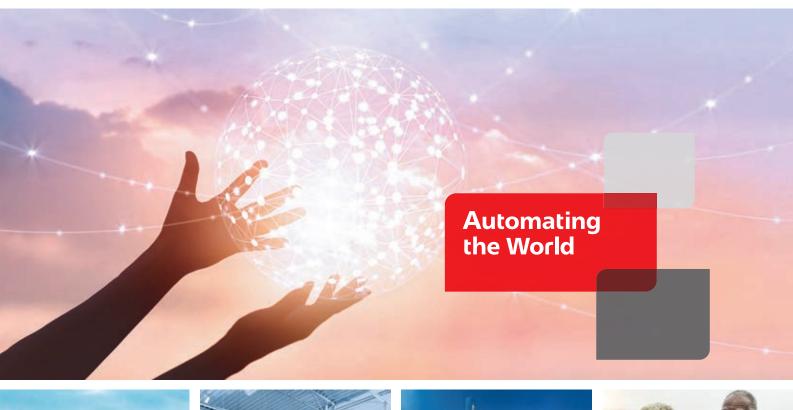


Automating the World

FACTORY AUTOMATION


SERVO SYSTEM CONTROLLERS MELSEC iQ-R SERIES/MELSEC iQ-F SERIES

Total system performance, not individual component specifications leads to maximum performance

SERVO SYSTEM CONTROLLER

Our Factory Automation business is focused on "Automating the World" to make it a better, more sustainable environment supporting manufacturing and society, celebrating diversity and contributing towards an active and fulfilling role.

The Mitsubishi Electric Group is actively solving social issues, such as decarbonization and labor shortages, by providing production sites with energy-saving equipment and solutions that utilize automation systems, thereby helping towards a sustainable society. Mitsubishi Electric is involved in many areas including the following:

Energy and Electric Systems

A wide range of power and electrical products from generators to large-scale displays.

Electronic Devices

A wide portfolio of cutting-edge semiconductor devices for systems and products.

Home Appliance

Dependable consumer products like air conditioners and home entertainment systems.

Information and Communication Systems

Commercial and consumer-centric equipment, products and systems.

Industrial Automation Systems

Maximizing productivity and efficiency with cutting-edge automation technology.

OVERVIEW

Concept	3
Solutions	25
Overview of Servo System Controllers	31
Simple Motion Modules	35
Features	40
Specifications	57
	-
Motion Controllers	67
Features	70
Specifications	85
Sensing Modules	93
Engineering Environment	101
Networks	107
Serve Amplifiere MELCEDVO 14	
Servo Amplifiers MELSERVO-J4	111
e-F@ctory	115
-	-
CC-Link Partner Association (CLPA)	116
Mitsubishi Electric Servo System Partners	117
Global FA Centers	118
Conformity with Global Standards and Regulations	119
■ Warranty	120

2 -

Revolutionary, next-generation servo system controllers building a new era in automation

MELSEC iO-R

As the core for next-generation automation environment, realizing an automation controller with added value while reducing TCO*

To succeed in highly competitive markets, it's important to build automation systems that ensure high productivity and consistent product quality. The MELSEC iQ-R Series has been developed from the ground up based on common problems faced by customers and rationalizing them into seven key areas: Productivity, Engineering, Maintenance, Quality, Connectivity, Security and Compatibility. Mitsubishi Electric is taking a three-point approach to solving these

problems: Reducing TCO*, increasing Reliability and Reuse of existing assets.

As a bridge to the next generation in automation, the MELSEC iQ-R Series is a driving force behind revolutionary progress in the future of manufacturing. *TCO: Total cost of ownership

Productivity

Improve productivity through advanced performance/ functionality

- New high-speed system bus realizing shorter production cycle
- Super-high-accuracy motion control utilizing advanced multiple CPU features
- · Advanced servo amplifiers and motors offering industry leading level of performance

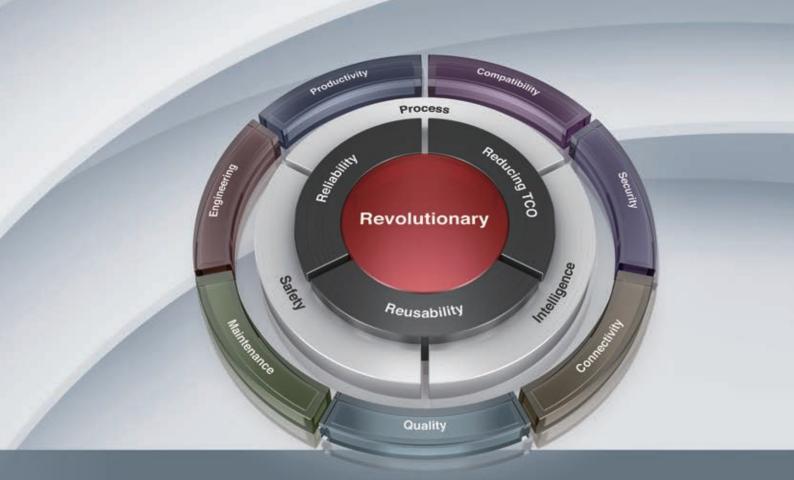
Engineering

HHC) Reducing development costs through intuitive engineering

- Intuitive engineering environment covering the product development cycle
- Simple point-and-click programming architecture
- · Easy debugging, from controllers to servo amplifiers

Maintenance

Reduce maintenance costs and downtime utilizing easier maintenance features


- Visualize entire plant data in real-time, contributing to preventative maintenance
- Reduce downtime and easily locate error causes

Quality

Reliable and trusted MELSEC product quality

- Robust design ideal for harsh industrial environments
- Improve and maintain actual manufacturing quality
- · Conforms to main international standards

SERVO SYSTEM CONTROLLER

Connectivity

Seamless network reduces system costs

- · Seamless connectivity within all levels of manufacturing
- Optical network "SSCNET III/H" providing high response and high reliability
- "CC-Link IE Field Network" Integration of IA components on ONE single network

Security

Robust security that can be relied on

- Protect intellectual property
- Unauthorized access protection across distributed control network

Compatibility

Extensive compatibility with existing products

- High compatibility with existing servo system controllers
- Utilize existing assets while taking advantage of cutting-edge technology

Total system performance, not individual

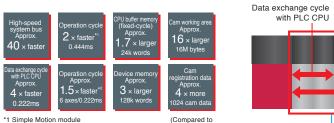
component specifications leads to maximum performance

Create machine systems with higher production and total overall performance that surpass your wildest imaginations with Mitsubishi Electric Servo System Controllers. With the iQ Platform at the center, higher FA performance is achieved through dual driving engines, improved Servo Amplifier and Network performance, and flexible cooperation of partner organizations.

Performance Maximization

Speed Up

Faster Startup with Intuitive Operation


Programming efficiency matters when it comes to productivity. The MELSEC iQ-R series optimizes all procedures, from designing, debugging, to startup.

Change Up

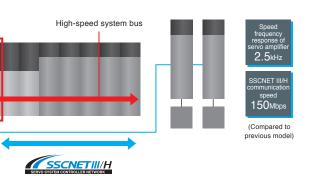
Dual Engines Revolutionize Machine Capability

The MELSEC iQ-R series is provided with sophisticated dual engines: the PLC CPU engine for machine control and the Motion CPU engine for Motion control. The engines respectively process different types of control based on the characteristic of each engine while working together on data through a high-speed system bus. CPU loads are significantly distributed by these dual engines compared with a single engine, enabling any equipment to maximize its performance, even for a load change machine or multi-axis equipment.

previous model)

*2 Motion controller

Select the most suitable combination of CPU engines that can reduce cost and maximize machine performance to the fullest from our extensive product line. Efficiency in designing and debugging is also improved.



for Productivity.

Power Up

Advanced Servo Amplifier Maximizes Drive Performance

The MELSERVO-J4 series servo amplifier is an environmentally and user friendly product, while offering industry-leading level of performance. Connecting the amplifiers to "SSCNET III/H" optical network enables high-speed and high-accuracy control with the MR-J4 dedicated engine and high-resolution encoder.

Gather Up

Ground-breaking Machine Innovation

Equipped with advanced dual engines that are only possible with our cutting-edge iQ platform technology, the MELSEC iQ-R series takes a step further to accelerate the equipment revolution by collaborating with our partner companies. Now, a wide variety of SSCNET III/H compatible partner products are available, such as stepping motors and direct drive motors.

CC-Link Partner Association (CLPA) was established to promote the worldwide adoption of the CC-Link open field network and to strongly support creation of FA integrated network system.

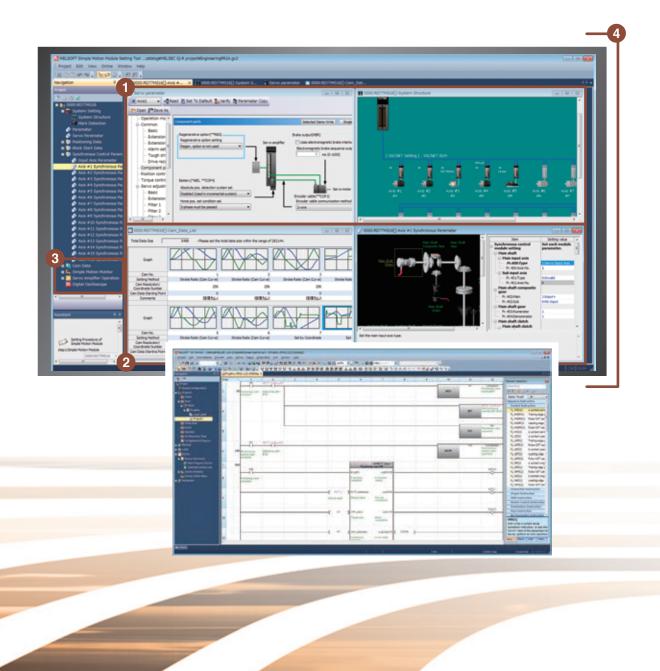
component specifications leads to maximum performance

Would you buy a car solely based on engine power?

Fuel Efficiency? Crash test rating?

Only a test drive will give you a true indication of the performance potential.

Test drive the MELSEC iQ-R Motion System with MR-J4 Servos and experience the performance.

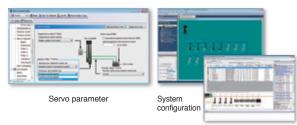

Total System Performance is Productivity.

Engineering

The easy-to-use programming software allows you to work

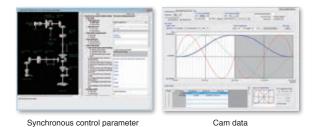
Program creation is largely dependent on human skills; therefore an enormous amount of time is often spent on creating a servo program where high programming skills are required.

To eliminate any programming hassle as much as possible, "MELSOFT GX Works3" introduces a more intuitive, efficient, and user-friendly programming environment, revolutionizing the way of programming.

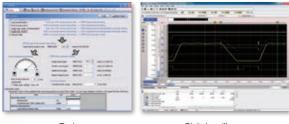

more intuitively, freely, and flexibly

All-Inclusive Software, from Sequence Program Creation to Simple Motion Module Setting

MELSOFT GX Works3


This software supports a whole product development cycle - from development, startup, debugging through maintenance for sequence programs, Simple Motion module parameters, and positioning/cam data.

CC-Link IE Field configuration


1. Intuitive Operation

The graphical screen allows you to design a Motion system easily. Also, you can configure servo amplifier and module settings easily on the system setting screen, and check them at a glance.

2. Synchronous control without complex programming

Synchronous control can be easily performed just by setting parameters, using software instead of controlling mechanically with physical gears, shafts, speed change gears or cam etc. For example, create a rough cam waveform on the graph and then make it more precise by adjusting the numerical values.

Tuning

Digital oscilloscope

3. Advanced Monitoring, Setup, and Adjustment

The items and axes needed to be displayed can be selected from various monitoring information. Servo adjustment and setup, data collection and waveform display that are synchronized to the Motion operation cycle are also available.

English

4. Multiple Languages Supported

The language is supported for Japanese, English, and Chinese, helping engineering staff work in this globalized industry and enabling faster startup abroad on site.

Reduce maintenance costs and downtime utilizing

A manufacturing plant is seldom stopped or taken offline and continuously produces the desired product or component. However, the control system occasionally requires maintenance; for example, at the time of a faulty product or system upgrade for manufacturing a new or updated component. At that time, thanks to the extensive maintenance functions embedded in the hardware and software, the user can trust the control system to handle transition into/out of the maintenance period for both preventive and post maintenance.

Preventive maintenance with a wide range of information collected throughout various manufacturing processes

Preventive maintenance

Easily managing individual data of CPU modules and Simple Motion modules

Batch Data Management for Multiple Parameters and Programs

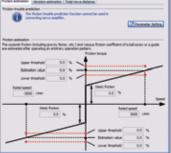
- Multiple data from PLC CPUs, Simple Motion modules, and servo amplifiers can be collectively managed.
- Equipment data can be easily managed.

Preventive maintenance

Being informed of the lifespan of the capacitor and relay in a servo amplifier

Servo Amplifier Life Diagnosis Function Preventing System Downtime in Advance

- This function displays:
- Cumulative power-on time
- Number of inrush current switching times
 Target lifespan of capacitor and relay, etc.


Preventive maintenance

Minimizing risks of machine failure

Utilizing Machine Aging Information for Preventive Maintenance

- Estimated machine friction and vibration are displayed.
- Comparing the current machine data and the initial machine data helps to find out the machine aging.

easier maintenance features

Corrective maintenance by utilizing various operation and error information recorded for quick troubleshooting

Corrective maintenance

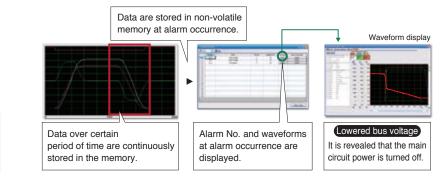
Quickly locating causes that stop the machine

Digital Oscilloscope Function Performing Cause Analysis

- Sampling can be performed without a personal computer connected.
- Sampling of current value, etc., for multiple axes is available.
- Sampled data path can be traced on 2-dimensional coordinate.

Corrective maintenance

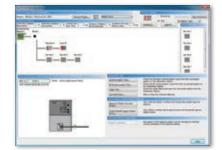
Quickly locating causes that prevent the machine from starting


Event History for Quick Troubleshooting

- Event history including program changes, errors occurred, power OFF, etc. can be saved.
- A list of the event history can be confirmed.Errors that have been made by mistake can
- be quickly detected.

Visualizing the Status of Alarm Occurrence with Large Capacity Drive Recorder of Servo Amplifier

- Servo data (motor current and position command, etc.) of before and after the alarm occurrence are stored in non-volatile memory.
- Data are read during restoration for cause analysis.
- Check the waveform of 16 alarms in the alarm history.



Corrective maintenance

Easily identifying the location of errors

Diagnosis and Troubleshooting Even with limited knowhow

- Network errors are easily identified at a glance.
- Graphical representation of the network automatically created on the engineering software makes wiring and PLC errors clearly visible.

Reliable and trusted MELSEC product quality

The MELSEC iQ-R Series is based on two fundamental aspects of quality.

"Quality of product"

"Quality for application"

These two characteristics are part of the main principle behind the MELSEC iQ-R Series. This new control system includes various features designed-in to provide a solution that not only improves the overall manufacturing productivity, but also maintains a high level of industrial quality that is ideal for the harsh and rugged environments that it is subjected to on a daily basis.

Assuring high-standard, highly reliable product

- Conforms to stringent quality evaluations and tests that are based on robust industrial environments including EMC, LSI, temperature, vibration and HALT tests.
- High manufacturing quality control through QR code based quality management system.
- 3. The front face has a wide and open design with an easy-to-use front cover.

Robust design ideal for harsh industrial environments

For high quality of MELSEC iQ-R Series

Synonymous with the Mitsubishi Electric name, the MELSEC iQ-R Series is designed with high quality and reliability, which is a prerequisite for industrial applications. In addition, the overall aesthetics and usability enable easier maintenance that customers routinely expect.

For high environmental resistance

For protection against aggressive atmosphere and gases, products with a conformal coating (IEC 60721-3-3:1994 Class 3C2) are available on request *1 .

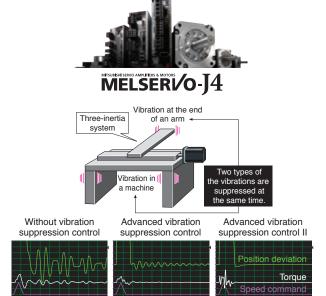
*1: Contact your local Mitsubishi Electric office or representative for further details.

Conforms to main international quality standards

The MELSEC iQ-R Series conforms to most of the main international standards that realizes applications requiring multiple global locations.

A Synchronized processing Motion control processing Interrupt program (PLC) Network transmission cycle (Link scan) Output module

 Motion control processing, interrupt programs (PLC) and network transmission cycle (link scan) are synchronized. Also, as the graph shows, the signals between several modules, such as output modules can be synchronized.

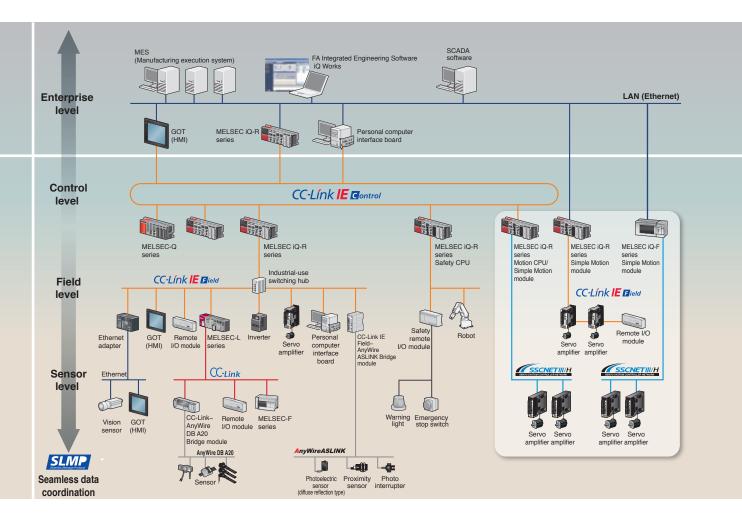

Improve and maintain actual manufacturing quality

With inter-module synchronization, it's now possible to precisely synchronize interrupt programs (PLC) with the network communications cycle (link scan). Any variations in data transmission response time (network transmission delay time) between the controller and other devices on the network are eliminated, realizing high integrity between manufacturing processes that are dependent on each other, ensuring high performance and processing.

MELSERVO-J4 series improving product quality even further

High-accuracy positioning and smooth constant-speed operation can be achieved with a combination of the MELSEC iQ-R series servo system controllers and MELSERVO-J4 series servo amplifiers. Vibration can be minimized with the advanced servo adjustment function, maintaining the product quality.

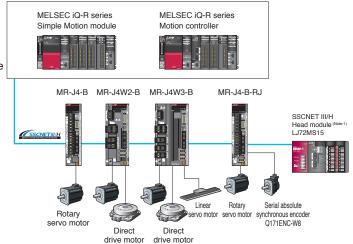
Improve and maintain actual manufacturing quality



Seamless network reduces system costs

The MELSEC iQ-R Series is part of a family of products all interconnected across various levels of automation. Based on the seamless message protocol (SLMP*1), data flow transparently between the sensor level and the management level across multiple industry-standard automation networks. CC-Link IE, Asia's No. 1 industrial network, realizes fast gigabit data transmission speeds, further optimizing the manufacturing cycle. In addition, the SSCNET III/H high-speed motion control network further enhance the factory-wide connectivity solution.

*1. Seamless Message Protocol (SLMP): A simple client-server common protocol that enables communication between Ethernet products and CC-Link IE-compatible machines.


Optical network "SSCNET III/H" accelerating system response

"SSCNET III/H" enables the servo system controllers to synchronize to servo amplifiers by using an optimized data frame for a servo system. This network is suitable for printing machines, food machines, and processing machines which require highly synchronized operation.

Highlights of SSCNET III/H

- Optimized high-speed communications achieving a servo system of 150Mbps
- Cycle time as fast as 0.222 ms
- Synchronous communications allowing equipment to improve performance further
- Improved noise tolerance by optical communications
- Dramatically reduced wiring
- Central control with network
- Long distance wiring up to 3200 m
- SSCNET III/H compatible and SSCNET III compatible products connected in a same system

*SSCNET (Servo System Controller NETwork)

(Note-1): Motion controllers only

The backbone of e-F@ctory, leveraging connectivity between the shop floor and IT

Extensive visualization with advanced data connectivity

Big Data analytics requires deterministic data collection, which can be realized by incorporating two key features: SLMP that enables seamless connectivity between devices in the IT layer and on the shop floor; and a high-speed, large-capacity 1 Gbps communications network that enables the handling of large-data, such as production, quality and control data between different production processes.

General, motion and safety control integrated into one network

CC-Link IE incorporates generic distributed control, synchronous motion control, and safety control enabling safety communications across multiple safety devices, all on the same network. The topology is quite versatile, based on twisted-pair cables, which enables flexibility in system configuration while helping to keep installation cost low.

Comprehensive diagnosis realizing higher reliability

Disruptions to the control system are kept to a minimum via comprehensive diagnostics functions, high communications integrity owing to the noiseresistant characteristics of the optical cable, and communication re-routing capabilities made possible as the result of using a ring topology. Also, network errors can be rectified quickly by visualizing the network system image using the engineering software, and remotely from a GOT (HMI) directly on the machine or production line.

Robust security that can be relied on

As technology becomes more complex and the distribution of manufacturing systems more global, the protection of intellectual property is even more significant. When shipping a finished product overseas, the last thing an OEM needs to consider is unauthorized copying or changing of the original project data. In addition to this, unauthorized access to the control system can have very serious implications to the control system and the end user, which can compromise the overall safety of the plant. The MELSEC iQ-R Series has a number of embedded features that help to maintain these requirements, such as hardware and software keys to protect intellectual property, and multi-level user access password hierarchy to protect the project at the design stage.

Powerful security features protecting intellectual property

Security key authentication protecting project data

The security key authentication prevents programs from being opened on personal computers where the security key has not been registered. Furthermore, because programs cannot be executed by CPU modules where the security key has not been registered, the integrity of customer technologies and other intellectual property is not compromised.

When using the Simple Motion module, the security key can be registered on an extended PLC CPU's SRAM cassette and PLC CPU itself. Therefore, when replacing the CPU module, there is no need to re-register the security key, making replacement very simple.

When using Motion CPU, the security key is registered on Motion CPU.

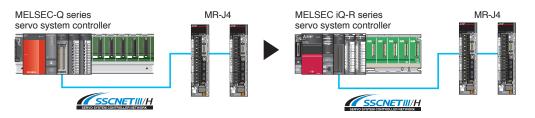
Prevent unauthorized access across the network

The IP filter can be used to register the IP addresses of devices permitted to access the CPU module. As a result, access from non-registered devices can be blocked, thereby lowering the risk of program hacking and unauthorized access by a third party.

Another feature is a remote password function^(Note-1) for password-based security. Passwords of up to 32 characters can be set to prevent unauthorized access to the CPU module via networks such as Ethernet.

(Note-1): The PLC CPU is provided with this function.

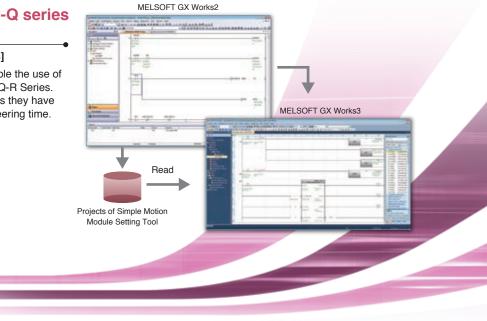
Extensive compatibility with existing products



Whenever introducing a new system or technology into an existing manufacturing plant or control system, utilization of existing assets as much as feasibly possible is a mandatory requirement with today's manufacturing needs. The MELSEC iQ-R Series addresses these subtle but substantial needs with various system hardware support and engineering project compatibility to achieve an easy path to higher technology and improved performance capabilities.

Utilize existing servo system controller assets

Replacement of iQ Platform compatible MELSEC-Q series with MELSEC iQ-R series


The existing iQ Platform compatible MELSEC-Q series Simple Motion modules/Motion controllers can be replaced with the MELSEC iQ-R series.

Utilization of existing MELSEC-Q series assets

[MELSOFT MT Works2/MELSOFT GX Works3]

A simply conversion process is all it takes to enable the use of MELSEC-Q Series programs with the MELSEC iQ-R Series. Customers can effectively use the program assets they have accumulated, thereby reducing the overall engineering time.

Next-generation, Compact Servo System Controller with Extensive Built-in Functions

MELSEC iQ-F

Designed on the concepts of outstanding performance, superior drive control and user centric programming, Mitsubishi Electric MELSEC-F Series has been reborn as the MELSEC iQ-F Series.

From stand alone use to networked system applications, MELSEC iQ-F Series brings your business to the next level of industry.

MELSEC iQ-F series Simple Motion Module Debut

The next level of industry

The newly reborn MELSEC iQ-F Series reaches to new areas of application with a high-speed system bus, extensive built-in functions and network support.

Conveyance

Food & Beverage

Packaging

SERVO SYSTEM CONTROLLER

Productivity

Outstanding performance

- Control up to 8 axes
- Include the synchronous encoder input and mark detection as standard features
- Equipped with a high-speed bus system that significantly reduces cycle time

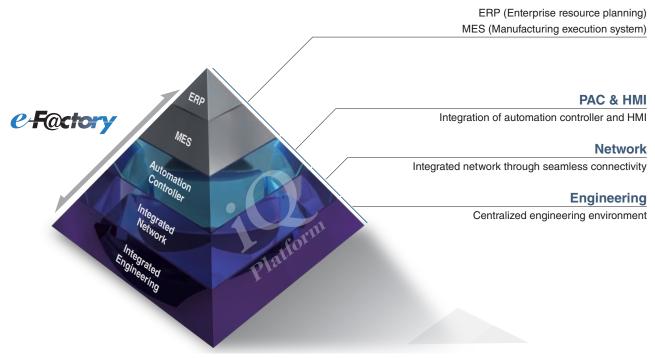
Engineering

Intuitive programming

- Easy setting without complex programming by GX Works3
- Easy programming via drag & drop
- All-in-one engineering tool reducing programming time

Connectivity

Network


- Parameters and servo data managed centrally via SSCNET III/H.
- Sophisticated servo amplifier and servo motor offering industry leading level of performance
- Optical network "SSCNET III/H" providing high response and high reliability

FA Integrated Platform "iQ Platform" Movie

iQ Platform for maximum return on investment

Minimize TCO, Seamless integration, Maximize productivity, Transparent communications: these are common items that highlight the benefits of the iQ Platform and e-F@ctory. The iQ Platform minimizes TCO at all phases of the automation life cycle by improving development times, enhancing productivity, reducing maintenance costs, and making information more easily accessible across the plant. Together with e-F@ctory, offering various best-in-class solutions through its e-F@ctory alliance program, the capabilities of the manufacturing enterprise is enhanced even further realizing the next level for future intelligent manufacturing plants.

Further reduce TCO while securing your manufacturing assets

Automation Controller

Improve productivity and product quality

- 1. High-speed system bus realizing improved system performance
- 2. On-screen multi-touch control enabling smooth GOT (HMI) operations

Integrated Network

Best-in-class integrated network optimizing production capabilities

- 1. CC-Link IE supporting 1 Gbps high-speed communication
- Seamless connectivity within all levels of manufacturing with SLMP

Centralized Engineering

Integrated engineering environment with system level features

- 1. Automatic generation of system configuration
- 2. Share parameters across multiple engineering software via MELSOFT Navigator
- 3. Changes to system labels are reflected between PAC and HMI

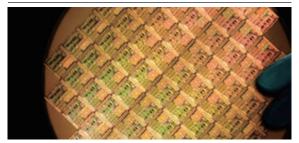
Servo System Designed with Automation in Mind

The required characteristics of servo systems vary with the applications and industries. Not only the high-speed and high-accuracy, but also the functions in accordance with each of field-specific processes are necessary. Together with other FA-related products, Mitsubishi Electric offers a wide range of servo system product lines to satisfy the diversified application needs in various industries.

Automotive

Improve productivity and realize flexibility in different automotive assembly lines with high-accuracy motion control, including linear/circular interpolation and electric cam profile.

Automated warehouse


Realize advanced logistics coordination and eliminate errors in repetitive processes. Servo-based high-speed material handling and highly accurate positioning improve productivity and reduce energy consumption.

