Mitsubishi Programmable Controller

CC-Link IE Field Network High-Speed Counter Module User's Manual

OSAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle the product correctly.
The precautions given in this manual are concerned with this product only. For the safety precautions of the programmable controller system, refer to the user's manual for the CPU module used.

In this manual, the safety precautions are classified into two levels: " \uparrow WARNING" and " \uparrow CAUTION".

A. WARNING

Indicates that incorrect handling may cause hazardous conditions, resulting in death or severe injury.

Indicates that incorrect handling may cause hazardous conditions, resulting in minor or moderate injury or property damage.

Under some circumstances, failure to observe the precautions given under " ! CAUTION" may lead to serious consequences.
Observe the precautions of both levels because they are important for personal and system safety.

Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design Precautions]

4. WARNING

- In the case of a communication failure in the network, data in the master module are held. Check Data link status (each station) (SW00B0 to SWOOB7) and configure an interlock circuit in the program to ensure that the entire system will operate safely.
- When the module is disconnected due to a communication failure in the network or the CPU module is in the STOP status, all outputs are held or turned off according to the parameter setting. Configure an interlock circuit in the program to ensure that the entire system will always operate safely even in such a case. If not, an accident may occur due to an incorrect output or malfunction.
- Outputs may remain on or off due to a failure of the module. Configure an external circuit for monitoring output signals that could cause a serious accident.
- Do not use any "use prohibited" signals as a remote input or output signal. These signals are reserved for system use. Do not write any data to the "use prohibited" area in the remote register. If these operations are performed, correct operation of the module cannot be guaranteed.

[Design Precautions]

\triangle CAUTION

Do not install the communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise.

- Do not install the control lines together with the main circuit lines or power cables. Keep a distance of 150 mm or more between them. Failure to do so may result in malfunction due to noise.

[Security Precautions]

WARNING

To maintain the security (confidentiality, integrity, and availability) of the programmable controller and the system against unauthorized access, denial-of-service (DoS) attacks, computer viruses, and other cyberattacks from external devices via the network, take appropriate measures such as firewalls, virtual private networks (VPNs), and antivirus solutions.

[Installation Precautions]

| WARNING |
| :--- | :--- |
| - Shut off the external power supply (all phases) used in the system before mounting or removing a |
| module. Failure to do so may result in electric shock or cause the module to fail or malfunction. |

[Installation Precautions]

CAUTION

Use the module in an environment that meets the general specifications in the user's manual for the module. Failure to do so may result in electric shock, fire, malfunction, or damage to or deterioration of the product.

- Do not directly touch any conductive parts and electronic components of the module. Doing so can cause malfunction or failure of the module.
- After the first use of the product, do not connect/remove the extension module more than 50 times (IEC 61131-2 compliant). Exceeding the limit may cause malfunction.
- To connect an extension module to a main module, engage the respective connectors and securely lock the module joint levers. Incorrect connection may cause malfunction, failure, or drop of the module.
- Securely connect the cable connectors. Poor contact may cause malfunction.

[Wiring Precautions]

WARNING

Shut off the external power supply (all phases) used in the system before wiring. Failure to do so may result in electric shock or cause the module to fail or malfunction.

[Wiring Precautions]

CAUTION

- Ground the shield cable for the pulse input on the encoder side (relay box) with a ground resistance of 100Ω or less. Failure to do so may cause malfunction.
- Individually ground the FG terminal of the programmable controller with a ground resistance of 100Ω or less. Failure to do so may result in electric shock or malfunction.
- Check the rated voltage and terminal layout before wiring to the module, and connect the cables correctly. Connecting a power supply with a different voltage rating or incorrect wiring may cause a fire or failure.
- Prevent foreign matter such as dust or wire chips from entering the module. Such foreign matter can cause a fire, failure, or malfunction.
- Place the cables in a duct or clamp them. If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the module or cables or malfunction due to poor contact.
- Do not install the communication cables together with the main circuit lines or power cables. Keep a distance of 100 mm or more between them. Failure to do so may result in malfunction due to noise.
- Do not install the control lines together with the main circuit lines or power cables. Keep a distance of 150 mm or more between them. Failure to do so may result in malfunction due to noise.
- When disconnecting the cable from the module, do not pull the cable by the cable part. For the cable with connector, hold the connector part of the cable. For the cable connected to the terminal block, loosen the terminal screw. Pulling the cable connected to the module may result in malfunction or damage to the module or cable.
- When an overcurrent caused by an error of an external device or a failure of the programmable controller flows for a long time, it may cause smoke and fire. To prevent this, configure an external safety circuit, such as a fuse.
- Connectors for external devices must be crimped with the tool specified by the manufacturer, or must be correctly soldered. Securely connect the connector to the module.
- Mitsubishi programmable controllers must be installed in control panels. Wiring and replacement of a module must be performed by qualified maintenance personnel with knowledge of protection against electric shock. For wiring methods, refer to "INSTALLATION AND WIRING" in this manual.

[Startup and Maintenance Precautions]

WARNING

Do not touch any terminal while power is on. Doing so will cause electric shock or malfunction.

- Shut off the external power supply (all phases) used in the system before cleaning the module or retightening the terminal block screws or connector screws. Failure to do so may cause the module to fail or malfunction.

[Startup and Maintenance Precautions]

CAUTION

Do not disassemble or modify the module. Doing so may cause failure, malfunction, injury, or a fire.

- Do not drop or apply strong shock to the module. Doing so may damage the module.
- Shut off the external power supply (all phases) used in the system before mounting or removing a module. Failure to do so may cause the module to fail or malfunction.
- Before handling the module or the cable to be connected to the module, touch a conducting object such as a grounded metal to discharge the static electricity from the human body. Failure to do so may cause the module to fail or malfunction.
- Startup and maintenance of a control panel must be performed by qualified maintenance personnel with knowledge of protection against electric shock. Lock the control panel so that only qualified maintenance personnel can operate it.

[Disposal Precautions]

	CAUTION
\bullet When disposing of this product, treat it as industrial waste.	

CONDITIONS OF USE FOR THE PRODUCT

(1) MELSEC programmable controller ("the PRODUCT") shall be used in conditions; i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident; and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the case of any problem, fault or failure occurring in the PRODUCT.
(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries. MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT. ("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;

- Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the public could be affected if any problem or fault occurs in the PRODUCT.
- Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality assurance system is required by the Purchaser or End User.
- Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator, Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other applications where there is a significant risk of injury to the public or property.
Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the PRODUCT in one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe, redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details, please contact the Mitsubishi Electric representative in your region.
(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

Thank you for purchasing the CC-Link IE Field Network high-speed counter module (hereafter abbreviated as highspeed counter module).
This manual describes the operating procedure, system configuration, parameter settings, functions, and troubleshooting of the high-speed counter module.
Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the functions and performance of the high-speed counter module to handle the product correctly.
When applying the program examples introduced in this manual to an actual system, ensure the applicability and confirm that it will not cause system control problems.

■ Target module: NZ2GFCF-D62PD2

Remark

Unless otherwise specified, this manual describes the program examples in which the remote I/O signals and remote registers are assigned for a high-speed counter module as follows.

- Remote input signal: RX00 to RX4F
- Remote output signal: RY00 to RY4F
- Remote register: RWr0 to RWr3F, RWw0 to RWw3F

For the assignment of remote I/O signals and remote registers, refer to the following.
[]] User's manual for the master/local module used

RELEVANT MANUALS

(1) CC-Link IE Field Network (relevant) manuals

When using the CC-Link IE Field Network for the first time, refer to CC-Link IE Field Network Master/Local Module User's Manual or Simple Motion Module User's Manual first. The following shows the structure of the CCLink IE Field Network manuals.

Manual name <manual number (model code)>	Description
MELSEC-Q CC-Link IE Field Network Master/Local Module User's Manual <SH-080917ENG, 13JZ47>	Overview of the CC-Link IE Field Network, and specifications, procedures before operation, system configuration, installation, wiring, settings, functions, programming, and troubleshooting of the QJ71GF11-T2
MELSEC-L CC-Link IE Field Network Master/Local Module User's Manual <SH-080972ENG, 13JZ54>	Overview of the CC-Link IE Field Network, and specifications, procedures before operation, system configuration, installation, wiring, settings, functions, programming, and troubleshooting of the LJ71GF11-T2
MELSEC iQ-R Ethernet/CC-Link IE User's Manual (Startup) <SH-081256ENG, 13JX09>	Specifications, procedures before operation, system configuration, wiring, and communication examples of Ethernet, CC-Link IE Controller Network, and CC-Link IE Field Network
MELSEC iQ-R CC-Link IE Field Network User's Manual (Application) <SH-081259ENG, 13JX18>	Functions, parameter settings, programming, troubleshooting, I/O signals, and buffer memory of CC-Link IE Field Network
MELSEC iQ-R Inter-Module Synchronization Function Reference Manual <SH-081401ENG>	Inter-module synchronization function, which controls multiple modules synchronously
MELSEC-Q QD77GF Simple Motion Module User's Manual (Network) <\|B-0300203, 1XB957>	Functions, programming, and troubleshooting for CC-Link IE Field Network of the QD77GF16
MELSEC-Q QD77GF Simple Motion Module User's Manual (Positioning Control) <IB-0300202, 1XB956>	Specifications of the QD77GF16 and information on how to establish a system, maintenance and inspection, and troubleshooting. Functions, programming and buffer memory for the positioning control of the QD77GF16
CC-Link IE Field Network Remote I/O Module User's Manual <SH-081114ENG, 13JZ82>	Specifications, procedures before operation, system configuration, installation, wiring, various settings, functions, programming, and troubleshooting of the CC-Link IE Field Network remote I/O module

(2) Operating manual

Manual name <manual number (model code)>	Description		
GX Works2 Version 1 Operating Manual (Common)			
<SH-080779ENG, 13JU63>			System configuration, parameter settings, and online operations of
:---			
GX Works2, which are common to Simple projects and Structured			
projects			

SAFETY PRECAUTIONS 1
CONDITIONS OF USE FOR THE PRODUCT 5
INTRODUCTION 6
RELEVANT MANUALS 7
MANUAL PAGE ORGANIZATION 12
TERM. 13
PACKING LIST 15
CHAPTER 1 HIGH-SPEED COUNTER MODULE 16
1.1 Application 17
1.2 Features 18
CHAPTER 2 PART NAMES 23
CHAPTER 3 SPECIFICATIONS 27
3.1 General Specifications 27
3.2 Performance Specifications 29
3.2.1 The input waveform and the phase difference between phase A pulse and phase B pulse 32
3.3 Calculating Current Consumption 34
3.4 Function List 35
3.5 List of Remote I/O Signals 38
3.6 List of Remote Register 42
3.7 List of Remote Buffer Memory 44
CHAPTER 4 THE PROCEDURE BEFORE OPERATION 52
CHAPTER 5 SYSTEM CONFIGURATION 54
5.1 High-Speed Counter Module System Configuration 54
5.2 Applicable Systems 55
CHAPTER 6 INSTALLATION AND WIRING 57
6.1 Station Number Setting. 57
6.2 Installation Environment and Installation Position 58
6.2.1 Installation environment 58
6.2.2 Installation position. 58
6.2.3 Installation direction 59
6.3 Installation. 60
6.3.1 Connecting extension modules 60
6.3.2 Mounting the modules on a DIN rail 62
6.4 Wiring with Terminal Block for Module Power Supply and FG 65
6.5 Wiring of Ethernet Cable 67
6.6 Wiring of Connectors for External Devices 70
6.6.1 Wiring precautions 70
6.6.2 Connectors for external devices. 72
6.6.3 I/O interfaces with external devices 73
6.6.4 Encoders that can be connected 78
6.7 Wiring Example (Between a High-Speed Counter Module and an Encoder) 79
6.8 Wiring Example (Between a Controller and External Input Terminals) 82
6.9 Wiring Example (with Coincidence Output Terminals) 83
CHAPTER 7 VARIOUS SETTINGS 84
7.1 Parameter Setting. 84
7.2 Changing the Parameter. 92
7.2.1 Changing the network configuration 92
7.2.2 Changing the parameter without changing the network configuration 96
7.3 Operation Mode List 99
CHAPTER 8 FUNCTIONS 101
8.1 Mode Shift at Power-on 101
8.2 Drive Mode Switch 102
8.3 Pulse Input Modes and Counting Methods 104
8.3.1 Types of pulse input modes 104
8.3.2 Counting method setting 106
8.4 Counter Format Selection 107
8.4.1 Linear counter function 107
8.4.2 Ring counter function 109
8.5 Comparison Output Function 114
8.5.1 Operation overview of the coincidence output function and the cam switch function 114
8.5.2 Coincidence output function 116
8.5.3 Preset/replace (at coincidence output) function 126
8.5.4 Cam switch function 129
8.6 Preset/replace Function 134
8.7 Latch Counter Function by Latch Counter Input Terminal 139
8.8 Counter Function Selection 141
8.9 Count Disable Function 143
8.10 Latch Counter Function (Counter Function Selection) 145
8.11 Sampling Counter Function 148
8.12 Periodic Pulse Counter Function 151
8.13 Count Disable/preset/replace Function 154
8.14 Latch Counter/preset/replace Function 156
8.15 CC-Link IE Field Network Synchronous Communication Function 159
8.16 Frequency Measurement Function 162
8.17 Rotation Speed Measurement Function 166
8.18 Pulse Measurement Function 170
8.19 PWM Output Function 174
8.20 Output HOLD/CLEAR Setting Function 181
8.21 Cyclic Data Update Watch Function 182
8.22 Error Notification Function 183
8.23 Function at the Extension Module Installation 186
8.24 CC-Link IE Field Network Diagnostic Function 189
CHAPTER 9 PROGRAMMING 192
9.1 Precautions for Programming 192
9.2 Procedure for Programming 194
9.3 Program Example 195
CHAPTER 10 MAINTENANCE AND INSPECTION 219
CHAPTER 11 TROUBLESHOOTING 221
11.1 Checking for the Error Codes and the Warning Codes 221
11.2 Error Code List 225
11.3 Checking the LEDs 243
11.4 Unit Test 246
11.5 Troubleshooting by Symptom 247
11.5.1 When the setting on the operation mode setting is the normal mode 247
11.5.2 When the setting on the operation mode setting is the frequency measurement mode 253
11.5.3 When the setting on the operation mode setting is the rotation speed measurement mode253
11.5.4 When the setting on the operation mode setting is the pulse measurement mode 253
11.5.5 When the setting on the operation mode setting is the PWM output mode 254
11.5.6 When error codes/warning codes cannot be reset. 254
11.5.7 When read and write of parameters or CC-Link IE Field Network diagnostics fails with the engineering tool 255
APPENDICES 256
Appendix 1 Details of Remote I/O Signals 256
Appendix 1.1 Details of remote input signals 256
Appendix 1.2 Details of remote output signals 268
Appendix 2 Details of Remote Registers 275
Appendix 3 Details of Remote Buffer Memory Addresses 287
Appendix 4 Internal Control Cycle and Response Delay Time 305
Appendix 5 EMC and Low Voltage Directives 310
Appendix 5.1 Measures to comply with the EMC directive 310
Appendix 5.2 Requirements to compliance with the low voltage directive 315
Appendix 6 Checking Serial Number and Function Version 316
Appendix 7 Addition and Change of Functions 317
Appendix 7.1 Additional function 317
Appendix 7.2 Change of function 317
Appendix 7.3 Precautions for the high-speed counter module replacement 318
Appendix 8 External Dimensions 319
INDEX 320

REVISIONS . 324
WARRANTY . 325
TRADEMARKS . 326

MANUAL PAGE ORGANIZATION

In this manual, pages are organized and the symbols are used as shown below.
The following illustration is for explanation purpose only, and should not be referred to as an actual documentation

*1 The mouse operation example is provided below.

TERM

Unless otherwise specified, this manual uses the following terms.

Term	Description
Buffer memory	A memory in an intelligent function module, where data (such as setting values and monitoring values) are stored
CC-Link IE Field Network	A high-speed and large-capacity open field network that is based on Ethernet (1000BASE-T)
Cyclic transmission	A function by which data are periodically exchanged among stations on the same network using link devices ($R X, R Y, R W w$, and $R W r$)
Data link	A generic term for cyclic transmission and transient transmission
Dedicated instruction	An instruction that simplifies programming for using functions of intelligent function modules
Device supporting iQSS	A generic term for a device which supports iQ Sensor Solution. For iQ Sensor Solution, refer to the following. [] iQ Sensor Solution Reference Manual
Disconnection	A process of stopping data link if a data link error occurs
Engineering tool	A generic term for GX Works2 and GX Works3
Extension I/O module	A generic term for extension modules where a digital signal can be input or output
Extension module	A remote module that does not support the CC-Link IE Field Network communication function. This module cannot be used as a single module. However, connecting the module to the main module will increase the number of I / O points per station.
GX Works2	The product name of the software package for the MELSEC programmable cont
GX Works3	
High-speed counter module	The abbreviation for the CC-Link IE Field Network high-speed counter module
Intelligent device station	A station that deals with bit data and word data. The station can communicate with the master station and other local stations. The station cannot communicate with other remote I/O stations, remote device stations and intelligent device stations. The station can perform the cyclic transmission and transient transmission.
Link device	A device (RX, RY, RWr, or RWw) in a module on CC-Link IE Field Network
Link special register (SW)	Bit data that indicates the operating status and data link status of a module on CC-Link IE Field Network
Link special relay (SB)	Bit data that indicates the operating status and data link status of a module on CC-Link IE Field Network
Local station	A station that includes a CPU module and can communicate with the master station and other local stations. This station can create simplified CC-Link IE Controller Network by combining the master station and other local stations. The station can perform the cyclic transmission and transient transmission.
Main module	A module with the CC-Link IE Field Network communication function, which can be used as a single remote module.
Master station	A station that controls CC-Link IE Field Network. The station can communicate with all stations. Only one master station can be used in a network. The station can perform the cyclic transmission and transient transmission.
Master/local module	A generic term for the CC-Link IE Field Network master/local module
Network module	A generic term for the following modules: - CC-Link IE Field Network module - CC-Link IE Controller Network module - Ethernet interface module - MELSECNET/H module - MELSECNET/10 module
Relay station	A station that includes two or more network modules. Data are passed through this station to stations on other networks.
REMFR	The abbreviation for ZP.REMFR. This dedicated instruction is used in programs of the master/local module.
Remote buffer memory	Buffer memory in a remote device station
Remote device station	A station that deals with bit data and word data. The station can communicate with the master station and other local stations. The station cannot communicate with other remote I/O stations, remote device stations and intelligent device stations. The station can perform the cyclic transmission.

Term	\quad Description
Remote I/O station	A station that deals with bit data. The station can communicate with the master station and other local stations. The station cannot communicate with other remote I/O stations, remote device stations and intelligent device stations. The station can perform the cyclic transmission.
Remote input (RX)	Bit data input from a slave station to the master station (For some areas in a local station, data are output in the opposite direction.) Rea User's manual for the master/local module used
Remote output (RY) register (RWr)	Bit data output from the master station to a slave station (For some areas in a local station, data are output in the opposite direction.) Ra User's manual for the master/local module used
Remote register (RWw)	Word data input from a slave station to the master station (For some areas in a local station, data are output in the opposite direction.) Red User's manual for the master/local module used
REMTO	Word data output from the master station to a slave station (For some areas in a local station, data are output in the opposite direction.) Ra User's manual for the master/local module used
Reserved station	The abbreviation for ZP.REMTO. This dedicated instruction is used in programs of the master/local module.
Return	A station reserved for future use. This station is not actually connected, but counted as a connected station.
Slave station	A process of restarting data link when a station recovers from an error

PACKING LIST

The following items are included in the package of this product. Before use, check that all the items are included.

High-speed counter module

Module

Before Using the Product

CHAPTER 1

HIGH-SPEED COUNTER MODULE

This chapter describes the operation, the application, and the features of the high-speed counter module.
The high-speed counter module is a remote device station of the CC-Link IE Field Network whose maximum counting speed of input pulse is 8 Mpps (with differential input and 4 multiples of 2 phases).
The module has two channels and functions including the preset/replace function by external input or input from a master module, the latch counter function, counter function selection, external coincidence output by coincidence detection.

The following illustration shows the operation overview of the high-speed counter module.

1) Pulses input to a high-speed counter module are counted.
2) The preset/replace function can be performed, counting can be paused, and a counter value can be latched with an external control signal.
3) Status of the remote I/O signals, remote register, and remote buffer memory of a high-speed counter module can be checked with the program.
Also, counting can be started/stopped; and the preset/replace function and the coincidence output function can be performed.
4) The coincidence output signal can be output by the coincidence output function.

This module performs controls which are applicable to various applications by executing various functions according to count values of pulses input from the external device. The following describes an application example.

(1) Available flexible system configuration

Adopting the connection block type enables the combination of the main module and extension module.
Because various extension modules can be connected, a flexible configuration can be achieved.
In addition, a poor contact of the extension module can be found promptly because the main module always monitors the connection status of the extension module.

(2) Easy setting with CC IE Field configuration of the engineering tool

The CC IE Field configuration of the engineering tool makes it possible to set parameters on its window, thereby reducing the programs. In addition, the setting status and the operating status of modules can be checked easily.

Parameters for the NZ2GFCF-D62PD2

(3) Easy station number setting

Because of the rotary switch on the front of the module, setting and checking the station number are easy.

(4) Error history function

The history of 15 errors and occurrence time can be stored in the module.
The error history helps the investigation for the cause when a problem occurs.

(5) Pulse measurement function

Pulses can be measured with 100ns measurement resolution. The pulse width (ON width/OFF width) can be precisely measured. Various pulse measurement applications such as the workpiece length measurement or the transport/processing speed management of various types of transport equipment and processing equipment are available.

Example: Filling process (container type identification control)

(6) Coincidence output function

This function compares a preset value with the input count value. If they match, the function outputs a signal and thus the fixed-feed control is possible.

Control example: Drilling process (fixed-feed control)

（7）Cam switch function

According to the input count present value，the ON／OFF status of output can be set for every preset point without any program．More precise ON／OFF control is available without scan time effect．
An extension output module is required for using this function．

（8）PWM output function

Up to 200 kHz of the PWM waveform can be output．The duty ratio can be set by $0.1 \mu \mathrm{~s}$ and this enables precise output control．The PWM output function enables controls such as dimming control according to duty ratio modification．

Example：Lighting control

(9) CC-Link IE Field Network synchronous communication function

This function updates the count value in the synchronization cycle of a master station that supports the CC-Link IE Field Network synchronous communication function.
This allows the operation timing to match with slave stations sharing the same network.

CHAPTER 2 PART NAMEs

This chapter describes the part names of the high-speed counter module.

No.	Name	Description	
1)	Station number setting switch	A rotary switch for the following setting and test - Station Number Setting (5 Page 57, Section 6.1) - Unit Test (5 Page 246, Section 11.4) When operating the station number setting switch, use a slotted screwdriver with 3.5 mm or less width of the tip.	
2)	PW LED (green)	Indicates the power supply status of the module. - ON: Power supply ON - OFF: Power supply OFF	
	RUN LED (green)	Indicates the operating status of the module. - ON: Operating normally - OFF: When a major error occurs	
	MODE LED (green)	Indicates the mode status of the module. - ON: In online mode - Flashing: In unit test mode - OFF: At the unit test completion	
	D LINK LED (green)	Indicates the data - ON: Data link in - Flashing: Data lin - OFF: Data link n	mmunication status between the module and the master module. eration (cyclic transmission in progress) in operation (cyclic transmission stopped) performed (disconnected)
	ERR. LED (red)	Indicates the error - ON: A moderate - Flashing: A mino - OFF: Operating	tus of the module. ror or major error has occurred. rror (warning) has occurred. rmally
	CH1 $\phi \mathrm{A} / \phi \mathrm{B} / \phi \mathrm{Z}$ LED $\mathrm{CH} 2 \phi \mathrm{~A} / \phi \mathrm{B} / \phi \mathrm{Z}$ LED (green)	Indicates the inpu - ON: At voltage - OFF: At no volt	atus of the pulse input terminals in phase A, B, and Z. lication application
	CH1FNC/LAT LED CH2FNC/LAT LED (green)	Indicates the input - ON: At voltage a - OFF: At no volta	tus of the function/latch counter input terminal. lication application
	EQU1 to EQU4 LED (green)	Indicates the outpu - ON: Signal outpu - OFF: Signal outp	tatus of the coincidence output 1 to 4 terminals (EQU1 to EQU4). ON OFF
3)	P1	-	PORT1 connector for CC-Link IE Field Network (RJ45 connector) Connect an Ethernet cable. (W Page 67, Section 6.5) There are no restrictions on the connection order of the cables for the P1 connector and P2 connector.
		L ER LED (red)	- ON: The module has received abnormal data or the module is performing loopback. - OFF: The module has received normal data or the module is not performing loopback.
		LINK LED (green)	ON: Linkup in progress OFF: Linkdown in progress
	P2	-	PORT2 connector for CC-Link IE Field Network (RJ45 connector) Connect an Ethernet cable. (5 Page 67, Section 6.5) There are no restrictions on the connection order of the cables for the P1 connector and P2 connector.
		L ER LED (red)	
		LINK LED (green)	e as the P1)
4)	Terminal block for module power supply and FG	A terminal block to connect the module power supply (24VDC) and FG.	
5)	DIN rail hook	A hook to mount a module on a DIN rail	
6)	Connectors for external devices (40 pins)	Connectors for encoders, controllers, and others (For the terminal layouts, refer to Page 73, Section 6.6.3)	

No.	Name	Description
7$)$	Extension connector cover	A cover to protect a connector of an extension module. Do not remove the cover when an extension module is not connected to the connector.

Point ${ }^{P}$

When the phase Z of the encoder is connected to the phase Z pulse input terminal (Zn), a pulse is counted per rotation of the encoder. Therefore, lighting of the LEDs may be missed.

(1) Module status and LED status

The following table lists the correspondence between the module status and the LED status.

Module status		Data link status	LED status					
		PW LED	RUN LED	MODE LED	D LINK LED	ERR. LED		
Disconnecting			Disconnection	ON	ON	ON	OFF	OFF
Data link in operation		Data link in operation	ON	ON	ON	ON	OFF	
Reserved station specification in progress		Cyclic stop	ON	ON	ON	Flashing	OFF	
Link stop		Cyclic stop	ON	ON	ON	Flashing	OFF	
Unit test	In progress	-	ON	ON	Flashing	OFF	OFF	
	Normal completion	-	ON	ON	OFF	OFF	OFF	
	Abnormal completion	-	ON	ON	OFF	OFF	ON	
Communication error		Cyclic stop	ON	ON	ON	Flashing	OFF	
Error	Major	-	ON	OFF	*1	*2	ON ${ }^{* 3}$	
	Moderate	-	ON	ON	*1	*2	ON	
Warning	Minor	-	ON	ON	*1	*2	Flashing	

*1 Either of ON or OFF.
*2 Either of ON, Flashing, or OFF.
*3 When the module is failed, the LED may not turn on.

CHAPTER 3 sPECIFICATIons

This chapter describes the specifications of the high-speed counter module.

3.1 General Specifications

Item	Specifications					
Operating ambient temperature	0 to $55^{\circ} \mathrm{C}$					
Storage ambient temperature	-25 to $75^{\circ} \mathrm{C}$					
Operating ambient humidity Storage ambient humidity	5 to $95 \% \mathrm{RH}$, non-condensing					
Vibration resistance	Compliant with JIS B 3502 and IEC 61131-2		Frequency	Constant acceleration	Half amplitude	Number of sweeps
		Under intermittent vibration	5 to 8.4 Hz	-	3.5 mm	10 times each in X, Y, and Z directions
			8.4 to 150 Hz	$9.8 \mathrm{~m} / \mathrm{s}^{2}$	-	
		Under continuous vibration	5 to 8.4 Hz	-	1.75 mm	-
			8.4 to 150 Hz	$4.9 \mathrm{~m} / \mathrm{s}^{2}$	-	
Shock resistance	Compliant with JIS B 3502 and IEC 61131-2 ($147 \mathrm{~m} / \mathrm{s}^{2}, 3$ times each in X, Y, and Z directions)					
Operating atmosphere	No corrosive gases					
Operating altitude*1	0 to 2000 m					
Installation location	Inside a control panel* ${ }^{*}$					
Overvoltage category ${ }^{* 3}$	II or less					
Pollution degree ${ }^{*} 4$	2 or less					
Equipment class	Class I					

*1 Do not use or store the high-speed counter module under pressure higher than the atmospheric pressure of altitude 0 m . Doing so may cause malfunction. When using the high-speed counter module under pressure, please consult your local Mitsubishi representative.
*2 If the environment satisfies the operating ambient temperature, operating ambient humidity and other conditions, the module can be used even outside the control panel.
*3 This indicates the section of the power supply to which the equipment is assumed to be connected between the public electrical power distribution network and the machinery within premises. Category II applies to equipment for which electrical power is supplied from fixed facilities. The surge voltage withstand level for the equipment with the rated voltage of 300 V or less is 2500 V .
*4 This index indicates the degree to which conductive material is generated in terms of the environment in which the equipment is used. Pollution degree 2 is when only non-conductive pollution occurs. A temporary conductivity caused by condensing must be expected occasionally.

Point ${ }^{P}$

To use the high-speed counter module complying with the EMC Directive, refer to "EMC and Low Voltage Directives" in this manual. (

3.2 Performance Specifications

The following table shows the performance specifications of the high-speed counter module.

Item			Specifications	
Station type			Remote device station	
Availability of connecting extension module			Connectable (Max. one module)	
Counting speed switch setting ${ }^{* 1}$		-	Differential input	DC input
	1 multiple		10kpps/100kpps/200kpps/500kpps/1Mpps/2Mpps	10kpps/100kpps/200kpps
	2 multiples		10kpps/100kpps/200kpps/500kpps/1Mpps/2Mpps/ 4Mpps	10kpps/100kpps/200kpps
	4 multiples		10kpps/100kpps/200kpps/500kpps/1Mpps/2Mpps/ 4Mpps/8Mpps	10kpps/100kpps/200kpps
Number of channels			2 channels	
Count input signal	-		Differential input	DC input
	Phase		1-phase input (1 multiple/2 multiples), 2-phase input (1 multiple/2 multiples/4 multiples), CW/CCW	
	Signal level (ϕ A, ϕ B)		EIA Standards RS-422-A Differential line driver level (AM26LS31 [manufactured by Texas Instruments] or equivalent)	$5 / 24 \mathrm{VDC}, 4$ to 8 mA
Counter	-		Differential input	DC input
	Counting speed (Maximum) ${ }^{*} 2^{* 3}$		8Mpps (4 multiples of 2 phases)	200kpps
	Counting range		32-bit signed binary (-2147483648 to 2147483647)	
	Format		Count, subtraction count Linear counter format, ring counter format Preset/replace function, latch counter function	
	Minimum count pulse width ($\mu \mathrm{s}$) (Duty ratio 50\%)	1-phase input (1 multiple/2 multiples), CW/CCW	(Minimum pulse width in 2 multiples of 1 phase: $0.25 \mu \mathrm{~s})$	(Minimum pulse width in 2 multiples of 1 phase: $2.5 \mu \mathrm{~s})$
		2-phase input (1 multiple/2 multiples/4 multiples)	(Minimum pulse width in 4 multiples of 2 phases: $0.125 \mu \mathrm{~s}$)	(Minimum pulse width in 4 multiples of 2 phases: $5 \mu \mathrm{~s}$)

Item			Specifications	
Coincidence detection	Comparison range		32-bit signed binary	
	Comparison condition	Coincidence output	$\begin{aligned} & \hline \text { Setting value < Count value } \\ & \text { Setting value }=\text { Count value } \\ & \text { Setting value }>\text { Count value } \end{aligned}$	
		Within-range output	Setting value (lower limit value) \leq Count value \leq Setting value (upper limit value)	
		Out-of-range output	Count value < Setting value (lower limit value), Setting value (upper limit value) < Count value	
	Interrupt		None	
External input	Phase Z		Differential input	DC input
			EIA Standards RS-422-A Differential line driver level (AM26LS31 [manufactured by Texas Instruments] or equivalent): 2 points	5/24VDC, 4 to 8mA: 2 points
	Function		5/24VDC, 7 to 12mA: 2 points	
	Latch counter		5/24VDC, 7 to 12mA: 2 points	
External output	Coincidence output		Transistor (sink type) output: 4 points 5 to $24 \mathrm{VDC} 0.1 \mathrm{~A} /$ point, $0.4 \mathrm{~A} / \mathrm{common}$	
Pulse measurement	Measurement item		Pulse width (ON width/OFF width)	
	Measurement resolution		100ns	
	Measurement points		2 points/channel	
Cam switch	Number of output points		16 points	
	Number of steps per output point		Maximum 16 steps/point	
	Control cycle		0.5 ms	
	Difference between each output duration in a channel		Within the output response time of the extension output module	
PWM output	Output frequency range		DC and up to 200kHz	
	Duty ratio		Any ratio (Can be set by $0.1 \mu \mathrm{~s}$)	
Applicable wire size	For external device connection		0.088 to $0.3 \mathrm{~mm}^{2}$ (28 to 22 AWG) (A6CON1 and A6CON4) 0.088 to $0.24 \mathrm{~mm}^{2}$ (28 to 24 AWG) (A6CON2)	
	For power supply		Core: 0.5 to $1.5 \mathrm{~mm}^{2}$ (20 to 16 AWG)	
Applicable connector for external wiring			A6CON1, A6CON2, A6CON4 (sold separately)	
External power supply			24VDC (20.4 to 26.4VDC) Current consumption: 220mA	
Cyclic transmission	RX/RY points		80 points +16 points \times number of extension modules	
	RWr/RWw points		64 points	
Communication cable			An Ethernet cable that meets the 1000BASE-T standard: Category 5 e or higher (double shielded, STP), straight cable	
External dimensions			$133 \mathrm{~mm} \times 68 \mathrm{~mm} \times 50 \mathrm{~mm}$	
Weight			0.25 kg	
External connection system	Communication part		RJ45 connector	
	Module power supply part		Terminal block for module power supply and FG Tightening torque range for terminal screw (M2.5 screw): 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$	
Applicable DIN rail			TH35-7.5Fe, TH35-7.5AI (compliant with IEC 60715)	
Applicable solderless terminal	Terminal block for module power supply and FG		TE 0.5-10 (Nichifu Co. Ltd.) [Applicable wire size: $0.5 \mathrm{~mm}^{2}$] TE 0.75-10 (Nichifu Co. Ltd.) [Applicable wire size: $0.75 \mathrm{~mm}^{2}$] TE 1.0-10 (Nichifu Co. Ltd.) [Applicable wire size: 0.9 to $1.0 \mathrm{~mm}^{2}$] TE 1.5-10 (Nichifu Co. Ltd.) [Applicable wire size: 1.25 to $1.5 \mathrm{~mm}^{2}$] AI $0.5-10 \mathrm{WH}$ (PHOENIX CONTACT GmbH \& Co. KG) [Applicable wire size: $0.5 \mathrm{~mm}^{2}$] AI 0.75-10GY (PHOENIX CONTACT GmbH \& Co. KG) [Applicable wire size: $0.75 \mathrm{~mm}^{2}$] Al 1-10RD (PHOENIX CONTACT GmbH \& Co. KG) [Applicable wire size: $1.0 \mathrm{~mm}^{2}$] AI $1.5-10 \mathrm{BK}$ (PHOENIX CONTACT GmbH \& Co. KG) [Applicable wire size: $1.5 \mathrm{~mm}^{2}$]	

*1 Counting speed setting can be done using the parameter setting. (Ю Page 84, Section 7.1)
*2 Note that the count may be done incorrectly by inputting pulses whose phase difference is small between the phase A pulse and phase B pulse. To check the input waveform of the phase A pulse and phase B pulse, or to check phase difference between the phase A pulse and phase B pulse, refer to the following:
\checkmark Page 32, Section 3.2.1
*3 The counting speed is affected by the pulse rise/fall time. The applicable counting speed is listed below. Note that the count may be done incorrectly by counting pulses with long rise/fall time.

Counting speed switch setting	8Mpps	1Mpps	500kpps	200kpps	100kpps	10kpps	
	4Mpps						
	2Mpps						
Rise/fall time	Both 1- and 2-phase inputs						*Counting speed = 1/T (pps)
$\mathrm{t}=0.125 \mu \mathrm{~s}$	2Mpps	1Mpps	500 kpps	200kpps	100kpps	10kpps	
$t=0.25 \mu$ s or less	1Mpps	1Mpps	500 kpps	200kpps	100kpps	10kpps	
$t=0.5 \mu \mathrm{~s}$ or less	-	500kpps	500kpps	200kpps	100kpps	10kpps	
$t=1.25 \mu \mathrm{~s}$ or less	-	-	200kpps	200kpps	100kpps	10kpps	
$t=2.5 \mu$ or less	-	-	-	100kpps	100kpps	10kpps	
$t=25 \mu \mathrm{~s}$ or less	-	-	-	-	10kpps	10kpps	
$\mathrm{t}=500 \mu \mathrm{~s}$	-	-	-	-	-	500pps	$\left.\rightarrow\right\|_{t} \leftrightarrow \rightarrow{ }_{t}$

3.2.1 The input waveform and the phase difference between phase A pulse and phase B pulse

The count may be done incorrectly by inputting pulses whose phase difference is small between the phase A pulse and phase B pulse in 2-phase input.
The following figures show the pulse waveform to be input and the phase difference between the phase A pulse and phase B pulse. (Though the following are the cases for the differential input, they are also applied to the DC input.) Though the following are the pulse waveform to be input and the phase difference measured at the maximum counting speed of each pulse input condition, they are also applied to the case measured at under the maximum counting speed.

(1) Input waveform in 1-phase input

Input pulse waveform in 1-phase input must satisfy the condition shown below (the duty ratio is 50%).

$$
\begin{aligned}
\mathrm{t}(=\mathrm{tH}+\mathrm{tL}) & \geq 0.5 \mu \mathrm{~s} \\
\mathrm{th}, \mathrm{tL} & \geq 0.25 \mu \mathrm{~s}(=0.5 \times \mathrm{t})
\end{aligned}
$$

(2) Phase difference in 2-phase input

Input pulse waveform in 2-phase input must satisfy the above condition (the condition required for 1-phase input) and the conditions shown below.
$\mathrm{t} 1, \mathrm{t} 2, \mathrm{t} 3, \mathrm{t} 4 \geqq 0.125 \mu \mathrm{~s}(=0.25 \times \mathrm{t})$

3.3 Calculating Current Consumption

The total current consumption of the modules is calculated by summing the module power supply current in the main module and extension module.
The power supply current in the extension module must be within 30 mA .
For the value of the module power supply current, refer to the specifications of each module.

- Performance specifications of the high-speed counter module (\wp Page 29, Section 3.2)
- Performance specifications of extension I/O module ([] CC-Link IE Field Network Remote I/O Module User's Manual)
The value of the module power supply current in the extension module described in the specifications is the value of the module power supply current supplied from the main module.

High-speed counter module

NZ2GFCF-D62PD2
Module power supply current: 220 mA

Extension module

NZ2EX2B1-16T
250 mA
Module power supply current: $30 \mathrm{~mA}{ }^{=}$(Total current consumption)

3.4 Function List

The following table lists the functions of the high-speed counter module.

Function name			Description	Operation mode*1	Reference
Linear counter function			This function counts pulses between -2147483648 and 2147483647, and detects an overflow/underflow when the count value is outside the range.	Normal mode	Page 107, Section 8.4.1
Ring counter function			This function repeatedly counts pulses between the upper limit value and lower limit value of the ring counter.		Page 109, Section 8.4.2
Comparison output function	-		This function compares the count value with the preset comparison condition, and outputs ON/OFF signals when they match.		Page 114, Section 8.5
	Coincidence output function	-	This function compares the present count value with the preset coincidence detection point or a detection area and outputs ON/OFF signals from the coincidence output terminal when they match.		Page 116, Section 8.5.2
		Preset/replace (at coincidence output) function	This function replaces the count value with any preset numerical value at the rising edge of Coincidence output 1 and 2.		Page 126, Section 8.5.3
	Cam switch function		This function compares the count value with the preset output status (ON/OFF address) of the coincidence output, and outputs ON/OFF signals from the extension output module when they match. The points for ON/OFF switch can be used up to 16 points. An extension output module is required for using this function.		Page 129, Section 8.5.4
Preset/replace function			This function replaces the count value with any preset numerical value. This function can be used with either of the following. - CHD Preset/replace command (RY21, RY39) - CHロ Phase Z input terminal (Z1, Z2) of the connector for external devices		Page 134, Section 8.6
Latch counter function		-	This function acquires the count value and stores it in the remote register.		-
		Latch counter function by latch counter input terminal	This function stores the count value in the remote register. - This function uses $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2) of the connector for external devices.		Page 139, Section 8.7
		Latch counter function by counter function selection	This function stores the count value in the remote register. This function can be used with either of the following. - CH \square Selected counter function start command (RY25, RY3D) - CHD Function input terminal (FUNC1, FUNC2) of the connector for external devices		Page 145, Section 8.10

Function name		Description	Operation mode ${ }^{* 1}$	Reference
Counter function selection	-	This function executes the counter function selection using both the program and $\mathrm{CH} \square$ Function input terminal (FUNC1, FUNC2) of the connector for external devices, or using either of them.	Normal mode	Page 141, Section 8.8
	Count disable function	This function stops counting pulses while CHD Count enable command (RY24, RY3C) is on.		Page 143, Section 8.9
	Latch counter function	This function acquires the count value and stores it in the remote register.		Page 145, Section 8.10
	Sampling counter function	This function counts pulses that are input during the preset sampling period.		Page 148, Section 8.11
	Periodic pulse counter function	This function stores the present value and difference value to the corresponding remote registers by the preset cycle time.		Page 151, Section 8.12
	Count disable/preset/r eplace function	According to the status change of CH Function input terminal (FUNC1, FUNC2) of the connector for external devices, this function executes the count disable function and preset/replace function without switching the functions.		Page 154, Section 8.13
	Latch counter/preset/r eplace function	According to the status change of CH Function input terminal (FUNC1, FUNC2) of the connector for external devices, this function executes the latch counter function and preset/replace function without switching the functions.		Page 156, Section 8.14
CC-Link IE Field Network synchronous communication function		This function updates CHD Present value (RWr10 to RWr11, RWr28 to RWr29) in the synchronization cycle of a master station that supports the CC-Link IE Field Network synchronous communication function. This allows the operation timing to match with other slave stations sharing the same network.		Page 159, Section 8.15
Frequency measurement function		This function counts the pulses of the pulse input terminals in phase A and B, and automatically calculates the frequency.	Frequency measurement mode	Page 162, Section 8.16
Rotation speed measurement function		This function counts the pulses of the pulse input terminals in phase A and B , and automatically calculates the rotation speed.	Rotation speed measurement mode	Page 166, Section 8.17
Pulse measurement function		This function measures CH Function input terminal (FUNC1, FUNC2) or CHD Latch counter input terminal (LATCH1, LATCH2) of the connector for external devices, and calculates the ON width.	Pulse measurement mode	Page 170, Section 8.18
PWM output function		This function outputs the specified PWM waveform from any coincidence output 1 to 4 terminals (EQU1 to EQU4).	PWM output mode	Page 174, Section 8.19

Function name		Operation mode	Reference

3.5
 List of Remote I/O Signals

This section lists I/O signals for a master/local module.
In the example of the I/O signal assignment described in this section, the remote I/O signals of the main module are assigned to the I/O numbers of RX0 to RX4F and RY0 to RY4F.
Remote input ($R X$) indicates the input signal from the high-speed counter module to the master/local module.
Remote output (RY) indicates the output signal from the master/local module to the high-speed counter module.
The remote I/O signals of the main module and extension module are assigned as shown below.

Module	Remote input (RX)	Remote output (RY)
Main module	RX0 to RX4F	RY0 to RY4F
Extension module 1	RX50 to RX5F	RY50 to RY5F

For details on the remote I/O signals, refer to the following.
\leftrightarrow Page 256, Appendix 1

Module type	Remote input		Remote output	
	Signal direction: High-speed counter module \rightarrow Master/local module		Signal direction: Master/local module \rightarrow Highspeed counter module	
	Device number	Description	Device number	Description
Main module	RX0	Use prohibited	RYO	Use prohibited
	RX1	Use prohibited	RY1	Use prohibited
	RX2	Use prohibited	RY2	Use prohibited
	RX3	Use prohibited	RY3	Use prohibited
	RX4	Use prohibited	RY4	Use prohibited
	RX5	Use prohibited	RY5	Use prohibited
	RX6	Use prohibited	RY6	Use prohibited
	RX7	Warning status flag	RY7	Use prohibited
	RX8	Initial data processing request flag	RY8	Initial data processing completion flag
	RX9	Initial data setting completion flag	RY9	Initial data setting request flag
	RXA	Error status flag	RYA	Use prohibited
	RXB	Remote READY	RYB	Use prohibited
	RXC	Use prohibited	RYC	Use prohibited
	RXD	Use prohibited	RYD	Use prohibited
	RXE	Use prohibited	RYE	Use prohibited
	RXF	Use prohibited	RYF	Use prohibited
	RX10	Coincidence output 1	RY10	Reset command (Coincidence output 1)
	RX11	Coincidence output 2	RY11	Reset command (Coincidence output 2)
	RX12	Coincidence output 3	RY12	Reset command (Coincidence output 3)

Module type	Remote input		Remote output	
	Signal direction: High-speed counter module \rightarrow Master/local module		Signal direction: Master/local module \rightarrow Highspeed counter module	
	Device number	Description	Device number	Description
Main module	RX13	Coincidence output 4	RY13	Reset command (Coincidence output 4)
	RX14	Setting change completed (Coincidence output 1)	RY14	Setting change request (Coincidence output 1)
	RX15	Setting change completed (Coincidence output 2)	RY15	Setting change request (Coincidence output 2)
	RX16	Setting change completed (Coincidence output 3)	RY16	Setting change request (Coincidence output 3)
	RX17	Setting change completed (Coincidence output 4)	RY17	Setting change request (Coincidence output 4)
	RX18	Use prohibited	RY18	Enable command (Coincidence output 1)
	RX19	Use prohibited	RY19	Enable command (Coincidence output 2)
	RX1A	Use prohibited	RY1A	Enable command (Coincidence output 3)
	RX1B	Use prohibited	RY1B	Enable command (Coincidence output 4)
	RX1C	Use prohibited	RY1C	Use prohibited
	RX1D	Use prohibited	RY1D	Use prohibited
	RX1E	Use prohibited	RY1E	Use prohibited
	RX1F	External power supply monitor state flag (for extension output module)	RY1F	External power supply monitor request flag (for extension output module)
	RX20	Use prohibited	RY20	CH1 Coincidence output enable command
	RX21	CH1 Preset/replace completion	RY21	CH1 Preset/replace command
	RX22	Use prohibited	RY22	CH1 Count down command
	RX23	CH1 External preset/replace (Z Phase) request detection	RY23	CH1 External preset/replace (Z Phase) request detection reset command
	RX24	Use prohibited	RY24	CH1 Count enable command
	RX25	CH1 Counter function detection	RY25	CH1 Selected counter function start command
	RX26	CH1 Cam switch execute/PWM output	RY26	CH1 Cam switch execute command/PWM output start command
	RX27	CH 1 Setting change completed (Sampling counter/Periodic pulse counter)	RY27	CH1 Setting change request (Sampling counter/Periodic pulse counter)
	RX28	CH1 Update flag reset completed (Latch count value/Sampling count value/Periodic pulse count value)	RY28	CH1 Update flag reset command (Latch count value/Sampling count value/Periodic pulse count value)
	RX29	CH1 Update flag (Latch count value/Sampling count value/Periodic pulse count value)	RY29	Use prohibited
	RX2A	CH1 Latch count value update flag reset completed (Latch counter input terminal)	RY2A	CH1 Latch count value update flag reset command (Latch counter input terminal)
	RX2B	CH1 Latch count value update flag (Latch counter input terminal)	RY2B	Use prohibited
	RX2C	CH1 Update flag reset completed (Measured frequency value/Measured rotation speed value)	RY2C	CH1 Update flag reset command (Measured frequency value/Measured rotation speed value)
	RX2D	CH1 Update flag (Measured frequency value/Measured rotation speed value)	RY2D	Use prohibited
	RX2E	Use prohibited	RY2E	Use prohibited
	RX2F	Use prohibited	RY2F	Use prohibited
	RX30	Use prohibited	RY30	CH1 Pulse measurement start command (Function input terminal)

Module type	Remote input		Remote output	
	Signal direction: High-speed counter module \rightarrow Master/local module		Signal direction: Master/local module \rightarrow Highspeed counter module	
	Device number	Description	Device number	Description
Main module	RX31	CH 1 Measured pulse value update flag reset completed (Function input terminal)	RY31	CH 1 Measured pulse value update flag reset command (Function input terminal)
	RX32	CH1 Measured pulse value update flag (Function input terminal)	RY32	CH1 Pulse measurement start command (Latch counter input terminal)
	RX33	CH 1 Measured pulse value update flag reset completed (Latch counter input terminal)	RY33	CH1 Measured pulse value update flag reset command (Latch counter input terminal)
	RX34	CH1 Measured pulse value update flag (Latch counter input terminal)	RY34	Use prohibited
	RX35	CH1 ON width setting change completed (PWM output)	RY35	CH1 ON width setting change request (PWM output)
	RX36	CH1 Error status	RY36	CH1 Error reset command
	RX37	CH1 Warning status	RY37	Use prohibited
	RX38	Use prohibited	RY38	CH2 Coincidence output enable command
	RX39	CH2 Preset/replace completion	RY39	CH 2 Preset/replace command
	RX3A	Use prohibited	RY3A	CH2 Count down command
	RX3B	CH2 External preset/replace (Z Phase) request detection	RY3B	CH2 External preset/replace (Z Phase) request detection reset command
	RX3C	Use prohibited	RY3C	CH2 Count enable command
	RX3D	CH 2 Counter function detection	RY3D	CH 2 Selected counter function start command
	RX3E	CH2 Cam switch execute/PWM output	RY3E	CH2 Cam switch execute command/PWM output start command
	RX3F	CH2 Setting change completed (Sampling counter/Periodic pulse counter)	RY3F	CH2 Setting change request (Sampling counter/Periodic pulse counter)
	RX40	CH2 Update flag reset completed (Latch count value/Sampling count value/Periodic pulse count value)	RY40	CH2 Update flag reset command (Latch count value/Sampling count value/Periodic pulse count value)
	RX41	CH2 Update flag (Latch count value/Sampling count value/Periodic pulse count value)	RY41	Use prohibited
	RX42	CH2 Latch count value update flag reset completed (Latch counter input terminal)	RY42	CH2 Latch count value update flag reset command (Latch counter input terminal)
	RX43	CH2 Latch count value update flag (Latch counter input terminal)	RY43	Use prohibited
	RX44	CH 2 Update flag reset completed (Measured frequency value/Measured rotation speed value)	RY44	CH2 Update flag reset command (Measured frequency value/Measured rotation speed value)
	RX45	CH2 Update flag (Measured frequency value/Measured rotation speed value)	RY45	Use prohibited
	RX46	Use prohibited	RY46	Use prohibited
	RX47	Use prohibited	RY47	Use prohibited
	RX48	Use prohibited	RY48	CH 2 Pulse measurement start command (Function input terminal)
	RX49	CH2 Measured pulse value update flag reset completed (Function input terminal)	RY49	CH2 Measured pulse value update flag reset command (Function input terminal)
	RX4A	CH 2 Measured pulse value update flag (Function input terminal)	RY4A	CH2 Pulse measurement start command (Latch counter input terminal)
	RX4B	CH2 Measured pulse value update flag reset completed (Latch counter input terminal)	RY4B	CH2 Measured pulse value update flag reset command (Latch counter input terminal)

Module type	Remote input		Remote output	
	Signal direction: High-speed counter module \rightarrow Master/local module		Signal direction: Master/local module \rightarrow Highspeed counter module	
	Device number	Description	Device number	Description
Main module	RX4C	CH 2 Measured pulse value update flag (Latch counter input terminal)	RY4C	Use prohibited
	RX4D	CH2 ON width setting change completed (PWM output)	RY4D	CH 2 ON width setting change request (PWM output)
	RX4E	CH2 Error status	RY4E	CH2 Error reset command
	RX4F	CH2 Warning status	RY4F	Use prohibited
Extension module 1	RX50 to RX5F	Remote input (RX) of the connected extension module is assigned.	RY50 to RY5F	Remote output (RY) of the connected extension module is assigned.

Point ${ }^{\rho}$
Do not use any "Use prohibited" remote I/O signals. If any of the signals are used, correct operation of the module cannot be guaranteed.

(1) Remote I/O signal of the extension module

The remote I/O signal differs depending on the model of the extension module.

- Extension I/O module

Refer to the following.
[] CC-Link IE Field Network Remote I/O Module User's Manual

This section lists remote registers for a master/local module.
In the example of the remote register assignment described in this section, the remote registers of the main module are assigned to the remote registers of RWr0 to RWr3F and RWw0 to RWw3F.
The remote registers are assigned per station regardless of the main module or the extension module.
Remote register (RWr) is the information input from the high-speed counter module to the master/local module.
Remote register (RWW) is the information output from the master/local module to the high-speed counter module.
For details on the remote register, refer to the following.
\mapsto Page 275, Appendix 2

Remote register (RWr) signal direction: High-speed counter module \rightarrow Master/local module		Remote register (RWw) signal direction: Master/local module \rightarrow High-speed counter module	
Device number	Description	Device number	Description
RWrO	Counter value greater/smaller signal	RWw0	Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1)
RWr1	EQU1 to EQU4 terminal status	RWw1	
RWr2	Cam switch output signal	RWw2	Upper limit value setting (Coincidence output 1)
RWr3	Cam switch output terminal status	RWw3	
RWr4	Use prohibited	RWw4	Point setting (Coincidence output 2)/Lower limit value setting (Coincidence output 2)
RWr5	Use prohibited	RWw5	
RWr6	Use prohibited	RWw6	Upper limit value setting (Coincidence output 2)
RWr7	Use prohibited	RWw7	
RWr8	Use prohibited	RWw8	Point setting (Coincidence output 3)/Lower limit value setting (Coincidence output 3)
RWr9	Use prohibited	RWw9	
RWrA	Use prohibited	RWwA	Upper limit value setting (Coincidence output 3)
RWrB	Use prohibited	RWwB	
RWrC	Use prohibited	RWwC	Point setting (Coincidence output 4)/Lower limit value setting (Coincidence output 4)
RWrD	Use prohibited	RWwD	
RWrE	Use prohibited	RWwE	Upper limit value setting (Coincidence output 4)
RWrF	Use prohibited	RWwF	
RWr10	CH 1 Present value	RWw10	CH 1 Ring counter lower limit value
RWr11		RWw11	
RWr12	CH1 Latch count value/Sampling count value/Periodic pulse count, difference value	RWw12	CH 1 Ring counter upper limit value
RWr13		RWw13	
RWr14	CH 1 Periodic pulse count, present value	RWw14	CH 1 Preset value setting
RWr15		RWw15	
RWr16	CH 1 Periodic pulse count value update check	RWw16	CH1 Time unit setting (Sampling counter/Periodic pulse counter)
RWr17		RWw17	CH1 Cycle setting (Sampling counter/Periodic pulse counter)
RWr18	CH 1 Latch count value (Latch counter input terminal)	RWw18	CH1 Time unit setting (Frequency measurement/Rotation speed measurement)
RWr19		RWw19	CH1 Moving average count (Frequency measurement/Rotation speed measurement)
RWr1A	CH 1 Measured frequency value/Measured rotation speed value	RWw1A	CH 1 Number of pulses per rotation
RWr1B		RWw1B	
RWr1C	CH 1 Measured pulse value (Function input terminal)	RWw1C	Use prohibited
RWr1D		RWw1D	CH1 PWM output assignment setting

Remote register (RWr) signal direction: High-speed counter module \rightarrow Master/local module		Remote register (RWw) signal direction: Master/local module \rightarrow High-speed counter module	
Device number	Description	Device number	Description
RWr1E	CH 1 Measured pulse value (Latch counter input terminal)	RWw1E	CH 1 ON width setting (PWM output)
RWr1F		RWw1F	
RWr20	CH1 Status	RWw20	CH 1 Cycle setting (PWM output)
RWr21	CH1 External input status	RWw21	
RWr22	CH1 Latest error code	RWw22	Use prohibited
RWr23	CH1 Latest warning code	RWw23	Use prohibited
RWr24	Use prohibited	RWw24	Use prohibited
RWr25	Use prohibited	RWw25	Use prohibited
RWr26	Use prohibited	RWw26	Use prohibited
RWr27	Use prohibited	RWw27	Use prohibited
RWr28	CH 2 Present value	RWw28	CH2 Ring counter lower limit value
RWr29		RWw29	
RWr2A	CH2 Latch count value/Sampling count value/Periodic pulse count, difference value	RWw2A	CH 2 Ring counter upper limit value
RWr2B		RWw2B	
RWr2C	CH 2 Periodic pulse count, present value	RWw2C	CH 2 Preset value setting
RWr2D		RWw2D	
RWr2E	CH 2 Periodic pulse count value update check	RWw2E	CH2 Time unit setting (Sampling counter/Periodic pulse counter)
RWr2F		RWw2F	CH2 Cycle setting (Sampling counter/Periodic pulse counter)
RWr30	CH 2 Latch count value (Latch counter input terminal)	RWw30	CH2 Time unit setting (Frequency measurement/Rotation speed measurement)
RWr31		RWw31	CH2 Moving average count (Frequency measurement/Rotation speed measurement)
RWr32	CH2 Measured frequency value/Measured rotation speed value	RWw32	CH 2 Number of pulses per rotation
RWr33		RWw33	
RWr34	CH 2 Measured pulse value (Function input terminal)	RWw34	Use prohibited
RWr35		RWw35	CH2 PWM output assignment setting
RWr36	CH 2 Measured pulse value (Latch counter input terminal)	RWw36	CH 2 ON width setting (PWM output)
RWr37		RWw37	
RWr38	CH2 Status	RWw38	CH 2 Cycle setting (PWM output)
RWr39	CH 2 External input status	RWw39	
RWr3A	CH2 Latest error code	RWw3A	Use prohibited
RWr3B	CH 2 Latest warning code	RWw3B	Use prohibited
RWr3C	Use prohibited	RWw3C	Use prohibited
RWr3D	Use prohibited	RWw3D	Use prohibited
RWr3E	Use prohibited	RWw3E	Use prohibited
RWr3F*1	Use prohibited	RWw3F*1	Use prohibited

Point ${ }^{\rho}$

Do not read or write the data to/from any "Use prohibited" remote registers. If the data is read or written from/to any of the registers, correct operation of the module cannot be guaranteed.
The remote register information is not stored in the nonvolatile memory of the high-speed counter module. Thus, the remote register information is initialized by turning off then on the power supply of the high-speed counter module.

3.7 List of Remote Buffer Memory

This section lists remote buffer memory areas of the high-speed counter module.
The remote buffer memory areas of the main module and extension module are assigned as shown below.

Ex. Example of the remote buffer memory in the manual

For details on the remote buffer memory, refer to the following.

- Details of Remote Buffer Memory Addresses (

For details on the remote buffer memory of the connected extension module, refer to the following.

