Enabled = Client.Connected
Else
Timer1.Enabled = False
Button1.Enabled = False
Client.GetStream().Close() 'Disconnect
Client.Close()
End If
Catch ex As Exception
Check1.Checked = False
MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
'‘Send process
Try
Dim SendBuf As Byte() = System.Text.Encoding.Default. GetBytes(Text3.Text)
Dim Stream As NetworkStream = Client.GetStream()
Stream.Write(SendBuf, 0, SendBuf.Length)
Catch ex As Exception
Client = Nothing
Timer1.Enabled = False
Button1.Enabled = False
Check1.Checked = False
MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick
'Receive process
Try
Dim Stream As NetworkStream = Client.GetStream()
If Stream.DataAvailable Then
Dim bytes(1000) As Byte
Dim strReceivedData As String =
Dim datalength = Stream.Read(bytes, 0, bytes.Length)
strReceivedData = System.Text.Encoding.Default. GetString(bytes).Substring(0, datalength)
Text4.AppendText(strReceivedData)
Text4.AppendText(System.Environment.NewLine)
End If
Catch ex As Exception

4-7

4 Appendix

4-8

Client = Nothing
Timer1.Enabled = False
Button1.Enabled = False
Check1.Checked = False

MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxlcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End Sub
End Class

m Form1.Designer.vb (Form for the server)

<Global.Microsoft.VisualBasic.CompilerServices.DesignerGenerated()> _
Partial Class Form1
Inherits System.Windows.Forms.Form

'Form overrides dispose to clean up the component list.
<System.Diagnostics.DebuggerNonUserCode()> _
Protected Overrides Sub Dispose(ByVal disposing As Boolean)
Try
If disposing AndAlso components IsNot Nothing Then
components.Dispose()
End If
Finally
MyBase.Dispose(disposing)
End Try
End Sub

'‘Required by the Windows Form Designer
Private components As System.ComponentModel.|Container

'NOTE: The following procedure is required by the Windows Form Designer
"It can be modified using the Windows Form Designer.
'Do not modify it using the code editor.
<System.Diagnostics.DebuggerStepThrough()> _
Private Sub InitializeComponent()
Me.components = New System.ComponentModel.Container
Me.Button1 = New System.Windows.Forms.Button
Me.Check1 = New System.Windows.Forms.CheckBox
Me.Text4 = New System.Windows.Forms.TextBox
Me.Text3 = New System.Windows.Forms.TextBox
Me.Text2 = New System.Windows.Forms.TextBox
Me.Text1 = New System.Windows.Forms.TextBox
Me.Label4 = New System.Windows.Forms.Label
Me.Timer1 = New System.Windows.Forms.Timer(Me.components)
Me.Label3 = New System.Windows.Forms.Label
Me.Label2 = New System.Windows.Forms.Label
Me.Label1 = New System.Windows.Forms.Label
Me.SuspendLayout()

'Button1

Me.Button1.BackColor = System.Drawing.SystemColors.Control
Me.Button1.Cursor = System.Windows.Forms.Cursors.Default
Me.Button1.ForeColor = System.Drawing.SystemColors.ControlText
Me.Button1.Location = New System.Drawing.Point(264, 72)
Me.Button1.Name = "Button1"

Me.Button1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Button1.Size = New System.Drawing.Size(49, 25)

4 Appendix

Me.Button1.Tablndex = 26
Me.Button1.Text = "Send"
Me.Button1.UseVisualStyleBackColor = False

'‘Check1

Me.Check1.BackColor = System.Drawing.SystemColors.Control
Me.Check1.Cursor = System.Windows.Forms.Cursors.Default
Me.Check1.ForeColor = System.Drawing.SystemColors.Control Text
Me.Check1.Location = New System.Drawing.Point(264, 24)
Me.Check1.Name = "Check1"

Me.Check1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Check1.Size = New System.Drawing.Size(49, 25)
Me.Check1.Tablndex = 24

Me.Check1.Text = "Connection"
Me.Check1.UseVisualStyleBackColor = False

Text4

Me.Text4.AcceptsReturn = True

Me.Text4.BackColor = System.Drawing.SystemColors.Window
Me.Text4.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text4.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text4.Location = New System.Drawing.Point(8, 120)
Me.Text4.MaxLength = 0

Me.Text4.Multiline = True

Me.Text4.Name = "Text4"

Me.Text4.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text4.ScrollBars = System.Windows.Forms.ScrollBars.Vertical
Me.Text4.Size = New System.Drawing.Size(305, 121)
Me.Text4.Tablndex = 27

"Text3

Me.Text3.AcceptsReturn = True

Me.Text3.BackColor = System.Drawing.SystemColors.Window
Me.Text3.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text3.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text3.Location = New System.Drawing.Point(8, 72)
Me.Text3.MaxLength = 0

Me.Text3.Name = "Text3"

Me.Text3.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text3.Size = New System.Drawing.Size(249, 19)
Me.Text3.Tabindex = 25