Food and beverage, CPG

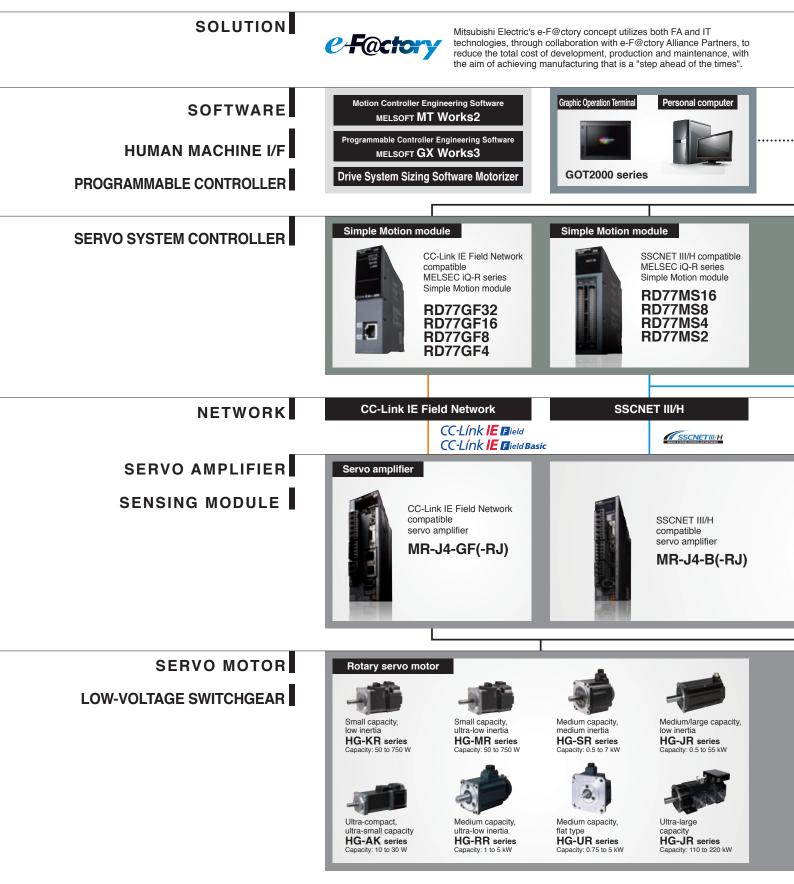
Realize improvements in various packaging applications such as high-speed filling, which requires a highly accurate, continuous feed rate and precision.

Semiconductor

In today's semiconductor manufacturing process, wafer diameter is getting larger and components smaller. To meet the requirements of higher quality and productivity, Mitsubishi Electric's high-performance servos and highresolution encoder achieve fast and accurate positioning at stable speeds.

Flexible mounting of electronic components with high speed and density is demanded in printed circuit board applications. Mitsubishi Electric offers a high level of servo system solutions for rapid mounting of highly miniaturized components and for flexible mounting of irregular shapes.

Printing



Mitsubishi Electric provides high-accuracy synchronous system solutions for the paper feeding, printing, cutting, and assembly functions within the printing process, achieving high-speed and high-quality converting applications.

Mounter

A complete system lineup to meet your production and manufacturing needs

Motion controllers and Simple Motion modules are flexibly coordinated with Mitsubishi Electric's other product lines such as displays and programmable controllers as well as servo amplifiers and servo motors. Mitsubishi Electric allows you to freely create an advanced servo system.

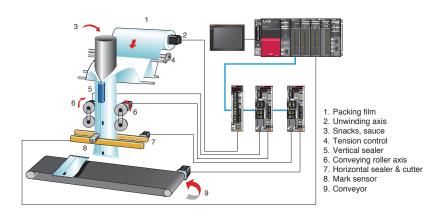
Mitsubishi Electric's integrated FA platform for achieving lateral integration of controllers & HMI, engineering environments and networks at production sites.

Programmable controller MELSEC iQ R MELSEC iQ F MELSEC iQ-R series MELSEC iQ-F series Programmable Programmable controller controller Simple Motion module Motion Controller SSCNET III/H compatible SSCNET III/H compatible MELSEC iQ-F series MELSEC iQ-R series Simple Motion module Motion controller FX5-80SSC-S **R64MTCPU** R32MTCPU FX5-40SSC-S **R16MTCPU** SSCNET III/H SSCNET III/H Servo amplifier Servo amplifier Sensing module SSCNET III/H SSCNET III/H compatible compatible SSCNET III/H compatible SSCNET III/H compatible SSCNET III/H compatible 2-axis servo amplifier Ultra-small capacity servo amplifier is servo amplifi sensing module 2-axis servo amplifi MR-J4W2-B MR-J4W3-B MR-J4W2-0303B6 MR-JE-B MR-MT2000 series Core type (natural/liquid cooling) Magnetic contactor Linear servo motor Servo motor Core type LM-F series Rating: 300 to 3000 N (natural cooling) Rating: 600 to 6000 N (liquid cooling) LM-H3 series Rating: 70 to 960 N Small capacity, Core type with magnetic attraction counter-force Coreless type HG-KN series Capacity: 100 to 750 W MS-T LM-K2 series LM-U2 series Rating: 120 to 2400 N Rating: 50 to 800 N Molded-case circuit breaker Direct drive motor CIT I Medium capacity, HG-SN series Low-profile flange type TM-RG2M series Low-profile table type High rigidity TM-RU2M series TM-RFM series WS-V 0.5 to 3 kW Rating: 2.2 to 9 N· Rating: 2.2 to 9 N·m Rating: 2 to 240 N·m

CASE 1

Vertical Form, Fill & Seal

Advanced Cam Auto-Sync. Generation Detection


When the machine packs food, the whole process is synchronized by using advanced synchronous and cam controls. The packing film is cut using the registration mark as a reference with the mark detection function, improving the packaging quality. Additionally, cam data for the rotary knife axis can be easily created with the cam auto-generation function, achieving more efficient production.

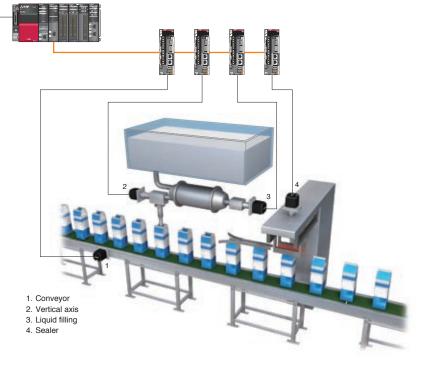
Main functions

- · Advanced synchronous control
- · Cam control
- · Cam auto-generation function
- Mark detection function

(Application examples)

- · Horizontal form, fill & seal
- Labeling machines
- · Wrap-around case packer
- Diaper manufacturing machines
- Packing machines
- Food/beverage bag filling machines

CASE 2 Liquid Filling Machines


The machine can adjust the speed of the nozzle's vertical motion according to the liquid level to be filled in the bottle by using advanced synchronous and cam controls. Different bottle shapes can be filled on the same conveyor line, enabling more efficient use of production equipment.

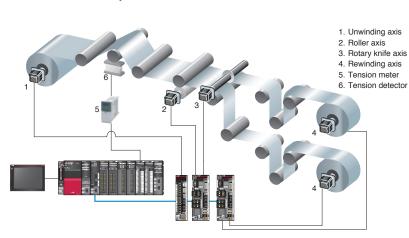
Main functions

- · Advanced synchronous control
- Speed control
- · Cam control

Application examples

- · Vertical form, fill & seal
- · Horizontal form, fill & seal
- Labeling machines

CASE 3 Converting Machines


The film can be sent at constant tension, preventing it from stretching or shrinking. The speed or torque is compensated with the tension detector and tension meter for keeping the tension constant. The whole line can be synchronized by using advanced synchronous control while executing speed control simultaneously.

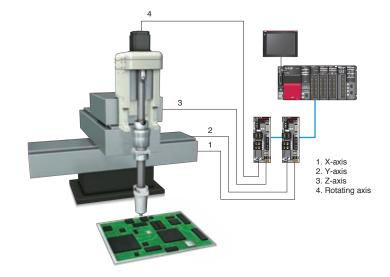
Main functions

- Speed-torque control
- Advanced synchronous control

(Application examples)

- Packaging machines
- Printing machines
- Slitting machines
- Wire drawing machines
- Laminating machines

CASE 4 Screw Tightening Machines


The machine tightens screws by using speed-torque control (tightening & press-fit control). Since the current position is controlled even after switching from the position control to the speed-torque control, positioning based on the absolute position coordinates is possible when switching back to the position control.

Main functions

- Positioning control
- Speed-torque control (tightening & press-fit control)

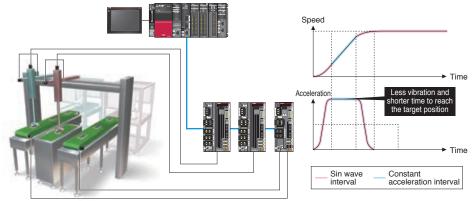
(Application examples)

- · Vertical form, fill & seal
- Press-fit machines
- Caulking machines

CASE 5

Material Handling Machines

The machine can move workpieces easily from one line to another by using a combination of linear interpolation, 2-axis circular interpolation, and continuous path control.


Machine vibration is minimized and a shorter cycle time is achieved by setting the smooth acceleration period (Sin wave interval) and maximum acceleration period (Constant acceleration interval) with the advanced S-curve acceleration/deceleration function.

Main functions

- Positioning control
- Linear interpolation and
- circular interpolation
- Continuous path control
- S-curve acceleration/deceleration
- Advanced S-curve acceleration/ deceleration

(Application examples)

- Material handling machines
- Pick and place robots
- Machines with frequent
 accelerations/decelerations

CASE 6 Sealing

The machine can coat the workpiece by using a combination of linear interpolation, 2-axis circular interpolation, and continuous path control.

A smooth path can be traced with the S-curve acceleration/deceleration function.

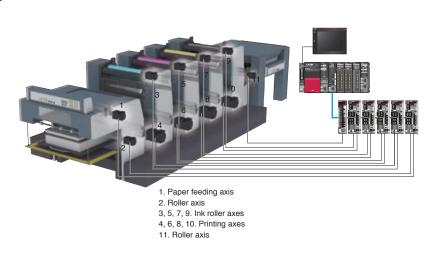
Main functions

- · Continuous path control
- Linear interpolation
- Circular interpolation
- S-curve acceleration/deceleration

(Application examples)

- Sealing
- · Dispensers

CASE 7 Printing Machines


The machine can carry out printing processes by using a combination of advanced synchronous control and speed-torque control. Also, with the robust filter function of servo amplifier, both high response and stability can be achieved for high inertia equipment such as a printing machine driven by belts and gears.

Main functions

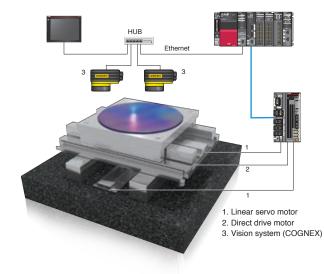
- Advanced synchronous control
- Speed-torque control
- Robust filter
- Resonance suppression filter

(Application examples)

- Printing machines
- Sheet-fed offset printing machines
- Web-fed offset printing machines

CASE 8 Alignment Systems

The alignment time can be reduced by the system changing the target position during positioning, and starting positioning for the new target position with the workpiece data from the vision system.

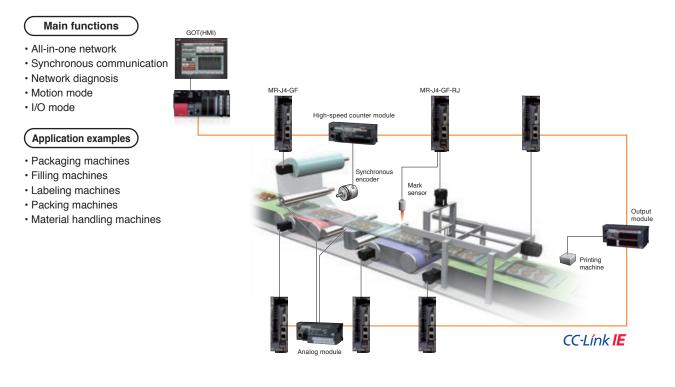

High-speed and high-accuracy positioning can be achieved, with the Motion controller and the vision system directly connected. For the Simple Motion module, the data from vision camera is read via the PLC CPU for position compensation.

Main functions

- Vision system
- Target position change function

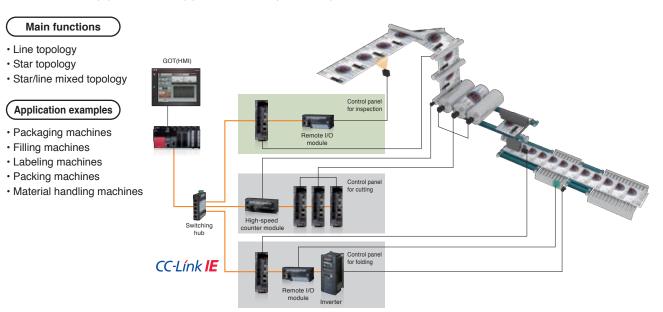
(Application examples)

- · Solar panel manufacturing equipment
- FPD manufacturing equipment
- · Image processing systems for inspection

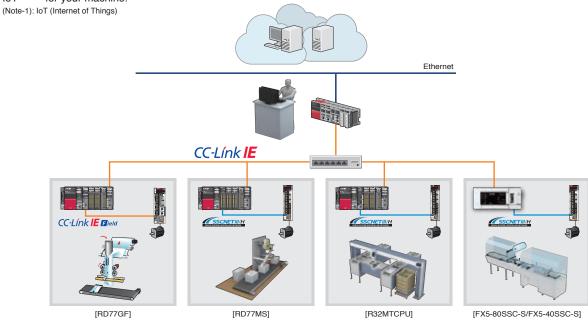


Outline

CASE 9


Synchronization of Input and Output with Servo Control

Various data, such as synchronous encoder values, sheet tension values, and text data, are inputted and outputted in accordance with the servo communication cycle, enabling a wide range of Motion control applications.


CASE10 Flexible network topology

With a switching hub, multiple network topologies are supported including star, line, and star and line combinations. This flexibility allows additional equipment to be simply connected to any available port, with little concern for restrictions.

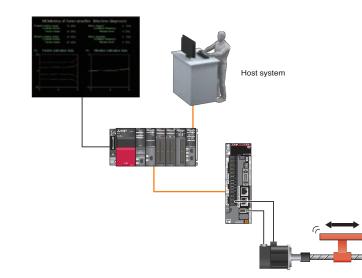
CASE11 Data Transmission to IT System

Data of servo amplifiers and servo motors for each machine can be collected via CC-Link IE Field Network. The status of the entire product line can be visualized by batch management of the collected data. A CC-Link IE Field Network servo system supports to build IoT (Note-1) for your machine.

CASE12 Monitoring of Servo Data

Servo operation can be monitored with extensive monitor data (selectable from up to 50 items). The monitor items can be flexibly changed during operation. The operation status of servo amplifiers and servo motors (including partner products) acquired via CC-Link IE Network and SSCNET III/H are transferred and displayed on the host system or on any GOT screens created by customers.

Monitoring items

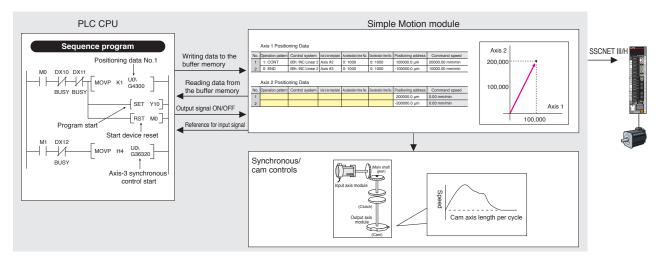

[Monitoring and data collection]

- Alarm history of servo amplifiers
- Identification information of servo amplifiers and servo motors
- Power consumption
- · 7-segment LED display status
- Load ratio of servo motors · Speed
- Temperature of various parts

[Preventive maintenance]

- Inrush relay ON/OFF number
- Power ON cumulative time
- Machine diagnosis information (the estimated friction value and the estimated vibration value)

(Note): Monitoring items and its specifications vary by model type.



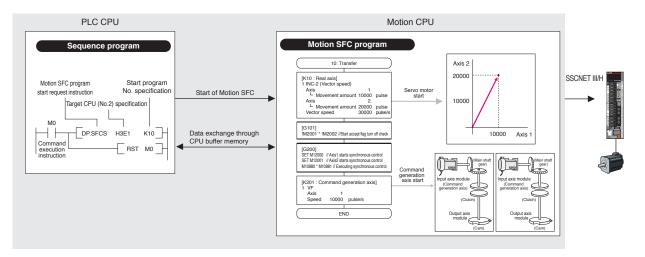
Perfectly Coordinated with Customer Needs and Applications

Features of Simple Motion Module

The Simple Motion module is an intelligent function module which performs positioning control by following the instructions of the PLC CPU.

- •The positioning functions are used exactly in the same manner as those of Positioning modules.
- •Linear interpolation control and other controls can be achieved easily just by writing positioning data to the buffer memory with sequence programs and function blocks.
- MELSOFT GX Works3, the engineering software, supports everything needed, from programming to servo adjustment.
- Positioning/advanced synchronous/cam controls can be performed with simple parameter settings and a start from a sequence program.

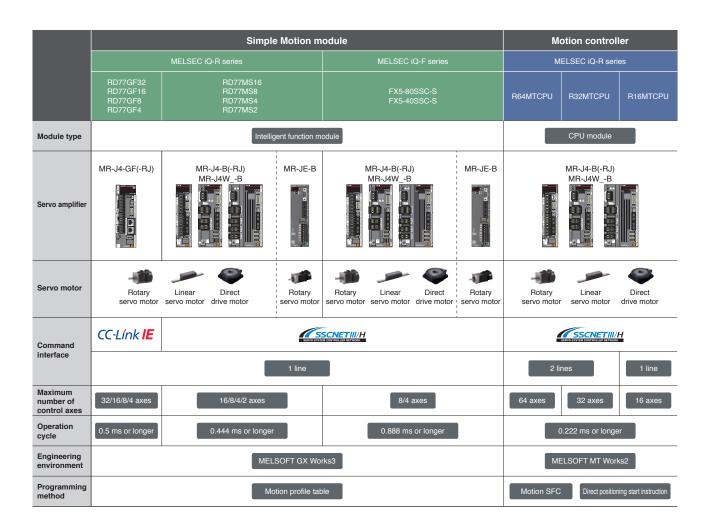
Advanced control while being simple to use just like Positioning modules



Features of Motion Controller

The Motion controller is a CPU module used with the PLC CPU for Motion control.

- •Using Motion SFC programs, the Motion CPU separately controls operation from the PLC CPU. Thus CPU loads are distributed, achieving advanced Motion control.
- Various advanced Motion controls, such as tightening & press-fit, cam, and advanced synchronous controls can be performed in addition to basic controls including positioning, speed and torque controls.
- •COGNEX vision system can be directly connected to the controller with Ethernet.


Advanced Motion control

 Possible to control up to 192 axes by use of three R64MTCPU modules ≓ œ

Outline

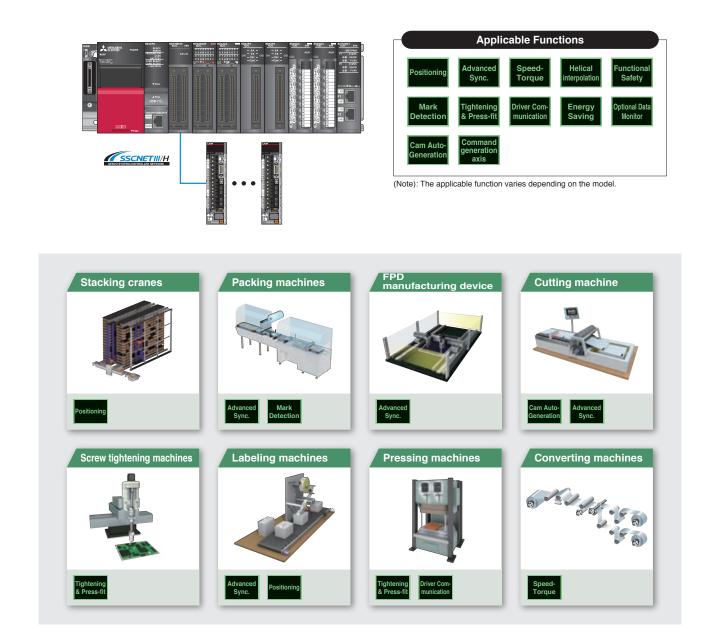
Function Comparison of Simple Motion Module and Motion Controller

(Note-1): Available only with RD77MS and FX5-80SSC-S/FX5-40SSC-S

(Note-2): Available only with RD77GF and RD77MS (Note-3): Use the safety observation function of a servo amplifier.

(Note-4): Available only with FX5-80SSC-S/FX5-40SSC-S

34


Outline

MELSEC iQ R SSCNET III/H compatible MELSEC iQ-R series

MELSEC iQ F. SSCNET III/H compatible MELSEC iQ-F series

Simple Motion Modules

- Wide-range, sophisticated Motion control, such as advanced synchronous control, cam control, speed-torque control (tightening & press-fit control), can be achieved just with sequence programs including function blocks.
- All the functions of QD75MH are included in the Simple Motion module.
- Programming, servo adjustment, operation/maintenance for the Simple Motion modules are supported by ONE engineering software (MELSOFT GX Works3).

Superb Functionality for Wide-range Applications

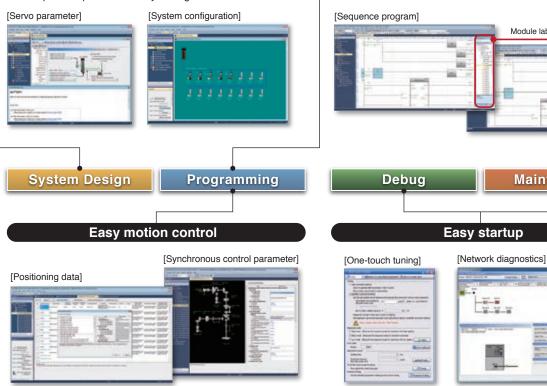
All-in-One Engineering Software

This all-in-one software covers all aspects of the product development cycle - from system design, programming, to debugging and maintenance - maximizing efficiency while minimizing your effort.

No need of manuals in system and parameter settings

- MELSOFT GX Works3 includes everything needed from system configuration to servo parameter settings.
- "One-point help" enables easy settings without manuals.

Easy programming

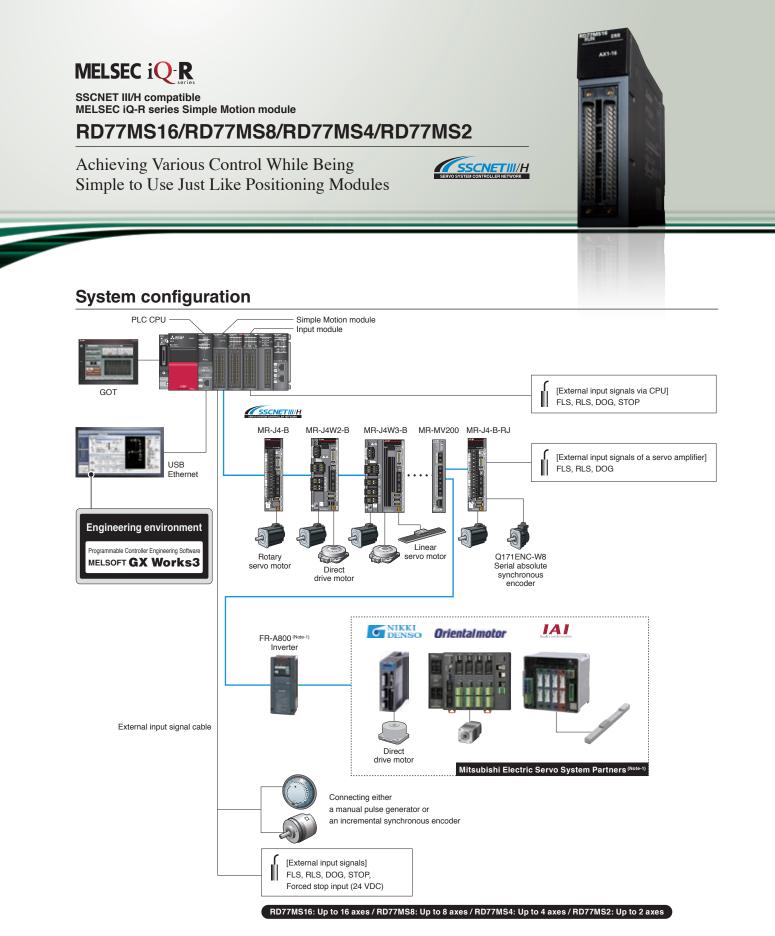

Simple point-and-click programming

• A sequence program is created effortlessly via drag & drop of module labels/FBs.

Module label

Module FB

Maintenance


Increased usability in synchronous/positioning control settings

- An array of sub functions helps you create positioning data.
- Synchronous control is performed easily just by parameter settings.
- Creation of a rough cam waveform on a graph via drag & drop, or direct numerical value input to the graph enables easy creation of cam data.

Simple Motion Modules

Increased efficiency in debugging and maintenance

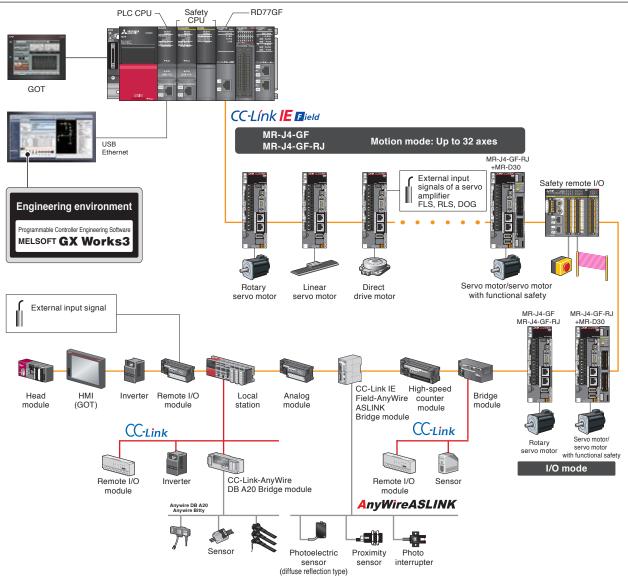
- Servo adjustment is automatically completed using the One-touch tuning function.
- Debugging of a program without an actual machine is possible by simulation.
- The network errors are displayed by Network diagnostics.

(Note-1): When using a partner product or the inverter FR-A800, use one whose version supports the Simple Motion module.

(Note-1): When using a partner product or the inverter FR-A800, use one whose version supports the Simple Motion module

MELSEC iQ-R

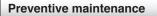
CC-Link IE Field Network compatible MELSEC iQ-R series Simple Motion module


RD77GF32/RD77GF16/RD77GF8/RD77GF4

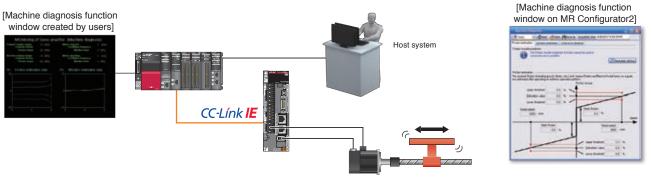
Synchronous control up to µsec precision, suitable for high-accuracy positioning

CC-Línk

System configuration



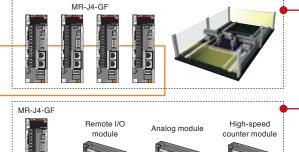
Device station: Up to 120 stations (including the number of servo amplifiers in motion mode) (Note): A switching hub is required for star topology.


Productivity

Maintenance

CC-Link IE Field Network Compatible Functions

Machine diagnosis function detects changes in mechanical parts (ball screw, guide, bearing, belt, etc.) by analyzing changes in machine friction, load moment of inertia, unbalanced torque, and vibration components from the data inside a servo amplifier, supporting timely maintenance of these parts. In addition, the data are transferred to a host system and used to monitor the entire line.


Control mode

Two types of modes are available according to your needs:

•Motion mode for a wide range of motion control such as positioning of multiple axes, synchronous control, etc.

I/O mode for positioning of one axis

Motion mode

This mode enables advanced motion control functions, such as positioning for multi-axis interpolation, synchronous control, and speed-torque control in combination with the Simple Motion module.