- [] User's manual for the connected extension module
\bigcirc : Access permitted \times : Access not permitted

Buffer memory address		Area	Description		Access method	
Decimal	Hexadecimal				CC IE Field configuration of engineering tool	REMFR instruction, REMTO instruction ${ }^{* 1}$
0 to 255	0000_{H} to $00 \mathrm{FF}_{\mathrm{H}}$	Parameter area	Station-based parameter data		*2	\bigcirc
256 to 511	0100_{H} to $01 \mathrm{FF}_{\mathrm{H}}$		Module-based parameter data	Main module		
512 to 767	0200_{H} to $02 \mathrm{FF}_{\mathrm{H}}$			Extension module 1		
768 to 1279	0300_{H} to $04 \mathrm{FF}_{\mathrm{H}}$			System area		
1280 to 1535	0500_{H} to $05 \mathrm{FF}_{\mathrm{H}}$	Monitoring area	System area		\times	\bigcirc
1536 to 1791	0600_{H} to $06 \mathrm{FF}_{\mathrm{H}}$		Module-based monitoring data	Main module		
1792 to 2047	0700_{H} to $07 \mathrm{FF}_{\mathrm{H}}$			Extension module 1		
2048 to 2559	0800_{H} to $09 \mathrm{FF} \mathrm{H}_{\mathrm{H}}$			System area		
2560 to 4095	$0 \mathrm{AOO} 0_{\mathrm{H}}$ to $0 \mathrm{FFF}_{\mathrm{H}}$	Error history area	Station-based error history data		${ }^{* 2}$	\bigcirc
4096 to 4351	1000_{H} to $10 \mathrm{FF}_{\mathrm{H}}$	Module control data area	Station-based control data		\times	\bigcirc
4352 to 4607	1100_{H} to $11 \mathrm{FF}_{\mathrm{H}}$		Module-based control data	System area		
4608 to 4863	1200_{H} to $12 \mathrm{FF}_{\mathrm{H}}$			Extension module 1		
4864 to 5375	1300_{H} to $14 \mathrm{FF}_{\mathrm{H}}$			System area		
5376 to 8191	1500_{H} to $1 \mathrm{FFF}_{\mathrm{H}}$	Extended parameter area	Cam switch function parameter data		\times	\bigcirc

*1 For the REMFR and REMTO instructions, refer to the following.
[]] User's manual for the master/local module used
*2 For the access method, refer to the following.

- Parameter area (
- Error history area (\wp Page 221, Section 11.1)

Point ${ }^{9}$

Do not access the system area using the REMFR or REMTO instruction. Doing so may cause the module to malfunction.

(1) Parameter area (address: 0000_{H} to $04 \mathrm{FF}_{\mathrm{H}}$)

For the parameter area, parameters can be set using the CC IE Field configuration of the engineering tool or using the REMTO instruction.
The parameter in the parameter area is backed up to the nonvolatile memory.
The parameter backed up to the nonvolatile memory is read to the parameter area when the module power supply is turned off then on or the module returns from remote reset.

If the parameter is written from the parameter setting of the CC IE Field configuration of the engineering tool, it is also written to the nonvolatile memory at that time. When the parameter is written using the REMTO instruction, it is written to the nonvolatile memory when Initial data setting request flag (RY9) is turned off then on. At this time, the parameter is written to the nonvolatile memory even though it is incorrect. When the power supply is turned off then on with an incorrect parameter written, the incorrect parameter is read from the nonvolatile memory and an error code is stored to CHロ Latest error code (RWr22, RWr3A). Take corrective action according to the error code list. (5 Page 225, Section 11.2)

Type	Address		Description	Default ${ }^{* 1}$	Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal			
Station-based parameter data	0	0000 ${ }_{\text {H }}$	Mode switch setting	9	R/W
	1	$0^{0001}{ }^{\text {H }}$	Input response time setting	$0^{0005}{ }_{\text {H }}$	R/W
	2	0002 ${ }_{\text {H }}$	Output HOLD/CLEAR setting	$0^{0000}{ }_{H}$	R/W
	3	$0^{0003}{ }_{\text {H }}$	Cyclic data update watch time setting	0	R/W
	4 to 255	0004_{H} to $00 \mathrm{FF}_{\mathrm{H}}$	System area	-	-

Type	Address		Description	Default ${ }^{* 1}$	Read/Write*2
	Decimal	Hexadecimal			
Module-based parameter data (main module)	256	$0^{0100}{ }_{H}$	Comparison output setting	0	R/W
	257	$0^{0101_{H}}$	Coincidence output channel assignment setting	0000 ${ }_{\text {H }}$	R/W
	258	0102H	Coincidence output comparison condition setting	$000 \mathrm{H}_{\mathrm{H}}$	R/W
	259	0103_{H}	Preset/replace setting at coincidence output	$0^{0000}{ }_{H}$	R/W
	260	$0^{0104}{ }_{H}$	Cam switch output unit assignment setting	0	R/W
	261	$0^{0105_{H}}$	Cam switch output channel assignment setting	$0^{0000}{ }_{H}$	R/W
	262	$0^{0106_{H}}$	Coincidence output enable command setting	0	R/W
	263 to 287	0107_{H} to $011 \mathrm{~F}_{\mathrm{H}}$	System area	-	-
	288	$0^{0120}{ }_{H}$	CH 1 Operation mode setting	0	R/W
	289	0121H	CH1 Count source selection	0	R/W
	290	0122H	CH1 Pulse input mode	0	R/W
	291	0123 ${ }_{\text {H }}$	CH1 Counting speed setting	0	R/W
	292	$0^{0124}{ }_{H}$	CH1 Counter format	0	R/W
	293	$0^{0125}{ }_{\text {H }}$	CH1 Phase Z setting	$0^{0000}{ }_{H}$	R/W
	294	$0^{0126_{H}}$	CH 1 Counter function selection	0	R/W
	295	$0^{0127_{H}}$	CH1 Function input logic setting	0	R/W
	296	$0^{0128}{ }_{H}$	CH1 Latch counter input logic setting	0	R/W
	297	$0^{0129}{ }_{\text {H }}$	CH1 External control input response time setting	$002 A_{H}$	R/W
Module-based parameter data (main module)	298	$012 A_{H}$	CH1 Pulse measurement setting (Function input terminal)	0	R/W
	299	${ }^{012} \mathrm{~B}_{\mathrm{H}}$	CH1 Pulse measurement setting (Latch counter input terminal)	0	R/W
	300 to 319	$012 \mathrm{C}_{\mathrm{H}}$ to $013 \mathrm{~F}_{\mathrm{H}}$	System area	-	-
	320	$0140^{\text {H }}$	CH2 Operation mode setting	0	R/W
	321	$0^{0141_{H}}$	CH2 Count source selection	0	R/W
	322	$0^{0142_{H}}$	CH2 Pulse input mode	0	R/W
	323	0143_{H}	CH2 Counting speed setting	0	R/W
	324	$0^{0144}{ }_{H}$	CH 2 Counter format	0	R/W
	325	$0^{0145}{ }_{\text {H }}$	CH2 Phase Z setting	$0^{0000}{ }_{H}$	R/W
	326	0146 ${ }_{\text {H }}$	CH 2 Counter function selection	0	R/W
	327	$0^{0147_{H}}$	CH2 Function input logic setting	0	R/W
	328	$0^{0148_{H}}$	CH2 Latch counter input logic setting	0	R/W
	329	$0149^{\text {H }}$	CH 2 External control input response time setting	$002 A_{H}$	R/W
	330	$0^{014} \mathrm{~A}_{\mathrm{H}}$	CH2 Pulse measurement setting (Function input terminal)	0	R/W
	331	$014 B^{\text {H }}$	CH 2 Pulse measurement setting (Latch counter input terminal)	0	R/W
	332 to 511	$014 \mathrm{C}_{\mathrm{H}}$ to $01 \mathrm{FF}_{\mathrm{H}}$	System area	-	-
Module-based parameter data (extension module 1)	512 to 767	0200_{H} to $02 \mathrm{FF}_{\mathrm{H}}$	The remote buffer memory of the connected extension module is assigned.	-	-
-	768 to 1279	0300_{H} to $04 \mathrm{FF}_{\mathrm{H}}$	System area	-	-

*1 This is the value at default or initialization by Parameter area initialization command (address: 1002 ${ }_{\mathrm{H}}$).
*2 This shows whether read or write from programs is possible.
R: Readable
W: Writable

Point ${ }^{\rho}$

To activate the parameter data, turn off then on Initial data setting request flag (RY9). Writing the parameter data to the parameter area does not activate the parameter data.
(a) Parameter area of the extension module

The remote buffer memory differs depending on the model of the extension module.

- For the extension I/O module, refer to the CC-Link IE Field Network Remote I/O Module User's Manual.

(2) Monitoring area (address: 0500_{H} to $09 \mathrm{FF}_{\mathrm{H}}$)

Type	Address		Name	Default ${ }^{* 1}$	Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal			
Station-based monitoring data	1280 to 1535	$0^{0500}{ }_{H}$ to $05 \mathrm{FF}_{\mathrm{H}}$	System area	-	-
Module-based monitoring data (main module)	1536	06000^{H}	Channel assignment (Coincidence output 1 to 4)	0000_{H}	R
	1537 to 1567	0601_{H} to $061 \mathrm{~F}_{\mathrm{H}}$	System area	-	-
	1568	$0^{0620}{ }_{H}$	CH1 Operation mode	0	R
	1569	0621_{H}	CH1 Selected counter function	0	R
	1570 to 1599	$0^{0622}{ }_{\text {H }}$ to $063 \mathrm{~F}_{\mathrm{H}}$	System area	-	-
	1600	$0^{0640}{ }_{H}$	CH2 Operation mode	0	R
	1601	0641_{H}	CH 2 Selected counter function	0	R
	1602 to 1791	0642_{H} to $06 \mathrm{FF}_{\mathrm{H}}$	System area	-	-
Module-based monitoring data (extension module 1)	1792 to 2047	0700_{H} to $07 \mathrm{FF}_{\mathrm{H}}$	The remote buffer memory of the connected extension module is assigned.	-	-
-	2048 to 2559	0800_{H} to $09 \mathrm{FF}_{\mathrm{H}}$	System area	-	-

*1 This is the value for when the module power supply is turned off then on or at the remote reset.
*2 This shows whether read or write from programs is possible.
R: Readable
W: Writable

(a) Monitoring area of the extension module

The remote buffer memory differs depending on the model of the extension module.

- For the extension I/O module, refer to the CC-Link IE Field Network Remote I/O Module User's Manual.
(3) Error history area (address: $0 \mathrm{~A} 00_{\mathrm{H}}$ to $0 \mathrm{FFF}_{\mathrm{H}}$)

Type	Address		Description		Default ${ }^{* 1}$	Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal				
Stationbased error history data	2560	$\mathrm{OAOO}_{\mathrm{H}}$	Error history 1	Error code	0000_{H}	R
	2561	$\mathrm{OAO1}_{\mathrm{H}}$		Order of generation	$0^{0000}{ }_{H}$	R
	2562	$\mathrm{OAO}^{\text {H }}$		[Error time] First two digits of the year/Last two digits of the year	$0^{0000}{ }_{H}$	R
	2563	$\mathrm{OAO}_{\mathrm{H}}$		[Error time] Month/Day	$0^{0000}{ }_{H}$	R
	2564	$\mathrm{OAO4}_{\mathrm{H}}$		[Error time] Hour/Minute	$\mathbf{0 0 0 0}_{\mathrm{H}}$	R
	2565	$\mathrm{OAO5}_{\mathrm{H}}$		[Error time] Second $/ 00_{\mathrm{H}}$ (Fixed)	$0^{0000}{ }_{H}$	R
	2566	$\mathrm{OAO6}_{\mathrm{H}}$		Error code details 1	0000_{H}	R
	2567	$\mathrm{OAO7}_{\mathrm{H}}$		Error code details 2	$0^{0000}{ }_{H}$	R
	2568	$\mathrm{OAO}_{\mathrm{H}}$		Error code details 3	$0^{0000}{ }_{H}$	R
	2569	$\mathrm{OAO9}_{\mathrm{H}}$		Error code details 4	$0^{0000}{ }_{H}$	R
	2570	$\mathrm{OAOA}_{\mathrm{H}}$		Error code details 5	$0^{0000}{ }_{H}$	R
	2571	$\mathrm{OAOB}_{\mathrm{H}}$		Error code details 6	$0^{0000}{ }_{H}$	R
	2572	${ }^{0} \mathrm{AOC} \mathrm{H}$		Error code details 7	$0^{0000}{ }_{H}$	R
	2573	$\mathrm{OAOD}_{\mathrm{H}}$		Error code details 8	$0^{0000}{ }_{H}$	R
	2574	$\mathrm{OAOE}_{\mathrm{H}}$		Error code details 9	0000_{H}	R
	2575	$\mathrm{OAOF}_{\mathrm{H}}$		Error code details 10	$0^{0000}{ }_{H}$	R
Stationbased error history data	2576 to 2591	$0 \mathrm{A10} 0_{\mathrm{H}}$ to 0 A1F H	Error history 2	Same as Error history 1.		
	2592 to 2607	$0 \mathrm{~A} 20_{\mathrm{H}}$ to $0 \mathrm{~A} 2 \mathrm{~F}_{\mathrm{H}}$	Error history 3	Same as Error history 1.		
	2608 to 2623	$0 \mathrm{~A} 30_{\mathrm{H}}$ to $0 \mathrm{~A} 3 \mathrm{~F}_{\mathrm{H}}$	Error history 4	Same as Error history 1.		
	2624 to 2639	$0 \mathrm{~A} 40_{\mathrm{H}}$ to 0 A $4 \mathrm{~F}_{\mathrm{H}}$	Error history 5	Same as Error history 1.		
	2640 to 2655	$0 \mathrm{~A} 50_{\mathrm{H}}$ to $0 \mathrm{~A} 5 \mathrm{~F}_{\mathrm{H}}$	Error history 6	Same as Error history 1.		
	2656 to 2671	$0 \mathrm{A60} 0_{\mathrm{H}}$ to 0 A6F H_{H}	Error history 7	Same as Error history 1.		
	2672 to 2687	$0 \mathrm{~A} 70_{\mathrm{H}}$ to $0 \mathrm{~A} 7 \mathrm{~F}_{\mathrm{H}}$	Error history 8	Same as Error history 1.		
	2688 to 2703	$0 \mathrm{~A} 80_{\mathrm{H}}$ to $0 \mathrm{~A} 8 \mathrm{~F}_{\mathrm{H}}$	Error history 9	Same as Error history 1.		
	2704 to 2719	$0 \mathrm{~A} 90_{\mathrm{H}}$ to 0 A9F F_{H}	Error history 10	Same as Error history 1.		
	2720 to 2735	$0 \mathrm{AAO} 0_{H}$ to $0 \mathrm{AAF}_{H}$	Error history 11	Same as Error history 1.		
	2736 to 2751	$0 \mathrm{AB} 0_{H}$ to $0 \mathrm{ABF}_{\mathrm{H}}$	Error history 12	Same as Error history 1.		
	2752 to 2767	$0 \mathrm{ACO} \mathrm{H}_{\mathrm{H}}$ to $0 \mathrm{ACF}_{\mathrm{H}}$	Error history 13	Same as Error history 1.		
	2768 to 2783	$\mathrm{OADO}_{\mathrm{H}}$ to $0 \mathrm{ADF}_{\mathrm{H}}$	Error history 14	Same as Error history 1.		
	2784 to 2799	$0 \mathrm{AEO} \mathrm{H}_{\mathrm{H}}$ to $0 \mathrm{AEF}_{\mathrm{H}}$	Error history 15	Same as Error history 1.		
	2800 to 4095	$0 \mathrm{AFO} 0_{\mathrm{H}}$ to $0 \mathrm{FFF}_{\mathrm{H}}$	System area		-	-

*1 This is the value at default or initialization by Error history clear command (address: 1000_{H}).
*2 This shows whether read or write from programs is possible.
R: Readable
W: Writable

Point ${ }^{\rho}$

The error history area is written to a nonvolatile memory when an error occurs.
(4) Module control data area (address: $\mathbf{1 0 0 0}_{\mathrm{H}}$ to $14 \mathrm{FF}_{\mathrm{H}}$)

Type	Address		Description	Default ${ }^{* 1}$	Read/Write ${ }^{* 2}$
	Decimal	Hexadecimal			
Station-based control data	4096	1000_{H}	Error history clear command	0000_{H}	R/W
	4097	$1001^{\text {H }}$	Error history clear completed	$0^{0000}{ }_{H}$	R
	4098	1002^{H}	Parameter area initialization command	$0^{0000}{ }_{H}$	R/W
	4099	1003_{H}	Parameter area initialization completed	$0^{0000}{ }_{H}$	R
	4100	${ }^{1004}{ }_{H}$	Module operation information initialization command	$0^{0000}{ }_{H}$	R/W
	4101	1005_{H}	Module operation information initialization completed	$0^{0000}{ }_{H}$	R
	4102 to 4351	$1006{ }_{H}$ to $10 \mathrm{FF} \mathrm{H}_{\mathrm{H}}$	System area	-	-
Module-based control data (main module)	4352 to 4607	1100_{H} to $11 \mathrm{FF}_{\mathrm{H}}$	System area	-	-
Module-based control data (extension module 1)	4608 to 4863	1200_{H} to $12 \mathrm{FF}_{\mathrm{H}}$	The remote buffer memory of the connected extension module is assigned.	-	-
-	4864 to 5375	1300_{H} to $14 \mathrm{FF}_{\mathrm{H}}$	System area	-	-

*1 This is the value for when the module power supply is turned off then on or at the remote reset.
*2 This shows whether read or write from programs is possible.
R: Readable
W: Writable
(a) Module control data area of the extension module

The remote buffer memory differs depending on the model of the extension module.

- For the extension I/O module, refer to the CC-Link IE Field Network Remote I/O Module User's Manual.
(5) Extended parameter area (address: 1500_{H} to $1 \mathrm{FFF}_{\mathrm{H}}$)

Type	Address		Description	Default ${ }^{* 1}$	Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal			
Cam switch function parameter data	5376	1500_{H}	Cam switch function, step type (Output 1)	0	R/W
	5377	$1501^{\text {H }}$	Cam switch function, number of steps (Output 1)	0	R/W
	5378 to 5379	1502_{H} to 1503_{H}	Cam switch function, step No. 1 setting (Output 1)	0	R/W
	5380 to 5381	1504_{H} to $1505^{\text {H }}$	Cam switch function, step No. 2 setting (Output 1)	0	R/W
	5382 to 5383	1506_{H} to $1507^{\text {H }}$	Cam switch function, step No. 3 setting (Output 1)	0	R/W
	5384 to 5385	1508^{H} to 1509^{H}	Cam switch function, step No. 4 setting (Output 1)	0	R/W
	5386 to 5387	$150 A_{H}$ to $150 B_{H}$	Cam switch function, step No. 5 setting (Output 1)	0	R/W
	5388 to 5389	$150 \mathrm{C}_{\mathrm{H}}$ to $150 \mathrm{D}_{\mathrm{H}}$	Cam switch function, step No. 6 setting (Output 1)	0	R/W
	5390 to 5391	$150 \mathrm{E}_{\mathrm{H}}$ to $150 \mathrm{~F}_{\mathrm{H}}$	Cam switch function, step No. 7 setting (Output 1)	0	R/W

Type	Address		Description		Default ${ }^{* 1}$	Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal				
Cam switch function parameter data	5392 to 5393	1510_{H} to 1511_{H}	Cam switch function, step No. 8 setting (Output 1)		0	R/W
	5394 to 5395	1512_{H} to 1513_{H}	Cam switch function, step No. 9 setting (Output 1)		0	R/W
	5396 to 5397	1514_{H} to 1515_{H}	Cam switch function, step No. 10 setting (Output 1)		0	R/W
	5398 to 5399	1516_{H} to $1517^{\text {H }}$	Cam switch function, step No. 11 setting (Output 1)		0	R/W
	5400 to 5401	$1518{ }_{H}$ to 1519^{H}	Cam switch function, step No. 12 setting (Output 1)		0	R/W
	5402 to 5403	$151 A_{H}$ to $151 B_{H}$	Cam switch function, step No. 13 setting (Output 1)		0	R/W
	5404 to 5405	$151 C_{H}$ to $151 D_{H}$	Cam switch function, step No. 14 setting (Output 1)		0	R/W
	5406 to 5407	$151 \mathrm{E}_{\mathrm{H}}$ to $151 \mathrm{~F}_{\mathrm{H}}$	Cam switch function, step No. 15 setting (Output 1)		0	R/W
	5408 to 5409	1520_{H} to 1521_{H}	Cam switch function, step No. 16 setting (Output 1)		0	R/W
	5410 to 5503	1522_{H} to $157 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	5504 to 5537	1580_{H} to $15 \mathrm{~A} 1_{\mathrm{H}}$	Cam switch output $2 \quad$ Same as Cam switch output 1.			
	5538 to 5631	$15 \mathrm{~A} 2_{\mathrm{H}}$ to $15 \mathrm{FF}_{\mathrm{H}}$	System area		-	-
	5632 to 5665	1600_{H} to 1621_{H}	Cam switch output 3	Same as Cam switch output 1.		
	5666 to 5759	1622_{H} to $167 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	5760 to 5793	1680_{H} to $16 \mathrm{~A} 1_{\mathrm{H}}$	Cam switch output 4	Same as Cam switch output 1.		
	5794 to 5887	$16 \mathrm{~A} 2_{\mathrm{H}}$ to $16 \mathrm{FF}_{\mathrm{H}}$	System area		-	-
	5888 to 5921	1700_{H} to 1721_{H}	Cam switch output 5	Same as Cam switch output 1.		
	5922 to 6015	1722_{H} to $177 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	6016 to 6049	1780_{H} to $17 \mathrm{~A} 1_{\mathrm{H}}$	Cam switch output 6	Same as Cam switch output 1.		
	6050 to 6143	$17 \mathrm{~A} 2_{\mathrm{H}}$ to $17 \mathrm{FF}_{\mathrm{H}}$	System area		-	-
	6144 to 6177	1800_{H} to 1821_{H}	Cam switch output 7	Same as Cam switch output 1.		
	6178 to 6271	1822_{H} to $187 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	6272 to 6305	1880_{H} to $18 \mathrm{~A} 1_{\mathrm{H}}$	Cam switch output 8	Same as Cam switch output 1.		
	6306 to 6399	$18 \mathrm{~A} 2_{\mathrm{H}}$ to $18 \mathrm{FF}_{\mathrm{H}}$	System area		-	-
	6400 to 6433	$1900{ }_{\mathrm{H}}$ to 1921_{H}	Cam switch output 9	Same as Cam switch output 1.		
	6434 to 6527	1922_{H} to $197 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	6528 to 6561	1980^{H} to $19 \mathrm{~A} 1_{\mathrm{H}}$	Cam switch output 10	Same as Cam switch output 1.		
	6562 to 6655	$19 \mathrm{~A} 2_{\mathrm{H}}$ to $19 \mathrm{FF} \mathrm{H}_{\mathrm{H}}$	System area		-	-
	6656 to 6689	$1 \mathrm{~A} 00_{\mathrm{H}}$ to $1 \mathrm{~A} 21_{\mathrm{H}}$	Cam switch output 11	Same as Cam switch output 1.		
	6690 to 6783	$1 \mathrm{~A} 22_{\mathrm{H}}$ to $1 \mathrm{~A} 7 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	6784 to 6817	$1 \mathrm{~A} 80_{\mathrm{H}}$ to $1 \mathrm{AA} 1_{\mathrm{H}}$	Cam switch output 12	Same as Cam switch output 1.		
	6818 to 6911	$1 \mathrm{AA} 2_{\mathrm{H}}$ to $1 \mathrm{AFF}_{\mathrm{H}}$	System area		-	-
	6912 to 6945	$1 \mathrm{~B} 00_{\mathrm{H}}$ to $1 \mathrm{~B} 21_{\mathrm{H}}$	Cam switch output 13 Same as Cam switch output 1.			
	6946 to 7039	$1 \mathrm{~B} 22_{\mathrm{H}}$ to $1 \mathrm{~B} 7 \mathrm{~F}_{\mathrm{H}}$	System area		-	-
	7040 to 7073	$1 \mathrm{~B} 80_{\mathrm{H}}$ to $1 \mathrm{BA} 1_{\mathrm{H}}$	Cam switch output 14 ${ }^{\text {S }}$ Same as Cam switch output 1.			
	7074 to 7167	$1 \mathrm{BA} 2_{\mathrm{H}}$ to $1 \mathrm{BFF}_{\mathrm{H}}$	System area		-	-

Type	Address		Description		Read/Write ${ }^{\text {2 }}$
	Decimal	Hexadecimal			
Cam switch function parameter data	7168 to 7201	$1 \mathrm{C} 00_{\mathrm{H}}$ to $1 \mathrm{C} 21_{\mathrm{H}}$	Cam switch output 15	Same as Cam switch output 1.	
	7202 to 7295	$1 \mathrm{C} 22_{\mathrm{H}}$ to $1 \mathrm{C} 7 \mathrm{~F}_{\mathrm{H}}$	System area		-
	7296 to 7329	$12^{\text {C80 }}{ }_{H}$ to $1 \mathrm{CA} 1_{\mathrm{H}}$	Cam switch output 16	Same as Cam switch output 1.	
	7330 to 8191	$1 \mathrm{CA} 2_{\mathrm{H}}$ to $1 \mathrm{FFF}_{\mathrm{H}}$	System area		-

*1 This is the value at default or initialization by Parameter area initialization command (address: 1002 ${ }_{\mathrm{H}}$).
*2 This shows whether read or write from programs is possible.
R: Readable
W: Writable

Point ${ }^{P}$

The extended parameter data is written to a nonvolatile memory at the rising edge (off to on) of Initial data setting request flag (RY9) or when the parameters are set on the parameter setting window. However, the extended parameters cannot be set on the parameter setting window. Set the extended parameters from the program before setting parameters on the parameter setting window.
The activation timing of the extended parameter data differs depending on the data type. Refer to the pages where details of each data are described.

CHAPTER 4 THE PROCEDURE BEFORE OPERATION

This section describes the procedure before operation.

CHAPTER 5

This chapter describes system configuration using a high-speed counter module.
For CC-Link IE Field Network configuration, refer to the following.
$[\square]$ User's manual for the master/local module used

5.1 High-Speed Counter Module System Configuration

The following shows system configuration using a high-speed counter module.

5.2 Applicable Systems

(1) Applicable master station

When using a high-speed counter module, use the following products as a master station.

Model	First five digits of serial number
RJ71GF11-T2	(No restriction)
RJ71EN71	
QJ71GF11-T2	
LJ71GF11-T2	14111 or later
QD77GF16	

When a master station other than the above is used, the high-speed counter module cannot be used.
(2) Connectable modules

One extension module can be connected to one high-speed counter module.

Module	Model
Extension I/O module	NZ2EX2B1-16D
	NZ2EX2B1-16T
	NZ2EX2B1-16TE

(3) Ethernet cable

For the specifications of the Ethernet cable, refer to the following.
$\square]$ User's manual for the master/local module used
(4) Software package

The settings and diagnostics of the high-speed counter module require GX Works2 or GX Works3. Install GX Works2 or GX Works3 with the following version to suit the master station used.

Engineering tool	Software version
GX Works2	Version 1.95Z or later
GX Works3	Version 1.000A or later

(5) Profile

The parameter settings of the high-speed counter module require a profile.

Point ${ }^{\rho}$

A profile is a setting file containing necessary information for the start-up, operations, and maintenance of CC-Link compatible products. Registering the profile to GX Works3 and GX Works2 adds the module in "Module List" on the "CC IE Field Configuration" window. For details on the profile registration, refer to the following.
[]] GX Works3 Operating Manual
L]GX Works2 Version1 Operating Manual (Common)
(a) Checking the profile version

1. Display the "CC IE Field Configuration" window.

- When the master/local module is the QJ71GF11-T2

Project window \Rightarrow [Parameter $] \Rightarrow$ [Network Parameter $] \Rightarrow$ [Ethernet/CC IE/MELSECNET] \Rightarrow [CC IE Field Configuration Setting] button

- When the master/local module is the LJ71GF11-T2
(7) Project window \Rightarrow [Parameter] \Rightarrow [Network Parameter $] \Rightarrow$ [Ethernet/CC IE Field] \Rightarrow [CC IE Field Configuration Setting] button

2. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.

3. Open the "Properties" window and check the profile version.
(1) Right-click \Rightarrow [Properties]

CHAPTER 6 installation and wiring

This chapter describes the installation and wiring of the high-speed counter module.

6.1 Station Number Setting

(1) Setting procedure

Set the station number with the rotary switch on the front of the module. The setting value of the station number becomes valid when the module is powered on. Thus, set the station number when the module is powered off.

- The hundreds and tens places of the station number are set with $\times 10$.
- The ones place of the station number is set with x 1 .

Ex. To set the station number to 115, set the switch as shown below.

(2) Setting range

Set the station number from 1 to 120 . Setting the value other than 1 to 120 causes a communication error and the D LINK LED flashes.

Point ${ }^{\circ}$

- Changing the station number setting switch while the module is powered on causes a minor error and flashes the ERR. LED.
Returning the station number setting switch to the previous setting eliminates the error after five seconds and turns off the ERR. LED.
- Do not set a station number duplicated with other station numbers. If the station number is duplicated, a communication error occurs and the D LINK LED does not turn on.

6.2 Installation Environment and Installation Position

6.2.1 Installation environment

(1) Installation location

Do not install the high-speed counter module to the place where:

- Ambient temperature is outside the range of 0 to $55^{\circ} \mathrm{C}$;
- Ambient humidity is outside the range of 5 to $95 \% \mathrm{RH}$;
- Condensation occurs due to rapid temperature change;
- Corrosive gas or combustible gas is present;
- Conductive powder such as dust and iron powder, oil mist, salinity, or organic solvent is filled;
- The high-speed counter module is exposed to direct sunlight;
- A strong electric field or strong magnetic field is generated; and
- The high-speed counter module is subject to vibration and shock.

(2) Installation surface

Install the high-speed counter module on the flat surface. When the installation surface is uneven, excessive force is applied to the printed-circuit board and may cause a defect.

6.2.2 Installation position

When installing the high-speed counter module in a control panel, provide clearance of 60 mm or longer between the module and the sides of the control panel or neighboring modules to ensure good ventilation and an easy module change.

6.2.3 Installation direction

The high-speed counter module can be installed in six directions. Use the DIN rail to install the module.

DIN rail

Vertical installation

Horizontal installation (upside down)

Upward installation

6.3 Installation

6.3.1 Connecting extension modules

(1) Connecting procedure

1. Remove the cover on the side of the main module. Save the removed cover without losing it.
2. Release the module joint levers (two points) on the side of the extension module. Slide the levers vertically.
3. Insert the connector of the extension module into that of the high-speed counter module so that they are securely engaged.

4. Lock the module joint levers (two points) on the side of the extension module. Slide the levers toward the module. Check that the modules are securely connected.

(2) Disconnecting procedure

Disconnect the modules by reversing the procedure above

Point ${ }^{\rho}$

- Shut off the external power supply for the system in all phases before connecting or disconnecting extension modules.
- Lock the module joint levers securely. Failure to do so may cause malfunction, failure, or drop of the module.

6.3.2 Mounting the modules on a DIN rail

Point ${ }^{\rho}$

An example of the use of the DIN rail stopper is described in the following procedure. Fix the module according to the manual of the DIN rail stopper used.

(1) Mounting procedure

1. Pull down all DIN rail hooks on the back of the modules.
The hook should be pulled down until it clicks.
2. Hang the upper tabs of the modules on a DIN rail, and push the modules in position.
3. Lock the DIN rail hooks to the DIN rail to secure the modules in position.
Push each hook up until it clicks. If the hooks are beyond the reach, use a tool such as a screwdriver.
4. Loosen the screw on DIN rail stopper.
5. Hitch the bottom hook of the DIN rail stopper to the bottom of the DIN rail.
Hitch the hook according to the orientation of the arrow on the front of the stopper.

DIN rail
stopper

6. Hitch the upper hook of the DIN rail stopper to the top of the DIN rail.
7. Slide the DIN rail stopper up to the left side of the modules.
8. Hold the DIN rail stopper in the direction opposite to the arrow on the stopper and tighten the screw with a screwdriver.
9. Install the DIN rail stopper on the right side of the module in the same procedure.
Install the stopper upside down for the right side.

Point ${ }^{8}$

DIN rail

- Do not slide modules from the edge of the DIN rail when mounting them. Doing so may damage the metal part located on the back of the module.

- Tighten the DIN rail mounting screws at intervals of 200 mm or less.

(2) Removal procedure

Remove the modules from the DIN rail by reversing the procedure above.
(3) Applicable DIN rail model (compliant with IEC 60715)

- TH35-7.5Fe
- TH35-7.5AI
(4) Interval between DIN rail mounting screws

Tighten the screws at intervals of 200 mm or less.

(5) DIN rail stopper

Use a stopper that is attachable to the DIN rail.

6.4 Wiring with Terminal Block for Module Power Supply and FG

(1) Tightening torque

Tighten the terminal block screws within the following specified torque range.
Tightening the screws too much may damage the module case.

Screw type	\quad Tightening torque range
Terminal block mounting screw (M2.5 screw)	0.2 to $0.3 \mathrm{~N} \cdot \mathrm{~m}$
Terminal screw (M2.5 screw)	0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$

(2) Wire to be used

The following table describes the wire to be connected to the terminal block for module power supply and FG.

Diameter	Type	Material	Temperature rating
20 to 16 AWG	Stranded	Copper	$75^{\circ} \mathrm{C}$ or more

For applicable solderless terminals, refer to the following.
Performance Specifications (5 Page 29, Section 3.2)

(3) Installing and removing the terminal block

To remove the terminal block, loosen the terminal block mounting screw with a slotted screwdriver. To install the terminal block, tighten the terminal block mounting screw.
Failure to secure the terminal block may cause drop, short circuit, malfunction.

(4) Connecting and disconnecting the cable

To connect the cable, insert the wire with the terminal screw loosened and tighten the screw. To disconnect the cable, pull out the wire with the terminal screw loosened with a slotted screwdriver.

(5) Processing method of the cable terminal

Strip the cable about 10 mm from the top.
To use a bar solderless terminal, connect it to the stripped part.

(6) List of bar solderless terminals

The following table lists recommended bar solderless terminals.

Product name	Model name	Applicable wire size	Contact
Bar solderless terminal	TE 0.5-10	$0.5 \mathrm{~mm}^{2}$	Nichifu Co., Ltd.
	TE 0.75-10	$0.75 \mathrm{~mm}^{2}$	
	TE 1.0-10	0.9 to $1.0 \mathrm{~mm}^{2}$	
	TE 1.5-10	1.25 to $1.5 \mathrm{~mm}^{2}$	
Tool dedicated for bar solderless terminal	NH79	-	
Bar solderless terminal	Al 0.5-10WH	$0.5 \mathrm{~mm}^{2}$	PHOENIX CONTACT GmbH \& Co. KG
	Al 0.75-10GY	$0.75 \mathrm{~mm}^{2}$	
	Al 1-10RD	$1.0 \mathrm{~mm}^{2}$	
	Al 1.5-10BK	$1.5 \mathrm{~mm}^{2}$	
Tool dedicated for bar solderless terminal	CRIMPFOX6	-	

6.5 Wiring of Ethernet Cable

(1) Connecting the Ethernet cable
(a) Connecting

1. Power off the power supplies of the high-speed counter module and the external device.
2. Push the Ethernet cable connector into the highspeed counter module until it clicks. Pay attention to the connector's direction.
3. Power on the module.
4. Power on the external device.
5. Check that the LINK LED on the port into which the Ethernet cable is connected is on. ${ }^{*}$
[^0]
Point P

- PORT1 and PORT2 need not to be distinguished. When only one connector is used in star topology, either PORT1 or PORT2 can be connected.

- When two connectors are used in line topology or ring topology, an Ethernet cable can be connected to the connectors in any combination. For example, the cable can be connected between PORT1s and between PORT1 and PORT2.

(b) Disconnecting

1. Power off the high-speed counter module.
2. Press the latch down and unplug the Ethernet cable.

(2) Precautions

(a) Laying Ethernet cables

- Place the Ethernet cable in a duct or clamp them. If not, dangling cable may swing or inadvertently be pulled, resulting in damage to the module or cables or malfunction due to poor contact.
- Do not touch the core of the connector of the cable or the module, and protect it from dirt and dust. If any oil from your hand, or any dirt or dust sticks to the core, it can increase transmission loss, causing data link to fail.
- Check the following:
- The Ethernet cable is securely connected.
- The Ethernet cable is not shorted.
- The connectors are securely connected.

(b) Broken cable latch

Do not use Ethernet cables with broken latches. Doing so may cause the cable to unplug or malfunction.
(c) Connecting and disconnecting the Ethernet cable

Hold the connector part when connecting and disconnecting the Ethernet cable. Pulling the cable connected to the module may result in damage to the module or cable or malfunction due to poor contact.
(d) Connectors without the Ethernet cable

To prevent dust from entering the module, attach the provided connector cover.
(e) Maximum station-to-station distance (Maximum Ethernet cable length)

The maximum station-to-station distance is 100 m . However, the distance may be shorter depending on the operating environment of the cable. For details, contact the manufacturer of the cables used.

(f) Bending radius of the Ethernet cable

There are restrictions on the bending radius of the Ethernet cable. Check the bending radius in the specifications of the Ethernet cables used.

This section describes how to wire the high-speed counter module with an encoder or a controller.

6.6.1 Wiring precautions

To obtain the maximum performance from the functions of the high-speed counter module and improve the system reliability, an external wiring with high durability against noise is required.
Precautions for the external wiring are as follows.

(1) Wiring

- Terminals are prepared depending on the voltage of the signal to be input. Connecting to a terminal with a different voltage may cause malfunction of the module and failure of the connected devices.
- In 1-phase input, always connect a pulse input cable to the A-phase side.

(2) Connectors for external devices

- Securely connect the connectors for external devices (A6CON1/A6CON2/A6CON4) to the high-speed counter module connectors and securely tighten the two screws.
- When disconnecting the cable from the high-speed counter module, do not pull the cable by the cable part. Hold the connector part of the cable. Pulling the cable connected to the module may result in malfunction or damage to the module or cable.

(3) DC power supply

- Each DC power supply to be connected to the high-speed counter module, encoder, and controller must be connected to a different power supply.

(4) Measures against noise

- The high-speed counter module may incorrectly count the pulses when pulse-state noises are input.
- When inputting high-speed pulses, take the following measures against noise

Measure 1

Use shielded twisted pair cables, and ground them on the encoder side with a ground resistance of 100Ω or less.

Measure 2

Use the shortest possible shielded twisted pair cables, placing them not parallel with noise-generating power cables or I/O cables and at a distance of 150 mm or more.

- The following figure shows an example of a noise reduction measure.

- Ground the shielded twisted pair cable on the encoder side (relay box). (Wiring example: with a sink type encoder (24V))

6.6.2 Connectors for external devices

The connectors and crimp tools for use with the high-speed counter module must be purchased separately by the user. The following tables list the connector types and the crimp tool.

(1) Precautions

- Tighten the connector screws within the following specified torque range.

Screw type	Tightening torque range
Connector screw (M2.6 screw)	0.20 to $0.29 \mathrm{~N} \cdot \mathrm{~m}$

- Use copper wires having temperature rating of $75^{\circ} \mathrm{C}$ or more for the connectors.
- When required, use UL-approved connectors.
(2) Connector types*1

Type	Model	Applicable wire size
Soldering type (straight out)	A6CON1	0.088 to $0.3 \mathrm{~mm}^{2}$ (28 to 22 AWG) (stranded) When using 40 wires, use those having an outer diameter of 1.3 mm or smaller.
Crimp type (straight out)	A6CON2	0.088 to $0.24 \mathrm{~mm}^{2}$ (28 to 24 AWG) (stranded)
Soldering type (straight out/diagonal out)	A6CON4	0.088 to $0.3 \mathrm{~mm}^{2}$ (28 to 22 AWG) (stranded) When using 40 wires, use those having an outer diameter of 1.3 mm or smaller.

*1 The A6CON3 (pressure-displacement type, straight out) connector cannot be used for the high-speed counter module.

(3) Connector crimp tool

Type	Model	Applicable wire size	Contact
Crimp tool	FCN-363T-T005/H	0.088 to $0.24 \mathrm{~mm}^{2}(28$ to 24 AWG)	FUJITSU COMPONENT LIMITED www.fcl.fujitsu.com/en

6.6.3 I/O interfaces with external devices

This section describes the high-speed counter module interfaces to connect with external devices.

(1) Terminal layouts and pin numbers of connectors for external devices

The following figure and table show the terminal layouts and the pin numbers of the high-speed counter module connector for external devices.

Pin number	Symbol	Pin number	
B20	A1-24V	A20	A1-5V
B19	A1-DIF	A19	A1-COM
B18	B1-24V	A18	B1-5V
B17	B1-DIF	A17	B1-COM
B16	Z1-24V	A16	Z1-5V
B15	Z1-DIF	A15	Z1-COM
B14	A2-24V	A14	A2-5V
B13	A2-DIF	A13	A2-COM
B12	B2-24V	A12	B2-5V
B11	Z2-24V	A11	B2-COM
B10	Z2-DIF	A09	Z2-5V
B09	FUNC1-24V	A08	ZATCH1-24V
B08	FUNC1-5V	A07	LATCH1-5V
B07	CTRLCOM	A06	CTRLCOM
B06	FUNC2-24V	A05	LATCH2-24V
B05	FUNC2-5V	A04	LATCH2-5V
B04	EQU1	A03	EQU2
B03	EQUCOM	A02	EQUCOM
B02	EQU		
B01			

(2) List of I/O signal details

The following table lists the signals for the high-speed counter module connectors for external devices.

I/O classification	Symbol	Pin number	Signal name	Description
Input	A1-24V	B20	CH1 Phase A pulse input 24V (+)	- This signal inputs + (plus) side of phase A pulse.
	A1-5V	A20	CH1 Phase A pulse input 5V (+)	
	A1-DIF	B19	CH1 Phase A pulse differential input (+)	
	A1-COM	A19	CH1 Phase A pulse input common (-)	- This signal inputs - (minus) side of phase A pulse.
	B1-24V	B18	CH1 Phase B pulse input 24V (+)	- This signal inputs + (plus) side of phase B pulse.
	B1-5V	A18	CH1 Phase B pulse input 5V (+)	
	B1-DIF	B17	CH1 Phase B pulse differential input (+)	
	B1-COM	A17	CH1 Phase B pulse input common (-)	- This signal inputs - (minus) side of phase B pulse.
	Z1-24V	B16	CH1 Phase Z input 24V (+)	- This signal inputs + (plus) side of phase Z.
	Z1-5V	A16	CH1 Phase Z input 5V (+)	
	Z1-DIF	B15	CH1 Phase Z differential input (+)	becomes on (when "CH1 Z phase (Preset) trigger setting" is set to "0: Rising").
	Z1-COM	A15	CH1 Phase Z input common (-)	- This signal inputs - (minus) side of phase Z.
	A2-24V	B14	CH2 Phase A pulse input 24V (+)	
	A2-5V	A14	CH 2 Phase A pulse input 5V (+)	- This signal inputs + (plus) side of phase A pulse.
	A2-DIF	B13	CH2 Phase A pulse differential input (+)	
	A2-COM	A13	CH2 Phase A pulse input common (-)	- This signal inputs - (minus) side of phase A pulse.
	B2-24V	B12	CH2 Phase B pulse input 24V (+)	
	B2-5V	A12	CH 2 Phase B pulse input 5V (+)	- This signal inputs + (plus) side of phase B pulse.
	B2-DIF	B11	CH2 Phase B pulse differential input (+)	
	B2-COM	A11	CH2 Phase B pulse input common (-)	- This signal inputs - (minus) side of phase B pulse.
	Z2-24V	B10	CH2 Phase Z input 24V (+)	- This signal inputs + (plus) side of phase Z.
	Z2-5V	A10	CH2 Phase Z input 5V (+)	- Turn on this signal to replace a count value by the external signal.
	Z2-DIF	B09	CH2 Phase Z differential input (+)	becomes on (when "CH2 Z phase (Preset) trigger setting" is set to "0: Rising").
	Z2-COM	A09	CH2 Phase Z input common (-)	- This signal inputs - (minus) side of phase Z.
	FUNC1-24V	B08	CH1 Function input 24V	- Turn on this signal to execute the selected counter function start command by the external signal.
	FUNC1-5V	B07	CH1 Function input 5V	
	FUNC2-24V	B05	CH2 Function input 24V	
	FUNC2-5V	B04	CH 2 Function input 5V	
	LATCH1-24V	A08	CH1 Latch counter input 24V	- Turn on this signal to latch a count value by the external signal. - The count value is latched and stored in remote registers when this signal becomes on.
	LATCH1-5V	A07	CH1 Latch counter input 5V	
	LATCH2-24V	A05	CH 2 Latch counter input 24 V	
	LATCH2-5V	A04	CH 2 Latch counter input 5V	
	CTRLCOM	A06, B06	Control input common	- Common for function input - Common for latch counter input - It is common between channels.

I/O classification	Symbol	Pin number	Signal name	Description
Output	EQU1	B03	Coincidence output $1(+)$	• With the coincidence output function activated, the high-speed counter module outputs a signal when the count value is matched with the preset comparison condition.
	EQU2	A03	Coincidence output $2(+)$	When the PWM output function is used, the high-speed counter

(3) Interface with external devices

The following table lists the high-speed counter module interfaces to connect with external devices.

*1 For EQU1 to EQU4, the assignment to CH 1 or CH 2 can be changed.
*2 EIA Standards RS-422-A Line receiver (AM26C32 [manufactured by Texas Instruments Incorporated] or equivalent)

(4) ON/OFF status of input signals

The ON/OFF status of input signals depends on external wiring and the logic setting.
The following table shows an example of CHロ Function input terminal (FUNC1, FUNC2).
The ON/OFF status for other input signals is the same as CHD Function input terminal (FUNC1, FUNC2).

Logic status ${ }^{* 1}$	External wiring	ON/OFF status of CHD Function input terminal (FUNC1, FUNC2) in

*1 Configure the logic setting by CH (Function input logic setting (address: $0127_{\mathrm{H}}, 0147_{\mathrm{H}}$). For details on the setting, refer to the following.
\longmapsto Page 287, Appendix 3

6.6.4 Encoders that can be connected

This section lists the encoders that can be connected to the high-speed counter module.

- Open collector output type encoders
- CMOS level voltage output type encoders
- Line driver output type encoders (AM26LS31 or equivalent)

Point ${ }^{P}$

- Verify that the encoder output voltage meets the specifications of the high-speed counter module.
- TTL level voltage output type encoders cannot be used with the high-speed counter module.

6.7
 Wiring Example (Between a High-Speed Counter Module and an Encoder)

(1) Example of wiring with an open collector output type encoder (24VDC)

Point ${ }^{\rho}$

When wiring the high-speed counter module and an encoder, separate power cables and signal cables. The following figure shows examples.

- Example of correct wiring

- Example of incorrect wiring

(2) Example of wiring with a voltage output type encoder (5VDC)

(3) Example of wiring with a line driver (equivalent to AM26LS31) encoder

6.8 Wiring Example (Between a Controller and External Input Terminals)

(1) Example of wiring with a sink type controller

(2) Example of wiring with a source type controller

6.9 Wiring Example (with Coincidence Output Terminals)

(1) Example of wiring with coincidence output terminals (sink output type)

CHAPTER 7

VARIOUS SETTINGS

This chapter describes the setting procedures of the high-speed counter module.

7.1
 Parameter Setting

Set the parameter of this module with the network parameter written to the CPU module of the master station. For the setting procedure of the master station, refer to the following.
$[\square]$ User's manual for the master/local module used

Remark

- Check "Set the network configuration settings in CC IE Field configuration window" on the "MELSECNET/CC IE/Ethernet Module Configuration" window in advance.
\therefore Network Parameter - MELSECNET/CC IE/Ethernet Module Configuration
$\sqrt{ } \sqrt{ }$ Set the network configuration settings in CC IE Field configuration window
- To select an extension module in the "CC IE Field Configuration" window, select the following models from the "Module List" window.

Extension module type	Name
Input module	NZ2EX-16(DI)
Output module	NZ2EX-16(DO)

- When points less than the ones of the high-speed counter module and extension module are set for the remote I/O signal and remote register, no error occurs. The cyclic transmission is performed for the data of the points set from the start.

(1) Precautions

(a) Before parameter settings

For precautions before parameter settings, refer to the following.
L] GX Works3 Operating Manual
[]GX Works2 Version1 Operating Manual (Common)

(b) Parameter settings

- When using the high-speed counter module, enable the block data assurance per station. When it is disabled, correct operation of the high-speed counter module cannot be guaranteed.

For the block data assurance per station, refer to the following.
[] User's manual for the master/local module used

- Do not set the parameter using the CCPASET instruction in the master station. Correct operation of the highspeed counter module cannot be guaranteed because the module operates with the block data assurance per station disabled when the CCPASET instruction is executed.
- When using the extension module, write the module parameter (parameter of the extension module has not been written, the error code ($1 \mathrm{~F} 30_{\mathrm{H}}$) is stored in CH 1 Latest error code (RWr22), Error flag (RXA) turns on, and the ERR. LED turns on.

(2) Setting procedure

1. Display the "CC IE Field Configuration" window.

- When the master/local module is the QJ71GF11-T2

2 Project window \Rightarrow PParameter $] \Rightarrow$ [Network Parameter $] \Rightarrow[$ Ethernet/CC IE/MELSECNET] \Rightarrow [CC IE Field Configuration Setting] button

- When the master/local module is the LJ71GF11-T2
\geqslant Project window \Rightarrow [Parameter] \Rightarrow [Network Parameter] \Rightarrow [Ethernet/CC IE Field] \Rightarrow [CC IE Field Configuration Setting] button

2. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.

3. Open the "Parameter Processing of Slave Station" window.[CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
4. Set "Parameter write" for "Method selection".

5. Double-click the item to change the setting, and input the setting value.

- Items to input from the pull-down list

Double-click the item to set to display the pull-down list. Select the item.

- Items to input from the text box

Double-click the item to set, and input the setting value.

Setting item	Setting details	Reference
Mode switch setting	0: Normal mode (Asynchronous communication mode)	Page 102, Section 8.2
	9: Automatical judgment mode	
Input response time setting	3: 2 ms	Page 188, Section 8.23 (3)
	4: 5 ms	
	5: 10 ms	
	6: 20 ms	
	7: 70ms	
Output HOLD/CLEAR setting	0: CLEAR	Page 181, Section 8.20
	1: HOLD	
Cyclic data update watch time setting	- 0 (Not monitor) - 1 to 20 (0.1 to 2 seconds, in increments of 100 ms)	Page 182, Section 8.21
Comparison output setting	0: Coincidence Output Function 1: Cam Switch Function	Page 114, Section 8.5
Coincidence output 1 channel assignment setting	0: CH1	
	1: CH 2	
Coincidence output 2 channel assignment setting	0: CH1	
	1: CH 2	
Coincidence output 3 channel assignment setting	0: CH1	
	1: CH2	
Coincidence output 4 channel assignment setting	0: CH1	
	1: CH 2	

Setting item	Setting details	Reference
Coincidence output 1 comparison condition setting	0: Coincidence Output	Page 114, Section 8.5
	1: Within-range Output	
	2: Out-of-range Output	
Coincidence output 2 comparison condition setting	0: Coincidence Output	
	1: Within-range Output	
	2: Out-of-range Output	
Coincidence output 3 comparison condition setting	0: Coincidence Output	
	1: Within-range Output	
	2: Out-of-range Output	
Coincidence output 4 comparison condition setting	0: Coincidence Output	
	1: Within-range Output	
	2: Out-of-range Output	
Preset/replace setting at coincidence output (Coincidence output 1)	0: Present value not replaced	Page 126, Section 8.5.3
	1: Present value replaced	
Preset/replace setting at coincidence output (Coincidence output 2)	0: Present value not replaced	
	1: Present value replaced	
Cam switch output unit assignment setting	0: No Assignment	Page 129, Section 8.5.4
	1: Stage 1	
Cam switch output 1 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 2 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 3 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 4 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 5 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 6 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 7 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 8 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 9 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 10 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 11 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 12 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 13 channel assignment setting	0: CH1	
	1: CH2	
Cam switch output 14 channel assignment setting	0: CH1	
	1: CH2	

Setting item	Setting details	Reference
Cam switch output 15 channel assignment setting	0: CH1	Page 129, Section 8.5.4
	1: CH 2	
Cam switch output 16 channel assignment setting	0: CH1	
	1: CH2	
Coincidence output enable command setting	0: By each channel	Page 291, Appendix 3 (6)
	1: By each coincidence output	
Operation mode setting	0: Normal Mode	Page 99, Section 7.3
	1: Frequency Measurement Mode	
	2: Rotation Speed Measurement Mode	
	3: Pulse Measurement Mode	
	4: PWM Output Mode	
Count source selection	0: A Phase/B Phase	Page 291, Appendix 3 (7)
	1: Coincidence Output 1	
	2: Coincidence Output 2	
Pulse input mode	0: 1-Phase Multiple of 1	Page 104, Section 8.3.1
	1: 1-Phase Multiple of 2	
	2: CW/CCW	
	3: 2-Phase Multiple of 1	
	4: 2-Phase Multiple of 2	
	5: 2-Phase Multiple of 4	
Counting speed setting	0: 10kpps	Page 29, Section 3.2
	1: 100kpps	
	2: 200kpps	
	3: 500 kpps	
	4: 1Mpps	
	5: 2Mpps	
	6: 4Mpps	
	7: 8Mpps	
Counter format	0: Linear Counter	Page 107, Section 8.4
	1: Ring Counter	
Z phase (Preset) trigger setting	0: Rising	Page 136, Section 8.6 (2)
	1: Falling	
	2: Rising + Falling	
	3: During ON	
External preset/replace (Z Phase) request detection setting	0 : ON at detection	Page 136, Section 8.6 (2)
	1: Not ON at detection	
Counter function selection	0: Count Disable Function	Page 143, Section 8.9
	1: Latch Counter Function	Page 145, Section 8.10
	2: Sampling Counter Function	Page 148, Section 8.11
	3: Periodic Pulse Counter Function	Page 151, Section 8.12
	4: Count disable/Preset/replace Function	Page 154, Section 8.13
	5: Latch counter/Preset/replace Function	Page 156, Section 8.14
Function input logic setting	0: Positive Logic	Page 294, Appendix 3(10)
	1: Negative Logic	
Latch counter input logic setting	0: Positive Logic	Page 294, Appendix 3 (10)
	1: Negative Logic	

Setting item	Setting details			Reference
Z phase input response time setting	Setting	OFF \rightarrow ON Response time	ON \rightarrow OFF Response time	Page 295, Appendix 3 (11)
	0	$0.25 \mu \mathrm{~s}$	$2.5 \mu \mathrm{~s}$	
	1	0.1 ms	0.1 ms	
	2	1.0 ms	1.0 ms	
Function input response time setting	Setting	OFF \rightarrow ON Response time	ON \rightarrow OFF Response time	Page 295, Appendix 3(11)
	0	0.02 ms	0.1 ms	
	1	0.1 ms	0.1 ms	
	2	1.0 ms	1.0 ms	
Latch counter input response time setting	Setting	OFF \rightarrow ON Response time	ON \rightarrow OFF Response time	Page 295, Appendix 3 (11)
	0	0.02 ms	0.1 ms	
	1	0.1 ms	0.1 ms	
	2	1.0 ms	1.0 ms	
Pulse measurement setting (Function input terminal)	0: Pulse ON Width			Page 170, Section 8.18
	1: Pulse OFF Width			
Pulse measurement setting (Latch counter input terminal)	0: Pulse ON Width			Page 170, Section 8.18
	1: Pulse OFF Width			

6. Click the [Execute] button and the following window is displayed.

MELSOFT Series GX Works2
The process "Parameter write" will be executed, targeting the selected
parameters.
The operation of the slave station may be change by the execution of
the process "Parameter write".
Also it may overwrite the device value of the PLC CPU refreshing the
remote I/O and remote registers.
Please confirm safety before the execution.
-Please confirm that the Connection Destination PLC is correct.
-Please confirm that the CC IE Field module is set correctly.
-Please confirm that the target slave station is correct.
Do you want to execute?

7. Click the [Yes] button.
8. The parameter is written to the high-speed counter module.

Point ${ }^{\rho}$

- When using the extension module, also set the parameter of the extension module.

For the parameter of the extension module, refer to the following.
[1] Manual for the extension module used

- Set all the items for the parameter. If any blank exists, the parameter cannot be written to the high-speed counter module.
- To read the parameter from the high-speed counter module, set "Parameter read" for "Method selection" and click the [Execute] button.
- If the following message is displayed, take corrective action for the error code in <>. For details on the error codes, refer to the list of error codes (5 Page 225, Section 11.2) and the user's manual for the master/local module used.

MELSOFT Series GX Works 2
i) An error occurred in the SLMP communication. <0800>

- When the parameters are written, the contents in the extended parameter area are stored in the nonvolatile memory.
- When writing the parameters while Initial data processing request flag (RX8) is off, set values in the remote registers ($R W W$) beforehand. The values in the remote registers ($R W W$) related to the setting values of the parameters are checked at the writing. If the setting is incorrect, an error occurs.

7.2 Changing the Parameter

This section describes the procedures to change the parameter.
The precautions to take when changing the parameter are same as the following.

- Precautions (${ }^{3}$ Page 85, Section 7.1 (1))

7.2.1 Changing the network configuration

When changing the network configuration diverting the created project, set the parameter in the following procedure.

1. Power off the module.
2. Connect the modules again according to the desired network configuration.
3. Power on the module.
4. Display the "CC IE Field Configuration" window.

- When the master/local module is the QJ71GF11-T2Project window \Rightarrow [Parameter] \Rightarrow [Network Parameter] $\Rightarrow[$ Ethernet/CC IE/MELSECNET] \Rightarrow [CC IE Field Configuration Setting] button
- When the master/local module is the LJ71GF11-T2

2 Project window \Rightarrow PParameter $] \Rightarrow$ [Network Parameter $] \Rightarrow$ [Ethernet/CC IE Field] \Rightarrow [CC IE Field Configuration Setting] button
5. Drag and drop a module to set the slave station. Input a numerical value to set the station number of the station. Change the value as necessary.

6. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.

7. Open the "Parameter Processing of Slave Station" window.

7 [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
8. Set "Parameter read" for "Method selection".

Parameter Processing of Slave Station	
Target Module Information:	NZ2GFCF-D62PD2 Start I/O No.:0000 - Station No.:1
Method selection:	Parameter read Parameter read Parameter write

9. Click the [Execute] button and the following window is displayed.
MELSOFT Series GX Works2
The process "Parameter read" will be executed, targeting the selected
parameters.
The operation of the slave station may be change by the execution of
the process "Parameter read".
Also it may overwrite the device value of the PLC CPU refreshing the
remote I/O and remote registers.
Please confirm safety before the execution.

-Please confirm that the connected PLC is correct.
-Please confirm that the CC IE Field module is set correctly.
-Please confirm that the target slave station is correct.
Do you want to execute?

10. Click the [Yes] button.
11. The parameter is read from the high-speed counter module.

	Name	Initial Value	Read Value	Write Value	Setting Range
Station-based parameter					
\square	Mode switch setting	9: Automatic...	9: Automatic...		
\square	Input response time setting	5: 10 ms	5: 10 ms		
\square	Output HOLD/CLEAR setting	0: CLEAR	0: CLEAR		
\square	Cyclic data update watch tim...	0	0		0 to 20
Module-based parameter (main module)					
\square ® Comparison output function					
	--... Comparison output setting	0: Coinciden...	0: Coinciden...		
	-... Coincidence output 1 chan...	0: CH 1	0: CH 1		
	--.. Coincidence output 2 chan...	0: CH 1	0: CH 1		
	--.. Coincidence output 3 chan...	0: CHI	0: CH 1		
1	I n-i..-id.........-... 1 - -1.... III	n. 1114	n. 1111		

12. Set "Parameter write" for "Method selection".

13. Set "Write Value". The following are the procedure.

- Click the title cell of "Read Value" to select all the items and copy them.
- Click the title cell of "Write Value" to select all the items and paste the copy.
- Select the items to be changed, and set new values.