"Text2

Me.Text2.AcceptsReturn = True

Me.Text2.BackColor = System.Drawing.SystemColors.Window
Me.Text2.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text2.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text2.Location = New System.Drawing.Point(152, 24)
Me.Text2.MaxLength = 0

Me.Text2.Name = "Text2"

Me.Text2.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text2.Size = New System.Drawing.Size(105, 19)
Me.Text2.Tablndex = 23

Me.Text2.Text = "10003"

Text1

4 Appendix

4-10

Me.Text1.AcceptsReturn = True

Me.Text1.BackColor = System.Drawing.SystemColors.Window
Me.Text1.Cursor = System.Windows.Forms.Cursors.|IBeam
Me.Text1.ForeColor = System.Drawing.SystemColors.WindowText
Me.Text1.Location = New System.Drawing.Point(8, 24)
Me.Text1.MaxLength = 0

Me.Text1.Name = "Text1"

Me.Text1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Text1.Size = New System.Drawing.Size(137, 19)
Me.Text1.Tablndex = 22

'Label4

Me.Label4.BackColor = System.Drawing.SystemColors.Control
Me.Label4.Cursor = System.Windows.Forms.Cursors.Default
Me.Label4.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label4.Location = New System.Drawing.Point(8, 104)
Me.Label4.Name = "Label4"

Me.Label4.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Label4.Size = New System.Drawing.Size(65, 13)
Me.Label4.Tablndex = 29

Me.Label4.Text = "Receive data"

"Timer1

Me.Timer1.Interval = 50

‘Label3

Me.Label3.BackColor = System.Drawing.SystemColors.Control
Me.Label3.Cursor = System.Windows.Forms.Cursors.Default
Me.Label3.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label3.Location = New System.Drawing.Point(8, 56)
Me.Label3.Name = "Label3"

Me.Label3.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Label3.Size = New System.Drawing.Size(65, 13)
Me.Label3.Tabindex = 28

Me.Label3.Text = "Send data"

'Label2

Me.Label2.BackColor = System.Drawing.SystemColors.Control
Me.Label2.Cursor = System.Windows.Forms.Cursors.Default
Me.Label2.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label2.Location = New System.Drawing.Point(152, 8)
Me.Label2.Name = "Label2"

Me.Label2.RightTolLeft = System.Windows.Forms.RightToLeft.No
Me.Label2.Size = New System.Drawing.Size(65, 13)
Me.Label2.Tablndex = 21

Me.Label2.Text = "Port No."

'‘Label1

Me.Label1.BackColor = System.Drawing.SystemColors.Control
Me.Label1.Cursor = System.Windows.Forms.Cursors.Default
Me.Label1.ForeColor = System.Drawing.SystemColors.ControlText
Me.Label1.Location = New System.Drawing.Point(8, 8)
Me.Label1.Name = "Label1"

Me.Label1.RightToLeft = System.Windows.Forms.RightToLeft.No
Me.Label1.Size = New System.Drawing.Size(73, 17)
Me.Label1.Tablndex = 20

End

Me.Label1.Text = "IP address"

'Form1

Me.AutoScaleDimensions = New System.Drawing.SizeF(6.0!, 12.0!)
Me.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font
Me.ClientSize = New System.Drawing.Size(320, 253)
Me.Controls.Add(Me.Button1)

Me.Controls.Add(Me.Check1)

Me.Controls.Add(Me.Text4)

Me.Controls.Add(Me.Text3)

Me.Controls.Add(Me.Text2)

Me.Controls.Add(Me.Text1)

Me.Controls.Add(Me.Label4)

Me.Controls.Add(Me.Label3)

Me.Controls.Add(Me.Label2)

Me.Controls.Add(Me.Label1)

Me.Name = "Form1"

Me.Text = "Data link (server)"

Me.ResumelLayout(False)

Me.PerformLayout()

Sub

Public WithEvents Button1 As System.Windows.Forms.Button
Public WithEvents Check1 As System.Windows.Forms.CheckBox
Public WithEvents Text4 As System.Windows.Forms.TextBox
Public WithEvents Text3 As System.Windows.Forms.TextBox
Public WithEvents Text2 As System.Windows.Forms.TextBox
Public WithEvents Text1 As System.Windows.Forms.TextBox
Public WithEvents Label4 As System.Windows.Forms.Label
Friend WithEvents Timer1 As System.Windows.Forms.Timer
Public WithEvents Label3 As System.Windows.Forms.Label
Public WithEvents Label2 As System.Windows.Forms.Label
Public WithEvents Label1 As System.Windows.Forms.Label

End Class

m Form1.vb (Program for the server)

Imports System

Imports System.Net

Imports System.Net.Sockets

Imports System.Net.NetworkInformation
Imports System.Text

Public Class Form1

Private Listener As TcpListener
Private Client As TcpClient

4 Appendix

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles MyBase.Load
Text1.Enabled = False 'Disable IP address
Text3.Enabled = False 'Disable Send data
Button1.Enabled = False 'Disable Send button

End Sub

Private Sub Check1_CheckStateChanged (ByVal sender As System.Object, ByVal e As System.EventArgs)
Handles Check1.CheckStateChanged
'Process for Connect