RD77GF

Maximum number of control axes : 32 axes

I/O mode

With the CC-Link IE Field Network, various field devices, such as servo amplifiers, I/O modules, and high-speed counter modules, can be connected flexibly. **Maximum number of control stations : 120 stations** (Including the number of servo amplifiers in motion mode)

CC-Link IE Field Network master station

The CC-Link IE Field Network Simple Motion module covers the functionality that a CC-Link IE Field Network master/local module provides (Note-1). The Simple Motion module can function as a master module, and is also equipped with link devices equivalent to a master/local module. This leads to reduced cost on system because it includes functions of both Simple Motion module and a master module. (Note-1): Excludes the function of a sub-master station.

Maximum link points per network

Item	RD77GF	Master module
Remote input (RX)/Remote output (RY)	16k points each (16384 points, 2k byte)	16k points each (16384 points, 2k byte)
Remote register (RWw, RWr)	8k points each (8192 points, 16k byte)	8k points each (8192 points, 16k byte)

RD77GF

Features

Programming Environment

Productivity HHRO Engineering

RD77MS

FX5SSC

Productivity

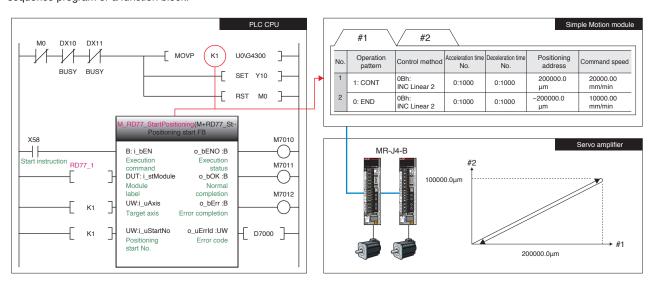
Engineering

Engineering

There are many works with software in the processes from machine design through its operation - system design, programming, debug, to maintenance. MELSOFT GX Works3 is equipped with various features that simplify those works.

System design

A system is simply and quickly designed just by selecting a module needed for your system via drag & drop. The parameter and positioning data windows appear by double-clicking on the desired module.


RD77GF RD77MS

FX5SSC

RD77

Programming

Various positioning controls such as linear interpolation can be performed just by writing positioning data to the buffer memory using a sequence program or a function block.

Productivity

RD77GF

B590

B591

B592

Engineering

PLCopen

motior ntro

Servo amplifier

PLCopen® Motion Control FB

Simple Motion modules and servo amplifiers with built-in positioning are used to execute Motion control. Each device uses specific programming, thus the time and cost involved in understanding how each device works is a burden.

- PLCopen® Motion Control FB is a standardized interface, which provides the following benefits:
- Reduced workload for programming, saving time and reducing costs.
- People other than the program designer can understand the programming, leading to reduced maintenance time.

Conforms to IEC 61131-3

GX Works3 realizes structured programming such as ladder and ST, making project standardization across multiple users even easier.

Programming examples

The PLCopen® Motion Control FB enables positioning of devices requiring different control methods with the same programming.

B90

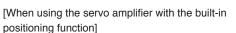
Controller

[Axis1]

-E W90 3-

DUT:Axis

B:Excute

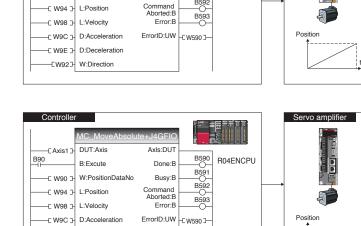

-C W94 - L:Position

- W9F H D:Deceleration EW923 W:Direction

W:PositionDataNo

[When using the Simple Motion module] Devices : RD77GF + MR-J4-GF : MC_ MoveAbsolute + RD77 FB

Positioning starts after setting the Simple Motion module such as the target position and speed.

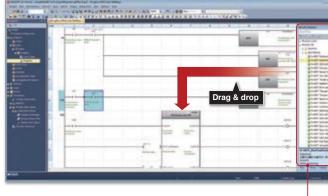


Devices : R04ENCPU + MR-J4-GF FB : MC_ MoveAbsolute + J4GFIO

Positioning starts after transferring data of a target position and speed from a master station to the servo amplifier with the built-in positioning function.

Module Function Block (Module FB)

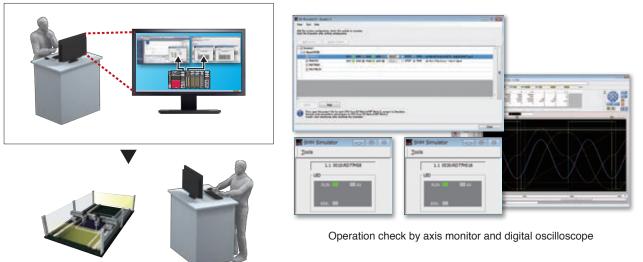
A program for positioning control is easily created via drag & drop of required FBs from a list of Mitsubishi Electric module FBs to the program editor screen.


Axis:DU1

Done:B

Busy:B

RD77GF RD77MS


Module FBs

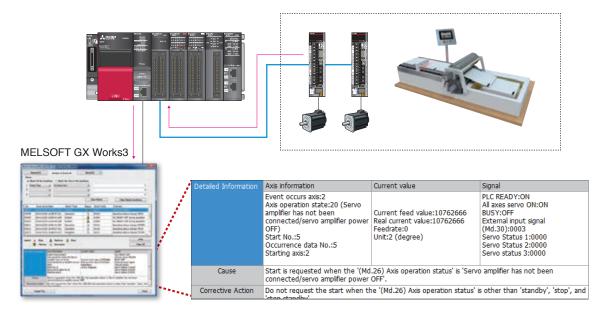
Simulation

RD77GF RD77MS HHE

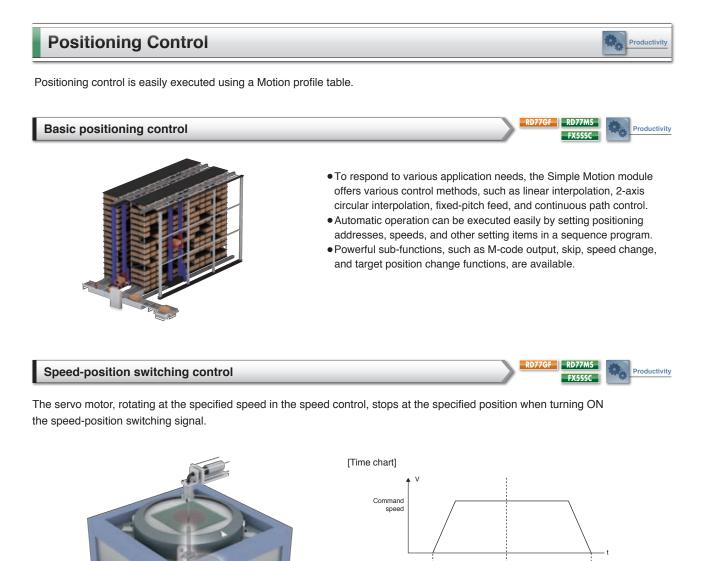
The MELSOFT GX Works3 simulation enables a program operation to be checked without an actual machine even during the debugging process and hence a shorter startup time. In addition, multiple Simple Motion modules can be simulated at the same time.

Debugging by simulating program on PC

Startup and adjustment by actual machine


Event history

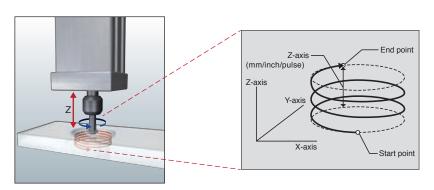
For the MELSEC iQ-R series, events occurred on each module and servo amplifiers can be stored to the CPU module. Information of "WRITE" operation to the program, error information, and written data to the flash ROM, etc. is listed chronologically, which makes error cause investigation and restoration work smoother and quicker.


RD77MS

Engineering

Maintenance

The cause of event can be easily identified through the event history which chronologically lists errors and operation for the CPU module.


Helical interpolation draws a helical path by a linear interpolation axis (Z-axis) following to 2-axis circular interpolation control (X-axis and Y-axis). For applications that require the boring of deep, large holes, usually the helical interpolation of the three axes must be taken into consideration.

Speed-position switching signal (External command signal (DI))

• Milling is done in a circle, with the X and Y axes synchronized to achieve the pre-set size.

Helical interpolation

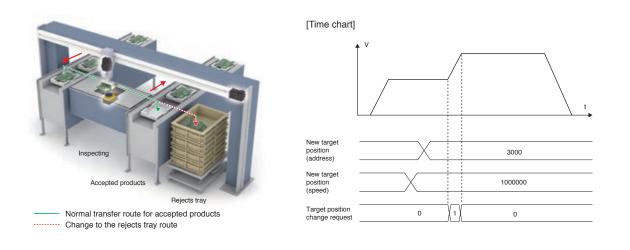
• The depth of the hole is simultaneously controlled along the Z axis, ensuring minimal deviation in the cutting bit position.

Speed control

OFF

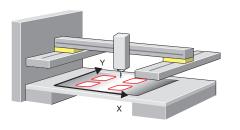
Position control

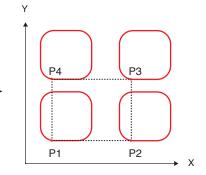
RD77GF RD77MS


ON

roductivity

Target position change function




The target position can be changed at any time even when the products are being moved (1-axis linear control). The product is examined while being moved to the next line. If a faulty product is found, the target position is changed so that the faulty product is put in a separate tray for those rejected.

The block-start executes multiple sequential positioning data set as block start data by a single start trigger, and is used in control that follows the same repetitive path.

Positioning starts from "First point" in block start data to draw four squircles.

Setting example of block start data

Block start data	Operation pattern	Start data No.	Special start instruction	Description
First point	1: Continue	1	0: Block start	Move to P1
Second point	1: Continue	21	0: Block start	Draw a squircle (P1 to P1).
Third point	1: Continue	2	0: Block start	Move to P2.
Fourth point	1: Continue	21	0: Block start	Draw a squircle (P2 to P2).

Eighth point	0: End	21	0: Block start	Draw a squircle (P4 to P4).

Advanced Synchronous Control

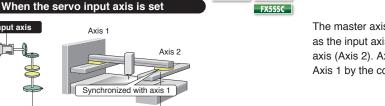
The advanced synchronous control is software-based synchronous control as an alternative to mechanical control, such as gear, shaft, clutch, speed change gear and cam. In addition, cam control becomes even easier with cam auto-generation function. The synchronous control can be flexibly started/ended for each axis, allowing the synchronous control axis and positioning control axis to be used within the same program.

Input axis module

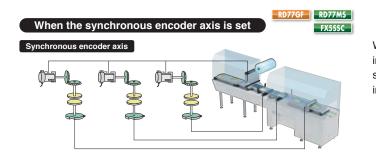
Servo input axis

()E

Clutch

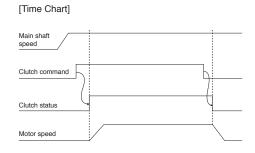

A command generation axis, a servo input axis under control, or a synchronous encoder axis, can be set as an input axis module for synchronous control according to your application.

RD77MS



When the command generation axis is set as the input axis module, servo amplifiers can be connected for the number of control axes.

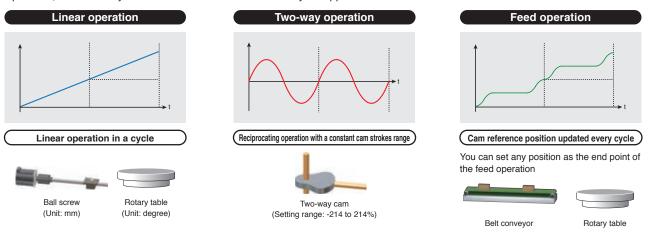
[Command generation axis] The command generation axis is the axis that performs only the command generation. It is controlled independently of other axes connected to servo amplifiers. (not counted as a control axis)


The master axis (Axis 1) of tandem operation is set as the input axis module of the synchronous control axis (Axis 2). Axis 2 is synchronously operated with Axis 1 by the commands given to Axis 1.

When the synchronous encoder axis is set as the input axis module, one packaging line can be synchronized with another line to achieve the integrated automation of a packaging machine.

The clutch is a module that transmits command pulses from the main shaft or the auxiliary shaft to an output axis module. There are two ways of controlling a clutch: "ON control mode" or "OFF control mode", which allow you to set the specific conditions to the starting and stopping of an axis.

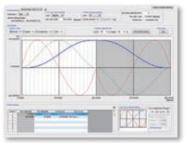
Clutch ON control mode	Clutch OFF control mode
No clutch	OFF control invalid
Clutch command ON/OFF	One-shot OFF
Clutch command leading edge	Clutch command leading edge
Clutch command trailing edge	Clutch command trailing edge
Address mode	Address mode
High speed input request	High speed input request


47

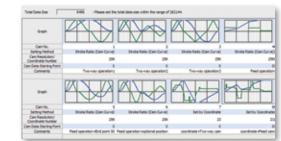
Cam functions

RD77MS Productivity Engineering FX5SSC

The output axis for synchronous control is operated with a cam.


The following three operations can be performed with the cam functions: Linear operation, Two-way operation, and Feed operation; therefore any of the three can be selected to suit your application.

Cam pattern creation


A wide variety of cam patterns can be easily created with GX Works3.

[Cam Data Creation Screen]

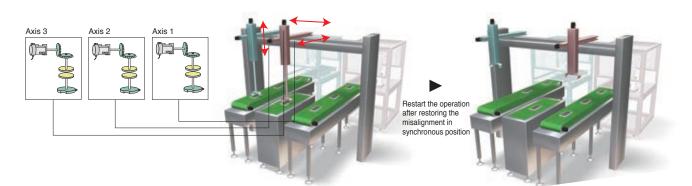
- Cam data can be created more freely and flexibly.
- Click the graph and drag it, which causes the waveform to automatically change according to the pointer's movement.
- Stroke, speed, acceleration, and acceleration jerk can be set while checking graph change.
- Cam data can be imported and exported in CSV format.

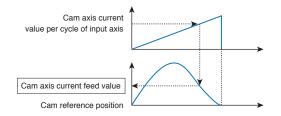
[Cam Data List]

- The created cam data are easily viewed as thumbnails.
- The screen for cam data creation opens by double-clicking the cam data to be edited.

Cam data Synchronous. Sheet feeding axis length (circumference User-created GOT screen Sv Sheet length Cam axis -(synch ized axis) speed feeding speed Stroke Synchro width ratio Rotary knife

Cam data for a rotary knife can be automatically generated by parameter settings of sheet length, synchronization width, cam resolution, etc.


including items like sheet length, etc.


Restarting synchronous control

RD77GF RD77MS Productivity

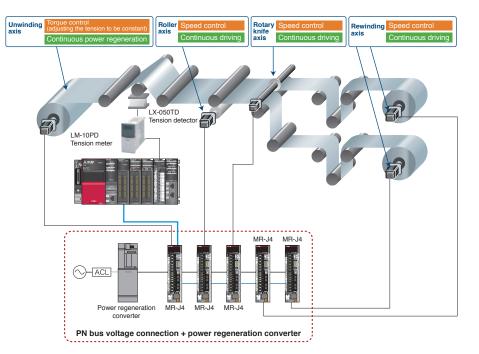
In case that the synchronous position becomes misaligned after an emergency stop, etc., a new synchronous position is calculated from each axis position to restore the misalignment, and then the synchronous control can be restarted at the specified position based on the calculation.

 In synchronous control analysis mode, the cam axis current feed value of each output axis (axis1. 2, 3) is updated based on the cam axis current value per cycle of input axis.

- 2. The output axes perform positioning based on those updated current feed values.
- 3. Turn OFF the synchronous control analysis mode, and turn ON the axes to perform synchronous control.

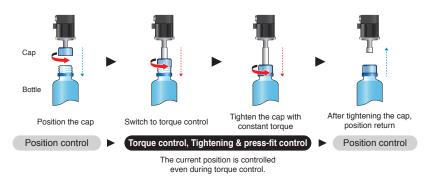
Speed-torque Control

RD77GF RD77MS Productivity


RD77MS

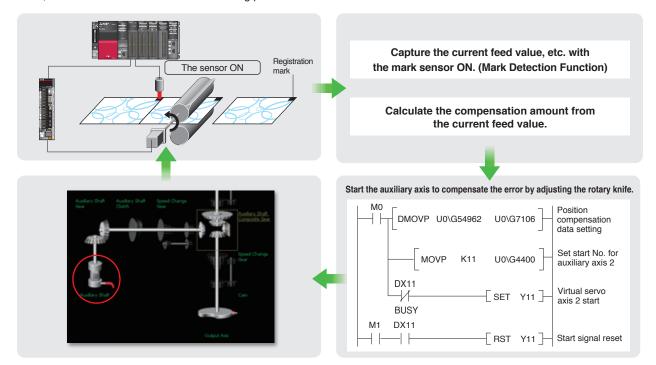
FX5SSC

uctivity

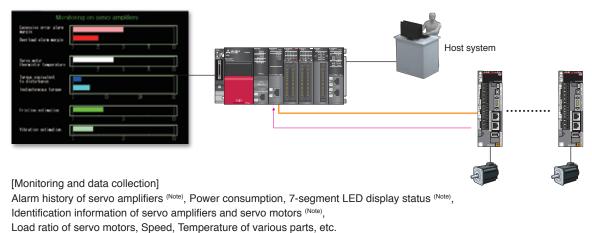

Speed control follows speed commands to keep speed constant, and torque control follows torque commands to keep torque constant. The Simple Motion module can be used for tension control, such as unwinding or rewinding.

Positioning using absolute position coordinates can be smoothly performed even after switching back to position control because the current position is controlled during the speed-torque control.

Speed-torque control (Tightening & press-fit control)


The motor can be switched to torque control (tightening & press-fit mode) during positioning without stopping. Since the current position is controlled in any control mode, positioning operation based on the absolute position coordinates can be performed smoothly after switching back to positioning control.

Features


Mark Detection Function

The actual position of the servo motor can be obtained based on the inputs from the sensor that detects the registration marks printed on the high-speed moving film. By compensating the rotary knife axis position errors based on those inputs from the sensor, the film can be cut at the constant cutting position.

Monitoring of Servo Data

Servo operation can be monitored with extensive monitor data (selectable from up to 50 items). The monitor items can be flexibly changed during operation. The operation status of servo amplifiers and servo motors (including partner products) acquired via CC-Link IE Field Network and SSCNET III/H is transferred and displayed on the host system or on the GOT screen created by a customer.

Inrush relay ON/OFF number (Note), Power ON cumulative time (Note), Machine diagnosis information (Note) (the estimated friction value and the estimated vibration value), etc.

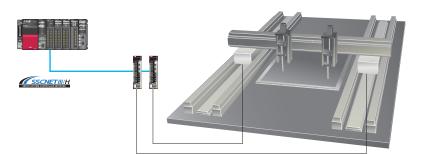
(Note): Available only with RD77GF

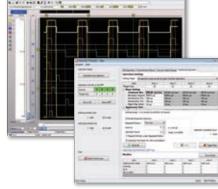
[Preventive maintenance]

Driver Communication Function

RD77MS FX55SC Productivity

The driver communication function of the servo amplifiers enables the master axis to transmit its torque data to the following axes, and the servo motors of the following axes are driven on the basis of the transmitted torque data.




Multi-Axis Adjustment Function

The multi-axis adjustment function enables simpler servo adjustment and quicker startup for machines executing multi-axis simultaneous operation, such as a tandem configuration.

• Multi-axis simultaneous JOG operation by specifying speed and acceleration/deceleration time

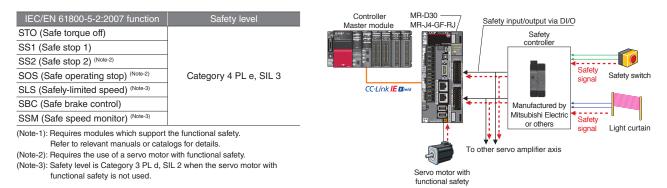
- Multi-axis simultaneous positioning
- Multi-axis simultaneous tuning by the same settings

RD77MS

Quality

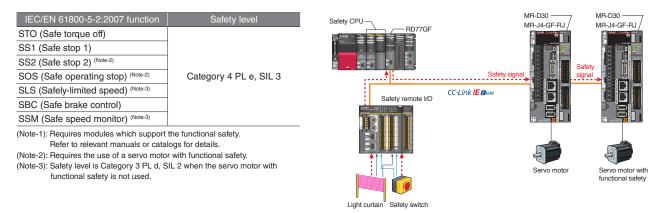
Features

Functional Safety


Achieving Category 4 PL e, SIL 3

■By wiring to MR-D30 functional safety unit (Note-1)

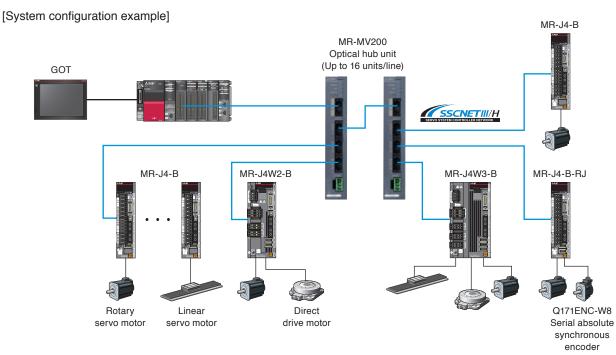
Safety level is Category 4 PL e, SIL 3 when the safety signals are inputted directly to MR-D30 functional safety unit. The safety observation function is operated on the MR-D30 by parameter setting, and therefore expansion of the safety observation function is possible independent of controllers.


Productivity

Quality

By CC-Link IE Field Network (Note-1)

Safety signals are monitored by a combination of the safety CPU and RD77GF Simple Motion module. The safety CPU checks the safety signals received via the safety remote I/O module and outputs the safety signals (STO, etc.) to the servo amplifiers. Since the safety signals are outputted through CC-Link IE Field Network, wiring of the safety signals to each functional safety unit are not necessary.



Distribution by the Optical Hub Unit

RD77MS Productivity Maintenanc

The MR-MV200 optical hub unit can branch a single SSCNET III/H network line in three separate directions. This enables distribution of the SSCNET III/H compatible devices with flexible wiring arrangement. In addition, the distributed amplifier can be partly OFF for maintenance without stopping the whole system; thus, the machine availability can be improved.

- The SSCNET connect/disconnect function of the controller allows you to power off only the desired servo amplifiers.
- The optical hub unit is introduced just by making some changes in wiring without making any new settings.
- Longer-distance wiring becomes available by using the optical hub unit.

(Note): Confirm that "SSCNET III/H" is selected in the system setting when using the optical hub unit.

Various Functions

JOG operation

While the JOG start signal is ON, the workpiece moves in the designated direction.

JOG operation can be executed without completing home position return.

Motion profile table operation

The operation is executed by the motion profile table method, in which position data and feed speed are set. Once the start signal is turned ON, the set commands are executed sequentially from the start point to the end point.

Stroke limit functions

This function is used to establish the physical movable range for a machine. The hardware stroke limit function and the software stroke limit function are available.

Absolute position system

This function restores the absolute position of the designated axis. Once the home position return is executed at the start of the system, it is unnecessary to perform the home position return again when the power is turned ON next time.

Step function

This function temporarily stops the operation to confirm the positioning operation during debugging, etc.

The operation is stopped at each of "automatic deceleration" or "positioning data".

M-code output function

This function issues commands for sub works corresponding to the M-code No. 0 to 65535 that is set for each positioning data. The commands are used for clamp or drill stop, tool change, etc.

External input signal setting function

This function allows you to set the input type, the input terminal, and the input filter for each external input signal (the upper/lower limit signal, the proximity dog signal, and the stop signal).

Home position return methods

Five types of home position return methods, the retry function and the shift function are available to establish a home position used as the machine reference point. Select any of these home position return methods that suits your machine type.

Stop operation functions

Forced stop, axis stop, and forced stop for servo amplifiers are available. Utilize these stop operation functions based on your application.

Unlimited length feed

Unlimited length feed is performed by disabling the stroke limit function. This function is used for a rotary table, a belt conveyor, etc.

Amplifier-less operation

This function executes the positioning control by the Simple Motion module without connecting to servo amplifiers, thus enabling debugging of a user program and simulation of positioning operation on a personal computer.

Skip function

This function stops the positioning being executed when the skip signal is inputted, and executes the next positioning. It is used for measurement with a sensor.

Execution data backup function

This function stores the "setting data", currently being executed, into the flash ROM/internal memory without a battery. The command for this function is executed on MELSOFT GX Works3 or a sequence program.

External I/O signal logic switching function

This function switches I/O signal logic according to devices connected to the Simple Motion module, etc.

МЕМО	
	-
	Outline
	Modules
	- 0,
	Controllers
	So
	Modules
	Enviro
	Environment
	Networks
	- orks
	م
	Servo Amplifiers
	plifiers
	_

Control specification

_	-					Speci	fications				
	Item		MELSEC iQ-R series MELSEC iQ-F								
		RD77GF32	RD77GF16	RD77GF8	RD77GF4	RD77MS16	RD77MS8	RD77MS4	RD77MS2	FX5-80SSC-S	FX5-40SSC-S
	umber of control axes o amplifier axis included)	32 axes	16 axes	8 axes	4 axes	16 axes	8 axes	4 axes	2 axes	8 axes	4 axes
	le (Operation cycle settings) [ms]		0	.5, 1.0, 2.0, 4	1.0		0.444, 0.888	, 1.777, 3.555	5	0.888	3, 1.777
Interpolation			Linear interpolation (Up to 4 axes), Circular interpolation (2 axes), Helical interpolation (3 axes) (Note-1)								
Control mod	les		Positioning control, Path control (Linear, arc, and helical), Speed control, Speed-torque control, Tightening & Press-fit control (Note-2)								
Acceleration	n/deceleration process			Trapezoio		ion/decelerati			deceleration		
Compensati	ion function			Ba	cklash comp	ensation, Elec	ctronic gear,	Near pass fu	unction		
Synchronou	s control			Synchronou	s encoder in	out, Cam, Ph	ase compens	sation, Cam	auto-generat	tion	
Control unit			Synchronous encoder input, Cam, Phase compensation, Cam auto-generation mm, inch, degree, pulse								
Number of p	positioning data				600 dat	a (positioning	y data No. 1 te	o 600)/axis			
Backup			Parameter	s, positioning	g data, and b					/-less backup)	
Homo	Home position return method	Driver h	nome positior	n return meth	od (Note-3)					nethod 2, Data er home positio	
Home position	Fast home position return control						vided		inotinou, print		
return	Sub-functions	(using		vided	nulificar)		Home po	sition return	retry, Home	position shift	
	Linear control	(using	sub-function			to 4 axes) (Note	-4) (Vector sp	eed Referer	nce axis spe	ed)	
	Fixed-pitch feed			Lindar intor		d-pitch feed c				<i>ou)</i>	
	2-axis circular interpolation		Auxil	iary point-sp	ecified circula	ar interpolatio	n, Central po	int-specified	l circular inte	rpolation	
	Speed control					Speed contro	ol (Up to 4 ax	es)			
	Speed-position switching					INC mode	e, ABS mode				
Positioning control	Position-speed switching					INC	mode				
control	Current value change				Positioning	g data, currer	nt value chan	ging start No	Э.		
	NOP instruction					Pro	ovided				
	JUMP instruction				Unco	nditional JUN	IP, Condition	al JUMP			
	LOOP, LEND						ovided				
	High-level positioning		Block start, Condition start, Wait start, Simultaneous start, Repeated start								
	JOG operation						ovided				
Manual control	Inching operation						ovided				
CONTION	Manual pulse generator			device	onnect 1 mod	lule (Increme	ntal), Unit ma		nal interface	mes)	
Expansion control	Speed-torque				hout positioni	ing loops, Tor	aue control			trol (Note-2)	
	sition system		0,00			ible by setting	-		-		
	s encoder interface	32CH	16CH	8CH	4CH		, ,		1 channels		
	Internal interface		-	- 1CH (Incremental)							
	Via CPU (buffer memory)		Provided (I	ncremental)				Pro	ovided		
	Link device	Provided (Incremental) —						_			
	Via servo amplifier	32CH	4CH (Absolute)								
			(Abs	olute)					,		
	Speed limit			T		d limit value,					
Functions that limit	Torque limit Forced stop			Iorque	e limit value s	ame setting,		alue individi	ual setting		
control	Software stroke limit		Movah	le range che	ck with curre	Valid/Invalid setting ent feed value, movable range check with machine feed value					
	Hardware stroke limit		Wiovac				vided	ige check w			
	Speed change						vided				
Functions	Override				0 to 3	00 [%]				1 to 3	800 [%]
that change	Acceleration/deceleration					Pro	vided			1	
control details	time change										
actans	Torque change Target position change				Target posi	tion address	ovided	ro changoah			
	M-code output				Target posi		AFTER mod		ne		
Other	Step function				Decel	eration unit st					
functions	Skip function					C CPU, Via ex					
	Teaching function				1.4.1.2.	,	vided	and oignai			
Parameter ir	nitialization function	Provided									
External	Internal interface		-				Prov	ided		-	
input signal	Via CPU (buffer memory)					Pro	ovided				
setting	Link device		Prov	vided					_		
function	Via servo amplifier					Pro	ovided				
Event histor	·				Prov	vided				-	
Amplifier-les	s operation function			-		-	ovided				
Mark						Specified Nu	Imber of Dete	ections mode	e, Ring Buffe	r mode	
detection	Mark detection signal	Up to 32 points (Note-5)	Up	to 16 points	(Note-5)		Up to 2	0 points		Up to 4	4 points
function	Mark detection setting	Up to 32	U	p to 16 settin	ngs		Up to 16	settings		Up to 16	6 settings
		settings			-			3-			<u> </u>

Control specification (continued)

		Specifications										
	Item	MELSEC iC				Q-R series		MELSEC iQ-F series				
			RD77GF16	RD77GF8	RD77GF4	RD77MS16	RD77MS8	RD77MS4	RD77MS2	FX5-80SSC-S	FX5-40SSC-S	
Functions that	Optional data monitor		-	_		4 settings/axis						
monitor servo	Servo cyclic transmission		4 settings/axis			_						
data	Servo transient transmission	4 settings/axis				—						
Driver communic	ation function		-	_		Provided						
SSCNET connect	ct/disconnect function		-	_		Provided						
Digital Bit data					16CH							
oscilloscope function (Note-6)	Word data	16CH										
(Note 1), Available of	aly with DD77CE and DD77M	10										

(Note-1): Available only with RD77GF and RD77MS (Note-2): Available only with RD77MS and FX5-80SSC-S/FX5-40SSC-S (Note-3): The home position return method set in a driver (a servo amplifier) is used. (Note-4): 4-axis linear interpolation control is enabled only at the reference axis speed. (Note-5): The Mitsubishi Electric remote I/O module is required. (Note-6): 8CH word data and 8CH bit data can be displayed in real time.

