& MITSUBISHI
ELECTRIC
Programmable Controller

eeeeee

MELSEC iQ-R Programming Manual

(Motion Module Instructions, Standard Functions/
Function Blocks)

-RD78G4
-RD78G8
-RD78G16
-RD78G32
-RD78G64
-RD78GHV
-RD78GHW

SAFETY PRECAUTIONS

(Read these precautions before using this product.)

Before using MELSEC iQ-R series programmable controllers, please read the manuals for the product and the relevant
manuals introduced in those manuals carefully, and pay full attention to safety to handle the product correctly.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

INTRODUCTION

Thank you for purchasing the Mitsubishi Electric MELSEC iQ-R series programmable controllers.

This manual describes the instructions and standard functions/function blocks required for programming.

Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the
functions and performance of the MELSEC iQ-R series programmable controller to handle the product correctly.

When applying the program examples provided in this manual to an actual system, ensure the applicability and confirm that it
will not cause system control problems.

Please make sure that the end users read this manual.

Relevant products

RD78G4, RD78G8, RD78G16, RD78G32, RD78G64, RD78GHV, RD78GHW

CONTENTS

SAFETY PRECAUTIONS . . . 1
INTRODUCTION. . . e e e e e e 1
RELEVANT MANUALS e e 7
TERMS . 8
GENERIC TERMS AND ABBREVIATIONS. e 9
MANUAL PAGE ORGANIZATION. e 10

PART 1 OVERVIEW

CHAPTER1 OVERVIEW 14
1.1 Instruction Configuration it i it ittt et ettt e 14
1.2 Data Specification Method i it i i ettt st aaa e 15
Bitdata ... 18
16-bit data (word data) e 19
32-bit data (double word data). e 20
Real number data (floating-pointdata) e 23
Character string data. e 25
1.3 Execution Condition it i e e e 27
1.4 Precautions on Programmingttt et e 28
Errors common to instructions. 28
Timer, long timer, and long retentive timertype labels 28
Operations arising when the OUT and SET/RST instructions of the same device areused. 28

PART 2 LISTS OF INSTRUCTIONS AND FUN/FB

CHAPTER 2 MOTION SYSTEM INSTRUCTIONS 30
21 Sequence INStrUCtIONSttt i it et ea e et aa e n e 30
2.2 Basic Instructions i et 31
2.3 Application INsStructions i i e e e e e e, 33
Program control. 33
Data ProCESSING. . . o o ot e e 33
SHNG PrOCESSING. - . o o oottt e 34
Real value proCessing oo 34
CHAPTER 3 STANDARD FUNCTIONS/FUNCTION BLOCKS 36
31 Standard Functions. i 36
3.2 Standard Function BIockst i i ity 41
CHAPTER 4 MOTION DEDICATED INSTRUCTIONS 43

PART 3 SEQUENCE INSTRUCTIONS

CHAPTER 5 SEQUENCE INSTRUCTIONS 46

5.1 OUtPUL INStrUCtioNS i ittt i i ettt e e et s 46
Out (excluding the timer and counter). 46

LONg M . .o e 50
COUN T .« o et 53
LONg COUNTEr 54
Setling deVICES . . . oo e 55
Resetting devices 57

PART 4 BASIC INSTRUCTIONS

CHAPTER 6 BASIC INSTRUCTIONS 60
6.1 Arithmetic Operation Instructions ittt it ettt aaaaenanennns 60
Adding 16-bit binary data. 60
Subtracting 16-bit binary data e 62
Adding 32-bit binary data. 64
Subtracting 32-bit binary data e 66
Multiplying 16-bit binary data. e 68
Dividing 16-bit binary data. 69
Multiplying 32-bit binary data. 70
Dividing 32-bit binary data. 71
Incrementing 16-bit binary data. 72
Decrementing 16-bit binary data 73
Incrementing 32-bit binary data. 74
Decrementing 32-bit binary data 75
6.2 Logical Operation InStructionsttt en i na e aaeeneennaennnnens 76
Performing an AND operation on 16-bitdata. 76
Performing an AND operation on 32-bitdata. e 77
Performing an OR operation on 16-bitdata. e 78
Performing an OR operation on 32-bitdata. 79
Performing an XOR operationon 16-bitdata e 80
Performing an XOR operation on 32-bitdata 81
Performing an XNOR operationon 16-bitdata 82
Performing an XNOR operationon 32-bitdata e 83
6.3 Data Conversion InStructionsttt i it ittt e 84
Two's complement of 16-bit binary data (signinversion). 84
Two's complement of 32-bit binary data (signinversion). 85
6.4 Data Transfer InStructionst i ittt ittt e 86
Transferring 16-bit binary data 86
Transferring 32-bit binary data e 87
Inverting and transferring 16-bit binary data 88
Inverting and transferring 32-bit binary data e 89
Inverting and transferring 1-bitdata. e 90
Transferring 1-bit data 91

PART 5 APPLICATION INSTRUCTIONS

CHAPTER 7 PROGRAM CONTROL 94
71 Program Execution Control Instructions it it et e i enas 94

Disabling/enabling interrupt programs. e e 94
7.2 Program Control InStructions ittt it i nn e aneraareansnnnennnnnnn 95

n
-
<
1]
-
<
O
&

Changing the program execution type to standby type. 95

Changing the program execution type to scan executiontype i 96
CHAPTER 8 DATA PROCESSING 97
8.1 Data Processing INStructions. i it e 97

Adding 16-bit binary data. 97

Adding 32-bit binary data. 98

Calculating the mean value of 16-bitbinary data 929

Calculating the mean value of 32-bitbinary data 100

Calculating the square root of 32-bit binary data. 101
CHAPTER 9 STRING PROCESSING 102
9.1 String Processing INsStructions ittt it it it e e 102

Transferring string data e 102

Transferring Unicode string data 104
CHAPTER 10 REAL VALUE PEOCESSING 105
10.1 Floating-point instruction. i i i i et et e 105

Adding single-precision real NnUMbeErs 105

Subtracting single-precision real nUMbers 106

Adding double-precision real numbers 107

Subtracting double-precision real numbers. 108

Multiplying single-precision real numbers 109

Dividing single-precision real numbers L 110

Multiplying double-precision real numbers 111

Dividing double-precision real numbers 112

Inverting the sign of single-precision real number. 113

Inverting the sign of double-precisionreal number 114

Transferring single-precision real number. e 115

Transferring double-precision real number 116

PART 6 STANDARD FUNCTIONS

CHAPTER 11 TYPE CONVERSION FUNCTIONS 118
111 Converting BOOL to WORDDttt it e it et e et et e aneaaaanesanennns 118
11.2 Converting BOOL toO DWORD. oottt e e it et e et ae e ae e aaeaaeanesanesnnn 119
11.3 Converting BOOL to INTo ittt ittt et e et nat e nanesanesanesanennnesanennns 120
11.4 Converting BOOL to DINTttt it ettt et et an e san s anasnasannssanssnns 121
11.5 Converting BOOLtO TIME ittt ittt aa st aa s anaesasannssanrsnns 122
11.6 Converting WORD to BOOLLttt ittt it et ee e aa e nan e sanesanesansannesanennns 123
11.7 Converting WORD to DWORD ittt ittt sttt et sttt a e anaanns 124
11.8 Converting WORD to INT it i i et ittt it sttt a it et e ennanens 125
11.9 Converting WORD to DINT ottt et et et e ae e an e ane s aanesansaneananennns 126
1110 Converting WORD to TIME i i i it ittt it ettt et e ne s 127
11.11 Converting DWORD to BOOL.ttt i et ittt st et a e e aa e aaaeanranennns 128
11.12 Converting DWORD tO WORNDottt i e it et e a e san e nanesanesnneranennns 129
11.13 Converting DWORD to INTttt i i i e ittt ittt st sttt et e ena s 130
11.14 Converting DWORD to DINTottt i et ettt st et a e e araasaeansnnannnnns 131

11.15 Converting DWORD to TIME. i i i it ettt et e it 132

1116 Converting INT to BOOLLttt it ettt et en e e s an e sanesaeennnesanennns 133

1117 Converting INTto WORDottt e et et s a e et ana s atesassannsnnnennns 134
11.18 Converting INT toO DWORDottt et ittt ta e an e s anesaneesansanesnnnennns 135
1119 Converting INT to DINTttt i et ittt et san e s annsanesanesaneannnennns 136
11.20 Converting INT toO REAL i it e ittt s aa s aa s anannennnsrannsnns 137
11.21 Converting INTtO LREALo i i it et e et i a i a i aa e nnanennns 138
11.22 Converting INT to TIME. i it ettt aee s an s aaesnaneanesaneananennns 139
11.23 Converting DINTto BOOLttt it i ittt it et it a st a e aaneaans 140
11.24 Converting DINTtO WORDttt e it et e an e an e aaesaaneransaneananennns 141
11.25 Converting DINTtO DWORD. ittt ettt it et e et et n e a s ntaasaeaaannannnnns 142 n
11.26 Converting DINT to INT it i it ittt et a et a s 143 IE
11.27 Converting DINT 0 REAL. it i i i it a et et i a s ataa s eaasnnannnnns 144 L
11.28 Converting DINT 0 LREAL. ottt et et ittt it e et a s an s sasanennannns 145
11.29 Converting DINTto TIME oo i it ittt it ettt ettt aa e eananens 146 4
11.30 Converting REAL tO INT i i et et e et san e annranennneeaneenns 147 8
11.31 Converting REAL to DINT i i i i it ettt et a e e a e aa s eaaneannnnns 148
11.32 Converting REALtO LREALttt it ettt a et e i ataaeaeaeanannnnns 149
11.33 Converting LREAL t0 INT i i i it ettt a s a e a s a s n e anenns 150
11.34 Converting LREAL t0 DINTot i e i it ittt it a st a e a e enn s 151
11.35 Converting LREAL O REALt i ettt et et et aa i aaeaeaeananennns 152
11.36 Converting TIME to BOOLttt ettt ettt et an e aaeeanenaneeaneenns 153
11.37 Converting TIME to WORDD ittt et et e ae e n e aan e aa e sansaneananennns 154
11.38 Converting TIME to DWORD.ottt ittt it e et s e e et et n e snraasaenesnnannnnns 155
11.39 Converting TIME to INT it i it et e ae e an e aae e aaanesaneananennns 156
11.40 Converting TIME to DINT it it et e ae et e n e aae e aa e saneananennns 157
CHAPTER 12 SINGLE VARIABLE FUNCTIONS 158
12,1 Calculating the Absolute Value i it it et s e aan e aneenns 158
12.2 Calculatingthe Square ROOt ittt it it aa et an e aneenaenaneranennns 159
12.3 Calculating the Natural Logarithm. i i i i et a i ae e annnas 160
12.4 Calculatingthe Common Logarithm i i ittt aa e annanns 161
12.5 Calculatingthe EXponent.t ittt ittt ienttraneraneraneraeenanesnnesnns 162
12,6 Calculatingthe Sine i i e i e ittt ittt 163
12,7 Calculatingthe Cosine it i i i i ittt et it a ittt aaaaans 164
12.8 Calculatingthe Tangentttt it et an e tan s aneranennneraneenns 165
12,9 Calculatingthe Arc Sinettt i i ittt ettt it et aaaaans 166
1210 Calculatingthe Arc Cosine.ttt i i i ittt ittt it a et et a e 167
12.11 Calculatingthe Arc Tangent. ittt it it an et anesaeennneranennns 168
CHAPTER 13 ARITHMETIC OPERATION FUNCTIONS 169
S T TR . Vo 11 169
13.2 Multiplication e 171
13.3 Subtraction.o e 173
134 DIVISION. ..o e e e 175
13.5 Remainder i it et e e s 177
13.6 Assignment (Move Operation)outiiit i e rnnrenaeeranenaneennnannesnnennns 178
CHAPTER 14 BOOLEAN FUNCTIONS 179
1L 5 T @ @ T Y- - 1 T o I 179

CHAPTER 15 SELECTION FUNCTIONS 180

15.1 Selecting the Maximum/Minimum Value i it et e e ea e ennns 180

PART 7 STANDARD FUNCTION BLOCKS

CHAPTER 16 BISTABLE FUNCTION BLOCKS 184
16.1 Bistable Function Block (Set-Dominant). i ittt ae s 184
16.2 Bistable Function Block (Reset-Dominant). ittt inneenaeannns 185
CHAPTER 17 EDGE DETECTION FUNCTION BLOCKS 187
171 Detectinga RiSINg Edge ittt i i it ettt e et aa e a s 187
17.2 Detectinga Falling Edge. i ettt ettt aan e 188
CHAPTER 18 TIMER FUNCTION BLOCKS 189
181 Pulse Timer i i it ittt i i e i i i 189
18.2 ONDelay Timerottt i ittt et e e ettt aa e et et e 191
18.3 Off Delay Timer ottt it ettt et et aa s aa e sanesanesaneaanesanesnnnennns 193
18.4 Timer Function BIoCK i i i i i i et it s i st i 195

PART 8 MOTION DEDICATED INSTRUCTIONS

CHAPTER 19 MOTION DEDICATED INSTRUCTIONS 202
1L TR TR © 1Y - L 202
19.2 User Function Execution Instruction. i i ettt i iee e e e 203
INDEX 211
INSTRUCTION INDEX 212
REVISIONS . . . 214
WARRAN T Y L 215
INFORMATION AND SERVICES e e 216

TRADEMARKS . . 216

RELEVANT MANUALS

Manual name [manual number]

Description

Available form

MELSEC iQ-R Programming Manual (Motion Module Instructions, Instructions for the Motion module and standard functions/ Print book
Standard Functions/Function Blocks) function blocks e-Manual
[IB-0300431ENG] (This manual) PDF
MELSEC iQ-R Motion Module User's Manual (Startup) Specifications, procedures before operation, system Print book
[IB-0300406ENG] configuration, and wiring of the Motion module e-Manual
PDF
MELSEC iQ-R Motion Module User's Manual (Application) Functions, 1/0 signals, variables, labels, programming, and Print book
[IB-0300411ENG] troubleshooting of the Motion module e-Manual
PDF
MELSEC iQ-R Motion Module User's Manual (Network) Functions, parameter settings, troubleshooting, and buffer Print book
[IB-0300426ENG] memory of CC-Link IE TSN e-Manual
PDF
MELSEC iQ-R Programming Manual (Motion Control Function Blocks) | Motion control function blocks, variables, and programming Print book
[IB-0300533ENG] e-Manual
PDF
Motion Module Quick Start Guide Describes system startup, parameter settings, and e-Manual
[LO3191ENG] programming methods for first-time users of the Motion module | PDF
Motion Module Quick Start Guide (PLC CPU Ladder Program) Describes system startup, parameter settings, and e-Manual
[LO3194ENG] programming methods for first-time users of the Motion module | PDF
MELSEC iQ-R Programming Manual (Program Design) Program specifications (ladder, ST, FBD/LD, and SFC e-Manual
[SH-081265ENG] programs) PDF
GX Works3 Operating Manual System configuration, parameter settings, and online e-Manual
[SH-081215ENG] operations of GX Works3 PDF

For programs, refer to the following.