Try

4-11

4 Appendix

If Check1.CheckState = CheckState.Checked Then
Dim interfaces As Networkinterface()
Dim _currentinterface As Networkinterface

'Get local IP address
interfaces = NetworklInterface.GetAlINetworkInterfaces
For Each Networkinterface As NetworkInterface In interfaces
If NetworkInterface.Name = "Local Area Connection" Then
_currentinterface = Networkinterface
Dim properties As IPInterfaceProperties
properties = _currentinterface.GetIPProperties

If properties.UnicastAddresses.Count > 0 Then
For Each info As UnicastIPAddressinformation In properties.UnicastAddresses
Text1.Text = info.Address.ToString
Next
End If
End If
Next

'Wait connection from client
Listener = New TcpListener(IPAddress.Parse(Text1.Text), Convert. Tolnt32(Text2.Text))
Timer1.Start()
Listener.Start()
Else
Client = Nothing
Timer1.Stop()
Button1.Enabled = False 'Disable send button
Text3.Enabled = False
Listener.Stop() 'Stop listen
End If
Catch ex As Exception
MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End Sub

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
'‘Send text
Try
Dim SendBuf As Byte() = System.Text.Encoding.Default.GetBytes(Text3.Text)
Dim Stream As NetworkStream = Client.GetStream()
Stream.Write(SendBuf, 0, SendBuf.Length)
Catch ex As Exception
'‘Disconnect
Client = Nothing

MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End Sub

Private Sub Timer1_Tick(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Timer1.Tick
'Receive process
Try

If Client Is Nothing Then
If Listener.Pending = False Then
Text1.Enabled = False 'Disable IP address edit
Text3.Enabled = False 'Disable send text edit

412

4 Appendix

Button1.Enabled = False 'Disable send button
Else
Client = Listener.AcceptTcpClient() 'Connect with client
Text1.Enabled = True 'Enable IP address edit
Text3.Enabled = True 'Enable send text edit
Button1.Enabled = True 'Enable send button
End If
Else
'Receive data
Try
Dim Stream As NetworkStream = Client.GetStream
If Stream.DataAvailable Then
Dim bytes(1000) As Byte
Dim strReceivedData As String =
Dim datalength = Stream.Read(bytes, 0, bytes.Length)
strReceivedData = System.Text.Encoding.Default.GetString(bytes).Substring(0, datalength)
Text4.AppendText(strReceivedData)
Text4.AppendText(System.Environment.NewLine)
End If
Catch ex As Exception
'‘Disconnect
Client = Nothing
MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,
MessageBoxDefaultButton.Button1)
End Try
End If

Catch ex As Exception
MessageBox.Show(ex.Message, Me.Text, MessageBoxButtons.OK, MessageBoxIcon.Error,

MessageBoxDefaultButton.Button1)
End Try
End Sub

End Class

413

4 Appendix

4.2.2. Sample program for real-time external control function

A sample program that establishes a data link using Microsoft Visual Studio Express Visual C++ (hereinafter VC) is shown

below.
The procedures for creating the program are briefly explained below.

Refer to the software manuals for details on operating VC and creating the application.

(1) Create new project
(2) Create program sample.cpp/strdef.h

(1) Create new project

Start VC, and create a new project. Set the name to Win32 Console Application.

4 Templates

4 Visual Basic

Win32 Project

Windows Desktop
Cloud Empty Project

Reporting
Silverfight Makefile Project
Test
WCF

Workflow
v Vicual Ci
ATL
CLR

General

Test

Win32
P Visual F#

P Online

Click here to go online and find templates.

MName:

sample

Visual C++

Visual C++

Visual C++

Location:

Solution name:

users¥kaS4369¥documents¥visual studic 2013¥Projects

- | Browse.

New Project 1 [
& Recent .MET Framework 4.5 ~| Sort by: | Default - Search Installed Templates (Ctri+E) O ~
4 Installed

Type: Visual C++

A project for creating a Win32 conscle
application

|:| Create directory for solution

[] Add to source control

4-14

4 Appendix

Win32 Application Wizard - sample2

|5 o

() Static library
Additional options:

Application Settings
Overview Application type:
Windows application
Application Settings Ow pel
I@ Console application I
Obu

Empty project

Add common header files for:
B an
O mrc

chedks

|| security Development Lifecyde (SDL)
e

Mext = Finish | | Cancel

Using the project setting, add wsock32.lib to the object/library module.

3 o

vl ’ Configuraticn Manager... l

wsock32.libfkernel32.lib;user32.lib;gdi32. libwinsp{ ~ |

Specifies additional items to add to the link command line [i_e. kernel32_lib]

sample Property Pages
Configuration: |Active{Debug) vl Platform: [Active(WinS?_]
VIC++ Directories - Additional Dependencies
I CfC++ Igncre All Default Libraries
4 Linker Ignore Specific Default Libraries
General = Madule Definition File
Add Module to Assembly
Manifest File Embed Managed Rescurce File
Debugging Force Symbcol References
System E Delay Loaded Dlis
Optimization Assembly Link Rescurce
Embedded IDL
Windows Metadata | |
Advanced
All Opticns
Command Line Additional Dependencies
I» Manifest Tool -
4 e 3

[oK][vl EAA)

Copy files to sample folder.