Synchronous control specification

Synchronous control

	Number of settable axes									
Item				MELSEC i	Q-R series				MELSEC iQ-F series	
	RD77GF32	RD77GF16	RD77GF8	RD77GF4	RD77MS16	RD77MS8	RD77MS4	RD77MS2	FX5-80SSC-S	FX5-40SSC-S
Servo input axis	32	16	.8	4	16	8	4	2	.8	4
	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module
Synchronous encoder input axis	32 axes/module	16 axes/module	8 axes/module	4 axes/module			4 axes/	module		
Composite main shaft gear	axee,meane	1 module/output axis								
Main shaft main input axis					1 module/	output axis				
Main shaft sub input axis					1 module/	output axis				
Main shaft gear					1 module/	output axis				
Main shaft clutch					1 module/	output axis				
Auxiliary shaft					1 module/	output axis				
Auxiliary shaft gear					1 module/	output axis				
Auxiliary shaft clutch					1 module/	output axis				
Composite auxiliary shaft gear					1 module/	output axis				
Speed change gear					1 module/	output axis				
Output axis (Cam axis)	32	16	8	4	16	8	4	2	8	4
Output axis (Calli axis)	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module	axes/module

Cam control

								Specifi	cations					
	Item		MELSEC iQ-R series									MELSE	MELSEC iQ-F series	
			RD77GF32	RD77GF16	RD77GF8	RD77GF8 RD77GF4 RD7		RD77MS16	RD77MS8	RD77MS4	I RD	77MS2	FX5-80SSC	S FX5-40SSC-S
Memory	Cam stor	rage area		Up to 3	M bytes				256k	bytes			128k byte	s 64k bytes
capacity	Cam wor	rking area		Up to 16	M bytes					102	4k bytes	3		
Number	of registra	tion		Up to	1024				Up t	o 256			Up to 12	3 Up to 64
Commer	nt					ι	Jp to 32	2 characters	s for each can	n data				
	Otralia		Cam resol	ution	256	512		1024	2048	4096	819	92	16384	32768
		ke Maximum number of cam registration	RD77GF	RD77GF		1024	1	1024	1024	1024	51	2	256	128
	ratio		RD77MS		256	128		64	32	16	8		4	2
	data		FX5-40SS	C-S	64	32		16	8	4	2		1	_
	type		FX5-80SS	C-S	128	64		32	16	8	4		2	_
Cam		Stroke ratio		-214.7483648 to 214.7483647 [%]										
data			Cam resol	ution	128	256	512	1024	2048	4096	8192	16384	4 32768	65535
		Maximum	RD77GF		1024	1024	1024	4 1024	1024	512	256	128	64	32
	Coordinate	number of cam	RD77MS		256	128	64	32	16	8	4	2	-	—
	data type	registration	FX5-40SS	C-S	64	32	16	8	4	2	1		-	
		Ū III	FX5-80SS	C-S	128	64	32	16	8	4	2	-	-	—
	Co				Input va	lue: 0 to 2	147483	3647 Outpu	t value: -2147	483648 to 2	147483	647		
Cam auto-generation			Cam for	rotary knife, E Advanced str						Cam fo	rotary	knife		

Module specification

Simple Motion module RD77MS16/RD77MS8/RD77MS4/RD77MS2

Item

	nem		RD77MS16 RD77MS8 RD77MS4 RD77MS2							
Number of control a (Virtual servo ampl		ided)	Up to 16 axes	Up to 8 axes	Up to 4 axes	Up to 2 axes				
Servo amplifier cor	nnection meth	od		SSCN	ET III/H					
Maximum overall c	able distance	[m(ft.)]	1600 (5249.34)							
Maximum distance	between stat	ions [m(ft.)]	100 (328.08)							
Peripheral I/F			Via CPU module (USB, Ethernet)							
Manual pulse gene	erator operatio	n function		Possible to cor	nect 1 module					
Synchronous enco	der operation	function	(Total of the interr	Possible to con nal interface , via CPU	nect 4 modules interface, and servo a	amplifier interface				
	Number of in	nput points		20 points		10 points				
	Input metho	d	Positive common/Negative common shared (Photocoupler isolation)							
	Rated input	voltage/current		24 VDC/Ap	prox. 5 mA					
	Operating vo	oltage range	19.2 to 26	.4 VDC (24 VDC +109	%/-20%, ripple ratio 5	% or less)				
Input signals	ON voltage/	current		17.5 VDC or more	e/3.5 mA or more					
(SIN) OFF voltage		e/current		7 VDC or less/	1.0 mA or less					
	Input resista	ince		Approx	6.8 kΩ					
	Response ti				→ON, ON→OFF)					
	Recommend	ded wire size		AWG24 (0.2 mm ²)					
	Number of in	nput points		1 p	oint					
	Input metho	d	Positive com	mon/Negative comm	on shared (photocour	oler isolation)				
	Rated input	voltage/current	24 VDC/Approx. 5 mA							
		oltage range	19.2 to 26	.4 VDC (24 VDC +109	%/-20%, ripple ratio 5	% or less)				
Forced stop input	ON voltage/				e/3.5 mA or more	,				
signal (EMI)	OFF voltage			7 VDC or less/	1.0 mA or less					
	Input resista			Approx						
	Response ti				→ON, ON→OFF)					
		ded wire size		AWG24 (
	Signal input	form	Phase A/Phase B (magnification by 4/2/1), PULSE/SIGN							
		Input pulse frequency	Up to 1 Mpulse/s (After magnification by 4, up to 4 Mpulse/s)							
		Pulse width	1µs or more							
	Differential	Leading edge/ trailing edge time	0.25µs or less							
	output type (26LS31 or	Phase difference		0.25µs or more						
	equivalent)	Rated input voltage		5.5 VDC	or less					
Manual pulse	. ,	High/Low-voltage		2.0 to 5.25 VD	C/0 to 0.8 VDC					
generator/		Differential voltage		±0.	2V					
Incremental synchronous		Cable length		Up to 30m	ı (98.43ft.)					
encoder signal		Input pulse frequency	Up to 200 I	kpulse/s (After magnit	ication by 4, up to 80	0 kpulse/s)				
		Pulse width		5µs oi	more					
	Voltage- output/	Leading edge/ trailing edge time		1.2µs (or less					
	Open-		1.2µs or more							
	collector	Phase difference		1.2µs c	or more					
	collector type	Phase difference Rated input voltage		1.2µs c 5.5 VDC						
	collector		3.0 to 5	· · · ·	or less	or more				
	collector type	Rated input voltage	3.0 to 5	5.5 VDC	c or less s, 0 to 1.0 VDC/5 mA	or more				
Number of I/O occu	collector type (5 VDC)	Rated input voltage High/Low-voltage		5.5 VDC .25 VDC/2 mA or less	C or less s, 0 to 1.0 VDC/5 mA (32.81ft.)					
	collector type (5 VDC) upying points	Rated input voltage High/Low-voltage Cable length		5.5 VDC .25 VDC/2 mA or less Up to 10m	C or less s, 0 to 1.0 VDC/5 mA (32.81ft.)					
Number of I/O occu Number of module 5 VDC internal curr	collector type (5 VDC) upying points occupying slo	Rated input voltage High/Low-voltage Cable length		5.5 VDC .25 VDC/2 mA or less Up to 10m	c or less s, 0 to 1.0 VDC/5 mA (32.81ft.) ent function module,					
Number of module	collector type (5 VDC) upying points occupying slo	Rated input voltage High/Low-voltage Cable length		5.5 VDC 25 VDC/2 mA or less Up to 10m (I/O allocation: Intellig	c or less s, 0 to 1.0 VDC/5 mA (32.81ft.) ent function module,					

Specifications

Applicable CPU

PLC CPU module	R00CPU, R01CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, R120CPU R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, R120ENCPU R08PCPU, R16PCPU, R32PCPU, R120PCPU R08SFCPU-SET, R16SFCPU-SET, R32SFCPU-SET, R120SFCPU-SET R12CCPU-V
----------------	---

Depending on the combination of the modules, there are restrictions on the firmware version of the PLC CPU module. Refer to "MELSEC iQ-R Module Configuration Manual" for details.

Simple Motion module FX5-80SSC-S/FX5-40SSC-S

	ltom		Specifications					
	Item		FX5-80SSC-S	FX5-40SSC-S				
Number of control a (Virtual servo ampl		ded (Note-1))	Up to 8 axes	Up to 4 axes				
Servo amplifier con	nection meth	od	SSCNET III/H					
Maximum overall c	able distance	[m(ft.)]	800 (2624.67) 400 (1312.32)					
Maximum distance	between stat	ions [m(ft.)]	100 (3	328.08)				
Peripheral I/F			Via CPU module (Ethernet)					
Manual pulse gene	rator operatio	n function	Possible to co	nnect 1 module				
Synchronous enco	der operation	function		s (Total of the internal interface, servo amplifier interface)				
	Number of in	nput points	4 p	oints				
	Input metho	d	Positive common/Negative comm	on shared (photocoupler isolation)				
	Rated input	voltage/current	24 VDC/Ap	oprox. 5 mA				
	Operating vo	oltage range	19.2 to 26.4 VDC (24 VDC +10	%/-20%, ripple ratio 5% or less)				
Input signals (DI)	ON voltage/	current	17.5 VDC or mor	re/3.5 mA or more				
(DI)	OFF voltage	/current	7 VDC or less	/1.0 mA or less				
	Input resista	nce	Approx	. 6.8 kΩ				
	Response ti	me	1 ms or less (OFF	-→ON, ON→OFF)				
	Recommend	ded wire size	AWG24	(0.2 mm²)				
	Number of in	nput points	1 p	point				
	Input metho	d	Positive common/Negative comm	on shared (Photocoupler isolation)				
	Rated input	voltage/current	24 VDC/Ap	oprox. 5 mA				
	Operating vo	oltage range	19.2 to 26.4 VDC (24 VDC +10	%/-20%, ripple ratio 5% or less)				
Forced stop input signal (EMI)	ON voltage/	current	17.5 VDC or mor	re/3.5 mA or more				
Signar (Livii)	OFF voltage	/current	7 VDC or less	/1.0 mA or less				
	Input resista	nce	Approx	6.8 kΩ				
	Response ti	me	4 ms or less (OFF→ON, ON→OFF)					
	Recomment	ded wire size	AWG24	(0.2 mm ²)				
	Signal input	form	Phase A/Phase B (magnification by 4/2/1), PULSE/SIGN					
		Input pulse frequency	Up to 1 Mpulse/s (After magni	fication by 4, up to 4 Mpulse/s)				
		Pulse width	1 µs c	or more				
	Differential	Leading edge/ trailing edge time	0.25 µs	s or less				
	output type (26LS31 or	Phase difference	0.25 µs	or more				
	equivalent)	Rated input voltage	5.5 VD	C or less				
Manual pulse		High/Low-voltage	2.0 to 5.25 VD	C/0 to 0.8 VDC				
generator/ Incremental		Differential voltage	±0	.2V				
synchronous		Cable length	Up to 30 r	n (98.43ft.)				
encoder signal		Input pulse frequency	Up to 200 kpulse/s (After magni	fication by 4, up to 800 kpulse/s)				
		Pulse width	5 µs c	or more				
	Voltage- output/ Open-	Leading edge/ trailing edge time	1.2 µs	or less				
	collector	Phase difference	1.2 µs	or more				
	type (5 VDC)	Rated input voltage	5.5 VD	C or less				
	(0 000)	High/Low-voltage	3.0 to 5.25 VDC/2 mA or les	s, 0 to 1.0 VDC/5 mA or more				
		Cable length	Up to 10m (32.81ft.)					
24 VDC external cu	urrent consum	ption [A]	0.25					
Mass [kg]			0.30					
Exterior dimensions	s [mm(inch)]		90.0 (3.55)(H) × 50.0 (1	.97)(W) × 83.0 (3.27)(D)				

(Note-1): When the command generation axis is set as the input axis module, servo amplifiers can be connected for the number of control axes.

Applicable CPU

PLC CPU module

FX5U, FX5UC

Refer to "MELSEC iQ-F FX5U User's Manual (Hardware)" for details.

Simple Motion module RD77GF32/RD77GF16/RD77GF8/RD77GF4

literer		Specifications								
Item	RD77GF32	RD77GF16	RD77GF8	RD77GF4						
Number of control axes (Virtual servo amplifier axis included)	Up to 32 axes	Up to 16 axes	Up to 8 axes	Up to 4 axes						
Servo amplifier connection system	CC-Link IE Field Network									
Maximum distance between stations [m(ft.)]		100(3	28.08)							
Peripheral I/F	Via CPU module (USB, Ethernet)									
Manual pulse generator operation function	Possible to connect 1 module (Link device)									
Synchronous encoder operation	32 modules	16 modules	8 modules	4 modules						
Synchronous encoder operation	A total of link devices, interfaces via CPU and interfaces via servo amplifier									
Number of I/O occupying points	64 points (I/O allocation: Intelligent duration: S2 points (I/O allocation: Intelligent function module, 32 points) function module, 64 points)									
Number of module occupied slots			1							
5 VDC internal current consumption [A]		1.	.1							
Mass [kg]	0.23									
Exterior dimensions [mm(inch)]	106.0(4.17) (H) × 27.8(1.09) (W) × 110.0(4.33) (D)									

Applicable CPU

PLC CPU module

R00CPU, R01CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, R120CPU R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, R120ENCPU R08PCPU, R16PCPU, R32PCPU, R120PCPU R08SFCPU-SET, R16SFCPU-SET, R32SFCPU-SET, R120SFCPU-SET

Depending on the combination of the modules, there are restrictions on the firmware version of the PLC CPU module Refer to "MELSEC IQ-R Module Configuration Manual" for details.

Performance specifications of CC-Link IE Field Network

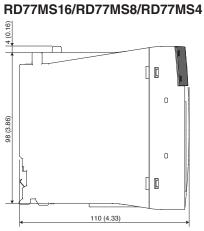
Item		MELSEC iQ-R series					
		RD77GF32	RD77GF16	RD77GF8	RD77GF4		
Maximum link points per network RY RWr		16k points (16384 points, 2 kbytes)					
		16k points (16384 points, 2 kbytes)					
		RWr		8k points (8192 p	ooints, 16 kbytes)		
		RWw	8k points (8192 points, 16 kbytes)				
		RX	16k points (16384 points, 2 kbytes)				
	Master	RY	16k points (16384 points, 2 kbytes)				
	station	RWr	8k points (8192 points, 16 kbytes)				
		RWw		8k points (8192 p	ooints, 16 kbytes)		
		RX		2k points (2048 p	ooints, 256 bytes)		
	Local	RY		2k points (2048 p	ooints, 256 bytes)		
	station	RWr	1k points (1024 points, 2 kbytes)				
Maximum link points		RWw		1k points (1024	points, 2 kbytes)		
per station		RX	2k points (2048 points, 256 bytes)				
	Intelligent device station	RY	2k points (2048 points, 256 bytes)				
		RWr	1k points (1024 points, 2 kbytes)				
		RWw		1k points (1024	points, 2 kbytes)		
	Remote device station	RX		128 points	s, 16 bytes		
		RY	128 points, 16 bytes				
		RWr	64 points, 128 bytes				
		RWw		64 points,	128 bytes		
	Communications speed		1 Gbps				
Ethernet	Connection cable		1000BASE-T Ethernet cable (Note-1) (Category 5e or higher), (Double shielded/STP) Straight cable				
Ethernet	Maximum distance between stations [m(ft.)]		100(328.08) (conforms to ANSI/TIA/EIA-568-(Category 5e))				
	Тороlоду		Line, star, line/star mixed				
Overall cable	Line topology [m(ft.)]		12000(39370.08) (When 1 master station and 120 device stations are connected)				
distance	Star topology (Note-2)		Depends on system configuration				
Maximum statio	ons per network		121 stations (1 master station and 120 device stations)				
Maximum numb	Maximum number of networks		239				

(Note-1): Use the cables recommended by CC-Link Partner Association for CC-Link IE Field Network. CC-Link IE Controller Network cables are not compatible with CC-Link IE Field Network. (Note-2): A switching hub is required for star topology.

Ethernet cable specifications

	Item	Description		
		Category 5e or higher, (double shielded/STP) straight cable		
Ethernet cable	Standard	The cable must meet the following standards: • IEEE802.3 (1000BASE-T) • ANSI/TIA/EIA-568-B (Category 5e)		
	Connector	RJ-45 connector with shield		

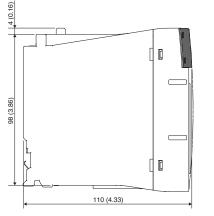
Optical hub unit MR-MV200

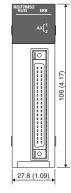


Item		Specifications		
		MR-MV200		
Input power supply	Input voltage [V]	21.6 to 26.4 V DC (24 V DC±10%)		
	Input current [A]	0.2		
Consumption power [W]		4.8		
Mass [kg]		0.2		
Mounting method		Directly mounted to the control panel or with DIN rail		
Cable length [m(ft.)]		Up to 100 (328.08)		
Number of optical hub units		Up to 16 units/line		
Number of servo ampli	iers (Note-1)	Up to 16 axes/line		
Exterior dimensions [m	m(inch)]	168.0 (6.61) (H) × 30.0 (1.18) (W) × 100.0 (3.94) (D)		

(Note-1): MR-J4-B, MR-J4W2-B, and MR-J4W3-B are 1-axis, 2-axis and 3-axis amplifiers, respectively.

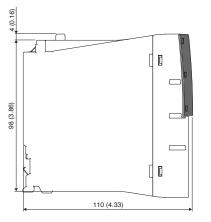
Specifications

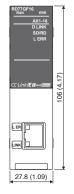

Exterior Dimensions



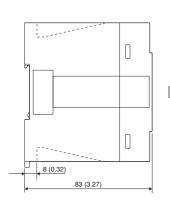
AX1-16 AX1-16 (L1-7) 901 27.8 (1.09)

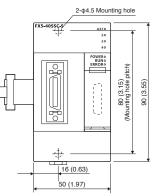
[Unit : mm (inch)]


RD77MS2

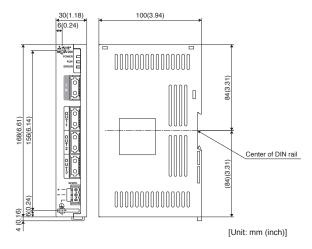


[Unit : mm (inch)]

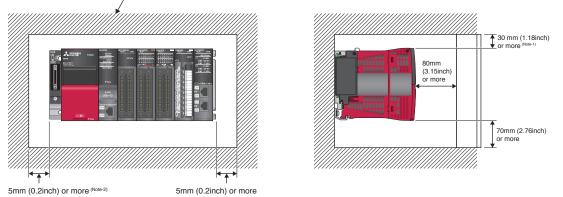

RD77GF32/RD77G16/RD77GF8/RD77GF4



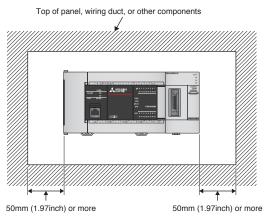
[Unit: mm (inch)]

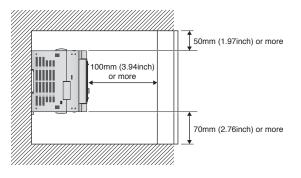

FX5-80SSC-S/FX5-40SSC-S

[Unit: mm (inch)]


MR-MV200

Mounting


RD77MS16/RD77MS8/RD77MS4/RD77MS2 RD77GF32/RD77GF16/RD77GF8/RD77GF4


Top of panel, wiring duct, or other components

(Note-1): Provide clearance of 30mm (1.18inch) or more when the height of a wiring duct is 50mm (1.97inch) or less. In other cases, provide clearance of 40mm (1.57inch) or more. (Note-2): Provide clearance of 20mm (0.79inch) or more when an extension cable is connected/removed without removing a power supply module.

FX5-80SSC-S/FX5-40SSC-S

Components

Compliance with the indicated global standards and regulations is current as of the release date of this catalog. Contact your local sales office for the latest information.

Simple Motion module

Part	Model		Description		Standards	
	RD77MS16 (Note-1)	Up to 16 axes				
	RD77MS8 (Note-1)	Up to 8 axes	CE, UL, KC			
	RD77MS4 (Note-1)	Up to 4 axes	CE, UL, KC			
	RD77MS2 (Note-1)	Up to 2 axes	CE, UL, KC			
Cimple Motion module	FX5-80SSC-S	Up to 8 axes, FX2NC-100MPCB pow	CE, UL, KC			
Simple Motion module	FX5-40SSC-S	Up to 4 axes, FX2NC-100MPCB pow	ver supply cable 1m	(3.28ft) enclosed	CE, UL, KC	
	RD77GF32	Up to 32 axes	Up to 32 axes			
	RD77GF16	Up to 16 axes	CE, UL, KC			
	RD77GF8	Up to 8 axes			CE, UL, KC	
	RD77GF4	Up to 4 axes			CE, UL, KC	
SSCNET III cable (Note-2)	MR-J3BUS_M	 Simple Motion module⇔Servo amplifier Servo amplifier⇔Servo amplifier 	Standard code for inside panel	0.15m (0.49ft.), 0.3m (0.98ft.), 0.5m (1.64ft.), 1m (3.28ft.), 3m (9.84ft)	_	
	MR-J3BUS_M-A		Standard cable for outside panel	5m (16.40ft.), 10m (32.81ft.), 20m (65.62ft.)	_	
	MR-J3BUS_M-B (Note-3)		Long distance cable	30m (98.43ft.), 40m (131.23ft.), 50m (164.04ft.)	—	
Manual pulse generator	MR-HDP01	Number of pulses per revolution: 25pulse/rev (100pulse/rev after magnification by 4), Permitted speed: 200r/min (Normal rotation)			_	
Internal I/F connector set (Note-4)	LD77MHIOCON	Incremental synchronous encoder/Mark detection signal interface connector set			_	
Optical hub unit	MR-MV200	Three branches/unit, DC power supply connector enclosed CE, UL, KC				

(Note-1): Order the A6CON1, A6CON2, and A6CON4 separately because the connectors are not included in the package.
 (Note-2): "_" indicates cable length. (015: 0.15m (0.49ft.), 03: 0.3m (0.98ft.), 05: 0.5m (164ft.), 1: 1m (3.28ft.), 3: 3m (9.84ft.), 5: 5m (16.40ft.), 10: 10m (32.81ft.), 20: 20m (65.62ft.), 30: 30m (98.43ft.), 40m (131.23ft.), 50: 50m (164.04ft))
 (Note-3): For a long distance cable of up to 100m (328.08ft.) or an ultra-long bending life cable, contact Mitsubishi Electric System & Service Co., Ltd. OVERSEAS SERVICE SECTION (Email:osb.webmaster@melsc.jp)
 (Note-4): Use this connector set for FX5-80SSC-S/FX5-40SSC-S.

Products on the market

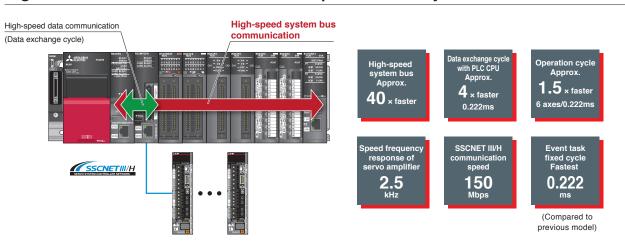
Manual pulse generator on the market

Mitsubishi Electric has confirmed the operation of the following manual pulse generator. Contact the manufacturer for details.

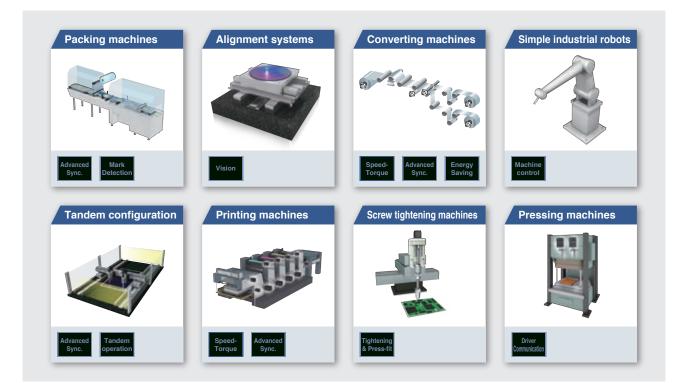
Product	Model	Description	Manufacturer
Manual pulse generator	UFO-M2-0025-2Z1-B00E	Number of pulses per revolution: 25pulse/rev (100pulse/rev after magnification by 4), Permitted speed: 200r/min (Normal rotation)	Nemicon Corporation

Ethernet cable

Item		Model			
	For indoor	SC-E5EW-S_M	_: cable length (100 m max., unit of 1 m)		
Ethernet cable	For moving part, indoor	SC-E5EW-S_M-MV	_: cable length (45 m max., unit of 1 m)	Double shielded cable (Category 5e)	
	For indoor/outdoor	SC-E5EW-S_M-L	_: cable length (100 m max., unit of 1 m)		


For details, contact Mitsubishi Electric System & Service Co., Ltd. OVERSEAS SERVICE SECTION (Email:osb.webmaster@melsc.jp)

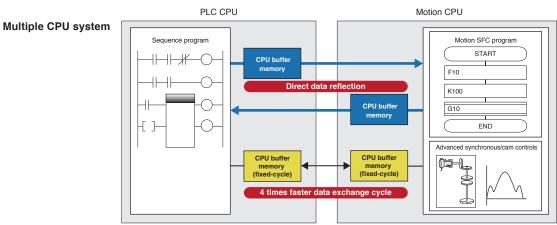
МЕМО	
	-
	Outline
	Modules
	- 0
	Controllers
	Mo
	Modules
	-
	- Engin
	Environment
	Networks
	- orks
	S
	Servo Amplifiers
	plifiers
	_


MELSEC iQ-R SSCNET III/H compatible MELSEC iQ-R series

Motion Controllers

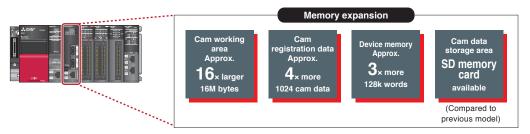
- Now that "High-mix Low-volume" production is a big trend in the market, Motion controllers are expected to be used for various applications. The MELSEC iQ-R series Motion controller is capable of various controls such as positioning control, speed control, torque control, tightening & press-fit control, advanced synchronous control and cam control, etc. They are applied to various machines such as X-Y tables, converting machines, packing machines and filling machines.
- A combination of Mitsubishi Electric advanced PLC system, servo amplifiers, servo motors, and servo networks
 offers exceptional solutions that allow you to maximize your system's productivity.