	Name	Initial Value	Read Value	Write Value	Setting Range
Station-based parameter					
\square	Mode switch setting	9: Automatic...	9: Automatic...	9: Automatic...	
\checkmark	Input response time setting	5: 10 ms	5: 10 ms	5: 10 ms	
\square	Output HOLD/CLEAR setting	0: CLEAR	0: CLEAR	0: CLEAR	
\square	Cyclic data update watch tim...	0	0	0	0 to 20
Module-based parameter (main module)					
\checkmark Q Comparison output function					
	-.... Comparison output setting	0: Coinciden...	0: Coinciden...	0: Coinciden...	
	-... Coincidence output 1 chan...	0: CH 1	0: CH 1	0: CH 1	
	--.. Coincidence output 2 chan...	0: CH 1	0: CHI	$0: \mathrm{CH1}$	
	--... Coincidence output 3 chan...	0: CH 1	$0: \mathrm{CH} 1$	$0: \mathrm{CH} 1$	
	: n_i..-id.............. 1 - -1.....	n. 1114	n. 1114	n. 1114	

14. Click the [Execute] button and the following window is displayed.

MELSOFT Series GX Works2
The process "Parameter write" will be executed, targeting the selected parameters. The operation of the slave station may be change by the execution of the process "Parameter write". Also it may overwrite the device value of the PLC CPU refreshing the remote I/O and remote registers. Please confirm safety before the execution. -Please confirm that the Connection Destination PLC is correct. -Please confirm that the CC IE Field module is set correctly. -Please confirm that the target slave station is correct. Do you want to execute?\quad Yes

15. Click the [Yes] button.
16. The parameter is written to the high-speed counter module.

The module parameter setting of the slave station is now completed.
17. Close the "CC IE Field Configuration" window.
© [CC IE Field Configuration] \Rightarrow [Close with Reflecting the Setting]
18. Click the [Refresh Parameters] button to display the refresh parameter setting window.

Online (Normal Mode)
CC IE Field Configuration Setting
Network Operation Settings
Refresh Parameters
Interrupt Settings
Specify Station No. by Parameter

19. Set the refresh parameter. Change the value as necessary.

20. Write the set parameter to the CPU module of the master station and reset the CPU module.

21. Change the status of the CPU module of the master station to RUN.

The network configuration setting is now completed.

7.2.2 Changing the parameter without changing the network configuration

To change only the created module parameter of the slave station without changing the network configuration, set the parameter in the following procedure.

1. Display the "CC IE Field Configuration" window.

- When the master/local module is the QJ71GF11-T2

Project window $\Rightarrow[$ Parameter $] \Rightarrow[$ Network Parameter $] \Rightarrow[$ Ethernet/CC IE/MELSECNET] \Rightarrow [CC IE Field Configuration Setting] button

- When the master/local module is the LJ71GF11-T2

7 Project window \Rightarrow [Parameter] \Rightarrow [Network Parameter $] \Rightarrow$ [Ethernet/CC IE Field] \Rightarrow [CC IE Field Configuration Setting] button
2. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.

3. Open the "Parameter Processing of Slave Station" window.
\geqslant [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
4. Set "Parameter read" for "Method selection".

| Parameter Processing of Slave Station |
| :--- | :--- |
| Target Module Information:
 NZ2GFCF-D62PD2
 Start I/O No.:0000 - Station No.:1
 Method selection: Parameter read
 Parameter read
 Parameter write |

5. Click the [Execute] button and the following window is displayed.
```
MELSOFT Series GX Works2 %3
parameters.
The operation of the slave station may be change by the execution of
    the process "Parameter write".
    Also it may overwrite the device value of the PLC CPU refreshing the
    remote I/O and remote registers.
    Please confirm safety before the execution.
    Please confirm that the Connection Destination PLC is correct
    -Please confirm that the CC IE Field module is set correctly.
    -Please confirm that the target slave station is correct.
    Do you want to execute?
```

6. Click the [Yes] button
7. The parameter is read from the high-speed counter module.

	Name	Initial Value	Read Value	Write Value	Setting Range
Station-based parameter					
\checkmark	Mode switch setting	9: Automatic...	9: Automatic...		
\square	Input response time setting	5: 10 ms	5: 10 ms		
\square	Output HOLD/CLEAR setting	0: CLEAR	0: CLEAR		
\checkmark	Cyclic data update watch tim...	0	0		0 to 20
Module-based parameter (main module)					
\checkmark Q Comparison output function					
	-... Comparison output setting	0: Coinciden...	0: Coinciden...		
	- ... Coincidence output 1 chan...	0: CH 1	0: CH 1		
	-.... Coincidence output 2 chan...	0: CH 1	0: CH 1		
	- ... Coincidence output 3 chan...	0: CHI	0: CH 1		
	! n-i...id.............. + -1.... ${ }^{\text {II }}$	n. 1114	n. 1111		

8. Set "Parameter write" for "Method selection".

Parameter Processing of Slave Station			
	NZ2GFCF-D62PD2 Start I/O No.:0000 - Station No.:1		
Method selection:	Parameter write Parameter read Parameter write		

9. Set "Write Value". The following are the procedure.

- Click the title cell of "Read Value" to select all the items and copy them.
- Click the title cell of "Write Value" to select all the items and paste the copy.
- Select the items to be changed, and set new values.

10. Click the [Execute] button and the following window is displayed.

MELSOFT Series GX Works2
The process "Parameter write" will be executed, targeting the selected
parameters.
The operation of the slave station may be change by the execution of
the process "Parameter write".
Also it may overwrite the device value of the PLC CPU refreshing the
remote I/ and remote registers.
Please confirm safety before the execution.
-Please confirm that the Connection Destination PLC is correct. -Please confirm that the CCII Field modulis es cot correctly. -Please confirm that the target slave station is correct. Do you want to execute?

11. Click the [Yes] button.
12. The parameter is written to the high-speed counter module.

The module parameter setting of the slave station is completed.

7.3 Operation Mode List

This section lists the comparison output setting and counter function selection that can be combined with each operation mode.
\bigcirc : Can be set/—: Cannot be set/ $\leftarrow:$ Same as normal mode (asynchronous communication mode)

Operation mode setting	Setting value ${ }^{* 1}$	Function name				Drive mode				Reference
						Normal mode (asynchronous communication mode)			Synchronous communication mode	
						Comparison output setting ${ }^{* 2}$		Counter function selection *3		
						Coincidence	Cam			
Normal mode	0	*4	Linear counter function			\bigcirc	\bigcirc	-	\leftarrow	Page 107, Section 8.4.1
			Ring counter function			\bigcirc	\bigcirc	-	\leftarrow	Page 109, Section 8.4.2
			Comparison output function		-				\leftarrow	Page 114, Section 8.5
				Coincidence	-	\bigcirc	-	-	\leftarrow	Page 116, Section 8.5.2
				output function	Preset/replace (at coincidence output) function	\bigcirc	-	-	\leftarrow	Page 126, Section 8.5.3
				Cam swit	function	-	\bigcirc	-	-	Page 129, Section 8.5.4
			Preset/replace function (using RY command or phase Z input terminal)			\bigcirc	\bigcirc	-	\leftarrow	Page 134, Section 8.6
			Latch counter function by latch counter input terminal			\bigcirc	\bigcirc	-	-	Page 139, Section 8.7
			Count disable function			\bigcirc	\bigcirc	0	\leftarrow	Page 143, Section 8.9
			Latch counter function (counter function selection)			\bigcirc	\bigcirc	1	\leftarrow	Page 145, Section 8.10
			Sampling counter function			\bigcirc	\bigcirc	2	\leftarrow	Page 148, Section 8.11
			Periodic pulse counter function			\bigcirc	\bigcirc	3	\leftarrow	Page 151, Section 8.12
			Count disable/preset/replace function			\bigcirc	\bigcirc	4	\leftarrow	Page 154, Section 8.13
			Latch counter/preset/replace function			\bigcirc	\bigcirc	5	\leftarrow	Page 156, Section 8.14

Operation mode setting		Setting value ${ }^{* 1}$	Function name		Drive mode				Reference		
		Normal mode (asynchronous communication mode)			Synchronous communication mode						
		Comparison output setting ${ }^{* 2}$			Counter function selection *3						
		Coincidence			Cam						
Dedicated mode	Frequency measurement mode		1	*5		Frequency measurement function	\bigcirc	-	-	-	Page 162, Section 8.16
	Rotation speed measurement mode		2	*6	Rotation speed measurement function	\bigcirc	-	-	-	Page 166, Section 8.17	
	Pulse measurement mode		3	*7	Pulse measurement function	\bigcirc	-	-	-	Page 170, Section 8.18	
	PWM output mode	4	*8	PWM output function	\bigcirc	-	-	-	Page 174, Section 8.19		
Common		Error notification function			\bigcirc	\bigcirc	-	\leftarrow	Page 183, Section 8.22		
		-	Output HOLD/CLEAR setting function		\bigcirc	\bigcirc	-	\leftarrow	Page 181, Section 8.20		
		Cyclic data update watch function	\bigcirc	\bigcirc	-	-	Page 182, Section 8.21				
		*9	Input function (extension input module)	\bigcirc	-	-	\leftarrow	Page 186, Section 8.23			
		Output function (extension output module)	\bigcirc	\bigcirc	-	\leftarrow					
		Input response time setting function (extension input module)	\bigcirc	-	-	\leftarrow					
		External power supply monitoring function (extension output module)	\bigcirc	\bigcirc	-	\leftarrow					
		Number of ON times integration function (extension output module)	\bigcirc	-	-	\leftarrow					

*1 The value set in $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$)
*2 The value set in Comparison output setting (address: 0100_{H})
*3 The value set in CHロ Counter function selection (address: 0126 ${ }_{\mathrm{H}}, 0146_{\mathrm{H}}$)
*4 This mode operates according to the combination of each function and setting.
*5 In this mode, the pulses of the pulse input terminals in phase A and B are counted and the frequency is automatically calculated.
*6 In this mode, the pulses of the pulse input terminals in phase A and B are counted and the rotation speed is automatically calculated.
*7 In this mode, the ON width or OFF width of pulses input to the function input terminal or latch counter input terminal is measured.
*8 In this mode, the PWM waveform of 200 kHz at a maximum is output from any coincidence output 1 to 4 terminals (EQU1 to EQU4).
*9 Function at the extension I/O module installation

CHAPTER 8 functions

This chapter describes the high-speed counter module functions.

8.1
 Mode Shift at Power-on

At power-on, the mode of the high-speed counter module shifts to any of the following.

- Unit test mode
- Normal mode (asynchronous communication mode)
- Synchronous communication mode

The following table lists conditions where the mode shifts.

Sym bol	Mode	Condition
a)	Unit test mode	If X 10 of the station number setting switch is set to TEST and X1 of the switch is set to 0, the mode shifts to the unit test mode. For details, refer to the following. Unit Test (5 Page 246, Section 11.4)
b)	(Drive mode switch)	If the station number setting switch is set to 1 to 120, the mode shifts according to the setting of Mode switch setting (address: 0000_{H}) and the type of the module that operates as the master station of the high- speed counter module. For details, refer to the following. Drive mode switch (■ Page 102, Section 8.2)

8.2 Drive Mode Switch

The drive modes of the high-speed counter module are the normal mode (asynchronous communication mode) and synchronous communication mode.
The following table lists the type and the operation of the mode.

Type	Operation
Normal mode (asynchronous communication mode)	The present value is updated with reference to the internal control cycle of the high-speed counter module.
Synchronous communication mode	The present value is updated in the synchronization cycle of a master station that supports the CC- Link IE Field Network synchronous communication function.

The drive mode can be selected by setting Mode switch setting (address: 0000_{H}).

(1) Setting procedure

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "Mode switch setting" to " 0 : Normal mode (Asynchronous communication mode)", or " 9 : Automatical judgment mode".

\checkmark	Mode switch setting	9: Automatic...	\checkmark		Execute all CH
\checkmark	Input response time setting	5: 10 ms	0: Normal mode (Asynchronous communication mode) 9: Automatical judgment mode		
\square	Output HOLD/CLEAR setting	0: CLEAR			
\checkmark	Curlir data undate watrh tim				

The following table lists the setting value of "Mode switch setting" and the drive mode.

Setting value of "Mode switch setting"	Operation
0: Normal mode (Asynchronous communication mode)	The high-speed counter module operates in the normal mode (asynchronous communication mode).
"9: Automatical judgment mode"	The drive mode is automatically set according to the type of the module that operates as the master station of the high-speed counter module. ${ }^{* 1}$

*1 The drive mode varies depending on the module of the master station as shown below.

Master station		Setting of master station*2	Drive mode when "Mode switch setting" is set to "9: Automatical judgment mode"
Master/local module (not support the CC-Link IE Field Network synchronous communication function)		-	Normal mode (asynchronous communication mode)
Master/local module (supports the CC-Link IE Field Network synchronous communication function)		Setting the network synchronous communication setting to "Asynchronous"	Normal mode (asynchronous communication mode)
		Setting the network synchronous communication setting to "Synchronous"	Synchronous communication mode
Simple motion module	Serial number (first five digits) is 15091 or earlier	-	Normal mode (asynchronous communication mode)
	Serial number (first five digits) is 15092 or later	-	Synchronous communication mode

*2 For the settings of the master station, refer to the MELSEC iQ-R Inter-Module Synchronization Function Reference Manual.
3. Click the [Execute] button to write the parameter to the high-speed counter module.

4. Check that ${ }^{0190}{ }_{H}$ " is stored in CH 1 Latest warning code (RWr 23).

[Online] \Rightarrow [Monitor] \Rightarrow [Device/Buffer Memory Batch]

- Device															
- Device Name W1123									\checkmark		T/C Set Value Reference Prograr				
C Buffer Memory Module Start											$\square(H E X)$				Bddre
Display format															
Modify Value...	2	$1 \mathbf{W}$				1.22	1.24	ASC		0	16		Details...		Qpen...
Device	F	E D	C	B	A 9	87	76	5	3	2	1	0			$\stackrel{ }{ }$
W1123	0	0	0	0	00	11	10	0	10	,	0	0		0190	

5. The high-speed counter module starts operating in the set drive mode by turning off and on the power or performing the remote reset.

Point ${ }^{P}$

- For the normal mode (asynchronous communication mode) operation of the high-speed counter module connected to a master station that supports the CC-Link IE Field Network synchronous communication function, set to "0: Normal mode (Asynchronous communication mode)".
- In the MELSEC iQ-R series master station, setting each slave station to Synchronous or Asynchronous allows their operation (synchronous communication mode/normal mode (asynchronous communication mode)) to be managed and configured at a time by the master station. Note, however, that settings for the extension modules take no effect. Their operation follows the settings of the main module connected.

Detect Now												
Mode Setting:		Online (Standard Mode)		- Assignment Method: Start/End			Link Scan Time (Approx.): 00.74 ms					
	No.	Model Name	STA\#	Station Type	RX/RY Setting			RWw/RWr Setting			Reserved/Error Invalid Station	Network Synchronous Communication
		Modelnam		Station Type	Points	Start	End	Points	Start	End		
馹	0	Host Station	0	Master Station								
E	1	NZ2GFCF-D62PD2	1	Remote Device Station	80	0000	004F	64	0000	003F	No Setting	Synchronous
E	-	NZ2EX-16(DO)	-	-	16	0050	005F					Asynchronous
E	2	NZ2GF2B1-16T	2	Remote Device Station	16	0000	000F	20	0000	0013	No Setting	Synchronous

8.3

8.3.1 Types of pulse input modes

There are six pulse input modes: 1-phase pulse input (1 multiple/2 multiples), CW/CCW pulse input, and 2-phase pulse input (1 multiple/2 multiples/4 multiples).
(1) Pulse input modes and count timing

Pulse input mode	Count timing		
1-phase multiple of 1	For counting up	$\phi \mathrm{A}$ \square $\phi \mathrm{B}$ and $\mathrm{CH} \square$ Count down command \qquad (RY22, RY3A)	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$. $\phi \mathrm{B}$ and CHD Count down command (RY22, RY3A) are off.
	For counting down		Counts on the falling edge (\downarrow) of ϕA. $\phi \mathrm{B}$ or CHD Count down command (RY22, RY3A) is on.
1-phase multiple of 2	For counting up	$\phi \mathrm{A}$ \square $\phi \mathrm{B}$ and $\mathrm{CH} \square$ Count down command \qquad (RY22, RY3A)	Counts on the rising edge (\uparrow) and the falling edge (\downarrow) of ϕA. $\phi \mathrm{B}$ and CH Count down command (RY22, RY3A) are off.
	For counting down	$\phi \mathrm{A}$ \square $\phi \mathrm{B}$ or $\mathrm{CH} \square$ Count down command \square (RY22, RY3A)	Counts on the rising edge (\uparrow) and the falling edge (\downarrow) of ϕA. $\phi \mathrm{B}$ or CHD Count down command (RY22, RY3A) is on.
CW/CCW	For counting up	$\underset{\phi \mathrm{B}}{\phi-\uparrow \longleftarrow \square}$	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$. $\phi \mathrm{B}$ is off.
	For counting down	фA	ϕA is off. Counts on the rising edge (\uparrow) of $\phi \mathrm{B}$.
2-phase multiple of 1	For counting up	$\begin{aligned} & \phi \mathrm{A}-\square \square \\ & \phi \mathrm{B}-\square \square \square \end{aligned}$	Counts on the rising edge (\uparrow) of $\phi \mathrm{A}$ while $\phi \mathrm{B}$ is off.
	For counting down	ϕA $\square \downarrow$ \square фB \square	Counts on the falling edge (\downarrow) of $\phi \mathrm{A}$ while $\phi \mathrm{B}$ is off.

Pulse input mode	Count timing		
2-phase multiple of 2	For counting up	$\phi \mathrm{A}$ \qquad ϕB \qquad	Counts on the rising edge (\uparrow) of ϕA while ϕB is off. Counts on the falling edge (\downarrow) of ϕA while ϕB is on.
	For counting down	ϕA个ヶ7 ϕB \qquad	Counts on the rising edge (\uparrow) of ϕA while ϕB is on. Counts on the falling edge (\downarrow) of ϕA while ϕB is off.
2-phase multiple of 4	For counting up	ϕA \qquad \uparrow 1 ϕB \qquad \uparrow \square	Counts on the rising edge (\uparrow) of ϕA while ϕB is off. Counts on the falling edge (\downarrow) of ϕA while ϕB is on. Counts on the rising edge (\uparrow) of ϕB while ϕA is on. Counts on the falling edge (\downarrow) of ϕB while ϕA is off.
	For counting down	$\begin{aligned} & \phi \mathrm{A} \uparrow \downarrow \downarrow \\ & \phi \mathrm{~B} \uparrow \downarrow \downarrow \end{aligned}$	Counts on the rising edge (\uparrow) of ϕA while ϕB is on. Counts on the falling edge (\downarrow) of ϕA while ϕB is off. Counts on the rising edge (\uparrow) of ϕB while ϕA is off. Counts on the falling edge (\downarrow) of $\phi \mathrm{B}$ while $\phi \mathrm{A}$ is on.

Point ${ }^{\circ}$

When using the phase B pulse input or CHD Count down command (RY22, RY3A) for 1-phase pulse input, turn off the unused signals.
When the phase B pulse input or $\mathrm{CH} \square$ Count down command (RY22, RY3A) is on, countdown is performed with the phase A pulse input.

(a) 1-phase pulse input

For 1-phase pulse input, multiple of 1 or multiple of 2 can be selected as a counting method.
The following figure shows the relationship between phase A pulse input and phase B pulse input or $\mathrm{CH} \square$ Count down command (RY22, RY3A).

(b) CW/CCW pulse input

For CW/CCW pulse input, pulses can be counted up with the phase A pulse input and counted down with the phase B pulse input.
The following figure shows the relationship between phase A pulse input and phase B pulse input.

(c) 2-phase pulse input

For 2-phase pulse input, multiple of 1 , multiple of 2 , or multiple of 4 can be selected as a counting method.
The phase difference between phase A pulses and phase B pulses determines whether the pulses are counted up or down.
The following figure shows the relationship between phase A pulse input and phase B pulse input.

8.3.2 Counting method setting

Set the counting method in the CC IE Field configuration.

1. Set "Parameter write" for "Method selection".

2 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHロ Pulse input mode".

- $\mathrm{CH}^{\text {1 P Pulse input mode }}$	0:1-Phase...	\checkmark
--... CH 1 Counting speed setting	0:10kpps	0: 1-Phase Multiple of 1 1: 1-Phase Multiple of 2 2: CWIOCW 3: 2-Phase Multiple of 1 4: 2-Phase Multiple of 2 5: 2-Phase Multiple of 4
- ${ }^{-}$- CH_{1} Counter format	0 : Linear C...	
- $\mathrm{CH}^{\text {- }} \mathrm{Z}$ phase (Preset) trigger setting	0 : Rising	
- ${ }^{\text {-... }} \mathrm{CH} 11$ External presetireplace (Z Phase) r...	0: ON at de...	
-... CH 1 Counter function selection	0: Count Di...	
\cdots-... CH 1 Function input logic setting	0: Positive	

8.4 Counter Format Selection

Set the counter format in the CC IE Field configuration.

1. Set "Parameter write" for "Method selection".

2 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHD Counter format".

-... CH 1 Counter format	0: Linear C...	\checkmark
-... CH 1 Z phase (Preset) trigger setting	0 : Rising	0: Linear Counter 1: Ring Counter
-... CH1 External presetireplace (Z Phase) r...	$0:$ ON at de...	
- CH 1 Counter function selection	0: Count Di...	

8.4.1 Linear counter function

(1) Operation of the linear counter

- When the linear counter is selected, pulses are counted between -2147483648 (lower limit value) and 2147483647 (upper limit value).
- The preset/replace function and the comparison output function can be used together.
- The following figure shows the relationship between CH - Present value (RWr 10 to $\mathrm{RWr} 11, \mathrm{RWr} 28$ to RWr 29) of the counter and remote registers at overflow and underflow for the linear counter function.

No．	Description
1）	For counting down from the lower limit value（－2147483648）in CHD Present value（ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr 29 ），the underflow error occurs and $\mathrm{CH} \square$ Underflow detection flag（ $\mathrm{RW} \mathrm{r} 20 . \mathrm{b} 1, \mathrm{RW} 388 . \mathrm{b} 1$ ）is changed to Detected（1）from Not detected （0）． For details on the underflow error，refer to the following． \square Page 108，Section 8．4．1（2）
2）	When CHロ Preset／replace command（RY21，RY39）is turned off then on to clear the underflow error，the value in $\mathrm{CH} \square$ Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）is stored in CH口 Present value（ $R W r 10$ to $R W r 11, R W r 28$ to $R W r 29$ ）and $\mathrm{CH} \square$ Underflow detection flag（RWr20．b1，RWr38．b1）is changed to Not detected（0）from Detected（1）． Counting in CHD Present value（ RW 10 to $\mathrm{RWr11}$ ，RWr28 to RWr 29 ）resumes．
3）	For counting up from the upper limit value（2147483647）in CHロ Present value（ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr 29 ），the overflow error occurs and CHロ Overflow detection flag（RWr20．b2，RWr38．b2）is changed to Detected（1）from Not detected（0）． For details on the overflow error，refer to the following． W Page 108，Section 8．4．1（2）
4）	When CHロ Preset／replace command（RY21，RY39）is turned off then on to clear the overflow error，the value in CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）is stored in CHD Present value（RWr10 to RWr11，RWr28 to RWr29）and CHD Overflow detection flag（RWr20．b2，RWr38．b2）is changed to Not detected（0）from Detected（1）． Counting in $\mathrm{CH} \square$ Present value（ RW 10 to $\mathrm{RWr11}$ ，RWr28 to RWr 29 ）resumes．

＊1 For $\Delta \mathrm{T}_{1}$ ，refer to Page 305，Appendix 4.

（2）Overflow error and underflow error

－When＂0：Linear Counter＂is selected for＂ $\mathrm{CH} \square$ Counter format＂，the underflow error occurs at counting down from－2147483648（lower limit value）in CH \square Present value（ $\mathrm{RWr10}$ to RWr11，RWr28 to RWr29）and the overflow error occurs at counting up from 2147483647 （upper limit value）．
－If the overflow error occurs，CH \square Overflow detection flag（RWr20．b2，RWr38．b2）is set to Detected（1）and $\mathrm{CH} \square$ Overflow／underflow error（error code：$\square 200_{H}$ ）is stored in CH Latest error code（RWr22，RWr3A）． Then，the counting stops．The value in $\mathrm{CH} \square$ Present value（ $\mathrm{RWr10}$ to RWr11，RWr28 to RWr29）does not change from 2147483647 even when pulses are input．
－If the underflow error occurs， $\mathrm{CH} \square$ Underflow detection flag（RWr20．b1，RWr38．b1）is set to Detected（1） and CH \square Overflow／underflow error（error code：$\square 200_{H}$ ）is stored in CH \square Latest error code（RWr22， RWr3A）．Then，the counting stops．The value in CHD Present value（RWr10 to RWr11，RWr28 to RWr29） does not change from -2147483648 even when pulses are input．
－An overflow and underflow error is cleared by the preset／replace function．After $\mathrm{CH} \square$ Overflow detection flag （RWr20．b2，RWr38．b2）and CH \square Underflow detection flag（RWr20．b1，RWr38．b1）are set to Not detected （0），the counting resumes．Though，CHD Latest error code（RWr22，RWr3A）is held until it is reset．Reset CH \square Latest error code（RWr22，RWr3A）by CH \square Error reset command（RY36，RY4E）．

8.4.2 Ring counter function

(1) Operation of the ring counter

When "1: Ring Counter" is selected for "CHD Counter format", pulses are counted repeatedly within the range between CHD Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29) and CHD Ring counter upper limit value ($R W w 12$ to $R W w 13$, RWw2A to RWw2B) specified by the user.
The overflow and underflow errors do not occur under the ring counter function.
The preset/replace function and the comparison output function can be used together under the ring counter function as well as under the linear counter function.
The following figure shows the relationship among CHロ Present value (RW 10 to $\mathrm{RW} \mathrm{F} 11, R W r 28$ to RW 29), CHD Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29), and CHロ Ring counter upper limit value ($R W w 12$ to $R W w 13$, RWw2A to $R W w 2 B$).

(2) Counting range of the ring counter

One of the following three counting ranges of the ring counter is determined by the relationship among $\mathrm{CH} \square$ Present value (RWr 10 to RW 111 , RWr28 to RWr29), CH \square Ring counter lower limit value ($R W w 10$ to $R W w 11$, RWw28 to RWw29), and CHD Ring counter upper limit value (RWw12 to RWw13, RWw2A to RWw2B) at the time when $\mathrm{CH} \square$ Count enable command (RY24, RY3C) is turned on or when the preset/ replace function is performed.

- Ring counter lower limit value \leq Present value \leq Ring counter upper limit value (This range is normally used.)
- "Present value < Ring counter lower limit value" or "Ring counter upper limit value < Present value"
- Ring counter lower limit value = Ring counter upper limit value

Set the ring counter upper limit value and the ring counter lower limit value according to the condition "Ring counter lower limit value \leq Ring counter upper limit value". When CHD Count enable command (RY24, RY3C) is turned off then on with the condition not satisfied, $\mathrm{CH} \square$ Ring counter upper/lower limit value setting error (error code: $\square 210_{\mathrm{H}}$) is stored in $\mathrm{CH} \square$ Latest error code ($\mathrm{RWr22}$, RWr3A) and counting does not start. To start counting, set the ring counter upper limit value and the ring counter lower limit value according to the condition "Ring counter lower limit value \leq Ring counter upper limit value" and turn off then on $\mathrm{CH} \square$ Count enable command (RY24, RY3C). The OFF time must be longer than $\Delta \mathrm{T}_{1}$.
For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.

（a）Ring counter lower limit value \leq Present value \leq Ring counter upper limit value

－For counting up：When the value in $\mathrm{CH} \square$ Present value（ $\mathrm{RWr10}$ to $\mathrm{RWr11,RWr28}$ to RWr 29 ）reaches CHD Ring counter upper limit value（RWw12 to RWw13，RWw2A to RWw2B），the value in CHロ Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is automatically stored in CHロ Present value（ RW W 10 to RW 11， RW 28 to RW 29 ）．
－For counting down：When the value in CHD Present value（ RWr 10 to $\mathrm{RWr} 11, \mathrm{RWr} 28$ to RWr 29 ）reaches CHD Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29），the value in CHロ Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is kept in CHD Present value（RWr10 to $R W r 11, R W r 28$ to $R W r 29$ ）．The value＂ring counter upper limit value -1 ＂is stored in CHD Present value （ RW r10 to RW r11，RWr28 to RWr29）at the next count－down pulse input．
Both for counting up and down，the value in CHD Ring counter upper limit value（RWw12 to RWw13，RWw2A to $R W w 2 B$ ）is not stored in CHロ Present value（ $R W r 10$ to $R W r 11, R W r 28$ to $R W r 29$ ）．（Except for the case that the present value equals to the ring counter upper limit value when $\mathrm{CH} \square$ Count enable command（RY24， RY3C）is turned off then on，or when the preset／replace function is performed．When pulses are counted up or down in the status，the operation is the same as that of when pulses are counted from $\mathrm{CH} \square$ Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）．）
For example，if $\mathrm{CH} \square$ Count enable command（RY24，RY3C）is turned on when CHロ Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is $0, C H \square$ Ring counter upper limit value（RWw12 to RWw13， RWw2A to RWw2B）is 2000，and CHロ Present value（ $R W r 10$ to $R W r 11, R W r 28$ to $R W r 29$ ）is 500，the counting range and the CHロ Present value（RWr10 to RWr11，RWr28 to RWr29）change as follows．

（b）＂Present value＜Ring counter lower limit value＂or＂Ring counter upper limit value＜ Present value＂
－For counting up：When the value in $\mathrm{CH} \square$ Present value（ RW r 10 to RW 11 ， RW 28 to RW r 29 ）reaches CH \square Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29），the value in CHD Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is kept in CHD Present value（RWr10 to $R W r 11, R W r 28$ to $R W r 29)$ ．The value＂ring counter upper limit value +1 ＂is stored in $\mathrm{CH} \square$ Present value （ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RW r29）at the next count－up pulse input．
－For counting down：When the value in CHロ Present value（ $\mathrm{RWr10}$ to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr 29 ）reaches CHD Ring counter upper limit value（RWw12 to RWw13，RWw2A to RWw2B），the value in CHロ Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is automatically stored in CHD Present value（RWr10 to RWr11，RWr28 to RWr29）．
Both for counting up and down，the value in CHD Ring counter upper limit value（RWw12 to RWw13，RWw2A to $R W W 2 B$ ）is not stored in CH \square Present value（ $R W r 10$ to $R W r 11, R W r 28$ to $R W r 29$ ）．For example，if $\mathrm{CH} \square$ Count enable command（RY24，RY3C）is turned on when CHD Ring counter lower limit value（RWw10 to RWw11，RWw28 to RWw29）is $0, C H \square$ Ring counter upper limit value（RWw12 to RWw13，RWw2A to $R W w 2 B$ ）is 2000，and CHロ Present value（ $R W r 10$ to $R W r 11, R W r 28$ to $R W r 29$ ）is 3000，the counting range and the CHロ Present value（RWr10 to RWr11，RWr28 to RWr29）change as follows．

（c）Ring counter lower limit value $=$ Ring counter upper limit value
When the ring counter lower limit value equals to the ring counter upper limit value，the counting range is from -2147483648 to 2147483647 regardless of CHロ Present value（RWr10 to RWr11，RWr28 to RWr29）．

Point ${ }^{\rho}$

- The setting values of $\mathrm{CH} \square$ Ring counter upper limit value (RWw 12 to $\mathrm{RWw} 13, \mathrm{RWw} 2 \mathrm{~A}$ to RWw 2 B) and $\mathrm{CH} \square$ Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29) can be reflected by turning off then on Initial data processing completion flag (RY8) or by turning off then on Initial data setting request flag (RY9). In that case, however, monitoring data such as CHD Present value ($\mathrm{RWr10}$ to $\mathrm{RWr11}, \mathrm{RWr28}$ to $\mathrm{RWr29} \mathrm{)} \mathrm{is} \mathrm{cleared} .\mathrm{For} \mathrm{ordinary} \mathrm{use}$, setting values by turning off then on CHD Count enable command (RY24, RY3C).
- When CHD Count enable command (RY24, RY3C) is on, the stored value does not change even if a value is written to CH \square Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29) and CHD Ring counter upper limit value (RWw12 to RWw13, RWw2A to RWw2B). Turn off CHD Count enable command (RY24, RY3C) before changing CHD Ring counter upper limit value ($R W w 12$ to RWw13, RWw2A to RWw2B) and CHD Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29). The OFF time must be longer than ΔT_{1}. For ΔT_{1}, refer to Page 305, Appendix 4.
- Always turn off $\mathrm{CH} \square$ Count enable command (RY24, RY3C) before changing the counting range by the preset/replace function to prevent a miscount.

8.5

The comparison output function outputs ON/OFF signals comparing the count value with any point or range set by the user.

The coincidence output function or the cam switch function can be selected depending on the processing method.
Set the comparison output function in the parameter setting window or Comparison output setting (address: 0100_{H}).

8.5.1 Operation overview of the coincidence output function and the cam switch function

The following table shows the operation overview of the coincidence output function and the cam switch function.

Item		Coincidence output function	Cam switch function
Comparison target		CHD Present value (RWr10 to RWr11, RWr28 to RWr29)	CHD Present value (RWr10 to RWr11, RWr28 to RWr29)
Number of output points per channel		0 to 4 points	0 to 16 points
Comparison start timing		When Initial data processing request flag (RX8) is off and Initial data setting completion flag (RX9) is off	When CHO Cam switch execute (RX26, RX3E) is turned off then on
Setting item for comparison point/range		- Point setting (Coincidence output 1 to 4)/Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) - Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, RWwE to RWwF)	- Cam switch function parameter data (address: 1500_{H} to $1 \mathrm{FFF}_{\mathrm{H}}$)
Change method of comparison point/range		- Turning off then on Setting change request (Coincidence output 1 to 4) (RY14 to RY17) - Turning off then on Initial data processing completion flag (RY8) - Turning off then on Initial data setting request flag (RY9) ${ }^{* 1}$	Turning off then on $\mathrm{CH} \square$ Cam switch execute (RX26, RX3E)
Comparison result	Internal output	- Coincidence output 1 to 4 (RX10 to RX13) - Counter value greater/smaller signal (RWrO) (only for coincidence output)	Cam switch output signal (RWr2)
	External output	Coincidence output 1 to 4 terminals (EQU1 to EQU4)	Output terminals of the extension output module
Preset/replace (at coincidence output) function		Provided	Not provided
Output reset timing		- When Reset command (Coincidence output 1 to 4) (RY10 to RY13) is turned off then on (for coincidence output) - When values are counted outside the detection area (for within-range output or out-of-range output)	Automatically reset depending on Cam switch function, step No. 1 to No. 16 setting (Output 1 to 16) of remote buffer memory

Item	Coincidence output function	Cam switch function
External output enable timing	- When CHD Coincidence output enable command (RY20, RY38) is turned on (when Coincidence output enable command setting (address: 0106_{H}) is set to By each channel (0)) - When Enable command (Coincidence output 1 to 4) (RY18 to RY1B) is turned on (when Coincidence output enable command setting (address: 0106_{H}) is set to By each coincidence output (1))	When CHロ Cam switch execute ($\mathrm{RX} 26, \mathrm{RX} 3 \mathrm{E}$) is turned on

*1 When Initial data processing request flag (RX8) is on, the setting data is not checked.

The coincidence output function compares CHD Present value (RWr10 to RWr11, RWr28 to RWr29) with a coincidence detection point or with an area divided by the coincidence output upper/lower limit value, and outputs the comparison result from Coincidence output 1 to 4 terminals (EQU1 to EQU4). The result can be output from Coincidence output 1 to 4 terminals (EQU1 to EQU4) in two ways, by each channel or by each terminal. At coincidence output, Coincidence output 1 to 4 (RX10 to RX13) turns on.
The unit to output the comparison result is called coincidence output.
Four points are assigned to coincidence output. The present value is compared with each point and the comparison result is output from the point.

(1) Setting method of the coincidence output function

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "0: Coincidence Output Function" for "Comparison output setting".

| \square | Comparison output function | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Comparison output setting | $0: \mathrm{Coincide} \ldots$ | | |
| | Coincidence output 1 channel assignme... | $0: \mathrm{CH} 1$ | | |
| | Coincidence output 2 channel assignme... | $0: \mathrm{CH} 1$ | | |
| | Coincidence output 3 channel assignme... | $0: \mathrm{CH} 1$ | | $0:$ Coincidence Output Function |

3. Set a channel to be compared for "Coincidence output 1 to 4 channel assignment setting".

| | Coincidence output 1 channel assignment setting | $0: \mathrm{CH} 1$ | |
| :--- | :--- | :--- | :--- | :--- |
| | Coincidence output 2 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Coincidence output 3 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Coincidence output 4 channel assignment setting | $0: \mathrm{CH} 1$ | $0: \mathrm{CH} 1$ |

4. Set the comparison condition for "Coincidence output 1 to 4 comparison condition setting".

| | Coincidence output 1 comparison condition setting | $0:$ Coincide... | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Coincidence output 2 comparison condition setting | $0:$ Coincide \ldots | | |
| | Coincidence output 3 comparison condition setting | $0:$ Coincide... | $0:$ Coincidence Output | |
| | Coincidence output 4 comparison condition setting | $0:$ Coincide \ldots | | $1:$ Within-range Output |
| | Presetireplace setting at coincidence output (Coinci... | $0:$ Present \ldots | | $2:$ Out-of-range Output |

5. Set the way of output for "Coincidence output enable command setting".

	1.... Coincidence output enable	0: By each c...	\checkmark	
\checkmark	■ CH1 Setting		0: By each channel 1: By each coincidence output	
	- CH 1 Operation mode setting	0: Normal M...		
	:-.. CH 1 Count source selection	0: A Phase/...		

Point ${ }^{\circ}$

When "Operation mode setting" is set to a mode other than " 0 : Normal Mode", the setting of "Coincidence output 1 to 4 comparison condition setting" is ignored.

(2) Comparison condition types and setting

Depending on the selected comparison condition, the range to be compared with the present value differs.

(a) Coincidence output

Coincidence output 1 to 4 turn on when CHロ Present value (RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr 29) matches with a point set in Point setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD).

(b) Within-range output

Coincidence output 1 to 4 turn on when both the following conditions are satisfied.

- When CHㅁ Present value ($\mathrm{RWr10}$ to RWr 11 , RW 28 to $R W r 29$) is Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) or more
- When CHD Present value (RWr10 to RWr11, RWr28 to RWr29) is Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, RWwE to RWwF) or less

(c) Out-of-range output

Coincidence output 1 to 4 turn on when either of the following conditions is satisfied.

- When CHI Present value (RWr 10 to RW 11 , RWr28 to RWr 29) is less than Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD)
- When CHD Present value (RWr10 to RWr11, RWr28 to RWr29) exceeds Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, RWwE to RWwF)

(d) Comparison setting item

The following table lists the comparison setting items.

Comparison condition	Comparison setting item	Setting details	Reference

Point ${ }^{\circ}$

Turning off then on Initial data processing completion flag (RY8) when the comparison condition is coincidence output or when the comparison setting item for within-range output (Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) to Upper limit value setting (Coincidence output 4) (RWwE to RWwF)) is 0 (default) turns on Coincidence output 1 to 4 (RX10 to RX13) because CHD Present value (RWr10 to RWr11, RWr28 to RWr29) of when Initial data processing request flag (RX8) is turned off is 0 (default). To turn off Coincidence output 1 to 4 (RX10 to RX13), set the comparison setting item to other than 0 or to a range that does not include 0 before turning off then on Initial data processing completion flag (RY8).

(3) Setting the way to output a comparison result

The result can be output from Coincidence output 1 to 4 terminals (EQU1 to EQU4) in two ways, by each channel or by each terminal.

Setting item	Setting range	Default	Reference
Coincidence output enable command setting $\left(\right.$ address: $\left.0106_{\mathrm{H}}\right)$	0: By each channel 1: By each coincidence output	0 (By each channel)	Page 291, Appendix 3

(a) By each channel

Set Coincidence output enable command setting (address: 0106 ${ }_{H}$) to By each channel (0) and turn on $\mathrm{CH} \square$ Coincidence output enable command (RY20, RY38). This operation collectively enables the outputs to Coincidence output 1 to 4 terminals (EQU1 to EQU4) of the channel that is set in Coincidence output channel assignment setting (address: 0101H).

Coincidence output enable command setting (address: $\mathbf{0 1 0 6}_{\mathrm{H}}$)	Coincidence output 1 to 4 terminals (EQU1 to EQU4)
0: By each channel	
CHD Coincidence output enable command (RY20, RY38)	Coincidence output 1 terminal (EQU1)
	Coincidence output 2 terminal (EQU2)
	Coincidence output 3 terminal (EQU3)
	Coincidence output 4 terminal (EQU4)

(b) By each coincidence output

Set Coincidence output enable command setting (address: 0106 ${ }_{\mathrm{H}}$) to By each coincidence output (1) and turn on Enable command (Coincidence output 1 to 4) (RY18 to RY1B). This operation enables the output to Coincidence output 1 to 4 terminals (EQU1 to EQU4) by each terminal.

Coincidence output enable command setting (address: $\mathbf{0 1 0 6}_{\mathbf{H}}$)	Coincidence output $\mathbf{1}$ to $\mathbf{4}$ terminals (EQU1 to EQU4)
Enable command (Coincidence output 1) (RY18)	
Enable command (Coincidence output 2) (RY19)	Coincidence output 1 terminal (EQU1)
Enable command (Coincidence output 3) (RY1A)	Coincidence output 2 terminal (EQU2)
Enable command (Coincidence output 4) (RY1B)	Coincidence output 3 terminal (EQU3)

(4) Comparison start timing of the coincidence output function

The coincidence output function starts comparison when "CHD Operation mode setting" is set to "0: Normal Mode", and when Initial data processing request flag (RX8) turns off then on.
The following table lists the timing of when the settings related to the coincidence output function are enabled.
O: Enable, 一: Disable

Setting item	Timing of when settings are enabled			Reference
	When Initial data processing completion flag (RY8) is turned off then on	When Initial data setting request flag (RY9) is turned off then on	When Setting change request (Coincidence output 1 to 4) (RY14 to RY17) is turned off then on	
"Coincidence output 1 to 4 channel assignment setting"	-	\bigcirc	-	-
"Coincidence output 1 to 4 comparison condition setting"	-	\bigcirc	-	-
"Preset/replace setting at coincidence output (Coincidence output 1 to 2)" ${ }^{* 3}$	-	\bigcirc	-	-
"Coincidence output enable command setting"	-	\bigcirc	-	-
Point setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD)	-*1	0^{*}	\bigcirc	Page 281, Appendix 2 (7), Page 282, Appendix 2 (8)
Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD)	-*1	$0^{* 2}$	\bigcirc	Page 281, Appendix 2 (7), Page 282, Appendix 2 (8)
Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, RWwE to RWwF)	-*1	0^{*}	\bigcirc	Page 281, Appendix 2 (7), Page 282, Appendix 2 (8)

*1 When Initial data processing request flag (RX8) is on, the setting data is checked.
*2 When Initial data processing request flag (RX8) is on, the setting data is not checked.
*3 For details on the preset/replace (at coincidence output) function, refer to the following.
\longmapsto Page 126, Section 8.5.3
(5) Output destination of comparison result for the coincidence output function

The following table lists the output destination of the comparison result for each comparison condition.
O: Enable, 一: Disable

Setting item	Comparison condition			Output overview
	Coincidence output	Within-range output	Out-of-range output	
Coincidence output 1 to 4 (RX10 to RX13)	\bigcirc	\bigcirc	\bigcirc	Outputs the result whether the specified comparison condition was satisfied or not.
Coincidence output 1 to 4 terminals (EQU1 to EQU4)	\bigcirc	\bigcirc	\bigcirc	
Counter value greater/smaller signal (RWrO)	\bigcirc	-	-	Outputs a relationship (greater or smaller) between the present value and the point setting (coincidence output 1 to 4).

The following table lists the details on Counter value greater/smaller signal (RW r 0).

(6) Operation example of each comparison condition

(a) Operation example of coincidence output

The following figure shows the timing to enable Point setting (Coincidence output 1) and an operation example of when the present value matches Point setting (Coincidence output 1) (1000) for the case where coincidence output is set as the comparison condition. Assume that Coincidence output enable command setting (address: 0106_{H}) is set to By each channel (0) and Coincidence output 1 is assigned to CH 1 .

```
---- Controlled by the high-speed counter module
\(\longrightarrow\) Controlled by the program
```


No.	Description
1)	Start comparison of the present value and a value set to Point setting (Coincidence output 1) (RWw0 to RWw1) in the following order. - Write 1000 into Point setting (Coincidence output 1) (RWw0 to RWw1). - Turn off then on Setting change request (Coincidence output 1) (RY14). - The values set in Point setting (Coincidence output 1) (RWw0 to RWw1) are enabled when Setting change completed (Coincidence output 1) (RX14) turns on. After confirming that Setting change completed (Coincidence output 1) (RX14) turns on, turn off Setting change request (Coincidence output 1) (RY14).
2)	When CH 1 Present value ($\mathrm{RWr10}$ to $\mathrm{RWr11}$) is less than Point setting (Coincidence output 1) ($R W w 0$ to $R W w 1$), the value in Counter value smaller (Coincidence output 1) (RWrO.b0) is 1.
3)	When Reset command (Coincidence output 1) (RY10) is turned on, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn off.
4)	Turn off then on CH 1 Count enable command (RY24) to start counting.
5)	If performing coincidence output from the coincidence output 1 terminal (EQU1), turn on CH 1 Coincidence output enable command (RY20).
6)	When CH1 Present value (RWr10 to RWr11) equals to Point setting (Coincidence output 1) (RWw0 to RWw1), Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn on. Also, Counter value smaller (Coincidence output 1) (RWr0.b0) becomes 0 .
7)	If Reset command (Coincidence output 1) (RY10) is turned on while CH1 Present value (RWr 10 to RWr11) and Point setting (Coincidence output 1) (RWw0 to RWw1) match, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn off.
8)	If Reset command (Coincidence output 1) (RY10) is turned off while CH1 Present value (RWr10 to RWr11) and Point setting (Coincidence output 1) (RWw0 to RWw1) match, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn on again.
9)	When CH 1 Present value (RWr10 to RWr11) is more than Point setting (Coincidence output 1) (RWw0 to RWw1), the value in Counter value greater (Coincidence output 1) (RWr0.b1) is 1.
10)	Turn on Reset command (Coincidence output 1) (RY10) to reset Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1). If Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) remain on, the next coincidence output cannot be detected.

Point ${ }^{8}$

- Coincidence output 1 to 4 (RX10 to $\mathrm{RX13}$) turn on regardless of CHD Coincidence output enable command (RY20, RY38).
- Set the ON time of Reset command (Coincidence output 1 to 4) (RY10 to RY13) to ΔT_{1} or longer. For ΔT_{1}, refer to Page 305, Appendix 4.
- Due to coincidence detection processing inside the high-speed counter module, the counter value greater or smaller corresponding to Counter value greater/smaller signal (RWrO) is not updated at the same time when Coincidence output 1 to 4 (RX10 to RX13) turns off then on. Therefore, the counter value greater or smaller may be 1 even though it is not the correct value.
- Even if Point setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) is changed, the present value is not compared with the changed value unless Setting change request (Coincidence output 1 to 4) (RY14 to RY17) is turned off then on.

(b) Operation example of within-range output

The following figure shows the timing to enable Lower limit value setting (Coincidence output 1) (1000) and Upper limit value setting (Coincidence output 1) (2000) and an operation example of when the present value reaches the setting range (1000 to 2000) for the case where within-range output is set as the comparison condition. Assume that Coincidence output enable command setting (address: 0106 ${ }_{\mathrm{H}}$) is set to By each channel (0) and Coincidence output 1 is assigned to CH 1 .
$\xrightarrow{-----}$: Controlled by the high-speed counter module

No.	Description
1)	Start comparison of the present value and values set to Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) and Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) in the following order. - Write 1000 into Lower limit value setting (Coincidence output 1) (RWw0 to RWw1). - Write 2000 into Upper limit value setting (Coincidence output 1) (RWw2 to RWw3). - Turn off then on Setting change request (Coincidence output 1) (RY14). - The values set for Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) and Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) are enabled when Setting change completed (Coincidence output 1) (RX14) turns on. After confirming that Setting change completed (Coincidence output 1) (RX14) turns on, turn off Setting change request (Coincidence output 1) (RY14).
2)	Turn off then on CH1 Count enable command (RY24) to start counting.
3)	If performing coincidence output from the coincidence output 1 terminal (EQU1), turn on CH1 Coincidence output enable command (RY20).
4)	When CH1 Present value (RWr10 to RWr11) is Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) or more and the present value is within the specified range, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn on.
5)	When CH1 Present value (RWr10 to RWr11) is more than Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) and the present value is outside the specified range, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn off.

Point ${ }^{P}$

- Coincidence output 1 to 4 (RX10 to RX13) turn on regardless of CHD Coincidence output enable command (RY20, RY38).
- Even if Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) and Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, RWwE to RWwF) are changed, the present value is not compared with the changed value unless Setting change request (Coincidence output 1 to 4) (RY14 to RY17) is turned off then on.

(c) Operation example of out-of-range output

The following figure shows the timing to enable Lower limit value setting (Coincidence output 1) (1000) and Upper limit value setting (Coincidence output 1) (2000) and an operation example of when the present value reaches out of the setting range (1000 to 2000) for the case where out-of-range output is set as the comparison condition. Assume that Coincidence output enable command setting (address: 0106 ${ }_{H}$) is set to By each channel (0) and Coincidence output 1 is assigned to CH 1 .
$----\rightarrow$ Controlled by the high-speed counter module
\longrightarrow Controlled by the program

No.

Description

Start comparison of the present value and values set to Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) and Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) in the following order.

- Write 1000 into Lower limit value setting (Coincidence output 1) (RWw0 to RWw1).
- Write 2000 into Upper limit value setting (Coincidence output 1) (RWw2 to RWw3).

1) - Turn off then on Setting change request (Coincidence output 1) (RY14).

- The values set for Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) and Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) are enabled when Setting change completed (Coincidence output 1) (RX14) turns on. After confirming that Setting change completed (Coincidence output 1) (RX14) turns on, turn off Setting change request (Coincidence output 1) (RY14).

2)

CH1 Present value (RWr10 to RWr11) becomes less than Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) and Coincidence output 1 (RX10) turns on since the present value is outside the specified range.
If performing coincidence output from the coincidence output 1 terminal (EQU1), turn on CH 1 Coincidence output enable command
3) (RY20). In this case, the coincidence output 1 terminal (EQU1) turns on immediately since Coincidence output 1 (RX10) is already on.

No.	Description
4$)$	Turn off then on CH1 Count enable command (RY24) to start counting.
5$)$	When CH 1 Present value (RWr10 to RWr11) is Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) or more and the present value is within the specified range, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn off.
6$)$	When CH1 Present value (RWr10 to RWr11) is more than Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) and the present value is outside the specified range, Coincidence output 1 (RX10) and the coincidence output 1 terminal (EQU1) turn on.

Point ${ }^{\circ}$

- Coincidence output 1 to 4 (RX10 to RX13) turn on regardless of CHD Coincidence output enable command (RY20, RY38).
- Even if Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) and Upper limit value setting (Coincidence output 1 to 4) (RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB, $R W w E$ to $R W w F$) are changed, the present value is not compared with the changed value unless Setting change request (Coincidence output 1 to 4) (RY14 to RY17) is turned off then on.

8.5.3 Preset/replace (at coincidence output) function

The preset/replace (at coincidence output) function performs the preset/replace function (replaces the present value with a value preset by the user) at the rising state (off to on) of Coincidence output 1 and 2.
The preset/replace by this function is performed to the channel assigned to Coincidence output 1 and 2.
This function is not available for Coincidence output 3 and 4.

(1) Setting method of the preset/replace (at coincidence output) function

1. Set "Parameter write" for "Method selection".

3 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set " 0 : Coincidence Output Function" for "Comparison output setting".

| \square | Comparison output function | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Comparison output setting | $0:$ Coincide... | | |
| | Coincidence output 1 channel assignme... | $0: \mathrm{CH} 1$ | | |
| | Coincidence output 2 channel assignme... | $0: \mathrm{CH} 1$ | | |
| | Coincidence output 3 channel assignme... | $0: \mathrm{CH} 1$ | | $0:$ Coincidence Output Function |
| | | | | $1:$ Cam Switch Function |

3. Set a channel to be compared for "Coincidence output 1 to 4 channel assignment setting".

| | Coincidence output 1 channel assignment setting | $0: \mathrm{CH} 1$ | |
| :--- | :--- | :--- | :--- | :--- |
| | Coincidence output 2 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Coincidence output 3 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Coincidence output 4 channel assignment setting | $0: \mathrm{CH} 1$ | $0: \mathrm{CH} 1$ |

4. Set the comparison condition for "Coincidence output 1 to $\mathbf{4}$ comparison condition setting".

5. Set "1: Present value replaced" for "Preset/replace setting at coincidence output (Coincidence output 1 to 2)".

| | Coincidence output 4 comparison condition setting | $0:$ Coincide... | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Presetireplace setting at coincidence output (Coincidence output 1) | $0:$ Present \ldots | |
| | Presetreplace setting at coincidence output (Coincidence output 2) | $0:$ Present \ldots | |
| | Cam switch output unit assignment setting | $0:$ No Assi... | |
| | Cam switch output 1 channel assignment setting | $0: \mathrm{CH1}$ | |

(2) Operation example of the preset/replace (at coincidence output) function

The following figure shows an operation example in which the preset value (0 or 200) is stored to the present value when the present value reaches Point setting (Coincidence output 1) (1000). Note that the comparison condition of Coincidence output 1 is set to coincidence output, and it is assigned to CH 1 .

Point ${ }^{P}$

- While CHD External preset/replace (Z Phase) request detection (RX23, RX3B) is on, values cannot be replaced by this function as well as by CHD Preset/replace command (RY21, RY39). Turn off then on CH External preset/replace (Z Phase) request detection reset command (RY23, RY3B) to turn off CHD External preset/replace (Z Phase) request detection (RX23, RX3B).
- Have a ΔT_{1} or longer interval after changing CHD Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) until the value is replaced because there are maximum of $\Delta \mathrm{T}_{1}$ delay until change in $\mathrm{CH} \square$ Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) is reflected. ${ }^{* 1}$
- To perform the preset/replace function continuously using the same coincidence output, have a ΔT_{1} or longer interval. The preset/replace function may not operate if there is not a $\Delta \mathrm{T}_{1}$ or longer interval. ${ }^{* 1}$
The following is the rough standard of an interval for performing the preset/replace function continuously using the same coincidence output.
$(\mid \text { Point setting (Coincidence output } 1 \text { to } 4)^{* 2}$ - Preset value setting|) > (Input pulse speed (pps)/1000)
- When the preset/replace (at coincidence output) function is used under the condition where pulses are input in a counting speed of 2 Mpps or faster, a pulse count difference (plus one or minus one pulse) occurs. Use the function after checking that the difference does not cause a problem for the system.
*1 For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.
*2 Change this into Upper limit value setting (Coincidence output 1 to 4) or Lower limit value setting (Coincidence output 1 to 4) according to the comparison condition and the setting in which Coincidence output 1 to 4 turns on.

8.5.4 Cam switch function

The cam switch function allows users to output the ON/OFF status of any of the output terminals on the extension output module (Y0 to YF) according to the value in CHロ Present value ($\mathrm{RWr10}$ to RWr11, RWr28 to RWr29).
The maximum of 16 steps of ON/OFF switching can be set per output point.
Up to 16 output points can be set.

Ex. The following figure and table show an operation example of output control according to CH 1 Present value (RWr 10 to RWr 11) with CH 1 being assigned to "Cam switch output 1 channel assignment setting", "Cam switch output 2 channel assignment setting", and "Cam switch output 3 channel assignment setting".

CH1 Present value (RWr10 to RWr11)	Output 3	Output 2	Output 1
-2147483648 to 999	OFF	OFF	OFF
1000 to 1999	OFF	OFF	ON
2000 to 2999	OFF	ON	OFF
3000 to 3999	OFF	ON	ON
4000 to 4999	ON	OFF	OFF
5000 to 5999	ON	OFF	ON
6000 to 6999	ON	ON	OFF
7000 to 7999	ON	ON	ON
8000 to 2147483647	OFF	OFF	OFF

Output 1

(1) Restrictions

While the following functions are used, the cam switch function cannot be used.

- Number of ON times integration function
- CC-Link IE Field Network synchronous communication function

(2) Setting method of the cam switch function

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "1: Cam Switch Function" for "Comparison output setting".

3. Set "1: Stage 1" for "Cam switch output unit assignment setting".

| | Cam switch output unit assignment setting | $0: \mathrm{No}$ Assi... | |
| :--- | :--- | :--- | :--- | :--- |
| | Cam switch output 1 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Cam switch output 2 channel assignment setting | $0: \mathrm{CH} 1$ | |
| | Cam switch output 3 channel assignment setting | $0: \mathrm{CH} 1$ | $0:$ No Assignment |

4. Set a channel to be compared for "Cam switch output 1 to 16 channel assignment setting".

--.. Cam switch output 1 channel assignment setting	0: CH 1	\checkmark
-... Cam switch output 2 channel assignment setting	$0: \mathrm{CH} 1$	$\begin{aligned} & 0: \mathrm{CH}_{1} \\ & 1: \mathrm{CH} 2 \end{aligned}$
-... Cam switch output 3 channel assignment setting	$0: \mathrm{CH} 1$	
.-. Cam switch output 4 channel assignment setting	$0: \mathrm{CH} 1$	

5. Set Cam switch function parameter data (address: 1500_{H} to $1 \mathrm{FFF}_{\mathrm{H}}$) in a program.

For details, refer to the following.
\longmapsto Page 131, Section 8.5.4 (3)

(3) Output range setting

With the cam switch function, the maximum of 16 steps of ON/OFF switching can be set per output point. The part where the ON/OFF signal status is switched is referred to as a step.

* 1) to 8) indicate the step number.

Setting item	Setting details
Cam switch function, step type (Output 1 to 16)	Set the ON/OFF status of the output of the extension output module (Y0 to YF) at the time when the pulse counting starts.
Cam switch function, number of steps (Output 1 to 16)	Set the number of steps for the cam of Output 1 to 16. Setting range is 0 to 16. In the case where the number of steps is 0, output is always off when set to be started from off in the step type setting and on when set to be started from on in the setting.
Cam switch function, step No. 1 to No. 16 setting (Output 1 to 16)	Set the count value where the ON/OFF status of the output of the extension output module (Y0 to YF) is switched.

Ex. Cam switch function, step type (Output 1) (address: 1500_{H}) is set to "Starts with output status being OFF $\left(0_{\mathrm{H}}\right)$ ", and Cam switch function, number of steps (Output 1) (address: 1501_{H}) is set to 6 .
Note that Output 1 is assigned to CH 1 .