[TIMELSEC iQ-R Programming Manual (Program Design)

Point/®

e-Manual refers to the Mitsubishi Electric FA electronic book manuals that can be browsed using a dedicated

tool.
e-Manual has the following features:

» Required information can be cross-searched in multiple manuals.

« Other manuals can be accessed from the links in the manual.

» The hardware specifications of each part can be found from the product figures.

» Pages that users often browse can be bookmarked.

» Sample programs can be copied to an engineering tool.

TERMS

Unless otherwise specified, this manual uses the following terms.

Term

Description

Intelligent function module

A module that has functions other than input and output, such as the A/D and the D/A converter module.

Control CPU

A CPU module that controls connected 1/0O modules and intelligent function modules.
In a multiple CPU system, there are multiple CPU modules and each connected module can be controlled by a
different CPU module.

Output variable

An output argument of FB.

Dedicated Instruction

An instruction for using functions of the module.

Device

Various memory data in a module. There are devices handled in each bit and in each word.

Input variable

An input argument of FB.

Buffer memory

Memory in an intelligent function module for storing data such as setting values and monitored values.

Module label Alabel that represents one of memory areas (/O signals and buffer memory areas) specific to each module in a
given character string. GX Works3 automatically generates this label, which can be used as a global label in the
PLC CPU module.

Label A label that represents a device in a given character string.

Link device

A device in a module on CC-Link IE.

GENERIC TERMS AND ABBREVIATIONS

Unless otherwise specified, this manual uses the following generic terms and abbreviations.

Generic term/abbreviation Description

A/D converter module It indicates MELSEC iQ-R series analog-digital converter module, channel isolated analog-digital converter
module, and high speed analog-digital converter module.

CPU module It indicates MELSEC iQ-R series CPU module.

D/A converter module It indicates MELSEC iQ-R series digital-analog converter module, channel isolated digital-analog converter
module, and high speed digital-analog converter module.

MCFB It indicates Motion Control FB.

ST language It indicates structured text language.

Engineering tool It indicates GX Works3 and MR Configurator2.

Operand It indicates the devices, such as source data (s), destination data (d), number of devices (n), and others, used as
parts to configure instructions and functions.

Programmable controller CPU It indicates the ROOCPU, R01CPU, R02CPU, R04CPU, RO4ENCPU, RO8CPU, ROBENCPU, R16CPU,
R16ENCPU, R32CPU, R32ENCPU, R120CPU, and R120ENCPU.

1/0 module It indicates the input module, output module, I/O combined module, and interrupt module.

Motion system It indicates software that performs the motion control and the network control.

Motion module It indicates RD78G4, RD78G8, RD78G16, RD78G32, RD78G64, RD78GHV and RD78GHW.

10

MANUAL PAGE ORGANIZATION

In this manual, pages are organized and the symbols are used as shown below.

How to read Part 3 to Part 6

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.

@ —————| G(P).CEXECUTE
These instructions instruct the execution of processing in the Motion module.

@ —» sT

ENO:=G_CEXECUTE(EN,U,s1,52,d1,d2);
ENO:=GP_CEXECUTE(EN,U,s1,s2,d1,d2);

© ————»| HExecution condition

Instruction Execution condition
G.CEXECUTE _,_L
GP.CEXECUTE f

Setting.data.
oO— HDescription, range, data type

Operand Description Range Data type

() Start /0 number (first three digits in four-digit hexadecimal 00H to FEH ANY16
representation) of a module

J (s1) Start device where control data is stored Page 119 Control data ANY16 \J

60— HApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB sw G, RWw, RWr, LW K,H

) — — ¢} — ¢}

(s1) - - [e] — —

(s2) — —) — —

(d1) — —) — —

(d2) o — o — —

@ ——————» mControl data

Operand: (s1)

Device Item Description Setting range | Set by
+0 Allowable number of | Sets the allowable number of words of response data that can be stored in (d1). 1108192 User
response data

+1 Completion status The completion status is stored upon completion of the instruction. — System
A N,—\
/W_

. .
@ ———— _Processing.details

« The request data stored in the device specified by (s2) and later is handed over to the Motion module specified by (U), and
the response data is stored in the device specified by (d1) and later. However, if the received response data is larger than
ble number of response data speei he allowable number of respol and the

T~ T~ T~

©® ———» _Precautions

\ o\

* The G(P).CEXECUTE instruction cannot be executed additionally while another G(P).CEXECUTE instruction is being
executed. (If attempted, an error code (1802H) is stored in the completion status (S1)+1.

« The operand must be specified even when request data and response data are not required.

» Do not change each data (control data and request data, etc.) specified in the dedicated instruction until the dedicated
instruction process is completed.

©—————| _Operation.error

Error code ‘ Description

3402H ‘ The value input to (d) is -0, a subnormal number, NaN (not a number), or 2.

m

@ Instruction symbol
« An instruction symbol followed by parentheses indicates multiple instructions. For example, "+(_U)" indicates two
instructions: + and +_U.

Instruction symbol Meaning
Instruction symbol followed by "(P)" This instruction is executed only on the rising edge (off to on).
Instruction symbol followed by "(_U)" This instruction handles 16-bit or 32-bit unsigned binary data.

O Description formats of structured text language

Execution condition is input to EN of each structured text. And, execution result should be described for ENO.
© Execution condition (1=~ Page 27 Execution Condition)

O Description of operands, setting ranges, and data types

* For the data type, refer to the following.

[~ Page 15 Data Specification Method

© Devices that can be used as operands

Operand Bit Word Constant

Applicable device™! SB ‘ RX, RY, LB SW G, RWw, RWr, LW K, H

*1 For details on each device, refer to the following.
L1 MELSEC iQ-R CPU Module User's Manual (Application)
0 Control data. Some instructions require control data that determine the operations of the instructions. When control data

need to be set by a user, set values according the setting range.

@ Processing details of the instruction.

© Precautions

© Error code and error details if the instruction has any possible operation error

* For details, refer to the following.

[TIMELSEC iQ-R CPU Module User's Manual (Application)

* For the errors not provided here, refer to "List of Error Codes" in the following manual.
L1 MELSEC iQ-R Motion Module User's Manual (Application)

How to read Part 7 and Part 8

The following illustration is for explanation purpose only, and should not be referred to as an actual documentation.

©——»BOOL_TO_DINT
This function converts a value from BOOL data type to DINT data type.
@ Structured text

4:=BOOL_TO_DINT(s);

Setting. data

©——» mDescription, type, data type
Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable DINT
O— | » _Processing details

HOperation processing

« This function converts the value input to (s) from BOOL data type to DINT data type, and output the converted value from
(d)-

« When the input value is FALSE, 0 (DINT data type) is output.

« When the input value is TRUE, 1 (DINT data type) is output.

(s) (d)
| FALSE | —> 0]
[TRUE J—> [1 |
BOOL DINT

« Input a BOOL data type value to (s).

MOperation result
The operation processing is performed. The operation result is output from (d).

©®——— |, Operation.error

There is no operation error.

- T~]

@ Function symbol

O Description formats of structured text language

For instances, refer to the following.

[T1 MELSEC iQ-R Programming Manual (Program Design)

© Description of operands, types, and data types

+ For the data type, refer to the following.

(=5~ Page 15 Data Specification Method

O Processing details of the standard function or standard function block

© Error code and error details if the standard function or standard function block has any possible operation error
* For details, refer to the following.

LTIMELSEC iQ-R CPU Module User's Manual (Application)

« For the errors not provided here, refer to "List of Error Codes" in the following manual.
L[T1 MELSEC iQ-R Motion Module User's Manual (Application)

12

PART 1

OVERVIEW

This part consists of the following chapter.

1 OVERVIEW

13

1 OVERVIEW

1.1 Instruction Configuration

Many instructions available for motion systems are each divided into the instruction part and device part.

The instruction part and device part are used as follows.

* Instruction part: Indicates the function of the relevant instruction.

+ Device part: Indicates the data used for the instruction.

The device part is further classified to source data, destination data, and numerical data.

Source (s)

Source is the data used in the operation.
Depending on the label or device specified in each instruction, the source becomes as follows.

Type Description

Constant The constant specifies a numerical value used in the operation.
It is set during program creation and cannot be changed during program execution.

Bit device The user specifies the device where the data to be used in the operation is stored.

Word device Necessary data must be thus stored in the specified device before operation execution.

By changing the data to be stored in the specified device during program execution, the data to be used by the
instruction can be changed.

Destination (d)

Data after operation is stored in the destination area.

However, some instructions require the data to be used in the operation to be stored before the operation.
A label or device to store data must be set for the destination.

Numerical value (n)

For the numerical values of the numbers of devices, transfers, data, and character strings, specify those used by an
instruction which uses multiple devices or an instruction which specifies the numbers of repetitions, data to be processed, and
character strings.

A numerical value from 0 to 65535 or 0 to 4294967295 can be set for the size such as the number of devices, transfers, or
characters. The setting range varies depending on the instruction. For details, refer to the description of each instruction.
Note, however, that when the size specification such as the number of devices, transfers, or characters is 0, the relevant
instruction results in non-processing.

Point

Be careful when a large numerical value is used such as for the number of transfers. It lengthens the
processing time.

14 1 OVERVIEW
1.1 Instruction Configuration

1.2

Data Specification Method

The following table lists the types of data that can be used for instructions.

Data

Classification

Bit data

Bit data

16-bit data (word data)

16-bit signed binary data

16-bit unsigned binary data

32-bit data (double word data)

32-bit signed binary data

32-bit unsigned binary data

Real number data (floating-point data)

Single-precision real number data

Double-precision real number data

Character string data

Character string

Character string [Unicode]

Device data

The following table lists devices and constants that can be used to specify the setting data of instructions.

Data type Description Specifiable device/constant™!
Bit Bit data can be handled. « Bit device

« Bit specification of word device
Word Word data can be handled. * Word device

16-bit signed binary

16-bit unsigned binary

16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

- Digit-specified bit device (K1 to K4)2
» Decimal constant
* Hexadecimal constant

Double word

Double-word data can be handled.

32-bit signed binary

32-bit unsigned binary

Two consecutive sets of 32-bit data or 16-bit data can be handled.

The value range varies depending on whether the value is signed or unsigned.

« Word device

* Double-word device

- Digit-specified bit device (K1 to K8)2
« Decimal constant

» Hexadecimal constant

Single-precision real
number

Single-precision real number data (single-precision floating-point data) can be
handled.

* Word device
» Double-word device
» Real constant

Double-precision real
number

Double-precision real number data (double-precision floating-point data) can
be handled.

* Word device
» Double-word device
* Real constant

Character string

ASCII code and Shift JIS code character string data can be handled.

» Word device
« Character string constant

Character string [Unicode]

Unicode character string data can be handled.

» Word device
« Character string constant

Device name

A device can be specified directly.

« Device name corresponding to applicable
device

*1 Aconstant can be used in the data specified for the source (s) or numerical data (n) by an instruction.
*2 For the specification method, refer to the detail page of each data type.

1 OVERVIEW 1
1.2 Data Specification Method 5

16

Label data

The following table lists labels that can be used to specify the setting data of instructions.

EPrimitive data type

Data type (label)

Specifiable label

Bit
(BOOL)

« Bit type label

« Bit-specified word [unsigned]/bit string [16 bits] type label

« Bit-specified word [signed] type label

« Timer/retentive timer/long timer/long retentive timer type label contact/coil
« Counter/long counter type label contact/coil

Word [unsigned]/bit string [16 bits]

(WORD)

» Word [unsigned]/bit string [16 bits] type label
« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [unsigned]/bit string [32 bits]

(DWORD)

» Double word [unsigned]/bit string [32 bits] type label
« Current value of long timer/long retentive timer type label
« Current value of long counter type label

Word [signed]
(INT)

» Word [signed] type label
« Current value of timer/retentive timer type label
« Current value of counter type label

Double word [signed]
(DINT)

» Double word [signed] type label
« Current value of long timer/long retentive timer type label
« Current value of long counter type label

Single-precision real number
(REAL)

« Single-precision real data type label

Double-precision real number
(LREAL)

» Double-precision real data type label

Time
(TIME)

« Time type label

Character string
(STRING)

« Character string type label

Character string [Unicode]
(WSTRING)

« Character string [Unicode] type label

1 OVERVIEW

1.2 Data Specification Method

HEGeneric data type

The generic data type is the data type of the labels which summarize several primitive data types.
Generic data types are used when multiple data types are allowed for arguments and return values of functions or function

blocks.