+ strdef.h

- sample.cpp

Each text files saved from pdf manual.

4-15

4 Appendix

m Header file strdef.h
I i e
/I Real-time control sample program
/I Communication packet data structure definition header file
1 * * i o *
/I strdef.h

#define VER_H7

/ /
[* Joint coordinate system (Set unused axis to 0) */
I* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/ * i /
typedef struct{
float j1; /I J1 axis angle (radian)
float j2; /I J2 axis angle (radian)
float j3; /I J3 axis angle (radian)
float j4; /I J4 axis angle (radian)
float j5; /I J5 axis angle (radian)
float j6; /l J6 axis angle (radian)
float i7; /I Additional axis 1 (J7 axis angle) (radian)
float i8; /I Additional axis 2 (J8 axis angle) (radian)
} JOINT;
/ * * * /
[* XYZ coordinate system (Set unused axis to 0) */
I* Refer to the instruction manual enclosed */
/* with each robot for details on each element. */
/ /
typedef struct{
float X; /I X axis coordinate value (mm)
float y; /I'Y axis coordinate value (mm)
float z; /I Z axis coordinate value (mm)
float a; /I A axis coordinate value (radian)
float b; /I B axis coordinate value (radian)
float C; /I C axis coordinate value (radian)
float I1; /I Additional axis 1 (mm or radian)
float 12; /I Additional axis 2 (mm or radian)
} WORLD;
typedef struct{
WORLD w;
unsigned intsflg1; /I Structural flag 1
unsigned intsflg2; /I Structural flag 2
} POSE;
/* Pulse coordinate system (Set unused axis to 0) */
[* These coordinates express each joint */
/* with a motor pulse value. */
/ /
typedef struct{

long p1; // Motor 1 axis
long p2; // Motor 2 axis
long p3; // Motor 3 axis
long p4; // Motor 4 axis
long p5; // Motor 5 axis
long p6; // Motor 6 axis
long p7; // Additional axis 1 (Motor 7 axis)

4-16

4 Appendix

long p8; // Additional axis 2 (Motor 8 axis)

} PULSE;

/

/

/* Real-time function communication data packet Wi

Jrn Kk

typedef struct enet_rtcmd_str {
unsigned short Command;
#define MXT_CMD_NULL
#define MXT_CMD_MOVE
#define MXT_CMD_END

unsigned short SendType;
unsigned short RecvType;

#define MXT_TYP_NULL

#define MXT_TYP_POSE
#define MXT_TYP_JOINT
#define MXT_TYP_PULSE

#define MXT_TYP_FPOSE
#define MXT_TYP_FJOINT
#define MXT_TYP_FPULSE
#define MXT_TYP_FB_POSE
#define MXT_TYP_FB_JOINT
#define MXT_TYP_FB_PULSE

#define MXT_TYP_CMDCUR
#define MXT_TYP_FBKCUR

union rtdata {
POSE pos;
JOINT jnt;
PULSE pils;
long Ing1[8];
} dat;

unsigned short SendlOType;
unsigned short RecvlOType;

#define MXT_10_NULL
#define MXT_I0_OUT
#define MXT_10_IN

unsigned short BitTop;
unsigned short BitMask;
unsigned short loData;

unsigned short TCount;
unsigned long CCount;

unsigned short RecvTypef1;
union rtdata1 {

POSE pos1;

JOINT jntt;

PULSE pls1;

long Ing1[8];
} dat1;

unsigned short RecvType2;

255

WN -

—_

/

/I Command

/I Real-time external command invalid
// Real-time external command valid
/I Real-time external command end

/l Command data type designation

/I Monitor data type designation

I Command or monitor data type ///
/I No data

/I For the command and monitor ////11111111HH111T
/I XYZ data

/[Joint data

/l pulse data

I For position related monitor ///

/I XYZ data (after filter process)

/I Joint data (after filter process)

/l Pulse data (after filter process)

/I XYZ data (Encoder feedback value)

/I Joint data (Encoder feedback value)

I/l Pulse data (Encoder feedback value)

/I For current related monitors /1111111111111
/I Electric current command

/I Electric current feedback

/I Command data

/I XYZ type [mm/rad]

/I Joint type [rad]

/l Pulse type [pls]

I Integer type [% / non-unit]

/I Send input/output signal data designation
/I Return input/output signal data designation

// No data
/I Output signal
/I Input signal

/I Head bit No.
/I Transmission bit mask pattern designation (0x0001-0xffff)
/I Input/output signal data (0x0000-0xffff)

/I Timeout time counter value
/I Transmission data counter value

/I Reply data-type specification 1
/I Monitor data 1

/I XYZ type [mm/rad]

/I JOINT type [mm/rad]

/I PULSE type [mm/rad]

/I Integer type [% / non-unit]