Setting item	Setting value
Cam switch function, step type (Output 1) (address: 1500 H)	0
Cam switch function, number of steps (Output 1) (address: 1501H)	6
Cam switch function, step No. 1 setting (Output 1) (address: 1502_{H} to 1503_{H})	100
Cam switch function, step No. 2 setting (Output 1) (address: 1504_{H} to 1505_{H})	250
Cam switch function, step No. 3 setting (Output 1) (address: 1506_{H} to 1507_{H})	400
Cam switch function, step No. 4 setting (Output 1) (address: 1508_{H} to 1509_{H})	550
Cam switch function, step No. 5 setting (Output 1) (address: $150 \mathrm{~A}_{H}$ to $150 \mathrm{~B}_{\mathrm{H}}$)	700
Cam switch function, step No. 6 setting (Output 1) (address: $150 \mathrm{C}_{\mathrm{H}}$ to $150 \mathrm{D}_{\mathrm{H}}$)	850
Cam switch function, step No. 7 setting (Output 1) (address: $150 \mathrm{E}_{\mathrm{H}}$ to $150 \mathrm{~F}_{\mathrm{H}}$) to Cam switch function, step No. 16 setting (Output 1) (address: 1520_{H} to 1521_{H})	Setting not necessary

(4) Minimum setting width of the ON/OFF status

To output the ON/OFF signal according to the setting, set the value of each step No. so that the following formula is satisfied.
$($ Input pulse speed $[\mathrm{pps}] \times$ Allowed time $[\mathrm{s}]) \leq\left(\begin{array}{c}\text { Cam switch function, } \\ \text { step No.i + 1setting } \\ (\text { Output })\end{array}\right)-\left(\begin{array}{c}\text { Cam switch function, } \\ \text { step No.i setting } \\ (\text { Output })\end{array}\right)$

- Allowable time: $\left(\Delta \mathrm{T}_{2} \times 2\right)+$ (output response time of the extension output module ${ }^{* 1}$)
- : Cam switch output No. (1 to 16)
- i: Step No. (1 to 15)

For ΔT_{2}, refer to Page 305, Appendix 4.
*1 Either of the output response time for switching on from off or that for switching off from on, whichever is longer

Ex. When the input pulse speed is 10 kpps and the output response time of the extension output module is 1.5 ms

Allowable time: $(0.5 \mathrm{~ms} \times 2)+1.5 \mathrm{~ms}=2.5 \mathrm{~ms}$
Setting width of the ON/OFF status: $\left(10 \times 10^{3}\right) \times\left(2.5 \times 10^{-3}\right)=25$
Therefore, set the difference between the values of Cam switch function, step No.i setting (Output) and Cam switch function, step No.i +1 setting (Output $)$ to 25 or more.

(5) Timing of when the cam switch function setting is enabled

The following table shows the timing of when the cam switch function is enabled.
$\mathrm{CH} \square$ Cam switch execute command (RY26, RY3E) is enabled while Initial data processing request flag (RX8) is off or Initial data setting completion flag (RX9) is off.

O: Enable, 一: Disable

Setting item	Timing of when settings are enabled	
	When Initial data setting completion flag (RX9) is turned off then on	When CHD Cam switch execute command (RY26, RY3E) is off then on
"Cam switch output unit assignment setting"	\bigcirc	-
"Cam switch output 1 to 16 channel assignment setting"	\bigcirc	-
Cam switch function, step type (Output \downarrow) (address: $\left.1500_{\mathrm{H}}+80_{\mathrm{H}} \times(-1)\right)$	-	\bigcirc
Cam switch function, number of steps (Output $\stackrel{\text {) }}{ }$ (address: $1501_{\mathrm{H}}+80_{\mathrm{H}} \times(-1)$)	-	\bigcirc
Cam switch function, step No.i setting (Output $\stackrel{\text {) }}{ }$ (address: $1502_{\mathrm{H}}+80_{\mathrm{H}} \times(-1)$ to $1521_{\mathrm{H}}+80_{\mathrm{H}} \times(*-$ 1))	-	\bigcirc

- : Cam switch output No. (1 to 16)
i: Step No. (1 to 16)

Point ${ }^{\rho}$

For all of Cam switch function, step type (Output $*$), Cam switch function, number of steps (Output \downarrow), and Cam switch function, step No.i setting (Output \leqslant) of cam switch output that is not used, set the default (0). When a value other than the default is set, output may be turned on when the cam switch function is performed. In addition, when a value other than the default value is backed up to the nonvolatile memory by turning off then on Initial data setting request flag (RY9), the setting in the nonvolatile memory also must be set to the default. If the setting in the nonvolatile memory is not the default, the above setting item becomes the backed up value when the module power supply is turned off then on or the module returns from the remote reset.

(6) Signal timing of the cam switch function

The following figure shows the signal timing of the cam switch function.

- Only Cam switch (Output 1) is used.
- Coincidence output 1 is assigned to CH 1 .
- "1: Stage 1 " is assigned to "Cam switch output unit assignment setting".
- " 0 : CH 1 " is assigned to "Cam switch output 1 channel assignment setting".
---- Controlled by the high-speed counter module
\longrightarrow Controlled by the program

No.	Description
1)	When CH1 Cam switch execute command (RY26) is turned off then on, the step setting of Cam switch (Output 1) is acquired and CH1 Cam switch execute (RX26) turns on. (If the value is changed while the cam switch function is in operation, the change is ignored.)
2)	The cam switch function operates when CH1 Cam switch execute (RX26) turns on.
3)	CH1 Present value (RWr10 to RWr11) and the step setting of Cam switch (Output 1) are compared and the result is output from Y0 of the extension output module. The output status can be checked by Cam switch status (Output 1) (RWr2.b0) of Cam switch output signal (RWr2).
4)	When CH1 Cam switch execute command (RY26) is turned off, the operation is as follows: - CH1 Cam switch execute (RX26) turns off. - Cam switch status (Output 1) (RWr2.b0) becomes 0. - Y0 of the extension output module is turned off.

*1 For $\Delta \mathrm{T}_{3}$, refer to Page 305, Appendix 4.

Point ${ }^{9}$

Cam switch output signal (RWr2) turns on regardless of CHロ Count enable command (RY24, RY3C).

The preset/replace function replaces the count value with any value preset by the user. This value is called a preset value.
This function can be used to start counting pulses from the preset value.
Perform this function by one of the following methods. This section describes No. 1 and 2.

No.	Method	Reference
1	Performing the preset/replace function by a program	Page 135, Section 8.6 (1)
2	Performing the preset/replace function by CHロ Phase Z input terminal (Z1, Z2)	Page 136, Section 8.6 (2)
3	Performing the preset/replace function by the preset/replace (at coincidence output) function	Page 126, Section 8.5.3
4	Performing the preset/replace function by the count disable/preset/replace function	Page 154, Section 8.13
5	Performing the preset/replace function by the latch counter/preset/replace function	Page 156, Section 8.14

Point ${ }^{P}$

All the above preset/replace functions cannot be performed while CHD External preset/replace (Z Phase) request detection ($R \times 23, R X 3 B$) is on.

（1）Performing the preset／replace function by a program

The following figure shows an operation example of changing the present value to the preset value（100）at any timing．
Turning on $\mathrm{CH} \square$ Preset／replace command（RY21，RY39）by a program performs the preset／replace function．

$----\quad$ Controlled by the high－speed counter module
 \longrightarrow Controlled by the program

No．	Description
1）	Write any value to CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）in 32－bit binary．（Setting range：－ 2147483648 to 2147483647 ）
2）	The value in CH口 Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）is stored in CH口 Present value（RWr10 to RWr11，RWr28 to RWr29）at the rising edge（off to on）of CHD Preset／replace command（RY21，RY39）．Also，CHD Preset／replace completion（ $\mathrm{RX} 21, \mathrm{RX} 39$ ）turns on．When turning off CHロ Preset／replace command（RY21，RY39）after checking CHD Preset／replace completion（ $\mathrm{RX} 21, \mathrm{RX} 39$ ）turns on，CHD Preset／replace completion（ $\mathrm{RX} 21, \mathrm{RX} 39$ ）turns off．The value can be replaced regardless of the ON／OFF status of CHD Count enable command（RY24，RY3C）．

＊1 For $\Delta \mathrm{T}_{1}$ ，refer to Page 305，Appendix 4.

(2) Performing the preset/replace function by CHD Phase Z input terminal (Z1, Z2)

The preset/replace function by $\mathrm{CH} \square$ Phase Z input terminal $(\mathrm{Z} 1, \mathrm{Z2})$ can be performed when the set trigger condition is met.
(a) Setting method of the condition for the preset/replace function by CHD Phase Z input terminal ($\mathbf{Z 1}, \mathbf{Z 2}$)

1. Set "Parameter write" for "Method selection".

5 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHO Z phase (Preset) trigger setting".

| | CH 1 Z phase (Preset) trigger setting | $0:$ Rising | |
| :--- | :--- | :--- | :--- | :--- |
| | CH 1 External preset/replace (Z Phase) request detection setting | $0:$ ON at de... | |
| | CH 1 Counter function selection | $0:$ Count Di... | |
| | CH 1 Function input logic setting | $0:$ Positive \ldots | |
| | CH 1 Latch counter input logic setting | $0:$ Positive \ldots | 1: Falling |
| | 2: Rising + Falling | | |

3. Set "CHO External preset/replace (Z Phase) request detection setting".

| | CH 1 External presetireplace (Z Phase) request detection setting | $0: \mathrm{ON}$ at de... | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | CH 1 Counter function selection | $0:$ Count $\mathrm{Di} \ldots$ | |
| | CH 1 Function input logic setting | $0:$ Positive \ldots | |
| | CH 1 Latch counter input logic setting | $0:$ Positive \ldots | $0: \mathrm{ON}$ at detection |
| | | | $1:$ Not ON at detection |

(b) Operation example of the preset/replace function by $\mathrm{CH} \square$ Phase \mathbf{Z} input terminal

 (Z1, Z2)The following figure shows an operation example of turning on $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection (RX23, RX3B) and changing the present value to the preset value (100) at the rising edge of $\mathrm{CH} \square$ Phase Z input terminal ($Z 1, Z 2$).

Point ${ }^{\rho}$

- While CHD External preset/replace (Z Phase) request detection (RX23, RX3B) is on, the value cannot be replaced by any methods. Replace the value after turning off CHD External preset/replace (Z Phase) request detection (RX23, RX3B) by turning on CHD External preset/replace (Z Phase) request detection reset command (RY23, RY3B).
- Have a ΔT_{1} or longer interval after changing CHD Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) until $\mathrm{CH} \square$ Phase Z input terminal (Z1, Z2) is turned on because there are maximum of $\Delta \mathrm{T}_{1}$ delay until change in CHD Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) is reflected. An interval is not necessary when the preset/replace function is performed by the preset/replace command since there is a delay of when the preset/replace command is used. ${ }^{* 1}$
- When the preset/replace function is performed by $\mathrm{CH} \square$ Phase Z input terminal ($Z 1, Z 2$), the operation response time follows CHD Z phase input response time setting (address: 0129_{H}.b0 to b1, 0149 H .b0 to b1). Since CHロ Present value (RW Wr10 to RW r11, RWr28 to RWr29) is updated synchronizing with the internal control cycle, a maximum of delay time shown below occurs until the preset value is stored.
- $\Delta \mathrm{T}_{1}{ }^{* 1}+$ Setting time of $\mathrm{CH} \square \mathrm{Z}$ phase input response time setting (address: $0129_{\mathrm{H}} \cdot \mathrm{b} 0$ to $\mathrm{b} 1,0149_{\mathrm{H}} \cdot \mathrm{b} 0$ to b 1) *1 For ΔT_{1}, refer to Page 305, Appendix 4.

(1) Latching the present value by the latch counter input terminal

The latch counter function by latch counter input terminal acquires the value in $\mathrm{CH} \square$ Present value (RWr 10 to $\mathrm{RWr} 11, \mathrm{RWr} 28$ to RWr 29) of the counter and stores it in the remote register when CHロ Latch counter input terminal (LATCH1, LATCH2) is input.
The following figure shows an operation example of acquiring the value in $\mathrm{CH} \square$ Present value (RWr 10 to RW 11 , RWr28 to RWr29) as CHD Latch count value (Latch counter input terminal) (RWr18 to RWr19, RWr30 to RWr31) at the rising edge of $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2).

Point ${ }^{\rho}$

- When the latch counter function is performed by using CHD Latch counter input terminal (LATCH1, LATCH2), the resulting response time follows $\mathrm{CH} \square$ Latch counter input response time setting (address: $0129_{\mathrm{H}} \cdot \mathrm{b} 4$ to $\mathrm{b} 5,0149_{\mathrm{H}} \cdot \mathrm{b} 4$ to b5). Note that CHD Latch count value (Latch counter input terminal) (RWr 18 to $\mathrm{RWr} 19, \mathrm{RWr} 30$ to RWr 31) is updated in synchronization with the internal control cycle, thus causing a maximum of delay as shown below until the obtained value is stored.
- $\Delta \mathrm{T}_{1}{ }^{*} 1+$ Setting time of $\mathrm{CH} \square$ Latch counter input response time setting (address: $0129_{\mathrm{H}} \cdot \mathrm{b} 4$ to $\mathrm{b} 5,0149_{\mathrm{H}} \cdot \mathrm{b} 4$ to b 5) *1 For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.
- During operation in the synchronous communication mode, the latch counter function using the latch counter input terminal cannot be used.

8.8 Counter Function Selection

When CHD Selected counter function start command (RY25, RY3D) or CHロ Function input terminal (FUNC1, FUNC2) is input, one of the functions shown below can be used.
The function can be selected for each channel.

(1) Counter function selection list

Function name	Remote buffer memory setting				Method	
	CHD Operation mode setting (address: $\begin{aligned} & 0120_{\mathrm{H}} \\ & \left.0140_{\mathrm{H}}\right) \end{aligned}$	CHD Counter function selection (address: $\begin{aligned} & 0126_{H}, \\ & \left.0146_{H}\right) \end{aligned}$	CHD Function input logic setting (address: $\begin{aligned} & 0127_{H}, \\ & \left.0147_{H}\right) \end{aligned}$	CHD Function input response time setting (address: 0129 H b2 to b3, 0149 ${ }_{H}$.b2 to b 3)	CHD Selected counter function start command (RY25, RY3D)	CHD Function input terminal (FUNC1, FUNC2)
Count disable function	0	0	0/1	00/01/10	\bigcirc	\bigcirc
Latch counter function	0	1	0/1	00/01/10	\bigcirc	\bigcirc
Sampling counter function	0	2	0/1	00/01/10	\bigcirc	\bigcirc
Periodic pulse counter function	0	3	0/1	00/01/10	\bigcirc	\bigcirc
Count disable/preset/replace function	0	4	0/1	00/01/10	-	\bigcirc
Latch counter/preset/replace function	0	5	0/1	00/01/10	-	\bigcirc

(2) Setting method of the counter function selection

1. Set "Parameter write" for "Method selection".
"CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. For "СНロ Counter function selection", select a counter function to be used.

-... CH 1 Counter function selection	0: Count Di...	\checkmark	
-.... CH 11 Function input logic setting	$0:$ Positive ...	0 : Count Disable Function 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function 4: Count disable/Presetfreplace Function 5: Latch counteriPresetireplace Function	
-... CH 1 Latch counter input logic s...	0: Positive ...		
--... CH 1 Z phase input response ti...	2: OFF $->0 \ldots$		
--.. CH 1 Function input response ti...	2: OFF \rightarrow O \ldots		
--... CH 1 Latch counter input respo...	2: OFF \rightarrow O...		
--... CH 1 Pulse measurement setti...	0 : Pulse 0...		

Point ${ }^{\rho}$

In the counter function selection, a delay occurs before the start of the selected function due to any of the following factors:

- Input response time of CHロ Function input terminal (FUNC1, FUNC2)
- Scan time of the program (for CHD Selected counter function start command (RY25, RY3D))
- Link scan time of the network (for CHD Selected counter function start command (RY25, RY3D))
- Internal control cycle in the high-speed counter module (for $\mathrm{CH} \square$ Selected counter function start command (RY25, RY3D))
The count errors by these delays are as follows:
- Count error (maximum) which occurs when a function is performed by CHロ Function input terminal (FUNC1, FUNC2)

Function input response time setting (max.) [ms]
1000
$(\mathrm{s}) \times$ Pulse input speed $[\mathrm{pps}]^{\star 1}$

- Count error (maximum) which occurs when a function is performed by $\mathrm{CH} \square$ Selected counter function start command (RY25, RY3D) (When the master module is the QJ71GF11-T2 with Block Data Assurance per Station set and in the asynchronous mode)

For the sampling counter function and the periodic pulse counter function, a sampling/periodic time error due to a component error ($\pm 100 \mathrm{ppm}$) occurs. The count error is as follows:

$$
\text { Sampling/periodic time }[\mathrm{s}]^{\star 2} \times \frac{100[\mathrm{ppm}]}{1000000} \times \text { Pulse input speed }[\mathrm{pps}]^{\star 1}
$$

*1 Pulse input speed [pps] = pulse input frequency [Hz] \times number of multiples [count]
*2 Sampling/periodic time [s] = Sampling/periodic time setting value \times Sampling/periodic time unit [s] (When the sampling/periodic time unit setting is 1 [ms], the sampling/periodic time is 0.001 [s]. When the unit setting is 10 [ms], the time is 0.01 [s$]$.)
*3 For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.

8.9 Count Disable Function

The count disable function stops the counting when CHロ Function input terminal (FUNC1, FUNC2) or CHロ Selected counter function start command (RY25, RY3D) is input during the counting.

(1) Setting method of the count disable function

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Select " 0 : Count Disable Function" in " $\mathrm{CH} \square$ Counter function selection".

-... CH 1 Counter function selection	0: Count Di...	0: Count Disable Function
--... CH 1 Function input logic setting	0: Positive ...	
-...- CH 1 Latch counter input logic s...	0: Positive ...	0: Count Disable Function
- - CH 1 Z phase input response ti...	2: OFF $\rightarrow 0 \ldots$	1: Latch Counter Function
-... CH 1 Function input response ti...	2: OFF $\rightarrow 0$...	2: Sampling Counter Function 3. Periodic Pulse Counter Function
--... CH 1 Latch counter input respo...	2: OFF \rightarrow - $0 \ldots$	4: Count disable/Presetreplace Function
--.. CH 1 Pulse measurement setti...	0 : Pulse 0...	5: Latch counter/Presetireplace Function

(2) Operation example of the count disable function

The following figure shows an operation example of stopping the counting while $\mathrm{CH} \square$ Selected counter function start command (RY25, RY3D) and CHD Function input terminal (FUNC1, FUNC2) are on.

No.	Description
1)	Counting starts by turning on CHD Count enable command (RY24, RY3C).
2)	Counting stops by turning on CHロ Selected counter function start command (RY25, RY3D). Also, CHD Counter function detection ($\mathrm{RX} 25, \mathrm{RX} 3 \mathrm{D}$) turns on by turning on CH - Selected counter function start command (RY25, RY3D).
3)	Counting resumes by turning off CHD Selected counter function start command (RY25, RY3D). Also, CHD Counter function detection (RX25, RX3D) turns off by turning off CHロ Selected counter function start command (RY25, RY3D).
4)	Counting stops by turning on CHD Function input terminal (FUNC1, FUNC2).
5)	Counting resumes by turning off CHD Function input terminal (FUNC1, FUNC2).
6)	Counting stops by turning off CHD Count enable command (RY24, RY3C).
7)	Counting stops regardless of CHD Selected counter function start command (RY25, RY3D) since CHD Count enable command (RY24, RY3C) is off.
8)	Counting remains stopped even if CH - Count enable command (RY24, RY3C) is turned on since CHD Selected counter function start command (RY25, RY3D) is on.
9)	Counting resumes by turning off CHD Selected counter function start command (RY25, RY3D).

8.10 Latch Counter Function (Counter Function Selection)

The latch counter function by counter function selection acquires $\mathrm{CH} \square$ Present value (RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr29) of the counter and stores it in the remote register when CHD Function input terminal (FUNC1, FUNC2) or CHD Selected counter function start command (RY25, RY3D) is input.

(1) Setting method of the latch counter function (counter function selection)

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Select "1: Latch Counter Function" in "CHD Counter function selection".

-... CH 1 Counter function selection	0: Count Di...	1: Latch Counter Function -
- -CH 1 Function input logic setting	0 : Positive ...	
--.. CH 11 Latch counter input logic s...	0: Positive	0: Count Disable Function
-.. CH 1 Z phase input response ti...	2: OFF $\rightarrow 0$...	1: Latch Counter Function
-... CH 1 Function input response ti...	2: OFF \rightarrow O...	2: Sampling Counter Function
--.. CH 1 Latch counter input respo...	2: OFF \rightarrow O...	4: Count disable/Presetireplace Function
--.. CH 1 Pulse measurement setti...	0 : Pulse 0.	5: Latch counter'Presetireplace Function

（2）Operation example of the latch counter function（counter function selection）

The following figure shows an operation example of acquiring the value in CHD Present value（ RWr 10 to RWr 11 ， RWr 28 to RW 29 ）as CH Latch count value（ RWr 12 to $\mathrm{RWr} 13, \mathrm{RWr} 2 \mathrm{~A}$ to RWr 2 B ）at the rising edge of CH D Selected counter function start command（RY25，RY3D）or CHD Function input terminal（FUNC1，FUNC2）．

No．

Description

The value in CHD Present value（RWr10 to RWr11，RWr28 to RWr29）is stored in CHD Latch count value（RWr12 to RWr13， RWr2A to RW r2B）at the rising edge of $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）or CHロ Function input terminal（FUNC1，FUNC2）．For CHD Selected counter function start command（RY25，RY3D），CHD Counter function detection （RX25，RX3D）turns on or off by turning on or off $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）．

2）
After CHD Latch count value（RWr12 to RWr13，RWr2A to RWr2B）is updated，CHD Update flag（Latch count value）（RX29， RX41）turns on．

When CHD Update flag reset command（Latch count value）（RY28，RY40）is turned off then on，the high－speed counter module turns off CHD Update flag（Latch count value）（RX29，RX41）and turns on CHロ Update flag reset completed（Latch count value） （RX28，RX40）．After that，CHロ Update flag reset completed（Latch count value）（RX28，RX40）turns off when CHD Update flag reset command（Latch count value）（RY28，RY40）is turned off．
CHD Latch count value（RWr12 to RWr13，RWr2A to RWr2B）is updated even if CHロ Update flag（Latch count value）（RX29，
4） $R X 41$ ）is on．（The latch counter function operates regardless of the ON／OFF status of CHD Count enable command（RY24， RY3C）．）

Point ${ }^{\rho}$

- When the latch counter function is performed by CHD Function input terminal (FUNC1, FUNC2), the operation response time follows CHD Function input response time setting (address: 0129 H .b2 to b3, 0149 H b2 to b3)). Since CHD Latch count value (RWr 12 to $\mathrm{RWr} 13, \mathrm{RWr} 2 \mathrm{~A}$ to $\mathrm{RWr2B}$) is updated synchronizing with the internal control cycle, a maximum of delay time shown below occurs until the acquired value is stored.
- $\Delta \mathrm{T}_{1}{ }^{* 1}+$ Setting time of $\mathrm{CH} \square$ Function input response time setting (address: $0129_{\mathrm{H}} \cdot \mathrm{b} 2$ to $\mathrm{b} 3,0149_{\mathrm{H}} \cdot \mathrm{b} 2$ to b 3)
*1 For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.
- The latch counter function cannot be performed while CHD Selected counter function start command (RY25, RY3D) or CHD Function input terminal (FUNC1, FUNC2) is on even if the other is turned on.

8．11 Sampling Counter Function

The sampling counter function counts pulses that are input during the specified sampling period（ T ）and stores it as $\mathrm{CH} \square$ Sampling count value（ RWr 12 to $\mathrm{RWr} 13, R W \mathrm{r} 2 \mathrm{~A}$ to RWr 2 B ）in the remote register．

（1）Setting method of the sampling counter function

1．Set＂Parameter write＂for＂Method selection＂．

＂CC IE Field Configuration＂window \Rightarrow Select a high－speed counter module in＂List of stations＂．\Rightarrow ［CC IE Field Configuration］\Rightarrow［Online］\Rightarrow［Parameter Processing of Slave Station］
2．Select＂2：Sampling Counter Function＂in＂CHロ Counter function selection＂．

－ CH 1 Counter function selection	0：Count Di．．．	2：Sampling Counter Function
－－CH1 Function input logic setting	0 ：Positive	0：Count Disable Function 1：Latch Counter Function
．－．．CH1 Latch counter input logic s．	0 ：Positive	
CH 1 Z phase input response ti．．．	2： $\mathrm{OFF}->0$ ．	
－－ CH 1 Function input response ti．	2：OFF $\rightarrow 0$ ．	3：Periodic Pulse Counter Function 4：Count disable／Presetireplace Function 5：Latch counteriPresetreplace Function
－－－． CH 1 Latch counter input respo．．．	$2:$ OFF $->0$ ．．．	
－－． CH 1 Pulse measurement setti．．．	0 ：Pulse 0．．	

（2）Setting of the sampling period

Set the sampling period（T）by setting values to CHD Cycle setting（Sampling counter／Periodic pulse counter） （RWw17，RWw2F）and CHD Time unit setting（Sampling counter／Periodic pulse counter）（RWw16，RWw2E）． When CHD Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）is turned off then on，the setting values are enabled．
However，the setting values are enabled from the next operation of sampling counter function if the settings are changed while the sampling counter function is being performed．

Setting item	Setting range	Reference
CHロ Time unit setting（Sampling counter／Periodic pulse counter）（RWw16，RWw2E）	$0: 1 \mathrm{~ms}$	
CHロ Cycle setting（Sampling counter／Periodic pulse counter） （RWw17，RWw2F）	$1: 10 \mathrm{~ms}$	Page 284，Appendix 2

Point ${ }^{\rho}$

－Change the sampling period by CHロ Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）． When the period is changed by Initial data processing completion flag（RY8）or Initial data setting request flag（RY9），the items of the monitor value such as CHロ Present value（ RWr 10 to $\mathrm{RWr} 11, \mathrm{RW} 28$ to RW r 29 ）are cleared．
－When changing the sampling period by using CHD Setting change request（Sampling counter／Periodic pulse counter） （RY27，RY3F），do not execute the sampling counter function by CHロ Function input terminal（FUNC1，FUNC2）from when CHD Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）is turned on until CHD Setting change completed（Sampling counter／Periodic pulse counter）（RX27，RX3F）turns on．Doing so may perform counting with the previous setting．

(3) Operation example of the sampling counter function

The following figure shows an operation example of acquiring the number of the pulses input in the set sampling period (1ms) as CHロ Sampling count value (RWr12 to RWr13, RWr2A to RWr2B).

No．	Description
1）	Counting the input pulses starts from 0 at the rising edge of CHD Selected counter function start command（RY25，RY3D）or $\mathrm{CH} \square$ Function input terminal（FUNC1，FUNC2）．For CHロ Selected counter function start command（RY25，RY3D），CH \square Counter function detection（RX25，RX3D）turns on or off by turning on or off CHD Selected counter function start command（RY25，RY3D）．
2）	Counting stops at the end of the preset sampling period．
3）	While the sampling counter function is being performed，set CHD Sampling counter／Periodic pulse counter operation flag （RWr20．b3，RWr38．b3）to Operating（1）．
4）	At the end of each sampling period，CHD Update flag（Sampling count value）（RX29，RX41）turns on．
5）	Even after the counting is completed，the values stored in CHD Sampling count value（RWr12 to RWr13，RWr2A to RWr2B） remain the same until CHD Selected counter function start command（RY25，RY3D）or CH \square Function input terminal（FUNC1， FUNC2）is turned on again．When CHロ Selected counter function start command（RY25，RY3D）or CHD Function input terminal （FUNC1，FUNC2）is turned on again， 0 is stored in CHロ Sampling count value（ $R W r 12$ to $R W r 13, R W r 2 A$ to $R W r 2 B$ ）and the counting resumes．
6）	When CHD Update flag reset command（Sampling count value）（RY28，RY40）is turned on，the high－speed counter module turns off CHD Update flag（Sampling count value）（RX29，RX41）and turns on CHD Update flag reset completed（Sampling count value）（RX28，RX40）．After that，CH \square Update flag reset completed（Sampling count value）（RX28，RX40）turns off when CH \square Update flag reset command（Sampling count value）（RY28，RY40）is turned off．
7）	Although the sampling counter function operates regardless of the ON／OFF status of CHD Count enable command（RY24， RY3C），CHロ Sampling count value（ $R W r 12$ to $R W r 13, R W r 2 A$ to $R W r 2 B$ ）is not counted while CH \square Count enable command （RY24，RY3C）is off．At the end of the sampling period after CHD Count enable command（RY24，RY3C）is turned off，CHD Sampling counter／Periodic pulse counter operation flag（ $\mathrm{RWr20.b3}, \mathrm{RWr38.b3}$ ）is set to Not operating（0）and CH口 Update flag （Sampling count value）（RX29，RX41）turns on．

Point ${ }^{\rho}$

－The sampling counter function cannot be performed while $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D） or CHD Function input terminal（FUNC1，FUNC2）is on even if the other is turned on．
－By turning off both $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）and CHロ Function input terminal （FUNC1，FUNC2）and then turning on one of them during the operation of the sampling counter function，the pulses are counted from 0 again though the sampling period is continually measured．
－Depending on the pulse input speed and sampling period，the values stored in $\mathrm{CH} \square$ Sampling count value（RWr12 to RWr13，RWr2A to RWr2B）may be over the upper limit value（2147483647）or below the lower limit value（－2147483648）． In that case，the value stored in $\mathrm{CH} \square$ Sampling count value（ RWr 12 to $\mathrm{RWr} 13, \mathrm{RWr} 2 \mathrm{~A}$ to RWr 2 B ）remains the upper limit value（2147483647）or the lower limit value（－2147483648），and CHロ Overflow／underflow error（Sampling count value／Periodic pulse count，difference value）（error code：$\square 050_{H}$ ）occurs．Despite this minor error，the sampling counter function keeps working till the end of the sampling period．
－To perform the sampling counter function again，reset CHD Update flag（Sampling count value）（RX29，RX41）before turning on again $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）or CHD Function input terminal（FUNC1， FUNC2）．If it is not reset，whether its value was updated after the re－execution cannot be checked．

8．12 Periodic Pulse Counter Function

The periodic pulse counter function stores the values which are stored in CHD Present value（ RWr 10 to RWr 11 ， RWr28 to RWr29）and CHD Periodic pulse count，difference value（ $\mathrm{RWr12}$ to RWr13，RWr2A to RWr2B）in the remote register every specified cycle time（T）．

（1）Setting method of the periodic pulse counter function

1．Set＂Parameter write＂for＂Method selection＂．

＂CC IE Field Configuration＂window \Rightarrow Select a high－speed counter module in＂List of stations＂．\Rightarrow
［CC IE Field Configuration］\Rightarrow［Online］\Rightarrow［Parameter Processing of Slave Station］
2．Select＂3：Periodic Pulse Counter Function＂in＂CHロ Counter function selection＂．

－－．．． CH 1 Counter function selection	0：Count Di．．．	3：Periodic Pulse Counter Function \quad－
－．．． CH 1 Function input logic setting	0：Positive ．．．	0 ：Count Disable Function 1：Latch Counter Function
－－ CH 1 Latch counter input logic s．	0：Positive	
－．．．． CH 1 Z phase input response ti．．．	2：OFF $->0 \ldots$	
．．．CH1 Function input response ti．．．	2：OFF－＞ $0 .$.	2：Sampling Counter Function
．－．． CH 1 Latch counter input respo．．．	2：OFF－＞ $0 \ldots$	3：Periodic Pulse Counter Function
－－．．． CH 1 Pulse measurement setti．．．	0：Pulse 0．．．	4：Count disable／Presetíreplace Function 5：Latch counter／Presetireplace Function

（2）Setting of the cycle time

Set the cycle time（ T ）by setting values to CH －Cycle setting（Sampling counter／Periodic pulse counter） （RWw17，RWw2F）and CHD Time unit setting（Sampling counter／Periodic pulse counter）（RWw16，RWw2E）． When CH \square Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）is turned off then on，the setting values are enabled．
However，the setting values are enabled from the next operation of periodic pulse counter function if the setting is changed while the periodic pulse counter function is being performed．

Setting item	Setting range	Reference
CHロ Time unit setting（Sampling counter／Periodic pulse $0: 1 \mathrm{~ms}$ counter）（RWw16，RWw2E） $1: 10 \mathrm{~ms}$ Page 284，Appendix 2 CHロ Cycle setting（Sampling counter／Periodic pulse counter） （RWw17，RWw2F） 1 to 65535		

Point ${ }^{\rho}$

－Change the cycle time by CHロ Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）．When the cycle time is changed by Initial data processing completion flag（RY8）or Initial data setting request flag（RY9），the items of the monitor value such as CHD Present value（ RWr 10 to $\mathrm{RWr} 11, \mathrm{RWr} 28$ to RW 29 ）are cleared．
－When changing the cycle time by using CHD Setting change request（Sampling counter／Periodic pulse counter）（RY27， RY3F），do not execute the periodic pulse counter function by CHD Function input terminal（FUNC1，FUNC2）from when $\mathrm{CH} \square$ Setting change request（Sampling counter／Periodic pulse counter）（RY27，RY3F）is turned on until CHD Setting change completed（Sampling counter／Periodic pulse counter）（RX27，RX3F）turns on．Doing so may perform counting with the previous setting．

(3) Operation example of the periodic pulse counter function

The following figure shows an operation example of storing each calculated value in $\mathrm{CH} \square$ Periodic pulse count, difference value (RWr 12 to $\mathrm{RWr} 13, \mathrm{RWr} 2 \mathrm{~A}$ to RW 2 Z), CHロ Periodic pulse count, present value (RWr 14 to RWr15, RWr2C to RWr2D), and CHD Periodic pulse count value update check (RWr16 to RWr17, RWr2E to RWr2F) based on the value in CHD Present value (RW r10 to RWr 11 , RW r28 to RW 29) counted within the preset cycle time (1 ms).
$----\rightarrow$ Controlled by the high-speed counter module
\longrightarrow Controlled by the program

[^1]| No． | Description |
| :---: | :---: |
| 1） | Counting the input pulses starts from 0 at the rising edge of $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）or CHD Function input terminal（FUNC1，FUNC2）．For CHD Selected counter function start command（RY25，RY3D），CHD Counter function detection（RX25，RX3D）turns on or off by turning on or off CHD Selected counter function start command（RY25，RY3D）． |
| 2） | Every preset cycle time，the value in $\mathrm{CH} \square$ Present value（ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr28} \mathrm{to} \mathrm{RWr29)} \mathrm{is} \mathrm{stored} \mathrm{in} \mathrm{CHD} \mathrm{Periodic} \mathrm{pulse}$ count，present value（ $\mathrm{RWr14}$ to RW 15，RWr2C to RWr2D）． |
| 3） | Every preset cycle time，the difference of the count values between the previous one and the present one is stored in $\mathrm{CH} \square$ Periodic pulse count，difference value（ RW r12 to RW r13，RWr2A to RWr2B）and CHD Periodic pulse count value update check （RWr16 to RWr17，RWr2E to RWr2F）． |
| 4） | While the periodic pulse counter function is being performed，set CHD Sampling counter／Periodic pulse counter operation flag （RWr20．b3，RWr38．b3）to Operating（1）． |
| 5） | CHD Update flag（Periodic pulse count value）（RX29，RX41）turns on when CHD Periodic pulse count，difference value（RWr12
 pulse count value update check（RWr16 to RWr17，RWr2E to RWr2F）are updated． |
| $6)$ | When CHD Update flag reset command（Periodic pulse count value）（RY28，RY40）is turned on，the high－speed counter module turns off CHロ Update flag（Periodic pulse count value）（RX29，RX41）and turns on CHロ Update flag reset completed（Periodic pulse count value）（RX28，RX40）．After that，CHD Update flag reset completed（Periodic pulse count value）（RX28，RX40）turns off when $\mathrm{CH} \square$ Update flag reset command（Periodic pulse count value）（RY28，RY40）is turned off． |
| 7） | The periodic pulse counter function operates regardless of the ON／OFF status of CHD Count enable command（RY24，RY3C）． |
| 8） | The periodic pulse counter function is stopped by turning off both $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D） and CHD Function input terminal（FUNC1，FUNC2）． |

Point ${ }^{8}$

－Use the periodic pulse count value after checking the values in CHD Periodic pulse count，difference value（RWr12 to RWr13，RWr2A to RWr2B）and CHD Periodic pulse count value update check（RWr16 to RWr17，RWr2E to RWr2F）are equal．When they are different，the periodic pulse count value includes values before and after the end of the cycle time and there is a value discrepancy．Read again CHD Periodic pulse count，difference value（ RWr 12 to RWr13，RWr2A to
 value update check（ RWr 16 to RWr 17 ，RWr2E to $\mathrm{RWr2F}$ ）．
－Depending on the pulse input speed and cycle time，the value in $\mathrm{CH} \square$ Periodic pulse count，difference value（ RW H 12 to RWr13，RWr2A to RWr2B）and CHロ Periodic pulse count value update check（ RW r16 to RW r17，RWr2E to RWr2F）may be over the upper limit value（2147483647）or below the lower limit value（－2147483648）．（The value in CHD Present
 RWr2C to RWr2D）．）In that case，the values in CHロ Periodic pulse count，difference value（ RWr 12 to RW （13，RWr2A to RWr2B）and CHD Periodic pulse count value update check（ $\mathrm{RWr16}$ to $\mathrm{RWr17}, \mathrm{RWr2E}$ to $\mathrm{RWr2F}$ ）remain the upper limit value（2147483647）or the lower limit value（ -2147483648 ），and CHD Overflow／underflow error（Sampling count value／Periodic pulse count，difference value）（error code：$\square 050$ ）occurs．Despite this minor error，the periodic pulse counter function keeps working．
－To perform the periodic pulse counter function again，reset CHD Update flag（Periodic pulse count value）（RX29，RX41） before turning on again CHD Selected counter function start command（RY25，RY3D）or CHD Function input terminal （FUNC1，FUNC2）．If it is not reset，whether its value was updated after the re－execution cannot be checked．

8.13 Count Disable/preset/replace Function

The count disable/preset/replace function executes the count disable function and the preset/replace function according to the status change of CHD Function input terminal (FUNC1, FUNC2) without switching the functions by the counter function selection.

(1) Setting method of the count disable/preset/replace function

1. Set "Parameter write" for "Method selection".

2 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \curvearrowleft [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Select "4: Count disable/Preset/replace Function" in "CHD Counter function selection".

... CH 1 Counter function selection	0: Count Di...	4: Count disable/Presetireplace Function
--... CH 1 Function input logic setting	0 : Positive	0: Count Disable Function 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function
--.. CH 1 Latch counter input logic s...	0: Positive ...	
... CH 1 Z phase input response ti.	2: OFF $->0$...	
.... CH 1 Function input response ti...	2: OFF $\rightarrow 0$...	
--... CH 1 Latch counter input respo...	2: OFF $\rightarrow 0$ O...	4: Count disableiPresetireplace Function
--... CH 1 Pulse measurement setti...	0 : Pulse 0...	5: Latch counteriPresetireplace Function

(2) Operation example of the count disable/preset/replace function

The following figure shows an operation example of stopping counting while CHD Function input terminal (FUNC1, FUNC2) is on and storing the preset value (0 or 100) in CHD Present value (RWr10 to RWr11, RWr28 to RWr29) at the falling edge of CHD Function input terminal (FUNC1, FUNC2).

No．	Description
1）	Counting starts by turning on $\mathrm{CH} \square$ Count enable command（RY24，RY3C）．
2）	Counting stops at the rising edge of CHD Function input terminal（FUNC1，FUNC2）．
3）	The value in CHロ Preset value setting（ $R W w 14$ to $R W w 15, R W w 2 C$ to $R W w 2 D$ ）is stored in CHロ Present value（ $R W r 10$ to $R W r 11$ ， RW 28 to RWr 29 ）at the falling edge of CHD Function input terminal（FUNC1，FUNC2），and the counting resumes．
4）	Set any values to CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）．
5）	Counting stops by turning off CHD Count enable command（RY24，RY3C）．
6）	Counting stops regardless of CHZ Function input terminal（FUNC1，FUNC2）since CHロ Count enable command（RY24，RY3C）is off．
7）	Counting remains stopped even if CH －Count enable command（RY24，RY3C）is turned on since CHロ Function input terminal （FUNC1，FUNC2）is on．
8）	RWr28 to RWr29）at the falling edge of CHO Function input terminal（FUNC1，FUNC2），and the counting resumes．

Point ${ }^{\circ}$

－The count value cannot be replaced with the preset value while CHロ External preset／replace（Z Phase）request detection（ $R \times 23, R \times 3 B$ ）is on．
Replace the value after $\mathrm{CH} \square$ External preset／replace（Z Phase）request detection（RX23，RX3B）turns off by turning on CHD External preset／replace（Z Phase）request detection reset command（RY23，RY3B）．
－Have a ΔT_{1} or longer interval after changing CHロ Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）until the value is replaced since there are maximum of ΔT_{1} delay until change in CHD Preset value setting（RWw14 to RWw15， RWw2C to RWw2D）is reflected．For ΔT_{1} ，refer to Page 305，Appendix 4.

8.14 Latch Counter/preset/replace Function

The latch counter/preset/replace function executes the latch counter function and the preset/replace function according to the status change of CHD Function input terminal (FUNC1, FUNC2) without switching the functions by the counter function selection.

(1) Setting method of the latch counter/preset/replace function

1. Set "Parameter write" for "Method selection".

8 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Select " 5 : Latch counter/Preset/replace Function" in " CH (Counter function selection".

- $\mathrm{CH}^{\text {1 }}$ Counter function selection	0: Count Di...	5: Latch counteriPresetireplace Function
- CH^{-1} Function input logic setting	0: Positive.	0: Count Disable Function 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function 4: Count disable/Presetireplace Function
--... CH 11 Latch counter input logic s...	0: Positive ...	
CH 1 Z phase input response ti...	2: OFF $\rightarrow 0$...	
-... CH 1 Function input response ti.	2: OFF \rightarrow O \ldots	
--... CH 1 Latch counter input respo...	2: OFF -> $0 .$.	
-... CH 1 Pulse measurement setti.	0: Pulse 0...	

(2) Operation example of the latch counter/preset/replace function

The following figure shows an operation example of storing the preset value (0 or 100) in CHD Present value (RW r 10 to RW 11, RW 28 to RW r29) after storing the value which are stored in $\mathrm{CH} \square$ Present value (RWr 10 to RWr11, RWr28 to RWr29) in CHD Latch count value (RWr12 to RWr13, RWr2A to RWr2B) at the rising edge of CHO Function input terminal (FUNC1, FUNC2)

No．	Description
1）	Counting starts by turning on CHO Count enable command（RY24，RY3C）．
2）	The value in CHD Present value（ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr28}$ to RWr 29 ）is stored in CH口 Latch count value（ RWr 12 to RWr 13 ， $R W r 2 A$ to $R W r 2 B$ ），and the value in CHD Preset value setting（ $R W w 14$ to $R W w 15, R W w 2 C$ to $R W w 2 D$ ）is stored in CHD Present value（ RWr 10 to $\mathrm{RWr11}, \mathrm{RWr} 28$ to RWr 29 ）at the rising edge of CHロ Function input terminal（FUNC1，FUNC2）．After CHロ Latch count value（ $R W r 12$ to $R W r 13$ ，$R W$ r2A to $R W r 2 B$ ）is updated，CHD Update flag（Latch count value）（ R R29，R X41）turns on．
3）	Set any values to CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）．
4）	Counting stops by turning off CHD Count enable command（RY24，RY3C）．
5）	When CHD Update flag reset command（Latch count value）（RY28，RY40）is turned off then on，the high－speed counter module turns off CHO Update flag（Latch count value）（RX29，RX41）and turns on CHロ Update flag reset completed（Latch count value） （ $\mathrm{RX} 28, \mathrm{RX} 40$ ）．After that，CHD Update flag reset completed（Latch count value）（ $\mathrm{RX} 28, \mathrm{RX} 40$ ）turns off when CHD Update flag reset command（Latch count value）（RY28，RY40）is turned off．
6）	Counting resumes by turning on CHD Count enable command（RY24，RY3C）．

Point ${ }^{\rho}$

－The count value cannot be replaced with the preset value while CHD External preset／replace（Z Phase）request detection（RX23，RX3B）is on．
Replace the value after CHD External preset／replace（Z Phase）request detection（ R P23，RX3B）turns off by turning on CHD External preset／replace（Z Phase）request detection reset command（RY23，RY3B）．
－Have a ΔT_{1} or longer interval after changing $C H \square$ Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）until the value is replaced since there are maximum of $\Delta \mathrm{T}_{1}$ delay until change in the preset value is reflected．${ }^{* 1}$
－When the latch counter function is performed by CHD Function input terminal（FUNC1，FUNC2），the operation response time follows CHロ Function input response time setting（address：0129 \cdot b2 to b3，0149 ${ }_{\mathrm{H}} \cdot \mathrm{b} 2$ to b3）．Since CHD Latch count value（ RW r12 to RWr 13 ， RWr 2 A to RWr 2 B ）is updated synchronizing with the internal control cycle，a maximum of delay time shown below occurs until the acquired value is stored．
－$\Delta \mathrm{T}_{1}{ }^{* 1}+$ Setting time of $\mathrm{CH} \square$ Function input response time setting（address： $0129_{\mathrm{H}} \cdot \mathrm{b} 2$ to $\mathrm{b} 3,0149_{\mathrm{H}} \cdot \mathrm{b} 2$ to b 3 ）
＊1 For $\Delta \mathrm{T}_{1}$ ，refer to Page 305，Appendix 4. Function

This function updates CH - Present value (RWr 10 to RWr 11 , RWr 28 to RWr 29) in the synchronization cycle of a master station that supports the CC-Link IE Field Network synchronous communication function.
This enables the high-speed counter module to operate at the same timing of other slave stations on the same network.

Point ${ }^{\rho}$

This function can be used only when the used master station supports the CC-Link IE Field Network synchronous communication function and "Mode switch setting" is set to "9: Automatical judgment mode".

(1) Applicable module and software

The table below lists modules and software required to use the CC-Link IE Field Network synchronous communication function.

Module and software	Serial number (first five digits) or version of engineering tool
High-speed counter module	15102 or later
Simple motion module	15092 or later
GX Works2	Version 1.501X or later
RJ71GF11-T2 or RJ71EN71	(No restriction)
GX Works3	Version 1.000A or later

(2) Restrictions
(a) Restrictions to use this function with other functions

Function/setting item	Restrictions
Comparison output setting (address: $\left.0100_{\mathrm{H}}\right)$	Only Coincidence Output Function (0) can be set for Comparison output setting (address: 0100 ${ }_{\mathrm{H}}$). Cam Switch Function (1) cannot be set. When Cam Switch Function (1) is set, Synchronous communication mode setting error (error code: 0170H) occurs.
$\mathrm{CH} \square$ Operation mode setting (address: $\left.0120_{\mathrm{H}}, 0140_{\mathrm{H}}\right)$	Only Normal Mode (0) can be set for CHD Operation mode setting (address: 0120 ${ }_{\mathrm{H}}, 0140_{\mathrm{H}}$). The following items cannot be set. - Frequency Measurement Mode (1) - Rotation Speed Measurement Mode (2) - Pulse Measurement Mode (3) - PWM Output Mode (4) When any of the items above is set, Synchronous communication mode setting error (error code: 0170 ${ }_{H}$) occurs.
Latch counter function by latch counter input terminal	No latch operation with the latch counter input terminal is available. Even if a signal is applied to the latch counter input terminal, the value in CH L Latch count value (Latch counter input terminal) (RW r 18 to RWr19, RWr30 to RWr31) does not change.
Cyclic data update watch function	The setting of Cyclic data update watch time setting (address: 0003_{H}) will be ignored.

(b) Restrictions on the network parameter settings (RWw/RWr)

Set "RWw/RWr Setting" of network parameters so that RWw3F/RWr3F are assigned to use the synchronous communication function.

(3) Operation using the CC-Link IE Field Network synchronous communication function

$\mathrm{CH} \square$ Present value is updated for each synchronization cycle of the master station. The following figure shows an example.

Ex. Operation timing when the synchronization cycle of the master station is 0.88 ms

No.	Description
1) to 4)	CHD Count value is latched in every synchronization cycle of the master station.
1^{\prime}) to 4')	The latched CHロ Count value is stored in CHロ Present value $(\mathrm{RWr} 10$ to $\mathrm{RWr} 11, \mathrm{RWr28}$ to RWr29) in the next synchronization cycle of the master station.

(a) SB/SW signals used with the CC-Link IE Field Network synchronous communication function

To check the operating status of the high-speed counter module (synchronous or asynchronous), use the following link special register (SW) on the master station.

- Synchronous/asynchronous operation status information (each station) (SW01C8 to SW01CF) For details, refer to the following.
When the master station is the RJ71GF11-T2 or RJ71EN71:
- [] MELSEC iQ-R CC-Link IE Field Network User's Manual (Application)
- LD MELSEC iQ-R Inter-Module Synchronization Function Reference Manual

When the master station is a simple motion module:

- \square MELSEC-Q QD77GF Simple Motion Module User's Manual (Network)

When reading $\mathrm{CH} \square$ Present value, use the condition of the above mentioned link special register (SW) (the corresponding bit of the register being on) as an interlock.
The following figure shows the program example to read CH 1 Present value of the high-speed counter module with station number 17.

Reading a present value in the CC-Link IE Field Network synchronous communication function

W1110	D1116
CH1	CH1
Cresent	Present value
	value storage device

(4) Setting procedure (master station)

1. Set the synchronization cycle of the master station to either of the following:

- 0.88 ms
- 1.77 ms
- 3.55 ms
- 0.8 to 10 ms (in increments of 0.05 ms)

For details on the setting procedure, refer to the following. When the master station is the RJ71GF11-T2 or RJ71EN71:
[]] MELSEC iQ-R CC-Link IE Field Network User's Manual (Application)
[]] MELSEC iQ-R Inter-Module Synchronization Function Reference Manual
When the master station is a simple motion module:MELSEC-Q QD77GF Simple Motion Module User's Manual (Positioning Control)

Point ${ }^{\rho}$

The setting 0.8 to 10.0 ms (in increments of 0.05 ms) is allowed for the CC-Link IE Field Network synchronous communication between the following master station and high-speed counter module:
Master station

- RJ71GF11-T2 or RJ71EN71 with a firmware version of 03 or later

High-speed counter module

- High speed counter module with a serial number (first five digits) of 17022 or later

(5) Setting procedure (high-speed counter module)

1. Select a high-speed counter module in "List of stations" on the "CC IE Field Configuration" window, and set the values as follows.

- When the master station is a simple motion module, set "STA\#" to 17 or larger.
- Set 80 in "Points" of "RX/RY Setting".
- Set 64 in "Points" of "RWw/RWr Setting".

2. Display the "Parameter Processing of Slave Station" window and set "Parameter write" for "Method selection".
"CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
3. Set "Mode switch setting" to "9: Automatical judgment mode".

| \square | Mode switch setting | 9: Automatic... | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \square | Input response time setting | 5: 10 ms | | Execute all CH |
| \square | Output HOLD/CLEAR setting | 0: CLEAR | | 0: Normal mode (Asynchronous communication mode) |
| \square | Curlin data undate watrh tim | I | | 9: Automatical judsment mode |

4. Click the [Execute] button to write the parameter to the high-speed counter module.
5. Check that " 0190_{H} " is stored in CH 1 Latest warning code (RWr 23).
[Online] \Rightarrow [Monitor] \Rightarrow [Device/Buffer Memory Batch]

6. The high-speed counter module starts operating in the synchronous communication mode by turning off and on the power or performing the remote reset.

8.16
 Frequency Measurement Function

The frequency measurement function counts the pulses of the pulse input terminals in phase A and B, and automatically calculates the frequency.

(1) Restrictions

During operation in the synchronous communication mode, the frequency measurement function cannot be used. Set "CHD Operation mode setting" to "0: Normal Mode".

(2) Setting method of the frequency measurement function

1. Set "Parameter write" for "Method selection".

7 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHD Operation mode setting" to "1: Frequency Measurement Mode".

- CH 1 Operation mode setting	0: Normal ...	1: Frequency Measurement Mode	
-... CH 1 Count source selection	0:A Phasel...	0: Normal Mode	
- CH 1 Pulse input mode	0:1-Phase...		
- $\mathrm{CH}^{\text {- }}$ Counting speed setting	$0: 10 \mathrm{kpps}$	1: Frequency Measurement Mode 2: Rotation Speed Measurement Mode 3: Pulse Measurement Mode 4: PWM Output Mode	
--... CH 1 Counter format	0 : Linear C...		
-... CH 1 Z phase (Preset) trigger s...	0 : Rising		

(3) Calculation of the frequency

The frequency measurement function calculates the frequency from the following formula.

- Frequency $(\mathrm{Hz})=$ Count value per unit of time \div Unit of time ${ }^{* 1}$
*1 Select a unit of time from $0.01 \mathrm{~s}, 0.1 \mathrm{~s}$, or 1 s .
Therefore, when the count value per unit of time is 0 , the frequency is $0(\mathrm{~Hz})$.
At subtraction count, the value of the frequency is negative.
(4) Setting of the unit of time for frequency measurement

Set a unit of time by setting a value to CHロ Time unit setting (Frequency measurement) (RWw18, RWw30).

Setting item	Setting range	Reference
CHロ Time unit setting (Frequency measurement)	$0: 0.01 \mathrm{~s}$	
	$1: 0.1 \mathrm{~s}$	

Point ${ }^{\rho}$

－Whichever mode（＂1：1－Phase Multiple of 2＂，＂4：2－Phase Multiple of 2＂，or＂5：2－Phase Multiple of 4＂）is set in＂CHロ Pulse input mode＂（ \wp Page 104，Section 8．3．1），the frequency (Hz) is calculated based on the count value per unit of time．
－When＂1：1－Phase Multiple of 2＂is set in＂CHロ Pulse input mode＂（ \Im Page 104，Section 8．3．1）and the input frequency in phase A is 10 kHz （ 10000 per second），the measured frequency value becomes 20 kHz since the pulse count is regarded as 20000 （Pulse count $=10000$（pulse）$\times 2=20000($ pulse／s））．
－Measurable frequency（minimum）
The frequency is calculated from the count value per unit of time．However，the frequency smaller than the one in the following table cannot be measured correctly as the count value is in an integer number．

Unit of time	Measurable frequency（minimum）
1 s	1 Hz
0.1 s	10 Hz
0.01 s	100 Hz
When a unit of time is 0.01 s and the input frequency is 1234 Hz, the measured frequency value is 1200 Hz or $1300 \mathrm{~Hz} . \mathrm{By}$ doing the moving average count，the fluctuation of the measured values can be lowered．	

（5）Moving average count

When the frequency measurement function is used，the fluctuation of the measured frequency values can be lowered by doing the moving average count．
Set the number of the moving average count to $\mathrm{CH} \square$ Moving average count（Frequency measurement）（RWw19， RWw31）．

Setting item	Setting range	Reference
CHロ Moving average count（Frequency measurement）（RWw19，RWw31）	1 to 100 （When 1 is set，the operation is performed with the moving average count regarded as not being done．）	Page 285，Appendix 2 （12）

After the specified number of counts are done，the average of the measured frequency values is stored in $\mathrm{CH} \square$ Measured frequency value（RWr1A to RWr1B，RWr32 to RWr33）as shown below．

Ex．When the number for CHD Moving average count（Frequency measurement）（RWw19，RWw31）is set to 3

Point ${ }^{P}$

After the start of the frequency measurement，CHD Update flag（Measured frequency value）（RX2D，RX45）turns on every time the measured value is stored in the remote register．The value previously stored in the remote register is held while $\mathrm{CH} \square$ Update flag（Measured frequency value）（RX2D，RX45）is off．（Except at the start of the measurement）

(6) Operation example of the frequency measurement function

The following figure shows an operation example of when $\mathrm{CH} \square$ Time unit setting (Frequency measurement) (RWw18, RWw30) is set to 0.01s and CHD Moving average count (Frequency measurement) (RWw19, RWw31) is set to 3 .

No．Description

The following processing is performed when CHD Count enable command（RY24，RY3C）is turned on to turn CHD Frequency measurement flag（RWr20．b4，RWr38．b4）to Operating（1）．
－The values in CHロ Time unit setting（Frequency measurement）（RWw18，RWw30）and CHD Moving average count
1）（Frequency measurement）（RWW19，RWw31）are acquired．（If the value is changed during the frequency measurement，the change is ignored．）
－CHD Update flag（Measured frequency value）（RX2D，RX45）turns off．
－The value in CHロ Measured frequency value（RWr1A to RWr1B，RWr32 to RWr33）is cleared to 0 ．
$\mathrm{CH} \square$ Update flag（Measured frequency value）（RX2D，RX45）turns on when a value is stored in $\mathrm{CH} \square$ Measured frequency value （RWr1A to RWr1B，RWr32 to RWr33）．
When CHD Update flag reset command（Measured frequency value）（RY2C，RY44）is turned off then on，the high－speed counter
3）
module turns off $\mathrm{CH} \square$ Update flag（Measured frequency value）（RX2D，RX45）and turns on $\mathrm{CH} \square$ Update flag reset completed （Measured frequency value）（RX2C，RX44）．After that，CH \square Update flag reset completed（Measured frequency value）（RX2C， RX44）turns off when CHD Update flag reset command（Measured frequency value）（RY2C，RY44）is turned off．

4）
$\mathrm{CH} \square$ Measured frequency value（ RW r1A to $\mathrm{RWr1B}, \mathrm{RWr32}$ to $\mathrm{RWr33} \mathrm{)} \mathrm{is} \mathrm{updated} \mathrm{even} \mathrm{when} \mathrm{CH} \mathrm{\square} \mathrm{Update} \mathrm{flag} \mathrm{(Measured}$ frequency value）（ R X2D，RX45）is on．

5）
CHD Frequency measurement flag（RWr20．b4，RWr38．b4）changes to Not operating（0）when CHD Count enable command （RY24，RY3C）is turned off．

Point ${ }^{P}$

－The margin of error（maximum）of the frequency measurement function is calculated from the following formula．

$$
\text { Real frequency }(\mathrm{Hz}) \times \frac{100(\mathrm{ppm})}{1000000}+\frac{1}{\text { (Frequency measurement) }(\mathrm{S}) \times \begin{array}{c}
\text { Moving average count } \\
\text { (Frequency measurement) }
\end{array}}
$$

Ex．The following table shows each value to be put into the formula．

Item	Value
Real frequency（Hz）	1234 Hz
Time unit（Frequency measurement）（s）	0.01 s
Moving average count（Frequency measurement）	2 times

The margin of error（maximum）is calculated as shown below．

$$
\begin{aligned}
& 1234(\mathrm{~Hz}) \times \frac{100(\mathrm{ppm})}{1000000}+\frac{1}{0.01(\mathrm{~s}) \times 2} \\
& =0.1234(\mathrm{~Hz})+50(\mathrm{~Hz}) \\
& =50.1234(\mathrm{~Hz})
\end{aligned}
$$

－CHD Measured frequency value（RWr1A to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RWr32}$ to RWr 33 ）is updated without resetting CHD Update flag （Measured frequency value）（RX2D，RX45）．
－CHロ Update flag reset command（Measured frequency value）（RY2C，RY44）responds within $\Delta \mathrm{T}_{1}$ after the action．For ΔT_{1} ，refer to the following．
－Internal Control Cycle and Response Delay Time（ \longmapsto Page 305，Appendix 4）

8.17
 Rotation Speed Measurement Function

The rotation speed measurement function counts the pulses of the pulse input terminals in phase A and B ，and automatically calculates the rotation speed．

（1）Restrictions

During operation in the synchronous communication mode，the rotation speed measurement function cannot be used．Set＂CHD Operation mode setting＂to＂0：Normal Mode＂．

（2）Setting method of the rotation speed measurement function

1．Set＂Parameter write＂for＂Method selection＂．
2 ＂CC IE Field Configuration＂window \Rightarrow Select a high－speed counter module in＂List of stations＂．\Rightarrow ［CC IE Field Configuration］\Rightarrow［Online］\Rightarrow［Parameter Processing of Slave Station］
2．Set＂CHD Operation mode setting＂to＂ 2 ：Rotation Speed Measurement Mode＂．

－ CH 1 Operation mode setting	$0:$ Normal ．．．	2：Rotation Speed Measurement Mode	
－－．．． CH 1 Count source selection	0：A Phasel．．．		
－．．．． CH 1 Pulse input mode	0：1－Phase．．．	0：Normal Mode	
－ CH 1 Counting speed setting	$0: 10 \mathrm{kpps}$	1：Frequency Measurement Mode	
－ CH_{1} Counter format	0 ：Linear C．．．	2：Rotation Speed Measurement Mode	
－．．．CH1 Z phase（Preset）trigger s．．．	0 ：Rising	3：Pulse Measurement Mode 4：PWMM Output Mode	

（3）Calculation of the rotation speed

The rotation speed measurement function calculates the rotation speed from the following formula．
－Rotation speed $(\mathrm{r} / \mathrm{min})=(60 \times$ Count value per unit of time $) \div\left(\right.$ Unit of time ${ }^{* 1} \times$ Number of pulses per rotation ${ }^{*}$ ）
＊1 Select a unit of time from $0.01 \mathrm{~s}, 0.1 \mathrm{~s}$ ，or 1 s ．
＊2 Set the number of pulses per rotation in the range of 1 to 8000000 ．
Therefore，when the count value per unit of time is 0 ，the rotation speed is $0(\mathrm{r} / \mathrm{min})$ ．
At subtraction count，the value of the rotation speed is negative．

（4）Setting of the unit of time for rotation speed measurement and the number of pulses per rotation

Set a unit of time to CHD Time unit setting（Rotation speed measurement）（RWw18，RWw30）．
Set the number of pulses per rotation to CHロ Number of pulses per rotation（RWw1A to RWw1B，RWw32 to RWw33）．

Setting item	Setting range	Reference
CHロ Time unit setting（Rotation speed measurement）	$0: 0.01 \mathrm{~s}$	
（RWw18，RWw30）	1： 0.1 s $2: 1 s$	-
CHロ Number of pulses per rotation（RWw1A to RWw1B， RWw32 to RWw33）	1 to 8000000	-

Point ${ }^{\rho}$

- Whichever mode ("1: 1-Phase Multiple of 2", "4: 2-Phase Multiple of 2", or "5: 2-Phase Multiple of 4") is set in "CH口 Pulse input mode" (\wp Page 104, Section 8.3.1), the rotation speed ($\mathrm{r} / \mathrm{min}$) is calculated based on the count value per unit of time.
- Required pulse speed (minimum)

The rotation speed is calculated from the count value per unit of time. However, the pulse speed lower than the one in the following table, the rotation speed cannot be measured correctly as the count value is in an integer number. Input the pulses with the speed shown below or higher.