Higher Basic Performance and Further Improved Total System Performance



Total System Performance, Not Individual Component Specifications Leads to Maximum Performance

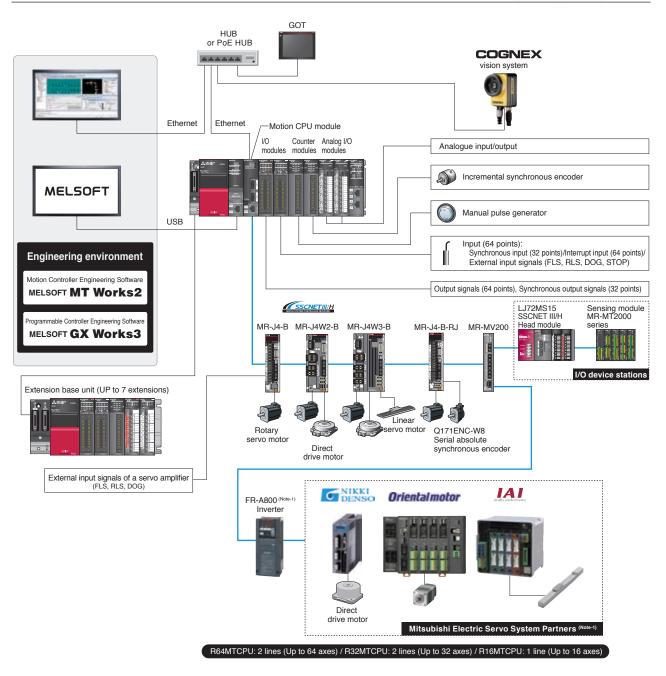
The MELSEC iQ-R series is provided with sophisticated dual engines: the PLC CPU engine for machine control and the Motion CPU engine for Motion control. The engines respectively process different types of control based on the characteristic of each engine while working together on data through a high-speed system bus. CPU loads are significantly distributed by these dual engines compared with a single engine, enabling any equipment to maximize its performance, even for a load change machine or multi-axis equipment. Select the most suitable combination of CPU engines that can reduce cost and maximize machine performance to the fullest from Mitsubishi Electric extensive product line. Efficiency in designing and debugging is also improved.


Experience Powerful Performance of Multiple CPU with Ease of Use Just Like Using One CPU

You can select either the Motion CPU or the PLC CPU based on the application, allowing you to configure a system more flexibly. The easy-to-understand flowchart form is adopted by Motion SFC for Motion control programming. Also, the direct positioning start instruction allows you to program Motion controls, such as positioning and synchronous control, just with sequence programs.

Motion CPU Memory Expansion

- The cam working area has been expanded to 16M bytes, enabling you to use more cam data with higher resolution.
- The device memory has been increased to 128k words, so even multi-axis equipment requiring more devices can be applied.
- The cam data storage area has been expanded to 12M bytes. An SD card is also available for storing cam data.



MELSEC iQ-R SSCNET III/H compatible MELSEC iQ-R series Motion controller

R64MTCPU/R32MTCPU/R16MTCPU

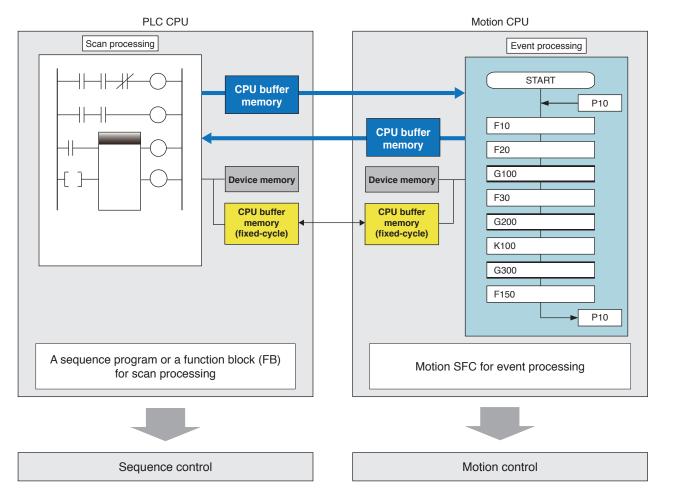
Multiple CPU System for High-speed Motion Control

System configuration

(Note-1): When using a partner product or the inverter FR-A800, use one whose version supports the Motion controller.

Productivity

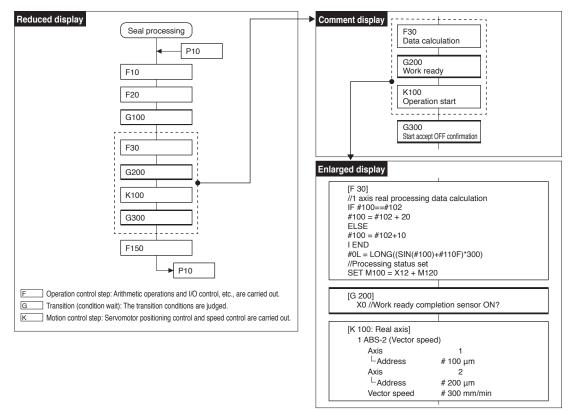
Motion SFC Program


The Motion control program is described in flowchart form using the Motion SFC (Sequential Function Chart) format. The Motion SFC format program is suitable for event processing and allows the Motion CPU to perform batch control of multiple sequential machine operations, pursuing high event responsiveness.

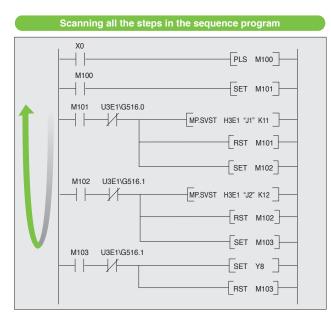
Flowchart description is easy to read and understand

- The machine operation procedure is visualized in the program by using the flowchart descriptions.
- A process control program can be created easily, and control details can be visualized.

Controlling sequential machine operation using the Motion CPU


- Servo control, I/O control, and operation commands can be combined in the Motion SFC program.
- Motion SFC program can execute servo control by itself, eliminating the need of creating the sequence program for servo control.

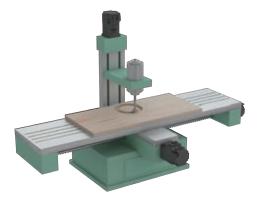
Motion SFC Description


Productivity

- An easy-to-understand program can be created by adding comments as an operation explanation.
- Operation commands are detailed in a step by step format in a layered structure program.

Motion SFC scanning method

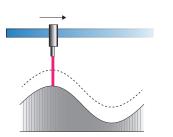
While the sequence program runs using "Scan execution method" where all of the steps are scanned at all times, the Motion SFC program runs using "STEP execution method" where the steps are scanned following the "SHIFT" instruction, reducing operation process for high-speed processing and high-response control.

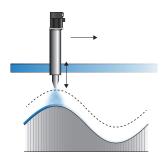

Scanning only active step	os following the transition conditions in Motion SFC program.
	21: Work piece movement control
t	[G 1] X0 // Waiting for Start (X0) ON
Ļ	[K 11] 1 INC Axis 1 Movement amount #200 µm Speed #202 mm/min
t,	[G 2] X1 // Waiting for completion (X1) ON
Ļ	[K 12] 1 INC Axis 2 Movement amount #204 μm Speed #206 mm/min
t	[G 2] X2 // Waiting for completion (X2) ON
+	[F 1] SET Y8 // Completion signal (Y8) ON
	()

Productivity

Positioning Control

A variety of positioning controls, such as PTP control, position follow-up, and continuous path control are available with the Motion controller.

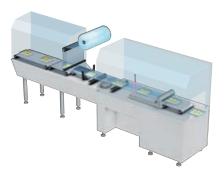

Basic positioning control


- To respond to various applications, the Motion controller offers various control methods such as PTP control, speed control, speed-position switching control, continuous path control, position follow-up control, Speed control with fixed position stop, and high-speed oscillation control, etc.
- Powerful auxiliary functions are available such as M-codes, the target position change function, the acceleration/deceleration time change function, and the advanced S-curve acceleration/deceleration.
- Positioning operation can be activated by Motion SFC, or the direct positioning start instruction by the PLC CPU, etc.

Position follow-up control

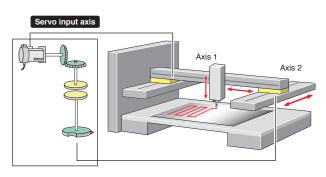
With a one-time start, the operation continues until a stop command is inputted. If the word device value is changed in the middle of the operation, the positioning for the set address starts immediately.

Measure the height of the workpiece by a sensor. Set the measurement result to a device memory.


Based on the measurement result, calculate the distance between the spraying nozzle and the workpiece. Set the data to the specified device memory for the position follow-up.

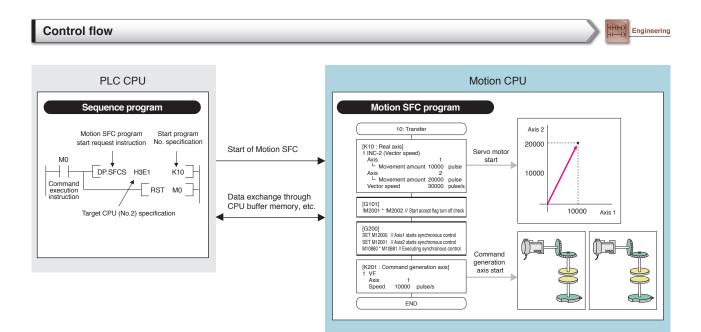
Advanced Synchronous Control

The advanced synchronous control is software-based synchronous control as an alternative to mechanical control, such as gear, shaft, clutch, speed change gear and cam. In addition, cam control becomes even easier with cam auto-generation function.

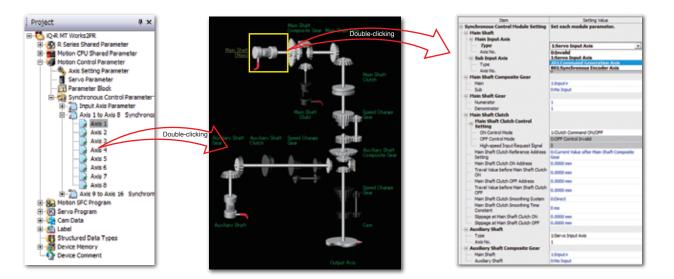

- The synchronous control can be started/ended on axis-by-axis basis.
- Axes in synchronous and positioning controls can be used together in one program.
- Speed-torque control can be performed simultaneously with the synchronous control.
- Up to 192 axes can be synchronized by use of three R64MTCPU modules.

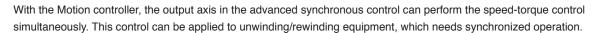
All axes are synchronized using a synchronous encoder axis or a servo input axis.

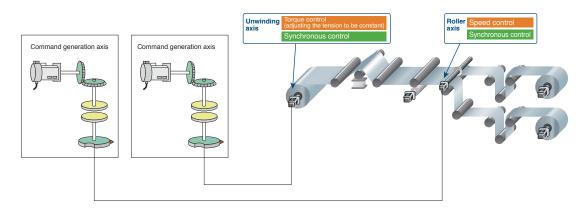
Application examples


- Packing machines
- Printing machines
- Diaper manufacturing machines
- Tire molder

Only two axes are in synchronization. Axis 2 is set as to synchronize to axis 1. The other axes are in positioning control.


Tandem configuration


Synchronous control parameters



- The synchronous control is easily executed just by setting parameters.
- One of the following three can be set as the input axis: Synchronous encoder axis, Command generation axis, or Servo input axis.
- "Command generation axis" is not counted as a control axis; therefore all the control axes can be used as output axes.
- The cam axis can be operated in linear operation (a rotary table, a ball screw, etc.), two-way operation, or feed operation by setting cam No. and cam data.

Speed-torque control during synchronous control

Productivity

Motion Controllers

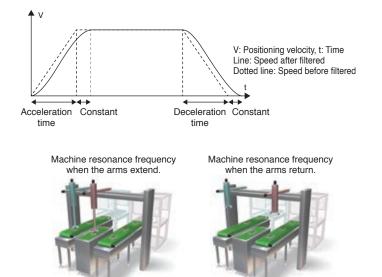
Features

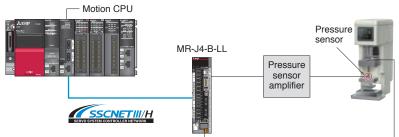
Advanced Pressure Control

The machine is controlled so that the pressure commands match the pressure sensor values; therefore pressure is maintained constant even with a changing load. Each pressure process ("Feed", "Pressure maintaining", and "Pressure release") can be set with the Pressure Profile, and those processes can be tested on MELSOFT MT Works2, which makes a changeover and adjustment easy.

- Injection machines
- Bonder

[Test operation example]

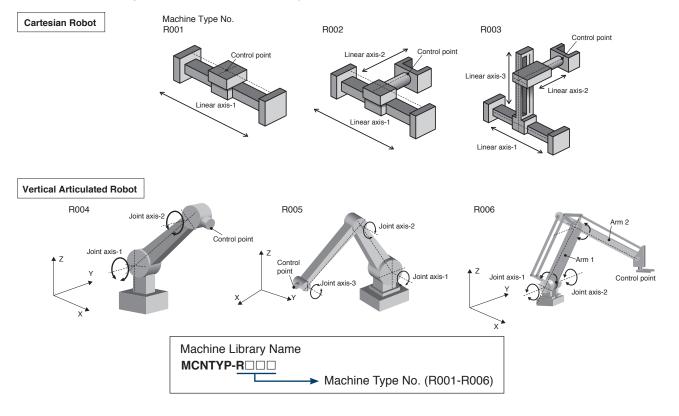

Tests can be carried out individually for each process of pressure control, which increases efficiency in debugging.


For example, the feed process is divided into multiple steps, and the pressure command can be sent for each step; so pressure can be tested in great details.

Vibration Suppression Command Filter

The filter function is used to suppress the vibration at the end of the workpiece and in the machine frame during positioning control. This filter is effective even for low-frequency vibration that cannot be suppressed by the machine resonance suppression filter or for when the frequency changes during operation.

For example, when the machine resonance frequency varies as the arm extends/returns, setting individual frequency for each case enables to suppress vibration by generating suitable commands.



Productivity

Productivity

Machine Control Function

The Motion controller controls a simple industrial robot by installing an add-on library "Machine Library". The robot is controlled by machine control with Cartesian space coordinates.

Direct Positioning Start Instruction (MP.SVSTD)

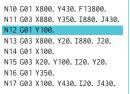
Programming for Motion control (positioning, synchronous control, etc.) can be created just with sequence programs, eliminating the need of creating a servo program.

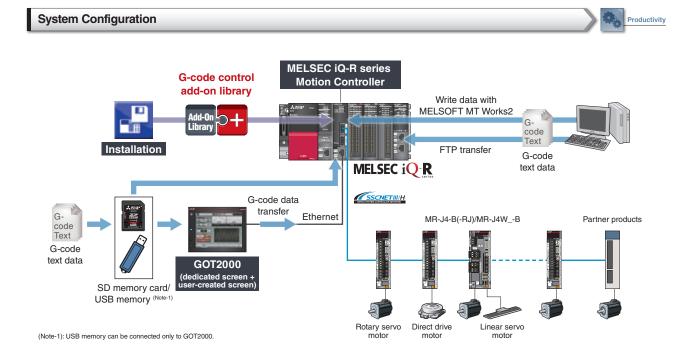
Positioning is performed by positioning data being set to the PLC CPU device, followed by the MP.SVSTD instruction execution.

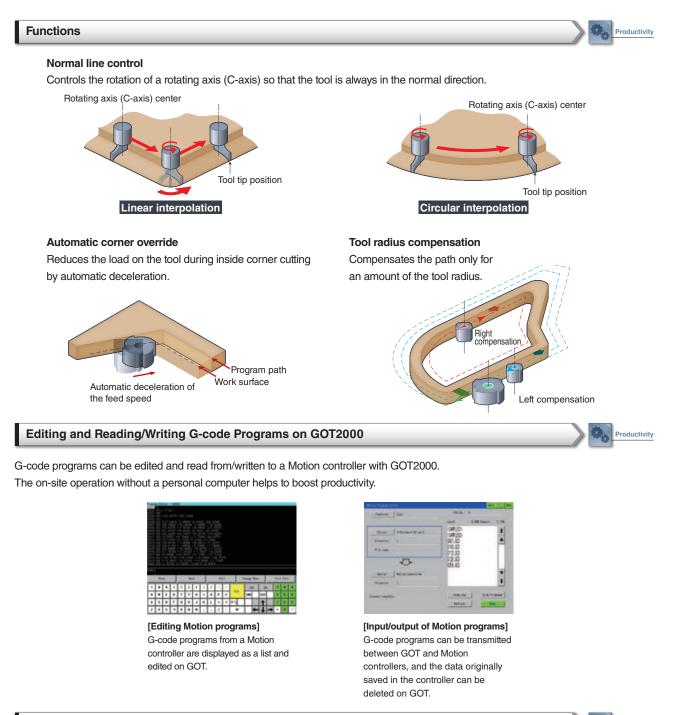
PLC CPU

[Setting ex	[Setting example]						
Device	Content	Setting example					
W0	Positioning type/Number of points	0					
W1	Setting of positioning data items	0					
W2	Axis No.	1					
W3	-	0					
W4	Control mode, Interpolation axis speed designation	0200H					
W5	M-code	0					
W6	Dwell time	0					
W7	Torque limit value	300					
W8	Command speed	100000					
W9							
WA	Positioning address/movement amount	12345678					
WB							
WC	Arc address	0					
WD							

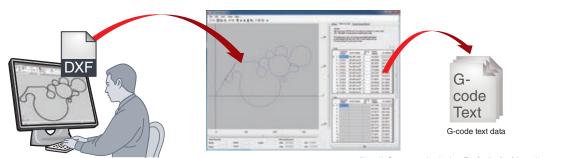
Features


G-code Control


Productivity Add-On D+


A G-code program is analyzed and executed by the Motion controller.

- G-code control is applied to various types of path control such as drawing and cutting by a simple machine tool.
- G-code control is available by additionally installing the G-code control add-on library (provided for a fee).
- G-code programs can be edited on GOT and transmitted between GOT and a Motion controller.
- Up to 16 axes can perform G-code control (Simultaneous interpolation: Up to 4 axes)
- It is possible to switch between control by a servo program and by a G-code program.
- G-code control can be combined with other functions in the Motion controller such as Motion SFC program and synchronous control.
- A G-code program, which is in text format, can be edited with a generic editor.
- FTP transfer function allows transmission of data via a CC-Link IE compatible Ethernet interface module.



Conversion from CAD Data into G-code

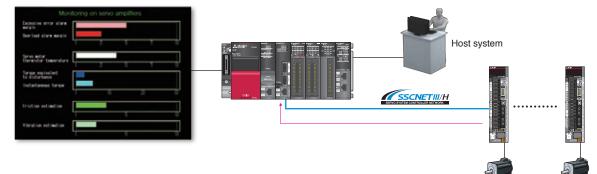
CAD data in DXF format is converted into a G-code program, and then the program is exported as G-code text data.

CAD editing software

(Note-1): Contact your local sales office for details of the tool. In addition to conversion, it allows you to change the order of drawing. In order to edit the CAD data, CAD editing software is required. Motion Controllers

78

Productivity

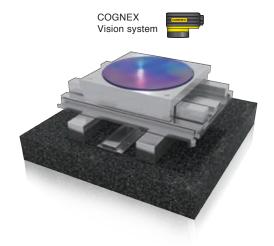

Monitoring of Servo Data

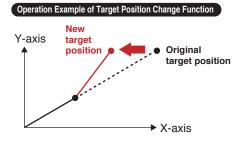
Productivity

Quality

Servo operation can be monitored with extensive monitor data (selectable from up to 50 items). The monitor items can be flexibly changed during operation. The operation status of servo amplifiers and servo motors (including partner products) acquired via SSCNET III/H is transferred and displayed on the host system or on the GOT screen created by a customer.

[Monitoring and data collection]


Alarm history of servo amplifiers, Power consumption, 7-segment LED display status, Identification information of servo amplifiers and servo motors, Load ratio of servo motors, Speed, Temperature of various parts, etc.


[Preventive maintenance]

Inrush relay ON/OFF number, Power ON cumulative time, Machine diagnosis information (the estimated friction value and the estimated vibration value), etc.

Vision System

COGNEX Vision system is directly connected to the Motion CPU via Ethernet using the built-in PERIPHERAL I/F. Alignment time is reduced with the target position change function which uses the workpiece position data from the vision system for high-speed Motion control.



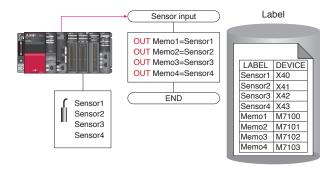
Maintenanc

Digital Oscilloscope Function

Data collection and waveform display which are synchronized to the Motion operation cycle greatly help you check operation and perform troubleshooting.

- Probe items can be set by selecting the purpose from the list.
- •16CH word and 16CH bit data can be sampled, of which, 8CH words and 8CH bits can be displayed in real time.
- Sampling can be performed without having to connect the personal computer to the machine.
- Sampled data which are saved on an SD card can be analyzed on a personal computer.
- Sampled data path can be traced on 2-dimensional coordinate.

Set often-viewed data easily with the purpose-based probe setting by following instructions of the assistant function.

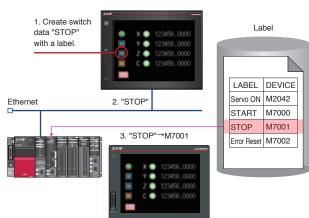

Programming with Labels

MELSOFT MT Works2 allows you to program with easy-to-understand names (labels) instead of using device names or CPU buffer memory. This programming method enables an easy program reuse and standardization of projects.

Example of using labels

The use of labels removes the need to remember devices when programming.

Also, labels allow a different model/product to be used with the same program.

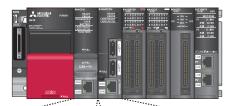

Using common labels with GOT

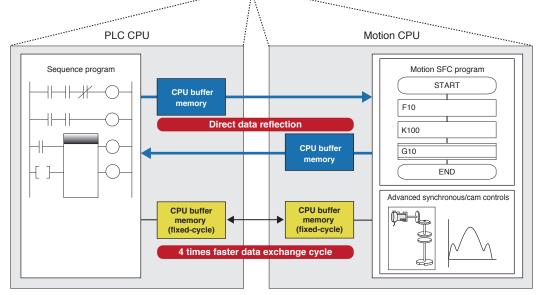
Since GOT uses common labels with the Motion controller, the screen can be designed with those labels without worries about devices. Additionally, when the device allocation is changed on the Motion controller side, there is no need to change a GOT project accordingly.

Productivity

HHHO Engineering

- 1. Create switch data using a label.
- 2. Access to the controller is requested via the label.
- 3. The label is converted to the corresponding device.




Ease of Use Achieved by a State-of-art CPU Buffer Memory

The high-speed, high-capacity CPU buffer memory revolutionizes the data exchange between CPUs.

The PLC CPU and the Motion CPU each have a CPU buffer memory. And those buffer memories are efficiently utilized for two different purposes.

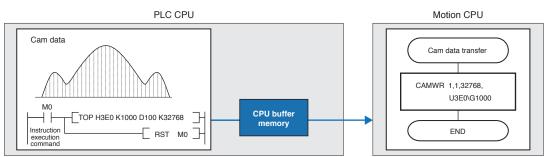
- The 2M words CPU buffer memory (Motion CPU side) is provided as standard, which is utilized for bulky data transmission and fast data updating.
- The CPU buffer memory (fixed-cycle communication area) allows 24 k words (4 CPUs in total) transmission between the PLC CPU and the Motion CPU every 0.222 ms. It is perfectly suited for receiving/transmitting highly synchronized data between multiple CPUs.

Productivity

Productivity

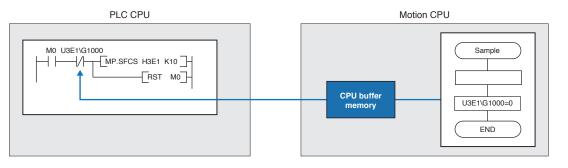
Engineering

нно


Engineering

CPU buffer memory

The Motion CPU and the PLC CPU are equipped with 2M words and 512k words CPU buffer memories respectively. They allow for bulky data transmission and fast data update.


Example of using PLC CPU buffer memory

Bulky data such as cam data can be transferred by just a one-time transmission through the 512 k word buffer memory.


Example of using Motion CPU buffer memory

The data that is set on Motion CPU side can be reflected to the interlock in the sequence program without any delay.

CPU buffer memory (Fixed-cycle communication area)

Data can be transmitted every 0.222 ms between the PLC CPU and the Motion CPU. The CPU buffer memories (fixed-cycle communication area) are synchronized to the Motion control, optimizing the operation.

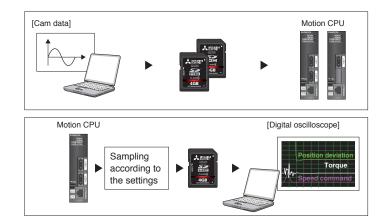
Features

External Input of Motion CPU

The Motion modules, previously required for the MELSEC-Q series system, are no longer needed since the functionality of those MELSEC-Q series Motion modules has been integrated into the MELSEC iQ-R series PLC CPU input modules.

For example, external signals are inputted via the PLC CPU input module, and input pulses from a manual pulse generator or a synchronous encoder are inputted via the high-speed counter module.

The PLC CPU input module can receive external input signals (FLS, RLS, DOG, STOP) and mark detection signals, in addition to general input signals.


SCNET////H

- External input signals of the servo amplifier (FLS, RLS, DOG, STOP) are inputted via the PLC CPU input module or a servo amplifier.
- Pulses of the incremental synchronous encoder are inputted via the high-speed counter module.
- Pulses of the serial absolute encoder are inputted via MR-J4-B-RJ servo amplifier.

SD Memory Card

Bulky data such as cam data or digital oscilloscope data can be stored in an SD memory card, significantly expanding the capacity of the Motion CPU built-in memory.

- Data that is created on MELSOFT MT Works2 can be used by multiple Motion CPUs by saving it to an SD memory card.
- The digital oscilloscope data that is sampled automatically by a Motion CPU can be saved on an SD memory card. For example, when an error occurs, the data is sampled automatically. You can check the data later on a personal computer.

High-speed counter module

Incremental synchronous encoder

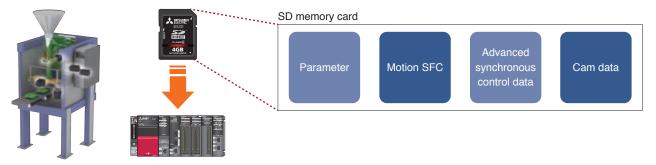
External input signals (FLS, RLS, DOG, STOP),

Productivity

Maintenance

External input signals (FLS, RLS, DOG)

Serial absolute synchronous encoder


Manual pulse generator

mark sensor, inputs

Boot operation with an SD memory card

Applications can be changed just by inserting an SD memory card, even at a manufacturing field where MELSOFT MT Works2 cannot be prepared.

Productivity

Various Functions

Servo external input signals

The servo external input signals (FLS, RLS, DOG) can be controlled via a bit device in addition to via an input module and a servo amplifier. The logic and the validity of these signals can be set individually.

Home position return methods

15 types of home position return methods are available, including the dogless home position return. Also, the retry function and the shift function are provided. Select any of these home position return methods that suits your machine type.

Override

The override function changes the command speed for positioning control by a designated percentage. This is used for program and operation checks.

Parameter change function/Servo parameter change function

Motion CPU parameters and servo parameters can be individually changed during control operation through the Motion SFC program etc., without having to connect to a personal computer.

Phase compensation

In synchronous control with a synchronous encoder, the phase compensation function is used to compensate the delay time caused by a communication delay in the synchronous encoder data, etc.

Safety system

The MR-D30 functional safety unit is used to achieve the functions (STO/SS1/SS2/SOS/SLS/SBC/SSM) according to IEC 61800-5-2:2007 without depending on a Motion controller in terms of performance or type. Those functions, provided with this unit, are compliant with "EN ISO 13849-1; Category 4 PL e" and "EN 62061; SIL CL 3" (Both EN ISO 13849-1 and EN 62061 are harmonized with European Machinery Directives).

Battery-free data saving

Since parameters and Motion SFC programs are saved in the non-volatile memory, the Motion CPU can save data without a battery.

(Note): The PLC CPU requires a battery. If an absolute position system is configured, the servo amplifier needs a battery.

Add-on function

The add-on library ^(Note-1) is installed to the Motion CPU to expand the functionality of the Motion controller such as "Machine control

function" and "G-code control function (Note-2)". (Note-1): For add-on library, contact your local sales office.