/I Reply data-type specification 2

417

4 Appendix

union rtdata2 { /I Monitor data 2
POSE pos2; I XYZ type [mm/rad]
JOINT jnt2; /I JOINT type [mm/rad]
PULSE pls2; /I PULSE type [mm/rad] or Integer type [% / non-unit]
long Ing2[8]; /I Integer type [% / non-unit]

} dat2;

unsigned short RecvType3; /I Reply data-type specification 3

union rtdata3 { /I Monitor data 3
POSE pos3; /I XYZ type [mm/rad]
JOINT jnt3; /I JOINT type [mm/rad]
PULSE pls3; /Il PULSE type [mm/rad] or Integer type [% / non-unit]
long Ing3[8]; /I Integer type [% / non-unit]

} dat3;

} MXTCMD;

m Source file sample.cpp
/I sample.cpp

/I Change the definition in the "strdef.h" file by the S/W version of the controller.
/I Refer to the "strdef.h" file for details.
I

#define_CRT_SECURE_NO_WARNINGS

#include <windows.h>
#include <iostream>
#include <winsock.h>
#include <stdio.h>

#include <conio.h>
#include <string.h>
#include <math.h>
#include "strdef.h"

#define NO_FLAGS_SET 0

#define MAXBUFLEN 512
using namespace std;

INT main(VOID)

{
WSADATA Data;
SOCKADDR_IN destSockAddr;
SOCKET destSocket;
unsigned long destAddr;
int status;
int numsnt;
int numrcy;
char sendTextfMAXBUFLEN];
char recvTextitMAXBUFLEN];
char dst_ip_address[]MAXBUFLEN];
unsigned short port;

char msg[MAXBUFLEN]J;

char buf[MAXBUFLEN];

char type,type_mon[4];

unsigned short I0SendType=0; /I Send input/output signal data designation
unsigned short IORecvType=0; /I Reply input/output signal data designation

unsigned short IOBitTop=0;

4-18

}

unsigned short |0BitMask=0xffff;
unsigned short I0BitData=0;

cout << " Input connection destination IP address (192.168.0.20) ->";
cin.getline(dst_ip_address, MAXBUFLEN);
if(dst_ip_address[0]==0) strcpy(dst_ip_address, "192.168.0.20");

cout << " Input connection destination port No. (10000) -> ";
cin.getline(msg, MAXBUFLEN);

if(msg[0]'=0) port=atoi(msg);

else port=10000;

cout << " Use input/output signal?([Y] / [N])->";
cin.getline(msg, MAXBUFLEN);
if(msg[0]!=0 && (msg[0]=="Y" || msg[0]=="y")) {
cout << " What is target? Input signal/output signal([lJnput / [Olutput)-> ";
cin.getline(msg, MAXBUFLEN);
switch(msg[0]) {
case 'O": /I Set target to output signal
case 'o":
10SendType = MXT_IO_OUT;
IORecvType = MXT_IO_OUT;
break;
case'l" /I Set target to input signal
case 'i"
default:
10SendType = MXT_IO_NULL;
IORecvType = MXT_IO_IN;
break;

}

cout << " Input head bit No. (0 to 32767)-> ";
cin.getline(msg, MAXBUFLEN);
if(msg[0]'=0) IOBitTop = atoi(msg);

else IOBItTop = 0;

if(I0SendType==MXT_IO_OUT) { /I Only for output signal
cout << " Input bit mask pattern for output as hexadecimal (0000 to FFFF)->";
cin.getline(msg, MAXBUFLEN);
if(msg[0]!=0) sscanf(msg,"%4x",& OBitMask);
else IOBitMask = 0;
cout << " Input bit data for output as hexadecimal (0000 to FFFF)->";
cin.getline(msg, MAXBUFLEN);
if(msg[0]'=0) sscanf(msg,"%4x",&lOBitData);
else |OBitData = 0;
}

cout << "--- Input the data type of command. ---¥n";
cout << "[0: None / 1: XYZ / 2:JOINT / 3: PULSE]J¥n";
cout << "-- please input the number -- [0] - [3]->";
cin.getline(msg, MAXBUFLEN);

type = atoi(msg);

for(int k=0; k<4; k++) {

sprintf(msg,"--- input the data type of monitor (%d-th) ---¥n", k);

cout << msg;

cout << "[0: None]¥n";

cout << "[1: XYZ / 2:JOINT / 3: PULSE] Command value¥n";

cout << "[4: XYZ/ 5: JOINT/ 6: PULSE] Command value after the filter process¥n";
cout << "[7: XYZ/ 5:JOINT/ 6:PULSE] Feedback value.¥n";

cout << "[10: Electric current value / 11: Electric current feedback] ... Electric current value.¥n";

4 Appendix

4-19

4 Appendix

cout << "Input the numeral [0] to [11] -> ";
cin.getline(msg, MAXBUFLEN);
type_mon[k] = atoi(msg);
}
sprintf(msg, "IP=%s / PORT=%d / Send Type=%d / Monitor Type0/1/2/3=%d/%d/%d/%d", dst_ip_address, port , type,
type_mon[0], type_mon[1], type_monl[2], type_mon[3]);
cout << msg << endl;

cout << "[Enter]= End / [d]= Monitor data display";
cout << "[z/x]= Increment/decrement first command data transmitted by the delta amount. ";

cout << " Is it all right? [Enter] / [Ctrl+C] ";
cin.getline(msg, MAXBUFLEN);