Unit of time	Required pulse speed (minimum)
1 s	1 pps
0.1 s	10 pps
0.01 s	100 pps

When a unit of time is 0.01 [s], the number of pulses per rotation is 60 , and when the pulse input speed is $1234[\mathrm{pps}$], the value of the calculated rotation speed is $1200(\mathrm{r} / \mathrm{min})$ or $1300(\mathrm{r} / \mathrm{min})$. By doing the moving average count, the fluctuation of the measured values can be lowered.

(5) Moving average count

When the rotation speed measurement function is used, the fluctuation of the measured rotation speed can be lowered by doing the moving average count.
Set the number of the moving average count is set to $\mathrm{CH} \square$ Moving average count (Rotation speed measurement) (RWw19, RWw31).

Setting item	Setting range	Reference
CHロ Moving average count (Rotation speed measurement) (RWw19, RWw31)	1 to 100 (When 1 is set, the operation is performed with the moving average count regarded as not being done.)	Page 285, Appendix 2 (12)

After the specified number of counts are done, the average of the measured values of the rotation speed is stored in $\mathrm{CH} \square$ Measured rotation speed value (RWr1A to RWr1B, RWr32 to RWr33) as shown below.

Ex. When the number for $\mathrm{CH} \square$ Moving average count (Rotation speed measurement) (RWw19, RWw31) is set to 3

(6) Operation example of the rotation speed measurement function

The following figure shows an operation example with the following settings.

- CHD Time unit setting (Rotation speed measurement) (RWw18, RWw30): 0.01s
- CHD Moving average count (Rotation speed measurement) (RWw19, RWw31): 3
- CHD Number of pulses per rotation (RWw1A to RWw1B, RWw32 to RWw33): 1000

[^2]
No．Description

The following processing is performed when CHD Count enable command（RY24，RY3C）is turned on to turn CHロ Rotation speed measurement flag（RWr20．b5，RWr38．b5）to Operating（1）．
－The values of CHロ Time unit setting（Rotation speed measurement）（RWw18，RWw30），CHロ Moving average count（Rotation
1）speed measurement）（ $R W w 19, R W w 31$ ），and CHD Number of pulses per rotation（ $R W w 1 A$ to $R W w 1 B, R W w 32$ to $R W w 33$ ）are acquired．（If the value is changed during the rotation speed measurement，the change is ignored．）
－CHD Update flag（Measured rotation speed value）（RX2D，RX45）turns off．
－The value in CHD Measured rotation speed value（ RWr 1 A to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RW} 32$ to RW r33）is cleared to 0 ．
2）
CH I Update flag（Measured rotation speed value）（RX2D，RX45）turns on when a value is stored in CHI Measured rotation speed value（ RWr 1 A to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RW} 32$ to RW r33）．
When CHD Update flag reset command（Measured rotation speed value）（RY2C，RY44）is turned off then on，the high－speed counter module turns off CHO Update flag（Measured rotation speed value）（RX2D，RX45）and turns on CHO Update flag reset
3）completed（Measured rotation speed value）（RX2C，RX44）．After that，CHロ Update flag reset completed（Measured rotation speed value）（ R X2C，$R X 44$ ）turns off when CHロ Update flag reset command（Measured rotation speed value）（ $R Y 2 C, R Y 44$ ）is turned off．

4）
CH \square Measured rotation speed value（ RWr 1 A to RW r1B， RWr 32 to RW 33 ）is updated even when CHロ Update flag（Measured rotation speed value）（ $R \times 2 D, R \times 45$ ）is on．

5）
CH \square Rotation speed measurement flag（RWr20．b5，RWr38．b5）changes to Not operating（0）when CH Count enable command （RY24，RY3C）is turned off．

Point ${ }^{\rho}$

－After the start of the rotation speed measurement， $\mathrm{CH} \square$ Update flag（Measured rotation speed value）（RX2D，RX45） turns on every time the measured value is stored in $\mathrm{CH} \square$ Measured rotation speed value（ RWr 1 A to $\mathrm{RW} 1 \mathrm{~B} 1 \mathrm{~B}, \mathrm{RWr} 32$ to RWr33）．
The value previously stored in the remote register is held while CHD Update flag（Measured rotation speed value） （RX2D，RX45）is off．（Except at the start of the measurement）
－The margin of error（maximum）of the rotation speed measurement function is calculated from the following formula．
Actual rotation speed $(r / m i n) \times \frac{100(\mathrm{ppm})}{1000000}+\frac{60}{(\text { Rotation speed measurement })(\mathrm{S}) \times \begin{array}{c}\text { Moving average count } \\ \text {（Rotation speed measurement）}\end{array} \times \begin{array}{c}\text { Number of pulses } \\ \text { per rotation }\end{array}}$
Ex．The following table shows each value to be put into the formula．

Item	Value
Actual rotation speed（r／min）	$1234 \mathrm{r} / \mathrm{min}$
Time unit（Rotation speed measurement）（s）	0.01 s
Moving average count（Rotation speed measurement）	4 times
Number of pulses per rotation	60

The margin of error（maximum）is calculated as shown below．

$$
\begin{aligned}
& 1234(\mathrm{r} / \mathrm{min}) \times \frac{100(\mathrm{ppm})}{1000000}+\frac{60}{0.01(\mathrm{~s}) \times 4 \times 60} \\
& =0.1234(\mathrm{r} / \mathrm{min})+25(\mathrm{r} / \mathrm{min}) \\
& =25.1234(\mathrm{r} / \mathrm{min})
\end{aligned}
$$

－CHロ Measured rotation speed value（RWr1A to RWr1B，RWr32 to RWr33）is updated without resetting CHロ Update flag （Measured rotation speed value）（RX2D，RX45）．
－CHD Update flag reset command（Measured rotation speed value）（RY2C，RY44）responds within ΔT_{1} after the action． For $\Delta \mathrm{T}_{1}$ ，refer to the following．
－Internal Control Cycle and Response Delay Time（W Page 305，Appendix 4）

8.18 Pulse Measurement Function

The pulse measurement function measures the ON width or OFF width of pulses that are input to the external input terminals, CHD Function input terminal (FUNC1, FUNC2) or CHD Latch counter input terminal (LATCH1, LATCH2). When the next pulse is measured, the measured value is written over the previous value.

(1) Restrictions

During operation in the synchronous communication mode, the pulse measurement function cannot be used. Set "CHD Operation mode setting" to "0: Normal Mode".

(2) Setting method of the pulse measurement function

1. Set "Parameter write" for "Method selection".

5 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHロ Operation mode setting " to "3: Pulse Measurement Mode".

	CH1 Operation mode setting	$0:$ Normal ...		3: Pulse Measurement Mode
	CH 1 Count source selection	$0:$ A Phasel...		
	CH 1 Pulse input mode	$0: 1$-Phase		
	CH 1 Counting speed setting	$0: 10 \mathrm{kpps}$		0: Normal Mode
	CH 1 Counter format	$0:$ Linear $\mathrm{C} \ldots$		1: Frequency Measurement Mode
	CH 1 Z phase (Preset) trigger s...	$0:$ Rising	2: Rotation Speed Measurement Mode	

3. Set the pulse width to be measured in "CHD Pulse measurement setting (Function input terminal)".

	... CH 1 Pulse measurement setting (Function input terminal)	0: Pulse 0...	\checkmark
	-.... CH 1 Pulse measurement setting (Latch counter input terminal)	0: Pulse 0...	0: Pulse ON Width1: Pulse OFF Width
\square	■ CH 2 Setting		
	- CH_{2} Operation mode setting	$0:$ Normal	

4. Set the pulse width to be measured in "CHD Pulse measurement setting (Latch counter input terminal)".

	.-.. CH 1 Pulse measurement setting (Function input terminal)	0: Pulse 0...	0 : Pulse ON Width
	-.... CH1 Pulse measurement setting (Latch counter input terminal)	0: Pulse 0...	\checkmark
$\checkmark \square \mathrm{CH} 2$ Setting			
	- CH 2 Operation mode setting	0: Normal ...	0 : Pulse ON Width
	- CH_{2} Count source selection	0:A Phasel...	1: Pulse OFF Width

(3) Terminals for the pulse measurement

The following table lists the terminals that are used for the pulse measurement for each channel.

Channel	
Terminals for the pulse measurement	
CH 1	Function input terminal 1 (FUNC1)
	Latch counter input terminal 1 (LATCH1)
CH 2	Function input terminal 2 (FUNC2)
	Latch counter input terminal 2 (LATCH2)

(4) Pulse width to be measured

Set which pulse width (ON or OFF) is to be measured by using "CHロ Pulse measurement setting (Function input terminal)" and "CHD Pulse measurement setting (Latch counter input terminal)".

The measured value is stored in CHロ Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) or CHD Measured pulse value (Latch counter input terminal) (RWr1E to RWr1F, RWr36 to RWr37).

Pulse width to be measured	Setting value of pulse width to be measured	Description
Pulse ON width	0	The ON time of the input pulse is measured.
Pulse OFF width	1	The OFF time of the input pulse is measured.

(5) Measurable range of the pulses

The measurable range of the pulses is between 2000 and $2147483647(0.2 \mathrm{~ms}$ to approx. 214 s$)$. When the input pulses are beyond the measurable range, the error code ($\square 660_{\mathrm{H}}$ or $\square 662_{\mathrm{H}}$) is stored in CH Latest error code (RWr22, RWr3A) and Error status flag (RXA) and the ERR. LED turns on.
To resume the measurement, input the pulses once again, or perform the operation as shown below.

Measurement to be resumed	Operation	Remarks
Measurement with the function input terminal	Turn off then on the F start command. ${ }^{* 1}$	The pulse measurement is not resumed until the F measurement flag or the L measurement flag changes
Measurement with the latch counter input terminal	Turn off then on the L start command. ${ }^{* 1}$	to Not operating (OFF) after the F start command or L start command is turned off. ${ }^{* 1}$
*1 The abbreviations	mean as the follows.	
	and: CHD Pulse measurement start com and: $\mathrm{CH} \square$ Pulse measurement start comm ent flag: $\mathrm{CH} \square$ Pulse measurement flag (F nt flag: CHD Pulse measurement flag	and (Function input terminal) (RY30, RY48) and (Latch counter input terminal) (RY32, RY4A) nction input terminal) (RWr20.b6, RWr38.b6) ch counter input terminal) (RWr20.b7, RWr38.b7)

(6) Update timing of the measured values of pulses

The measured pulse value is updated in the remote register every ΔT_{2} cycle. So when the measurement is done twice or more within $\Delta \mathrm{T}_{2}$, only the latest measured value is stored in the remote registers. For details on $\Delta \mathrm{T}_{2}$, refer to the following.

- Internal Control Cycle and Response Delay Time (5 Page 305, Appendix 4)

(7) Operation example of the pulse measurement function

The following figure shows an operation example of the pulse measurement for the ON width with $\mathrm{CH} \square$ Function input terminal (FUNC1, FUNC2).
The explanations in the following table are for the measurement with CHD Function input terminal (FUNC1, FUNC2). The same can be applied to the measurement with CHロ Latch counter input terminal (LATCH1, LATCH2) except the difference of the terminals for the pulse measurement and the setting items. For details on the difference, refer to Page 173, Section 8.18 (8).
$----\rightarrow$ Controlled by the high-speed counter module
\longrightarrow Controlled by the program
$\mathrm{CH} \square$ Pulse measurement start command (Function input terminal) (RY30, RY48)
Function input terminal (FUNC1, FUNC2)
$\mathrm{CH} \square$ Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35 $\mathrm{CH} \square$ Pulse measurement flag (Function input terminal) (RWr20.b6, RWr38.b6)
$\mathrm{CH} \square$ Measured pulse value update flag (Function input terminal)
(RX32, RX4A)
$\mathrm{CH} \square$ Measured pulse value update flag reset command (Function input terminal) (RY31, RY49)
$\mathrm{CH} \square$ Measured pulse value update flag reset completed (Function input terminal)
(RX31, RX49)

No.	Description
1)	When CHロ Pulse measurement start command (Function input terminal) (RY30, RY48) is turned on, CHD Pulse measurement flag (Function input terminal) (RWr20.b6, RWr38.b6) changes to Operating (1). The following processing are performed. The remote input signal and remote register remain the same before the measured pulse value is stored. - CHD Measured pulse value update flag (Function input terminal) (RX32, RX4A) turns off. - The value in CHD Measured pulse value (Function input terminal) ($\mathrm{RWr1C}$ to RWr1D, RWr34 to RWr35) changes to 0.
2)	The following processing is performed when the measured pulse value is stored. - CHD Measured pulse value update flag (Function input terminal) (RX32, RX4A) turns on.
3)	When CHD Measured pulse value update flag reset command (Function input terminal) (RY31, RY49) is turned off then on, the high-speed counter module turns off $\mathrm{CH} \square$ Measured pulse value update flag (Function input terminal) (RX32, RX4A) and turns on $\mathrm{CH} \square$ Measured pulse value update flag reset completed (Function input terminal) (RX31, RX49). After that, CHD Measured pulse value update flag reset completed (Function input terminal) (RX31, RX49) turns off when CHD Measured pulse value update flag reset command (Function input terminal) (RY31, RY49) is turned off.
4)	CHD Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) is updated even if CHD Measured pulse value update flag (Function input terminal) (RX32, RX4A) is on.
5)	CHD Pulse measurement flag (Function input terminal) (RWr20.b6, RWr38.b6) changes to Not operating (0) and the pulse measurement stops by turning off $\mathrm{CH} \square$ Pulse measurement start command (Function input terminal) (RY30, RY48).
6)	If the pulse (pulse ON width in this case) is input before CHD Pulse measurement flag (Function input terminal) (RWr20.b6, RWr38.b6) changes to Operating (1), CHD Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) is not updated even when CHD Function input terminal (FUNC1, FUNC2) is turned off. Note that the pulse that is input after the setting in $\mathrm{CH} \square$ Pulse measurement flag (Function input terminal) ($\mathrm{RWr20.b6}, \mathrm{RW} 38 . \mathrm{b} 6$) changes to Operating (1) is to be measured.

Point ${ }^{\rho}$

When the pulse measurement function is executed with CH口 Function input terminal (FUNC1, FUNC2), the time to be taken to update CHD Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) varies according to the time set in "CHD Function input response time setting". (The same can be applied to the measurement with CHD Latch counter input terminal (LATCH1, LATCH2) except the differences such as the setting items.)
(8) Pulse measurement difference between CHD Function input terminal (FUNC1, FUNC2) and CHD Latch counter input terminal (LATCH1, LATCH2)

The pulse measurement same as CHD Function input terminal (FUNC1, FUNC2) can be applied to the measurement with $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2) except the difference of the terminals for the pulse measurement and the setting items.
The following table lists the differences of the setting items between both terminals.

Input terminal, setting item	Pulse measurement (with function input terminal)	Pulse measurement (with latch counter input terminal)
Terminals for the pulse measurement	$\mathrm{CH} \square$ Function input terminal (FUNC1, FUNC2)	$\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2)
Setting for pulse width to be measured	CHD Pulse measurement setting (Function input terminal) (address: $012 \mathrm{~A}_{\mathrm{H}}, 014 \mathrm{~A}_{\mathrm{H}}$)	$\mathrm{CH} \square$ Pulse measurement setting (Latch counter input terminal) (address: 012B ${ }_{\mathrm{H}}$, $014 \mathrm{~B}_{\mathrm{H}}$)
Measured pulse value	$\mathrm{CH} \square$ Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35)	$\mathrm{CH} \square$ Measured pulse value (Latch counter input terminal) (RWr1E to RWr1F, RWr36 to RWr37)
Pulse measurement start command	$\mathrm{CH} \square$ Pulse measurement start command (Function input terminal) (RY30, RY48)	CHD Pulse measurement start command (Latch counter input terminal) (RY32, RY4A)
Pulse measurement flag	$\mathrm{CH} \square$ Pulse measurement flag (Function input terminal) (RWr20.b6, RWr38.b6)	CHD Pulse measurement flag (Latch counter input terminal) (RWr20.b7, RWr38.b7)
Measured pulse value update flag	$\mathrm{CH} \square$ Measured pulse value update flag (Function input terminal) (RX32, RX4A)	$\mathrm{CH} \square$ Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C)
Measured pulse value update flag reset command	$\mathrm{CH} \square$ Measured pulse value update flag reset command (Function input terminal) (RY31, RY49)	$\mathrm{CH} \square$ Measured pulse value update flag reset command (Latch counter input terminal) (RY33, RY4B)
Measured pulse value update flag reset completed	CHD Measured pulse value update flag reset completed (Function input terminal) (RX31, RX49)	$\mathrm{CH} \square$ Measured pulse value update flag reset completed (Latch counter input terminal) (RX33, RX4B)

8.19 PWM Output Function

The PWM output function outputs the PWM waveform (up to 200 kHz) from one of the coincidence output 1 to 4 terminals (EQU1 to EQU4). Up to four points can be assigned for one channel. The same waveform is to be output to the assigned terminals. The ON width setting (PWM output) can be changed during PWM output.

(1) Restrictions

During operation in the synchronous communication mode, the PWM output function cannot be used. Set "CHD Operation mode setting" to "0: Normal Mode".

(2) Setting method of the PWM output function

1. Set "Parameter write" for "Method selection".
\geqslant "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. Set "CHD Operation mode setting" to "4: PWM Output Mode".

(3) Assignment of the PWM output terminals

To output the PWM waveform, assign Coincidence output 1 to 4 to the corresponding channel in "Coincidence output 1 to 4 channel assignment setting". Then, by using CHD PWM output assignment setting (RWw1D, RWw35) of the remote register, assign which Coincidence output is used for the PWM waveform output. The following table shows the setting examples of the assignment.

Ex. Assignment example of the PWM output terminals (CH1)

Ex.	Setting item		Setting detail	Operation
1	Coincidence output 1 channel assignment setting	0: CH 1	Coincidence output 1 to 2 are assigned to CH 1 and Coincidence output 3 to 4 are assigned to CH 2 .	The error code ($\square 670_{\mathrm{H}}$) is stored in $\mathrm{CH} \square$ Latest error code (RWr22, RWr3A) since no Coincidence output is assigned as the PWM output terminal. At this time, Error status flag (RXA) and the ERR. LED turns on.
	Coincidence output 2 channel assignment setting	0: CH 1		
	Coincidence output 3 channel assignment setting	1: CH 2		
	Coincidence output 4 channel assignment setting	1: CH 2		
	CH1 PWM output assignment setting (RWw1D)	$0^{0000}{ }_{H}$	No PWM output terminals	
2	Coincidence output 1 channel assignment setting	0: CH 1	Coincidence output 1 to 2 are assigned to CH 1 and Coincidence output 3 to 4 are assigned to CH 2 .	Coincidence output 2 is assigned to the PWM output terminal and the operation is performed.
	Coincidence output 2 channel assignment setting	0: CH 1		
	Coincidence output 3 channel assignment setting	1: CH 2		
	Coincidence output 4 channel assignment setting	1: CH 2		
	CH1 PWM output assignment setting (RWw1D)	$0^{0002}{ }_{\text {H }}$	Coincidence output 2 is assigned to the PWM output terminal.	
3	Coincidence output 1 channel assignment setting	0: CH 1	Coincidence output 1 to 2 are assigned to CH 1 and Coincidence output 3 to 4 are assigned to CH 2 .	Coincidence output 1 and Coincidence output 2 are assigned to the PWM output terminal and the operation is performed. (The same PWM waveform is output.)
	Coincidence output 2 channel assignment setting	0: CH 1		
	Coincidence output 3 channel assignment setting	1: CH 2		
	Coincidence output 4 channel assignment setting	1: CH 2		
	CH1 PWM output assignment setting (RWw1D)	$0^{0003}{ }_{\text {H }}$	Coincidence output 1 and Coincidence output 2 are assigned to the PWM output terminal.	

Ex.	Setting item		Setting detail	Operation
4	Coincidence output 1 channel assignment setting	0: CH 1	Coincidence output 1 to 2 are assigned to CH 1 and Coincidence output 3 to 4 are assigned to CH 2 .	The error code ($\square 670_{\mathrm{H}}$) is stored in CHD Latest error code (RWr22, RWr3A) since the Coincidence output is assigned to Coincidence output 3 that is used by CH 2 . At this time, Error status flag (RXA) and the ERR. LED turns on.
	Coincidence output 2 channel assignment setting	0: CH 1		
	Coincidence output 3 channel assignment setting	1: CH 2		
	Coincidence output 4 channel assignment setting	1: CH 2		
	CH1 PWM output assignment setting (RWw1D)	${ }^{0004}{ }_{H}$	Coincidence output 3 is assigned to the PWM output terminal.	
5	Coincidence output 1 channel assignment setting	0: CH 1	Coincidence output 1 to 4 are assigned to CH 1 .	Coincidence output 1 to 4 are assigned to the PWM output terminal and the operation is performed. (The same PWM waveform is output from all the Coincidence output terminals.)
	Coincidence output 2 channel assignment setting	0: CH 1		
	Coincidence output 3 channel assignment setting	0: CH 1		
	Coincidence output 4 channel assignment setting	0: CH 1		
	CH1 PWM output assignment setting (RWw1D)	${ }^{000} \mathrm{~F}_{\mathrm{H}}$	Coincidence output 1 to 4 are assigned to the PWM output terminal.	

Point ${ }^{P}$

For Coincidence output that is assigned as the PWM output terminal in CHD PWM output assignment setting (RWw1D, RWw35), the setting in "Coincidence output 1 to 4 comparison condition setting" is disabled.

（4）Setting method of the output waveform

Set the output waveform by using CHD ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37） and CHロ Cycle setting（PWM output）（RWw20 to RWw21，RWw38 to RWw39）．
The following table lists the setting items．

Setting item	Setting range	Description	Remarks
CHロ ON width setting（PWM output） $(R W w 1 E ~ t o ~ R W w 1 F, ~ R W w 36 ~ t o ~ R W w 37) ~$	0,10 to $10000000^{* 1}$	Set the ON time of the output pulse．	$0.1 \mu \mathrm{~s}$ per unit
CH口 Cycle setting（PWM output）（RWw20 to RWw21，RWw38 to RWw39）	50 to 10000000	Set the cycle of the output pulse．	$0.1 \mu \mathrm{~s}$ per unit

＊1 Set the value that is equal to or smaller than the one set to the cycle setting（PWM output）．

Point ${ }^{\circ}$

－The ON width of the PWM output is calculated from the following formula according to the duty ratio to be specified．
－Given that output circuits or connected devices of the high－speed counter module do not affect the value，the margin of error（maximum）of each setting value is calculated as shown below．
－ON width setting（PWM output）$[\mu \mathrm{s}] \times 100[\mathrm{ppm}] \div 1000000+0.1[\mu \mathrm{~s}]$
－Cycle setting（PWM output）$[\mu \mathrm{s}] \times 100[\mathrm{ppm}] \div 1000000+0.1[\mu \mathrm{~s}]$

(5) Operation example of the PWM output function

The following figure shows an operation example of outputting the PWM waveform whose cycle time is 2 ms and ON time is 1 ms to change the ON time to 0.5 ms during PWM output.
Coincidence output is assigned to the corresponding channel in the "Coincidence output 3 channel assignment setting".

$----\rightarrow$ Controlled by the high-speed counter module

\longrightarrow Controlled by the program

No．	Description
1）	The following processing is performed when CHロ PWM output start command（RY26，RY3E）is turned on to turn on CHD PWM output（RX26，RX3E）． －The values in CHロ PWM output assignment setting（RWw1D，RWw35），CH \square ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37），and CHD Cycle setting（PWM output）（RWw20 to RWw21，RWw38 to RWw39）are acquired． －The PWM waveform is output from one of the coincidence output 1 to 4 terminals（EQU1 to EQU4）based on the settings．（The PWM waveform is output starting with OFF．）
2）	The PWM waveform continues to be output based on the acquired settings until CHD PWM output start command（RY26，RY3E） is turned off or CHD ON width setting change request（PWM output）（RY35，RY4D）is turned on．
3）	When the values in CH \square PWM output assignment setting（RWw1D，RWw35），CH \square ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37），and CHロ Cycle setting（PWM output）（RWw20 to RWw21，RWw38 to RWw39）are changed，the PWM waveform is not changed．Only the value in CHD ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37） can be changed by CHD ON width setting change request（PWM output）（RY35，RY4D）．
4）	The following processing is performed when CHD ON width setting change request（PWM output）（RY35，RY4D）is turned off then on to turn on $\mathrm{CH} \square$ ON width setting change completed（PWM output）（RX35，RX4D）． －The value in CHD ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37）is acquired． －The PWM waveform is output from one of the coincidence output 1 to 4 terminals（EQU1 to EQU4）based on the settings．The change is reflected immediately． Turn off CHD ON width setting change request（PWM output）（RY35，RY4D）when CHD ON width setting change completed （PWM output）（RX35，RX4D）turns on．CHD ON width setting change completed（PWM output）（RX35，RX4D）turns off when CHD ON width setting change request（PWM output）（RY35，RY4D）is turned off．
5）	The following processing is performed when CHロ PWM output start command（RY26，RY3E）is turned off to turn off CH \square PWM output（RX26，RX3E）． －Turn off the coincidence output 1 to 4 terminals（EQU1 to EQU4）immediately．

Point ${ }^{\rho}$

- The waveform that is output from the coincidence output 1 to 4 terminals (EQU 1 to EQU4), the external output terminals, can be affected by output circuits or connected devices of the high-speed counter module and change its form. Therefore, check the waveform by using, for example, a synchroscope, and set the output waveform.
- When changing the cycle time of the PWM waveform, turn off CHロ PWM output start command (RY26, RY3E) to turn off CH \square PWM output (RX26, RX3E). After checking that CHD PWM output (RX26, RX3E) is off, change the setting of CHD Cycle setting (PWM output) (RWw20 to RWw21, RWw38 to RWw39), and turn on CHD PWM output start command (RY26, RY3E) again.
- When the ON time is changed during PWM output, the change is reflected immediately, therefore, the ON time before the change may be interrupted at the cycle in which the ON time is changed. When the ON time after the change is shorter than the ON time before the change, unnecessary OFF waveform may be output depending on the changing timing.

T: Cycle time
t: (Remaining ON width before the change) - (ON width after the change)
When the ON time after the change is longer than the ON time before the change, the ON waveform may be output at the time of the change depending on the changing timing.

8.20 Output HOLD/CLEAR Setting Function

When the high-speed counter module is disconnected from data link, or the CPU module operating status is STOP, whether to hold or clear the last Coincidence output (EQU1 to EQU4) and the output status of the extension output module can be set. Set whether to hold or clear the values for all the output points of the module in a batch from the module parameter setting window of the engineering tool or the program.

(1) Output HOLD/CLEAR setting and its operation

The following table lists the ON/OFF status of when HOLD or CLEAR is set for an output.

Operating status		"Output HOLD/CLEAR setting" "0: CLEAR" (default)	"Output HOLD/CLEAR setting" "1: HOLD"			
		Last output status OFF		Last output status ON	Last output status OFF	Last output status ON
Data link in operation	CPU module in RUN	OFF	ON	OFF	ON	
	CPU module in STOP	OFF	OFF	OFF	ON	
	CPU module in PAUSE	OFF	ON	OFF	ON	
	CPU module in RESET	OFF	OFF	OFF	ON	
During disconnection/cyclic stop	OFF	OFF	OFF	ON		

(2) Setting method

1. Set "Parameter write" for "Method selection".
"CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. For "Output HOLD/CLEAR setting", select " 0 : CLEAR" or "1: HOLD".

Item	Setting range	
Output HOLD/CLEAR setting	0: CLEAR 	1: HOLD

Point ${ }^{P}$

When the output status changes according to the change in the comparison result after the output is set to HOLD, the output of the following functions changes.

- Coincidence output (EQU1 to EQU4) of the coincidence output function
- Coincidence output (EQU1 to EQU4) of the PWM output function
- Output of the extension output module that is used as the output of the cam switch function (YO to YF)

8.21 Cyclic Data Update Watch Function

This function monitors the cyclic data update interval. When the cyclic transmission remains to be stopped over the set watch time, this function holds or clears the value which is output just before.
In the cyclic transmission stop status, the D LINK LED is flashing (Data link in operation (cyclic transmission stopped)) or off (Data link not performed (disconnected)).
Set whether to hold or clear the output value using the output HOLD/CLEAR setting function. For the output HOLD/CLEAR setting function, refer to the following.

- Output HOLD/CLEAR Setting Function (Ю Page 181, Section 8.20)

(1) Setting method

1. Set "Parameter write" for "Method selection".

8 "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. For "Cyclic data update watch time setting", set the monitoring time.

$$
\begin{array}{|l|l|l|l|}
\hline \square & \text { Cyclic data update watch time setting } & 0 & \\
\hline
\end{array}
$$

Item	Setting range
Cyclic data update watch time setting	$\bullet 0$ (Not monitor)
	$\cdot 1$ to $20(0.1$ to 2 seconds, in increments of 100 ms$)$

Point ${ }^{P}$

- Set the greater value for the cyclic data update watch time setting than that of the link scan time.
- While the synchronous communication mode is enabled, the setting of Cyclic data update watch time setting is ignored.

8．22 Error Notification Function

When an error or warning occurs，the high－speed counter module notifies the master station of it using remote input signals and remote registers．

Remark

The notification of the error or warning can be checked on the LED on the front of the module．
For details，refer to the following．
－PART NAMES（ 5 Page 23，CHAPTER 2）

（1）Notification of an error

The high－speed counter module notifies the master station of an error in the following method．

Item	Description	Reference
Error status flag（RXA）	Turns on when a moderate error or major error occurs．	
CHD Error status（RX36，RX4E）	Turns on when a moderate error or major error occurs for each channel．	Page 256，Appendix 1.1
CHD Latest error code（RWr22， RWr3A）${ }^{* 1}$	An error code is stored when a moderate error or major error occurs for each channel．	Page 280，Appendix 2 （6）

＊1 Errors independent from channels are station errors stored in CH 1 Latest error code（ RW r22）．
（a）Method for clearing an error
The method for clearing an error depends on the error type．

Error type	Clearing an error
Major error	The error cannot be cleared．
Moderate error	Turn off then on CH口 Error reset command（RY36，RY4E）or Initial data setting request flag（RY9）after removing the error cause．${ }^{* 1}$

＊1 A moderate error that has occurred after another moderate error that cannot be reset cannot be reset．However，error reset is possible on CH 2 because no moderate error that cannot be reset occurs．
For moderate errors that cannot be reset，refer to the following．
－When error codes／warning codes cannot be reset（以 Page 254，Section 11．5．6）

（2）Notification of a warning

The high－speed counter module notifies the master station of a warning in the following method．

Name	Description	Reference
Warning status flag（RX7）	Turns on when a minor error occurs．	Page 256，Appendix 1．1
CHロ Warning status（RX37， RX4F）	Turns on when a minor error occurs for each channel．	
CHD Latest warning code $(R W r 23, ~ R W r 3 B)^{* 1}$	The error code is stored when a minor error occurs for each channel．	Page 280，Appendix 2（6）

＊1 Errors independent from channels are station errors stored in CH 1 Latest warning code（RWr23）．
(a) Method for clearing a warning

Error type		Clearing an error	
Minor error	Warning	Error code: Other than $\square 050_{\mathrm{H}}$	A warning is cleared five seconds after the error cause is removed. ${ }^{* 1}$

*1 A warning results in the following state five seconds after the error cause is removed or $\mathrm{CH} \square$ Error reset command (RY36, RY4E) is turned off then on.

- Warning status flag (RX7) turns off.
- CHロ Warning status (RX37, RX4F) of a channel where the error cause is removed turns off.
- CHD Latest warning code ($\mathrm{RW} 233, \mathrm{RWr} 3 \mathrm{~B}$) of a channel where the error cause is removed is cleared.
- The ERR. LED turns off.

However, a minor error that has occurred after another minor error that cannot be reset and occurs only on CH 1 cannot be reset even if the conditions above are satisfied. Error reset is possible on CH 2 because no minor error that cannot be reset occurs.
For minor errors that cannot be reset, refer to the following.

- When error codes/warning codes cannot be reset (ゆ Page 254, Section 11.5.6)

Ex. Operation to clear Station number switch change failure (error code: 0160_{H})

(3) Method for clearing an error by executing the command of the slave station The following shows how to clear an error by executing the command of the slave station.

1. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.
2. Open the "Command Execution of Slave Station" window.
[CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Command Execution of Slave Station]
3. Set "Method selection" to "Error clear request" and click the [Execute] button.
4. When the window shown on the left is displayed, click the [OK] button.
5. The error for the high-speed counter module is cleared.

One extension I/O module can be connected to one high-speed counter module. In addition, functions unique to the extension I/O module can be used.

Point ${ }^{\circ}$

- Turn off the high-speed counter module before replacing the extension I/O module. If the extension module is removed when the module power supply is on, the error code $\left(1 \mathrm{FOO}_{\mathrm{H}}\right)$ is stored to CH 1 Latest error code (RWr 22), Error status flag (RXA) turns on, and the ERR. LED turns on. The main module stops its operation.
- After replacing the extension I/O module, write the parameters again.

(1) Functions available with an extension I/O module connected

Function	Reference
Cam switch function	Page 129, Section 8.5.4
External power supply monitoring function	Page 187, Section 8.23 (2)
Output HOLD/CLEAR setting function	Page 181, Section 8.20
Cyclic data update watch function	Page 182, Section 8.21
Input response time setting function	Page 188, Section 8.23 (3)
Number of ON times integration function*1	CC-Link IE Field Network Remote I/O Module User's Manual

[^3]
(2) External power supply monitoring function

Using this function, the high-speed counter module monitors the ON/OFF status of the external power supply and indicates it with the I/O PW LED on the extension output module.
By using External power supply monitor request flag (RY1F), a moderate error is generated when the external power supply is off. Thus, the ON/OFF status of the external power supply is notified and the extension output module can be stopped.
(a) External power supply monitoring function

When the external power supply is turned off with External power supply monitor request flag (RY1F) on, a moderate error occurs. When using this function, check that the external power supply stabilizes before turning on External power supply monitor request flag (RY1F). When turning off the external power supply, turn off External power supply monitor request flag (RY1F) in advance.

*1 Errors which occur in the extension I/O module are displayed in the error area of CH 1 of the high-speed counter module.
(b) Setting and checking the external power supply monitoring function

Item	Description	Reference
External power supply monitor request flag (RY1F)	Set whether to enable or disable the external power supply monitoring function.	Page 268, Appendix 1.2
External power supply monitor state flag (RX1F)	Indicates whether the external power supply monitoring function is enabled or disabled.	Page 256, Appendix 1.1

(3) Input response time setting function

This function prevents an incorrect input due to noise by setting the response time until the extension input module recognizes an actual input as the X signal.
The input response time can be set from the module parameter setting window of the engineering tool or the program.

(a) Setting method

1. Set "Parameter write" for "Method selection".

P "CC IE Field Configuration" window \Rightarrow Select a high-speed counter module in "List of stations". \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
2. For "Input response time setting", select the appropriate input response time.

Point ${ }^{\rho}$

The extension input module may take in noise as an input depending on the input response time setting The pulse width which is taken in as an input varies depending on the response time set in parameters. To set the input response time, consider fully the operating environment.
The following table shows the minimum values of the pulse widths which may be taken in as an input. The pulse widths lower than the values shown below can be filtered as noise.

Value of input response time setting	2 ms	5 ms	10 ms	$\mathbf{2 0 m s}$	$\mathbf{7 0 m s}$
Minimum values of the pulse widths which may be taken in as an input (the maximum pulse widths which can be filtered as noise)	0.15 ms	2 ms	4 ms	9 ms	36 ms

8.24 CC-Link IE Field Network Diagnostic Function

Whether an error is present in the network can be checked with this function through the engineering tool connected to the CPU module.

(1) How to use

The following steps are based on the assumption that the used engineering tool is GX Works2.

1. Connect GX Works 2 to the CPU module.
2. Start CC-Link IE Field Network diagnostics from the menu of GX Works2.

D [Diagnostics] \Rightarrow [CC IE Field Diagnostics]

Item to be diagnosed		Description	Reference
1	Display of network configuration diagram and error status	The status of the CC-Link IE Field Network can be checked. When an error or a warning for the high-speed counter module occurs, the status of the station is indicated on an icon.	User's manual for the master/local module used
(2)	Display of selected-station status and error details	The communication status of the station selected in "Networks Status" can be checked. ${ }^{*}$	
3	Communication Test	The transient communication route and whether the communication is established from the connected station to the destination station can be checked.	
	IP Communication Test	The reaching time and the route of the IP communication from the connected station to the target station can be checked.	
	Cable Test	The cable status between the connected station and the destination station can be checked.	
	Link Start/Stop	The network data link can be started and stopped.	
(4)	Network Event History	The history of various events that occurred in the network can be checked.	
	Reserved Station Function Enable	A reservation for a station can be temporarily cancelled, and the cancellation can be disabled. Also, the station numbers for the modules set as reserved stations can be checked on a list.	
	Enable/Disable Ignore Station Errors	A station not set as an error invalid station can be temporarily set as an error invalid station, and the error invalid station setting can be disabled. Also, the station numbers for the modules set as (temporarily) error ignore stations can be checked on a list.	
5	System Monitor	The system monitor on the selected station is activated and the status of the module can be checked. This function is unavailable for the high-speed counter module.	
	Remote Operation	The selected station can be reset through the remote operation.	Page 191, Section 8.24 (1) (a)

*1 "Selected Station Communication Status Monitor", which appears at the bottom right in the window, indicates the communication status of the high-speed counter module. For the error and warning for the high-speed counter module, refer to the following.

- Checking for The Error Codes and the Warning Codes (W Page 221, Section 11.1)

Point ${ }^{\rho}$

Some of items cannot be diagnosed depending on the master/local module or the simple motion module used.
For details, refer to the following.

- \square User's manual for the master/local module used
- LD MELSEC-Q QD77GF Simple Motion Module User's Manual (Network)

(a) Remote operation

1. Select a slave station to be reset and click the [Remote Operation] button.

2. Clicking the [Yes] button on the following window starts the remote reset.

3. Click the $[\mathrm{OK}]$ button on the following window.

CHAPTER 9 PRogramming

This chapter describes the basic programs of the high-speed counter module.

9.1
 Precautions for Programming

This section describes precautions to create CC-Link IE Field Network programs.

(1) Cyclic transmission program

For a cyclic transmission program, interlock with the following link special relay (SB) and link special register (SW).

- Own station data link status (master station) (SB0049)
- Data link status (each station) (SW00B0 to SW00B7)

For the link special relay (SB) and link special register (SW), refer to the following.
[] User's manual for the master/local module used

Interlock example

(2) Transient transmission program

For a transient transmission program, interlock with the following link special relay (SB) and link special register (SW).

- Own station baton pass status (master station) (SB0047)
- Baton pass status (each station) (SW00A0 to SW00A7)

For the link special relay (SB) and link special register (SW), refer to the following.
[].] User's manual for the master/local module used

Interlock example

(3) Initial data processing request flag (RX8) program

To operate the high-speed counter module, the initial processing is required
Since the high-speed counter module does not operate until the initial processing is completed after the module is powered on, always check that Remote READY (RXB) is on after the initial processing is performed.
For Initial data processing request flag (RX8) program, refer to the following.
\longmapsto Page 195, Section 9.3

9.2 Procedure for Programming

Create a program to count the pulses, according to the following procedure.

9.3 Program Example

(1) System configuration

Point ${ }^{\circ}$

For the settings using an engineering tool, the procedure is described based on the use of GX Works2.

(a) Link device assignment

(2) Program condition

This program uses Coincidence output 1 and Coincidence output 2 of CH 1 in the high-speed counter module. The extension output module is used for outputting digital output signals and cam switch output signals.

(3) Initial setting description

(a) Remote buffer memory (parameter area) setting

Setting item	Setting value
Mode switch setting	9: Automatical judgment mode (initial value)
Input response time setting	5: 10 ms (Initial value)
Output HOLD/CLEAR setting	1: HOLD
Cyclic data update watch time setting	10 ($\times 100 \mathrm{~ms}$)
Comparison output setting	Set a value according to the comparison output function to be used.
Coincidence output 1 channel assignment setting	0: CH1 (Initial value)
Coincidence output 2 channel assignment setting	0: CH1 (Initial value)
Coincidence output 3 channel assignment setting	1: CH 2
Coincidence output 4 channel assignment setting	1: CH2
Coincidence output 1 comparison condition setting	0: Coincidence Output (Initial value)
Coincidence output 2 comparison condition setting	1: Within-range Output
Coincidence output 3 comparison condition setting	0: Coincidence Output (Initial value)
Coincidence output 4 comparison condition setting	0: Coincidence Output (Initial value)
Preset/replace setting at coincidence output (Coincidence output 1)	0: Present value not replaced (Initial value)
Preset/replace setting at coincidence output (Coincidence output 2)	0: Present value not replaced (Initial value)
Cam switch output unit assignment setting	1: Stage 1
Cam switch output 1 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 2 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 3 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 4 channel assignment setting	0: CH1 (Initial value)
Cam switch output 5 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 6 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 7 channel assignment setting	0: CH1 (Initial value)
Cam switch output 8 channel assignment setting	0: CH 1 (Initial value)
Cam switch output 9 channel assignment setting	1: CH 2
Cam switch output 10 channel assignment setting	1: CH2
Cam switch output 11 channel assignment setting	1: CH 2
Cam switch output 12 channel assignment setting	1: CH 2
Cam switch output 13 channel assignment setting	1: CH2
Cam switch output 14 channel assignment setting	1: CH 2
Cam switch output 15 channel assignment setting	1: CH2
Cam switch output 16 channel assignment setting	1: CH2
Coincidence output enable command setting	Set a value according to the command to be used.
CH 1 Operation mode setting	Set a value according to the operation mode to be used.
CH1 Count source selection	0: A Phase/B Phase (Initial value)
CH1 Pulse input mode	3: 2-Phase Multiple of 1
CH 1 Counting speed setting	2: 200kpps

Setting item	Setting value
CH1 Counter format	Set a value according to the counter format to be used.
CH1 Z phase (Preset) trigger setting	0 : Rising (Initial value)
CH1 External preset/replace (Z Phase) request detection setting	0: ON at detection (Initial value)
CH 1 Counter function selection	Set a value according to the counter function to be used.
CH1 Function input logic setting	0: Positive Logic (Initial value)
CH1 Latch counter input logic setting	0: Positive Logic (Initial value)
CH 1 Z phase input response time setting	Set any response time.
CH1 Function input response time setting	Set any response time.
CH1 Latch counter input response time setting	Set any response time.
CH 1 Pulse measurement setting (Function input terminal)	0: Pulse ON Width (Initial value)
CH1 Pulse measurement setting (Latch counter input terminal)	1: Pulse OFF Width

Set the initial values for the parameters in CH 2 and the extension output module.

(b) Extended parameter (remote buffer memory) setting

Set the extended parameter (remote buffer memory) only when using the cam switch function.
Set it to operate Cam switch output 1 for CH 1 Present value as shown below.

Setting item	Setting details
Cam switch function, step type (Output 1)	$0:$ Starts with output status being OFF
Cam switch function, number of steps (Output 1)	6
Cam switch function, step No.1 setting (Output 1)	100
Cam switch function, step No.2 setting (Output 1)	250
Cam switch function, step No.3 setting (Output 1)	400
Cam switch function, step No.4 setting (Output 1)	550
Cam switch function, step No.5 setting (Output 1)	700
Cam switch function, step No.6 setting (Output 1)	850

Point ${ }^{8}$

- The setting value in the item related to the cam switch function is enabled when $\mathrm{CH} \square \mathrm{Cam}$ switch execute command (RY26, RY3E) is turned off then on. However, the extended parameter is set before turning on then off Initial data setting request flag (RY9) to save the extended parameter to the nonvolatile memory in this program.
- The extended parameters can be read/written only by the REMFR/REMTO instruction unlike the parameters.
(c) Remote register setting

Setting item		Setting details (setting value)
Point setting (Coincidence output 1) (RWw0 to RWw1) *1		1000
Lower limit value setting (Coincidence output 2) (RWw4 to RWw5)*1		1000
Upper limit value setting (Coincidence output 2) (RWw6 to RWw7)*1		2000
CH1 Ring counter lower limit value (RWw10 to RWw11)*2		-5000
CH1 Ring counter upper limit value (RWw12 to RWw13) ${ }^{\text {2 }}$		5000
CH1 Preset value setting (RWw14 to RWw15)		100
CH1 Time unit setting (Sampling counter/Periodic pulse counter) (RWW16) ${ }^{* 3}$		$1 \mathrm{~ms}(0)$
CH1 Cycle setting (Sampling counter/Periodic pulse counter) (RWw17)*3		2000ms(2000)
CH 1 Frequency measurement ${ }^{*} 4$	CH1 Time unit setting (Frequency measurement) (RWw18)	0.01s(0)
	CH1 Moving average count (Frequency measurement) (RWw19)	3
CH1 Rotation speed measurement ${ }^{*} 5$	CH1 Time unit setting (Rotation speed measurement) (RWw18)	0.01s(0)
	CH1 Moving average count (Rotation speed measurement) (RWw19)	3
	CH1 Number of pulses per rotation (RWw1A to RWw1B)	1000
CH1 PWM output* ${ }^{*}$	CH1 PWM output assignment setting (RWw1D)	Output to Coincidence output $1\left(0001_{\mathrm{H}}\right)$
	CH1 ON width setting (PWM output) (RWw1E to RWw1F)	100.0us(1000)
	CH1 Cycle setting (PWM output) (RWw20 to RWw21)	200.0us(2000)

*1 Set only when using the coincidence output function.
*2 Set only when using the ring counter function.
*3 Set only when using the sampling counter function or the periodic pulse counter function.
*4 Set only under the frequency measurement mode.
*5 Set only under the rotation speed measurement mode.
*6 Set only under the PWM output mode.

Point ${ }^{8}$

If Initial data processing request flag (RX8) turns on when the module is powered on, always set the remote register.

(4) Configuration of program examples

The following figure shows a configuration of a program example.
(a) Program configuration under the normal mode

(b) Program configuration under a mode other than the normal mode

Program examples under a mode other than the normal mode operate in a single-program example.

(c) Error/warning reset program and error history read program

If an error or warning processing is required for a program example under a mode other than the normal mode, add the error/warning reset program and error history read program of the normal mode before the MCR instruction of each program.

(5) Device for user

Device	Description	
X20	Count start signal	QX40 (X20 to X2F)
X21	Present value read signal	
X22	Coincidence output data setting signal	
X23	Preset/replace command signal	
X24	Count stop signal	
X25	Coincidence output clear signal	
X26	Counter function start signal	
X27	Counter function stop signal	
X28	Latch count data read signal	
X29	Latch counter start signal	
X2A	Sampling count data read signal	
X2B	Sampling count start signal	
X2C	Periodic pulse count data read signal	
X2D	Periodic pulse count start signal	
X2E	Coincidence output data 1 setting signal	
X2F	Coincidence output data 2 setting signal	
X30	Latch count value (Latch counter input terminal) read signal	QX40 (X30 to X3F)
X31	Cam switch start signal	
X32	Frequency measurement start signal	
X33	Frequency measurement stop signal	
X34	Rotation speed measurement start signal	
X35	Rotation speed measurement stop signal	
X36	Pulse measurement (Function input terminal) start signal	
X37	Pulse measurement (Latch counter input terminal) start signal	
X38	Pulse measurement (Function input terminal) stop signal	
X39	Pulse measurement (Latch counter input terminal) stop signal	
X3A	PWM output start signal	
X3B	PWM output stop signal	
X3C	Error/warning reset start signal	
X3D	Error history read start signal	

Device	Description	
X1007	Warning status flag	NZ2GFCF-D62PD2 (X1000 to X104F)
X1008	Initial data processing request flag	
X1009	Initial data setting completion flag	
X100A	Error status flag	
X100B	Remote READY	
X1010	Coincidence output 1	
X1011	Coincidence output 2	
X1012	Coincidence output 3	
X1013	Coincidence output 4	
X1014	Setting change completed (Coincidence output 1)	
X1015	Setting change completed (Coincidence output 2)	
X1016	Setting change completed (Coincidence output 3)	
X1017	Setting change completed (Coincidence output 4)	
X101F	External power supply monitor state flag (for extension output module)	
X1021	CH1 Preset/replace completion	
X1023	CH1 External preset/replace (Z Phase) request detection	
X1025	CH 1 Counter function detection	
X1026	CH1 Cam switch execute/PWM output	
X1027	CH 1 Setting change completed (Sampling counter/Periodic pulse counter)	
X1028	CH1 Update flag reset completed (Latch count value/Sampling count value/Periodic pulse count value)	
X1029	CH1 Update flag (Latch count value/Sampling count value/Periodic pulse count value)	
X102A	CH1 Latch count value update flag reset completed (Latch counter input terminal)	
X102B	CH1 Latch count value update flag (Latch counter input terminal)	
X102C	CH 1 Update flag reset completed (Measured frequency value/Measured rotation speed value)	
X102D	CH1 Update flag (Measured frequency value/Measured rotation speed value)	
X1031	CH1 Measured pulse value update flag reset completed (Function input terminal)	
X1032	CH1 Measured pulse value update flag (Function input terminal)	
X1033	CH1 Measured pulse value update flag reset completed (Latch counter input terminal)	
X1034	CH1 Measured pulse value update flag (Latch counter input terminal)	
X1035	CH 1 ON width setting change completed (PWM output)	
X1036	CH1 Error status	
X1037	CH1 Warning status	

Device	Description	
Y1008	Initial data processing completion flag	NZ2GFCF-D62PD2 (Y1000 to Y104F)
Y1009	Initial data setting request flag	
Y1010	Reset command (Coincidence output 1)	
Y1011	Reset command (Coincidence output 2)	
Y1012	Reset command (Coincidence output 3)	
Y1013	Reset command (Coincidence output 4)	
Y1014	Setting change request (Coincidence output 1)	
Y1015	Setting change request (Coincidence output 2)	
Y1016	Setting change request (Coincidence output 3)	
Y1017	Setting change request (Coincidence output 4)	
Y101F	External power supply monitor request flag (for extension output module)	
Y1020	CH 1 Coincidence output enable command	
Y1021	CH1 Preset/replace command	
Y1022	CH1 Count down command	
Y1023	CH1 External preset/replace (Z Phase) request detection reset command	
Y1024	CH1 Count enable command	
Y1025	CH1 Selected counter function start command	
Y1026	CH1 Cam switch execute command/PWM output start command	
Y1027	CH1 Setting change request (Sampling counter/Periodic pulse counter)	
Y1028	CH1 Update flag reset command (Latch count value/Sampling count value/Periodic pulse count value)	
Y102A	CH1 Latch count value update flag reset command (Latch counter input terminal)	
Y102C	CH1 Update flag reset command (Measured frequency value/Measured rotation speed value)	
Y1030	CH1 Pulse measurement start command (Function input terminal)	
Y1031	CH1 Measured pulse value update flag reset command (Function input terminal)	
Y1032	CH1 Pulse measurement start command (Latch counter input terminal)	
Y1033	CH1 Measured pulse value update flag reset command (Latch counter input terminal)	
Y1035	CH 1 ON width setting change request (PWM output)	
Y1036	CH1 Error reset command	
Y1050	LED signal for checking the coincidence output 1	$\begin{aligned} & \text { NZ2EX2B1-16T (Y1050 to } \\ & \text { Y105F) } \end{aligned}$
Y1051	LED signal for checking the coincidence output 2	
Y1052	LED signal for checking underflow occurrence	
Y1053	LED signal for checking overflow occurrence	
Y1054	LED signal for checking that PWM output is in process	
D1100	Counter value greater/smaller signal	
D1116 to D1117	CH1 Present value	
D1118 to D1119	CH1 Latch count value/Sampling count value/Periodic pulse count, difference value	
D1120 to D1121	CH1 Periodic pulse count, present value	
D1122 to D1123	CH1 Periodic pulse count value update check	
D1124 to D1125	CH1 Latch count value (Latch counter input terminal)	
D1126 to D1127	CH1 Measured frequency value/Measured rotation speed value	

Device	
D1128 to D1129	CH1 Measured pulse value (Function input terminal)
D1130 to D1131	CH1 Measured pulse value (Latch counter input terminal)
D1132	CH1 Status
D1134*1	CH1 Latest error code
D1135 ${ }^{*}$ 2	CH1 Latest warning code
D3000 to D3239	Error history 1 to 15
D3300	Cam switch function, step type (Output 1)
D3301	Cam switch function, number of steps (Output 1)
D3302 to D3303	Cam switch function, step No.1 setting (Output 1)
D3304 to D3305	Cam switch function, step No.2 setting (Output 1)
D3306 to D3307	Cam switch function, step No.3 setting (Output 1)
D3308 to D3309	Cam switch function, step No.4 setting (Output 1)
D3310 to D3311	Cam switch function, step No.5 setting (Output 1)
D3312 to D3313	Cam switch function, step No.6 setting (Output 1)
M0	Communication ready flag (station No.1)
M10	Initial setting completion
M100	Parameter initial setting start
M101	Parameter initial setting completion
M102	Remote register initial setting start
M110	REMTO instruction completion flag
M111	REMTO instruction error completion flag
M112	Parameter setting normal completion flag
M200	REMFR instruction completion flag
M201	REMFR instruction error completion flag
M202	Error history read normal completion flag
SB0047	Own station baton pass status (master station)
SB0049	Own station data link status (master station)
SW00A0.0	Baton pass status (each station) (station No.1)
SW00B0.0	Data link status (each station) (station No.1)
N0	Nesting (station No.1)

*1 Stores the latest error (major error or moderate error), and holds it also after an error reset.
*2 Stores the latest warning (minor error), and holds it also after an error reset.

(6) Setting procedure

Connect GX Works2 to the master station to configure the setting.

1. Create a project on $G X$ Works2.

Select "QCPU (Q mode)" for "Series" and select "Q10UDH" for "Type".[Project] \Rightarrow [New...]

New Project		
Series:	QCPU (Q mode)	
Iype:	Q10UDH	
Project Type:	Ladder	Co Use Label
Language:		

2. Display the network parameter setting window and configure the setting as follows.

P Project window \Rightarrow [Parameter] \Rightarrow [Network Parameter] \Rightarrow [Ethernet/CC IE/MELSECNET]

[6fors Network Parameter - MELSECNET/CC IE/Ethernet Module Configuration					\square
V Set network configuration setting in CC IE Field configuration window					
	Module 1	Module 2	Module 3	Module 4	
Network Type	CC IE Field (Master Station)	None	None \quad -	None	\checkmark
Start I/O No.	0000				
Network No.	1				
Total Stations	0				
Group No.					
Station No.	0				
Mode	Online (Normal Mode) \rightarrow	\checkmark	\checkmark		\checkmark
	CC IE Field Conffguration Setting				
	Network Operation Settings				
	Refresh Parameters				
	Interrupt Seltings				
	Specify Station No. by Parameter -				

3. Display the "CC IE Field Configuration" window and configure the configuration and station number of the slave station as follows.
[CC IE Field Configuration Setting] button

4. Close the "CC IE Field Configuration" window.
(7) [CC IE Field Configuration] \Rightarrow [Close with Reflecting the Setting]
5. Display the refresh parameter setting window and configure the setting as follows.
[Refresh Parameters] button

$\left[\begin{array}{c} \text { Assignment Method } \\ C \text { Points/Start } \\ \text { C Start/End } \end{array}\right.$												
	Link Side						PLC Side					\triangle
	Dev.	ame	Points	Start	End				Points	Start	End	
Transfer SB	SB		512	0000	01FF	4	SB	-	512	0000	01FF	
Transfer SW	SW		512	0000	01FF	4	SW	\checkmark	512	0000	01FF	
Transfer 1	RX	-	96	0000	005F	4	X	\checkmark	96	1000	105F	
Transfer 2	RY	\checkmark	96	0000	005F	4	Y	\checkmark	96	1000	105F	
Transfer 3	RWw	\checkmark	64	0000	003F	H	W	\checkmark	64	001000	00103F	
Transfer 4	RWw	\checkmark	64	0000	003F	4	W	\checkmark	64	001100	00113F	
Transfer 5		\checkmark				4		\checkmark				
Transfer 6		\checkmark				4		\checkmark				
Transfer 7		\checkmark				4		\checkmark				
Transfer 8		\checkmark				+		\checkmark				-

6. Write the set parameter to the CPU module of the master station and reset the CPU module, or turn off then on the power supply.
(Online] \Rightarrow [Write to PLC...]

7. Display the "Parameter Processing of Slave Station" window.

2 Project window \Rightarrow Parameter $] \Rightarrow$ [Network Parameter $] \Rightarrow[$ Ethernet/CC IE/MELSECNET] \Rightarrow [CC IE Field Configuration Setting] button \Rightarrow Select a high-speed counter module in "List of stations" \Rightarrow [CC IE Field Configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station]
8. Set "Parameter write" for "Method selection".

9. Set "Write Value". The following are the procedure.

- Click the title cell of "Initial Value" to select all the items and copy them.
- Click the title cell of "Write Value" to select all the items and paste the copy.
- Select the items to be changed, and set new values according to Initial setting description (以 Page 196, Section 9.3 (3)).

10. Click the [Execute] button to write the parameter to the high-speed counter module.

(7) Setting method of the program

1. Create a program in Page 208, Section 9.3 (8) to Page 218, Section 9.3 (13) on GX Works2 according to the mode or function to use.
2. Write the program to the CPU module of the master station and reset the CPU module, or turn off then on the power supply.