Labels defined in generic data types can be used in any sub-level data type.

Data type (label) Specifiable data type
ANY"" | ANY_ELEMENTARY ANY_BIT ANY_BOOL Bit
ANY_BITADDR’ Bit
ANY16_U Word [unsigned]/bit string [16 bits]
ANY32_U Double word [unsigned]/bit string [32
bits]
ANY_WORDADDR | ANY_NUM | ANY_INT | ANY16 | ANY16_S Word [signed]
ANY16_U Word [unsigned]/bit string [16 bits]
ANY32 | ANY32_S Double word [signed], time
ANY32_U Double word [unsigned]/bit string [32
bits]
ANY_REAL ANYREAL_32 Single-precision real number
ANYREAL_64 Double-precision real number
ANY_STRING ANYSTRING_SINGLE | String

ANYSTRING_DOUBLE

Character string [Unicode]

ANY16_OR_STRING_SINGLE | ANY16_S

Word [signed]

ANY16_U

Word [unsigned]/bit string [16 bits]

ANYSTRING_SINGLE

String

ANY_DT Word [signed], word [unsigned]/bit
string [16 bits]
ANY_TM Word [signed], word [unsigned]/bit

string [16 bits]

ANY_STRUCT"!

Structures

STRUCT

Structures

*1 Can also be used as an array.

HEGeneric data type (array)

For the following generic data type, define the number of array elements.

Data type (label)

Specifiable data type

ANYBIT_ARRAY

Bit array

ANYWORD_ARRAY ANY16_ARRAY

ANY16_S_ARRAY

Word [signed] array

ANY16_U_ARRAY

Word [unsigned]/bit string [16
bits] array

ANY32_ARRAY

ANY32_S_ARRAY

Double word [signed] array,
time array

ANY32_U_ARRAY

Double word [unsigned]/bit
string [32 bits] array

ANY_REAL_ARRAY

ANY_REAL_32_ARRAY

Single-precision real number
array

ANY_REAL_64 ARRAY

Double-precision real number
array

ANY_STRING_ARRAY

ANY_STRING_SINGLE_ARRAY

Character string array

ANY_STRING_DOUBLE_ARRAY

Character string [Unicode]
array

STRUCT_ARRAY

Structure array

1 OVERVIEW

1.2 Data Specification Method 1 7

18

Bit data

Data size and data range

Bit data is handled in increments of bits such as contacts and coils.

Data name Data size Value range

Bit data 1 bit 0,1

Handling bit data with bit devices and labels

One point of bit device/label can handle 1-bit data.

Handling bit data with bit word devices

By specifying a bit number for a word device, bit data of the specified bit number can be handled.
A bit in a word device can be specified by "Word device number.Bit number".

A bit number can be specified in hexadecimal in the range from 0 to F.

For example, bit 5 (b5) of GO is specified as G0.5, and bit 10 (b10) of GO is specified as G0.A.
The following word devices support bit specification.

Item Device

Word devices which support bit specification « Buffer memory access device (G)

« Remote register of link device (RWw, RWr)
« Link register of link device (LW)

« Link special register (SW)

Handling bit data with word type labels

By specifying a bit number for a word type label, bit data of the specified bit number can be handled.
A bit in a word type label can be specified by "Label name.Bit number".

[Ex]
L INT.O o L_INT[1]1.0 « L _STRUCT[1].S_INT.O

(N L L

Label name Bit specification Bit number Label name Bit specification Bit number Structure label name Label name Bit specification Bit number

The following data types of labels support bit specification.

Item Data type

Data types of labels which support bit specification. » Word [signed] (INT type)

« Word [unsigned]/bit string [16 bits] (WORD type)

« Current value (N) of timer (TIMER type)

* Current value (N) of retentive timer (RETENTIVETIMER type)
« Current value (N) of counter (COUNTER type)

1 OVERVIEW
1.2 Data Specification Method

16-bit data (word data)

Data size and data range
16-bit data includes signed and unsigned 16-bit data.

In signed 16-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation Hexadecimal notation
Signed 16-bit data 16 bits (1 word) -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data 0 to 65535

Handling 16-bit data with bit devices
A bit device can be handled as 16-bit data by performing digit specification.

Item Notation Example

Bit device KOBit device start number K4RX10
O: Number of digits (Specify the number within the range of 1 to 4.)

Precaution

Digit specification cannot be made for a bit type array label.

Digit specification range

The following table lists the range of 16-bit data for each digit specification.

Digit Decimal notation Hexadecimal notation

specification

K1 0to 15 OH to FH

K2 0 to 255 00H to FFH

K3 0 to 4095 000H to FFFH

K4 Signed 16-bit data: -32768 to 32767 0000H to FFFFH
Unsigned 16-bit data: 0 to 65535

[Ex]

When digit specification is made for RX0, the applicable number of points is as follows.
* K1IRX0—4 points from RX0 to RX3

* K2RX0—8 points from RX0 to RX7

* K8RX0—12 points from RX0 to RXB

* K4RX0—16 points from RX0 to RXF

RXF - RXC RXB -+ RX8 RX7 - RX4 RX3 - RX0
HENEEEEEEEEEEEE

<K1RX0

< K2RX0

¢ K3RX0

K4RX0

1 OVERVIEW 1
1.2 Data Specification Method 9

20

ESpecifying a bit device with digit specification in the source (s)

When a bit device is specified with digit specification in the source of an instruction, 0 is stored in the word device of the

destination, in the upper bits than those specified in the source of the instruction.

Ladder example Processing

« 16-bit data instruction
ENO:=MOV(EN, K1RX0, G11478000);

0
A

K1RX0 RX1|RX0

H_/

¥

e

4 b3 b2 bl bo

G11478000| 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘O ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘ 0 ‘RXS‘RXZ‘RX1‘RXO|

ESpecifying a bit device with digit specification in the destination (d)

When a digit specification is made in the destination of an instruction, the number of points by the digit specification is

applicable in the destination.
The upper bit devices than the number of points specified by digits remain unchanged.

Ladder example Processing

* When the source data is a word device b15

ENO:=MOV/(EN, G11478000, K2RY0);
G11478000|1‘1‘1‘0‘1‘0‘1

RY15

ol 1fofof1]1]1]o]1]
- /

g

RY8 RY7 RYO0

orvol | | |||

| [afofofufafafof1]

~

_/

~
(M

(1) The data remain the same.

Handling 16-bit data with word devices/labels

HEWord device

One point of word device can handle 16-bit data.

EWord type label
One point of word type label can handle 16-bit data.

32-bit data (double word data)

Data size and data range

32-bit data includes signed and unsigned 32-bit data.
In signed 32-bit data, a negative number is represented in two's complement.

Data name Data size Value range

Decimal notation

Hexadecimal notation

Signed 32-bit data 32 bits (2 word) -2147483648 to 2147483647

00000000H to FFFFFFFFH

Unsigned 32-bit data 0 to 4294967295

Handling 32-bit data with bit devices

A bit device can be handled as 32-bit data by performing digit specification.

Item Notation

Example

Bit device KOBit device start number

O: Number of digits (Specify the number within the range of 1 to 8.)

K8RX80

1 OVERVIEW
1.2 Data Specification Method

Precaution

Digit specification cannot be made for a bit type array label.

Digit specification range

The following table lists the range of 32-bit data for each digit specification.

Digit specification Decimal notation Hexadecimal notation

K1 0to 15 OH to FH

K2 0 to 255 0OH to FFH

K3 0 to 4095 000H to FFFH

K4 0 to 65535 0000H to FFFFH

K5 0 to 1048575 00000H to FFFFFH

K6 0to 16777215 000000H to FFFFFFH

K7 0 to 268435455 0000000H to FFFFFFFH

K8 Signed 32-bit data: -2147483648 to 2147483647 00000000H to FFFFFFFFH
Unsigned 32-bit data: 0 to 4294967295

[Ex]

When digit specification is made for RX0, the applicable number of points is as follows.

RX1

K1RX0—4 points from RX0 to RX3
K2RX0—8 points from RX0 to RX7
K3RX0—12 points from RX0 to RXB
K4RX0—16 points from RX0 to RXF
K5RX0—20 points from RX0 to RX13
K6RX0—24 points from RX0 to RX17
K7RX0—28 points from RX0 to RX1B
K8RX0—32 points from RX0 to RX1F

F .- RX1C RX1B---RX18 RX17 --- RX14 RX13--RX10RXF --- RXCRXB -:-

RX8

RX7 - RX4RX3 - RXO0

_K4RX0

_K3RX0
™

[LI
KIRX0 |

_K2RX0

K5RX0

_KBRXO

|_K7RX0

_K8RX0

1 OVERVIEW 2 1
1.2 Data Specification Method

ESpecifying a bit device with digit specification in the source (s)
When a bit device is specified with digit specification in the source of an instruction, 0 is stored in the word device of the

destination, in the upper bits than those specified in the source of the instruction.

Ladder example Processing
* 32-bit data instruction
ENO:=DMOV(EN, K1RX0, G11478000); K1RX0 RX1|RX0
0 {
A
- ~
b15 b4 b3 b2 b1 b0

G11478000| 0 [0 O |O | O |O | O|O|O| O] 0| O|RX3RX2|RX1 RX0

G11478001| 0 |O|O|jO|O|jO|O|O|O|O|O|JO|O]|O|O]|O

b31 b16
~ /)

BSpecifying a bit device with digit specification in the destination (d)

When a digit specification is made in the destination of an instruction, the number of points by the digit specification is

applicable in the destination.

The upper bit devices than the number of points specified by digits remain unchanged.

Ladder example Processing
* When the source data is a word device b15
ENO:=DMOV(EN, G11478000, K5RYO0);
G11478000|1‘1‘1‘0‘0‘1‘0‘0‘0‘1‘0‘1‘1‘1‘0‘1|
b15

G11478001|0‘0‘1‘1’0‘1‘0‘0‘1‘0‘0‘1‘0‘1‘1‘1|
RYO

Lilolefofofrfofoloftfof1]1]1o]r]

RY31 RY20RY19 -+ RY16

LT PP Jole]els]

— _
~

(1

(1) The data remain the same.

Handling 32-bit data with word devices/labels

HEWord device

Two points of word device can handle 32-bit data.

EDouble word type label

One point of double word device can handle 32-bit data.

2 2 1 OVERVIEW
1.2 Data Specification Method

Real number data (floating-point data)

Data size and data range

Real number data includes single-precision 32-bit real number data and double-precision 64-bit real number data.

Real number data can be stored only in devices other than bit devices or in single-precision or double-precision real data type

labels.
Data name Data size Value range
Single-precision real number data (single-precision Positive | 32 bits (2 word) 271%6<real number<2128
floating-point data) number
Zero 0
Negative -2"28<real number<-2-126
number
Double-precision real number data (double-precision | Positive | 64 bits (4 word) 271022<eg] number<21024
floating-point data) number
Zero 0
Negative -21024<real number<-271022
number

Configuration of single-precision real number data

The configuration of single-precision real number data compliances with the IEEE754 format.

Configuration of double-precision real number data

The configuration of double-precision real number data compliances with the IEEE754 format.

1 OVERVIEW 2
1.2 Data Specification Method 3

24

Precautions

EWhen setting an input value of single-precision real number from the engineering tool

The number of significant digits is about 7 because the engineering tool processes single precision real number data in 32-bit
single precision.

When the input value of single-precision real number data exceeds 7 digits, the 8th digit is rounded off.

Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

When "2147483647" is set as an input value, it is handled as "2147484000" because 8th digit "6" is rounded off.

[Ex]

When "E1.1754943562" is set as an input value, it is handled as "E1.175494" because 8th digit "3" is rounded off.
Set an input value within the following range. If the set value is out of the following range, a conversion error occurs.
Decimal point expression: 0.0000000001 < Absolute value of real number data < 999999900000.0

Exponential notation: 1.175494351E-38 < Absolute value of real number data < 3.402823466E+38

HEWhen setting an input value of double-precision real number from the engineering tool

The number of significant digits is about 15 because the engineering tool processes double precision real number data in 64-
bit double precision.

When the input value of double-precision real number data exceeds 15 digits, the 16th digit is rounded off.

Therefore, if the rounded-off value goes out of the range from -2147483648 to 2147483647, it will not be an intended value.

[Ex]

When "2147483646.12345678" is set as an input value, it is handled as "2147483646.12346" because 16th digit "6" is
rounded off.

When "E1.7976931348623157+307" is set as an input value, it is handled as "E1.79769313486232+307" because 16th digit
"8" is rounded off.

Set an input value within the following range. If the set value is out of the following range, a conversion error occurs.
Decimal point expression: 0.00000000000000000001 < Absolute value of real number data < 999999999999999000000.0
Exponential notation: 2.22507385850721E-308 < Absolute value of real number data < 1.79769313486231E+308

Point

The monitor function of the engineering tool can monitor real number data of motion systems.

To represent "0" in real number data, set all numbers in each of the following range to 0.

« Single-precision real number data: b0 to b31

» Double-precision real number data: b0 to b63

The setting range of real number data is as follows. For the operations to be performed when an overflow or

underflow occurs or when a special value is input, refer to the following.