(Note 1): For G-code control, the G-code control add-on library "SW10DND-GCD_" (USB key) is required. Please purchase it separately.

4 million pulse synchronous encoder

The "Q171ENC-W8" 4 million (22-bit) pulse synchronous encoder, compatible with the controller as standard, greatly improves the synchronous operation accuracy. High-accuracy control is achieved when used with MR-J4-B (adapting 4 million (22-bit) pulses resolution motors as standard).

Speed control with fixed position stop

A servo motor, rotating at the specified speed, can stop at the specified position when turning ON the command of Speed control with fixed position stop. Both the speed and the duration of acceleration/deceleration can be changed to any value during operation, which is suitable for a spinner operation, etc.

Torque limit value change

The torque limit value during positioning or JOG operation is changed easily with the CHGT Motion dedicated instruction. The torque limit values for power running direction and regeneration direction can be set individually.

Servo amplifier control mode switching function

Control mode switch commands of the gain switching function, PI-PID control and control loop (fully closed, semi-closed) can be executed to the servo amplifier.

Target position change function

The target position can be changed during positioning, achieving shorter cycle time. The new target position can be specified by absolute address or movement amount from the current feed value when the target position change request is executed.

Operation control program

A wide variety of functions are available: standard functions such as binary operation, bit operation, type conversion, and trigonometric in the Motion SFC; the command for the scaling function that is suitable for calculating coordinate conversions; the cam data reading/writing; the synchronous control dedicated instruction for cam auto generation; conditional branch control, such as IF and CASE, at an operation control step.

Multiple CPU advanced synchronous control

A large system can be configured thanks to the advanced synchronous control that allows up to 192-axis synchronization with high accuracy by use of three R64MTCPUs.

Motion Controllers

Control specification

		Specifications						
	Item	R64MTCPU	R32MTCPU	R16MTCPU				
Maximum nur	mber of control axes	64 axes	32 axes	16 axes				
Number of SS	SCNET III/H lines	2 lines	2 lines	1 line				
Operation cyc	cle (Operation cycle settings)	0.222ms	0.222ms, 0.444ms, 0.888ms, 1.777ms, 3.555ms, 7.111ms					
Interpolation f	function	Linear interpolation (Up to	Linear interpolation (Up to 4 axes), Circular interpolation (2 axes), Helical interpolation (3 axes)					
Control mode	S	Speed control with fixed position	, Fixed-pitch feed control, Continuous path on stop, High-speed oscillation control, Car rol, Advanced synchronous control, Pressu	n control, Speed-torque control,				
Acceleration/c	deceleration process	Trapezoidal acceleration/deceleration,	S-curve acceleration/deceleration, Adva	nced S-curve acceleration/deceleration				
Compensation	n function	Backlash c	ompensation, Electronic gear, Phase co	mpensation				
Programming	language	Mot	ion SFC, Dedicated instruction, G-code	Note-1)				
Servo prograr	n capacity		64k steps					
Number of po	sitioning points	6400	points (Positioning data can be set indir	rectly)				
Home position return	Home position return method	Dog cradle method, Scale home position signal	ethods), Count method (3 methods), Da Stopper method (2 methods), Limit switt detection method, Dogless home positi Driver home position return method (Nete-2	ch combined method, on signal reference method,				
	Auxiliary functions	Home posit	ion return retry function, Home position	shift function				
	Linear control	Linear interpolation (Up t	o 4 axes) (Vector speed, Reference axis	speed, Long-axis speed)				
	Fixed-pitch feed		Fixed-pitch feed control (Up to 3 axes)					
Positioning	2-axis circular interpolation	Auxiliary point-specified,	central point-specified, and radius-spec	ified circular interpolation				
control	Speed control		Speed control					
	Speed-position switching	INC	mode, Speed control with fixed position	stop				
	Current value change		Provided					
Manual	JOG operation		Provided					
control	Manual pulse generator	Possible to connect 3 modules (Possible to connect 3 modules (with use of the high-speed counter), Unit magnification (1 to 10000 times)					
Expansion control	Speed-torque	Speed control without	Speed control without positioning loops, Torque control, Tightening & press-fit control					
Absolute posi	tion system	Made compatible by setting a battery to a servo amplifier						
		(Possible to select the absolute method or incremental method for each axis)						
Synchronous	encoder interface	Up to 12 CH (Via high-speed counter + Servo amplifier (Note-3) + Device+ multiple CPU advanced synchronous control)						
	Speed limit	Speed limit value, JOG speed limit value						
Eventions	Override	0 to 300%						
Functions that limit	Torque limit	Torque limit value same setting, Torque limit value individual setting						
control	Forced stop	Motion controller forced stop, Forced stop terminal of servo amplifier						
	Software stroke limit	Provided						
	Hardware stroke limit		Provided					
Functions	Speed change		Provided					
that change	Acceleration/deceleration time change	Provided						
control details	Torque change		Provided					
dotallo	Target position change	Target position address is changeable						
Other	M-code output		M-code output, M-code completion wait					
functions	Skip function		Provided					
All clear funct			Delete all user data in Motion CPU					
	t signal setting function	ŝ	Servo amplifier input (FLS, RLS, DOG), b	Dit				
Event history			Provided					
Amplifier-less	operation function		Provided					
Mark			mode, Specified Number of Detections n					
detection function	Mark detection signal	High-speed input req	uest (Bit device, Input signals of servo a	mplifiers (DI1 to DI3))				
	Mark detection setting		64					
	monitor function	Up to 14 d	lata/axis (Communication data: Up to 6 p	points/axis)				
Driver communication function (Note-4)			Provided					
	sion at boot function		Provided					
SSCNET con	nect/disconnect function		Provided	P 1 N				
Digital oscillos	scope function		ering method (Real-time waveform can b ng data (Word 16CH, Bit 16CH), Offline s					
Limit switch	Number of output points		64 points × 2 sections					
output function			Motion control data, Word device					
Parameter cha	· · · · · · · · · · · · · · · · · · ·		Provided					
-	eter change function		Provided					
Servo amplifie	er control mode switching function	Gain switching function, PI-PID cont	rol, Control loop switching (semi closed	loop control, fully closed loop control)				

Control specification (continued)

Item	Specifications					
llem	R64MTCPU R32MTCPU R16MTC					
Number of I/O points		Total of 4096 points (I/O modules)				
Clock function	Provided					
Security function	File password, Password for each Motion SFC program, Software security key function					
Remote operation	Remote RUN/STOP					
Vibration suppression command filter	Provided					

(Note-1): The G-code control add-on library "SW10DND-GCD[]" (provided for a fee) is required. (Note-2): The home position return method set in a driver (a servo amplifier) is used. (Note-3): Available with MR-J4-_B-RJ (Note-4): Available with MR-J3-_B/MR-J4-_B

Motion SFC performance specification

					Specifications		
	ITE	em		R64MTCPU	R32MTCPU	R16MTCPU	
Motion SFC program capacity	Code total	(Motion SFC chart + C	peration control +Transition)		8192k bytes		
	Number	of Motion SFC prog	rams	512 (No.0 to 511)			
	Motion SFC chart size/program			Up to 64k bytes (including Motion SFC chart comments)			
Motion SEC program	Number of Motion SFC steps/program				Up to 4094 steps		
Motion SFC program	Number of selective branches/branch				255		
	Number of parallel branches/branch			255			
	Parallel b	oranch nesting			Up to 4 levels		
	Number	of operation control	programs	4096 with F (Once execution ty	ype) and FS (Scan execution type) c	ombined (F/FS0 to F/FS4095)	
	Number	of transition program	าร		4096 (G0 to G4095)		
	Code siz	e/program		Up to	o approx. 128k bytes (65534 st	eps)	
Operation control program (F/FS)	Number	of blocks(line)/progra	am	Up to 8192	blocks (In the case of 8 steps	(min)/block)	
/ / /	Number	of characters/block		L	Jp to 1020 (Comment included)	
Transition program (G)	Number of operand/block			Up to 510 (Ope	erand: Constants, Word device	s, Bit devices)	
	() nesting/block				Up to 32 levels		
	Descriptive Operation control p		orogram	Calculation expression, Bi	n expression, Bit conditional expression, Branches/repetition proce		
	expression Transition program		Calculation expression, Bit conditional expression, Comparison conditional expression				
	Number	of multi executed pro	ograms		Up to 512		
-	Number of multi active steps		Up	o to 1024 steps per all program	IS		
	Normal task		-	Executed in Motion main cycle			
	Executed task	Event task	Fixed cycle	(0.222 ms, 0.444 ms, 0	Executed in fixed cycle , 0.888 ms, 1.777 ms, 3.555 ms, 7.111 ms, 14.222 m		
Execute specification		(=	External interrupt		utes when the input set to the event task factor in the input modul controlled by the Motion CPU (16 points) turns ON.		
			PLC interrupt	Executed with interrup	t instruction (D(P).GINT, M(P).	GINT) from PLC CPU	
		NMI task	· · ·	Executes when the input set to the NMI task factor in the input modu by the Motion CPU (16 points) turns ON.			
	I/O (X/Y)	1			12,288 points		
	Internal r	elays (M)			49,152 points (Note-1)		
	Link relays (B)			8,192 points			
	Annunciators (F)			2,048 points			
	Special r	elays (SM)		4,096 points			
	Data registers (D)			57,344 points (Note-1)			
Number of device points	Link regis	sters (W)		8,192 points			
	Special r	egisters (SD)		4,096 points			
	Motion re	egisters (#)		12,288 points			
		er memory (U3E	G)		Up to 2,097,152 points		
		er memory cle communication a	ırea)(U3E⊡\HG)		Up to 12,288 points		
	Module a	access(U⊡\G)			Up to 268,435,456 points		
		. ,		1	· · · · · · · · · · · · · · · ·		

(Note-1): Internal relays (M): 12,288 points, data registers (D): 20,480 points (when using the Q series Motion compatible device assignment with R32MTCPU and R16MTCPU)

Advanced synchronous control specifications

Synchronous control

Item		Number of settable axes					
liem		R64MTCPU	R32MTCPU	R16MTCPU			
	Servo input axis	64 axes/module	32 axes/module	16 axes/module			
Input axis	Command generation axis	64 axes/module	32 axes/module	16 axes/module			
	Synchronous encoder axis		12 axes/module				
Composite main shaft gear			1/output axis				
Main shaft main input axis			1/output axis				
Main shaft sub input axis		1/output axis					
Main shaft gear		1/output axis					
Main shaft clutch		1/output axis					
Auxiliary shaft		1/output axis					
Auxiliary shaft gear		1/output axis					
Auxiliary shaft clutch		1/output axis					
Composite auxiliary shaft gear		1/output axis					
Speed change gear		2/output axis					
Output axis (Cam axis)		64 axes/module	32 axes/module	16 axes/module			

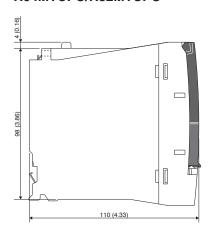
Cam control

	Item		Specifications									
	nem			R64MTCPU R32MTCPU		R16MTCPU						
Storage file			(Capacity	of the s	tandard	ROM/SI	D memo	ry card			
Memory capacity	Cam working area						16M b	ytes				
Number of registration		Up	o to 1024 program item	s (depen	ding on n	nemory ca	apacity, ca	am resolu	tion and r	number of	coordinates)	
Comment					Up	to 32 ch	aracters	for each	ı cam da	ita		
	Stroke ratio data type			Cam resolution	256	512	1024	2048	4096	8192	16384	32768
		Number of cam registration		Maximum number of cam registration			1024			512	256	128
Cam data		Stroke ratio		-214.7483648 to 214.7483647 [%]								
Cam Gata		Number of cam registration		Number of coordinates	512	1024	2048	4096	8192	16384	32768	65535
	Coordinate data type			Maximum number of cam registration		1024	~	512	256	128	64	32
		Coordinate data		Input value : 0 to 2147483647 Output value : -2147483648 to 2147483647					647			
Cam auto-generation				Cam for rota	ary knife	, Easy s	troke rat	io cam, <i>i</i>	Advance	ed stroke	ratio ca	m

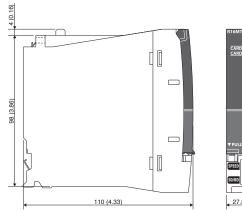
G-code control

Function	Command
Positioning	G00
Linear interpolation	G01
Circular interpolation	G02, G03
Dwell	G04
Exact stop check	G09, G61
Polar coordinate interpolation	G12.1, G13.1
Plane selection	G17, G18, G19
Tool radius compensation	G38, G39, G40, G41, G42
Normal line control	G40.1, G41.1, G42.1
Tool length compensation	G43, G44, G49
Local coordinate system setting	G52
Basic machine coordinate system selection	G53
Work coordinate system selection	G54, G55, G56, G57, G58, G59

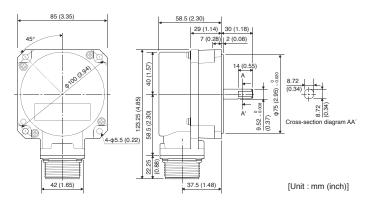
Function	Command
High-accuracy control	G61.1
Automatic corner override	G62
Cutting mode	G64
Program coordinate rotation	G68, G69
Absolute value command	G90
Incremental value command	G91
Override	Specified with device
FIN signal wait function	G-code control device
Single block	G-code control device
Subprogram control	M98, M99
Variable command	Common variable
Operation command	=, +, -, *, /, SIN, COS, TAN, SQRT, ABS, etc.
Control command	IF - GOTO, IF - THEN - ELSE - ENDIF, WHILE - DO - END


Module specification

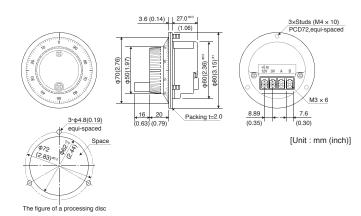
Motion CPU module R64MTCPU/R32MTCPU/R16MTCPU


ltem		Specifications					
		R64MTCPU	R32MTCPU	R16MTCPU			
Number of control axes		Up to 64 axes	Up to 64 axes Up to 32 axes				
Servo amplifier connection	n method	SSCNET II	I/H (2 lines)	SSCNET III/H (1 line)			
Maximum overall cable of	listance [m(ft.)]	3200 (10498.69)	1600 (5	249.34)			
Maximum distance betw	een stations [m(ft.)]		100 (328.08)				
SSCNET Number of sensing module connection stations		Up to 8	stations	Up to 4 stations			
communications	Number of SSCNET III/H head module connection stations	(Up to 4 stati	ομιο 4 διαιιοπο				
	Data transmission speed	100Mbps/10Mbps					
PERIPHERAL I/F (Ethernet)	Transmission method	Base band					
(Eulomot)	Cable length [m(ft.)]	Up to 30 (98.43)					
Memory card slot		SD/SDHC memory card compatible					
Memory capacity	Standard ROM	12 M bytes					
SD memory card		Memory card capacity (Up to 32 G bytes)					
Extension base unit		Up to 7					
5 VDC internal current co	onsumption [A]	1.20					
Mass [kg]		0.28					
Exterior dimensions [mm	n(inch)]	106.0 (4.17) (H) × 27.8 (1.09) (W) × 110.0 (4.33) (D)					

Exterior Dimensions R64MTCPU/R32MTCPU


R16MTCPU

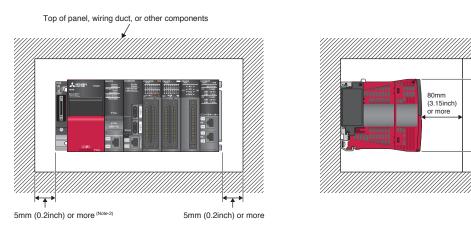
RIGHTCPU READY CANDACESS CANDACESS VPULL VPULL VPULL VPULL VPULL VPULL VPULL


[Unit : mm (inch)]

Serial absolute synchronous encoder Q171ENC-W8

Item	Specifications			
Resolution	4,194,304pulse/rev			
Direction of increasing addresses	CCW (viewed from end of shaft)			
Protective construction	Dustproof/Waterproof (IP67: Except for the shaft-through portion)			
Dermitted ovial loads	Radial load: Up to 19.6N			
Permitted axial loads	Thrust load: Up to 9.8N			
Permitted speed	3600r/min			
Permitted angular acceleration	40000rad/s ²			
Ambient temperature	-5 to 55°C (23 to 131°F)			
5 VDC consumption current	0.25A			
Mass	0.6kg			

Manual pulse generator MR-HDP01


Item	Specifications			
Pulse resolution	25Ppulse/rev (100pulse/rev after magnification by 4)			
Phase A, Phase B Output voltage	Input voltage : -1V or more (Note)			
Output method	Voltage output			
Output current	Up to 20mA			
Life time	1,000,000 revolutions or more (at 200r/min)			
Permitted axial loads	Radial load: Up to 19.6N			
Permilieu axiai ioaus	Thrust load: Up to 9.8N			
Maximum rotation speed	600r/min (Instantaneous maximum), 200r/min (Normal rotation)			
Ambient temperature	-10 to 60°C (14 to 140°F)			
5 VDC consumption current	0.06A			
Mass	0.4kg			

(Note) When using an external power supply, use 5 VDC power supply.

30 mm (1.18inch) or more (Note-1)

30 mm (1.18inch) or more

Mounting R64MTCPU/R32MTCPU/R16MTCPU

(Note-1): Provide clearance of 30mm (1.18inch) or more when the height of a wiring duct is 50mm (1.97inch) or less. In other cases, provide clearance of 40mm (1.57inch) or more.

(Note-2): Provide clearance of 20mm (0.79inch) or more when an extension cable is connected/removed without removing a power supply module.

Components

Compliance with the indicated global standards and regulations is current as of the release date of this catalog. Contact your local sales office for the latest information.

Motion controller R64MTCPU/R32MTCPU/R16MTCPU

Part	Model		Description					
	R64MTCPU	Up to 64 axes, Operation cycle 0.222 ms or longer			CE, UL, KC			
Motion CPU module	R32MTCPU	Up to 32 axes, Operation cycle 0.222	2 ms or longer		CE, UL, KC			
	R16MTCPU	Up to 16 axes, Operation cycle 0.222	2 ms or longer		CE, UL, KC			
SSCNET III cable (Note-1)	MR-J3BUS_M		Standard code for inside panel	0.15m (0.49ft.), 0.3m (0.98ft.), 0.5m (1.64ft.), 1m (3.28ft.), 3m (9.84ft)	_			
	MR-J3BUS_M-A	 Motion CPU module⇔Servo amplifier Servo amplifier⇔Servo amplifier 	Standard cable for outside panel	5m (16.40ft.), 10m (32.81ft.), 20m (65.62ft.)	_			
	MR-J3BUS_M-B (Note-2)	-	Long distance cable	30m (98.43ft.), 40m (131.23ft.), 50m (164.04ft.)	_			
Serial absolute synchronous encoder	Q171ENC-W8	Resolution: 4,194,304pulse/rev, Perr	Resolution: 4,194,304pulse/rev, Permitted speed: 3600r/min					
	Q170ENCCBL2M-A		2m (6.56ft.)	_				
	Q170ENCCBL5M-A			5m (16.40ft.)	_			
Serial absolute synchronous	Q170ENCCBL10M-A	Serial absolute synchronous encode	r	10m (32.81ft.)	_			
encoder cable	Q170ENCCBL20M-A	Q171ENC-W8⇔MR-J4-B-RJ		20m (65.62ft.)	—			
	Q170ENCCBL30M-A			30m (98.43ft.)	_			
	Q170ENCCBL50M-A			50m (164.04ft.)	—			
Manual pulse generator	MR-HDP01	Number of pulses per revolution: 25p Permitted speed: 200r/min (Normal r	_					
Optical hub unit	MR-MV200	Three branches/unit, DC power supp	bly connector enclose	ed	CE, UL, KC			

(Note-1): "_" indicates cable length (015: 0.15m (0.49ft.), 03: 0.3m (0.98ft.), 05: 0.5m (1.64ft.), 1: 1m (3.28ft.), 3: 3m (9.84ft.), 5: 5m (16.40ft.), 10: 10m (32.81ft.), 20: 20m (65.62ft.),

(Note-2): For a long distance cable of up to 100m (328.08ft.) or an ultra-long bending life cable, contact Mitsubishi Electric System & Service Co., Ltd. OVERSEAS SERVICE SECTION (Email:osb.webmaster@melsc.jp)

[Manual pulse generator on the market]

Mitsubishi Electric has confirmed the operation of the following manual pulse generator. Contact the manufacturer for details.

Part	Model	Description	Manufacturer
Manual pulse generator	UFO-M2-0025-2Z1-B00E	Number of pulses per revolution: 25pulse/rev (100pulse/rev after magnification by 4), Permitted speed: 200r/min (Normal rotation)	Nemicon Corporation

Applicable CPU

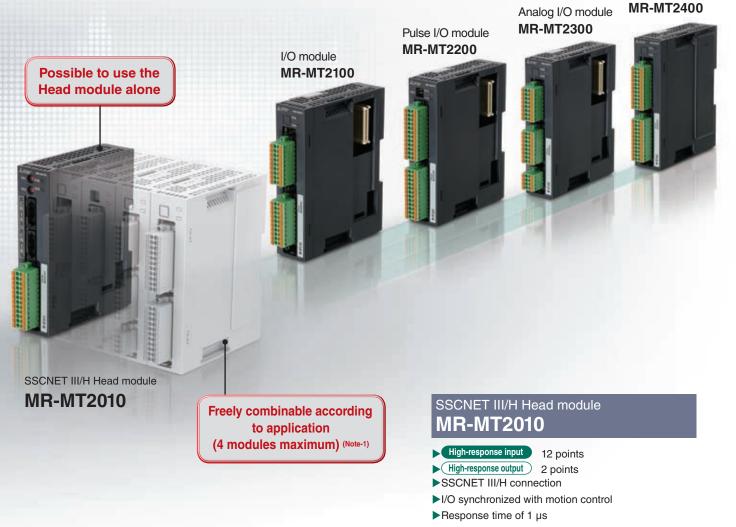
PLC CPU module	R00CPU, R01CPU, R02CPU, R04CPU, R08CPU, R16CPU, R32CPU, R120CPU R04ENCPU, R08ENCPU, R16ENCPU, R32ENCPU, R120ENCPU R08PCPU, R16PCPU, R32PCPU, R120PCPU R12CCPU-V
----------------	--

(Note): Depending on the combination of the modules, there are restrictions on the firmware version of the PLC CPU module. Refer to "MELSEC iQ-R Module Configuration Manual" for details.

Software for Motion controller

Part	Model name	Description		
Fait	R64MTCPU R32MTCPU R16MTCPU	Description		
Operating system software	SW10DNC-RMTFW	Pre-installed before shipment		
Machine Library	MCNTYP-R	Contact your local sales office.		
	Gcode_Ctrl	Contact your local sales office.		
	SW10DND-GCD01	USB key (Number of licenses: 1)		
Operating system software add-on library	SW10DND-GCD05	USB key (Number of licenses: 5)		
(G-code control add-on library)	SW10DND-GCD10	USB key (Number of licenses: 10)		
· · · · · · · · · · · · · · · · · · ·	SW10DND-GCD20	USB key (Number of licenses: 20)		
	SW10DND-GCD50 (Note)	USB key (Number of licenses: 50)		

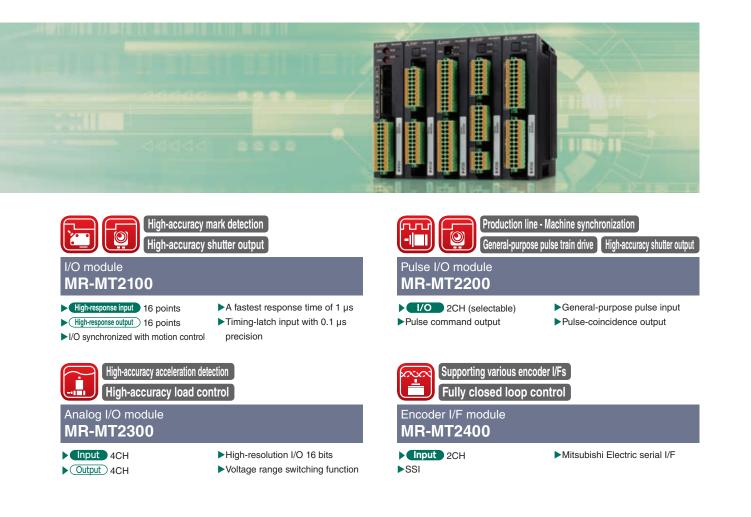
(Note): When requesting more than 50 licenses, contact your local sales office.


МЕМО	
	Simp
	Con
	Motion Controllers
	ering
	Ś
	Ser
	Servo Amplifiers
	lifiers

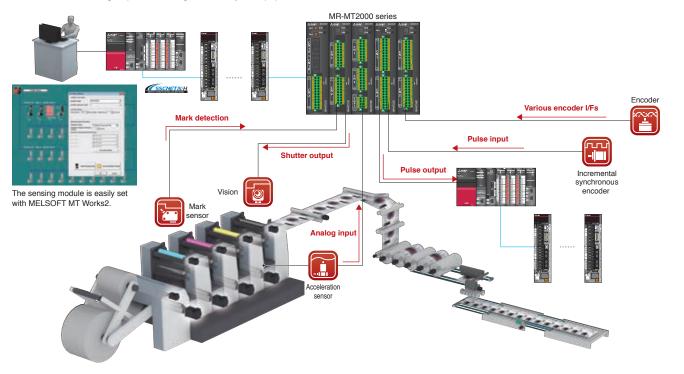
Sensing Module MR-MT2000 Series

High Speed and High Accuracy by Synchronization of I/O Signals with Motion Control

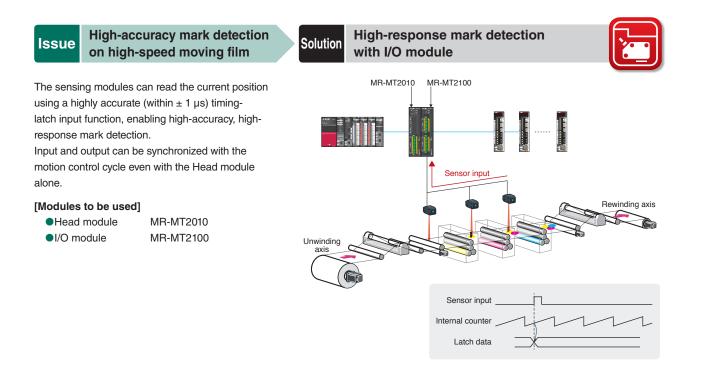
The sensing module MR-MT2000 series consists of one head module and four types of extension modules, the I/O module, pulse I/O module, analog I/O module, and encoder I/F module. The required extension modules can be selected according to your application.

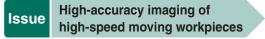

- I/O with a fastest response time of 1µs
- High-accuracy analog I/O
- Pulse I/O for synchronous control
- Supporting open standard encoder I/Fs

► Timing-latch input with 0.1 µs precision


(Note-1): Up to two encoder I/F modules are connectable per Head module.

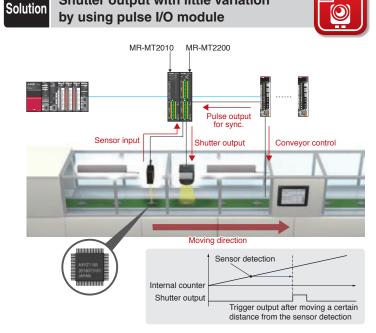
Encoder I/F module




Application example in printing processes using sensing module

Each I/O signal connected to the sensing module is synchronized with the Motion control cycle, enabling a processing with little variation to achieve high speed and high accuracy of equipment.

Application examples to increase speed and accuracy



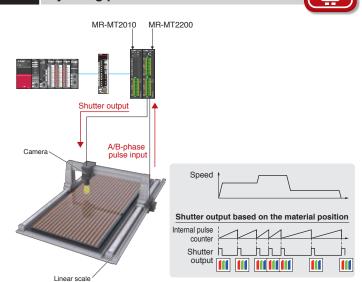
The sensing module triggers the shutter output based on the pulses counted from the sensor input, enabling an accurate, high-speed trigger control.

[Modules to be used]

- Head module
- Pulse I/O module

MR-MT2010 MR-MT2200

Shutter output with little variation


High-accuracy imaging with Issue little variation

Shutter output with little variation Solution by using pulse I/O module

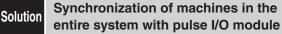
Even when the speed of the conveyor fluctuates, an accurate imaging is possible because the pulse I/O module can output a signal based on the pulses counted up.