3. Change the status of the CPU module of the master station to RUN.

(8) Program example under the normal mode (when the coincidence output is set with the comparison output function)
(a) Common program

*1 Add the following MCR instruction at the end of the program.
\qquad

Point ${ }^{\rho}$

If the master station does not receive a response for several link scans from the high-speed counter module, the high-speed counter module is determined as a cyclic transmission faulty station and the corresponding bit of the data link status (each station) (SWOOB0 to SWOOB7) turns on.
(b) Initial setting program

*1 Set only when using the ring counter function.
*2 Set only when using the sampling counter function or periodic pulse counter function.
(c) Counter function programs

- Program for starting/stopping the counter

- Program for reading counter present value

- Program for the preset/replace function

- Program for reading the latch count value (latch counter input terminal)

- Program for the count disable function

Y1025

Y1025

- Program for the latch counter function

Y1025	- $\begin{aligned} & \text { Turn on } \mathrm{CH} 1 \text { Selected counter function } \\ & \text { start command. }\end{aligned}$
Y1025	Turn off CH1 Selected counter function start command.
D1118	Read CH1 Latch count value to D1118 to D1119.
Y1028	Turn on CH 1 Update flag reset command (Latch count value).
Y1028	. $\begin{aligned} & \text { Turn off } \mathrm{CH} 1 \text { Update flag reset command } \\ & \text { (Latch count value). }\end{aligned}$

- Program for the sampling counter function
[RET
- Program for the periodic pulse counter function

(d) Program for the comparison output function

- Program to control the outputs of Coincidence output 1 to 4 terminals (EQU1 to EQU4) with By each channel (0) being set

- Program to control the outputs of Coincidence output 1 to 4 terminals (EQU1 to EQU4) with By each coincidence output (1) being set

(e) Program for overflow/underflow detection processing

(f) Program for an error/warning reset

(g) Program for reading the error history

(9) Program example under the normal mode (when the cam switch function is set with the comparison output function)

(a) Common program

The program is the same as the program example of the normal mode. (W Page 208, Section 9.3 (8) (a)) (b) Initial setting program

(c) Counter function programs

The program is the same as the program example of the normal mode. (ङ Page 209, Section 9.3 (8) (c))
(d) Program for the cam switch function

(e) Program for overflow/underflow detection processing

The program is the same as the program example of the normal mode. (5 Page 212, Section 9.3 (8) (e))
(f) Program for an error/warning reset

The program is the same as the program example of the normal mode. (\longmapsto Page 212, Section 9.3 (8) (f))
(g) Program for reading the error history

The program is the same as the program example of the normal mode. (ङ Page 212, Section 9.3 (8) (g))
(10)Program example of the frequency measurement mode

(11)Program example of the rotation speed measurement mode

(12)Program example of the pulse measurement mode

(13)Program example of the PWM output mode

CHAPTER 10 maintenance and inspection

The high-speed counter module has no special item to be inspected. However, to maintain the best condition of the system, perform the inspection in accordance with the items described in the user's manual of the CPU module used.

Memo

CHAPTER 11 troubleshooting

This chapter describes errors that may occur while the high-speed counter module is used, and those troubleshooting.

11.1 Checking for the Error Codes and the Warning Codes

Error codes can be checked by any of the following methods:

- Checking by executing a command of the slave station (以 Page 221, Section 11.1 (1))
- Checking by CHD Latest error code (RWr22, RWr3A) (

Warning codes can be checked by any of the following methods:

- Checking by executing a command of the slave station (5 Page 221, Section 11.1 (1))
- Checking by CHロ Latest warning code (RWr23, RWr3B) (↔ Page 224, Section 11.1 (3))

Point P

- Errors of the high-speed counter module are detected at not only every station, but also every channel.
- Errors detected at a channel are stored in the remote register for the channel.
- Errors independent from channels are station errors stored in CH 1 Latest error code (RWr22) or CH1 Latest warning code (RWr23).

(1) Checking by executing a command of the slave station

This section describes how to check the errors by executing a command of the slave station.

1. Select the high-speed counter module in "List of stations" on the "CC IE Field Configuration" window.

2. When the window shown on the left is displayed, click the [Yes] button.
3. When the window shown on the left is displayed, click the [OK] button.
4. The error history of the high-speed counter module is displayed in "Execution Result". click the [Execute] button.

5. Set "Method selection" to "Error history read" and

Item	Contents
Error and Solution	The action for the error is displayed.
Order of generation	The order of error occurrence is displayed.
[Error time] First two digits of the year/Last two digits of the year	The date and time of error occurrence is displayed. (When the tens place of Month, Hour and Second is 0 , the date and time are displayed without 0 .)
[Error time] Month/Day	
[Error time] Hour/Minute	
[Error time] Second/No Use	
Error code details 1 to Error code details 10	The value in the remote buffer memory Error code details 1 to 10 of when an error occurs is stored.

Point ${ }^{8}$

- The error history registers 15 errors at a maximum. If 16 or more errors occur, errors are deleted from the oldest.
- If the same error occurs continuously, only the error that occurred first is stored to the error history.
- Even after the power of the module is turned off and on, the error history remains.
- To initialize the error history, set "Method selection" to "Error history clear request" on the "Command Execution of Slave Station" window and click the [Execute] button.

(2) Checking by $\mathrm{CH} \square$ Latest error code (RWr22, RWr3A)

Check the latest error code with the remote register of the master/local module.
[Online] \Rightarrow [Monitor] \Rightarrow [Device/Buffer Memory Batch]

Ex. When the refresh target device for CH 1 Latest error code (RWr22) is W1122

(3) Checking by $\mathrm{CH} \square$ Latest warning code (RWr23, RWr3B)

Check the latest warning code with the remote register of the master/local module.[Online] \Rightarrow [Monitor] \Rightarrow [Device/Buffer Memory Batch]

Ex. When the refresh target device for CH 1 Latest warning code (RW H 23) is W 1123

11.2 Error Code List

This section describes error codes.
Error codes are classified by error number as follows.

Error code	Classification	Reference
$0^{0000}{ }_{H}$ to $3 \mathrm{FFF}_{\mathrm{H}}$	High-speed counter module error	Page 225, Section 11.2 (1)
$\mathrm{DOOO}_{\mathrm{H}}$ to DFFF ${ }_{\mathrm{H}}$	CC-Link IE Field Network error	Page 242, Section 11.2 (2)
(D529 ${ }_{\mathrm{H}}$ and ${\mathrm{D} 52 \mathrm{~B}_{\mathrm{H}} \text { excluded) }}^{\text {d }}$		

(1) Error code list $\left(\mathbf{0 0 0 0}_{\mathrm{H}}\right.$ to $3 \mathrm{FFF}_{\mathrm{H}}$, D $^{2} 2_{\mathrm{H}}$, D $\left.^{2} \mathbf{5 B}_{\mathrm{H}}\right)$

The errors are classified into the following three types.

Classification	Description
Major error	An error that cannot be recovered. The RUN LED turns off.
Moderate error	An error where the module cannot continue to operate. The ERR. LED turns on.
Minor error	An error where the module can continue to operate. The ERR. LED flashes.

If an error occurs, check that the D LINK LED is on. Then take corrective actions as listed below.

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$0^{000 B_{H}}$	Major error	Communication error 3	An invalid data where the settings of the communication LSI vary has been received.	*13		Take measures against noise and reset the module. If the same error occurs again, a module hardware failure may be the cause. Please consult your local Mitsubishi representative.
$000 \mathrm{C}_{\mathrm{H}}$	Major error	Communication error 4	An invalid data where the settings of the communication LSI vary has been received.	*13		Take measures against noise and reset the module. If the same error occurs again, a module hardware failure may be the cause. Please consult your local Mitsubishi representative.
$0^{0010}{ }_{H}$	Major error	Hardware error	Module hardware failure	*13		Power off then on the module. If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.
$0^{0105}{ }_{\text {H }}$	Moderate error	Clock data out-ofrange error	The clock data acquired from the CPU module are abnormal.	*		Noise effect or a hardware failure may be the cause. If the same error occurs again after the measures against noise are taken, please consult your local Mitsubishi representative.

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$0^{0110_{H}}$	Moderate error	Non-volatile memory data error (module operation information)	The module operation information stored in the nonvolatile memory is abnormal.	*16		- Initialize the module operation information in the nonvolatile memory by setting Module operation information initialization command (address: $\mathbf{1 0 0 4}_{\mathrm{H}}$) to Not commanded (0) \rightarrow Commanded (1) \rightarrow Not commanded (0). Note that the number of ON times integration value is initialized to 0 . - Take measures against noise, such as using a shielded cable for connection. - If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.
$0^{0120}{ }_{H}$	Moderate error	Non-volatile memory data error (parameter)	The parameter data stored in the nonvolatile memory are abnormal.	*13		- Set the parameters in the nonvolatile memory to the default values by setting Parameter area initialization command (address: 1002H) to Not commanded (0) \rightarrow Commanded (1) \rightarrow Not commanded (0). - Set the parameters again. - Take measures against noise, such as using a shielded cable for connection. - If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.
$0^{0130}{ }_{H}$	Moderate error	Non-volatile memory data error (Extended parameter)	The extended parameter data stored in the nonvolatile memory are abnormal.	*13		- Set the parameters in the nonvolatile memory to the default values by setting Parameter area initialization command (address: 1002 H) to Not commanded (0) \rightarrow Commanded (1) \rightarrow Not commanded (0). - Set the parameters again. - Take measures against noise, such as using a shielded cable for connection. - If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$0^{0140}{ }_{H}$	Minor error	Non-volatile memory data error (error history)	The error history data stored in the nonvolatile memory are abnormal.	*1		- The module recovers automatically soon after this error occurred. However, the preceding error history data are erased. - Take measures against noise, such as using a shielded cable for connection. - If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.
$0^{0150}{ }_{H}$	Minor error	Remote buffer memory access error	The REMFR/REMTO instruction has accessed the range outside the remote buffer memory range.	*1		Correct the REMFR/REMTO instruction setting so that the instruction accesses the range within the remote buffer memory range.
$0^{0160}{ }_{H}$	Minor error	Station number switch change failure	The setting on the station number setting switch has been changed while the module power supply is on.	*1		Set the switch back to the station number which was set when the module was powered on.
$0^{0170}{ }_{H}$	Moderate error	Synchronous communication mode setting error	When setting 9 to Mode switch setting (address: 0000_{H}) and operating the synchronous communication mode, either of the applicable setting is as follows. - 1 is set in Comparison output setting (address: 0100H). - A value other than 0 is set in $\mathrm{CH} \square$ Operating mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*13		- Set Comparison output setting (address: 0100_{H}) to 0 , set $\mathrm{CH} \square$ Operating mode setting (address: 0120_{H}, 0140_{H}) to 0 and turn on Initial data setting request flag (RY9) when operating in the synchronous communication mode. - Set Mode switch setting (address: 0000_{H}) to 0 and turn on Initial data setting request flag (RY9) when using cam switch function or $\mathrm{CH} \square$ Operating mode in mode other than normal mode.
$0^{0180}{ }_{H}$	Moderate error	Mode switch setting error	A value other than 0 or 9 is set in Mode switch setting (address: $\left.0000_{\mathrm{H}}\right) .$	*13		Set the value to 0 or 9 in Mode switch setting (address: 0000_{H}), and turn on initial data setting request flag (RYn9).
$0190_{\mathrm{H}}{ }^{* 18}$	Minor error	Mode switch setting change	The value set in Mode switch setting (address: 0000_{H}) has been changed.	*17		The high-speed counter module operates by the value set in Mode switch setting (address: 0000_{H}) at the power-on or remote reset.
$0140^{\text {H }}$	Minor error	Incorrect network parameter access error	Access to high-speed counter module when network parameter was in the incorrect status.	*1		Please reset network parameter correctly.

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$0^{0340}{ }_{H}$	Moderate error	Cam switch output unit assignment setting error	A value other than 0 and 1 is set in Cam switch output unit assignment setting (address: 0104 ${ }_{\mathrm{H}}$).	*13		Set Cam switch output unit assignment setting (address: 0104_{H}) to 0 or 1 , and turn off then on Initial data setting request flag (RY9).
$0^{0800}{ }_{H}$	Moderate error	Comparison output setting error	The setting in Comparison output setting (address: 0100_{H}) is in one of the following cases. - A value other than 0 and 1 is set. - If 1 is set, the value in CH Operation mode setting (address: 0120_{H}, 0140_{H}) is other than 0.	*13		Take the following actions, and turn off then on Initial data setting request flag (RY9). - Set Comparison output setting (address: 0100_{H}) to 0 or 1. - Set CHD Operation mode setting (address: 0120_{H}, 0140_{H}) to 0 .
$0^{0801}{ }_{\text {H }}$	Moderate error	Coincidence output enable command setting error	A value other than 0 and 1 is set in Coincidence output enable command setting (address: 0106 ${ }_{\mathrm{H}}$).	*13		Set Coincidence output enable command setting (address: 0106_{H}) to 0 or 1 , and turn on Initial data setting request flag (RY9).
$0^{085}{ }_{H}$	Moderate error	Cyclic data update watch time setting error	A value other than 0 to 20 is set in Cyclic data update watch time setting (address: 0003_{H}).	*13		Set Cyclic data update watch time setting (address: 0003_{H}) to a value between 0 and 20, and turn off then on Initial data setting request flag (RY9).
0 EOO H	Moderate error	RWw/RWr setting error	RWw3F/RWr3F has not been set in "RWw/RWr Setting" when synchronous communication mode is activated.	*19		Reset and power on, or execute remote reset to assign RWw3F/RWr3F in "RWw/RWr Setting" of network parameter.
$0 \mathrm{E} 10_{\mathrm{H}}$	Moderate error	Synchronous communication error 1	Synchronous communication with the master station was interrupted in a certain period of time.	*19		Execute the followings and turn on the power, or execute remote reset. - Confirmation of the settings and operation of the master station - Confirmation of transmission path
$0 \mathrm{E} 20_{\mathrm{H}}$	Moderate error	Synchronization cycle setting error	The synchronization cycle set in the master station is not supported by the highspeed counter module.	*19		Recheck the synchronization cycle setting of the master station, and then turn off and on the module power, or perform remote reset.
$0 \mathrm{E} 30_{\mathrm{H}}$	Moderate error	Synchronous communication error 2	Synchronous communication with the master station was interrupted in a certain period of time.	*19		Execute the followings and turn on the power, or execute remote reset. - Confirmation of the settings and operation of the master station - Confirmation of transmission path

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$0 \mathrm{~F} 40_{\mathrm{H}}$	Moderate error	Input response time setting error	The lower 3 bits of Input response time setting (address: 0001_{H}) is set to 000 b , 001b, or 010b.	*13		Set the lower 3 bits of Input response time setting (address: 0001_{H}) to a value other than 000b, 001b, and 010b, then turn on Initial data setting request flag (RY9).
${ }^{1330}{ }_{H}$	Moderate error	Number of ON times integration function setting error	The number of ON times integration function is enabled when the cam switch function is selected.	*13		Set Number of ON times integration function enable (address: 0202_{H}) to 0000_{H}, and turn off then on Initial data setting request flag (RY9).
${ }^{1341}{ }_{\text {H }}$	Moderate error	Cam switch output unit assignment error	An extension output module does not exist where Cam switch output unit assignment setting (address: 0104 H) assigns the module.	*13		Power off the module, and connect an extension output module where Cam switch output unit assignment setting (address: 0104_{H}) assigns the module. Then power on the module.
${ }^{1700}{ }_{H}$	Major error	Extension module 1 connection error	The extension module is improperly connected or an extension module not allowed to be connected has been connected.	*13		Check the contact points on the extension module, and if the module is allowed to be connected. If the same error occurs again, a module failure may be the cause. Please consult your local Mitsubishi representative.
${ }^{1720}{ }_{H}$	Moderate error	External power supply OFF error	The external power supply for the extension output module is off while the external power supply monitoring function is enabled.	*14		- Check the external power supply status for the external output module. - If this error occurs when the system starts or stops, change the timing of when the external power supply monitoring function is enabled.
${ }^{17} 30{ }_{H}$	Moderate error	Extension module parameter failure	The parameter for specifying the extension module type has specified a type different from the connected one.	*13		Correct the setting in Extension module identification code (address: 0200_{H}) so that the setting matches the connected extension module and the module points.
$\square 050{ }_{H}{ }^{* 15}$	Minor error	CHD Overflow/underflow error (Sampling count value/Periodic pulse count, difference value)	The value in $\mathrm{CH} \square$ Sampling count value (RWr12 to RWr13, RWr2A to RWr2B), CHロ Periodic pulse count, difference value (RWr12 to RWr13, RWr2A to RWr2B), or CHD Periodic pulse count value update check (RWr16 to RWr17, RWr2E to RWr2F) is outside the range of -2147483648 to 2147483647 . \square indicates the channel where settings are incorrect.	*2	*3	Adjust the values so that the product of Input pulse speed [pps] \times Sampling/Periodic time [s] is within the range.

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square^{\square} 200_{H}$	Moderate error	$\mathrm{CH} \square$ Overflow/underflow error	The value in $\mathrm{CH} \square$ Present value (RWr10 to RWr11, RWr28 to $R W r 29$) is outside the range of -2147483648 to 2147483647 in the linear counter function operation. indicates the channel where settings are incorrect.	*5	*3	Replace the present value with the preset value.
$\square 210_{H}$	Moderate error	CHD Ring counter upper/lower limit value setting error	The value in $\mathrm{CH} \square$ Ring counter upper limit value ($R W w 12$ to RWw13, RWw2A to RWw2B) is smaller than the value in $\mathrm{CH} \square$ Ring counter lower limit value ($R W w 10$ to RWw11, RWw28 to RWw29) in the ring counter function operation. \square indicates the channel where settings are incorrect.	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If CH C Count enable command (RY24, RY3C) is turned off then on: *4	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If CH ㅁ Count enable command (RY24, RY3C) is turned off then on: *3	Set the values that satisfy the condition "CHD Ring counter lower limit value (RWw 10 to RWw11, RWw28 to RWw29) \leq $\mathrm{CH} \square$ Ring counter upper limit value (RWw 12 to RWw 13 , RWw2A to RWw2B)", and perform one of the following operations. - If Initial data processing request flag (RX8) is on, turn off then on Initial data processing completion flag (RY8). - If the parameters are written with the parameter processing of the slave station, or Initial data setting completion flag (RX9) is on, turn off then on Initial data setting request flag (RY9). - If Initial data processing request flag (RX8) and Initial data setting completion flag (RX9) are off, turn off then on CHロ Count enable command (RY24, RY3C).
$\square 30 \diamond_{H}$	Moderate error	Comparison condition setting error (Coincidence output \diamond)	A value other than 00b to 10 b is set in Coincidence output \diamond of Coincidence output comparison condition setting (address: 0102 ${ }^{\mathrm{H}}$). \square indicates the channel where settings are incorrect. \diamond indicates the number of Coincidence output on which this error occurred.	*13		Set coincidence output \diamond of Coincidence output comparison condition setting (address: 0102_{H}) to a value between 00b and 10b, and turn off then on Initial data setting request flag (RY9).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 31 \diamond_{H}$	Moderate error	Upper limit value setting error (Coincidence output \diamond)	The value in Upper limit value setting (Coincidence output \diamond) is smaller than the value in Lower limit value setting (Coincidence output \diamond). \square indicates the channel where settings are incorrect. \diamond indicates the number of Coincidence output on which this error occurred.	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If Setting change request (Coincidence output \diamond) (RY14 to RY17) is turned off then on: *6	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If Setting change request (Coincidence output \diamond) (RY14 to RY17) is turned off then on: *3	Set the values that satisfy the condition "Lower limit value setting (Coincidence output \diamond) \leq Upper limit value setting (Coincidence output \diamond)", and perform one of the following operations. - If Initial data processing request flag (RX8) is on, turn off then on Initial data processing completion flag (RY8). - If the parameters are written with the parameter processing of the slave station, or Initial data setting completion flag (RX9) is on, turn off then on Initial data setting request flag (RY9). - If Initial data processing request flag (RX8) and Initial data setting completion flag (RX9) are off, turn off then on Setting change request (Coincidence output \diamond) (RY14 to RY17).
$\square 351{ }_{H}$	Moderate error	Cam switch function, number of steps setting error (Output 1)	A value other than 0 to 16 is set in Cam switch function, number of steps (Output 1) (address: 1501_{H}). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, number of steps (Output 1) (address: 1501_{H}) to a value between 0 and 16, and turn off then on CH Cam switch execute command (RY26, RY3E)
to						
$\square 359{ }_{\text {H }}$	Moderate error	Cam switch function, number of steps setting error (Output 9)	A value other than 0 to 16 is set in Cam switch function, number of steps (Output 9) (address: $1^{1901_{H}}$). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, number of steps (Output 9) (address: 1901_{H}) to a value between 0 and 16, and turn off then on $\mathrm{CH} \square$ Cam switch execute command (RY26, RY3E).
$\square 360_{H}$	Moderate error	Cam switch function, number of steps setting error (Output 10)	A value other than 0 to 16 is set in Cam switch function, number of steps (Output 10) (address: 1981 ${ }_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, number of steps (Output 10) (address: $\mathbf{1 9 8 1}_{\mathrm{H}}$) to a value between 0 and 16, and turn off then on CH Cam switch execute command (RY26, RY3E).
to						
$\square 366_{H}$	Moderate error	Cam switch function, number of steps setting error (Output 16)	A value other than 0 to 16 is set in Cam switch function, number of steps (Output 16) (address: $1 \mathrm{C} 81_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, number of steps (Output 16) (address: $1 \mathrm{C} 81_{\mathrm{H}}$) to a value between 0 and 16, and turn off then on CHロ Cam switch execute command (RY26, RY3E).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 391_{H}$	Moderate error	Cam switch function, step type setting error (Output 1)	A value other than 0 and 1 is set in Cam switch function, step type (Output 1) (address: 1500_{H}). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step type (Output 1) (address: 1500_{H}) to 0 or 1 , and turn off then on CHD Cam switch execute command (RY26, RY3E).
to						
$\square 399_{\mathrm{H}}$	Moderate error	Cam switch function, step type setting error (Output 9)	A value other than 0 and 1 is set in Cam switch function, step type (Output 9) (address: 1900_{H}). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step type (Output 9) (address: 1900_{H}) to 0 or 1 , and turn off then on CHD Cam switch execute command (RY26, RY3E).
$\square^{\square} 3 A_{H}$	Moderate error	Cam switch function, step type setting error (Output 10)	A value other than 0 and 1 is set in Cam switch function, step type (Output 10) (address: $\mathbf{1 9 8 0}_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step type (Output 10) (address: 1980_{H}) to 0 or 1, and turn off then on CHD Cam switch execute command (RY26, RY3E).
to						
${ }^{\square} 3{ }^{\text {a }}{ }_{H}$	Moderate error	Cam switch function, step type setting error (Output 16)	A value other than 0 and 1 is set in Cam switch function, step type (Output 16) (address: $1 \mathrm{C} 8 \mathrm{O}_{\mathrm{H}}$). \square indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step type (Output 16) (address: $1 \mathrm{C} 80_{\mathrm{H}}$) to 0 or 1 , and turn off then on CHD Cam switch execute command (RY26, RY3E).
$\square 401{ }_{H}$	Moderate error	Cam switch function, step No. setting error (Output 1)	The values set in Cam switch function, step No. 1 to No. 16 setting (Output 1) (address: 1502_{H} to 1521_{H}) are not in the ascending order. \square indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step No. 1 to No. 16 setting (Output 1) (address: 1502_{H} to 1521_{H}) to values in the ascending order, and turn off then on CH - Cam switch execute command (RY26, RY3E).
to						
$\square 409{ }_{\text {H }}$	Moderate error	Cam switch function, step No. setting error (Output 9)	The values set in Cam switch function, step No. 1 to No. 16 setting (Output 9) (address: 1902_{H} to 1921_{H}) are not in the ascending order. indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step No. 1 to No. 16 setting (Output 9) (address: 1902_{H} to 1921_{H}) to values in the ascending order, and turn off then on CHD Cam switch execute command (RY26, RY3E).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 410^{H}$	Moderate error	Cam switch function, step No. setting error (Output 10)	The values set in Cam switch function, step No. 1 to No. 16 setting (Output 10) (address: 1982_{H} to $19 \mathrm{~A} 1_{\mathrm{H}}$) are not in the ascending order. \square indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step No. 1 to No. 16 setting (Output 10) (address: 1982_{H} to $19 \mathrm{~A} 1_{\mathrm{H}}$) to values in the ascending order, and turn off then on $\mathrm{CH} \square$ Cam switch execute command (RY26, RY3E).
to						
$\square 416_{H}$	Moderate error	Cam switch function, step No. setting error (Output 16)	The values set in Cam switch function, step No. 1 to No. 16 setting (Output 16) (address: $1 \mathrm{C} 82_{\mathrm{H}}$ to $1 \mathrm{CA} 1_{\mathrm{H}}$) are not in the ascending order. indicates the channel where settings are incorrect.	*7	*3	Set Cam switch function, step No. 1 to No. 16 setting (Output 16) (address: $1 \mathrm{C} 82_{\mathrm{H}}$ to $1 \mathrm{CA} 1_{\mathrm{H}}$) to values in the ascending order, and turn off then on $\mathrm{CH} \square$ Cam switch execute command (RY26, RY3E).
$\square 501_{H}$	Moderate error	CH Time unit setting error (Sampling counter/Periodic pulse counter)	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Time unit setting (Sampling counter/Periodic pulse counter) (RWw16, RWw2E). \square indicates the channel where settings are incorrect.	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodi c pulse counter) (RY27, RY3F) is turned off then on: *8	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodi c pulse counter) (RY27, RY3F) is turned off then on: *3	Set CHa Time unit setting (Sampling counter/Periodic pulse counter) (RWw16, RWw2E) to 0 or 1 , and perform one of the following operations. - If Initial data processing request flag (RX8) is on, turn off then on Initial data processing completion flag (RY8). - If the parameters are written with the parameter processing of the slave station, or Initial data setting completion flag (RX9) is on, turn off then on Initial data setting request flag (RY9). - If Initial data processing request flag (RX8) and Initial data setting completion flag (RX9) are off, turn off then on $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square^{\square} 502_{H}$	Moderate error	$\mathrm{CH} \square$ Cycle setting error (Sampling counter/Periodic pulse counter)	$\mathrm{CH} \square$ Cycle setting (Sampling counter/Periodic pulse counter) (RWw17, $R W w 2 F)$ is set to 0 . \square indicates the channel where settings are incorrect.	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If CH - Setting change request (Sampling counter/Periodi c pulse counter) (RY27, RY3F) is turned off then on: *8	If the parameters are written with the parameter processing of the slave station, or Initial data processing completion flag (RY8) or Initial data setting request flag (RY9) is turned off then on: *13 If $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodi c pulse counter) (RY27, RY3F) is turned off then on: *3	Set CHロ Cycle setting (Sampling counter/Periodic pulse counter) (RWw17, RWw2F) to a value between 1 and 65535 , and perform one of the following operations. - If Initial data processing request flag (RX8) is on, turn off then on Initial data processing completion flag (RY8). - If the parameters are written with the parameter processing of the slave station, or Initial data setting completion flag (RX9) is on, turn off then on Initial data setting request flag (RY9). - If Initial data processing request flag (RX8) and Initial data setting completion flag (RX9) are off, turn off then on $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F).
$\square 601_{H}$	Moderate error	CHD Moving average count setting error (Frequency measurement)	A value other than 1 to 100 is set in CHD Moving average count (Frequency measurement) (RWw19, RWw31). \square indicates the channel where settings are incorrect.	*9	*3	Set CHO Moving average count (Frequency measurement) (RWw19, RWw31) to a value between 1 and 100, and turn off then on CH Count enable command (RY24, RY3C).
$\square^{\square 602}{ }_{H}$	Moderate error	$\mathrm{CH} \square$ Time unit setting error (Frequency measurement)	A value other than 0 to 2 is set in $\mathrm{CH} \square$ Time unit setting (Frequency measurement) (RWw18, RWw30). \square indicates the channel where settings are incorrect.	*9	*3	Set CHD Time unit setting (Frequency measurement) (RWw18, RWw30) to a value between 0 and 2 , and turn off then on CH - Count enable command (RY24, RY3C).
$\square 621_{H}$	Moderate error	CHD Moving average count setting error (Rotation speed measurement)	A value other than 1 to 100 is set in CHa Moving average count (Rotation speed measurement) (RWw19, RWw31). \square indicates the channel where settings are incorrect.	*10	*3	Set CHD Moving average count (Rotation speed measurement) (RWw19, RWw31) to a value between 1 and 100, and turn off then on CH Count enable command (RY24, RY3C).
$\square 622^{H}$	Moderate error	$\mathrm{CH} \square$ Time unit setting error (Rotation speed measurement)	A value other than 0 to 2 is set in CH Time unit setting (Rotation speed measurement) (RWw18, RWw30). \square indicates the channel where settings are incorrect.	*10	*3	Set CHD Time unit setting (Rotation speed measurement) (RWw18, RWw30) to a value between 0 and 2 , and turn off then on CH Count enable command (RY24, RY3C).

Error code （hexadecimal）	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 623_{\mathrm{H}}$	Moderate error	CHD Number of pulses per rotation setting error	A value other than 1 to 8000000 is set in $\mathrm{CH} \square$ Number of pulses per rotation（RWw1A to RWw1B，RWw32 to RWw33）． \square indicates the channel where settings are incorrect．	＊10	＊3	Set CHD Number of pulses per rotation（RWw1A to RWw1B， RWw32 to RWw33）to a value between 1 and 8000000 ，and turn off then on CH Count enable command（RY24， RY3C）．
$\square 660_{H}$	Moderate error	CHロ Pulse measurement range overflow error（Function input terminal）	A pulse from $\mathrm{CH} \square$ Function input terminal （FUNC1 or FUNC2）is beyond the measurable range （approx．214s）． \square indicates the channel where settings are incorrect．	＊11	＊3	Measure pulses within the measurable range． To resume the measurement， take either of the following actions． －Input the target pulses again． －Turn off then on CHロ Pulse measurement start command （Function input terminal） （RY30，RY48）．
$\square 661_{H}$	Moderate error	CHロ Pulse measurement setting error （Function input terminal）	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Pulse measurement setting（Function input terminal）（address： $012 \mathrm{~A}_{\mathrm{H}}, 014 \mathrm{~A}_{\mathrm{H}}$ ）． \square indicates the channel where settings are incorrect．	＊13		Set CHD Pulse measurement setting（Function input terminal） （address： $012 \mathrm{~A}_{\mathrm{H}}, 014 \mathrm{~A}_{\mathrm{H}}$ ）to 0 or 1，and turn off then on Initial data setting request flag（RY9）．
$\square 662_{H}$	Moderate error	CHC Pulse measurement range overflow error（Latch counter input terminal）	A pulse from $\mathrm{CH} \square$ Latch counter input terminal（LATCH1 or LATCH2）is beyond the measurable range （approx．214s）． \square indicates the channel where settings are incorrect．	＊11	＊3	Measure pulses within the measurable range． To resume the measurement， take either of the following actions． －Input the target pulses again． －Turn off then on CHD Pulse measurement start command （Latch counter input terminal） （RY32，RY4A）．
$\square 663_{\mathrm{H}}$	Moderate error	CHD Pulse measurement setting error（Latch counter input terminal）	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Pulse measurement setting（Latch counter input terminal） （address： $012 \mathrm{~B}_{\mathrm{H}}$ ， $014 \mathrm{~B}_{\mathrm{H}}$ ）． indicates the channel where settings are incorrect．	＊13		Set CHD Pulse measurement setting（Latch counter input terminal）（address： $012 \mathrm{~B}_{\mathrm{H}}$ ， $014 \mathrm{~B}_{\mathrm{H}}$ ）to 0 or 1 ，and turn off then on Initial data setting request flag（RY9）．
$\square 670_{\mathrm{H}}$	Moderate error	CHロ PWM output assignment setting error	The setting in $\mathrm{CH} \square$ PWM output assignment setting （RWw1D，RWw35）is in either of the following cases． －All the bits from b0 to b3 are not on． －Coincidence output \diamond bit which is assigned to the other channel is on． indicates the channel where settings are incorrect．	＊12	＊3	Take the following actions，and turn off then on CHロ PWM output start command（RY26， RY3E）． －Turn on one or more bits from b0 to b3． －Turn on Coincidence output \diamond bit which is assigned to the target channel．

Error code （hexadecimal）	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 671_{H}$	Moderate error	CH O ON width setting error（PWM output）	A value other than 0 and 10 to 10000000 is set in CHD ON width setting（PWM output） （RWw1E to RWw1F， RWw36 to RWw37）． indicates the channel where settings are incorrect．	If CHロ PWM output start command （RY26，RY3E） is turned off then on：＊12 If CH O ON width setting change request （PWM output） （RY35，RY4D） is turned off then on：＊1	＊3	Set CHO ON width setting （PWM output）（RWw1E to RWw1F，RWw36 to RWw37）to 0 or a value between 10 and 10000000，and perform either of the following operations． －If CHO PWM output（RX26， RX3E）is off，turn off then on －PWM output start command（RY26，RY3E）． －If CHO PWM output（RX26， $R \times 3 E$ ）is on，turn off then on CH O ON width setting change request（PWM output）（RY35，RY4D）．
$\square 672_{\text {H }}$	Moderate error	$\mathrm{CH} \square$ Cycle setting error（PWM output）	A value other than 50 to 10000000 is set in $\mathrm{CH} \square$ Cycle setting （PWM output） （RWw20 to RWw21， RWw38 to RWw39）． \square indicates the channel where settings are incorrect．	＊12	＊3	Set CHロ Cycle setting（PWM output）（RWw20 to RWw21， RWw38 to RWw39）to a value between 50 and 10000000，and turn off then on CHD PWM output start command（RY26， RY3E）．
$\square 673_{\mathrm{H}}$	Moderate error	CH ON width／Cycle setting error（PWM output）	The value in $\mathrm{CH} \square$ Cycle setting（PWM output）（RWw20 to RWw21，RWw38 to RWw 39 ）is smaller than the value in $\mathrm{CH} \square$ ON width setting （PWM output） （RWw1E to RWw1F， RWw36 to RWw37）． \square indicates the channel where settings are incorrect．	If CHロ PWM output start command （RY26，RY3E） is turned off then on：＊12 If CH ON width setting change request （PWM output） （RY35，RY4D） is turned off then on：＊1	＊3	Set the values that satisfy the condition＂CHロ ON width setting（PWM output）（RWw1E to RWw1F，RWw36 to RWw37） $\leq \mathrm{CH} \square$ Cycle setting（PWM output）（RWw20 to RWw21， RWw38 to RWw39）＂，and perform either of the following operations． －If CHO PWM output（RX26， RX3E）is off，turn off then on CHD PWM output start command（RY26，RY3E）． －If CHD PWM output（RX26， RX3E）is on，turn off then on $\mathrm{CH} \square \mathrm{ON}$ width setting change request（PWM output）（RY35，RY4D）．
$\square 810_{H}$	Moderate error	CH O Operation mode setting error	A value other than 0 to 4 is set in $\mathrm{CH} \square$ Operation mode setting（address： $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$ ）． indicates the channel where settings are incorrect．	＊13		Set CHO Operation mode setting（address： $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$ ） to a value between 0 and 4 ，and turn off then on Initial data setting request flag（RY9）．

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 811_{\mathrm{H}}$	Moderate error	CHD Count source selection setting error	The setting in $\mathrm{CH} \square$ Count source selection (address: 0121_{H}, 0141_{H}) is in either of the following cases. - If the value in $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is 0 , a value other than 0 to 2 is set. - If the value in $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is 1 or 2 , a value other than 0 is set. \square indicates the channel where settings are incorrect.	*13		Take either of the following actions on $\mathrm{CH} \square$ Count source selection (address: 0121 ${ }_{\mathrm{H}}$, 0141_{H}), and turn off then on Initial data setting request flag (RY9). - If the value in $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is 0 , set a value between 0 and 2 . - If the value in $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is 1 or 2 , set 0 .
$\square 812^{H}$	Moderate error	CHD Count source coincidence output setting error	Either of the following cases is the cause if the value in CH 口 Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is 0 , and the value in CH Count source selection (address: 0121_{H}, 0141_{H}) is 1 or 2 . - A value other than 0 and 4 is set in CH Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) of the other channel. - A channel where CHD Count source selection (address: $0121_{\mathrm{H}}, 0141_{\mathrm{H}}$) is set is the same as the channel assigned to the corresponding bit of Coincidence output channel assignment setting (address: 0101 ${ }_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*13		Take the following actions, and turn off then on Initial data setting request flag (RY9). - Set CHD Operation mode setting (address: 0120_{H}, 0140_{H}) for the other channel to 0 or 4 . - Set the corresponding bit of Coincidence output channel assignment setting (address: 0101_{H}) to the channel where CHD Count source selection (address: $0121_{\mathrm{H}}, 0141_{\mathrm{H}}$) is not set.
$\square 813_{\mathrm{H}}$	Moderate error	CHD Pulse input mode setting error	A value other than 0 to 5 is set in CHD Pulse input mode (address: $0122_{\mathrm{H}}, 0142_{\mathrm{H}}$). \square indicates the channel where settings are incorrect.	*13		Set CHロ Pulse input mode (address: 0122 $\mathrm{H}, 0142_{\mathrm{H}}$) to a value between 0 and 5 , and turn off then on Initial data setting request flag (RY9).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action
				Error CH	The other CHs	
$\square 814_{H}$	Moderate error	$\mathrm{CH} \square$ Counting speed setting error	The setting in CH Counting speed setting (address: $0123_{H}, 0143_{H}$) is in one of the following cases. - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122_{H}, 0142_{H}) is 0,2 , or 3 , a value other than 0 to 5 is set. - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122_{H}, 0142_{H}) is 1 or 4 , a value other than 0 to 6 is set. - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122_{H}, 0142_{H}) is 5 , a value other than 0 to 7 is set. \square indicates the channel where settings are incorrect.	*13		Take one of the following actions on CH Counting speed setting (address: 0123_{H}, 0143_{H}), and turn off then on Initial data setting request flag (RY9). - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122_{H}, 0142_{H}) is 0,2 , or 3 , set a value between 0 and 5 . - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122_{H}, 0142_{H}) is 1 or 4 , set a value between 0 and 6 . - If the value in $\mathrm{CH} \square$ Pulse input mode (address: 0122 ${ }_{\mathrm{H}}$, 0142_{H}) is 5 , set a value between 0 and 7 .
$\square 815_{\mathrm{H}}$	Moderate error	Coincidence output channel assignment setting error	The channel where the PWM output mode is selected is not assigned to the setting in Coincidence output channel assignment setting (address: 0101 H). \square indicates the channel where settings are incorrect.	*13		Assign the channel where the PWM output mode is selected on Coincidence output channel assignment setting (address: 0101_{H}), and turn off then on Initial data setting request flag (RY9).
$\square 820_{H}$	Moderate error	CHD Counter format setting error	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Counter format (address: 0124_{H}, 0144_{H}). indicates the channel where settings are incorrect.	*13		Set CHD Counter format (address: $0124_{\mathrm{H}}, 0144_{\mathrm{H}}$) to 0 or 1, and turn off then on Initial data setting request flag (RY9).
$\square 821_{H}$	Moderate error	CH Counter function selection setting error	A value other than 0 to 5 is set in CH ㅁ Counter function selection (address: $0126_{\mathrm{H}}, 0146_{\mathrm{H}}$). indicates the channel where settings are incorrect.	*13		Set CH - Counter function selection (address: 0126 ${ }_{\mathrm{H}}$, 0146_{H}) to a value between 0 and 5 , and turn off then on Initial data setting request flag (RY9).
$\square 822^{H}$	Moderate error	CHD Function input logic setting error	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Function input logic setting (address: $0127_{\mathrm{H}}, 0147_{\mathrm{H}}$). \square indicates the channel where settings are incorrect.	*13		Set CHロ Function input logic setting (address: $0127_{\mathrm{H}}, 0147_{\mathrm{H}}$) to 0 or 1 , and turn off then on Initial data setting request flag (RY9).

Error code (hexadecimal)	Classification	Error name	Description and cause	Operation of when an error occurs		Action			
				Error CH	The other CHs				
$\square 823_{H}$	Moderate error	CHD Latch counter input logic setting error	A value other than 0 and 1 is set in $\mathrm{CH} \square$ Latch counter input logic setting (address: $0128_{\mathrm{H}}, 0148_{\mathrm{H}}$). \square indicates the channel where settings are incorrect.	*13		Set CHロ Latch counter input logic setting (address: 0128_{H}, 0148_{H}) to 0 or 1 , and turn off then on Initial data setting request flag (RY9).			
${ }^{\square} 824_{H}$	Moderate error	$\mathrm{CH} \square \mathrm{Z}$ phase input response time setting error	A value other than 00b to 10 b is set in $\mathrm{CH} \square \mathrm{Z}$ phase input response time setting (address: 0129 H b0 to b1, 0149 ${ }_{\text {H. }}$ b0 to b1). \square indicates the channel where settings are incorrect.	*13		Set CHO Z phase input response time setting (address: 0129 ${ }_{\mathrm{H}} \cdot \mathrm{b} 0$ to b1, $0149_{\mathrm{H}} \cdot \mathrm{b} 0$ to b1) to a value between 00 b and 10b, and turn off then on Initial data setting request flag (RY9).			
${ }^{\square} 825_{H}$	Moderate error	CHD Function input response time setting error	A value other than 00b to 10 b is set in $\mathrm{CH} \square$ Function input response time setting (address: 0129 H .b2 to b3, 0149 H .b2 to b3). \square indicates the channel where settings are incorrect.	*13		Set CHD Function input response time setting (address: 01299.b2 to b3, 0149 ${ }_{\mathrm{H}}$.b2 to b3) to a value between 00b and 10b, and turn off then on Initial data setting request flag (RY9).			
${ }^{\square} 826_{H}$	Moderate error	CHD Latch counter input response time setting error	A value other than 00b to 10 b is set in $\mathrm{CH} \square$ Latch counter input response time setting (address: 0129 H .b4 to b5, 0149 H .b4 to b5). \square indicates the channel where settings are incorrect.	*13		Set CHD Latch counter input response time setting (address: 0129_{H}.b4 to b5, 0149_{H}.b4 to b5) to a value between 00 b and 10b, and turn off then on Initial data setting request flag (RY9).			
D529 ${ }_{\text {H }}$	Major error	Communication error 1		*13		- Malfunction due to noise may be the cause. Check the cable distance or grounding			
$\mathrm{D}^{\text {2 }} \mathrm{B}_{\mathrm{H}}$	Major error	Communication error 2	The communication LSI is in failure.	*13		device.Then take measures against noise. - Conduct the unit test. If the same error occurs again, a hardware failure of the module may be the cause. Please consult your local Mitsubishi representative.			
*1	Keeps its operation with the normal setting value just before the error.								
*2	Stores -2147483648 or 2147483647 in CH \square Sampling count value (RWr 12 to $\mathrm{RWr} 13, \mathrm{RWr} 2 \mathrm{~A}$ to RW 2 B), CH \square Periodic pulse count, difference value (RWr 12 to $\mathrm{RWr13}$, RWr 2 A to $\mathrm{RWr2B}$), or $\mathrm{CH} \square$ Periodic pulse count value update check (RWr16 to RWr17, RWr2E to RWr2F), and continues to count. Keeps its normal operation unless an error occurs.								
*3									
*4	The ring counter function does not start counting.								
*5	The linear counter function stops counting.								
*6	Compares the count value with the normal setting value just before the error. The error does not affect Coincidence output \diamond assigned to the error CH and the other functions.								
*7	Does not execute the cam switch function. The error does not affect the other functions.								
*8	Executes the sampling counter function or periodic pulse counter function with the normal setting value just before the error.								
*9	Does not start to measure the frequency.								
*10	Does not start to measure the rotation speed.								

*11 Stops measuring pulses.
*12 Does not output the PWM waveform.
*13 Stops operations except the one on the error. The updating EQU1 to EQU4 terminal status (RWr1), Cam switch output signal ($R W r 2$), Cam switch output terminal status ($R W r 3$), CH \square Status ($R W r 20, R W r 38$), and $C H \square$ External input status (RW r21, RW r39) is stopped.
*14 Continues its operation although the external output terminals of the extension output module are forced off. (Y0 LED to YF LED on the extension output module turn on or off depending on the output status.)
*15 A minor error which can be reset by turning off then on CHD Error reset command (RY36, RY4E)
*16 Stores 0 in all the monitor data and keeps 0 until the module operation information is initialized. The number of ON times integration does not start.
*17 The module operates according to a value set in Mode switch setting (address: 0000_{H}) when module power supply is turned off and on or at remote reset.
*18 Mode switch setting change (error code: 0190_{H}) is not reset even if five seconds have passed after the error occurred. During the error, the high-speed counter module keeps operating in the mode before Mode switch setting (address: 0000_{H}) change. To reset the error in the previous mode, set the previous value to Mode switch setting (address: 0000_{H}) and turn on and off Initial data setting request flag (RY9).
*19 The CC-Link IE Field Network synchronous communication function stops working.

Point ${ }^{9}$

- When multiple errors occur, only the latest error code is stored in $\mathrm{CH} \square$ Latest error code (RWr22, RWr3A) or CH Latest warning code (RWr23, RWr3B). (Error codes which do not have \square on their names are stored in CH1.) Old errors can be checked with the error history of the engineering tool. For the error history, refer to the following.
- Checking by executing a command of the slave station (↔ Page 221, Section 11.1 (1))
- Error history 1 to 15 (address: $0 A 00_{\mathrm{H}}$ to $0 \mathrm{AEF}_{\mathrm{H}}$) (F_{3} Page 298, Appendix 3 (15))
- Turning on $\mathrm{CH} \square$ Error reset command (RY36, RY4E) resets errors. However, the error causes are detected again and thus the error codes are stored again unless the error causes are removed.

(a) Detailed error information list

Detailed information about errors is stored in Error code details 1 in Error history 1 to 15 (address: $0 \mathrm{~A} 00_{\mathrm{H}}$ to $0 \mathrm{AEF}_{\mathrm{H}}$). The following table lists the error codes with the detailed information.

Error code (hexadecimal)	Classification	Error name	Error code details 1	Error code details 2 to 10
$\square 050_{\mathrm{H}}$	Minor error	CH (Overflow/underflow error (Sampling count value/Periodic pulse count, difference value)	0 : Underflow $1:$ Overflow	0 (fixed)
$\square 200_{\mathrm{H}}$	Moderate error	$\mathrm{CH} \square$ Overflow/underflow error	0 : Underflow $1:$ Overflow	0 (fixed)
Error codes other than 050_{H} and $\square 200_{\mathrm{H}}$	-	-	0 (fixed)	0 (fixed)

(2) Error code list (D000 ${ }_{H}$ to DFFF $_{H}$ (D529 ${ }_{H}$ and D52B ${ }_{H}$ excluded))

When an error occurs, the ERR. LED does not turn on. The D LINK LED flashes or turns off. Troubleshoot the problem with the CC-Link IE Field Network diagnostics. (Page 189, Section 8.24)

Error code (hexadecimal)	Error name	Description and cause	Action
$\mathrm{DOEO}_{\mathrm{H}}$	Station type mismatch	The network parameter is incorrect or outside the range.	In the network configuration settings of the master station, change the station type to the remote device station.
D0E1H	Own station reserved	The network parameter is incorrect or outside the range.	- In the network configuration settings of the master station, cancel the reserved station setting. - Change the station number of the module to a station number that is not reserved.
D0E2H	Station No. already in use (own station)	The network parameter is incorrect or outside the range.	- Set a unique station number. - After taking the above action, turn off then on or reset all the stations where this error has been detected.
$\mathrm{DOE}_{\mathrm{H}}$	Own station No. out of range	The network parameter is incorrect or outside the range.	Add the station information of the module in the network configuration settings of the master station.
$\mathrm{D}^{17}{ }_{\text {H }}$	Transient data command error	The transient data request command is incorrect.	Correct the request command at the request source, and retry the operation.
$\mathrm{D} 2 \mathrm{AO}_{\mathrm{H}}$	Receive buffer full	The target station is overloaded and cannot receive transient data.	- Check the network status using the CC-Link IE Field Network diagnostics of the engineering tool to take corrective action. - When the target station is overloaded and cannot receive transient data, send the data to the target station after a while.
$\mathrm{D} 2 \mathrm{~A} 3_{\mathrm{H}}$	Transient data length error	The received transient data is incorrect.	Correct the number of data (frame length) at the request source, and retry the operation.
D72A ${ }_{\text {H }}$	Station number switch out of range (a value other than 1 to 120)	A station number out of range has been set.	Set the station number within the allowable range.
$\mathrm{DFO1}_{\mathrm{H}}$	Transient data divided error	The divided transient data have been received.	Set the transient data size within the range that can be handled by the module. Then send the transient data that is not divided.

Point ${ }^{8}$

When multiple errors occur, only the latest error code is stored in CH Latest error code (RWr22, RWr3A) or CHD Latest warning code (RWr23, RWr3B).
Old errors can be checked with the error history of the engineering tool.
For the error history, refer to the following.

- Checking by executing a command of the slave station (ङ Page 221, Section 11.1 (1))
- Error history 1 to 15 (address: $0 A 00_{\mathrm{H}}$ to $0 \mathrm{AFF}_{\mathrm{H}}$) (下 Page 298, Appendix 3 (15))

11.3 Checking the LEDs

This section describes how to troubleshoot the system by the LEDs.

Point ${ }^{P}$

For troubleshooting with the LEDs of the extension I/O module, refer to the following.
[]] CC-Link IE Field Network Remote I/O Module User's Manual
(1) When the PW LED does not turn on

Check item	Action
Is any LED other than the PW LED turned on?	When any LED other than the PW LED turns on, a hardware failure may be the cause. Please consult your local Mitsubishi representative.
Is the module power supply (24VDC) wired?	Wire the module power supply (24VDC).
Is the module power supply (24VDC) turned on?	Turn on the module power supply (24VDC).
Is the voltage of the module power supply (24VDC) within the	Set the voltage value within the range of performance specifications.
specified range?	

(2) When the RUN LED does not turn on

Check item	Action
Does the voltage of the module power supplied externally reach to the voltage of the performance specifications?	Check that module power supply voltage is within the range of performance specifications.
Does any hardware error occur?	After the check, power off then on the module. If the RUN LED does not turn on even after the module power supply is turned off then on, a module failure may be the cause. Please consult your local Mitsubishi representative.

(3) When the MODE LED flashes

Check item	Action
	 Is the high-speed counter module in execution of the unit test?
	When the high-speed counter module is in execution of the unit test, the D LINK LED turns on after the unit test is completed. Take corrective action according to the result of the unit test. $(F$ Page 246, Section 11.4)

(4) When the D LINK LED turns off

Check item	Action
Does the own station in network operate normally?	Connect the engineering tool to the master station, and check that the own station is in data link by CC-Link IE Field Network diagnostics. (La User's manual for the master/local module used)
Are 1000BASE-T-compliant Ethernet cables used?	Replace the cable with a 1000BASE-T-compliant Ethernet cable. (La User's manual for the master/local module used)
Is the station-to-station distance 100m or less?	Change the station-to-station distance to 100m or less.
Does the cabling condition (bend radius) meet the specifications?	Refer to the manual for the Ethernet cable used, and correct the bend radius.
Is any Ethernet cable disconnected?	Replace the Ethernet cable.
Do other stations connected to the high-speed counter module normally operate?	Check that the power supplies of the other stations are turned on.
Does the switching hub normally operate?	•Check that a 1000BASE-T-compliant switching hub is used. (Lal User's manual for the master/local module used) •Check that the power supply of the switching hub is turned on.
Is the station number of the high-speed counter module duplicated with any of other stations?	Two or more duplicated stations exist. Change the setting so that all the station numbers differ.

(5) When the D LINK LED flashes

Check item	Action
Does the station number setting of the high-speed counter module match the station number of the high-speed counter module set in the network configuration settings of the master station or in the CC IE Field configuration?	Match the station number of the high-speed counter module with the station number set in the network configuration settings of the master station or in the CC IE Field configuration.
Is the station type remote device station?	Change the station type of the module to the remote device station in the network configuration settings of the master station.
Is the high-speed counter module a reserved station?	Change the setting of reserved/ignored error station to other than the reserved station in the network configuration settings of the master station.
Is stop of the data link checked through CC-Link IE Field	Check the link status through CC-Link IE Field Network diagnostics and start the link when the data link is stopped.
Network diagnostics?	The setting range for the station number setting switch is 1 to 120. Set the number between 1 and 120.
Is the station number setting switch set to other than 1 to	
120?	Make a connection again to the first connected master module. To communicate with a master module having a different network number, turn Is the connection made again to a master module having a on the power of the high-speed counter module.
different network number from the once connected master	
module?	

(6) When the L ER LED turns on

Check item	Action
Are Ethernet cables normal?	- Check that 1000BASE-T-compliant Ethernet cables are used. ([D] User's manual for the master/local module used) - Check that the station-to-station distance is 100 m or less. - Check that the Ethernet cables are not disconnected.
Does the switching hub in the system normally operate?	- Check that a 1000BASE-T-compliant switching hub is used. ([]] User's manual for the master/local module used) - Check that the power supply of the switching hub is turned on.
Do other stations connected to the high-speed counter module normally operate?	Check that the power supplies of the other stations are turned on.
Is the mode of the module on the master station set to other than Online?	Change the mode of the module to Online.
Is there any noise affecting the system?	Check the wiring condition of the Ethernet cables.
Is the loopback function enabled for the master station?	When the loopback function is enabled, check that the ring topology is correctly configured for the port where the L ER LED is on. (D$]$ User's manual for the master/local module used)

(7) When the LINK LED turns off

Check item	Action
Are Ethernet cables normal?	- Check that 1000BASE-T-compliant Ethernet cables are used. ([]] User's manual for the master/local module used) - Check that the station-to-station distance is 100 m or less. - Check that the Ethernet cables are not disconnected.
Do the switching hub and other stations in the system normally operate?	- Check that a 1000BASE-T-compliant switching hub is used. ([]] User's manual for the master/local module used) - Check that the power supplies of the switching hub and other stations are turned on.

Point ${ }^{8}$

If link-up processing is repeated due to a condition of a device on the line, it may take a longer time for the LINK LED to turn on. This phenomenon may be eliminated by changing the module PORT into which the Ethernet cable is connected (example: PORT1 \rightarrow PORT2). For wiring of Ethernet cable, refer to the following.
(Ю Page 67, Section 6.5)

(8) When the ERR. LED flashes/turns on

Check item	Action
Does any error occur?	Using the engineering tool, identify the error cause of the high-speed counter module to take corrective action.

Run a unit test to check if there is any abnormality in the high-speed counter module.

1. Power off the module.

2. Connect the PORT1 and PORT2 of the high-speed counter module with an Ethernet cable.

3. Set the station number setting switch as follows.

- x10: TEST
- x1: 0

4. Power on the module.

5. Unit test begins.

The MODE LED flashes while the unit test is being executed.

6. The MODE LED turns off when the unit test is completed.

- When completed

The ERR. LED does not turn on, but remains off.

- When failed

The ERR. LED turns on. If the test fails, replace the Ethernet cable and run the test again. If the test fails again, it may be due to a hardware failure in the high-speed counter module. Please consult your local Mitsubishi representative.

Remark

When unit test fails, the error details can be checked in the error history. To check the error history, set the station number of the high-speed counter module and connect the module to the master station with an Ethernet cable.
For the error history, refer to the following.

- Checking by executing a command of the slave station ($>$ Page 221, Section 11.1 (1))
- Error history 1 to 15 (address: $0 A 00_{\mathrm{H}}$ to $0 \mathrm{AFF}_{\mathrm{H}}$) (

11.5 Troubleshooting by Symptom

The troubleshooting by symptom is suitable for the case where no error occurs in the high-speed counter module, but the operation is abnormal. If an error occurs in the high-speed counter module, identify the error cause with the engineering tool.
(1) When the module does not count or perform normal count
(a) When the module does not count

Check item	Action
Is CHD Count enable command (RY24, RY3C) on?	Turn on CHD Count enable command (RY24, RY3C) in a program.
Is CHD Function input terminal (FUNC1, FUNC2) off?	If the count disable function is selected for the counter function selection setting, pulses are not counted while CHD Function input terminal (FUNC1, FUNC2) is on. Turn off CHD Function input terminal (FUNC1, FUNC2).
Is the pulse input method the same as what has been selected in CHD Pulse input mode (address: 0122H, 0142 H)?	Change the pulse input method or the setting in $\mathrm{CH} \square$ Pulse input mode (address: $0122_{\mathrm{H}}, 0142_{\mathrm{H}}$) so that they match.
Does the CPU module indicate any error?	If an error is indicated with the CPU module, refer to troubleshooting on the user's manual for the CPU module used.
Is the external wiring to $\phi \mathrm{A}$ and $\phi \mathrm{B}$ correct?	Check the external wiring and correct errors.
Do the LEDs of $\phi \mathrm{A}$ and $\phi \mathrm{B}$ turn on by applying a voltage to the pulse input terminals in $\phi \mathrm{A}$ and $\phi \mathrm{B}$ using devices such as a voltage stabilizer?	If the LEDs of $\phi \mathrm{A}$ and $\phi \mathrm{B}$ turn on, check the external wiring and wiring on the encoder side. If the LEDs of ϕA and ϕB do not turn on, a module failure may be the cause. Please consult your local Mitsubishi representative.
Is the network synchronous communication setting (Synchronous or Asynchronous) changed from the network configuration setting?	If the network synchronous communication setting is changed, turn off and on the power or perform remote reset.
Is an inter-module synchronous interrupt program prepared when the CC-Link IE Field Network synchronous communication function is used together with the inter-module synchronization function on the MELSEC iQ-R series?	If the CC-Link IE Field Network synchronous communication function is used together with the inter-module synchronization function on the MELSEC iQ-R series, prepare an inter-module synchronous interrupt program. For the intermodule synchronous interrupt program, refer to the following. [] MELSEC iQ-R Inter-Module Synchronization Function Reference Manual

(b) When the module does not count normally

Check item	Action
Does a program used read out the present value in unit of 2 words (32 bits)?	Read out it in unit of 2 words (32 bits).
Is the preset value within the count range of the ring counter when the counter format is the ring counter?	Set the preset value so that the value is within the count range of the ring counter.

Check item	Action	
	Are the shielded twisted pair cables used for pulse input wiring?	Are measures against noise taken for the adjacent devices and inside the control panel?
Measures against noise	Is the distance between the high voltage equipment and pulse input line kept enough?	Take noise reduction measures such as attaching a CR surge suppressor to the magnet switch.
	Dundle up the pulse input lines in a single tube, and keep a distance of the control panel.	
Does any noise come from the grounded part	Separate the grounding cable of the high-speed counter module from the grounded part. If the case of the high-speed counter module touches the grounded part, separate it.	

Point ${ }^{\rho}$

- How to fix pulse form

This portion describes how to fix pulse waveform by dummy resistance that can be used against noises from outside or distortion of pulse waveform. To fix pulse waveform effectively, increase load current inside cables by applying dummy resistance of several hundreds ohms (/several W) between the pulse input terminals connected to the encoder. The greater the load current, the more effective this method is.

- Effect
- When the wiring distance between the encoder and the high-speed counter module is long: Distortion of waveform is fixed and the pulse waveform becomes stable.
- When the pulse waveform is distorted due to noises from outside: Taking the method above stabilizes pulse waveform and thus distortion of pulse waveform by noise can be reduced.
- Example of dummy resistance at 24VDC

High-speed counter module

How to choose dummy resistance
The following example describes how to choose the required resistance amount and rated-standard electricity of dummy resistance.
<Example>

- Calculation of the dummy resistance amount (at 24 VDC): $\mathrm{R}=\mathrm{V} \div \mathrm{I}=24 \mathrm{~V} \div 35 \mathrm{~mA}=680 \Omega$
- Calculation of rated-standard electricity of dummy resistance (at 24 VDC): $\mathrm{P}_{1}=\mathrm{V} \times \mathrm{I}=24 \mathrm{~V} \times 35 \mathrm{~mA}=0.84 \mathrm{~W}$ (approximately 1W)
Calculation including a margin: $P_{2}=P_{1} \times 2=0.84 \times 2=1.68 \mathrm{~W}$ (approximately 2 W)
Result: Install dummy resistance of $680 \Omega(/ 2 \mathrm{~W})$ in between the pulse input terminals.