« Single-precision real number data: -2128<[single-precision real number data]§-2'126, 0, 2'126§[single-
precision real number data]<2128

* Double-precision real number data: -21024<[d0uble-precision real number data]s-2‘1022, 0, 2'1022£[double-

precision real number data]<21024

1 OVERVIEW
1.2 Data Specification Method

Character string data

Format of character string data
The following table lists the types of character string data, each of which ends with a NULL code to be handled as a character

string.
Type Character code Last character
Character string ASCII code, Shift JIS code NULL(00H)
Character string [Unicode] Unicode (UTF-16 (little endian)) NULL(O000H)

Character string data is stored in devices or an array in ascending order of device numbers or array element numbers.

v

Lower Upper

A4

NULL

(1
ABC - XYZ

"ABC - XYZ"

(1) Character code string

Notation of character string

The following shows the notation of character strings in ST programs.

Data type Notation Example
String STRING Enclose a string (ASCII code, Shift JIS code) in single quotation marks (‘). | 'ABC'
Character string WSTRING Enclose a character string [Unicode] in double quotation marks ("). "ABC"
[Unicode]
Data range

The following table summarizes the ranges of character string data.

Type Maximum number of characters that can be set | Maximum number of characters that can be
in a label used for character string constant

Character string 255 single-byte characters (excluding the last NULL 255 single-byte characters (excluding the last NULL
character) character)

Character string [Unicode]*1 255 characters (excluding the last NULL character) 255 characters (excluding the last NULL character)

*1 For the character string [Unicode], characters up to the basic multilingual plane can be used.

Number of words required for storing data

Character string data can be stored in word devices.
The following table lists the numbers of words required for storing character string data.

Number of Number of words required for storing character Number of words required for storing character
character string strings strings [Unicode]

bytes

0 byte 1 [word] 1 [word]

Odd number of bytes | (Number of character string bytes+1) + 2 [words] — (because one character is an even number of bytes)

Even number of bytes | (Number of character string bytes+2) +1 [words] Number of characters+1 [words]

1 OVERVIEW 2
1.2 Data Specification Method 5

26

Character string data storage location

An image of the character string data storage location is shown below.

EMCharacter strings

In each character string storage image, "NULL" indicates a NULL code (O0H).

Character string
to be stored

Image of storing character string data from GO

Image of storing character string data from word type
label array arrayA[0]

Null character string

((nu) or (n)) GO NULL f NULL arrayA[O] | NULL : NULL
ABC
GO B : A arrayA[0] B : A
G1 NULL ' o] arrayA[1] NULL ! c
ABCD
GO B H A arrayA[0] B H A
G1 D ' C arrayA[1] D ' c
G2 NULL ! NULL arrayA[2] NULL ! NULL

BCharacter strings [Unicode]
In each character string [Unicode] storage image, "NULL" indicates a NULL code (0000H).

Character string
to be stored

Image of storing character string data from GO

Image of storing character string data from word type
label array arrayA[0]

Null character string

™) GO NULL arrayA[0] | NULL
ABCD
GO A arrayA[0] A
G1 B arrayA[1] B
G2 C arrayA[2] C
G3 D arrayA[3] D
G4 NULL arrayA[4] NULL
1 OVERVIEW

1.2 Data Specification Method

1.3 Execution Condition

Types of execution conditions

The following table lists the execution conditions of instructions.

Execution condition Description™!
An instruction is executed during on. It is executed only while the precondition of the instruction is on. When the

On
ﬂ precondition is off, the instruction is not executed.

An instruction is executed one time when turned on. It is executed only once on the rising edge (off to on) of the

Rising edge
precondition of the instruction and is no longer executed later even when the condition turns on.

An instruction is always executed regardless of whether the precondition of the instruction is on or off. When the
precondition is off, the instruction performs off processing.

Every scan

*1 When the program is described in structured text language (ST), EN will be the precondition of the instruction.

Execution condition of each instruction
The execution condition varies depending on the instruction. For execution condition, refer to the details of each instruction in

this manual.
When the program is described in structured text language (ST), EN will be the execution condition. The instruction is

executed only when EN is TRUE. The status of ENO will be the same as that of EN.

Note that the execution condition of standard functions and function blocks differs depending on the existence of EN. If there
is no EN, the standard function or function block is executed at every scan. For the execution condition of the standard
function or function block with EN, refer to the details of each standard function or function block in this manual.

1 OVERVIEW
1.3 Execution Condition 27

28

1.4 Precautions on Programming

Errors common to instructions

The following table lists the conditions under which an error occurs when the instruction is executed.

Error content Error code

« The device or label specified by the instruction exceeds the available range. 3506H
* The number of array elements is not enough.

» The device or label area used in the instruction exceeded the specified range. 3510H
* An array is not selected.

For details, refer to "List of Error Codes" in the following manual.
[TIMELSEC iQ-R Motion Module User's Manual (Application)

Timer, long timer, and long retentive timer type labels

The timer, long timer, and long retentive timer type labels are structures whose members are S (contact), C (coil), and N
(current value). When the data to be handled exceeds the width (32 bits) of the current value, these operate by using not only
the area of the current value but also the areas of the previous value, contact, and coil.

Data type Member
Timer (T) S (Contact): BOOL
C (Coil): BOOL

Retentive timer (ST)
N (Current value): WORD

Counter (C)

Long timer (LT) S (Contact): BOOL
C (Coil): BOOL
N (Current value): DWORD

Long retentive timer (LST)

Long counter (LC)

Operations arising when the OUT and SET/RST instructions of
the same device are used

This section describes the operation when two or more OUT and SET/RST instructions that use the same device are

executed within one scan.

For OUT instructions of the same device

Otherwise, the specified device turns on or off, depending on the operation result up to each OUT instruction while it is in
execution.

In this case, the device may turn on/off during one scan because the on/off state of the specified device is determined during
execution of each OUT instruction.

If SET/RST instructions of the same device are used

BFor SET instructions
The SET instruction turns on the specified device if the execution command is on, and causes no operation if it is off.

Thus, if two or more SET instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is on.

BFor RST instructions
The RST instruction turns on the specified device if the execution command is off, and causes no operation if it is off.

Thus, if two or more RST instructions of the same device are executed during one scan, the specified device turns on even if
one execution command is off.

HIf the SET and RST instructions of the same device exist in one scan
If the SET and RST instructions of the same device exist in one scan, the SET instruction turns on the specified device if the

execution command is on, and turns off the specified device if it is on.
If both the SET and RST instructions are off, the on/off state of the specified device will be unchanged.

1 OVERVIEW
1.4 Precautions on Programming

PART 2

PART 2 LISTS OF
INSTRUCTIONS AND
FUN/FB

This part consists of the following chapters.

2 MOTION SYSTEM INSTRUCTIONS

3 STANDARD FUNCTIONS/FUNCTION BLOCKS

4 MOTION DEDICATED INSTRUCTIONS

29

30

2 MOTION SYSTEM INSTRUCTIONS

The following table summarizes how to read the instruction lists.

Item

Description

Instruction symbol

An instruction name

Processing details

An overview of the instruction

Reference

Section where detailed information is described

2.1

Sequence Instructions

Output instructions

HOut (excluding the timer and counter)

Instruction symbol Processing details Reference

ouT Outputs the operation result to the specified device. Page 46 OUT
ETimer, long timer

Instruction symbol Processing details Reference

OUT_T Starts time measurement when the operation result up to the OUT instruction is on. When time is Page 47 OUT_T,
OUTH T up, the normally open contact turns on (continuity state) and the normally closed contact turns off | OUTH_T, OUT_ST,
— (non-continuity state). OUTH_ST

OuT_ST * OUT_T: Low-speed timer instruction

OUTH_ST * OUTH_T: High-speed timer instruction

ouT LT *« OUT_ST: Low—speed retentlve.) tlm-er |n§truct|orl1 Page 50 OUT LT,
« OUTH_ST: High-speed retentive timer instruction OUT LST

OUT_LST . ; ; ; -

- * OUT_LT: Low-speed long timer instruction
* OUT_LST: Low-speed long retentive timer instruction
ECounter, long counter
Instruction symbol Processing details Reference

ouT C

ouT_LC

Increments the current counter value (count value) by one when the operation result up to the OUT
instruction turns on. When the count value reaches the set value, the normally open contact of the
counter turns on (continuity state) and the normally closed contact turns off (non-continuity state).
* OUT_C: Counter

* OUT_LC: Long counter

Page 53 OUT_C

Page 54 OUT_LC

ESetting devices

Instruction symbol Processing details Reference

SET Turns on the specified bit. Page 55 SET
HResetting devices

Instruction symbol Processing details Reference

RST Turns off the specified device. Page 57 RST

2 MOTION SYSTEM INSTRUCTIONS
2.1 Sequence Instructions

2.2 Basic Instructions

Arithmetic operation instructions

BAdding/subtracting 16-bit binary data

Instruction symbol

Processing details

Reference

Adds the two sets of 16-bit binary data specified.

Page 60 +(_U)

+ U
- Performs subtraction between the two sets of 16-bit binary data specified. Page 62 -(_U)
- U
BAdding/subtracting 32-bit binary data
Instruction symbol Processing details Reference

D+ Adds the two sets of 32-bit binary data specified. Page 64 D+(_U)
D+_U
D- Performs subtraction between the two sets of 32-bit binary data specified. Page 66 D-(_U)
D-_U

EMultiplying/dividing 16-bit binary data

Instruction symbol

Processing details

Reference

Multiplies the two sets of 16-bit binary data specified.

Page 68 *(_U)

*U
/ Performs division between the two sets of 16-bit binary data specified. Page 69 /(_U)
/_U

EMultiplying/dividing 32-bit binary data
Instruction symbol Processing details Reference

D*

D*_U

Multiplies the two sets of 32-bit binary data specified.

Page 70 D*(_U)

D/

D/_U

Performs division between the two sets of 32-bit binary data specified.

Page 71 D/(_U)

Hincrementing/decrementing 16-bit binary data

Instruction symbol

Processing details

Reference

INC

INC_U

Increments the specified 16-bit binary data by one.

Page 72 INC(_U)

DEC

DEC_U

Decrements the specified 16-bit binary data by one.

Page 73 DEC(_U)

Hincrementing/decrementing 32-bit binary data

Instruction symbol

Processing details

Reference

DINC

DINC_U

Increments the specified 32-bit binary data by one.

Page 74 DINC(_U)

DDEC

DDEC_U

Decrements the specified 32-bit binary data by one.

Page 75 DDEC(_U)

Logical operation instructions

EPerforming an AND operation on 16-bit/32-bit data

Instruction symbol

Processing details

Reference

WAND

Performs an AND operation on the two sets of 16-bit binary data specified.

Page 76 WAND

DAND

Performs an AND operation on the two sets of 32-bit binary data specified.

Page 77 DAND

2 MOTION SYSTEM INSTRUCTIONS

2.2 Basic Instructions

31

HPerforming an OR operation on 16-bit/32-bit data

Instruction symbol Processing details Reference

WOR Performs an OR operation on the two sets of 16-bit binary data specified. Page 78 WOR

DOR Performs an OR operation on the two sets of 32-bit binary data specified. Page 79 DOR
EPerforming an XOR operation on 16-bit/32-bit data

Instruction symbol Processing details Reference

WXOR Performs an XOR operation on the two sets of 16-bit binary data specified. Page 80 WXOR

DXOR

Performs an XOR operation on the two sets of 32-bit binary data specified.

Page 81 DXOR

HPerforming an XNOR operation on 16-bit/32-bit data

Instruction symbol

Processing details

Reference

WXNR

Performs an XNOR operation on the two sets of 16-bit binary data specified.

Page 82 WXNR

DXNR

Performs an XNOR operation on the two sets of 32-bit binary data specified.

Page 83 DXNR

Data conversion instructions

HETwo's complement of 16-bit/32-bit binary data (sign inversion)

Instruction symbol

Processing details

Reference

NEG

Inverts the sign of 16-bit binary device.

d) —————(d)
BIN

Page 84 NEG

DNEG

Inverts the sign of 32-bit binary device.

(@A, (d) ——————> (d)*1,(d)
BIN

Page 85 DNEG

Data transfer instructions

ETransferring 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

MOV

Transfers the 16-bit binary data in the device specified.

(8) ——— > (d)

Page 86 MOV

DMOV

Transfers the 32-bit binary data in the device specified.

(8)+1, (8) ————— > (d)+1,(d)

Page 87 DMOV

Hinverting and transferring 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

CML

Inverts the specified 16-bit binary data bit by bit, and transfers the inverted data.

(8 ——— ()

Page 88 CML

DCML

Inverts the specified 32-bit binary data bit by bit, and transfers the inverted data.

(s)+1, (8) ———————>(d)+1,(d)

Page 89 DCML

Hinverting and transferring 1-bit data

Instruction symbol

Processing details

Reference

CMLB

Inverts the bit data in the device specified by (s), and stores the inverted data in the device
specified by (d).

Page 90 CMLB

ETransferring 1-bit data

Instruction symbol

Processing details

Reference

MOVB

Stores the bit data in the device specified by (s) in the device specified by (d).

Page 91 MOVB

2 MOTION SYSTEM INSTRUCTIONS

2.2 Basic Instructions

2.3

Application Instructions

Program control

Program execution control instructions

EDisabling/enabling interrupt programs

Instruction symbol Processing details Reference
DI Disables the execution of fixed scan execution type programs. Page 94 DI, EI
El Clears the fixed scan execution type programs execution disabled state.

Program control instructions

EChanging the program execution type to standby type
Instruction symbol Processing details Reference

PSTOP

Changes the type of the specified program to standby type.

Page 95 PSTOP

EChanging the program execution type to scan execution type

Instruction symbol

Processing details

Reference

PSCAN

Changes the type of the specified program to normal execution type.

Page 96 PSCAN

Data processing

Data processing instructions

BAdding 16-bit binary data

Instruction symbol

Processing details

Reference

WSUM

Adds the (n) points of 16-bit binary data in the device starting from the one specified by (s), and

WSUM_U

stores the result in the device specified by (d).