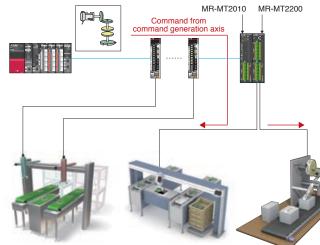
[Modules to be used]

Head module MR-MT2010 Pulse I/O module MR-MT2200

Synchronization with post processes

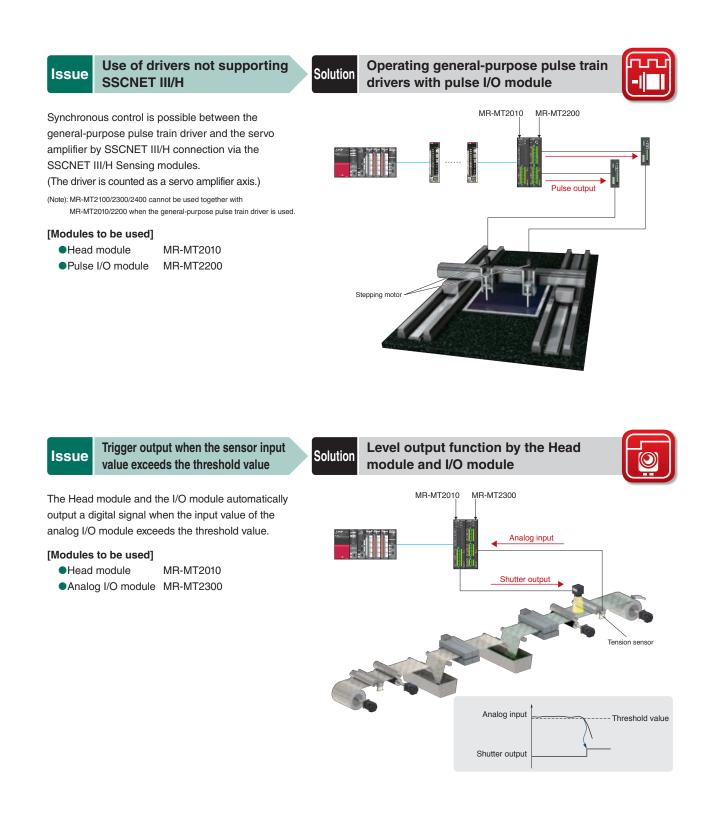
MR-MT2010


MR-MT2200

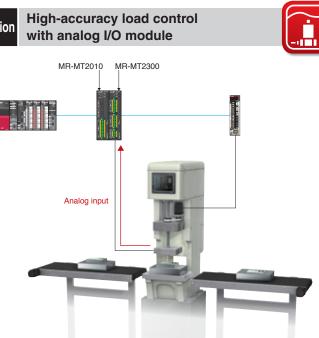

The current feed value of a command generation axis can be transferred through link devices, and thus output pulses of the sensing module can be synchronized with the command generation axis. Post processes, such as an inspection machine and other external machines can be synchronized with a command generation axis even without a synchronous encoder.

[Modules to be used]

Issue


Head module • Pulse I/O module

Conveyor

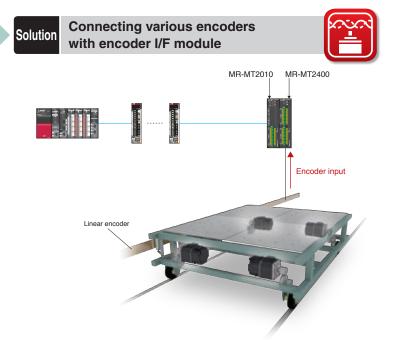

Inspection machine (being controlled separately) Other external machines (being controlled separately)

Load control by high-accuracy pressure detection Solution High-accuracy with anal Reading pressure sensor data while synchronizing with the motion control cycle, enables I/Os with little variation and thus high-accuracy load control with a fully closed loop system.

[Modules to be used]

- Head module
 MR-MT2010
- Analog I/O module MR-MT2300

Issue	Use of open standard
	encoders


The encoder I/F module supports various encoder I/Fs, enabling data input of various different encoders and configuring a fully closed loop system.

Encoder I/Fs

SSI
 Mitsubishi Electric serial I/F

[Modules to be used]

Head moduleMR-MT2010Encoder I/F moduleMR-MT2400

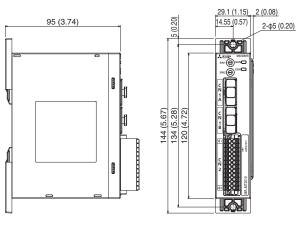
Specifications

Name		Item		Specification
	Control circuit	Voltage		24 V DC
	power supply	Permissible vol	tage fluctuation	24 V DC ± 10 %
	input	Current capacit	tv	1.0 A
	Communication			SSCNET III/H
		Number of inpu	it points	12 points
SSCNETIII/H Head module	DI	Input method		Sink input/source input (photocoupler isolation)
MR-MT2010		Input response time		ON to OFF: within 1 µs/OFF to ON: within 1 µs
		Number of output points		2 points
	DO	Output method		Sink output (photocoupler isolation)
		· ·		ON to OFF: within 1 µs/OFF to ON: within 1 µs
	Maga [kg]	Output response time		0.2
	Mass [kg]	Number of inst	t a cinto	•• •
		Number of inpu	it points	16 points (Note-1)
	DI	Input method		Sink input/source input (photocoupler isolation)
		Input response		ON to OFF: within 1 µs/OFF to ON: within 1 µs
/O module		Number of outp		16 points (Note-1)
MR-MT2100	DO	Output method		Sink output/source output (photocoupler isolation)
		Output	Sink output	ON to OFF: within 1 µs/OFF to ON: within 1 µs
		response time	Source output	ON to OFF: within 2 µs/OFF to ON: within 1 µs
	Mass [kg]			0.2
	Number of puls	e I/O channels		Output 2CH, input 2CH, I/O 1CH each (selectable)
	Output signal			Differential line driver output/open collector output
		Output method		Forward/reverse rotation pulse train, signed pulse train, A-phase/B-phase pulse train
	Pulse output	Maximum frequency	Differential line	4M pulse/s (A-phase/B-phase pulse train 4 multiples)
			driver output	1M pulse/s (forward/reverse rotation pulse train, signed pulse train)
			Open collector	200k pulse/s (A-phase/B-phase pulse train 4 multiples)
			output	50k pulse/s (forward/reverse rotation pulse train, signed pulse train)
Pulse I/O module		Input signal		Differential line driver input
MR-MT2200	Pulse input	Input method		Forward/reverse rotation pulse train, signed pulse train, A-phase/B-phase pulse train
		Maximum	Differential line	4M pulse/s (A-phase/B-phase pulse train 4 multiples)
		frequency	driver input	1M pulse/s (forward/reverse rotation pulse train, signed pulse train)
	DI	Number of input points		7 points per axis (total of 14 points)
		Input method		Sink input/source input (photocoupler isolation)
	DO	Number of outp		5 points per axis (total of 10 points) (Note-2)
		Output method		Sink output/source output (photocoupler isolation)
	Mass [kg]			0.2
		Number of inpu	it channels	4CH
	Analog input	Input voltage ra	inge	-10 to 10 V DC/-5 to 5 V DC (selectable)
	l'indiog input	Resolution		± 10 V range: 0.334 mV ± 5 V range: 0167 mV
halas 1/0 madula		Conversion acc	curacy	± 0.1 % (at 25 °C)/± 0.3 % (at 0 °C to 60 °C)
Analog I/O module /IR-MT2300		Number of outp	out channels	4CH
	Apologication	Output voltage	range	-10 to 10 V DC
	Analog output	Resolution		± 10 V range: 0.319 mV
		Conversion acc	curacy	± 0.4 % (at 25 °C)/± 0.5 % (at 0 °C to 60 °C)
	Mass [kg]			0.2
	Number of enco	der channels		2CH (Note-3)
Encoder I/F module		der communicat	ions	SSI, Mitsubishi Electric serial I/F
MR-MT2400	Mass [kg]			0.2
				U.2

(Note-1): When the module is used at the temperature exceeding 55 °C and up to 60 °C, keep the number of points turned on simultaneously to be 14 or less for each DI and DO. (Note-2): Two of the five points and the pulse output (open collector output) are mutually exclusive. (Note-3): Different encoder interfaces cannot be inputted for each channel. The same encoder interface should be used for both two channels.

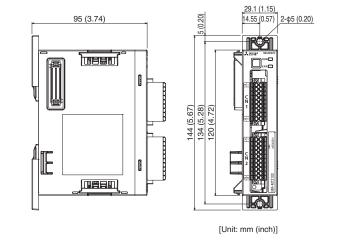
Applicable controllers

Motion CPU module	R64MTCPU, R32MTCPU, R16MTCPU	
Position board	MR-MC200 series, MR-MC341	

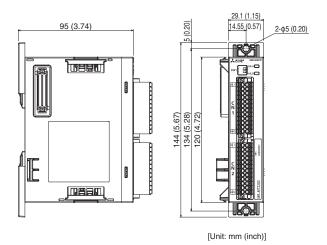

Components

Compliance with the indicated global standards and regulations is current as of the release date of this catalog. Contact your local sales office for the latest information.

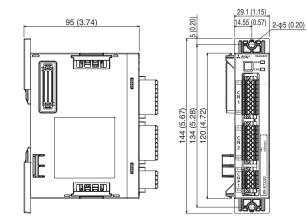
Part	Model	Description	Standards
SSCNET III/H Head module	MR-MT2010	SSCNET III/H, input: 12 points, output: 2 points	UL, CE, KC, EAC
I/O module	MR-MT2100	Input 16 points, output 16 points	UL, CE, KC, EAC
Pulse I/O module	MR-MT2200	Total pulse I/O: 2CH	UL, CE, KC, EAC
Analog I/O module	MR-MT2300	Analog input: 4CH, analog output: 4CH	UL, CE, KC, EAC
Encoder I/F module	MR-MT2400	Encoder I/F: 2CH	UL, CE, KC, EAC


Exterior Dimensions

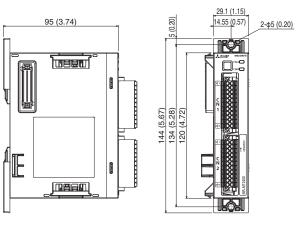
SSCNET III/H Head module MR-MT2010



[Unit: mm (inch)]


I/O module MR-MT2100

Pulse I/O module MR-MT2200


Analog I/O module MR-MT2300

[Unit: mm (inch)]

Sensing Modules

Encoder I/F module MR-MT2400

[Unit: mm (inch)]

Fully supporting all your needs from model selection, system design, startup to maintenance with diverse software

Motion Controller Engineering Software MELSOFT MT Works2

Comprehensibly supporting Motion controller design and maintenance

With features including Motion SFC programming, parameter settings, and the digital oscilloscope function, this software supports the engineering process -from system configuration and programming through debugging and maintenance of the Motion controller.

Programmable Controller Engineering Software MELSOFT GX Works3

All-in-one tool for quick and easy startup

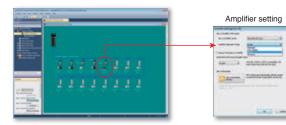
This software supports the engineering process - from creation of a sequence program, parameter settings of the Simple Motion module, and creation of a positioning data table and cam data through startup, debugging, and maintenance.

Module configuration

Motion Controller Engineering Software Programmable Controller Engineering Software MELSOFT GX Works3

MELSOFT MT Works2

MT GX Works2 Works3



GX Works3

System Design

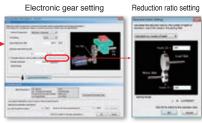
System configuration

Servo amplifiers and modules are set easily with the graphical system setting screen.

screen.

Each parameter is set from the module configuration

Servo data setting


One-point help allows you to set parameters without manuals.

Entering just the machine specifications (reduction ratio, ball screw pitch, etc.) sets the electric gear.

MT Works2

GX Works3

CC-Link IE Field configuration GX Works3

Parameters for CC-Link IE Field Network are easy to be set.

Programming

GX Works3 Positioning data setting

Functions, such as Data setting assistant and Automatic calculation of auxiliary arc, simplify the setting input process of positioning data.


Synchronous control parameter

Monitor

The synchronous control parameter is easily set using software instead of controlling mechanically with physical gears, shafts, speed change gears or cams.

No Wo

GX Works3

Simulation can be executed without an actual machine during the debugging process.

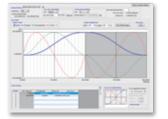
Cam data creation MT Works2 GX Works3

Various cam patterns are created more freely and flexibly.

Programming

User-friendly functions make Motion controller program development easier.

M Worl

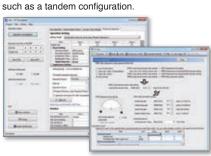

MT Works2

Cam data list

The created cam data are easily viewed as thumbnails

***	KAN	MY A	KAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	
Talling a	Description (Section of Section o	Period Sectors	Antyles (arrive)	Anna Sela
-	M P	AX6		APP-
And a state of the	interfactor (pr. brief)	interfere Landard		-

Startup and Adjustment MT Works2 GX Works3 MT Works2 GX Works3 Multi-axis adjustment GX Works3 Digital oscilloscope


The required items and axes are selected from various monitoring information.

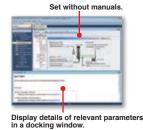
	-	-		a deservation of the	
Contraction of the	2.4	100	10004	matrices and a	
					the second s
Concession of the local division of the loca	A COLORED		-		And in case of the local division of the loc
and the second second	Charles .	-	-		PARTY AND INCOME.
					And in case of the local division of the loc
and the second second	Instruments of		-	Annual Contractor	the statements
and the state of t	and the second second				Typerson
and the second second	-	-	A	terror and the second s	
Contract.	-	-			*** #12##12
Contract.					
					- HARRIS
100 million 1	-	-	<u> </u>	1. Contract 1. Con	
					and addressed
Distant.	Sec	87 (cr.		2 C	
	and the second second	2000	2000	Sec. 10 1	Concernance of the local division of the loc
					Charles - Longitude
	-	-	-	particular in the second second	And in case of the local division of the loc
Concernant in	1000	1000	de de la		And in case of the local division of the loc
The sector of th	-	-	-	Concerning of the local distance of the loca	
per statute."	-	Lange and	land in	Sector 17	
	C	-	-	2 C C C C C C C C C C C C C C C C C C C	And in concession, which the
and the second second			and the second		a state of a property state of
	-	-		141	and the second of the
					And in case of the local division of the loc
				_	and the second sec

Data collection and waveform display which are synchronized with the Motion operation cycle greatly help you check operation and perform

The multi-axis adjustment function enables easy servo adjustment and quick startup for machines executing multi-axis simultaneous operation,

Servo assistant function

Complete setting up the servo amplifier just by following guidance displays.



One-touch tuning function

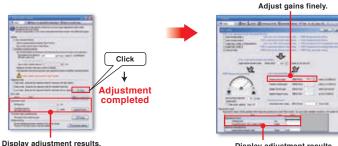
With the ease of clicking the start button, adjustments including estimating load to motor inertia ratio, adjusting gain, and suppressing machine resonance are automatically performed for the maximum servo performance.

Parameter setting function

Display parameter setting in list or visual formats, and set parameters by selecting from the drop-down list.

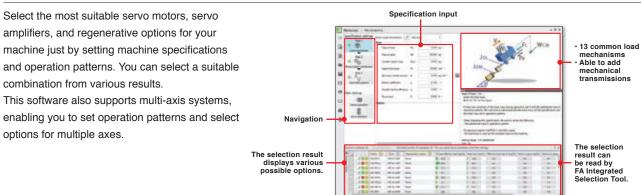
Tuning function

Adjust control gain finely on the [Tuning] window manually for further performance after the one-touch tuning.


Monitor function

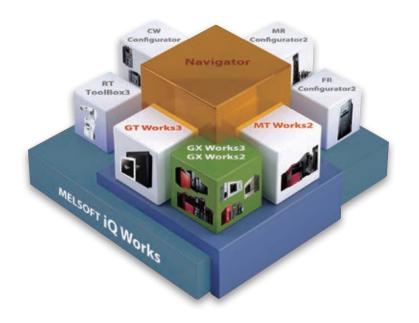
Monitor the operation information on the [Display all] window. No measurement equipment is necessary to monitor power consumption since the power consumption is monitored and displayed on the window.

the second second	Contraction of the	
The second se		
1 Lanualities Resident antition		-
Cleve con and		
1 Dog and 1	1000	
A Danation and added	100	
E Aprilanti pilas Angletig	Service's	
1 Representation hand links		
Collecter (set size		
E Part Last vite		
N Destriction of the local	1.76	
C VED DA ADDE DATE	1000	0.00
11.480 Burley	- 144	- 41.0
to take years deverse and	-	1.194
La marverlage		
11 same freig Parriage gespecture		
11 and tog Rocket provider 21 Desire Institution 31 Desire (see	14	
10 Delling from		100
17. Restatut Alleston Responses	14	
18 Norther of Yough State Systematic	the second se	
H tob good contragtor M tob and good constants		


Alarm display

In MR-J4 series, servo alarms are displayed in three digits. Troubleshooting at alarm occurrence is easy.

Drive System Sizing Software Motorizer



Display adjustment results.

FA Integrated Engineering Software MELSOFT iQ Works

MELSOFT iQ Works is an integrated software suite consisting of GX Works3, MT Works2, GT Works3, RT ToolBox3, FR Configurator2, CW Configurator, and MR Configurator2, which are programming software for each respective product. Integration is further enhanced with MELSOFT Navigator as the central system configuration. The advantages of this powerful integrated software suite are that system design is made much easier with a substantial reduction in repetitious tasks, cutting down on errors while helping to reduce the overall TCO.

System management software MELSOFT Navigator

System level graphic-based configuration tool that simplifies the system design by providing a visual representation of the system. System management features such as system-wide

parameterization, labels and block reading of project data are also included.

Programmable controller engineering software MELSOFT GX Works3

This programming and maintenance software includes many features such as graphic-based configuration, simple point and click programming architecture, and diagnostics function enabling easy troubleshooting, reducing engineering cost.

HMI/GOT screen design software MELSOFT GT Works3

This graphic operation terminal (GOT) screen creation software is designed with three main features—simplicity, graphics design and operation ease—that help to create graphic screens in fewer steps.

Motion controller engineering software MELSOFT MT Works2

This motion control design and maintenance software includes intuitive graphic-based programming together with a digital oscilloscope simulator, helping to reduce the motion system TCO.

Servo setup software MELSOFT MR Configurator2

This servo setup software used for easy monitoring, diagnostics, registering parameters, and testing of the servo amplifier.

- Robot engineering software MELSOFT RT ToolBox3
- Inverter setup software MELSOFT FR Configurator2
- C Controller setting and monitoring tool MELSOFT CW Configurator

Operating environment

MELSOFT MT Works2

Item		Description
OS		Microsoft® Windows® 11 (Home, Pro, Enterprise, Education)
		Microsoft® Windows® 10 (Home, Pro, Enterprise, Education, IoT Enterprise 2016 LTSB *1)
		*1: 64-bit version only
CPU	Windows [®] 11	Two or more cores on a compatible 64-bit processor or System on a Chip (SoC)
CPU	Windows [®] 10	Intel [®] Core [™] 2 Duo 2 GHz or more recommended
Dequired memory	Windows® 11	4GB or more recommended
Required memory	Windows [®] 10	For 64-bit edition: 2GB or more recommended, For 32-bit edition: 1GB or more recommended
Required hard disk space		For installation: 13GB or more free hard disk space
		For operation: 512MB or more free virtual memory space
Monitor		Resolution 1024 × 768 or more

(Note): Refer to Installation Instructions for precautions and restrictions regarding the operating environment.

MELSOFT GX Works3

Item		Description
		Microsoft® Windows® 11 (Home, Pro, Enterprise, Education)
OS		Microsoft® Windows® 10 (Home, Pro, Enterprise, Education, IoT Enterprise 2016 LTSB *1, IoT Enterprise 2019 LTSC *1) *1: 64-bit version only
CPU	Windows [®] 11	Two or more cores on a compatible 64-bit processor or System on a Chip (SoC)
	Windows [®] 10	Intel [®] Core [™] 2 Duo 2 GHz or more recommended
Required memory	Windows [®] 11	4GB or more recommended
	Windows [®] 10	For 64-bit edition: 2GB or more recommended, For 32-bit edition: 1GB or more recommended
Required hard disk space		For installation: 22GB or more free hard disk space
		For operation: 512MB or more free virtual memory space
Monitor		Resolution 1024 × 768 or more

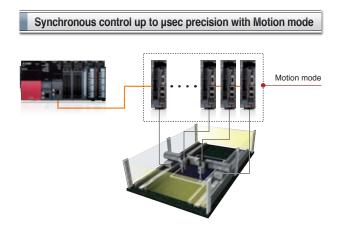
(Note): Refer to Installation Instructions for precautions and restrictions regarding the operating environment.

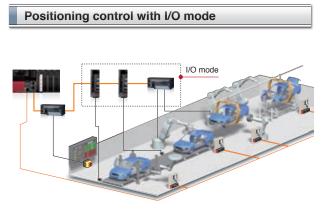
Engineering software list

Product	Model	Description	
MELSOFT GX Works3	SW1DND-GXW3-E	Programmable Controller Engineering Software (including GX Works2, GX Developer, PX Developer (Note-2) MITSUBISHI ELECTRIC FA Library	DVD
MELSOFT MT Works2	SW1DND-MTW2-E	Parameter settings and program creation for Motion controllers	DVD
MELSOFT iQ Works	SW2DND-IQWK-E	FA engineering software (Note-1) System management software: MELSOFT Navigator Programmable controller engineering software: MELSOFT GX Works3 (including GX Works2, GX Developer, PX Developer (Note-2)) Motion controller engineering software: MELSOFT MT Works2 HMI/GOT screen design software: MELSOFT GT Works3 Robot engineering software: MELSOFT RT ToolBox3 (Note-3) Inverter setup software: MELSOFT RT Configurator2 Servo setup software: MELSOFT MR Configurator2 C Controller setting and monitoring tool: MELSOFT CW Configurator MITSUBISHI ELECTRIC FA Library	DVD

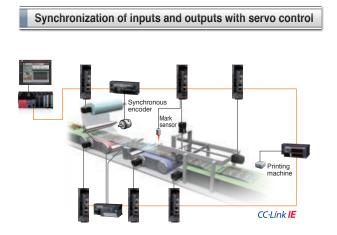
(Note-1): For detailed information about supported modules, refer to the manuals of the relevant software package. (Note-2): Includes both programming tool and monitor tool for process control. (Note-3): RT ToolBox3 mini (simplified version) will be installed if iQ Works product ID is used. When RT ToolBox3 (with simulation function) is required, please purchase RT ToolBox3 product ID.

МЕМО	
	0
	-
	es
	Пп
	Engineering Environment
	ent
	z
	Servo
	Servo Amplifiers
	ers

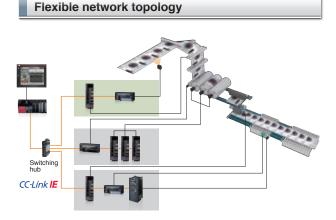

All-in-One Network


CC-Link IE Field Network is a single network which combines the versatility of Ethernet and highly accurate synchronous operation for Motion control. With the single network, various field devices, such as servo amplifiers, I/O modules, and high-speed counter modules, are connected flexibly.

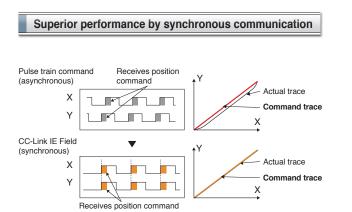
Various tasks, such as Simple Motion parameter settings, servo adjustment, and debugging as well as creating a sequence program, such as a function block (FB), are performed only with this all-in-one engineering software.



Motion mode enables advanced motion control functions, such as positioning for multi-axis interpolation, synchronous control, and speed-torque control in combination with the Simple Motion module.



I/O mode easily drives a belt conveyor, a rotary table, a ball screw mechanism, etc. by using the built-in positioning function in a servo amplifier.


Seamless integration of Mitsubishi Electric Servo System into CC-Link IE Field brings vast possibilities to the world of Industrial Automation.

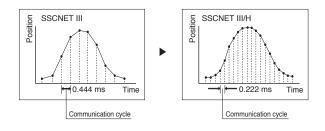
Various data, such as synchronous encoder values, sheet tension values, and text data, are inputted and outputted in accordance with the servo command communication cycle, enabling a wide range of Motion control applications.

With a switching hub, multiple network topologies are supported including star, line, and star and line combinations. This flexibility allows additional equipment to be simply connected to any available port, with little concern for restrictions.

The CC-Link IE Field Network is equipped with Motion function in the cyclic communication bandwidth. Synchronous communication with the servo amplifiers becomes possible, offering high-speed and high-accuracy positioning, synchronous control, and cam control.

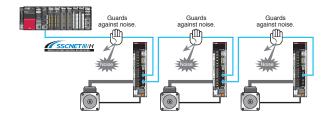
The blazingly fast speed

High-response System Achieved with SSCNET III/H

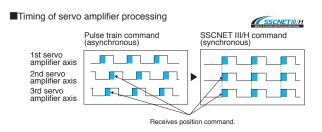

Three Times Faster Communication Speed

Communication speed is increased to 150 Mbps full duplex (equivalent to 300 Mbps half duplex), three times faster than the conventional speed. System response is dramatically improved.

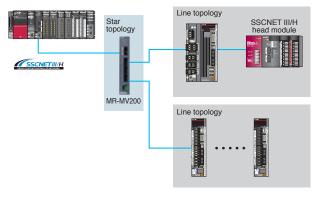
Network communi	cation speed	3 tim	es faster	Baud rate [Mbps]
SSCNET III/H MR-J4				
SSCNET III MR-J3				
		50	100	150


Cycle Time as Fast as 0.222 ms

Smooth control of a machine is possible using high-speed serial communication with a cycle time of 0.222 ms.


Improved noise tolerance by optical communication

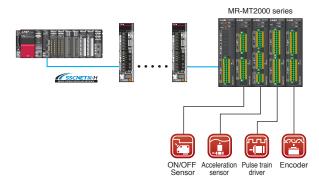
The fiber-optic cables thoroughly shut out noise that enters from the power cable or external devices. Noise tolerance is dramatically improved as compared to metal cables.


Synchronous Communication

Synchronous communication is achieved with SSCNET III/H, offering technical advantages for machines in printing and food processing industry that require deterministic control.

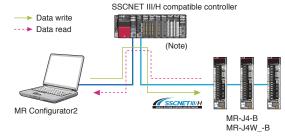
Network Topology

Star and line topologies are available with MR-MV200 optical hub unit through SSCNET III/H for a network configuration. Maintenance can be executed without stopping the whole system, and thus the machine availability will be increased.



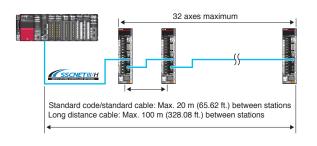
and response of 150 Mbps full-duplex baud rate SSCNET III/H optical networking

I/O Signals Synchronized with Motion Control


MR-MT2000 series sensing modules including the I/O module, analog I/O module, pulse I/O module, and encoder I/F module are connected to SSCNET III/H.

These various modules enable a faster, more accurate machine operation by synchronizing the I/Os of a general-purpose pulse train driver, sensor, and SSI encoder with the motion control.

Central Control with Network


Large amounts of servo data are exchanged in real-time between the controller and the servo amplifier. Using MR Configurator2 on a personal computer that is connected to the Motion controller or the Simple Motion module helps consolidate information, such as parameter settings and monitoring for the multiple servo amplifiers.

(Note): Reconnecting cables is not required.

Long Distance Wiring up to 3200 m (10498.69 ft.)

Long distance wiring is possible up to 3200 m (10498.69 ft.) per system (maximum of 100 m (328.08 ft.) between stations \times 32 axes), suitable for large-scale systems.

SSCNET III/H Compatible and SSCNET III Compatible Products Connected in a Same System

SSCNET III/H compatible and SSCNET III compatible servo amplifiers can be used together.

When using MR-J4 series servo amplifiers

SSCNET III/H compatible controller	MR-J4	MR-J4	MR-J4	
Communication speed:150 Mbps				

When using MR-J4 series + MR-J3 series servo amplifiers together

SSCNET III/H compatible controller or	MR-J3	MR-J4 ^(Note) MR-J3	MR-J4 ^{(Note}
SSCNET III compatible controller	-11-1	And and a second s	ja
Communication speed: 50 Mbps			· · · · · · · · · · · · · · · · · · ·

(Note): The function and the performance become equivalent to those of MR-J3 when the SSCNET III compatible products are used together in the same system.