(2) When the coincidence output function does not perform normal operation

(a) When Coincidence output 1 to 4 (RX10 to RX13) do not turn on

Check item	Action
Are Coincidence output 1 to 4 assigned properly?	Review the setting in Coincidence output channel assignment setting (address: 0101 ${ }_{\mathrm{H}}$).
Are the comparison conditions for Coincidence output 1 to 4 proper?	Review the setting in Coincidence output comparison condition setting (address: 0102 ${ }_{\mathrm{H}}$).
Is Initial data setting request flag (RY9) or Setting change request (Coincidence output 1 to 4) (RY14 to RY17) turned on after changing Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) to Upper limit value setting (Coincidence output 4) (RWwE to RWwF)?	Turn on Initial data setting request flag (RY9) or Setting change request (Coincidence output 1 to 4) (RY14 to RY17) after changing Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) to Upper limit value setting (Coincidence output 4) (RWwE to RWwF).
Is Reset command (Coincidence output 1 to 4) (RY10 to RY13) off? (Only when Coincidence output is selected as the comparison condition)	Turn off Reset command (Coincidence output 1 to 4) (RY10 to RY13).
Are the settings in Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) to Upper limit value setting (Coincidence output 4) (RWwE to RWwF) within the count range of the ring counter when the counter format is the ring counter?	Set Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw0 to RWw1) to Upper limit value setting (Coincidence output 4) (RWwE to RWwF) within the count range of the ring counter.

(b) When Coincidence output 1 to 4 (RX10 to RX13) does not turn off

Check item	Action
Is the ON time of Reset command (Coincidence output 1 to 4) (RY10 to RY13) $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer? (Only when Coincidence output is selected as the comparison condition)	Set the ON time of Reset command (Coincidence output 1 to 4) (RY10 to RY13) to $\Delta \mathrm{T}_{1}{ }^{*}$ 1 or longer. (5 Page 268, Appendix 1.2)
*1 For $\Delta \mathrm{T}_{1}$, refer to the following. \longmapsto Page 305, Appendix 4	

(c) When only Coincidence output 1 to 4 terminals (EQU1 to EQU4) do not turn on

Check item	Action
Is $\mathrm{CH} \square$ Coincidence output enable command (RY20, RY38) on when Coincidence output enable command setting (address: 0106_{H}) is set to By each channel (0)?	Turn on CHロ Coincidence output enable command (RY20, RY38).
Is Enable command (Coincidence output 1 to 4) (RY18 to RY1B) on when Coincidence output enable command setting (address: 0106_{H}) is set to By each coincidence output (1)?	Turn on Enable command (Coincidence output 1 to 4) (RY18 to RY1B).
Is the external wiring to Coincidence output 1 to 4 terminals (EQU1	Check the external wiring and correct errors.
to EQU4) correct?	

(d) When the count value cannot be replaced with a preset value by the preset/replace (at coincidence output) function

Check item	Action
Is CHD External preset/replace (Z Phase) request detection (RX23, RX3B) off?	Turn off $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection (RX23, RX3B) by turning on $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection reset command (RY23, RY3B). Note that the ON/OFF time of CHD External preset/replace (Z Phase) request detection reset command (RY23, RY3B) must be $\Delta T_{1}{ }^{* 1}$ or longer. (Ю Page 268, Appendix 1.2)
Is Preset/replace setting at coincidence output (address: 0103H) set to "Present value replaced (1)"?	Set Preset/replace setting at coincidence output (address: 0103H) to Present value replaced (1).
Is Coincidence output 1 to 4 (RX10 to RX13) off?	This function replaces the count value with the preset value at the rising edge (OFF to ON) of Coincidence output 1 to 4 (RX10 to RX13). Turn off Coincidence output 1 to 4 (RX10 to RX13) before replacing the value.
Is the interval between every execution of this function $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer?	Set the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer between every execution of this function referring to the following. \longmapsto Page 126, Section 8.5.3
Is the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer taken between change in the setting in CHD Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) and the execution of preset?	Set the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer between change in the setting in CHD Preset value setting (RWw14 to RWw15, RWw2C to RWw2D) and the execution of preset.

*1 For ΔT_{1}, refer to the following.
\mapsto Page 305, Appendix 4
(3) When the cam switch function does not perform normal operation
(a) When Cam switch output signal (RWr2) does not turn on or off

Check item	Action
Is the cam switch output assigned properly?	Review the settings in Cam switch output unit assignment setting (address: 0104_{H}) and Cam switch output channel assignment setting (address: $\left.0105_{\mathrm{H}}\right)$.
For the step setting, is the minimum setting width of the ON/OFF status proper?	Review the minimum setting width of the ON/OFF status referring to the following.
Is the step setting within the count range of the ring counter when	
the counter format is the ring counter?	Review the step setting and set steps within the count range of the ring counter.

(b) When only the output (Y 0 to YF) of the extension output module does not turn on

Check item	Action
Is the external power supply for the extension output module on?	Turn on the external power supply for the extension output module.
Is the external wiring at the output terminal of the extension output module correct?	Check the external wiring and correct errors.

（4）When the count value cannot be replaced with a value preset by the user
（a）When the preset／replace function by CHD Preset／replace command（RY21，RY39） cannot be performed

Check item	Action
Is CHロ Preset／replace completion（RX21，RX39）used as an interlock？	Turn on or off CHロ Preset／replace command（RY21，RY39）using $\mathrm{CH} \square$ Preset／replace completion（RX21，RX39）as an interlock．
Is $\mathrm{CH} \square$ External preset／replace（Z Phase）request detection （RX23，RX3B）off？	Turn off CHD External preset／replace（Z Phase）request detection （RX23，RX3B）by turning on CHD External preset／replace（Z Phase） request detection reset command（RY23，RY3B）．Note that the ON／OFF time of $\mathrm{CH} \square$ External preset／replace（Z Phase）request detection reset command（RY23，RY3B）must be $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer． （下 Page 268，Appendix 1．2）

＊1 For $\Delta \mathrm{T}_{1}$ ，refer to the following．
\leftrightarrows Page 305，Appendix 4
（b）When the preset／replace function by CHO Phase \mathbf{Z} input terminal（ $\mathbf{Z 1}, \mathbf{Z 2}$ ）cannot be performed

Check item	Action
Is the external wiring to CH －Phase Z input terminal（Z1，Z2） correct？	Check the external wiring and correct errors．
Is the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer taken between change in the setting in $\mathrm{CH} \square$ Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）and the execution of preset？	Set the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer between change in the setting in CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D） and the execution of preset．
Is $\mathrm{CH} \square$ External preset／replace（Z Phase）request detection （RX23，RX3B）off？	Turn off CHD External preset／replace（Z Phase）request detection （RX23，RX3B）by turning on CHD External preset／replace（Z Phase） request detection reset command（RY23，RY3B）．Note that the ON／OFF time of CHD External preset／replace（Z Phase）request detection reset command（RY23，RY3B）must be $\Delta T_{1}{ }^{* 1}$ or longer． （以 Page 268，Appendix 1．2）

＊1 For $\Delta \mathrm{T}_{1}$ ，refer to the following．
\leftrightarrows Page 305，Appendix 4
（c）When the preset／replace function by CHロ Function input terminal（FUNC1，FUNC2） cannot be performed

Check item	Action
Is the external wiring to CHD Function input terminal（FUNC1， FUNC2）correct？	Check the external wiring and correct errors．
Is the interval of $\Delta T_{1}{ }^{* 1}$ or longer taken between change in the setting in CH Preset value setting（RWw14 to RWw15，RWw2C to RWw2D）and the execution of preset？	Set the interval of $\Delta \mathrm{T}_{1}{ }^{* 1}$ or longer between change in the setting in CHD Preset value setting（RWw14 to RWw15，RWw2C to RWw2D） and the execution of preset．
Is $\mathrm{CH} \square$ External preset／replace（Z Phase）request detection （RX23，RX3B）off？	Turn off CHD External preset／replace（Z Phase）request detection （RX23，RX3B）by turning on CHD External preset／replace（Z Phase） request detection reset command（RY23，RY3B）．Note that the ON／OFF time of CHD External preset／replace（Z Phase）request detection reset command（RY23，RY3B）must be $\Delta T_{1}{ }^{* 1}$ or longer． （下 Page 268，Appendix 1．2）

＊1 For ΔT_{1} ，refer to the following． \leftrightarrows Page 305，Appendix 4
（5）When the counter function selection cannot be performed
（a）When turning on $\mathrm{CH} \square$ Selected counter function start command（RY25，RY3D）does not perform the counter function selection

Check item	Action
Does the selected function apply to CHD Selected counter function start command（RY25，RY3D）？	Check referring to the following． \longmapsto Page 141，Section 8.8
If the selected function is one that starts to work at the rising edge （OFF to ON）of CHロ Selected counter function start command （RY25，RY3D），is CH \square Counter function detection（RX25，RX3D） used as an interlock？	Turn on or off $\mathrm{CH} \square$ Selected counter function start command（RY25， RY3D）using CHD Counter function detection（RX25，RX3D）as an interlock．
Is CHD Function input terminal（FUNC1，FUNC2）off？	Turn off CHロ Function input terminal（FUNC1，FUNC2）．

（b）When the input from CHD Function input terminal（FUNC1，FUNC2）does not perform the counter function selection

Check item	Action
Is the external wiring to CHロ Function input terminal（FUNC1， FUNC2）correct？	Check the external wiring and correct errors．
Is CHロ Selected counter function start command（RY25，RY3D） off？	Turn off CHD Selected counter function start command（RY25， RY3D）．

11．5．2 When the setting on the operation mode setting is the frequency measurement mode

（1）When the module does not measure or perform normal measurement \longmapsto Page 247，Section 11.5 .1 （1）

11．5．3 When the setting on the operation mode setting is the rotation speed measurement mode

（1）When the module does not measure or perform normal measurement \longmapsto Page 247，Section 11.5 .1 （1）

11．5．4 When the setting on the operation mode setting is the pulse measurement mode

（1）When the module does not measure or perform normal measurement
（a）When the module does not measure

Check item	Action
Does the CPU module indicate any error？	If an error is indicated with the CPU module，refer to troubleshooting on the user＇s manual for the CPU module used．
Is CHロ Pulse measurement start command（Function input	Turn on the signal corresponding to the terminal to be measured， terminal）（RY30，RY48）or CH口 Pulse measurement start command（Latch counter input terminal）（RY32，RY4A），the signal corresponding to the terminal to be measured，turned on？
（RY30，RY48）or CH口 Pulse measurement start command（Latch	
counter input terminal）（RY32，RY4A）．	

（b）When the module does not measure normally

Check item	Action	
Measures against noise	Are the shielded twisted pair cables used for pulse input wiring？	Are measures against noise taken for the adjacent devices and inside the control panel？
	Is distance between the high voltage equipment and pulse input line kept enough？	Take noise reduction measures such as attaching a CR surge suppressor to the magnet switch．
	Bundle up the pulse input lines in a single tube，and keep a distance of 150mm or more between the pulse input lines and the power line even inside the control panel．	
	Separate the grounding cable of the high－speed counter module from the grounded part．If the case of the high－speed counter module touches the grounded part，separate it．	
Does a program used read out the 2－word data such as a measured pulse value in unit of 2 words（32 bits）？	Read out it in unit of 2 words（32 bits）．	

(1) When the module does not perform normally

Check item		Action
Does the CPU module indicate any error?		If an error is indicated with the CPU module, refer to troubleshooting on the user's manual for the CPU module used.
Are Coincidence output 1 to 4 assigned properly?		Review the setting in Coincidence output channel assignment setting (address: 0101_{H}) and CHD PWM output assignment setting (RWw1D, RWw35).
Is the external wiring to Coincidence output 1 to 4 terminals (EQU1 to EQU4) correct?		Check the external wiring and correct errors.
Is a resistive load connected to the coincidence output 1 to 4 terminals (EQU1 to EQU4)?		Connect a resistive load since the output waveform is highly distorted by connecting a load other than a resistive load.
Measures against noise	Are the shielded twisted pair cables used for PWM output wiring?	Use the shielded twisted pair cables for PWM output wiring.
	Are measures against noise taken for the adjacent devices and inside the control panel?	Take noise reduction measures such as attaching a CR surge suppressor to the magnet switch.
	Is the distance between the high voltage equipment and PWM output line kept enough?	Bundle up the PWM output lines in a single tube, and keep a distance of 150 mm or more between the PWM output lines and the power line even inside the control panel.
	Does any noise come from the grounded part of the high-speed counter module?	Separate the grounding cable of the high-speed counter module from the grounded part. If the case of the high-speed counter module touches the grounded part, separate it.

11.5.6 When error codes/warning codes cannot be reset

Check item	Action
Has the cause of the corresponding error/warning been eliminated?	For elimination of the cause, refer to the following. • Error Code List (5 Page 225, Section 11.2)
Does the error code that cannot be reset correspond to any of the following errors? - RWw/RWr setting error (error code: $0 \mathrm{E} 00_{\mathrm{H}}$)	
- Synchronous communication error 1 (error code: $0 \mathrm{E} 10_{\mathrm{H}}$)	These errors cannot be reset. Take corrective action corresponding to the error.
- Synchronization cycle setting error (error code: $0 \mathrm{E} 20_{\mathrm{H}}$)	
- Synchronous communication error 2 (error code: $0 \mathrm{E} 30_{\mathrm{H}}$)	
Does the warning code that cannot be reset correspond to Mode	Turn off and on module power supply or perform a remote reset.
switch setting change (error code: $\left.0190_{\mathrm{H}}\right)$?	

11.5.7 When read and write of parameters or CC-Link IE Field Network diagnostics fails with the engineering tool

Check item	Action
Is the D LINK LED of the high-speed counter module on?	Check for the D LINK LED of the high-speed counter module and if it is not on, perform troubleshooting by referring to the following. - When the D LINK LED turns off (\Im Page 244, Section 11.3 (4)) - When the D LINK LED flashes (5 Page 244, Section 11.3 (5)) Check for other LEDs by referring to the following. - Checking the LEDs (Ю Page 243, Section 11.3)
Is the version of the module on the master station correct?	Check the serial number (first five digits) of the module on the master station, and if the version is prior to the correct one, replace the module with a module of the applicable version. For the applicable version, refer to the following. - Applicable master station (\boldsymbol{F}^{3} Page 55, Section 5.2 (1))
Is the version of the engineering tool supported?	Check the version of the engineering tool. A version prior to the supported one needs to be updated. For the supported version, refer to the following. - Software package (5 Page 55, Section 5.2 (4))
Are network parameter settings same as the settings of the CPU module?	Perform "Verify with PLC" and check that network parameter settings match the settings of the CPU module. If they differ, match the settings by performing "Read from PLC" and "Write to PLC", and write the parameters to modules on slave stations.

APPENDICES

Appendix 1 Details of Remote I/O Signals

Appendix 1.1 Details of remote input signals

The following shows details of remote input signals.

Remote input (RX) No.	Signal name	Description
RX8	Initial data processing request flag	- After the module is powered on or the remote reset is performed, this signal turns on to let the high-speed counter module request the initial setting. - When this signal is on, set initial data to the remote register (RWw) and turn on Initial data processing completion flag (RY8). - To change the setting in the parameter area of the remote buffer memory as well, change the setting in the parameter area, enable the setting values by turning on Initial data setting request flag (RY9), then turn on Initial data processing completion flag (RY8). - While this signal is on, the high-speed counter module does not count pulses. This signal turns off in the following case. - Initial data processing completion flag (RY8) is turned on when all setting values of the remote register (RWw) and the remote buffer memory are normal. This signal turns on in the following case. - After the module is powered on or the remote reset is performed - After checking that the initial data processing is completed (this signal turns off) and Initial data setting completion flag (RX9) turns off, turn on CHロ Count enable command (RY24, RY3C) to start pulse counting. - Remote output signals other than CHD Error reset command (RY36, RY4E) that are already turned on when this signal turns off are recognized as they are turned on right after this signal turns off. - At the rising state of either of Coincidence output 1 or Coincidence output 2 for which the preset/replace (at coincidence output) function is enabled from the comparison result at when this signal turns off, the count value is replaced with the preset value. (However, this operation is performed only when Comparison output setting (address: 0100_{H}) is set to Coincidence Output Function (0) and $\mathrm{CH} \square$ Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is set to Normal Mode (0).) - If an error occurs, such as when a value out of the setting range of the remote register (RWw) or the remote buffer memory is detected, this signal does not turn off even if Initial data processing completion flag (RY8) is turned off. (This signal remains on.) In this case, remove the error cause and turn on then off Initial data processing completion flag (RY8). In addition, the OFF time must be longer than $\Delta \mathrm{T}_{1}{ }^{*} 2$.

Remote input (RX) No.	Signal name	Description
RX9	Initial data setting completion flag	- This signal is used as an interlock for turning on/off Initial data setting request flag (RY9) when the setting values in the parameter area of the remote buffer memory are changed or the setting values of the extended parameter area are saved into the nonvolatile memory. - While this signal is on, the high-speed counter module does not count pulses. This signal turns off in the following cases. - Until Initial data setting request flag (RY9) is turned on after the module is powered on - Initial data setting request flag (RY9) is turned off when the setting values in the parameter area of the remote buffer memory are normal. This signal turns on in the following case. - When Initial data setting request flag (RY9) is turned on - After checking that the initial data setting processing is completed (this signal turns off) and Initial data processing request flag (RX8) turns off, turn on $\mathrm{CH} \square$ Count enable command (RY24, RY3C) to start pulse counting. - Remote output signals other than CHD Error reset command (RY36, RY4E) that are already turned on when this signal turns off are recognized as they are turned on right after this signal turns off. - When Initial data processing request flag (RX8) is off and at the rising state of either of Coincidence output 1 or Coincidence output 2 for which the preset/replace (at coincidence output) function is enabled from the comparison result at when this signal turns off, the count value is replaced with the preset value. (However, this operation is performed only when Comparison output setting (address: 0100_{H}) is set to Coincidence Output Function (0) and CHD Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is set to Normal Mode (0).) - If an error occurs, such as when a value out of the setting range of the remote register (RWw) or the remote buffer memory is detected, this signal does not turn off even if Initial data setting request flag (RY9) is turned off. (This signal remains on.) In this case, remove the error cause and turn on then off Initial data setting request flag (RY9). In addition, the OFF time must be longer than $\Delta \mathrm{T}_{1}{ }^{*}$.

Remote input (RX) No.	Signal name	Description
RXA	Error status flag	- This signal turns on when CHD Error status (RX36, RX4E) turns on. - This signal turns off when CHD Error status (RX36, RX4E) turns off. $----\rightarrow$ Controlled by the high-speed counter module \longrightarrow Controlled by the program
RXB	Remote READY	- This signal turns on when the initial data setting processing is completed after the module is powered on or the remote reset is performed. - This signal turns on after Initial data processing request flag (RX8) turns off. - This signal turns on when Initial data processing request flag (RX8) is off and Initial data setting completion flag (RX9) is turned off. - This signal turns off when Error status flag (RXA) turns on. - This signal can be used as an interlock of programs. (For the overview of the operation, refer to the descriptions of Initial data processing request flag (RX8), Initial data setting completion flag (RX9), and Error status flag (RXA).)
RX10	Coincidence output 1	- This signal turns on when the comparison condition of CHD Present value (RWr10 to $\mathrm{RWr} 11, \mathrm{RWr} 28$ to RWr 29) is satisfied in the coincidence output function. (For details of the ON/OFF conditions of this signal, refer to Page 116, Section 8.5.2.) - The ON condition can be changed with Coincidence output comparison condition setting (address: 0102 ${ }^{\mathrm{H}}$).
RX11	Coincidence output 2	For within-range output operation \qquad
RX12	Coincidence output 3	$\left.\begin{array}{rl}\text { Upper limit value setting } \\ \text { (Coinidence output } 1 \text { to } 4 \text {) }\end{array}\right)$
RX13	Coincidence output 4	$\mathrm{CH} \square$ Present value (RWr10 to $\mathrm{RW} 11, \mathrm{RWr} 28$ to RW 29) - Up to $\Delta \mathrm{T}_{1}{ }^{*}{ }^{2}$ delay occurs until this signal turns on after the comparison conditions of $\mathrm{CH} \square$ Present value (RWr10 to RWr11, RWr28 to RWr29) are satisfied in the coincidence output function.

- This signal turns on when CHD Error status (RX36, RX4E) turns on.
- This signal turns off when CHD Error status (RX36, RX4E) turns off.
\longrightarrow Controlled by the program

- This signal turns on when the initial data setting processing is completed after the module is powered on or the remote reset is performed.
- This signal turns on after Initial data processing request flag (RX8) turns off.
- This signal turns on when Initial data processing request flag (RX8) is off and Initial data setting completion flag (RX9) is turned off.
- This signal turns off when Error status flag (RXA) turns on.

This signal can be used as an interlock of programs. (For the overview of the operation, refer completion flag (RX9), and Error status flag (RXA).)

- This signal turns on when the comparison condition of CHD Present value (RWr10 to RWr11, RWr28 to RWr29) is satisfied in the coincidence output function. (For details of the ON/OFF conditions of this signal, refer to Page 116, Section 8.5.2.)
- The ON condition can be changed with Coincidence output comparison condition setting (address: 0102_{H}).

Ex. For within-range output operation

Point setting (Coincidence output 1 to 4)/
Lower limit value setting
RWw0 to RWw1, RWw4 to RWw5,
RWw8 to RWw, RWwC to RWwD)

Remote input (RX) No.	Signal name		Description
RX25 RX3D	CH 1 CH 2	Counter function detection	- This signal turns on when the counter function starts by turning on $\mathrm{CH} \square$ Selected counter function start command (RY25, RY3D). - This signal turns off when CH \square Selected counter function start command (RY25, RY3D) is turned off. - The following figure shows an operation example of when the latch counter function is performed.
$\begin{aligned} & \text { RX26 } \\ & \text { RX3E } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Cam switch execute/PWM output	- This signal turns on when the cam switch function is started by turning on $\mathrm{CH} \square$ Cam switch execute command/PWM output start command (RY26, RY3E). - This signal turns on when the PWM output is started by turning on CHD Cam switch execute command/PWM output start command (RY26, RY3E). - This signal turns off when $\mathrm{CH} \square$ Cam switch execute command/PWM output start command (RY26, RY3E) is turned off.
RX27 RX3F	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Setting change completed (Sampling counter/Periodi c pulse counter)	-This signal turns on after the changes of CHD Time unit setting (Sampling counter/Periodic pulse counter) (RWw16, RWw2E) and CHロ Cycle setting (Sampling counter/Periodic pulse counter) (RWw17, RWw2F) by CHD Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F) are reflected to the high-speed counter module. - This signal turns off when $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F) is turned off.

Remote input （RX）No．	Signal name		Description
RX28 RX40	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Update flag reset completed （Latch count value）	－This signal turns on when resetting CHD Update flag（Latch count value）（RX29，RX41）by CHD Update flag reset command（Latch count value）（RY28，RY40）is completed． －This signal turns off when CHD Update flag reset command（Latch count value）（RY28， RY40）is turned off．
		Update flag reset completed （Sampling count value）	－This signal turns on when resetting CHロ Update flag（Sampling count value）（RX29，RX41） by CHD Update flag reset command（Sampling count value）（RY28，RY40）is completed． －This signal turns off when CHD Update flag reset command（Sampling count value）（RY28， RY40）is turned off．（The operation is the same as that of CHD Update flag reset completed （Latch count value）（RX28，RX40）except the signal name．）
		Update flag reset completed （Periodic pulse count value）	－This signal turns on when resetting CHD Update flag（Periodic pulse count value）（RX29， RX41）by CHD Update flag reset command（Periodic pulse count value）（RY28，RY40）is completed． －This signal turns off when $\mathrm{CH} \square$ Update flag reset command（Periodic pulse count value） （RY28，RY40）is turned off．（The operation is the same as that of CHD Update flag reset completed（Latch count value）（RX28，RX40）except the signal name．）

CHD Update flag reset command（Latch count value）（RY28，RY40）is completed．
－This signal turns off when CHD Update flag reset command（Latch count value）（RY28， RY40）is turned off．
$----\rightarrow$ Controlled by the high－speed counter module
$\mathrm{CH} \square$ Update flag reset command
count value）

－This signal turns on when resetting CHロ Update flag（Sampling count value）（RX29，RX41） by CHO Update flag reset command（Sampling count value）（RY28，RY40）is completed．
－This signal turns off when $\mathrm{CH} \square$ Update flag reset command（Sampling count value）（RY28， RY40）is turned off．（The operation is the same as that of CHD Update flag reset completed （Latch count value）（RX28，RX40）except the signal name．）
－This signal turns on when resetting CHロ Update flag（Periodic pulse count value）（RX29， RX41）by CHD Update flag reset command（Periodic pulse count value）（RY28，RY40）is completed．
This signal turns off when $\mathrm{CH} \square$ Update flag reset command（Periodic pulse count value） completed（Latch count value）（RX28，RX40）except the signal name．）

Remote input （RX）No．	Signal name		Description
		Update flag （Latch count value）	－This signal turns on when $\mathrm{CH} \square$ Latch count value（ $\mathrm{RWr12}$ to $\mathrm{RWr13}, \mathrm{RWr2A}$ to $\mathrm{RWr2B}$ ）is updated． －（ \Im Page 145，Section 8．10，\Im Page 156，Section 8．14） －CHD Latch count value（ $\mathrm{RWr12}$ to $\mathrm{RWr13}, \mathrm{RWr2A}$ to RW 2 Z ）is updated without resetting this flag． －This signal turns off when CH \square Update flag reset command（Latch count value）（RY28， RY40）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{*}$ delay occurs until this signal turns on after $\mathrm{CH} \square$ Latch count value（RWr12 to RWr13，RWr2A to RWr2B）is updated．（For the overview of the operation，refer to the description of $\mathrm{CH} \square$ Update flag reset completed（Latch count value）（RX28，RX40）．）
RX29 RX41	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Update flag （Sampling count value）	－This signal turns on when CHロ Sampling count value（RWr12 to RWr13，RWr2A to RWr2B） is updated． （ \lessgtr Page 148，Section 8．11） －CHロ Sampling count value（ RW （ 12 to $\mathrm{RWr} 13, R W r 2 A$ to $R W r 2 B$ ）is updated without resetting this flag． －This signal turns off when CHD Update flag reset command（Sampling count value）（RY28， RY40）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{* 2}$ delay occurs until this signal turns on after CHロ Sampling count value（RWr12 to $\mathrm{RWr13}, \mathrm{RWr2A}$ to $\mathrm{RWr2B}$ ）is updated．（For the overview of the operation，refer to the description of CHD Update flag reset completed（Sampling count value）（RX28，RX40）．）
		Update flag （Periodic pulse count value）	－This signal turns on when $\mathrm{CH} \square$ Periodic pulse count，difference value（RWr12 to RWr13， RWr2A to RWr2B），CHD Periodic pulse count，present value（RWr14 to RWr15，RWr2C to RWr2D），and CHD Periodic pulse count value update check（RWr16 to RWr17，RWr2E to RWr2F）are updated． －（ F^{-1} Page 151，Section 8．12） － $\mathrm{CH} \square$ Periodic pulse count，difference value（RWr12 to RWr13，RWr2A to RWr2B），CHD Periodic pulse count，present value（ RW r14 to RWr 15 ， RW r2C to RW 2D），and $\mathrm{CH} \square$ Periodic pulse count value update check（RWr16 to RWr17，RWr2E to RWr2F）are updated without resetting this flag． －This signal turns off when CHD Update flag reset command（Periodic pulse count value） （RY28，RY40）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{* 2}$ delay occurs until this signal turns on after $\mathrm{CH} \square$ Periodic pulse count，difference value（RWr12 to RWr13，RWr2A to RWr2B），CH Periodic pulse count，present value （RWr14 to RWr15，RWr2C to RWr2D），and CH口 Periodic pulse count value update check （RWr16 to RWr17，RWr2E to RWr2F）are updated．（For the overview of the operation，refer to the description of $\mathrm{CH} \square$ Update flag reset completed（Periodic pulse count value）（RX28， RX40）．）
$\begin{aligned} & \text { RX2A } \\ & \text { RX42 } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Latch count value update flag reset completed （Latch counter input terminal）	－This signal turns on when resetting $\mathrm{CH} \square$ Latch count value update flag（Latch counter input terminal）（RX2B，RX43）by CHD Latch count value update flag reset command（Latch counter input terminal）（RY2A，RY42）is completed． －This signal turns off when CHD Latch count value update flag reset command（Latch counter input terminal）（RY2A，RY42）is turned off． $----\rightarrow$ Controlled by the high－speed counter module \longrightarrow Controlled by the program $\mathrm{CH} \square$ Latch count value update flag reset command （Latch counter input terminal） （RY2A，RY42） $\mathrm{CH} \square$ Latch count value update flag （Latch counter input terminal） （RX2B，RX43） $\mathrm{CH} \square$ Latch count value update flag reset completed （Latch counter input terminal） （RX2A，RX42）

Remote input （RX）No．	Signal name		Description
$\begin{aligned} & \mathrm{RX2B} \\ & \mathrm{RX43} \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Latch count value update flag（Latch counter input terminal）	－This signal turns on when CHロ Latch count value（Latch counter input terminal）（RWr18 to RWr19，RWr30 to RWr31）is updated．（ 5 Page 137，Section 8．7） －CHD Latch count value（Latch counter input terminal）（RWr18 to RWr19，RWr30 to RWr31） is updated without resetting this flag． －This signal turns off when CHロ Latch count value update flag reset command（Latch counter input terminal）（RY2A，RY42）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{*}{ }^{2}$ delay occurs until this signal turns on after CHD Latch count value（Latch counter input terminal）（ $R W r 18$ to $R W r 19$ ，$R W r 30$ to $R W r 31$ ）is updated．（For the overview of the operation，refer to the description of CH Latch count value update flag reset completed （Latch counter input terminal）（RX2A，RX42）．）
$\begin{aligned} & \mathrm{RX2C} \\ & \mathrm{RX44} \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Update flag reset completed （Measured frequency value）	－This signal turns on when resetting CHD Update flag（Measured frequency value）（RX2D， RX45）by CHD Update flag reset command（Measured frequency value）（RY2C，RY44）is completed． －This signal turns off when $\mathrm{CH} \square$ Update flag reset command（Measured frequency value） （RY2C，RY44）is turned off． $----\rightarrow$ Controlled by the high－speed counter module \longrightarrow Controlled by the program
		Update flag reset completed （Measured rotation speed value）	－This signal turns on when resetting $\mathrm{CH} \square$ Update flag（Measured rotation speed value） （RX2D，RX45）by CHD Update flag reset command（Measured rotation speed value） （RY2C，RY44）is completed． －This signal turns off when CHD Update flag reset command（Measured rotation speed value）（RY2C，RY44）is turned off．（The operation is the same as that of CHD Update flag reset completed（Measured frequency value）（RX2C，RX44）except the signal name．）
$\begin{aligned} & \text { RX2D } \\ & \text { RX45 } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Update flag （Measured frequency value）	－This signal turns on when CHロ Measured frequency value（RWr1A to RWr1B，RWr32 to RWr33）is updated．（5 Page 162，Section 8．16） $\cdot \mathrm{CH} \square$ Measured frequency value（ RWr 1 A to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RW} 32$ to RWr 33 ）is updated without resetting this flag． －This signal turns off when CHO Update flag reset command（Measured frequency value） （RY2C，RY44）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{* 2}$ delay occurs until this signal turns on after CHロ Measured frequency value （ $\mathrm{RW} \mathbf{W} 1 \mathrm{~A}$ to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RW} 32$ to RW 33 ）is updated．（For the overview of the operation，refer to the description of CH Update flag reset completed（Measured frequency value）（RX2C， RX44）．）
		Update flag （Measured rotation speed value）	－This signal turns on when CHD Measured rotation speed value（RWr1A to RWr1B，RWr32 to RW r33）is updated．（以 Page 166，Section 8．17） －CHD Measured rotation speed value（ RWr 1 A to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RWr32}$ to $\mathrm{RWr33}$ ）is updated without resetting this flag． －This signal turns off when CHD Update flag reset command（Measured rotation speed value）（RY2C，RY44）is turned on． －Up to $\Delta \mathrm{T}_{1}{ }^{*}{ }^{2}$ delay occurs until this signal turns on after CHD Measured rotation speed value （ $\mathrm{RW} \mathbf{W} 1 \mathrm{~A}$ to $\mathrm{RWr} 1 \mathrm{~B}, \mathrm{RWr} 32$ to RW 33 ）is updated．（For the overview of the operation，refer to the description of CHO Update flag reset completed（Measured rotation speed value） （RX2C，RX44）．）

Remote input (RX) No.	Signal name		Description
$\begin{aligned} & \text { RX31 } \\ & \text { RX49 } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Measured pulse value update flag reset completed (Function input terminal)	- This signal turns on when resetting $\mathrm{CH} \square$ Measured pulse value update flag (Function input terminal) (RX32, RX4A) by CHロ Measured pulse value update flag reset command (Function input terminal) (RY31, RY49) is completed. - This signal turns off when $\mathrm{CH} \square$ Measured pulse value update flag reset command (Function input terminal) (RY31, RY49) is turned off. $----\rightarrow$ Controlled by the high-speed counter module \longrightarrow Controlled by the program
$\begin{aligned} & \mathrm{RX} 32 \\ & \mathrm{RX} 4 \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Measured pulse value update flag (Function input terminal)	- This signal turns on when CHD Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) is updated. - CHD Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) is updated without resetting this flag. - This signal turns off when $\mathrm{CH} \square$ Measured pulse value update flag reset command (Function input terminal) (RY31, RY49) is turned on. - Up to $\Delta \mathrm{T}_{1}{ }^{*}{ }^{2}$ delay occurs until this signal turns on after $\mathrm{CH} \square$ Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) is updated. (For the overview of the operation, refer to the description of $\mathrm{CH} \square$ Measured pulse value update flag reset completed (Function input terminal) (RX31, RX49).)
$\begin{aligned} & \text { RX33 } \\ & \text { RX4B } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Measured pulse value update flag reset completed (Latch counter input terminal)	- This signal turns on when resetting $\mathrm{CH} \square$ Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C) by CHD Measured pulse value update flag reset command (Latch counter input terminal) ($\mathrm{RY} 33, \mathrm{RY} 4 \mathrm{~B}$) is completed. - This signal turns off when CHロ Measured pulse value update flag reset command (Latch counter input terminal) (RY33, RY4B) is turned off.
RX34 RX4C	CH 1 CH 2	Measured pulse value update flag (Latch counter input terminal)	- This signal turns on when $\mathrm{CH} \square$ Measured pulse value (Latch counter input terminal) (RW r1E to RWr1F, RWr36 to RWr37) is updated. - CHD Measured pulse value (Latch counter input terminal) (RWr1E to RWr1F, RWr36 to RWr37) is updated without resetting this flag. - This signal turns off when $\mathrm{CH} \square$ Measured pulse value update flag reset command (Latch counter input terminal) (RY33, RY4B) is turned on. - Up to $\Delta \mathrm{T}_{1}{ }^{* 2}$ delay occurs until this signal turns on after $\mathrm{CH} \square$ Measured pulse value (Latch counter input terminal) (RWr1E to RWr1F, RWr36 to RWr37) is updated. (For the overview of the operation, refer to the description of $\mathrm{CH} \square$ Measured pulse value update flag reset completed (Latch counter input terminal) (RX33, RX4B).)

Remote input (RX) No.	Signal name		Description
$\begin{aligned} & \text { RX35 } \\ & \text { RX4D } \end{aligned}$	$\begin{array}{\|l\|} \mathrm{CH} 1 \\ \mathrm{CH} 2 \end{array}$	ON width setting change completed (PWM output)	- This signal turns on when the changes of CHD ON width setting (PWM output) (RWw1E to RWw1F, RWw36 to RWw37) are reflected to the high-speed counter module by CHD ON width setting change request (PWM output) (RY35, RY4D). - This signal turns off when CHD ON width setting change request (PWM output) (RY35, RY4D) is turned off.
$\begin{aligned} & R \times 36 \\ & R \times 4 E \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Error status	- This signal turns on when a moderate error or major error occurs on a channel corresponding to this signal. - This signal turns off when CHD Error reset command (RY36, RY4E) is turned on and no moderate error or major error newly occurs. \cdots Controlled by the high-speed counter module \longrightarrow Controlled by the program
$\begin{aligned} & \mathrm{RX} 37 \\ & \mathrm{RX} 4 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Warning status	- This signal turns on when a minor error occurs on a channel corresponding to this signal. - This signal turns off when CHロ Error reset command (RY36, RY4E) is turned on and no minor error newly occurs. Some warning codes (error codes of minor errors) cannot be reset by turning on CHD Error reset command (RY36, RY4E). For details, refer to Page 225, Section 11.2. - This signal turns off when no minor error newly occurs five seconds after a minor error occurred. (For the overview of the operation, refer to the description of CHO Error status ($\mathrm{RX} 36, \mathrm{RX} 4 \mathrm{E}$).) However, this signal may not turn off even after five seconds depending on warning codes (error codes of minor errors). For details, refer to Page 225, Section 11.2.
*1	This warn For	signal cannot be ing codes (error ΔT_{1}, refer to Page	et arbitrarily by output signals such as CHD Error reset command (RY36, RY4E) depending on es of minor errors). For details, refer to Page 225, Section 11.2. 5, Appendix 4.

Appendix 1.2
 Details of remote output signals

The following shows details of remote output signals.

Remote output (RY) No.	Signal name	Operation timing	Description
RY8	Initial data processing completion flag	\rfloor	- This signal is turned on when initial data processing has been completed after the module is powered on, the remote reset is performed, or parameters are initialized. -When this signal is turned on, the high-speed counter module starts counting regarding the content of the remote register (RWw) as the initial value. (For the overview of the operation, refer to Page 256, Appendix 1.1.)
			- Turn on this signal to activate the setting data in the parameter area of the remote buffer memory. Turn on this signal to save the setting values of the extended parameter area into the nonvolatile memory. - When this signal is turned on, the setting values in the parameter area of the remote buffer memory are reflected to the inside of the module. In addition, the setting values of the extended parameter area are saved into the nonvolatile memory. - When this signal is turned on, all the following remote input signals turn off.
RY9	Initial data setting request flag	\uparrow	- Warning status flag (RX7) - Error status flag (RXA) - Remote READY (RXB) - Coincidence output 1 to 4 (RX10 to RX13) - Setting change completed (Coincidence output 1 to 4) (RX14 to RX17) - CHロ Preset/replace completion (RX21, RX39) - CHD External preset/replace (Z Phase) request detection (RX23, RX3B) - CHD Counter function detection (RX25, RX3D) - CHD Cam switch execute/PWM output (RX26, RX3E) - $\mathrm{CH} \square$ Setting change completed (Sampling counter/Periodic pulse counter) (RX27, RX3F) - CHD Update flag reset completed (Latch count value/Sampling count value/Periodic pulse count value) (RX 28, RX40) - CHD Update flag (Latch count value/Sampling count value/Periodic pulse count value) (RX29, RX41) - CHD Latch count value update flag reset completed (Latch counter input terminal) (RX2A, RX42) - CHD Latch count value update flag (Latch counter input terminal) (RX2B, RX43) - CHD Update flag reset completed (Measured frequency value/Measured rotation speed value) (RX2C, RX44) - CHD Update flag (Measured frequency value/Measured rotation speed value) (RX2D, RX45) - CHロ Measured pulse value update flag reset completed (Function input terminal) (RX31, RX49) - CHD Measured pulse value update flag (Function input terminal) (RX32, RX4A) - $\mathrm{CH} \square$ Measured pulse value update flag reset completed (Latch counter input terminal) (RX33, RX4B) - $\mathrm{CH} \square$ Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C) - CHD ON width setting change completed (PWM output) (RX35, RX4D) - CHD Error status (RX36, RX4E) - CHD Warning status (RX37, RX4F) - External input signals of the extension input module (RX50 to RX5F)

Remote output (RY) No.	Signal name		Operation timing	Description
RY1F	External power supply monitor request flag		\square	Turn on this signal to activate the external power supply monitoring function. (For the overview of the operation, refer to Page 256, Appendix 1.1.)
$\begin{aligned} & \text { RY20 } \\ & \text { RY38 } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Coincidence output enable command	\square	- Turn on this signal to enable output to coincidence output 1 to 4 terminals (EQU1 to EQU4) in the coincidence output function. - This signal is valid when Coincidence output enable command setting (address: 0106_{H}) is set to By each channel (0). - This signal is valid to all the coincidence output 1 to 4 terminals (EQU1 to EQU4) assigned to the channel. - Up to $\Delta T_{1}{ }^{*}{ }^{1}$ is taken until this signal has been turned on.
$\begin{aligned} & \text { RY21 } \\ & \text { RY39 } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Preset/replace command	\pm	- Turn on this signal to replace a count value with the preset value. - The value cannot be replaced by turning on this signal while $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection (RX23, RX3B) is on. Turn off CHD External preset/replace (Z Phase) request detection (RX23, RX3B) by using $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection reset command (RY23, RY3B). (For the overview of the operation, refer to Page 256, Appendix 1.1.)
$\begin{aligned} & \text { RY22 } \\ & \text { RY3A } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Count down command		- Turn on this signal to count down pulses. - This signal is valid when 1-Phase Multiple of 1 (0) or 1-Phase Multiple of 2 (1) is selected for $\mathrm{CH} \square$ Pulse input mode (address: $0122_{\mathrm{H}}, 0142_{\mathrm{H}}$). - Inputting pulse in phase B can also start counting down pulses. - The following figure shows the overview of the operation (when 1-Phase Multiple of $1(0)$ is selected for CH 1 Pulse input mode (address: 0122_{H})). - Up to $\Delta \mathrm{T}_{1}{ }^{*}{ }^{1}$ is taken until this signal has been turned on.
$\begin{aligned} & \text { RY23 } \\ & \text { RY3B } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	External preset/replace (Z Phase) request detection reset command	\uparrow	- Turn on this signal to turn off $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection (RX23, RX3B). - A count value cannot be replaced with the preset value while $\mathrm{CH} \square$ External preset/replace (Z Phase) request detection (RX23, RX3B) is on. - For the overview of the operation, refer to Page 256, Appendix 1.1.

Remote output (RY) No.	Signal name		Operation timing	Description
$\begin{aligned} & \text { RY24 } \\ & \text { RY3C } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Count enable command	\square	- Turn on this signal to count pulses. - The following figure shows the overview of the operation (when 1-Phase Multiple of $1(0)$ is selected for CH 1 Pulse input mode (address: 0122_{H})).
$\begin{aligned} & \text { RY25 } \\ & \text { RY3D } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Selected counter function start command		- Turn on this signal to perform the selected counter functions. - When Count Disable Function (0) or Periodic Pulse Counter Function (3) is selected for $\mathrm{CH} \square$ Counter function selection (address: 0126 $\mathrm{H}, 0146_{\mathrm{H}}$), this signal is valid while being on. -When Sampling Counter Function (2) or Latch Counter Function (1) is selected for $\mathrm{CH} \square$ Counter function selection (address: $0126_{\mathrm{H}}, 0146_{\mathrm{H}}$), this signal becomes valid at the rising edge (off to on). - When Count disable/Preset/replace Function (4) or Latch counter/Preset/replace Function (5) is selected for $\mathrm{CH} \square$ Counter function selection (address: $0126_{\mathrm{H}}, 0146_{\mathrm{H}}$), this signal is invalid. (For the overview of the operation, refer to Page 256, Appendix 1.1.)
$\begin{aligned} & \text { RY26 } \\ & \text { RY3E } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Cam switch execute command/PWM output start command	\square	- Turn on this signal to execute the cam switch function. - Turn on this signal to start PWM output.
$\begin{aligned} & \mathrm{RY} 27 \\ & \mathrm{RY} 3 \mathrm{~F} \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Setting change request (Sampling counter/Periodic pulse counter)	5	- Turn on this signal to activate the changes of CHD Time unit setting (Sampling counter/Periodic pulse counter) (RWw16, RWw2E) and CHロ Cycle setting (Sampling counter/Periodic pulse counter) (RWw17, RWw2F). - When this signal is turned on, the setting values written into the above remote registers (RWw) are reflected to the high-speed counter module. After the setting values are reflected, $\mathrm{CH} \square$ Setting change completed (Sampling counter/Periodic pulse counter) (RX27, RX3F) turns on. (For the overview of the operation, refer to Page 256, Appendix 1.1.)

| Remote
 output (RY)
 No. | |
| :--- | :--- | :--- | :--- | :--- | :--- |

Remote output (RY) No.	Signal name		Operation timing	Description
$\begin{aligned} & \text { RY32 } \\ & \text { RY4A } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Pulse measurement start command (Latch counter input terminal)	\square	- Turn on this signal to start measuring pulses using $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2). - When this signal is turned on, the measurement of pulses using $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2) starts. When the measurement starts, Operating (1) is set in $\mathrm{CH} \square$ Pulse measurement flag (Latch counter input terminal) (RWr20.b7, RWr38.b7).
$\begin{aligned} & \text { RY33 } \\ & \text { RY4B } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Measured pulse value update flag reset command (Latch counter input terminal)	5	- Turn on this signal to reset $\mathrm{CH} \square$ Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C). - When this signal is turned on, $\mathrm{CH} \square$ Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C) turns off. After resetting is completed, $\mathrm{CH} \square$ Measured pulse value update flag reset completed (Latch counter input terminal) (RX33, RX4B) turns on. (For the overview of the operation, refer to Page 256, Appendix 1.1.)
$\begin{aligned} & \text { RY35 } \\ & \text { RY4D } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	ON width setting change request (PWM output)	\mp	- Turn on this signal to activate the changes of CHD ON width setting (PWM output) (RWw1E to RWw1F, RWw36 to RWw37) during PWM output. - When this signal is turned on, CHロ ON width setting (PWM output) (RWw1E to RWw1F, RWw36 to RWw37) is reflected to the high-speed counter module. After the setting values are reflected, $\mathrm{CH} \square \mathrm{ON}$ width setting change completed (PWM output) (RX35, RX4D) turns on. (For the overview of the operation, refer to Page 256, Appendix 1.1.)
$\begin{aligned} & \text { RY36 } \\ & \text { RY4E } \end{aligned}$	$\begin{aligned} & \mathrm{CH} 1 \\ & \mathrm{CH} 2 \end{aligned}$	Error reset command	\mp	- Turn on this signal to reset CHロ Latest error code (RWr22, RWr3A) and CHD Latest warning code (RWr23, RWr3B). (For the overview of the operation, refer to Page 225, Section 11.2.)

*1 For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.

Remark

The figures in the operation timing indicate the following.
This signal is valid while being on.
This signal is valid at the rising edge (off to on).

Point ${ }^{8}$

Set ΔT_{1} or longer for the ON/OFF time of the remote output signals.
For $\Delta \mathrm{T}_{1}$, refer to Page 305, Appendix 4.

Appendix 2 Details of Remote Registers

The following shows details of remote registers.

(1) Remote registers (RWrO to $\mathrm{RWr1}$)

Address (RWr)		Name	Description												Default
CH1	CH2														
0		Counter value greater/smaller signal	- When the coincidence output function is selected and Coincidence output comparison condition setting (address: 0102) is set to "Coincidence Output (00)", this area stores the magnitude relation between the values in Point setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC to RWwD) and CHロ Present value (RWr10 to RWr11, RWr28 to RWr29). Point setting (Coincidence output 1 to 4) > Present value ... Counter value greater: 0/Counter value smaller: 1 Point setting (Coincidence output 1 to 4) = Present value ... Counter value greater: 0/Counter value smaller: 0 Point setting (Coincidence output 1 to 4) < Present value ... Counter value greater: 1/Counter value smaller: 0 - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.												$0^{0000}{ }_{H}$
1		EQU1 to EQU4 terminal status	- When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.												0000_{H}

(2) Remote registers (RWr2 to RWr3)

Address (RWr)		Name	Description																Default
CH1	CH2																		
2		Cam switch output signal	0: OFF 1: ON 1) Cam switch status (Output 1) 2) Cam switch status (Output 2) 15) Cam switch status (Output 15) 16) Cam switch status (Output 16) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.																$0^{0000}{ }_{H}$
3		Cam switch output terminal status	0: OFF 1: ON 1) Cam switch status (Output 1) 2) Cam switch status (Output 2) 15) Cam switch status (Output 15) 16) Cam switch status (Output 16) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.																$0^{0000}{ }_{H}$

(3) Remote registers (RWr10 to RWr17, RWr28 to RWr2F)

Address (RWr)		Item	Description	Default
CH1	CH2			
10 11	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	Present value	- This area stores the counter present value. - The update cycle of this area is ΔT_{2} in the normal mode (asynchronous communication mode). ${ }^{* 1}$ - The update cycle of this area is $\Delta \mathrm{T}_{4}$ in the synchronous communication mode. However, the stored present value would be the value held at one previous synchronization cycle of the master station. ${ }^{*}$ - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 A \\ & 2 B \end{aligned}$	Latch count value	- This area stores the count value latched when the latch counter function (counter function selection) or the latch counter/preset/replace function is selected. (For the overview of the operation, refer to Page 145, Section 8.10 or Page 156, Section 8.14.) - This area stores the value which is stored in $\mathrm{CH} \square$ Present value (RWr 10 to RWr11, RWr28 to RWr29) of when $\mathrm{CH} \square$ Function input terminal (FUNC1, FUNC2) or $\mathrm{CH} \square$ Selected counter function start command (RY25, RY3D) is input. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
		Sampling count value	- This area stores the count values in the sampling period when the sampling counter function is selected. (For the overview of the operation, refer to Page 148, Section 8.11.) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	
		Periodic pulse count, difference value	- This area stores the count value per cycle time (the difference value) when the periodic pulse counter function is selected. (For the overview of the operation, refer to Page 151, Section 8.12.) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 2 C \\ & 2 D \end{aligned}$	Periodic pulse count, present value	- This area stores the value which is stored in $\mathrm{CH} \square$ Present value (RW r 10 to RWr11, RWr28 to RWr29) after the cycle time elapsed when the periodic pulse counter function is selected. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 2 E \\ & 2 F \end{aligned}$	Periodic pulse count value update check	- This area stores the same value as the value in CHロ Periodic pulse count, difference value ($R W r 12$ to $R W r 13, R W r 2 A$ to $R W r 2 B$) when the periodic pulse counter function is selected. - When CHD Periodic pulse count, difference value (RWr12 to RWr13, RWr2A to RWr2B) is not equivalent to $\mathrm{CH} \square$ Periodic pulse count value update check (RWr16 to RWr17, RWr2E to RWr2F), a data mismatch occurs. Read again CHD Periodic pulse count, difference value (RWr12 to RWr13, RWr2A to RWr2B), CHD Periodic pulse count, present value (RWr14 to RWr15, RWr2C to RWr2D), and CHロ Periodic pulse count value update check (RWr16 to RWr17, RWr2E to RWr2F). - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
*1 For ΔT_{2}, refer to Page 305, Appendix 4 (3). *2 For $\Delta \mathrm{T}_{4}$, refer to Page 305, Appendix 4 (4).				

(4) Remote registers (RWr18 to RWr1F, RWr30 to RWr37)

Address (RWr)		Item	Description	Default
CH1	CH2			
18 19	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	Latch count value (Latch counter input terminal)	- This area stores the count value latched when the latch counter function by latch counter input terminal is selected. (For the overview of the operation, refer to Page 139, Section 8.7.) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
$\begin{aligned} & 1 A \\ & 1 B \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	Measured frequency value	- This area stores the frequency value measured when the frequency measurement function is selected. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
		Measured rotation speed value	- This area stores the rotation speed value measured when the rotation speed measurement function is selected. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	
$1 C$ $1 D$	34 35	Measured pulse value (Function input terminal)	- This area stores the value of the ON width or OFF width of pulses input to CH口 Function input terminal (FUNC1, FUNC2) measured when the pulse measurement function is selected. - The following shows the range of values which can be stored. 0 to 2147483647 (increments of $0.1 \mu \mathrm{~s}$) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
$1 E$ $1 F$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	Measured pulse value (Latch counter input terminal)	- This area stores the value of the ON width or OFF width of pulses input to CHD Latch counter input terminal (LATCH1, LATCH2) measured when the pulse measurement function is selected. - The following shows the range of values which can be stored. 0 to 2147483647 (increments of $0.1 \mu \mathrm{~s}$) - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0

(5) Remote registers (RWr20, RWr38)

Address (RWr)		Item	Description												Default
CH1	CH2														
20	38	Status	- This area stores various statuses as follows. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.												0000_{H}

(6) Remote registers (RWr21 to RWr23, RWr39 to RWr3B)

Address (RWr)		Item	Description											Default
CH1	CH2													
21	39	External input status	- This area stores the input statuses of phase Z, the function, the latch counter, phase A, and phase B of the external I/O connector. - When CHD Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is set to either of Frequency Measurement Mode (1), Rotation Speed Measurement Mode (2), or PWM Output Mode (4), Function input status (RWr21.b1, RWr39.b1) is always OFF (0). - With Negative Logic (1) being set in $\mathrm{CH} \square$ Function input logic setting (address: $0127_{\mathrm{H}}, 0147_{\mathrm{H}}$) or CHD Latch counter input logic setting (address: 0128_{H}, 0148_{H}), its input status changes to OFF (0) when a voltage is applied. - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.											0000_{H}
22	3A	Latest error code	- This area stores the latest error code of the generated major error or moderate error. - When multiple errors in the same category occur, this area stores the error code of the later error. - When a moderate error occurs while a major error is occurring, this area does not store the error code of the moderate error. - For the error code, refer to Page 225, Section 11.2.											0000_{H}
23	3B	Latest warning code	- This area stores the error code of the generated minor error. - When multiple minor errors occur, this area stores the error code of the later error. - For the error code, refer to Page 225, Section 11.2.											0000_{H}

(7) Remote registers (RWw0 to RWw1)

(8) Remote registers (RWw2 to RWwF)

Address (RWw)		Item	Description	Default
CH1	CH2			
2 3		Upper limit value setting (Coincidence output 1)	- When the coincidence output function is selected and a bit corresponding to Coincidence output 1 of Coincidence output comparison condition setting (address: 0102_{H}) is set to "Within-range Output (01)" or "Out-of-range Output (10)", set the upper limit value. - When a bit corresponding to Coincidence output 1 of Coincidence output comparison condition setting (address: 0102_{H}) is set to "Coincidence Output (00)", this setting value is not used. - The following shows the setting range. -2147483648 to 2147483647 - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) When Setting change request (Coincidence output 1) (RY14) is turned off then on	0
4 5		Point setting (Coincidence output 2) Lower limit value setting (Coincidence output 2)	- This setting is for Coincidence output 2 of the coincidence output function. - The details on this area such as the setting range are the same as those of Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) ($R W w 0$ to $R W w 1$) except the coincidence output number.	0
6 7		Upper limit value setting (Coincidence output 2)	- This setting is for Coincidence output 2 of the coincidence output function. - The details on this area such as the setting range are the same as those of Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) except the coincidence output number.	0
8 9		Point setting (Coincidence output 3) Lower limit value setting (Coincidence output 3)	- This setting is for Coincidence output 3 of the coincidence output function. - The details on this area such as the setting range are the same as those of Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) ($R W w 0$ to $R W w 1$) except the coincidence output number.	0
A		Upper limit value setting (Coincidence output 3)	- This setting is for Coincidence output 3 of the coincidence output function. - The details on this area such as the setting range are the same as those of Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) except the coincidence output number.	0
C D		Point setting (Coincidence output 4) Lower limit value setting (Coincidence output 4)	- This setting is for Coincidence output 4 of the coincidence output function. - The details on this area such as the setting range are the same as those of Point setting (Coincidence output 1)/Lower limit value setting (Coincidence output 1) (RWw 0 to RWw1) except the coincidence output number.	0
E F		Upper limit value setting (Coincidence output 4)	- This setting is for Coincidence output 4 of the coincidence output function. - The details on this area such as the setting range are the same as those of Upper limit value setting (Coincidence output 1) (RWw2 to RWw3) except the coincidence output number.	0

(9) Remote registers (RWw10 to RWw13, RWw28 to RWw2B)

Address (RWw)		Item	Description	Default
CH1	CH2			
$\begin{aligned} & 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	Ring counter lower limit value	- When the ring counter function is selected and $\mathrm{CH} \square$ Counter format (address: $0124_{\mathrm{H}}, 0144_{\mathrm{H}}$) is set to Ring Counter (1), set the count range. - Set the ring counter upper limit value as well. - The following shows the setting range. -2147483648 to 2147483647 - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) When $\mathrm{CH} \square$ Count enable command (RY24, RY3C) is turned off then on	0
$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 2 A \\ & 2 B \end{aligned}$	Ring counter upper limit value	- When the ring counter function is selected and $\mathrm{CH} \square$ Counter format (address: $0124_{\mathrm{H}}, 0144_{\mathrm{H}}$) is set to Ring Counter (1), set the count range. - Set the ring counter lower limit value as well. - The following shows the setting range. -2147483648 to 2147483647 - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) When $\mathrm{CH} \square$ Count enable command (RY24, RY3C) is turned off then on	0

(10)Remote registers (RWw14 to RWw15, RWw2C to RWw2D)

Address (RWw)		Item	Description	Default
CH1	CH2			
$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 2 C \\ & 2 D \end{aligned}$	Preset value setting	- Set a count value to be replaced with the preset value for either of the preset/replace (at coincidence output) function, the preset/replace function, the count disable/preset/replace function, or the latch counter/preset/replace function. - The following shows the setting range. $-2147483648 \text { to } 2147483647$ - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) While Initial data processing request flag (RX8) and Initial data setting request flag (RY9) are off	0

(11)Remote registers (RWw16 to RWw17, RWw2E to RWw2F)

Address (RWw)		Item	Description	Default
CH1	CH2			
16	2E	Time unit setting (Sampling counter/Periodic pulse counter)	- Set a unit of time for the sampling counter function or the periodic pulse counter function. - The following shows the setting range. 0: 1 ms 1: 10 ms - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) When $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F) is turned off then on	0
17	2F	Cycle setting (Sampling counter/Periodic pulse counter)	- Set the sampling period for the sampling counter function or the cycle time of the periodic pulse counter function. - The following shows the setting range. 1 to 65535 (When CHD Time unit setting (Sampling counter/Periodic pulse counter) (RWw16, RWw2E) is set to $1 \mathrm{~ms}(0)$, the sampling period or the cycle time is indicated in increments of 1 ms and when set to 10 ms (1), in increments of 10ms.) - The reflection timing of the setting value 1) When Initial data processing request flag (RX8) turns off 2) When Initial data setting request flag (RY9) is turned off then on (only while Initial data processing request flag (RX8) is off) 3) When $\mathrm{CH} \square$ Setting change request (Sampling counter/Periodic pulse counter) (RY27, RY3F) is turned off then on	0

(12)Remote registers (RWw18 to RWw19, RWw30 to RWw31)

Address (RWw)		Item	Description	Default	
CH1	CH2				
18	30	Time unit setting (Frequency measurement)	- Set a unit of time of frequency measurement for frequency measurement function. - The following shows the setting range. 0: 0.01s 1: 0.1 s 2: 1s - The reflection timing of the setting value When CHD Count enable command (RY24, RY3C) is turned off then on	0	
		Time unit setting (Rotation speed measurement)	- Set a unit of time of rotation speed measurement for the rotation speed measurement function. - The following shows the setting range. 0: 0.01s 1: 0.1 s 2: 1s - The reflection timing of the setting value When CHD Count enable command (RY24, RY3C) is turned off then on		
19	31	Moving average count (Frequency measurement)	- Set the number of moving average count of frequency measurement for the frequency measurement function. - The following shows the setting range. 1 to 100 (However, when 1 is set, the operation is performed with the moving average count regarded as not being done.) - The reflection timing of the setting value When CHD Count enable command (RY24, RY3C) is turned off then on	0	
		Moving average count (Rotation speed measurement)	- Set the number of moving average count of rotation speed measurement for the rotation speed measurement function. - The following shows the setting range. 1 to 100 (However, when 1 is set, the operation is performed with the moving average count regarded as not being done.) - The reflection timing of the setting value When CHD Count enable command (RY24, RY3C) is turned off then on		

(13)Remote registers (RWw1A to RWw1B, RWw32 to RWw33)

Address (RWw)		Item	Description	Default
CH1	CH2			
$\begin{aligned} & 1 A \\ & 1 B \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	Number of pulses per rotation	- Set the number of pulses per rotation for the pulse measurement function. - The following shows the setting range. 1 to 8000000 - The reflection timing of the setting value When CHD Count enable command (RY24, RY3C) is turned off then on	0

(14)Remote registers (RWw1D to RWw21, RWw35 to RWw39)

Address (RWw)		Item	Description								Default
CH1	CH2										
1D	35	PWM output assignment setting	- Select an output target from Coincidence output 1 to 4 to output the PWM waveform using the PWM output function. - This setting applies only to coincidence outputs where the corresponding channels are assigned using Coincidence output channel assignment setting (address: 0101_{H}). Two or more points can be set. - The following shows the setting range. - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on								$000 \mathrm{H}_{\mathrm{H}}$
$1 E$ $1 F$	36 37	ON width setting (PWM output)	- Set the ON width of the PWM waveform for the PWM output function. - The following shows the setting range. 0 , and 10 to 10000000 (increments of $0.1 \mu \mathrm{~s}$) (Set a value that is equal to or smaller than the value in the cycle setting (PWM output).) - The reflection timing of the setting value 1) When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on 2) When CHD ON width setting change request (PWM output) (RY35, RY4D) is turned off then on								0
20 21	38 39	Cycle setting (PWM output)	- Set the cycle of the PWM waveform for the PWM output function. - The following shows the setting range. 50 to 10000000 (increments of $0.1 \mu \mathrm{~s}$) - The reflection timing of the setting value When CHロ Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on								0

Appendix 3 Details of Remote Buffer Memory Addresses

The following shows details of remote buffer memory addresses.