Page 97 WSUM(_U)

BAdding 32-bit binary data

Instruction symbol

Processing details

Reference

DWSUM

Adds the (n) points of 32-bit binary data in the device starting from the one specified by (s), and

DWSUM_U

stores the result in the device specified by (d).

Page 98 DWSUM(_U)

HCalculating the mean value of 16-bit/32-bit binary data

Instruction symbol

Processing details

Reference

MEAN

Calculates the average value of the (n) points of 16-bit data in the device starting from the one

specified by (s), and stores the average value in the device specified by (d).

Page 99 MEAN(_U)

MEAN_U
DMEAN Calculates the average value of the (n) points of 32-bit data in the device starting from the one Page 100 DMEAN(_U)
DMEAN U specified by (s), and stores the average value in the device specified by (d).

ECalculating the square root of 32-bit binary data

Instruction symbol

Processing details

Reference

DSQRT

Performs a square root operation of the specified 32-bit binary data.”

V(s)+1, (s)—>(d)

Page 101 DSQRT

*1 When calculating the square root except 32-bit binary data, use SQRT of standard functions.

==~ Page 159 SQRT

2 MOTION SYSTEM INSTRUCTIONS
2.3 Application Instructions

33

String processing

String processing instructions

ETransferring string data

Instruction symbol

Processing details

Reference

$MOV

Transfers the character strings in the device specified by (s) to the device specified by (d) and later.

Page 102 $MOV

$MOV_WS

Transfers the character strings [Unicode] in the device specified by (s) to the device specified by
(d) and later.

Page 104 $MOV_WS

Real value processing

Floating-point instruction

BAdding/subtracting single-precision real numbers

Instruction symbol Processing details Reference

E+ Adds single-precision real numbers. Page 105 E+

E- Performs subtraction between single-precision real numbers. Page 106 E-
BAdding/subtracting double-precision real numbers

Instruction symbol Processing details Reference

ED+ Adds double-precision real numbers. Page 107 ED+

ED- Performs subtraction between double-precision real numbers. Page 108 ED-
EMultiplying/dividing single-precision real numbers

Instruction symbol Processing details Reference

E* Multiplies single-precision real numbers. Page 109 E*

E/ Performs division between single-precision real numbers. Page 110 E/
EMultiplying/dividing double-precision real numbers

Instruction symbol Processing details Reference

ED*

Multiplies double-precision real numbers.

Page 111 ED*

ED/

Performs division between double-precision real numbers.

Page 112 ED/

Hinverting the sign

of single-precision real number

Instruction symbol

Processing details

Reference

ENEG

Inverts the sign of single-precision real number data.

(@)1, (d) ——————>(d)+1,(d)
()

(1) Real number

Page 113 ENEG

Hinverting the sign

of double-precision real number

Instruction symbol

Processing details

Reference

EDNEG

Inverts the sign of double-precision real number data.

(@d)#3, (d)+2, (d)+1, (d) ———> (d)+3, (d)+2, (d)+1, (d)
™M

(1) Real number

Page 114 EDNEG

ETransferring single-precision real number

Instruction symbol

Processing details

Reference

EMOV

Transfers single-precision real number data to the specified device.

()1, () —————> (d)+1,(d)
(1

(1) Real number

Page 115 EMOV

2 MOTION SYSTEM INSTRUCTIONS
2.3 Application Instructions

ETransferring double-precision real number

Instruction symbol

Processing details

Reference

EDMOV

Transfers double-precision real number data to the specified device.

(8)*+3, (8)+2, (8)*1, () ——— (d)*3, (d)+2, (d)+1, (d)
(1

(1) Real number

Page 116 EDMOV

2 MOTION SYSTEM INSTRUCTIONS
2.3 Application Instructions 35

3 STANDARD FUNCTIONS/FUNCTION BLOCKS

How to read the list is shown below.

Item

Description

Function symbol and function block symbol

A function and function block name are shown.

Processing details

An overview of the functions and function blocks is explained.

Reference

Indicates the reference of detailed information.

3.1 stan

dard Functions

Type conversion functions

EConverting BOOL to WORD/DWORD

Function symbol Processing details Reference
BOOL_TO_WORD Converts a value from BOOL data type to WORD data type. Page 118
BOOL_TO_WORD
BOOL_TO_DWORD Converts a value from BOOL data type to DWORD data type. Page 119
BOOL_TO_DWORD
HConverting BOOL to INT/DINT
Function symbol Processing details Reference
BOOL_TO_INT Converts a value from BOOL data type to INT data type. Page 120
BOOL_TO_INT
BOOL_TO_DINT Converts a value from BOOL data type to DINT data type. Page 121
BOOL_TO_DINT
EConverting BOOL to TIME
Function symbol Processing details Reference
BOOL_TO_TIME Converts a value from BOOL data type to TIME data type. Page 122
BOOL_TO_TIME
EConverting WORD to BOOL
Function symbol Processing details Reference
WORD_TO_BOOL Converts a value from WORD data type to BOOL data type. Page 123
WORD_TO_BOOL

EConverting WORD to DWORD
Function symbol Processing details Reference
WORD_TO_DWORD Converts a value from WORD data type to DWORD data type. Page 124

WORD_TO_DWORD

EConverting WORD to INT/DINT
Function symbol Processing details Reference
WORD_TO_INT Converts a value from WORD data type to INT data type. Page 125
WORD_TO_INT
WORD_TO_DINT Converts a value from WORD data type to DINT data type. Page 126

WORD_TO_DINT

EConverting WORD to TIME
Function symbol Processing details Reference
WORD_TO_TIME Converts a value from WORD data type to TIME data type. Page 127

WORD_TO_TIME

3 STANDARD FUNCT

IONS/FUNCTION BLOCKS

3.1 Standard Functions

EConverting DWORD to BOOL

Function symbol

Processing details

Reference

DWORD_TO_BOOL

Converts a value from DWORD data type to BOOL data type.

Page 128
DWORD_TO_BOOL

EConverting DWORD to WORD

Function symbol

Processing details

Reference

DWORD_TO_WORD

Converts a value from DWORD data type to WORD data type.

Page 129
DWORD_TO_WORD

EConverting DWORD to INT/DINT

Function symbol Processing details Reference

DWORD_TO_INT Converts a value from DWORD data type to INT data type. Page 130
DWORD_TO_INT

DWORD_TO_DINT Converts a value from DWORD data type to DINT data type. Page 131

DWORD_TO_DINT

EConverting DWORD to TIME

Function symbol

Processing details

Reference

DWORD_TO_TIME

Converts a value from DWORD data type to TIME data type.

Page 132
DWORD_TO_TIME

EConverting INT to BOOL
Function symbol Processing details Reference
INT_TO_BOOL Converts a value from INT data type to BOOL data type. Page 133
INT_TO_BOOL
EConverting INT to WORD/DWORD
Function symbol Processing details Reference
INT_TO_WORD Converts a value from INT data type to WORD data type. Page 134
INT_TO_WORD
INT_TO_DWORD Converts a value from INT data type to DWORD data type. Page 135

INT_TO_DWORD

EConverting INT to DINT
Function symbol Processing details Reference
INT_TO_DINT Converts a value from INT data type to DINT data type. Page 136
INT_TO_DINT
EConverting INT to REAL/LREAL
Function symbol Processing details Reference
INT_TO_REAL Converts a value from INT data type to REAL data type. Page 137
INT_TO_REAL
INT_TO_LREAL Converts a value from INT data type to LREAL data type. Page 138
INT_TO_LREAL
EConverting INT to TIME
Function symbol Processing details Reference
INT_TO_TIME Converts a value from INT data type to TIME data type. Page 139
INT_TO_TIME
HEConverting DINT to BOOL
Function symbol Processing details Reference
DINT_TO_BOOL Converts a value from DINT data type to BOOL data type. Page 140
DINT_TO_BOOL

3 STANDARD FUNCTIONS/FUNCTION BLOCKS

3.1 Standard Functions

37

EConverting DINT to WORD/DWORD

Function symbol Processing details Reference

DINT_TO_WORD Converts a value from DINT data type to WORD data type. Page 141
DINT_TO_WORD

DINT_TO_DWORD Converts a value from DINT data type to DWORD data type. Page 142

DINT_TO_DWORD

EConverting DINT to INT

Function symbol Processing details Reference

DINT_TO_INT Converts a value from DINT data type to INT data type. Page 143
DINT_TO_INT

EConverting DINT to REAL/LREAL

Function symbol Processing details Reference

DINT_TO_REAL Converts a value from DINT data type to REAL data type. Page 144
DINT_TO_REAL

DINT_TO_LREAL Converts a value from DINT data type to LREAL data type. Page 145

DINT_TO_LREAL

EConverting DINT to TIME

Function symbol Processing details Reference
DINT_TO_TIME Converts a value from DINT data type to TIME data type. Page 146
DINT_TO_TIME
EConverting REAL to INT/DINT
Function symbol Processing details Reference
REAL_TO_INT Converts a value from REAL data type to INT data type. Page 147
REAL_TO_INT
REAL_TO_DINT Converts a value from REAL data type to DINT data type. Page 148
REAL_TO_DINT
EConverting REAL to LREAL
Function symbol Processing details Reference
REAL_TO_LREAL Converts a value from REAL data type to LREAL data type. Page 149

REAL_TO_LREAL

EConverting LREAL to INT/DINT

Function symbol Processing details Reference

LREAL_TO_INT Converts a value from LREAL data type to INT data type. Page 150
LREAL_TO_INT

LREAL_TO_DINT Converts a value from LREAL data type to DINT data type. Page 151

LREAL_TO_DINT

HEConverting LREAL to REAL

Function symbol

Processing details

Reference

LREAL_TO_REAL

Converts a value from LREAL data type to REAL data type.

Page 152
LREAL_TO_REAL

EConverting TIME to BOOL

Function symbol

Processing details

Reference

TIME_TO_BOOL

Converts a value from TIME data type to BOOL data type.

Page 153
TIME_TO_BOOL

EConverting TIME to WORD/DWORD

Function symbol Processing details Reference

TIME_TO_WORD Converts a value from TIME data type to WORD data type. Page 154
TIME_TO_WORD

TIME_TO_DWORD Converts a value from TIME data type to DWORD data type. Page 155

TIME_TO_DWORD

38 3 STANDARD FUNCTIONS/FUNCTION BLOCKS

3.1 Standard Functions

EConverting TIME to INT/DINT

Function symbol Processing details Reference
TIME_TO_INT Converts a value from TIME data type to INT data type. Page 156
TIME_TO_INT
TIME_TO_DINT Converts a value from TIME data type to DINT data type. Page 157
TIME_TO_DINT
Single variable functions
ECalculating the absolute value
Function symbol Processing details Reference

ABS

Outputs the absolute value of an input value.

Page 158 ABS

ECalculating the sq

uare root

Function symbol

Processing details

Reference

SQRT

Calculates the square root of an input value.

Page 159 SQRT

ECalculating the natural logarithm

Function symbol Processing details Reference

LN Outputs the natural logarithm (logarithm with base e) of an input value. Page 160 LN
ECalculating the common logarithm

Function symbol Processing details Reference

LOG

Outputs the common logarithm (logarithm with base 10) of an input value.

Page 161 LOG

HCalculating the exponent

Function symbol

Processing details

Reference

EXP

Outputs the exponent of an input value.

Page 162 EXP

HCalculating the sine/cosine/tangent

Function symbol Processing details Reference
SIN Outputs the sine of an input value. Page 163 SIN
COS Outputs the cosine of an input value. Page 164 COS
TAN Outputs the tangent of an input value. Page 165 TAN

ECalculating the arc sine/arc cosine/arc tangent

Function symbol

Processing details

Reference

ASIN Outputs the arc sine (SIN"") of an input value. Page 166 ASIN
ACOS Outputs the arc cosine (COS'1) of an input value. Page 167 ACOS
ATAN Outputs the arc tangent (TAN'1) of an input value. Page 168 ATAN

Arithmetic operation functions

BEAddition
Function symbol Processing details Reference
ADD Outputs the sum of input values ((s1)+(s2)+:--+(s28)). Page 169 ADD

EMultiplication

Function symbol

Processing details

Reference

MUL Outputs the product of input values ((s1)x(s2)x-+-x(s28)). Page 171 MUL
BSubtraction

Function symbol Processing details Reference

SuUB Outputs the difference between input values ((s1)-(s2)). Page 173 SUB

3 STANDARD FUNCTIONS/FUNCTION BLOCKS
3.1 Standard Functions 39

HEDivision

DIV Outputs the quotient of input values ((s1)+(s2)). Page 175 DIV
ERemainder
MOD Outputs the remainder of input values ((s1)+(s2)). Page 177 MOD

BAssignment (move operation)

MOVE Outputs the assignment value of an input value. Page 178 MOVE

ENOT operation

NOT Outputs the logical NOT of input values. Page 179 NOT

ESelecting the maximum/minimum value

MAX Outputs the maximum input value. Page 180 MAX, MIN

MIN Outputs the minimum input value.

40 3 STANDARD FUNCTIONS/FUNCTION BLOCKS
3.1 Standard Functions

3.2 Standard Function Blocks

Bistable function blocks

EBistable function block (set-dominant)

Function block symbol Processing details Reference

SR Discriminates between two input values, and outputs1 (TRUE) or 0 (FALSE). Page 184 SR

EBistable function block (reset-dominant)

Function block symbol Processing details Reference

RS Discriminates between two input values, and outputs1 (TRUE) or 0 (FALSE). Page 185 RS

Edge detection function blocks

EDetecting a rising edge

Function block symbol

Processing details

Reference

R_TRIG

Detects a signal rising edge, and outputs the pulse signal.