// Windows Socket DLL initialization
status=WSAStartup(MAKEWORD(1, 1), &Data);

if (status != 0)

cerr << "ERROR: WSAStartup unsuccessful" << endl;

/I IP address, port, etc., setting

memset(&destSockAddr, 0, sizeof(destSockAddr));
destAddr=inet_addr(dst_ip_address);
memcpy(&destSockAddr.sin_addr, &destAddr, sizeof(destAddr));
destSockAddr.sin_port=htons(port);
destSockAddr.sin_family=AF_INET;

/I Socket creation
destSocket=socket(AF_INET, SOCK_DGRAM, 0);
if (destSocket == INVALID_SOCKET) {
cerr << "ERROR: socket unsuccessful" << end|;
status=WSACleanup();
if (status == SOCKET_ERROR)
cerr << "ERROR: WSACIeanup unsuccessful" << endl;

return(1);

}

MXTCMD MXTsend;

MXTCMD MXTrecy;

JOINT jnt_now;

POSE pos_now;

PULSE pls_now;

unsigned long counter = 0;

int loop = 1;

int disp = 0;

int disp_data = 0;

int ch;

float delta=(float)0.0;

long ratio=1;

int retry;
fd_set SockSet; /I Socket group used with select
timeval sTimeOut; // For timeout setting

memset(&MXTsend, 0, sizeof(MXTsend));
memset(&jnt_now, 0, sizeof(JOINT));
memset(&pos_now, 0, sizeof(POSE));
memset(&pls_now, 0, sizeof(PULSE));

while(loop) {

memset(&MXTsend, 0, sizeof(MXTsend));

4-20

memset(&MXTrecv, 0, sizeof(MXTrecv));

/I Transmission data creation
if(loop==1) { // Only first time

else {

}

MXTsend.Command = MXT_CMD_NULL;
MXTsend.SendType = MXT_TYP_NULL;
MXTsend.RecvType = type;
MXTsend.SendlOType = MXT_IO_NULL;
MXTsend.RecvlOType = 10SendType;
MXTsend.CCount = counter = 0;

/I Second and following times
MXTsend.Command = MXT_CMD_MOVE;
MXTsend.SendType = type;
MXTsend.RecvType = type_mon[0];
MXTsend.RecvType1= type_mon[1];
MXTsend.RecvType2= type_mon[2];
MXTsend.RecvType3= type_mon[3];
switch(type) {
case MXT_TYP_JOINT:
memcpy(&MXTsend.dat.jnt, &jnt_now, sizeof(JOINT));
MXTsend.dat.jnt.j1 += (float)(delta*ratio*3.141592/180.0);
break;
case MXT_TYP_POSE:
memcpy(&MXTsend.dat.pos, &pos_now, sizeof(POSE));
MXTsend.dat.pos.w.x += (delta*ratio);
break;
case MXT_TYP_PULSE:
memcpy(&MXTsend.dat.pls, &pls_now, sizeof(PULSE));
MXTsend.dat.pls.p1 += (long)((delta*ratio)*10);
break;
default:
break;
}
MXTsend.SendlOType = |0SendType;
MXTsend.RecvlOType = IORecvType;
MXTsend.BitTop = IOBitTop;
MXTsend.BitMask =IOBitMask;
MXTsend.loData = |0BitData;
MXTsend.CCount = counter;

/I Keyboard input

/I [Enter]=End / [d]= Display the monitor data, or none / [0/1/2/3]= Change of monitor data display
/I [z/x]=Increment/decrement first command data transmitted by the delta amount
while(_kbhit()!=0) {

ch=_getch();

switch(ch) {

case 0x0d:
MXTsend.Command = MXT_CMD_END;
loop = 0;
break;

case 'Z"

case 'z".
delta += (float)0.1;
break;

case 'X"

case 'X"
delta -= (float)0.1;
break;

case 'C"

4 Appendix

4-21

4 Appendix

case 'c":
delta = (float)0.0;
break;
case 'd"
disp = ~disp;
break;
case '0": case '"1": case '2": case '3":
disp_data =ch -'0";
break;

}

memset(sendText, 0, MAXBUFLEN);
memcpy(sendText, &MXTsend, sizeof(MXTsend));
if(disp) {
sprintf(buf, "Send (%Id):",counter);
cout << buf << end];
}
numsnt=sendto(destSocket, sendText, sizeof(MXTCMD), NO_FLAGS_SET, (LPSOCKADDR) &destSockAddr,
sizeof(destSockAddr));
if (numsnt != sizeof(MXTCMD)) {
cerr << "ERROR: sendto unsuccessful" << endl;
status=closesocket(destSocket);
if (status == SOCKET_ERROR)
cerr << "ERROR: closesocket unsuccessful" << endl;
status=WSAClIeanup();
if (status == SOCKET_ERROR)
cerr << "ERROR: WSACIeanup unsuccessful" << endl;
return(1);