MR-.14

Servos in harmony with man, machine and the environment

Servo Amplifier

Servo Motor

A variety of models are available to match various applications. These include rotary servo motors for high-torque output during high speed, linear servo motors for highly accurate tandem synchronous control, and direct drive motors for compact and rigid machine, and high-torque operations.

Rotary servo motor

low inertia

Capacity: 50 to 750 W

Medium capacity, ultra-low inertia **HG-RR** series

Capacity: 1 to 5 kW

LM-H3 series

Rating: 70 to 960 N

Linear servo motor

ries HG-NIR se Capacity: 50 to 750 W

Ultra-compact size, ultra-small capacity **HG-AK** series Capacity: 10 to 30 W Medium capacity

medium inertia HG-SR series Capacity: 0.5 to 7 kW

Medium capacity, flat type **HG-UR** series Capacity: 0.75 to 5 kW

Medium/large capacity, low inertia

HG-JR series Capacity: 0.5 to 55 kW

Ultra-large capacity HG-JR series Capacity: 110 to 220 kW

Low-profile flange type **TM-RG2M** series Low-profile table type **TM-RU2M** series Rating: 2.2 to 9 N·m

TM-RFM series Rating: 2 to 240 N·m

Core type (natural/iquid cooling) **LM-F** series Rating: 300 to 3000 N (natural cooling) Rating: 600 to 6000 N (liquid cooling)

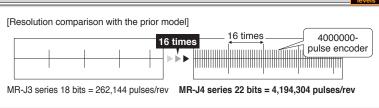
d cooling) Series o 3000 N ng) o 6000 N

Coreless type LM-U2 series Rating: 50 to 800 N

Core type

Machine

Industry-Leading Level of Servo Amplifier Basic Performance


Speed frequency response of 2.5 kHz is achieved by applying our original high-speed servo control architecture evolved from the conventional two-degrees-of-freedom model adaptive control to the dedicated execution engine. Together with a high-resolution absolute position encoder of 4,194,304 pulses/rev, fast and accurate operation is enabled. The performance of the high-end machines is utilized to the fullest.

[Settling time comparison with the prior model]

(Note): The result is based on our evaluation condition.

Improving Machine Performance with High-Performance Servo Motors

With improved processing speed, the rotary servo motors equipped with a high-resolution encoder enables high-accuracy positioning and smooth rotation.

[Dedicated execution engine]

Dedicated ex

Model-based control

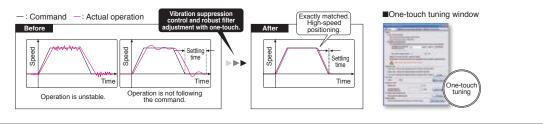
Speed contro

ecution engine

Current contro

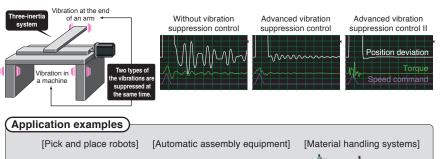
Command

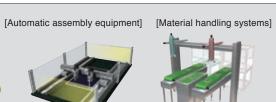
Servo motor


Servo amplifier control loop

osition contro

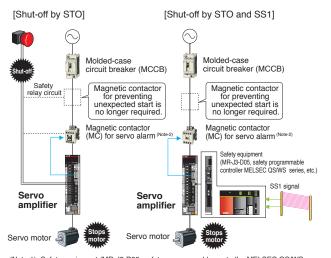
One-Touch Tuning Function


Just turn on the one-touch tuning function to complete servo gain adjustment automatically, including machine resonance suppression filter, advanced vibration suppression control II ^(Note-1), and robust filter for maximizing your machine performance. This function also sets responsivity automatically, while the real-time auto tuning requires manual setting. Moreover, this function has a method ^(Note-2) which allows to create an optimum tuning command inside the servo amplifier.


(Note-1): The advanced vibration suppression control II automatically adjusts one frequency. (Note-2): This method is supported by MR-J4-B/MR-J4W_-B.

Advanced Vibration Suppression Control II

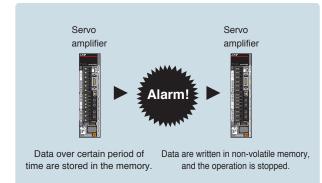
The advanced vibration suppression control II suppresses two types of low-frequency vibrations, owing to vibration suppression algorithm which supports three-inertia system. This function is effective in suppressing residual vibration with relatively low frequency of approximately 100 Hz or less generated at the end of an arm and in a machine, enabling a shorter settling time.



Man

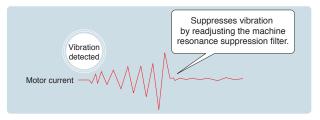
Functions Compliant with IEC/EN 61800-5-2

STO (Safe torque off) and SS1 (Note-1) (Safe stop 1) are integrated as standard, enabling the safety system to be configured easily in a machine.

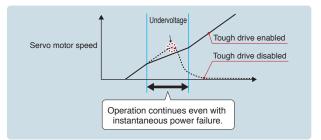

- By using STO, it is not necessary to turn off the control power of the servo amplifier, resulting in a shorter restart time and eliminating the necessity of home position return.
- A magnetic contactor for preventing unexpected motor start is not needed. (Note-2)
- The safety level of STO is increased to SIL 3 from SIL 2. (Note-3)

- (Note-1): Safety equipment (MR-J3-D05, safety programmable controller MELSEC QS/WS series, etc.) is required. (Note-2): For MR-J4 series servo amplifier, magnetic contactors are not required to meet the STO requirements.
- However, this illustration has a magnetic contactor installed to prevent servo alarms and electric shock (Note-3): For Category 3 PL e, SIL 3, use compatible safety equipment and set the parameters. When MR-J3-D05 is used, safety level is Category 3 PL d, SIL 2.

Large Capacity Drive Recorder


- Servo data such as motor current and position command before and after the alarm occurrence are stored in non-volatile memory of the servo amplifier. Reading the servo data on MR Configurator2 helps you analyze the cause of the alarm.
- Check the waveform ((analog 16 bits × 7 channels + digital 8 channels) × 256 points) of the past 16-time alarms in the alarm history.

Tough Drive Function


Vibration tough drive

Machine resonance suppression filter is automatically readjusted when a change in machine resonance frequency is detected by the servo amplifier, reducing unplanned machine downtime caused by age-related degradation.

Instantaneous power failure tough drive

When an instantaneous power failure is detected, this function allows the servo amplifier to use the electric energy charged in the main circuit capacitor in the servo amplifier to avoid an alarm occurrence, increasing the machine availability even with an unstable power supply.

Machine Diagnosis Function

This function detects changes in mechanical parts (ball screw, guide, bearing, belt, etc.) by analyzing changes in machine friction, load moment of inertia, unbalanced torque, and vibration components from the data inside a servo amplifier, supporting timely maintenance of these parts.

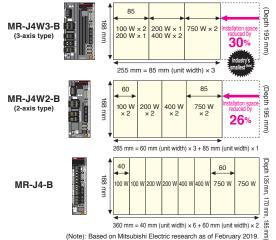
Machine diagnosis window

Servo setup software

MELSOFT MR Configurator2

Tuning, monitor display, diagnosis, reading/writing parameters, and test operations are easily performed on a personal computer. This powerful software tool supports a stable machine system and optimum control, and moreover, shortens setup time.

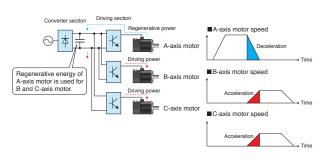
44.44			6		影		85	*
137	1H	2	2	h	i i	-7	-	
- Bart	1-		-	4	-	-	2	
68 L	1.00	1	-	÷	÷	-		
68	1.00	-	-	÷	-	-		
1.1		-	-	-	-	-		
1 22	1	-	-	1	-	1.00		first that a
1 200	- 5	-	-	-	-			THE PROPERTY
124	-	-	-	1				
22	1.00		-	-	-	1.00		
11	1.00		-	-	1	1		


Graph window

The Environment

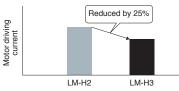
Space-Saving with Industry's Smallest (Note) 3-axis Type

2-axis servo amplifier MR-J4W2-B requires 26% less installation space than two units of MR-J4-B. 3-axis servo amplifier MR-J4W3-B requires 30% less installation space than three units of MR-J4-B.

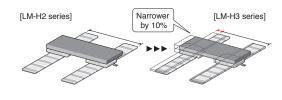

[Example of installation space for two units of each 100 W, 200 W, 400 W, and 750 W]

Energy-Conservation with Common DC Bus Connection

When multiple servo amplifiers and drive units are connected to the MR-CV power regeneration converter unit by a common DC bus connection, the regenerative energy of one axis is used for driving other axes, contributing to energy-conservation.

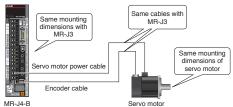

The multi-axis servo amplifier has the same effect.

Energy-Conservation Achieved by LM-H3 Linear Servo Motor Series


Reduced motor driving power

LM-H3 has achieved a reduction of 25% (^{Note)} in motor driving current due to a new magnetic design with optimized magnet form, contributing to power conservation for machines. The motor coil is lighter by approximately 12% (^{Note)} as compared to the prior model, which also contributes to saving energy for driving the moving part. (Note): For 720 N rated linear servo motor

Space saving

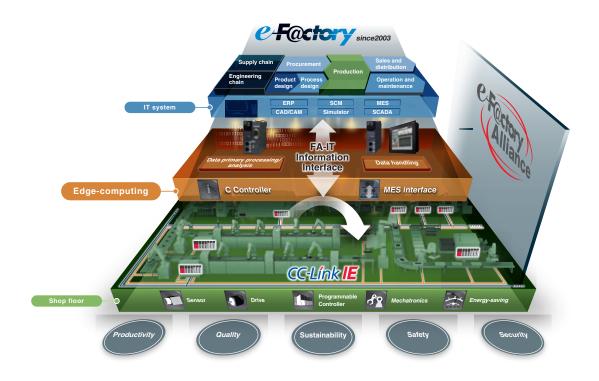

For LM-H3, widths of the motor coil and the magnet are reduced by 10% from the prior model. Increased thrust to current ratio results in using the servo amplifier in smaller capacity, contributing to more compact machine (the reduction of materials).

Heritage

 MR-J4-B has the same mounting dimensions (Note-1) with MR-J3-B. HG rotary servo motor series has the same mounting dimensions (Note-2) and uses the same option cables for the power, the encoder (Note-3), and the electromagnetic brake as HF series or HC-RP/HC-UP series.

(Note-1): Mounting dimensions are smaller for servo amplifiers rated 200 V 5 kW, 400 V 3.5 kW, 200 V/400 V 11 kW, and 200 V/400 V 15 kW. (Note-2): For replacing HA-LP series to HG-JR series, contact your local sales office. (Note-3): HG-JR series of 11 kW to 55 kW uses a different encoder cable from HF-JP series.

• SSCNET III/H compatible and SSCNET III compatible servo amplifiers can be used together.


SSCNET III/H compatible controller or	MR-J3B MR-J4B MR-J	3B MR-J4B
SSCNET III compatible controller		10
Communication speed: 50 Mbps		

(Note): The function and the performance become equivalent to those of MR-J3 when the SSCNET III compatible products are used together in the same system.

 Parameters are automatically converted by changing MR-J3-B to MR-J4-B with MELSOFT MT Works2 (Note-1). (Note-1): Update your MT Works2 to the latest version.

e-F@ctory Solution

e-F@ctory is Mitsubishi Electric's integrated concept to build reliable and flexible manufacturing systems that enable users to achieve many of their high speed, information driven manufacturing aspirations. Through its partner solution activity, the e-F@ctory Alliance, and its work with open network associations such as The CC-Link Partners Association (CLPA), users can build comprehensive solutions based on a wide ranging "best in class" principle.

e-F@ctory Alliance

The e-F@ctory Alliance is a FA manufacturer partnering program that strongly links the connection compatibility of Mitsubishi Electric FA equipment utilizing excellent software and machinery offered by partners, thereby enabling systems to be built by systems integration partners and the proposal of optimal solutions to customers.

Software Partner

Developing and proposing excellent application software and drivers that ensure the connection compatibility of Mitsubishi Electric FA equipment.

Device Partner


Proposing peripheral equipment that is easy to connect with Mitsubishi Electric FA equipment and is easier to use.

CC-Link Partner Association (CLPA) - Actively promoting worldwide adoption of CC-Link networks

Proactively supporting CC-Link, from promotion to specification development

The CC-Link Partner Association (CLPA) was established to promote the worldwide adoption of the CC-Link open-field network. By conducting promotional activities such as organizing trade shows and seminars, conducting conformance tests, and providing catalogs, brochures and website information, CLPA activities are successfully increasing the number of CC-Link partner manufacturers and CC-Link-compatible products. As such, CLPA is playing a major role in the globalization of CC-Link.

Conformance testing lab

Seminar

Visit the CLPA website for the latest CC-Link information.

CLPA Headquarters

6F Ozone Front Bldg. 3-15-58 Ozone Kita-ku, Nagoya 462-0825, JAPAN TEL: +81-52-919-1588 FAX: +81-52-916-8655 e-mail: info@cc-link.org

Global influence of CC-Link continues to spread

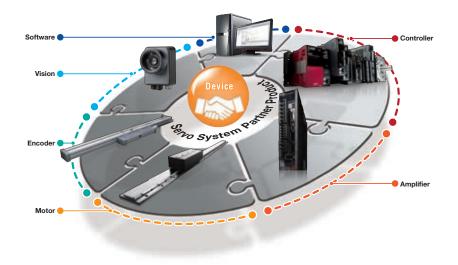
CC-Link is supported globally by CLPA. With offices throughout the world, support for partner companies can be found locally. Each regional CLPA office undertakes various support and promotional activities to further the influence of CC-Link/CC-Link IE in that part of the world. For companies looking to increase their presence in their local area, CLPA is well placed to assist these efforts through offices in all major regions.

Americas

- CLPA-Americas (Mexico office)
- CLPA-Americas (USA office)

Asia-Pacific

- > CLPA-China CT
- > CLPA-Headquarter(Japan) CT
- CLPA-India
- > CLPA-Korea CT
- CLPA-Taiwan
- CC-Link Promotion Center ASEAN (Singapore)
- CC-Link Promotion Center Thailand


Europe, the Middle East and Africa

CLPA-Europe(Germany) CT
CLPA-Turkey

Mitsubishi Electric Servo System Partners

Servo system includes controllers, servo drivers, actuators, sensors, etc. The servo system takes a step further to accelerate the equipment revolution by collaborating with our partner companies. Now that a wide variety of partner products are available such as pressure-resistance, explosion-proof type motors, custom-made servo motors, magnetic type linear encoders, your system will be configured flexibly.

The Mitsubishi Electric Servo System Partner Association is a subcommittee of e-F@ctory Alliance.

Global FA Centers

EMEA

Europe FA Center MITSUBISHI ELECTRIC EUROPE B.V. Polish Branch Tel: +48-12-347-65-00

Germany FA Center MITSUBISHI ELECTRIC EUROPE B.V. German Branch Tel: +49-2102-486-0

UK FA Center MITSUBISHI ELECTRIC EUROPE B.V. UK Branch Tel: +44-1707-27-8780

Czech Republic FA Center MITSUBISHI ELECTRIC EUROPE B.V. Czech Branch Tel: +420-734-402-587

Italy FA Center MITSUBISHI ELECTRIC EUROPE B.V. Italian Branch Tel: +39-039-60531

Turkey FA Center MITSUBISHI ELECTRIC TURKEY Elektrik Urunleri A.S. Tel: +90-216-969-2500

Asia-Pacific

China

Beijing FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Beijing FA Center Tel: +86-10-6518-8830

Guangzhou FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Guangzhou FA Center Tel: +86-20-8923-6730

Shanghai FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Shanghai FA Center Tel: +86-21-2322-3030

Tianjin FA Center MITSUBISHI ELECTRIC AUTOMATION (CHINA) LTD. Tianjin FA Center Tel: +86-22-2813-1015 Taiwan

Korea

Taipei FA Center SETSUYO ENTERPRISE CO., LTD. Tel: +886-2-2299-9917

Korea FA Center MITSUBISHI ELECTRIC AUTOMATION KOREA CO., LTD. Tel: +82-2-3660-9630

Thailand

Thailand FA Center MITSUBISHI ELECTRIC FACTORY AUTOMATION (THAILAND) CO., LTD. Tel: +66-2682-6522 to 31

ASEAN ASEAN FA Center MITSUBISHI ELECTRIC ASIA PTE. LTD.

Tel: +65-6470-2475 Malaysia

Malaysia FA Center

Malaysia FA Center Tel: +60-3-7626-5080 Indonesia

Indonesia FA Center PT. MITSUBISHI ELECTRIC INDONESIA Cikarang Office Tel: +62-21-2961-7797

Vietnam

Hanoi FA Center MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Hanoi Branch Office Tel: +84-24-3937-8075

Ho Chi Minh FA Center MITSUBISHI ELECTRIC VIETNAM COMPANY LIMITED Tel: +84-28-3910-5945

Philippines

Philippines FA Center MELCO Factory Automation Philippines Inc. Tel: +63-(0)2-8256-8042

India

India Ahmedabad FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Ahmedabad Branch Tel: +91-7965120063

India Bangalore FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Bangalore Branch Tel: +91-80-4020-1600

India Chennai FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Chennai Branch Tel: +91-4445548772

India Coimbatore FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Coimbatore Branch Tel: +91-422-438-5606

India Gurgaon FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Gurgaon Head Office Tel: +91-124-463-0300

India Pune FA Center MITSUBISHI ELECTRIC INDIA PVT. LTD. Pune Branch Tel: +91-20-2710-2000

Americas

USA

North America FA Center MITSUBISHI ELECTRIC AUTOMATION, INC. Tel: +1-847-478-2100

Mexico

Mexico City FA Center MITSUBISHI ELECTRIC AUTOMATION, INC. Mexico Branch Tel: +52-55-30677500

Mexico FA Center MITSUBISHI ELECTRIC AUTOMATION, INC. Queretaro Office Tel: +52-442-153-6014

Mexico Monterrey FA Center MITSUBISHI ELECTRIC AUTOMATION, INC. Monterrey Office

Tel: +52-55-3067-7599

Brazil

Brazil FA Center MITSUBISHI ELECTRIC DO BRASIL COMERCIO E SERVICOS LTDA. Tel: +55-11-4689-3000

Conformity with Global Standards and Regulations

Mitsubishi Electric servo system conforms to global standards.

(Note-1): Our servo system products are not subject to China Compulsory Certification (CCC).

(Note-2): Refer to relevant manuals and "EMC Installation Guidelines" when your system needs to meet the EMC directive.

(Note-3): Refer to "MELSERVO-J4 Series Catalog" for details of MR-J4 series conformity with global standards and regulations.

(Note-4): For corresponding standards and models, contact your local sales office.

Microsoft and Windows are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries.

Celeron and Pentium are registered trademarks of Intel Corporation in the U.S. and/or other countries.

The name PLCopen® is a registered trademark and together with the PLCopen logos owned by the association PLCopen.

QR Code is a trademark or a registered trademark of DENSO WAVE INCORPORATED in JAPAN, the United States and/or other countries. All other company names and product names used in this document are trademarks or registered trademarks of their respective companies.

Precautions before use

This publication explains the typical features and functions of the products herein and does not provide restrictions or other information related to usage and module combinations. Before using the products, always read the product user manuals. Mitsubishi Electric will not be held liable for damage caused by factors found not to be the cause of Mitsubishi Electric; opportunity loss or lost profits caused by faults in Mitsubishi Electric products; damage, secondary damage, or accident compensation, whether foreseeable or not, caused by special factors; damage to products other than Mitsubishi Electric products; or any other duties.

🔥 For safe use

- To use the products given in this publication properly, always read the relevant manuals before beginning operation.
- The products have been manufactured as general-purpose parts for general industries, and are not designed or manufactured to be incorporated in a device or system used in purposes related to human life.
- Before using the products for special purposes such as nuclear power, electric power, aerospace, medicine or passenger-carrying vehicles, consult with Mitsubishi Electric.
- The products have been manufactured under strict quality control. However, when
 installing the products where major accidents or losses could occur if the products
 fail, install appropriate backup or fail-safe functions in the system.

Servo system controller

Warranty

1. Warranty period and coverage

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product" arisen during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be required after a defective unit is repaired or replaced.

[Term]

For terms of warranty, please contact your original place of purchase.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule.

It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not be charged if we are responsible for the cause of the failure.

- (2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed to the Product.
- (3) Even during the term of warranty, the repair cost will be charged on you in the following cases;
 - a failure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware or software problem
 - a failure caused by any alteration, etc. to the Product made on your side without our approval
 - (iii) a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety device required by applicable laws and has any function or structure considered to be indispensable according to a common sense in the industry
 - (iv) a failure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained and replaced
 - (v) any replacement of consumable parts (battery, fan, smoothing capacitor, etc.)
 - (vi) a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of voltage, and acts of God, including without limitation earthquake, lightning and natural disasters
 - (vii) a failure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of the Product from our company
 - (viii) any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Term of warranty after the stop of production

- We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The announcement of the stop of production for each model can be seen in our Sales and Service, etc.
- (2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product. However, the terms and conditions of the repair work may differ depending on each FA Center. Please ask your local FA Center for details.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:

- Damages caused by any cause found not to be the responsibility of Mitsubishi.
- (2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
- (3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
- (4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications

Specifications listed in our catalogs, manuals or technical documents may be changed without notice.

6. Application and use of the Product

- (1) For the use of our Motion controller/Simple Motion module, its applications should be those that may not result in a serious damage even if any failure or malfunction occurs in the Motion controller/Simple Motion module, and a backup or fail-safe function should operate on an external system to the Motion controller/Simple Motion module when any failure or malfunction occurs.
- (2) Our Motion controller/Simple Motion module is designed and manufactured as general purpose product for use at general industries.

Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of electric power companies, and also which require a special quality assurance system, including applications for railway companies and government or public offices are not recommended, and we assume no responsibility for any failure caused by these applications when used. In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments, railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used. We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific application. Please contact us for consultation.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

Automating the World

Creating Solutions Together.

Low-voltage Power Distribution Products

Compact and Modular Controllers

Numerical Control (NC)

Servos, Motors and Inverters

Collaborative and Industrial Robots

Power Monitoring and Energy Saving

Products

Processing machines: EDM, Lasers

Power (UPS) and Environmental Products

Edge Computing Products

SCADA, analytics and simulation software

Mitsubishi Electric's product lineup, from various controllers and drives to energy-saving devices and processing machines, all help you to automate your world. They are underpinned by software, innovative data monitoring, and modelling systems supported by advanced industrial networking and Edgecross IT/OT connectivity. Together with a worldwide partner ecosystem, Mitsubishi Electric factory automation (FA) has everything to make IoT and Digital Manufacturing a reality.

With a complete portfolio and comprehensive capabilities that combine synergies with diverse business units, Mitsubishi Electric provides a one-stop approach to how companies can tackle the shift to clean energy and energy conservation, carbon neutrality and sustainability, which are now a universal requirement of factories, buildings, and social infrastructure.

We at Mitsubishi Electric FA are your solution partners waiting to work with you as you take a step toward the realization of sustainable manufacturing and society through the application of automation. Let's automate the world together!

SERVO SYSTEM CONTROLLERS MELSEC iQ-R SERIES/MELSEC iQ-F SERIES

Country/Region	Sales office	
USA	Mitsubishi Electric Automation, Inc. 500 Corporate Woods Parkway, Vernon Hills, IL 60061, U.S.A.	Tel : +1-847-478-2100
Mexico	Mitsubishi Electric Automation, Inc. Mexico Branch Boulevard Miguel de Cervantes Saavedra 301, Torre Norte Piso 5, Int. 502, Ampliacion Granada, Miguel Hidalgo, Ciudad de Mexico, Mexico, C.P.11520	Tel : +52-55-3067-7500
Brazil	Mitsubishi Electric do Brasil Comercio e Servicos Ltda. Avenida Adelino Cardana, 293, 21 andar, Bethaville, Barueri SP, Brazil	Tel : +55-11-4689-3000
Germany	Mitsubishi Electric Europe B.V. German Branch Mitsubishi-Electric-Platz 1, 40882 Ratingen, Germany	Tel : +49-2102-486-0
UK	Mitsubishi Electric Europe B.V. UK Branch Travellers Lane, UK-Hatfield, Hertfordshire, AL10 8XB, U.K.	Tel : +44-1707-28-8780
Italy	Mitsubishi Electric Europe B.V. Italian Branch Campus, Energy Park Via Energy Park 14, Vimercate 20871 (MB) Italy	Tel : +39-039-60531
Spain	Mitsubishi Electric Europe B.V. Spanish Branch Carretera de Rubi, 76-80-Apdo. 420, E-08174 Sant Cugat del Valles (Barcelona), Spain	Tel : +34-935-65-3131
France	Mitsubishi Electric Europe B.V. French Branch 2, rue de l'Union-92565 Rueil-Malmaison Cedex-France	Tel : +33-1-55-68-55-68
Czech Republic	Mitsubishi Electric Europe B.V. Czech Branch, Prague Office Pekarska 621/7, 155 00 Praha 5, Czech Republic	Tel : +420-734-402-587
Poland	Mitsubishi Electric Europe B.V. Polish Branch ul. Krakowska 48, 32-083 Balice, Poland	Tel : +48-12-347-65-00
Sweden	Mitsubishi Electric Europe B.V. (Scandinavia) Hedvig Mollersgata 6, 223 55 Lund, Sweden	Tel : +46-8-625-10-00
Turkey	Mitsubishi Electric Turkey Elektrik Urunleri A.S. Serifali Mah. Kale Sok. No:41 Umraniye / Istanbul, Turkey	Tel : +90-216-969-2500
UAE	Mitsubishi Electric Europe B.V. Dubai Branch Dubai Silicon Oasis, P.O.BOX 341241, Dubai, U.A.E.	Tel : +971-4-3724716
South Africa	Adroit Technologies 20 Waterford Office Park, 189 Witkoppen Road, Fourways, South Africa	Tel : +27-11-658-8100
China	Mitsubishi Electric Automation (China) Ltd. Mitsubishi Electric Automation Center, No.1386 Hongqiao Road, Shanghai, China	Tel : +86-21-2322-3030
Taiwan	SETSUYO ENTERPRISE CO., LTD. 5F, No.105, Wugong 3rd Road, Wugu District, New Taipei City 24889, Taiwan	Tel : +886-2-2299-2499
Korea	Mitsubishi Electric Automation Korea Co., Ltd. 7F to 9F, Gangseo Hangang Xi-tower A, 401, Yangcheon-ro, Gangseo-Gu, Seoul, Korea	Tel : +82-2-6103-9474
Singapore	Mitsubishi Electric Asia Pte. Ltd. 307 Alexandra Road, Mitsubishi Electric Building, Singapore 159943	Tel : +65-6473-2486
Thailand	Mitsubishi Electric Factory Automation (Thailand) Co., Ltd. 101, True Digital Park Office, 5th Floor, Sukhumvit Road, Bang Chak, Prakanong, Bangkok, Thailand	Tel : +66-2092-8600
Indonesia	PT. Mitsubishi Electric Indonesia Gedung Jaya 8th Floor, JL. MH. Thamrin No.12, Jakarta Pusat 10340, Indonesia	Tel : +62-21-3192-6461
Vietnam	Mitsubishi Electric Vietnam Company Limited 11th & 12th Floor, Viettel Tower B, 285 Cach Mang Thang Tam Street, Ward 12, District 10, Ho Chi Minh City, Vietnam.	Tel : +84-28-3910-5945
India	Mitsubishi Electric India Pvt. Ltd. Pune Branch ICC-Devi Gaurav Technology Park, Unit no. 402, Fourth Floor, Survey no. 191-192 (P), Opp. Vallabh Nagar Bus Depot, Pune - 411018, Maharashtra, India	Tel : +91-20-4624-2100
Australia	Mitsubishi Electric Australia Pty. Ltd. 348 Victoria Road, P.O. Box 11, Rydalmere, N.S.W 2116, Australia	Tel : +61-2-9684-7777

Mitsubishi Electric's e-F@ctory concept utilizes both FA and IT technologies, to reduce the total cost of development, production and maintenance, with the aim of achieving manufacturing that is a "step ahead of the times". It is supported by the e-F@ctory Alliance Partners covering software, devices, and system integration, creating the optimal e-F@ctory architecture to meet the end users needs and investment plans.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN NAGOYA WORKS: 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA 461-8670, JAPAN