Page 187 R_TRIG

HDetecting a falling

edge

Function block symbol

Processing details

Reference

F_TRIG

Detects a signal falling edge, and outputs the pulse signal.

Page 188 F_TRIG

Timer function blocks

HEPulse timer

Function block symbol Processing details Reference

TP Keeps the signal on for the specified period of time. Page 189 TP
HOn delay timer

Function block symbol Processing details Reference

TON

Turns on a signal after the specified period of time.

Page 191 TON

HOff delay timer

Function block symbol

Processing details

Reference

TOF

Turns off a signal after the specified period of time.

Page 193 TOF

ETimer function block

Function block symbol

Processing details

Reference

TIMER_10_FB_M

TIMER_100_FB_M

TIMER_HIGH_FB_M

TIMER_LOW_FB_M

TIMER_CONT_FB_M

TIMER_CONTHFB_M

Starts counting a timer when the execution condition is satisfied, and continues counting until the Page 195

timer reaches the set value.

TIMER_O_M

3 STANDARD FUNCTIONS/FUNCTION BLOCKS

3.2 Standard Function Blocks 41

MEMO

42 3 STANDARD FUNCTIONS/FUNCTION BLOCKS
3.2 Standard Function Blocks

4 MOTION DEDICATED INSTRUCTIONS

User Function Execution Instruction

Instruction symbol Processing details Reference
G(P).CEXECUTE Instructs the execution of processing in the Motion module. Page 203
G(P).CEXECUTE

4 MOTION DEDICATED INSTRUCTIONS 43

MEMO

44 4 MOTION DEDICATED INSTRUCTIONS

PART 3 SEQUENCE
INSTRUCTIONS

This part consists of the following chapters.

5 SEQUENCE INSTRUCTIONS

45

5 SEQUENCE INSTRUCTIONS

5.1 Output Instructions

Out (excluding the timer and counter)

ouT

This instruction outputs the operation result to the specified device.

ST

ENO:=OUT(EN,d);

HExecution condition

Instruction Execution condition

ouT Every scan

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) On/off target device number — ANY_BOOL
EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(d) @) @) @) @) —

Processing details

« This instruction outputs the operation result up to the OUT instruction to the specified device.

Condition Operation result Coil/Specified bit
When a bit device is used Off Off

On On
When a bit-specified word device is used Off 0

On 1

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions

Timer

OUT_T, OUTH_T, OUT_ST, OUTH_ST

* OUT_T: Low-speed timer instruction

* OUTH_T: High-speed timer instruction

* OUT_ST: Low-speed retentive timer instruction

* OUTH_ST: High-speed retentive timer instruction

These instructions start time measurement when the operation result up to the OUT instruction is on. When time is up, the
normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

ENO:=OUT_T(EN,Coil,Value);
ENO:=OUTH(EN,Coil,Value);

HEExecution condition

OuUT_T Every scan
OUTH_T

OUT_ST

OUTH_ST

- Settingdata

EDescription, range, data type

Coil Timer type label — ANY_BOOL
Value Value set for the timer 0 to 32767 ANY_INT
EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels

Coil — — @) — -
Value — — ¢) 6] o

*1 Only K (decimal constant) can be used.

5 SEQUENCE INSTRUCTIONS 4
5.1 Output Instructions 7

Processing. details

» These instructions start time measurement, triggered by the coil specified by Coil, when the operation result up to the OUT

instruction is on. When time is up (current value > set value), the normally open contact turns on (continuity state) and the
normally closed contact turns off (non-continuity state).
» When the operation result up to the OUT instruction turns off, the contact responds as shown below.

Type Timer coil Current value | Before time is up After time is up
Normally open Normally closed | Normally open Normally closed
contact contact contact contact
Low-speed timer Off 0 Non-continuity Continuity Non-continuity Continuity
High-speed timer
Low-speed retentive timer | Off Current value Non-continuity Continuity Continuity Non-continuity
High-speed retentive timer retained

* When the timer set value is 0, the time will be up at execution of the OUT instruction.

» The following operations are performed at execution of the OUT instruction.

* The coil used as a trigger of the OUT_T, OUTH_T, OUT_ST, or OUTH_ST instruction turns on or off.

* The contact used as a trigger of the OUT_T, OUTH_T, OUT_ST, or OUTH_ST instruction turns on or off.
* The current value of the OUT_T, OUTH_T, OUT_ST, or OUTH_ST instruction is changed.

* If the same OUT_T, OUTH_T, OUT_ST, or OUTH_ST instruction is executed two times or more in a single scan, the current
value is updated by the number of times the instruction is executed.

Point}’
* The timer limit value is set in parameter using the engineering tool.
Low-speed timer/low-speed retentive timer: 1 to 10000 ms (in increments of 1 ms) (Default: 100 ms)
High-speed timer/high-speed retentive timer: 1 to 10000 ps (in increments of 1 us) (Default: 500 ps)
« For the counting method, refer to the following.
[T1 MELSEC iQ-R CPU Module User's Manual (Application)
» Even if the same time is specified, the counting result may not match for the timer and the long timer as the
counting method differs.
Precautions

To create a program in which the operation of a timer contact triggers the operation of another timer, program the timers in
order from the one that operates last.

In the following cases, if a program is created in order of timer measurements, all timers turn on in the same scan.

* The set value is smaller than the scan time.

* The set value is 1.

[Ex]

When timers Time_0 to Time_2 are programmed in order from the one that measures last
[Label definitions]

Label name Data type Class

Time_0 Timer VAR

Time_1 Timer VAR

Time_2 Timer VAR

Flag_Label Bit VAR

ENO_Label Bit VAR
[Program]

ENO_Label := OUT_T(Time_1.S,Time_2,1);
ENO_Label := OUT_T(Time_0.S,Time_1,1);
ENO_Label := OUT_T(Flag_Label,Time_0,1);

(1) Timer Time_2 starts measurement from the next scan after the contact of
timer Time_1 turns on.

(2) Timer Time_1 starts measurement from the next scan after the contact of
timer Time_0 turns on.

(3) Timer Time_0 starts measurement when Flag_Label turns on.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions

[Ex]

When timers Time_0 to Time_2 are programmed in order of measurement

[Label definitions]

Label name Data type Class

Time_0 Timer VAR

Time_1 Timer VAR

Time_2 Timer VAR

Flag_Label Bit VAR

ENO_Label Bit VAR
[Program]

ENO_Label := OUT_T(Flag_Label,Time_0,1);
ENO_Label := OUT_T(Time_0.S,Time_1,1);
ENO_Label := OUT_T(Time_1.S,Time_2,1);

Operation.error

There is no operation error.

Precautions

(1) Timer Time_0O starts measurement when Flag_Label turns on.
(2) When the contact of timer Time_0 turns on, the contacts of timers Time_1
and Time_2 also turn on.

This section describes the precautions when using the timer.

EPrecautions about timer usage

» Do not describe more than one coil (the timer instruction) on the same timer during a single scanning. Doing so results in

improper measurement because the timer current value is updated when the coil for each timer is executed.

* When timer is not used for data collection for each scan, proper measurement is impossible.

» The timer cannot be used in the initial execution type program and the fixed scan execution type program.

» Even when the setting value is increased after the timer time is up, the timer status does not change (time continues to be

up) and the timer does not operate.

» Do not set the timer setting value to 32768 or above. If used when set to 32768 or above, the timer contact may not turn on.

5 SEQUENCE INSTRUCTIONS 4
5.1 Output Instructions 9

50

Long timer

OUT LT, OUT_LST

* OUT_LT: Low-speed long timer instruction

* OUT_LST: Low-speed long retentive timer instruction

These instructions start time measurement when the operation result up to the OUT instruction is on. When time is up, the

normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

ST

ENO:=0OUT_T(EN,Coll,Value);

HExecution condition

Instruction Execution condition
OUT_LT Every scan
OUT_LST

Setting data

EDescription, range, data type

Operand Description Range Data type

Coil Long timer type label — ANY_BOOL

Value Value set for the long timer 0 to 4294967295 ANY32

EN Execution condition — BOOL

ENO Execution result — BOOL
BApplicable devices/labels

Operand Bit Word Constant

SB RX, RY, LB SW G, RWw, RWr, LW K, H
Coil — — — — —
Value — — (©] (©] o

*1 Only K (decimal constant) can be used.

Processing details

» These instructions start time measurement, triggered by the coil specified by Coil, when the operation result up to the OUT

instruction is on. When time is up (current value > set value), the normally open contact turns on (continuity state) and the

normally closed contact turns off (non-continuity state).

» When the operation result up to the OUT instruction turns off, the contact responds as shown below.

Type Timer coil Current value Before time is up After time is up
Normally open Normally closed | Normally open Normally closed
contact contact contact contact

Long timer Off 0 Non-continuity Continuity Non-continuity Continuity

Long retentive timer | Off Current value retained | Non-continuity Continuity Continuity Non-continuity

* When the timer set value is 0, the time will be up at execution of the OUT instruction.

» The following operations are performed at execution of the OUT instruction.
* The coil used as a trigger of the OUT_LT or OUT_LST instruction turns on or off.

* The contact used as a trigger of the OUT_LT or OUT_LST instruction turns on or off.
» The current value of the OUT_LT or OUT_LST instruction is changed.

« If the same OUT_LT or OUT_LST instruction is executed two times or more in a single scan, the current value is updated

by the number of times the instruction is executed.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions

Point/®

» The timer limit value is set in parameter using the engineering tool.

Long timer/long retentive timer: 1 to 1000000 ps (in increments of 1 ps) (Default: 500 us)

« For the counting method, refer to the following.

L1 MELSEC iQ-R CPU Module User's Manual (Application)

» Even if the same time is specified, the counting result may not match for the timer and the long timer as the
counting method differs.

Precautions

To create a program in which the operation of a long timer contact triggers the operation of another long timer, program the
long timers in order from the one that operates last.

In the following cases, if a program is created in order of timer measurements, all timers turn on in the same scan.

* The set value is smaller than the scan time.

* The setvalueis 1.

[Ex]

When timers LTime_0 to LTime_2 are programmed in order from the one that measures last

[Label definitions]

Label name Data type Class
LTime_0 Long timer VAR
LTime_1 Long timer VAR
LTime_2 Long timer VAR
Flag_Label Bit VAR
ENO_Label Bit VAR
[Program]
ENO_Label := OUT_LT(LTime_1.S,LTime_2,1); (1) Long timer LTime_2 starts measurement from the next scan after the
ENO_Label := OUT_LT(LTime_0.S,LTime_1,1); contact of long timer LTime_1 turns on.
ENO_Label := OUT_LT(Flag_Label,LTime_0,1); (2) Long timer LTime_1 starts measurement from the next scan after the

contact of long timer LTime_0 turns on.
(3) Long timer LTime_0 starts measurement when Flag_Label turns on.

[Ex]

When long timers LTime_0 to LTime_2 are programmed in order of measurement
[Label definitions]

Label name Data type Class
LTime_0 Long timer VAR
LTime_1 Long timer VAR
LTime_2 Long timer VAR
Flag_Label Bit VAR
ENO_Label Bit VAR
[Program]
ENO_Label := OUT_LT(Flag_Label,LTime_0,1); (1) Long timer LTime_0 starts measurement when Flag_Label turns on.
ENO_Label := OUT_LT(LTime_0.S,LTime_1,1); (2) When the contact of timer LTime_0 turns on, the contacts of timers
ENO_Label := OUT_LT(LTime_1.S,LTime_2,1); LTime_1 and LTime_2 also turn on.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS 1
5.1 Output Instructions 5

Precautions

This section describes the precautions when using the long timer.

HPrecautions about long timer usage

» The long timer cannot be used in initial execution type programs.

» Even when the setting value is increased after the long timer time is up, the long timer status does not change (time
continues to be up) and the long timer does not operate.

2 5 SEQUENCE INSTRUCTIONS
5 5.1 Output Instructions

Counter

OUuT_C
This instruction increments the current counter value (count value) by one when the operation result up to the OUT instruction
turns on. When the count value reaches the set value, the normally open contact of the counter turns on (continuity state) and

the normally closed contact turns off (non-continuity state).

ST
ENO:=OUT_C(EN, Coil,Value);

HExecution condition

Instruction Execution condition

OUT_C Every scan

Setting data

EDescription, range, data type

Operand Description Range Data type
Coil Counter number — ANY_BOOL*1
Value Value set for the counter 0 to 65535 ANY_INT

EN Execution condition — BOOL

ENO Execution result — BOOL

*1 Only counter type labels can be used.

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

Coil — — @) — —

Value — — @) @) o1

*1 Only K (decimal constant) can be used.

Processing. details

* This instruction increments the current counter value (count value) in the device specified by Coil by one on the rising edge
(off to on) of the operation result up to the OUT instruction. When the count value reaches the set value (current value > set
value), the normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity state).

» Counting is disabled while the operation result remains on. (Count input does not need to be converted into pulses.)

« After counting-up, the count value and contact status remain unchanged until the RST instruction is executed.

* When the set value is 0, the same processing is performed as when it is set to 1.

Operation.error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions 53

54

Long counter

OUT LC

This instruction increments the current long counter value (count value) by one on the rising edge (off to on) of the operation
result up to the OUT instruction. When the count value reaches the set value, the normally open contact of the long counter

turns on (continuity state) and the normally closed contact turns off (non-continuity state).

ST

ENO:=OUT_C(EN, Coil,Value);

HExecution condition

Instruction

Execution condition

ouT_LC

Every scan

Setting data

EDescription, range, data type

Operand Description Range Data type
Coil Long counter number — ANY_BOOL"
Value Set value for the long counter 0 to 4294967295 ANY32
EN Execution condition — BOOL
ENO Execution result — BOOL
*1 Only long counter type labels can be used.
HMApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
Coil — — — — —
Value — — O O o
*1 Only K (decimal constant) can be used.