(1) Station-based parameter data (address: 0001_{H})

Address		Name	Description		Default	
CH1	CH2					
0000_{H}		Mode switch setting	- Set the mode for all channels. - When a value out of the setting range is set, a moderate error (error code: 0180_{H}) occurs. - When a value out of the setting range is set, the module operates in the automatical judgment mode. - The following shows the setting range.		9	
		Setting value	Mode setting			
		0	Normal mode (Asynchronous communication mode)			
		9	Automatical judgment mode			
		- The reflection timing of the setting value - When Initial data setting request flag (RY9) is turned off then on - To operate the module following the set value, turning off and on module power supply or remote reset is necessary.				
$0^{0001}{ }_{H}$			Input response time setting	- Set the input response time of the extension input module. - The following shows the setting range.		$0^{0005}{ }_{H}$
		Setting value		Input response time		
		3_{H}		2 ms		
		4_{4}		5 ms		
		$5_{\text {H }}$		10 ms		
		$6_{\text {H }}$		20 ms		
		7_{H}		70 ms		
		- The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on - When an extension I/O module is not installed, this setting is ignored.				

(2) Station-based parameter data (address: 0002_{H} to 0003_{H})

(3) Module-based parameter data (address: 0100_{H} to 0101_{H})

Address		Name	Description															Default
CH1	CH2																	
0100_{H}		Comparison output setting	- Set the comparison output function. - The following shows the setting range. 0: Coincidence Output Function 1: Cam Switch Function - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on															0
$0^{0101}{ }_{\text {H }}$		Coincidence output channel assignment setting	1) Coincidence output 1 channel assignment setting 2) Coincidence output 2 channel assignment setting 3) Coincidence output 3 channel assignment setting 4) Coincidence output 4 channel assignment setting - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on															$0^{0000}{ }_{H}$

(4) Module-based parameter data (address: 0102_{H} to 0103_{H})

Address		Name	Description													Default
CH1	CH2															
$0102^{\text {H }}$		Coincidence output comparison condition setting	- The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on													0000_{H}
$0^{0103}{ }_{H}$		Preset/replace setting at coincidence output	- S ou - Th b15 0 - Th Whe	- The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on												$0^{0000}{ }_{H}$

(5) Module-based parameter data (address: 0104_{H} to 0105_{H})

Address		Name	Description											Default
CH1	CH2													
$0^{0104}{ }_{H}$		Cam switch output unit assignment setting	- Set an extension output module to be used with the cam switch function. - The following shows the setting range. 0: No Assignment 1: Stage 1 - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on											0
$0105^{\text {H }}$		Cam switch output channel assignment setting	0: CH1 1: CH 2 1) Cam switch output 1 channel assignment setting 2) Cam switch output 2 channel assignment setting 15) Cam switch output 15 channel assignment setting 16) Cam switch output 16 channel assignment setting - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on											0000_{H}

(6) Module-based parameter data (address: 0106_{H})

Address		Name	Description	Default
CH1	CH2			
$0106^{\text {H }}$		Coincidence output enable command setting	- Set this area to determine the coincidence output enable command to be used for the coincidence output function. - The following shows the setting range. 0 : By each channel 1: By each coincidence output - To use CHD Coincidence output enable command (RY20, RY38), set By each channel (0). - To use Enable command (Coincidence output 1 to 4) (RY18 to RY1B), set By each coincidence output (1). - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned on	0

(7) Module-based parameter data (address: 0120_{H} to $0121_{\mathrm{H}}, 0140_{\mathrm{H}}$ to 0141_{H})

Address		Name	Description	Default
CH1	CH2			
0120^{H}	$\mathbf{0 1 4 0}_{\mathrm{H}}$	Operation mode setting	- Set the operation mode for channels. - The following shows the setting range. 0: Normal Mode 1: Frequency Measurement Mode 2: Rotation Speed Measurement Mode 3: Pulse Measurement Mode 4: PWM Output Mode - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0
0121_{H}	$0^{0141_{\mathrm{H}}}$	Count source selection	- Set the count source. - The following shows the setting range. 0 : A Phase/B Phase 1: Coincidence Output 1 2: Coincidence Output 2 - When $\mathrm{CH} \square$ Count source selection (address: $0121_{\mathrm{H}}, 0141_{\mathrm{H}}$) is set to Coincidence Output 1 (1) or Coincidence Output 2 (2), pulses are counted up at the rising edge of the following signals. Normal mode: Coincidence output 1 to 2 (RX10 to RX11) PWM output mode: Coincidence output 1 to 2 terminals (EQU1 to EQU2) - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0

(8) Module-based parameter data (address: 0122_{H} to $0123_{\mathrm{H}},{0142_{\mathrm{H}}}$ to 0143_{H})

Address		Name	Description	Default
CH1	CH2			
0122H	0142H	Pulse input mode	- Set the pulse input mode. - The following shows the setting range. 0: 1-Phase Multiple of 1 1: 1-Phase Multiple of 2 2: CW/CCW 3: 2-Phase Multiple of 1 4: 2-Phase Multiple of 2 5: 2-Phase Multiple of 4 - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0
$0^{0123}{ }_{H}$	$0^{0143}{ }_{\text {H }}$	Counting speed setting	- Set the counting speed. - The following shows the setting range. 0: 10kpps 1: 100kpps 2: 200kpps 3: 500kpps 4: 1 Mpps 5: 2Mpps 6: 4Mpps 7: 8Mpps - Always set 200kpps or slower to the counting speed when DC input is used for connecting. - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0

(9) Module-based parameter data (address: 0124_{H} to $0125_{\mathrm{H}}, 0144_{\mathrm{H}}$ to 0145_{H})

(10)Module-based parameter data (address: 0126_{H} to $0128_{\mathrm{H}},{0146_{\mathrm{H}}}$ to 0148_{H})

Address		Name	Description	Default
CH1	CH2			
0126H	$0^{0146}{ }_{\text {H }}$	Counter function selection	- Set the counter function which becomes valid when the value in CH Operation mode setting (address: $0120_{\mathrm{H}}, 0140_{\mathrm{H}}$) is Normal Mode (0). - The following shows the setting range. 0: Count Disable Function 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function 4: Count disable/Preset/replace Function 5: Latch counter/Preset/replace Function - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0
$0^{0127}{ }_{\text {H }}$	$0^{0147}{ }_{\text {H }}$	Function input logic setting	- Set the logic setting of CHD Function input terminal (FUNC1, FUNC2). - CH1 FNC LED and CH2 FNC LED turn on with any setting value when a voltage is applied. - The following shows the setting range. 0: Positive Logic 1: Negative Logic - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0
$0^{0128}{ }_{\text {H }}$	$0148^{\text {H }}$	Latch counter input logic setting	- Set the logic setting of CHロ Latch counter input terminal (LATCH1, LATCH2). - CH1 LAT LED and CH2 LAT LED turn on with any setting value when a voltage is applied. - The following shows the setting range. 0: Positive Logic 1: Negative Logic - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0

(11)Module-based parameter data (address: $\mathbf{0 1 2 9}_{\mathrm{H}}, \mathbf{0 1 4 9}_{\mathrm{H}}$)

(12)Module-based parameter data (address: $012 A_{H}$ to $012 B_{H}, 014 A_{H}$ to $014 B_{H}$)

Address		Name	Description	Default
CH1	CH2			
$012 A_{H}$	014AH	Pulse measurement setting (Function input terminal)	- Set the pulse measurement target of CHD Function input terminal (FUNC1, FUNC2). - The following shows the setting range. 0: Pulse ON Width 1: Pulse OFF Width - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0
${012 B_{H}}^{\text {d }}$	$014 B_{H}$	Pulse measurement setting (Latch counter input terminal)	- Set the pulse measurement target of $\mathrm{CH} \square$ Latch counter input terminal (LATCH1, LATCH2). - The following shows the setting range. 0: Pulse ON Width 1: Pulse OFF Width - The reflection timing of the setting value When Initial data setting request flag (RY9) is turned off then on	0

(13)Module-based monitoring data (address: $\mathbf{0 6 0 0}_{\mathbf{H}}$)

Address	Name	Description												Default
	Channel assignment (Coincidence output 1 to 4)	- This area stores the channel assignment statuses of coincidence outputs. - The following shows the range of values which can be stored. $\begin{array}{lllllllllll} \text { b15 b14 } & \text { b13 } & \text { b12 } & \text { b11 } & \text { b10 } & \text { b9 } & \text { b8 } & \text { b7 } & \text { b6 } & \text { b5 } & \text { b4 } \\ \hline \end{array}$												0000_{H}
		0	0		-	0		0	0	Coincidence output 4	Coincidence output 3	Coincidence output 2	Coincidence output 1	
0600^{H}		- When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.												

(14)Module-based monitoring data (address: 0620_{H} to $0621_{\mathrm{H}},{0640_{\mathrm{H}}}$ to 0641_{H})

Address		Name	Description	Default
CH1	CH2			
$\mathbf{0 6 2 0}_{\mathrm{H}}$	0640^{H}	Operation mode	- This area stores the present operation mode. - The following shows the range of values which can be stored. 0: Normal Mode 1: Frequency Measurement Mode 2: Rotation Speed Measurement Mode 3: Pulse Measurement Mode 4: PWM Output Mode - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0
$0^{0621}{ }_{\text {H }}$	0641_{H}	Selected counter function	- This area stores the counter function currently valid. - The following shows the range of values which can be stored. 0: Count Disable Function 1: Latch Counter Function 2: Sampling Counter Function 3: Periodic Pulse Counter Function 4: Count disable/Preset/replace Function 5: Latch counter/Preset/replace Function - When Initial data setting request flag (RY9) is turned off then on, the value in this area is cleared.	0

(15)Station-based error history data (address: $0 \mathrm{AOO}_{\mathrm{H}}$ to $0 \mathrm{AEF}_{\mathrm{H}}$)

Address	Name	Description	Default
$\begin{aligned} & 0 \mathrm{AOO} \\ & \mathrm{H} \end{aligned} \text { to }$	Error history 1	- This area stores the error history when an error or a warning occurs. - Up to 15 errors are stored in the error history. - The latest history is stored in Error history 1 (address: $0 A 00_{H}$ to $0 A 0 F_{H}$). - Errors or warnings that occurred in the past are stored in Error history 2 to Error history 15 (address: $0 \mathrm{~A} 10_{\mathrm{H}}$ to $0 \mathrm{AEF} \mathrm{F}_{\mathrm{H}}$) in reverse chronological order. - If 16 or more errors or warnings occur, errors or warnings are deleted from the oldest. - The following shows the format of the stored values. *1 For the details on Error code details 1, refer to the following. (\Im Page 241, Section 11.2 (1) (a)) - The clock information of the error that occurred is based on the clock information acquired from the CPU module of the master station. When an error has occurred before the clock information is acquired from the CPU module, the error time is not recorded.	0000_{H}
to	to	to	to
$0 A E 0_{H}$ to $\mathrm{OAEF}_{\mathrm{H}}$	Error history 15	- Same as Error history 1.	$0^{0000}{ }_{H}$

Address	Name	Description	Default
1000_{H}	Error history clear command	- The error history stored in the remote buffer memory and the nonvolatile memory is cleared by this command. - The following shows the setting range. - When Error history clear command (address: 1000_{H}) is set to Commanded (1), the error history stored in the remote buffer memory and the nonvolatile memory is cleared and Error history clear completed (address: $\mathbf{1 0 0 1}_{\mathrm{H}}$) changes to Clear is completed (1). - Errors or warnings which have occurred are not reset even when Error history clear command (address: $\mathbf{1 0 0 0}_{\mathrm{H}}$) is set to Commanded (1). Use CHD Error reset command (RY36, RY4E) to reset them.	$0^{0000}{ }_{H}$

(17)Station-based control data (address: $\mathbf{1 0 0 1}_{\mathrm{H}}$)

Address	Name	Description																Default
$1001^{\text {H }}$	Error history clear completed	- When clearing the error history stored in the remote buffer memory and the nonvolatile memory is completed, Error history clear completed (address: 1001_{H}) changes to Clear is completed (1). - When Error history clear command (address: $\mathbf{1 0 0 0}_{\mathrm{H}}$) is set to Not commanded (0), Error history clear completed (address: 1001 H) changes to Clear is not performed (0). - The following shows the range of values which can be stored.																$0^{0000}{ }_{H}$

(18)Station-based control data (address: $\mathbf{1 0 0 2}_{\mathrm{H}}$)

Address	Name	Description	Default
$1002^{\text {H }}$	Parameter area initialization command	- The parameter information and the extended parameter information stored in the remote buffer memory and the nonvolatile memory are initialized by this command. - The following shows the setting range. - When Parameter area initialization command (address: 1002_{H}) is set to Commanded (1), the parameter information and the extended parameter information stored in the remote buffer memory and the nonvolatile memory are initialized and Parameter area initialization completed (address: 1003_{H}) changes to Initialization is completed (1).	$0^{0000}{ }_{H}$

Point ${ }^{\rho}$

- When Parameter area initialization command (address: 1002_{H}) is executed, the following remote input signals and remote registers are not cleared. (Note that the following are the target data to be cleared by Initial data setting request flag (RY9).)
- Warning status flag (RX7)
- Error status flag (RXA)
- CHロ Error status (RX36, RX4E)
- CHD Warning status (RX37, RX4F)
- CHD Latest error code (RWr22, RWr3A)
- CHD Latest warning code (RWr23, RWr3B)
- When initialization of the parameter information and the extended parameter information is completed, Initial data processing request flag (RX8) turns on. Set parameters using Initial data setting request flag (RY9) and remote registers using Initial data processing completion flag (RY8).

Address	Name	Description																Default
$1003^{\text {H }}$	Parameter area initialization completed	- When initialization of the parameter information and the extended parameter information stored in the remote buffer memory and the nonvolatile memory is completed, Parameter area initialization completed (address: 1003_{H}) changes to Initialization is completed (1). - When Parameter area initialization command (address: 1002_{H}) is set to Not commanded (0), Parameter area initialization completed (address: 1003_{H}) changes to Initialization is not performed (0). - The following shows the range of values which can be stored. b15 b14 b13 b12 b11 b10 b9 b8 \quad b7 \quad b6 \quad b5 \quad b4 \quad b3 \quad b2 \quad b1 \quad b0																0000_{H}

(20)Station-based control data (address: $\mathbf{1 0 0 4}_{\mathrm{H}}$)

Address	Name	Description	Default
$1004^{\text {H }}$	Module operation information initialization command	- The module operation information stored in the remote buffer memory and the nonvolatile memory is initialized by this command. The module operation information can be initialized only when Nonvolatile memory data error (module operation information) (error code: 0110_{H}) has occurred. - The following shows the setting range. - When Module operation information initialization command (address: 1004_{H}) is set to Commanded (1), the module operation information stored in the remote buffer memory and the nonvolatile memory is cleared and Module operation information initialization completed (address: 1005_{H}) changes to Initialization is completed (1).	0000_{H}

(21)Station-based control data (address: 1005 ${ }_{\mathrm{H}}$)

Address	Name	Description																Default
1005_{H}	Module operation information initialization completed	- When initialization of the module operation information stored in the remote buffer memory and the nonvolatile memory is completed, Module operation information initialization completed (address: 1005_{H}) changes to Initialization is completed (1). - When Module operation information initialization command (address: $\mathbf{1 0 0 4}_{\mathrm{H}}$) is set to Not commanded (0), Module operation information initialization completed (address: 1005_{H}) changes to Initialization is not performed (0). - The following shows the range of values which can be stored. b15 b14 b13 b12 b11 b10 b9 b8 \quad b7 \quad b6 \quad b5 \quad b4 \quad b3 \quad b2 \quad b1 \quad b0																$0^{0000}{ }_{H}$

(22)Extended parameter data (address: 1500_{H} to 1521_{H})

Address	Name	Description	Default
1500_{H}	Cam switch function, step type (Output 1)	Set the step type for the cam of Output 1. - Setting range 0: Starts with output status being OFF 1: Starts with output status being ON - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0
$1501^{\text {H }}$	Cam switch function, number of steps (Output 1)	Set the number of steps for the cam of Output 1. - Setting range 0 to 16 - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0
$\begin{aligned} & 1502_{\mathrm{H}} \\ & 1503_{\mathrm{H}} \end{aligned}$	Cam switch function, step No. 1 setting (Output 1)	Set the count value for switching ON and OFF of the output at the step No. 1 of Output 1. - Setting range -2147483648 to 2147483647 - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0
to	to	to	to
$\begin{aligned} & 1520_{\mathrm{H}} \\ & 1521_{\mathrm{H}} \end{aligned}$	Cam switch function, step No. 16 setting (Output 1)	Set the count value for switching ON and OFF of the output at the step No. 16 of Output 1. - Setting range $-2147483648 \text { to } 2147483647$ - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0

(23)Extended parameter data (address: 1580_{H} to $1 \mathrm{CA} 1_{\mathrm{H}}$)

Address	Name	Description	Default
$\begin{aligned} & 1580_{\mathrm{H}} \text { to } \\ & 15 \mathrm{~A} 0_{\mathrm{H}} \\ & 15 \mathrm{~A} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 2) to Cam switch function, step No. 16 setting (Output 2)	For Output 2 to 16 , set the step type and the number of steps for the cam, and set the count value for switching ON and OFF of the corresponding output at the step No. 1 to No. 16. Since the details on these settings are the same as those of Output 1 , refer to the following. (5 Page 302, Appendix 3 (22)) - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0
$\begin{aligned} & 1600_{\mathrm{H}} \text { to } \\ & 1620_{\mathrm{H}} \\ & 1621_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 3) to Cam switch function, step No. 16 setting (Output 3)		0
	Cam switch function, step type (Output 4) to Cam switch function, step No. 16 setting (Output 4)		0
$\begin{aligned} & 1700_{\mathrm{H}} \text { to } \\ & 1720_{\mathrm{H}} \\ & 1721_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 5) to Cam switch function, step No. 16 setting (Output 5)		0
$\begin{aligned} & 1780_{\mathrm{H}} \text { to } \\ & 17 \mathrm{AO} 0_{\mathrm{H}} \\ & 17 \mathrm{~A} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 6) to Cam switch function, step No. 16 setting (Output 6)		0
$\begin{aligned} & 1800_{\mathrm{H}} \text { to } \\ & 1820_{\mathrm{H}} \\ & 1821_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 7) to Cam switch function, step No. 16 setting (Output 7)		0
	Cam switch function, step type (Output 8) to Cam switch function, step No. 16 setting (Output 8)		0
$\begin{aligned} & 1900_{\mathrm{H}} \text { to } \\ & 1920_{\mathrm{H}} \\ & 1921_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 9) to Cam switch function, step No. 16 setting (Output 9)		0
$\begin{aligned} & 1980_{\mathrm{H}} \text { to } \\ & 19 \mathrm{~A} 0_{\mathrm{H}} \\ & 19 \mathrm{~A} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 10) to Cam switch function, step No. 16 setting (Output 10)		0
$\begin{aligned} & 1 \mathrm{~A} 00_{\mathrm{H}} \text { to } \\ & 1 \mathrm{~A} 20_{\mathrm{H}} \\ & 1 \mathrm{~A} 21_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 11) to Cam switch function, step No. 16 setting (Output 11)		0

Address	Name	Description	Default
$\begin{aligned} & 1 \mathrm{~A} 80_{\mathrm{H}} \text { to } \\ & 1 \mathrm{AA0}_{\mathrm{H}} \\ & 1 \mathrm{AA} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 12) to Cam switch function, step No. 16 setting (Output 12)	For Output 2 to 16, set the step type and the number of steps for the cam, and set the count value for switching ON and OFF of the corresponding output at the step No. 1 to No. 16. Since the details on these settings are the same as those of Output 1, refer to the following. (5 Page 302, Appendix 3 (22)) - The reflection timing of the setting value When CHD Cam switch execute command/PWM output start command (RY26, RY3E) is turned off then on	0
$\begin{aligned} & 1 \mathrm{~B} 00_{\mathrm{H}} \text { to } \\ & 1 \mathrm{~B} 20_{\mathrm{H}} \\ & 1 \mathrm{~B} 21_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 13) to Cam switch function, step No. 16 setting (Output 13)		0
$\begin{aligned} & 1 \mathrm{B80} 0_{\mathrm{H}} \text { to } \\ & 1 \mathrm{BA} 0_{\mathrm{H}} \\ & 1 \mathrm{BA} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 14) to Cam switch function, step No. 16 setting (Output 14)		0
$\begin{aligned} & 1 \mathrm{C} 00_{\mathrm{H}} \text { to } \\ & 1 \mathrm{C} 20_{\mathrm{H}} \\ & 1 \mathrm{C} 21_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 15) to Cam switch function, step No. 16 setting (Output 15)		0
$\begin{aligned} & 1 \mathrm{C} 80_{\mathrm{H}} \text { to } \\ & 1 \mathrm{CA} 0_{\mathrm{H}} \\ & 1 \mathrm{CA} 1_{\mathrm{H}} \end{aligned}$	Cam switch function, step type (Output 16) to Cam switch function, step No. 16 setting (Output 16)		0

Appendix 4 Internal Control Cycle and Response Delay Time

For the high-speed counter module, responses are delayed by the causes shown in (1) to (4).

(1) Scan time of the program in the master station (SM)

This scan time causes delays of remote I/O signals, remote registers, and remote buffer memory.

(2) Link scan time (LS)

This is the time taken for sending data from each station on the network and finishing the one cycle. For details, refer to the following.
[] User's manual for the master/local module used

(3) Control cycle of the high-speed counter module ($\Delta \mathrm{T}_{2}$)

Up to $\Delta T_{1}\left(\Delta T_{2} \times 2\right)$ delay occurs until the high-speed counter module completes processing after the module reads remote output signals, remote registers, and remote buffer memory updated by the program. In addition, the update timing of remote input signals, remote registers, and remote buffer memory fluctuates within one control cycle.
(4) Synchronization cycle of master station ($\Delta \mathrm{T}_{4}$)

This cycle is the timing at which the high-speed counter module updates CHD Present value (RWr 10 to RWr 11 , RWr 28 to RW 29) in the synchronous communication mode. Updated data is sent in the next synchronization cycle, thus causing a delay of $\Delta \mathrm{T}_{4}$ apart from the transmission time.

Abbreviation	Description	Remarks
ΔT_{1}	Indicates the maximum delay time of internal processing. $\left(\Delta T_{2} \times 2\right)$. Link scan time is not included in ΔT_{1}.	-
ΔT_{2}	Internal control cycle time $(0.5 \mathrm{~ms})$ Link scan time is not included in ΔT_{2}.	Processing time for acquiring data for the maximum setting number of steps of cam switches (16 points $\times 16$ steps) and analyzing them (40ms)
ΔT_{3}	Synchronization cycle of master station	The smaller the number of steps, the shorter the processing time.
T_{4}	The synchronization cycle time of the master station will be the same as the link scan time.	

(5) Examples of response delay time in the normal mode (asynchronous communication mode)

An example is described in (a) to (d) regarding the operation of the coincidence output function in the following condition.

- Master/local module is the QJ71GF11-T2
- Block data assurance per station is set
- Asynchronous mode

Ex. Operation of the coincidence output function
$\mathrm{CH} \square$ Count enable command (RY24, RY3C)
CH \square Coincidence output
enable command
(RY20, RY38)
 (Coincidence output 1) (RWw0 to RWw1)
Counter value smaller (Coincidence output 1)
(RW ro.b0)
Coincidence output 1
(RX10)
Reset command (Coincidence output 1)
(RY10)
Counter value greater (Coincidence output 1)
(RWr0.b1)

(a) Processing time (Normal value): Master station (RY) \rightarrow Remote device station (RY)

The following shows the processing time required until the high-speed counter module starts pulse input after CHO Count enable command (RY24, RY3C) is turned on.
$(\mathrm{SM} \times \mathrm{n} 2)+(\mathrm{LS} \times 1)+$ Processing time of the high-speed counter module $\left(\Delta \mathrm{T}_{1}\right)$

- SM: Scan time of the program in the master station
- LS: Link scan time
- n 2 : The value provided by rounding up the value after the decimal point of ($\mathrm{LS} \div \mathrm{SM}$)
(b) Processing time (Normal value): Master station (RWr) \leftarrow Remote device station (RWr)
The following shows the processing time required until a count value is read by the master station after the count value is counted by the high-speed counter module.
$(\mathrm{SM} \times 1)+(\mathrm{LS} \times \mathrm{n} 1)+$ Processing time of the high-speed counter module $\left(\Delta \mathrm{T}_{1}\right)$
- SM: Scan time of the program in the master station
- LS: Link scan time
- n 1 : The value provided by rounding up the value after the decimal point of ($\mathrm{SM} \div \mathrm{LS}$)
(c) Processing time (Normal value): Master station (RX) \leftarrow Remote device station (RX)

The following shows the processing time required until Coincidence output 1 (RX10) is transmitted to the master station after the high-speed counter module receives Reset command (Coincidence output 1) (RY10). (The processing time required for transmitting Reset command (Coincidence output 1) (RY10) to the highspeed counter module is not included.)
$(\mathrm{SM} \times 1)+(\mathrm{LS} \times \mathrm{n} 1)+$ Processing time of the high-speed counter module $\left(\Delta \mathrm{T}_{1}\right)$

- SM: Scan time of the program in the master station
- LS: Link scan time
- n 1 : The value provided by rounding up the value after the decimal point of ($\mathrm{SM} \div \mathrm{LS}$)

(d) Processing time (Normal value): Master station (RWw) \rightarrow Remote device station (RWw)

The following shows the transmission time required for setting Point setting (Coincidence output 1) (RWw0 to RWw1) to the high-speed counter module. (The processing time required for transmitting Setting change request (Coincidence output 1) (RY14) to the high-speed counter module is not included.)
$(\mathrm{SM} \times \mathrm{n} 2)+(\mathrm{LS} \times 1)+$ Processing time of the high-speed counter module $\left(\Delta \mathrm{T}_{1}\right)$

- SM: Scan time of the program in the master station
- LS: Link scan time
- n 2 : The value provided by rounding up the value after the decimal point of ($\mathrm{LS} \div \mathrm{SM}$)

(6) Examples of response delay time in the synchronous communication mode

An example is described in (a) to (d) regarding the operation of the coincidence output function in the following condition.

- Master/local module is the QD77GF16
- Block data assurance per station is set

Ex. Operation of the coincidence output function

(a) Processing time (Normal value): Master station (RY) \rightarrow Remote device station (RY)

The following shows the processing time required until the high-speed counter module starts pulse input after CH \square Count enable command (RY24, RY3C) is turned on.
$(S M \times n 2)+(C T \times 1)+$ Processing time of the high-speed counter module $\left(\Delta T_{1}\right)$

- SM: Scan time of the program in the master station
- CT: Synchronization cycle
- n2: The value provided by rounding up the value after the decimal point of (CT \div SM)
(b) Processing time (Normal value): Master station (RWr) \leftarrow Remote device station (RWr)
The following shows the processing time required until a count value is read by the master station after the count value is counted by the high-speed counter module.
$(S M \times 1)+(C T \times n 1)+$ Processing time of the high-speed counter module $\left(\Delta T_{1}+\Delta T_{4}\right)$
- SM: Scan time of the program in the master station
- CT: Synchronization cycle
- n 1 : The value provided by rounding up the value after the decimal point of $(S M \div C T)$
(c) Processing time (Normal value): Master station (RX) \leftarrow Remote device station (RX)

The following shows the processing time required until Coincidence output 1 (RX 10) is transmitted to the master station after the high-speed counter module receives Reset command (Coincidence output 1) (RY10). (The processing time required for transmitting Reset command (Coincidence output 1) (RY10) to the highspeed counter module is not included.)
$(S M \times 1)+(C T \times n 1)+$ Processing time of the high-speed counter module $\left(\Delta T_{1}+\Delta T_{4}\right)$

- SM: Scan time of the program in the master station
- CT: Synchronization cycle
- n 1 : The value provided by rounding up the value after the decimal point of $(S M \div C T)$
(d) Processing time (Normal value): Master station (RWw) \rightarrow Remote device station (RWw)

The following shows the transmission time required for setting Point setting (Coincidence output 1) (RWw0 to RWw1) to the high-speed counter module. (The processing time required for transmitting Setting change request (Coincidence output 1) (RY14) to the high-speed counter module is not included.)
$(S M \times n 2)+(C T \times 1)+$ Processing time of the high-speed counter module $\left(\Delta T_{1}\right)$

- SM: Scan time of the program in the master station
- CT: Synchronization cycle
- n2: The value provided by rounding up the value after the decimal point of (CT \div SM)

Appendix 5 EMC and Low Voltage Directives

In each country, laws and regulations concerning electromagnetic compatibility (EMC) and electrical safety are enacted. For the products sold in the European countries, compliance with the EU's EMC Directive has been a legal obligation as EMC regulation since 1996, as well as the EU's Low Voltage Directive as electrical safety regulation since 1997.

Manufacturers who recognize their products are compliant with the EMC and Low Voltage Directives are required to attach a "CE marking" on their products in European countries.
In some other countries and regions, manufacturers are required to make their products compliant with applicable laws or regulations and attach a certification mark on the products as well (such as UK Conformity Assessed (UKCA) marking in the UK, and Korea Certification (KC) marking in South Korea).
Each country works to make their regulatory requirements consistent across countries based on international standards. When the requirements are consistent, measures to comply with the EMC and electrical safety regulations become common across countries.
The UK and South Korea have enacted EMC regulations whose requirements are consistent with those of the EMC Directive.
The UK has also enacted electrical safety regulations whose requirements are consistent with those of the Low Voltage Directive. In this section, the requirements of the EMC and Low Voltage Directives are described as examples of those of the EMC and electrical safety regulations.

Appendix 5.1 Measures to comply with the EMC directive

The EMC Directive specifies that "products placed on the market must be so constructed that they do not cause excessive electromagnetic interference (emissions) and are not unduly affected by electromagnetic interference (immunity)".
This section summarizes the precautions on compliance with the EMC Directive of the machinery constructed with the module.
These precautions are based on the requirements and the standards of the regulation, however, it does not guarantee that the entire machinery constructed according to the descriptions will comply with abovementioned directives. The method and judgement for complying with the EMC Directive must be determined by the person who constructs the entire machinery.

(1) EMC Directive related standards

(a) Emission requirements

Specification	Test item	Test details	Standard value
EN61131-2: 2007	CISPR16-2-3 Radiated emission ${ }^{*}$	Radio waves from the product are measured.	- $30 \mathrm{M}-230 \mathrm{MHz}$ QP: $40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}(10 \mathrm{~m}$ in measurement range) ${ }^{* 1}$ - $230 \mathrm{M}-1000 \mathrm{MHz}$ QP: $47 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ (10 m in measurement range)
	CISPR16-2-1, CISPR16-1-2 Conducted emission ${ }^{*}{ }^{2}$	Noise from the product to the power line is measured.	-150k-500kHz QP: 79dB, Mean: 66dB *1 - $500 \mathrm{k}-30 \mathrm{MHz}$ QP: 73dB, Mean: 60dB

[^4](b) Immunity requirements

Specification	Test item	Test details	Standard value
EN61131-2: 2007	EN61000-4-2 Electrostatic discharge immunity ${ }^{* 1}$	Immunity test in which electrostatic is applied to the cabinet of the equipment.	- 8kV Air discharge - 4kV Contact discharge
	EN61000-4-3 Radiated, radio-frequency, electromagnetic field immunity ${ }^{* 1}$	Immunity test in which electric fields are irradiated to the product.	80\% AM modulation@1kHz - 80M-1000MHz: 10V/m -1.4G-2.0GHz: 3V/m - $2.0 \mathrm{G}-2.7 \mathrm{GHz}: 1 \mathrm{~V} / \mathrm{m}$
	EN61000-4-4 Electrical fast transient/burst immunity ${ }^{*}$	Immunity test in which burst noise is applied to the power line and signal line.	- AC/DC main power, I/O power, AC I/O (unshielded): 2 kV - DC I/O, analog, communication: 1 kV
	EN61000-4-5 Surge immunity ${ }^{*}{ }^{1}$	Immunity test in which lightning surge is applied to the power line and signal line.	- AC power line, AC I/O power, AC I/O (unshielded): 2kV CM, 1kV DM - DC power line, DC I/O power: 0.5kV CM, DM - DC I/O, AC I/O (shielded), analog ${ }^{*}$, communication: 1 kV CM
	EN61000-4-6 Immunity to conducted disturbances, induced by radiofrequency fields ${ }^{* 1}$	Immunity test in which high frequency noise is applied to the power line and signal line	$0.15 \mathrm{M}-80 \mathrm{MHz}$, 80\% AM modulation@1kHz, 10Vrms
	EN61000-4-8 Power-frequency magnetic field immunity ${ }^{*}$	Immunity test in which the product is installed in inductive magnetic field	$50 \mathrm{~Hz} / 60 \mathrm{~Hz}, 30 \mathrm{~A} / \mathrm{m}$
	EN61000-4-11 Voltage dips and interruption immunity ${ }^{* 1}$	Immunity test in which power supply voltage is momentarily interrupted	- Apply at $0 \%, 0.5$ cycles and zero-cross point - 0\%, 250/300 cycles ($50 / 60 \mathrm{~Hz}$) - 40\%, 10/12 cycles ($50 / 60 \mathrm{~Hz}$) - $70 \%, 25 / 30$ cycles ($50 / 60 \mathrm{~Hz}$)

*1 The module is an open type device (a device designed to be housed in other equipment) and must be installed inside a conductive control panel. The tests were conducted with the programmable controller installed in a control panel.
*2 The accuracy of an analog-digital converter module may temporarily vary within $\pm 10 \%$.

(2) Installation in a control panel

The module is open type devices and must be installed inside a control panel. This ensures safety as well as effective shielding of programmable controller-generated electromagnetic noise.
(a) Control panel

- Use a conductive control panel.
- When securing the top or bottom plate using bolts, cover the grounding part on the control panel so that the part will not be painted.
- To ensure electrical contact between the inner plate and control panel, take measures such as covering the bolts so that conductivity can be ensured in the largest possible area.
- Ground the control panel with a thick ground cable so that low impedance can be ensured even at high frequencies.
- Holes in the control panel must be 10 cm diameter or less. If the holes are larger than 10 cm , radio wave may be emitted. In addition, because radio waves leak through a clearance between the control panel and its door, reduce the clearance as much as possible.
Our tests have been carried out on a panel having the attenuation characteristics of 37 dB (max.) and 30 dB (mean) (measured by 3 m method, 30 to 300 MHz).
(b) Wiring of power cables and ground cables
- Near the power supply part, provide a ground point to the control panel. Ground the FG terminal with the thickest and shortest possible ground cable (30 cm or shorter).

(3) Cables

Use shielded cables for the cables which are connected to the module and run out from the control panel. If a shielded cable is not used or not grounded correctly, the noise immunity will not meet the specified value.

(a) Cables for the CC-Link IE Field Network

The precautions for using CC-Link IE Field Network cables are described below.

- Shielded cables should be used for the CC-Link IE Field Network. Strip a part of the jacket as shown below and ground the exposed shield in the largest possible area.

(b) Grounding the cable clamp

Use shielded cables for external wiring and ground the shields of the external wiring cables to the control panel with the AD75CK-type cable clamp (Mitsubishi). (Ground the shield section 20 to 30 cm away from the module.)

For details of the AD75CK, refer to the following.
[] AD75CK-type Cable Clamping Instruction Manual

(4) External power supply

- Use a CE-marked product for an external power supply and always ground the FG terminal. (External power supply used for the tests conducted by Mitsubishi: TDK-Lambda DLP-120-24-1, IDEC PS5R-SF24, PS5RF24)
- Use a power cable of 10 m or shorter when connecting it to the module power supply terminal.

(5) Encoder and controller

- Install the DC power connected to the encoder inside the same control panel as the high-speed counter module.
- Use a cable of 3 m or shorter between the encoder for the open collector output and the pulse input terminal.
- Use a cable of 10 m or shorter between the encoder for the differential output and the pulse input terminal.
- Use cables of 30 m or shorter between the high-speed counter module and the external output/the highspeed counter module and the pulse input terminal.
- Be sure to attach ferrite cores to the DC power cables to be connected to the high-speed counter module and the controller. The ferrite core ZCAT3035-1330 (manufactured by TDK Corporation) is recommended.

(6) Others

(a) Ferrite core

A ferrite core has the effect of reducing radiated noise in the 30 MHz to 100 MHz band. It is recommended to attach ferrite cores if shield cables coming out of the control panel do not provide sufficient shielding effects. Note that the ferrite cores must be attached at the position closest to the cable hole inside the control panel. If attached at an improper position, the ferrite core will not produce any effect.
For the FG terminal on a main module that is connected to the external power supply, the external power supply of an extension module, and CC-Link IE Field Network cables, attach a ferrite core 4 cm away from the module.
(Ferrite core used for the tests conducted by Mitsubishi: NEC TOKIN ESD-SR-250, TDK ZCAT3035-1330)

Appendix 5.2 Requirements to compliance with the low voltage

The module operates at the rated voltage of 24VDC.
The Low Voltage Directive is not applied to the modules that operate at the rated voltage of less than 50VAC and 75VDC.

Appendix 6 Checking Serial Number and Function Version

The serial number and function version of the high-speed counter module can be checked on the rating plate.

Appendix 7 Addition and Change of Functions

Appendix 7.1 Additional function

The following table lists the functions added to the high-speed counter module and the production information and the profile version of the module supporting the added functions.

Additional function	Serial number (first five digits) of highspeed counter module	Profile*2	Reference
CC-Link IE Field Network synchronous communication function	15102 or later	Ver. 00 or later, or the profile pre-registered in the engineering tool below - GX Works2 with Version 1.501X or later - GX Works3 with Version 1.000A or later	$\begin{aligned} & \text { Page 159, Section } \\ & 8.15 \end{aligned}$
CC-Link IE Field Network synchronous communication function (addition of a synchronization cycle (0.8 to 10 ms) of the master station) ${ }^{* 1}$	17022 or later	Ver. 00 or later, or the profile pre-registered in the engineering tool below - GX Works3 with Version 1.000A or later	$\begin{aligned} & \text { Page 159, Section } \\ & 8.15 \end{aligned}$
Data backup/restoration	17122 or later	No restriction with the version	[] iQ Sensor Solution Reference Manual
Coincidence output enable command setting (address: $0^{0106_{H}}$)		Ver. 00 or later	Page 291, Appendix 3 (6)

*1 The firmware version of the RJ71GF11-T2 and RJ71EN71 used as the master station must be 03 or later.
*2 For how to check the profile version, refer to the following.
\longmapsto Page 56, Section 5.2 (5) (a)

Appendix 7.2 Change of function

The following table lists the changed functions of the high-speed counter module and the operation differences between the modules with different serial numbers.

Changed function	Serial number (first five digits) is 15101 or earlier	Serial number (first five digits) is 15102 or later	Reference
REMFR/REMTO instruction	The REMFR/REMTO instruction is accepted even if the network parameter written to the CPU module is not correct.	The REMFR/REMTO instruction is not accepted if the network parameter written to the CPU module is not correct. Incorrect network parameter access error occurs (minor error, $01 \mathrm{~A} 0_{\mathrm{H}}$).	-
Following operations on the "CC IE Field Configuration" window - [CC IE Field configuration] \Rightarrow [Online] \Rightarrow [Parameter Processing of Slave Station] - [CC IE Field configuration] \Rightarrow [Online] \Rightarrow [Command Execution of Slave Station]	"Parameter Processing of Slave Station" or "Command Execution of Slave Station" is accepted even if the network parameter written to the CPU module is not correct.	"Parameter Processing of Slave Station" or "Command Execution of Slave Station" is not accepted if the network parameter written to the CPU module is not correct. Incorrect network parameter access error occurs (minor error, $01 \mathrm{AO}_{\mathrm{H}}$).	Page 84, Section 7.1

Appendix 7.3

Precautions for the high-speed counter module replacement

This section describes precautions when replacing the high-speed counter module before function addition with the high-speed counter module after function addition.

(1) Drive mode switch

The high-speed counter module after the CC-Link IE Field Network synchronous communication function is added has the function of drive mode switch, and the default value of the mode switch setting is the automatical judgment mode. Therefore, if the simple motion module is used as the master station with the mode switch setting not having been changed to the normal mode, the high-speed counter module automatically operates in the synchronous communication mode, updates the present value synchronized with the synchronization cycle of the simple motion module.
For details on each function, refer to the following.

- Drive mode switch (5 Page 102, Section 8.2)
- CC-Link IE Field Network synchronous communication function (\wp Page 159, Section 8.15) In addition, if the parameter where "RWw/RWr Setting" is not set to be RWw3F/RWr3F is used in the synchronous communication mode, an error occurs. (RWw/RWr setting error (error code: 0E00 ${ }_{\mathrm{H}}$))

(a) Action

The following table lists how to set parameters depending on the module operation.

Desired operation	Setting
Same operation with the high-speed counter module before the CC-Link IE Field Network synchronous communication function is added	Change Mode switch setting (address: 0000_{H}) to Normal mode (0) in the parameter settings. When Normal mode (0) is set, RWw/RWr setting error (error code: 0E00 ${ }_{H}$) and Synchronous communication mode setting error (error code: 0170_{H}) do not occur and the cam switch function and the modes in $\mathrm{CH} \square$ Operation mode (except the normal mode) can be used.
Operation in the synchronous communication mode	Set the following in the parameter settings. - Mode switch setting (address: 0000_{H}): Automatical judgment mode (9) - Comparison output setting (address: 0100_{H}): Coincidence Output Function (0) - CHD Operation mode setting (address: 0120 ${ }_{\mathrm{H}}, 0140_{\mathrm{H}}$): Normal Mode (0) In addition, set values to "RWw/RWr Setting" so that RWw3F/RWr3F is refreshed.

Appendix 8 External Dimensions

0 to 9

1-phase multiple of 1 104
1-phase multiple of 2 104
2-phase multiple of 1 104
2-phase multiple of 2 105
2-phase multiple of 4 105

A

Applicable DIN rail model (compliant with IEC 60715)64
Applicable master station 55
Applicable systems 55
Application 17
B
Bending radius of the Ethernet cable 69
C
Calculating current consumption 34
Cam switch function 129
Cam switch output channel assignment setting (address: 0105H) 290
Cam switch output signal (RW r2) 276
Cam switch output terminal status (RWr3) 276
Cam switch output unit assignment setting (address: 0104H) 290
CC-Link IE Field Network diagnostic function 189
CC-Link IE Field Network synchronous communication function 159
CH 1 to CH 2 Cam switch execute command/PWM output start command (RY26, RY3E) 271
CH 1 to CH 2 Cam switch execute/PWM output (RX26, RX3E) 262
CH1 to CH2 Coincidence output enable command (RY20, RY38) 270
CH 1 to CH 2 Count down command
(RY22, RY3A) 270
CH1 to CH2 Count enable command (RY24, RY3C) 271
CH 1 to CH 2 Count source selection
(address: 0121H, 0141H) 291
CH 1 to CH 2 Counter format
(address: 0124H, 0144H) 293
CH 1 to CH 2 Counter function detection (RX25, RX3D) 262
CH 1 to CH 2 Counter function selection (address: 0126H, 0146H) 294
CH 1 to CH 2 Counting speed setting (address: 0123H, 0143H) 292
CH 1 to CH 2 Cycle setting (PWM output)
(RWw20 to RWw21, RWw38 to RWw39) 286
CH 1 to CH 2 Cycle setting (Sampling counter/Periodic pulse counter) (RWw17, RWw2F) 284
CH 1 to CH 2 Error reset command (RY36, RY4E)273
CH 1 to CH 2 Error status (RX36, RX4E) 267
CH 1 to CH 2 External control input response time setting (address: 0129H, 0149H). 295
CH 1 to CH 2 External input status
(RWr21, RWr39) 280
CH1 to CH2 External preset/replace (Z Phase) request detection (RX23, RX3B) 261
CH 1 to CH 2 External preset/replace (Z Phase)request detection reset command (RY23, RY3B)270
CH 1 to CH 2 Function input logic setting (address: $0127 \mathrm{H}, 0147 \mathrm{H}$) 294
CH 1 to CH 2 Latch count value (Latch counter input terminal) (RWr18 to RWr19, RWr30 to RWr31) . . . 278CH 1 to CH 2 Latch count value update flag (Latch counterinput terminal) (RX2B, RX43)265
CH 1 to CH 2 Latch count value update flag reset command (Latch counter input terminal)(RY2A, RY42)272
CH 1 to CH 2 Latch count value update flag reset completed (Latch counter input terminal)(RX2A, RX42) .264
CH 1 to CH 2 Latch count value/Sampling countvalue/Periodic pulse count, difference value(RW r12 to RW r13, RWr2A to RWr2B)277
CH 1 to CH 2 Latch counter input logic setting (address: 0128H, 0148H) 294
CH 1 to CH 2 Latest error code (RWr22, RWr3A) 280
CH 1 to CH 2 Latest warning code (RWr23, RWr3B) 280
CH 1 to CH 2 Measured frequency value/Measuredrotation speed value (RWr 1 A to $\mathrm{RWr1B}, \mathrm{RWr32}$ toRWr33).278
CH 1 to CH 2 Measured pulse value (Function input terminal) (RWr1C to RWr1D, RWr34 to RWr35) . . 278CH 1 to CH 2 Measured pulse value (Latch counter inputterminal) (RWr1E to RWr1F, RWr36 to RWr37). . . 278CH 1 to CH 2 Measured pulse value update flag(Function input terminal) (RX32, RX4A) .266
CH 1 to CH 2 Measured pulse value update flag (Latch counter input terminal) (RX34, RX4C) 266
CH 1 to CH 2 Measured pulse value update flag resetcommand (Function input terminal) (RY31, RY49)
272CH 1 to CH 2 Measured pulse value update flag resetcommand (Latch counter input terminal) (RY33, RY4B)273CH 1 to CH 2 Measured pulse value update flag resetcompleted (Function input terminal) (RX31, RX49)
266
CH 1 to CH 2 Measured pulse value update flag resetcompleted (Latch counter input terminal) (RX33, RX4B)266CH 1 to CH 2 Moving average count (Frequencymeasurement/Rotation speed measurement)(RWw19, RWw31)285
CH 1 to CH 2 Number of pulses per rotation
(RWw1A to RWw1B, RWw32 to RWw33). 285
CH 1 to CH 2 ON width setting (PWM output)
(RWw1E to RWw1F, RWw36 to RWw37) 286
CH 1 to CH 2 ON width setting change completed(PWM output) (RX35, RX4D)267
CH 1 to CH 2 ON width setting change request (PWM output) (RY35, RY4D) 273
CH1 to CH2 Operation mode (address: 0620H, 0640H)297
CH 1 to CH 2 Operation mode setting(address: $0120 \mathrm{H}, 0140 \mathrm{H}$).291
CH 1 to CH 2 Periodic pulse count value update check
(RWr16 to RWr17, RWr2E to RWr2F) 277
CH 1 to CH 2 Periodic pulse count, present value(RWr14 to RWr15, RWr2C to RWr2D).277
CH1 to CH2 Phase Z setting (address: 0125H, 0145H). 293
CH1 to CH2 Present value (RWr10 to RWr11, RWr28 to RWr29) 277
CH 1 to CH 2 Preset value setting
(RWw14 to RWw15, RWw2C to RWw2D) 283
CH1 to CH2 Preset/replace command (RY21, RY39) 270
CH 1 to CH 2 Preset/replace completion (RX21, RX39) 261
CH 1 to CH 2 Pulse input mode (address: $0122 \mathrm{H}, 0142 \mathrm{H}$) 292
CH1 to CH2 Pulse measurement setting (Function inputterminal) (address: 012AH, 014AH). 296
CH 1 to CH2 Pulse measurement setting (Latch counterinput terminal) (address: 012BH, 014BH). 296CH 1 to CH 2 Pulse measurement start command(Function input terminal) (RY30, RY48) 272CH 1 to CH2 Pulse measurement start command (Latchcounter input terminal) (RY32, RY4A) 273
CH 1 to CH2 PWM output assignment setting (RWw1D, RWw35) 286
CH 1 to CH 2 Ring counter lower limit value (RWw10 to RWw11, RWw28 to RWw29) 283
CH1 to CH2 Ring counter upper limit value
(RWw12 to RWw13, RWw2A to RWw2B) 283
CH 1 to CH 2 Selected counter function (address: 0621H, 0641H). 297
CH1 to CH2 Selected counter function start comman(RY25, RY3D)271
CH 1 to CH2 Setting change completed (Sampling
counter/Periodic pulse counter) (RX27, RX3F). 262
CH 1 to CH 2 Setting change request (Sampling
counter/Periodic pulse counter) (RY27, RY3F) 271
CH 1 to CH 2 Status (RWr20, RWr38). 279CH 1 to CH 2 Time unit setting (Frequencymeasurement/Rotation speed measurement)
(RWw18, RWw30) 285
CH 1 to CH 2 Time unit setting (Sampling counter/Periodicpulse counter) (RWw16, RWw2E)284
CH 1 to CH 2 Update flag (Latch count value/Samplingcount value/Periodic pulse count value) (RX29, RX41)264
CH 1 to CH 2 Update flag (Measured frequencyvalue/Measured rotation speed value) (RX2D, RX45)265
CH 1 to CH 2 Update flag reset command (Latch countvalue/Sampling count value/Periodic pulse count value)(RY28, RY40)272
CH1 to CH2 Update flag reset command(Measured frequency value/Measured rotation speedvalue) (RY2C, RY44)272CH 1 to CH 2 Update flag reset completed (Latch countvalue/Sampling count value/Periodic pulse count value)(RX28, RX40).263
CH1 to CH2 Update flag reset completed (Measuredfrequency value/Measured rotation speed value)
(RX2C, RX44) 265
CH1 to CH2 Warning status (RX37, RX4F) 267
Changing the network configuration 92
Changing the parameter without changing the network configuration 96
Channel assignment (Coincidence output 1 to 4) (address: 0600H) 296
Checking by CH 1 to CH 2 Latest error code (RWr22, RWr3A) 223
Checking by CH 1 to CH 2 Latest warning code (RWr23, RWr3B) 224
Checking by executing a command of the slave station221
Checking for the error codes and the warning codes221
Checking the LEDs 243
Coincidence output 1 to 4 (RX10 to RX13) 259
Coincidence output channel assignment setting (address: 0101H) 289
Coincidence output comparison condition setting (address: 0102H) 289
Coincidence output enable command setting (address: 0106H) 291
Coincidence output function 116
Comparison output function 114
Comparison output setting (address: 0100H) 289
Connectable modules 55
Connecting extension modules 60
Connecting the Ethernet cable 67
Connector crimp tool 72
Connectors for external devices 24,72
Control cycle of the high-speed counter module 305
Count disable function. 143
Count disable/preset/replace function 154
Counter function selection 141
Counter value greater/smaller signal (RWrO) 275
CW/CCW 104
Cyclic data update watch function. 182
Cyclic data update watch time setting (address: 0003H) 288
D
D LINK LED 24
Details of remote buffer memory addresses. 287
Details of remote I/O signals 256
Details of remote registers 275
DIN rail hook 24
DIN rail stopper 64
Disconnecting 68
E
Enable command (Coincidence output 1 to 4)
RY18 to RY1B) 269
Encoders that can be connected 78
EQU1 to EQU4 LED 24
EQU1 to EQU4 terminal status (RWr1) 275
ERR. LED 24
Error code list 225
Error history (address: OAOOH to OAFFH) 298
Error history clear command (address: 1000H) 299
Error history clear completed (address: 1001H) 299
Error notification function 183
Error status flag (RXA) 259
Ethernet cable 55
Extended parameter area (address: 1500H to 1FFFH)302
Extended parameter area (address: 1580 H to 1CA1H)303
Extension connector cover 25
External dimensions 319
External power supply monitor request flag (RY1F) 270
External power supply monitor state flag (RX1F) 260
External power supply monitoring function 187
F
Features 18
FNC/LAT LED 24
Frequency measurement function 162
Function at the extension module installation 186
G
General specifications 27
I
I/O interfaces with external devices 73
Initial data processing completion flag (RY8) 268
Initial data processing request flag (RX8) 257
Initial data setting completion flag (RX9) 258
Initial data setting request flag (RY9) 268
Input response time setting (address: 0001H) 287
Input response time setting function 188
Installation and wiring 57
Installation direction 59
Installation environment 58
Installation position. 58
Internal control cycle and response delay time 305
L
Latch counter function (counter function selection)145
Latch counter function by latch counter input terminal139
Latch counter/preset/replace function. 156
Laying Ethernet cables 69
Linear counter function 107
List of remote buffer memory 44
List of remote I/O signals 38
List of remote register. 42
M
Maintenance and inspection 219
Maximum station-to-station distance (Maximum Ethernet cable length) 69
MODE LED 24
Mode switch setting (address: 0000H) 287
Module operation information initialization command(address: 1004H).301
Module operation information initialization completed(address: 1005H).302
Mounting the modules on a DIN rail 62
0
Operation mode list 99
Output HOLD/CLEAR setting (address: 0002H) 288
Output HOLD/CLEAR setting function 181
P
Packing list 15
Parameter area initialization command (address: 1002H). 300
Parameter area initialization completed (address: 1003H). 301
Parameter setting 84
Part names 23
Performance specifications 29
Periodic pulse counter function 151
Phase difference 33
Phi A/phi B/phi Z LED 24
Point setting (Coincidence output 1 to 4)/Lower limit value setting (Coincidence output 1 to 4) (RWw0 to RWw1, RWw4 to RWw5, RWw8 to RWw9, RWwC toRWwD).281
Precautions for programming 192
Preset/replace (at coincidence output) function 126
Preset/replace function. 134
Preset/replace setting at coincidence output (address: 0103H). 289
Procedure for programming 194
Program example 195
Program example of the frequency measurement mode215
Program example of the pulse measurement mode217
Program example of the PWM output mode 218
Program example of the rotation speed measurement mode 216
Program example under the normal mode (when the cam switch function is set with the comparison output function) 213
Program example under the normal mode (when the coincidence output is set with the comparison output function) 208
Programming 192
Pulse input mode. 104
Pulse measurement function 170
PW LED 24
PWM output function 174
R
Remote READY (RXB). 259
Reset command (Coincidence output 1 to 4) (RY10 to RY13). 269
Ring counter function 109
Rotation speed measurement function 166
RUN LED 24
Sampling counter function 148
Setting change completed (Coincidence output 1 to 4)
(RX14 to RX17) 260
Setting change request (Coincidence output 1 to 4) (RY14 to RY17) 269
Software package 55
Station number setting 57
Station number setting switch 24
System configuration 54

T

Term 13
Terminal block for module power supply and FG 24
The procedure before operation 52
To replace the module 52
Troubleshooting 221
Troubleshooting by Symptom 247
U

U
Unit test 246
Upper limit value setting (Coincidence output 1 to 4)(RWw2 to RWw3, RWw6 to RWw7, RWwA to RWwB,RWwE to RWwF)282
W

W
Warning status flag (RX7) 256
Wiring of connectors for external devices 70
Wiring of Ethernet cable. 67
Wiring with terminal block for module power supply and FG 65

and FG
*The manual number is given on the bottom left of the back cover.

Print date	*Manual number	Revision
March, 2013	SH(NA)-081129ENG-A	First edition
December, 2013	SH(NA)-081129ENG-B	Addition of CC-Link IE Field Network synchronous communication function
March, 2015	SH(NA)-081129ENG-C	Addition of MELSEC iQ-R series synchronous communication function
March, 2016	SH(NA)-081129ENG-D	Addition of the coincidence output enable command setting and the functions supporting iQSS
March, 2021	SH(NA)-081129ENG-E	Addition of security precautions
November, 2022	SH(NA)-081129ENG-F	Addition of descriptions of UKCA

Japanese manual version SH-081128-G
This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

WARRANTY

Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range

If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the product.
(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.

1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by industry standards, had been provided.
4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the instruction manual had been correctly serviced or replaced.
5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force majeure such as earthquakes, lightning, wind and water damage.
6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production

(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued. Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service

Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability

Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications

The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

TRADEMARKS

The company names, system names and product names mentioned in this manual are either registered trademarks or trademarks of their respective companies.

In some cases, trademark symbols such as ${ }^{\text {'TM, }}$ or ${ }^{\text {'®' }}$ are not specified in this manual.

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE : TOKYO BUILDING, 2-7-3 MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS : 1-14, YADA-MINAMI 5-CHOME , HIGASHI-KU, NAGOYA , JAPAN

[^5]
[^0]: *1 The time taken for the LINK LED to turn on after connection of the cable may vary. The LINK LED normally turns on in a few second. However, if link-up processing is repeated due to a condition of a device on the line, the longer time may be required. If the LINK LED does not turn on, refer to the following and take a corrective action.
 \hookleftarrow Page 245, Section 11.3 (7)

[^1]: ＊1 T＝Cycle time
 ＊2 Though the periodic pulse counter function can also be performed by CHロ Function input terminal（FUNC1，FUNC2）， the status of CHD Counter function detection（RX25，RX3D）does not change．

[^2]: T : Rotation speed measurement time unit

[^3]: *1 The function cannot be used with the cam switch function.

[^4]: *1 QP: Quasi-peak value, Mean: Average value
 *2 The module is an open type device (a device designed to be housed in other equipment) and must be installed inside a conductive control panel. The tests were conducted with the module installed in a control panel.

[^5]: When exported from Japan, this manual does not require application to the
 Ministry of Economy, Trade and Industry for service transaction permission