}

memset(recvText, 0, MAXBUFLEN);

retry = 1; /I No. of reception retries

while(retry) {
FD_ZERO(&SockSet); /I SockSet initialization
FD_SET(destSocket, &SockSet); // Socket registration
sTimeOut.tv_sec = 1; /I Transmission timeout setting (sec)
sTimeOut.tv_usec = 0; 1l (micro sec)

status = select(0, &SockSet, (fd_set *)NULL, (fd_set *)NULL, &sTimeOut);
if(status == SOCKET_ERROR) {
return(1);
}
if((status > 0) && (FD_ISSET(destSocket, &SockSet) = 0)) { // If it receives by the time-out
numrcv=recvfrom(destSocket, recvText, MAXBUFLEN, NO_FLAGS_SET, NULL, NULL);
if (numrcv == SOCKET_ERROR) {
cerr << "ERROR: recvfrom unsuccessful" << endl;
status=closesocket(destSocket);
if (status == SOCKET_ERROR)
cerr << "ERROR: closesocket unsuccessful" << endl;
status=WSAClIeanup();
if (status == SOCKET_ERROR)
cerr << "ERROR: WSACIeanup unsuccessful" << endl;
return(1);
}
memcpy(&MXTrecv, recvText, sizeof(MXTrecv));
char str[10];
if(MXTrecv.SendlOType==MXT_IO_IN) sprintf(str,"IN%04x", MXTrecv.loData);
else if(MXTrecv.SendlOType==MXT_IO_OUT) sprintf(str,"OT%04x", MXTrecv.loData);
else sprintf(str,"------ ");

4-22

4 Appendix

int DispType;
void *DispData;
switch(disp_data) {
case 0:
DispType = MXTrecv.RecvType;
DispData = &MXTrecv.dat;
break;
case 1:
DispType = MXTrecv.RecvType1;
DispData = &MXTrecv.dat1;
break;
case 2:
DispType = MXTrecv.RecvType2;
DispData = &MXTrecv.dat2;
break;
case 3:
DispType = MXTrecv.RecvType3;
DispData = &MXTrecv.dat3;

break;
default:
break;
}
switch(DispType) {

case MXT_TYP_JOINT:
case MXT_TYP_FJOINT:
case MXT_TYP_FB_JOINT:
if(loop==1) {
memcpy(&jnt_now, DispData, sizeof(JOINT));
loop = 2;
}
if(disp) {
JOINT *j=(JOINT*)DispData;
sprintf(buf, "Receive (%Id): TCount=%d
Type(JOINT)=%d¥n %7.2f,%7.2f, %7 .2f, %7 .2f, %7 .2f, %7 .2f, %7 .2f, %7 .2f (%s)"
,MXTrecv.CCount,MXTrecv.TCount,DispType
J->11, ->2, |->3 |->]4, |->]5, |->]6, |->]7, ->]8, str);
cout << buf << endl;
}
break;
case MXT_TYP_POSE:
case MXT_TYP_FPOSE:
case MXT_TYP_FB_POSE:
if(loop==1) {
memcpy(&pos_now, &MXTrecv.dat.pos, sizeof(POSE));
loop = 2;
}
if(disp) {
POSE *p=(POSE*)DispData;
sprintf(buf, "Receive (%ld): TCount=%d
Type(POSE)=%d¥n %7.2f,%7.2f,%7.2f,%7 .2f,%7 .2f,%7 .2f, %04x,%04x (%s)"
,MXTrecv.CCount,MXTrecv.TCount,DispType
,P->W.X, p->W.y, p->w.z, p->w.a, p->w.b, p->w.c, p->sflg1, p->sflg2, str);
cout << buf << endl;
}
break;
case MXT_TYP_PULSE:
case MXT_TYP_FPULSE:
case MXT_TYP_FB_PULSE:
case MXT_TYP_CMDCUR:
case MXT_TYP_FBKCUR:

4-23

4 Appendix

if(loop==1) {
memcpy(&pls_now, &MXTrecv.dat.pls, sizeof(PULSE));
loop = 2;
}
if(disp) {
PULSE *I=(PULSE*)DispData;
sprintf(buf, "Receive (%ld): TCount=%d
Type(PULSE/OTHER)=%d¥n %ld,%ld,%ld,%lId,%Id,%Id,%I|d,%Id (%s)"
,MXTrecv.CCount,MXTrecv.TCount,DispType
J->p1, I->p2, I->p3, I->p4, ->p5, I->p6, I->p7, I->p8, str);
cout << buf << endl;

}
break;
case MXT_TYP_NULL:
if(loop==1) {
loop = 2;
}
if(disp) {
sprintf(buf, "Receive (%ld): TCount=%d Type(NULL)=%d¥n (%s)"
,MXTrecv.CCount,MXTrecv.TCount, DispType, str);
cout << buf << endl;
}
break;
default:
cout << "Bad data type.¥n" << endl;
break;
}
counter++; // Count up only when communication is successful
retry=0; I/ Leave reception loop
}
else { /I Reception timeout
cout <<"... Receive Timeout! <Push [Enter] to stop the program>" << endl;
retry--; /I No. of retries subtraction
if(retry==0) loop=0; /I End program if No. of retries is 0
}