Processing. details

« This instruction increments the current long counter value (count value) in the device specified by Coil by one on the rising
edge (off to on) of the operation result up to the OUT instruction. When the count value reaches the set value (current value
> set value), the normally open contact turns on (continuity state) and the normally closed contact turns off (non-continuity

state).

» Counting is disabled while the operation result remains on. (Count input does not need to be converted into pulses.)
« After counting-up, the count value and contact status remain unchanged until the RST instruction is executed.
* When the set value is 0, the same processing is performed as when it is set to 1.

There is no operation error.

Operation.error

5 SEQUENCE INSTRUCTIONS

5.1 Output Instructions

Setting devices

This instruction turns on the specified bit.

ENO:=SET(EN,d);

HEExecution condition

SET
I L

|

EDescription, range, data type

(d) Set target bit device number or bit specification of word device — ANY_BOOL
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

+ This instruction changes the device status as follows when the execution command turns on.

Bit device Turns on the coil or contact.

Bit-specified word device Sets the specified bit to 1.

» The device that has been turned on remains on even after the execution command turns off. The device that has been
turned on can be turned off by using the RST instruction.
[Label definitions]

EN_Label_1 Bit VAR

EN_Label_2 Bit VAR

ValueOut_Label Bit VAR

ENO_Label Bit VAR
[Program]

ENO_Label := SET(EN_Label_1,ValueOut_Label);
ENO_Label := RST(EN_Label_2,ValueOut_Label);

[Timing chart]

ON
EN_Label 1 off T_l T_l

ON
EN_Label_2 OFF 1
ON
ValueOut_Label OFF \i

* When the execution command is off, the device status does not change.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions 55

Operation.error

There is no operation error.

Point
When RX is used, specify a device number that is not used in actual input. If the number that is used in actual
input is specified, the data of actual input is written over the input device (RX) specified by the SET instruction.
56 5 SEQUENCE INSTRUCTIONS

5.1 Output Instructions

Resetting devices

This instruction turns off the specified device.

ENO:=RST(EN,d);

HEExecution condition

RST
I L

|

EDescription, range, data type

(d) Reset target bit device number, bit specification of word device — ANY_BOOL
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

+ This instruction changes the device status as follows when the execution command turns on.

Bit device Turns off the coil or contact.

Bit-specified word device Sets the specified bit to 0.

* When the execution command is off, the device status does not change.
+ Data except bit type can not be specified in the RST instruction.

- Operation error

There is no operation error.

5 SEQUENCE INSTRUCTIONS
5.1 Output Instructions 57

MEMO

5 SEQUENCE INSTRUCTIONS
58 5.1 Output Instructions

PART 4 BASIC INSTRUCTIONS

This part consists of the following chapters.

6 BASIC INSTRUCTIONS

59

6 BASIC INSTRUCTIONS

6.1

Arithmetic Operation Instructions

Adding 16-bit binary data

+_VY)

These instructions add the two sets of 16-bit binary data specified.

ST

ENO:=PLUS(EN,s1,52,d);
ENO:=PLUS_U(EN,s1,s2,d);

HEExecution condition

Instruction

Execution condition

+
+ U

I L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s1) + First addend data or the device where the first addend data is stored -32768 to 32767 ANY16_S
+ U 0 to 65535 ANY16_U

(s2) + Second addend data or the device where the second addend data is -32768 to 32767 ANY16_S
+y | stored 0 to 65535 ANY16_U

(d) + Device for storing the operation result — ANY16_S
+ U ANY16_U

EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) O @) O @) @)

(s2) O @) O @) @)

(d) O O O o _

60 6 BASIC INSTRUCTIONS

6.1 Arithmetic Operation Instructions

Processing. details

» These instructions add the 16-bit binary data in the device specified by (s1) and the 16-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1) (s2) (d)
5 . bo
6912 (BIN) |

b15 - bo b15 - bo b1
[sera@N) | + [234N ||

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[+ instruction]
(S)j) (SAZ) (g)

N\ r N\

b15 - b0 b15 - b0 bis b0
| -12345(BIN) | + | -23456(BIN) | =>| 29735(BIN) |

(s1) (s2) @)

b15 b0 b15 - b0 bis - b0
| 12345(8IN) | + | 23456(BIN) | =>| -29735(BIN) |

[+_U instruction]

(s1) (2) (d)

b15 - bo b15 - bo b15 - bo
| serso@INy | + | 12345(8IN) | =>| 3508(BIN) |

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.1 Arithmetic Operation Instructions 6

62

Subtracting 16-bit binary data

These instructions perform subtraction between the two sets of 16-bit binary data specified.

ENO:=
ENO:=

MINUS(EN,s1,52,d);
MINUS_U(EN,s1,s2,d);

HExecution condition

EDescription, range, data type

(s1) Minuend data or the device where minuend data is stored -32768 to 32767 ANY16_S
- U 0 to 65535 ANY16_U
(s2) - Subtrahend data or the device where subtrahend data is stored -32768 to 32767 ANY16_S
- U 0 to 65535 ANY16_U
(d) - Device for storing the operation result — ANY16_S
- U ANY16_U
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

(s1)

(s2)

(d)

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Processing. details

» These instructions subtract the 16-bit binary data in the device specified by (s2) from the 16-bit binary data in the device
specified by (s1), and store the operation result in the device specified by (d).

(s1) (s2) (d)
5 .. bo
4444 (BIN) |

b15 - bO b15 - bo b1
[sers@N) | - | 1234BIN) | > |

« If an underflow occurs in the result, the borrow bit is ignored. In this case, SM700 does not turn on.
[- instruction]

(s1) (s2) (d)
r N\ r N\ r hY
b15 - b0 b15 - b0 b15 - b0
| -123a5@IN) | - | 23456 (BIN) | =>| 20735@BIN) |
(1) (s2) (@)
r N\ r N\ r hY
b15 - b0 b15 - b0 b15 - b0
| 123a5IN) | - | -234s8(BIN) | =>| -20735(BIN) |

[-_U instruction]

(s1) (2) (@)

b15 - b0 b15 - bo b15 - bo
| se789®IN) | - | 56790(BIN) | =>| 65535(BIN) |

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 63

64

Adding 32-bit binary data

These instructions add the two sets of 32-bit binary data specified.

ENO:=DPLUS(EN,s1,52,d);
ENO:=DPLUS_U(EN,s1,s2,d);

HExecution condition

D+
D+_U

T L

|

EDescription, range, data type

(s1) D+ First addend data or the start device where the first addend data is -2147483648 to 2147483647 ANY32_S
D+ U | stored 0 to 4294967295 ANY32_U

(s2) D+ Second addend data or the start device where the second addend data | -2147483648 to 2147483647 ANY32_S
D+ U | isstored 0 to 4294967295 ANY32_U

(d) D+ Start device for storing the operation result — ANY32_S
D+_U ANY32_U

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

(s1) O O O O O

(s2) O O O O O

(d) (@) @) @) 0O —_

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Processing. details
» These instructions add the 32-bit binary data in the device specified by (s1) and the 32-bit binary data in the device

specified by (s2), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 ~ b0
| se7so0(BIN) | + | 123456 (BIN) | > | 691346 BIN) |

« If an overflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D+ instruction]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
/_H_/% /_H_/%
b31 - b16b15 b0 b31 - b16b15 b0 b31 - b16b15 b0

[1234567890 (BIN) | + | 987654321 (BIN) | => |-2072745085 (BIN) |

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
/_H_/% /_H_/%
b31 - b16b15 b0 b31 - b16b15 b0 b31 - b16b15 b0

[-1234567890 (BIN)| + | -987654321 (BIN) | => | 2072745085 (BIN) |

[D+_U instruction]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
b31 = b16 b15 = b0 b31 = b16 b15 = b0 b31 - b16 b15 = b0

3456789012 (BIN) | + | 1234567890 (BIN) | => | 396389606 (BIN) |

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 65

66

Subtracting 32-bit binary data

These instructions perform subtraction between the two sets of 32-bit binary data specified.

ENO:=
ENO:=

DMINUS(EN,s1,s2,d);
DMINUS_U(EN,s1,s2,d);

HExecution condition

EDescription, range, data type

(s1) D- Minuend data or the start device where minuend data is stored -2147483648 to 2147483647 ANY32_S
D-_U 0 to 4294967295 ANY32_U

(s2) D- Subtrahend data or the start device where subtrahend data is stored -2147483648 to 2147483647 ANY32_S
D-_U 0 to 4294967295 ANY32_U

(d) D- Start device for storing the operation result — ANY32_S
D-_U ANY32_U

EN Execution condition — BOOL

ENO Execution result — BOOL

HApplicable devices/labels

(s1) O O O O @)

(s2) O O O O @)

(d) (@) @) ®) o _

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Processing. details
» These instructions subtracts the 32-bit binary data in the device specified by (s2) from the 32-bit binary data in the device

specified by (s1), and store the operation result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
— — —

b31 - b16b15 - b0 b31 - b16b15 - b0 b31 - b16b15 = b0
| se7800(BIN) | - | 123456 (BIN) | > | 444434 BIN) |

« If an underflow occurs in the result, the carry bit is ignored. In this case, SM700 does not turn on.
[D- instruction]

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
/_H_H /_H_H
b31 - b16 b15 - bO b31 - b16 b15 = bO b31 - b16 b15 = b0
[1234567890 (BIN) | - | -987654321 (BIN) | => [-2072745085 (BIN)|
(s1)+1 (S1) (52)+1 (32) (d)+1 (d)
/_H_H /_H_H
b31 - b16 b15 = bO b31 - b16 b15 = b0 b31 - b16b15 = b0
[-1234567890 (BIN)| - | 987654321 (BIN) | => | 2072745085 (BIN) |

[D-_U instruction]

(11 (s) (21 (s2) @+ @
/_/H/_H

b31 - b16 b15 - b0 b31 - b16 b15 - b0 b31 - b16 b15 - b0

| 3456780012 (BIN) | - | 3060399406 (BIN) | => | 396389606 (BIN) |

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 67

Multiplying 16-bit binary data

*LV)
These instructions multiply the two sets of 16-bit binary data specified.
ST
ENO:=MULTI(EN,s1,52,d); ENO:=MULTI_U(EN,s1,s2,d);

HExecution condition

Instruction Execution condition

*

v L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) * Multiplicand data or the device where multiplicand data is stored -32768 to 32767 ANY16_S

* U 0 to 65535 ANY16_U
(s2) * Multiplier data or the device where multiplier data is stored -32768 to 32767 ANY16_S

* U 0 to 65535 ANY16_U
(d) * Start device for storing the operation result — ANY32_S

* U ANY32_U
EN Execution condition — BOOL
ENO Execution result — BOOL

BMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) o} o} o) 0 0

(s2) le)))))

(d))) @) e) —

Processing details

» These instructions multiply the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1) (s2) (d)+1)

A A /—)%
b15 - bo b15 - bo b31 - b16b15 = bo
| se7s®IN) | x | 1234BIN) | > [7006652 (BIN) |

* When (d) is a bit device, data should be specified in order from lower bits.

[Ex]

Operation result when (d) is a bit device
» K1--Lower 4 bits (b0 to b3)
* K4.--Lower 16 bits (b0 to b15)
« K8---Lower 32 bits (b0 to b31)

Operation.error

There is no operation error.

68 6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Dividing 16-bit binary data

ICY)

These instructions perform division between the two sets of 16-bit binary data specified.

ST

ENO:=DIVISION(EN,s1,52,d);

ENO:=DIVISION_U(EN,s1,s2,d);

HExecution condition

Instruction

Execution condition

/

LU L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) / Dividend data or the device where dividend data is stored -32768 to 32767 ANY16_S
/_U 0 to 65535 ANY16_U
(s2) / Divisor data or the device where divisor data is stored -32768 to 32767 ANY16_S
/_U 0 to 65535 ANY16_U
(d) / Start device for storing the operation result — ANY16_S_ARRAY
(Number of elements: 2)
/_U ANY16_U_ARRAY
(Number of elements: 2)
EN Execution condition — BOOL
ENO Execution result — BOOL
BMApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB sSw G, RWw, RWr, LW K, H
(s1) O @) O @) @)
(s2) O O O @) @)
(d) O @) O @) —

Processing details

» These instructions divide the 16-bit binary data in the device specified by (s1) by the 16-bit binary data in the device

specified by (s2), and store the operation result in the device specified by (d).

(s1) (s2) (d) (d)+1
A I
b15 - bo b15 - bo b15 = b0 b5 - bO
| sera@IN) | + | 1234@IN) | > [4@IN) | [742BIN)

(d): Quotient
(d)+1: Remainder

« As the operation result, the quotient and remainder are stored in 32 bits. When a bit device is specified, the number of digit-

specified bits is used to store the quotient and remainder.

* Quotient:--Stored in lower 16 bits.
* Remainder---Stored in upper 16 bits.