} /* while(retry) */
} /* while(loop) */

// End

cout << "/ End /I] ",

sprintf(buf, "counter = %Id", counter);
cout << buf << endl;

/I Close socket
status=closesocket(destSocket);
if (status == SOCKET_ERROR)
cerr << "ERROR: closesocket unsuccessful" << endl;
status=WSAClIleanup();
if (status == SOCKET_ERROR)
cerr << "ERROR: WSACIeanup unsuccessful" << end];

return 0O;

4-24

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BUILDING, 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 5-1-14, YADA-MINAMI, HIGASHI-KU NAGOYA 461-8670, JAPAN

Authorised representative:

Mitsubishi Electric Europe B.V. FA - European Business Group

Mitsubishi-Electric-Platz 1, D-40882 Ratingen, Germany
Tel: +49(0)2102-4860

Nov., 2017 MEE Printed in Japan on recycled paper.

Specifications are subject to change without notice.

	1. Before use
	1.1. How to use the instruction manual
	1.1.1. Content of instruction manual

	1.2. Terms used in the instruction manual
	1.3. Confirmation of product
	1.4. Ethernet function
	1.4.1. Function of Ethernet

	2. Preparation before use
	2.1. Connection of Ethernet cable
	2.2. Parameter setting
	2.2.1. Parameter list
	2.2.2. Details of parameters
	2.2.3. Parameter setting example 1 (When the Support Software is used)
	2.2.4. Parameter setting example 2-1 (When the data link function is used: When the controller is the server)
	2.2.5. Parameter setting example 2-2 (When the data link function is used: When the controller is the client)
	2.2.6. Parameter setting example 3 (for using the real-time external control function)

	2.3. Connection confirmation
	2.3.1. Checking the connection with the Windows ping command

	3. Description of functions
	3.1. Controller communication function
	3.1.1. Connecting the controller and personal computer
	3.1.2. Setting the personal computer network
	3.1.3. Setting the controller parameters
	3.1.4. Setting the personal computer support software communication
	3.1.5. Communication

	3.2. Data link function
	3.2.1. MELFA-BASIC V/VI Commands
	3.2.2. Using data link function
	3.2.2.1. Connect the controller and personal computer.
	3.2.2.2. Setting the personal computer network.
	3.2.2.3. Setting the controller parameters.
	3.2.2.4. Starting the sample program
	3.2.2.5. Communication

	3.2.3. Ending

	3.3. Real-time external control function
	3.3.1. Explanation of command
	3.3.2. Explanation of communication data packet
	3.3.3. Using real-time external control function
	3.3.3.1. Connecting the controller and personal computer
	3.3.3.2. Setting the personal computer network
	3.3.3.3. Setting the controller parameters
	3.3.3.4. Starting the sample program
	3.3.3.5. Moving the robot

	3.3.4. Ending

	3.4. Real-time monitor function
	3.4.1. Overview
	3.4.1.1. CR800 series
	3.4.1.2. CR75n series

	3.4.2. Supported version
	3.4.3. Setup
	3.4.3.1. CR800 series
	3.4.3.2. CR75n series

	3.4.4. Start of monitor / End of monitor
	3.4.5. Explanation of communication data packet
	3.4.6. Data type ID
	3.4.7. Parameters
	3.4.8. Error

	3.5. SLMP Connection
	3.5.1. Function Overview
	3.5.2. Supported version
	3.5.3. Specifications
	3.5.3.1. SLMP Specifications

	3.5.4. Parameters
	3.5.5. SLMP Communication Procedure
	3.5.5.1. Using TCP/IP
	3.5.5.2. Using UDP/IP

	3.5.6. Message Format
	3.5.6.1. Request Message
	3.5.6.2. Response Message Format

	3.5.7. Commands
	3.5.7.1. List of Commands
	3.5.7.2. Device (Device Access)
	3.5.7.2.1. Data Used in Commands
	3.5.7.2.2. Read (Command: 0401)
	3.5.7.2.3. Write (Command: 1401)
	3.5.7.2.4. Read Random (Command: 0403)
	3.5.7.2.5. Write Random (Command: 1402)
	3.5.7.2.6. Accessing CPU Buffer Memory Access Devices

	3.5.7.3. Self Test (Loopback Test) (Command: 0619)

	3.5.8. End Code

	3.6. CC-Link IE Field Network Basic function
	3.6.1. Overview
	3.6.2. Supported version
	3.6.3. Specifications
	3.6.3.1. Communication specifications

	3.6.4. Parameters
	3.6.5. Support of robot I/O signals and link devices
	3.6.6. Setup procedure
	3.6.6.1. Network configuration
	3.6.6.2. Network diagnostics
	3.6.6.3. Programming

	4. Appendix
	4.1. Error list
	4.2. Sample program
	4.2.1. Sample program of data link
	4.2.2. Sample program for real-time external control function