Operation.error

Error code Description

34FFH

The value (divisor) in the device specified by (s2) is 0.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 69

Multiplying 32-bit binary data

D*(_U)
These instructions multiply the two sets of 32-bit binary data specified.
ST
ENO:=DMULTI(EN,s1,s2,d); ENO:=DMULTI_U(EN,s1,s2,d);

HExecution condition

Instruction Execution condition

D*

D* U I_

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) D* Multiplicand data or the start device where multiplicand data is stored -2147483648 to 2147483647 ANY32_S
D*_U 0 to 4294967295 ANY32_U
(s2) D* Multiplier data or the start device where multiplier data is stored -2147483648 to 2147483647 ANY32_S
D*_U 0 to 4294967295 ANY32_U
(d) D* Start device for storing the operation result — ANY32_S_ARRAY
(Number of elements: 2)
D*_U ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — BOOL
ENO Execution result — BOOL

BMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB sw G, RWw, RWr, LW K, H

(s1) 0 o} 0 o} o

(s2) o} o o} o o}

(d) O — O — —

Processing details

» These instructions multiply the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).
(s1)+1 (s1) (s2)+1 (s2) (d)+3 (d)+2 (d)+1 (d)

b31 - b16b15 - b0 b31 - b16b15 = b0 b63 ~ b48 b47 - b32b31 -+ b16 b15 = b0
| 567890 (BIN) | x | 123456 BIN) | > | 70109427840 (BIN) |

» When (d) is a bit device, only the lower 32 bits of the operation result are stored. If the upper 32 bits of the operation result
are required, temporarily store the result in a word device, and transfer the data stored in (d)+2 and (d)+3 to the specified
bit devices.

[Ex]

Operation result when (d) is a bit device
» K1--Lower 4 bits (b0 to b3)
* K4.--Lower 16 bits (b0 to b15)
« K8---Lower 32 bits (b0 to b31)

Operation.error

There is no operation error.

70 6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Dividing 32-bit binary data

D/(_U)

These instructions perform division between the two sets of 32-bit binary data specified.

ST

ENO:=DDIVISION(EN,s1,s2,d);

ENO:=DDIVISION_U(EN,s1,s2,d);

HExecution condition

Instruction Execution condition
D/
D/_U I_

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) D/ Dividend data or the start device where dividend data is stored -2147483648 to 2147483647 ANY32_S
D/_U 0 to 4294967295 ANY32_U
(s2) D/ Divisor data or the start device where divisor data is stored -2147483648 to 2147483647 ANY32_S
D/_U 0 to 4294967295 ANY32_U
(d) D/ Start device for storing the operation result — ANY32_S_ARRAY
(Number of elements: 2)
D/_U ANY32_U_ARRAY
(Number of elements: 2)
EN Execution condition — BOOL
ENO Execution result — BOOL
BMApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB sSw G, RWw, RWr, LW K, H
(s1) O @) O @) @)
(s2) O O O @) @)
(d) O — O — —

Processing details

» These instructions divide the 32-bit binary data in the device specified by (s1) by the 32-bit binary data in the device
specified by (s2), and store the operation result in the device specified by (d).

(s1)+1 (s1)
—

b31 - b16 b15 - b0

(s2)+1

b31 - b16 b15 - b0

(s2)

b31 -+ b16 b15 -

(d)+1 (d)
—

(d+3 (d)+2

b0 b31 - b16 b15 - b0

| 567890 (BIN)

123456 (BIN)

| => |

4 (BIN) | |

74066 (BIN) |

 As the operation result when a word device is specified, the quotient and remainder are stored in 64 bits. The quotient is

stored in lower 32 bits, and the remainder is stored in upper 32 bits. When a bit device is specified, only quotient is stored in

32 bits.

Operation.error

Error code Description

34FFH

The value (divisor) in the device specified by (s2) is 0.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

4l

Incrementing 16-bit binary data

INC(_U)
These instructions increment the specified 16-bit binary data by one.
ST
ENO:=INC(EN,d); ENO:=INC_U(EN,d);

HExecution condition

Instruction Execution condition

INC
INC_U I_

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) INC Increment target device -32768 to 32767 ANY16_S
INC_U 0 to 65535 ANY16_U
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(d) O O O O —

Processing. details
» These instructions increment the 16-bit binary data in the device specified by (d) by one.

(d) (d)
f—% /—%
b15 . b0

5678 (BIN) +1 > 5679 (BIN)

* When the INC instruction is executed while the data in the device specified by (d) is 32767, -32768 is stored in the device
specified by (d).

* When the INC_U instruction is executed while the data in the device specified by (d) is 65535, 0 is stored in the device
specified by (d).

Operation. error

There is no operation error.

72 6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Decrementing 16-bit binary data

DEC(_U)
These instructions decrement the specified 16-bit binary data by one.

ST

ENO:=DEC(EN,d); ENO:=DEC_U(EN,d);

HExecution condition

Instruction Execution condition
DEC
DEC_U I_

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) DEC Decrement target device -32768 to 32767 ANY16_S
DEC_U 0 to 65535 ANY16_U
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SWwW G, RWw, RWr, LW K, H
(d) O O O O —

Processing. details
» These instructions decrement the 16-bit binary data in the device specified by (d) by one.

(d) (d)
f—% /—%

b15 b0 b15 b0

=S

» When the DEC instruction is executed while the data in the device specified by (d) is -32768, 32767 is stored in the device
specified by (d).

* When the DEC_U instruction is executed while the data in the device specified by (d) is 0, 65535 is stored in the device
specified by (d).

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 73

Incrementing 32-bit binary data

DINC(_U)
These instructions increment the specified 32-bit binary data by one.
ST
ENO:=DINC(EN,d); ENO:=DINC_U(EN,d);

HExecution condition

Instruction Execution condition
DINC
DINC_U

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) DINC Increment target start device -2147483648 to 2147483647 ANY32_S
DINC_U 0 to 4294967295 ANY32_U
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB sSwW G, RWw, RWr, LW K, H
(d) O O O O —

Processing. details
» These instructions increment the 32-bit binary data in the device specified by (d) by one.

(d)+1 (d) (d)+1 (d)
— —

b31 =+ b16 b15 = b0 b31 -+ b16 b15 - b0
73500 (BIN) +1 > 73501 (BIN)

» When the DINC instruction is executed while the data in the device specified by (d) is 2147483647, -2147483648 is stored
in the device specified by (d).
* When the DINC_U instruction is executed while the data in the device specified by (d) is 4294967295, 0 is stored in the

device specified by (d).

Operation.error

There is no operation error.

74 6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions

Decrementing 32-bit binary data

DDEC(_U)

These instructions decrement the specified 32-bit binary data by one.

ST

ENO:=DDEC(EN,d); ENO:=DDEC_U(EN,d);

HExecution condition

Instruction Execution condition

DDEC
DDEC_U I_

Setting data

EDescription, range, data type

Operand Description Range Data type

(d) DDEC Decrement target start device -2147483648 to 2147483647 ANY32_S
DDEC_U 0 to 4294967295 ANY32_U

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(d) O O O O —

Processing. details
» These instructions decrement the 32-bit binary data in the device specified by (d) by one.
(d)+1 (d) (d)+1 (d)

b31 - b16 b15 - b0 b31 - b16 b15 - b0
73500 (BIN) 4 > 73499 (BIN)

» When the DDEC instruction is executed while the data in the device specified by (d) is -2147483648, 2147483647 is stored

in the device specified by (d).
* When the DDEC instruction is executed while the data in the device specified by (d) is 0, -1 is stored in the device specified

by (d).
» When the DDEC_U instruction is executed while the data in the device specified by (d) is 0, 4294967295 is stored in the

device specified by (d).

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.1 Arithmetic Operation Instructions 75

76

6.2

Logical Operation Instructions

Performing an AND operation on 16-bit data

WAND

This instruction performs an AND operation on the two sets of 16-bit binary data specified.

ST

ENO:=WAND(EN,s1,s2,d);

HEExecution condition

Instruction

Execution condition

WAND

L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Logical AND data or the device where logical AND data is stored -32768 to 32767 ANY16
(s2) Logical AND data or the device where logical AND data is stored -32768 to 32767 ANY16

(d) Device for storing the operation result — ANY16

EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) O @) O @) @)

(s2) O @) O @) @)

(d) O @) O @) —

Processing. details

« This instruction performs an AND operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the 16-
bit binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

b15 b8 b7 b0

D[17101 1171710100100 1,111 1]
AND

b15 b8 b7 bo

(2)[0;0j0,1]/00;110]0;0;1,1]0,1,0,0]

b15 b8 "b7 bo

@[ojo0oj0;1]0j0;1,0]0;0;0,0[0,1,0;0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-

specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions

Performing an AND operation on 32-bit data

DAND

This instruction performs an AND operation on the two sets of 32-bit binary data specified.

ST
ENO:=DAND(EN,s1,52,d);

HExecution condition

Instruction Execution condition

DAND
I L
Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Logical AND data or the start device where logical AND data is stored -2147483648 to 2147483647 ANY32
(s2) Logical AND data or the start device where logical AND data is stored -2147483648 to 2147483647 ANY32
(d) Start device for storing the operation result — ANY32
EN Execution condition — BOOL
ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) 0 o} 0 o} o}

(s2) 0 o} o o} o}

(d) O O O e _

Processing details

* This instruction performs an AND operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the 32-
bit binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

(s1)+1 (s1)

b3t b16 b15 b0
O 1 1 1o]otor o Wl]
AND
(s2)+1 (s2)
b31 b16 b15 bo

[0 ;170 1[0 1707017071 ({Jojo 01

U

(d)+1 (d)

b31 b16 b15 b0

@loi1 7071V 1707001070,]o 00, 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation. error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions 77

Performing an OR operation on 16-bit data

WOR

This instruction performs an OR operation on the two sets of 16-bit binary data specified.

ST

ENO:=WOR(EN,s1,s2,d);

HExecution condition

Instruction

Execution condition

WOR

I L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Logical OR data or the device where logical OR data is stored -32768 to 32767 ANY16
(s2) Logical OR data or the device where logical OR data is stored -32768 to 32767 ANY16

(d) Device for storing the operation result — ANY16

EN Execution condition — BOOL
ENO Execution result — BOOL

HApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB Sw G, RWw, RWr, LW K, H

(s1) O O @) O O

(s2) O O @) O O

(d) O O @) O —

Processing details

* This instruction performs an OR operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the 16-bit
binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

b15 b8 b7 b0

([111/0/0lo0j0/0/0][1/1,1,1]0,0,0,0]
OR

b15 b8 b7 b0

2[00 ;00[1,170,0[1,1,010]0;0,1,1]

b15 b8 b7 b0

@ 171,070/ 1;17070[1,1;1,1]0,0,1;1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions

Performing an OR operation on 32-bit data

DOR

This instruction performs an OR operation on the two sets of 32-bit binary data specified.

ST

ENO:=DOR(EN,s1,s2,d);

HExecution condition

Instruction

Execution condition

DOR

I L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s1) Logical OR data or the start device where logical OR data is stored -2147483648 to 2147483647 ANY32

(s2) Logical OR data or the start device where logical OR data is stored -2147483648 to 2147483647 ANY32

(d) Start device for storing the operation result — ANY32

EN Execution condition — BOOL

ENO Execution result — BOOL
HApplicable devices/labels

Operand Bit Word Constant

SB RX, RY, LB sSw G, RWw, RWr, LW K, H

(s1) O @) O @) @)

(s2) O @) O @) @)

(d) O @) @) e} —

Processing details

* This instruction performs an OR operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the 32-bit

binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

(s1)+1

(s1)

b31
I I

b16 b15 b0

sDlojor1, 1[0 00

11010 0111707 0]

OR
(s2)

b31

b16 b15 bo

2[00 71 ;00 171

roJojo o ({1 11

(d)+1

(d)

b31

b16 b15 bo

@ [oro 1 1[0

EIEEEENEEEEEEE

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-

specified points are 0.

Operation. error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions

79

Performing an XOR operation on 16-bit data

WXOR

This instruction performs an XOR operation on the two sets of 16-bit binary data specified.

ST

ENO:=WXOR(EN,s1,s2,d);

HExecution condition

Instruction

Execution condition

WXOR

I L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Exclusive OR data or the device where exclusive OR data is stored -32768 to 32767 ANY16
(s2) Exclusive OR data or the device where exclusive OR data is stored -32768 to 32767 ANY16

(d) Device for storing the operation result — ANY16

EN Execution condition — BOOL
ENO Execution result — BOOL

HApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) O @) O @) @)

(s2) O @) O @) @)

(d) O @) @) e} —

Processing details

* This instruction performs an XOR operation (bit-by-bit) on the 16-bit binary data in the device specified by (s1) and the 16-

bit binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

b15 b8 b7 b0

sH[ojo0l0,0/1,17111]11111,1]0,001,0]
XOR

b15 b8 b7 b0

s2[0o;170, 101707107170, 1]0,1,0,1]

b15 b8 b7 b0

@ [o 1701170170101 ;0[0,1,0]1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-

specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
80 6.2 Logical Operation Instructions

Performing an XOR operation on 32-bit data

DXOR

This instruction performs an XOR operation on the two sets of 32-bit binary data specified.

ST
ENO:=DXOR(EN,s1,s2,d);

HExecution condition

Instruction Execution condition

DXOR
L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Exclusive OR data or the start device where exclusive OR data is stored | -2147483648 to 2147483647 ANY32
(s2) Exclusive OR data or the start device where exclusive OR data is stored | -2147483648 to 2147483647 ANY32
(d) Start device for storing the operation result — ANY32
EN Execution condition — BOOL
ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SWwW G, RWw, RWr, LW K, H

(s1) 0 0 o} o} o}

(s2) 0 0 o} o} o}

(d) O O O O _

Processing details

* This instruction performs an XOR operation (bit-by-bit) on the 32-bit binary data in the device specified by (s1) and the 32-
bit binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

(s1)+1 (s1)

b31 b16 b15 b0
sH[11 110 ototolorioio 11110 1]
XOR
(s2)+1 (s2)
b31 b16 b15 b0

[171 i rto oo ({17107 0
(d)+1 (d)
b31 b16 b15 b0

@ (o 010700 101017080101 1]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.2 Logical Operation Instructions 8

82

Performing an XNOR operation on 16-bit data

WXNR

This instruction performs an XNOR operation on the two sets of 16-bit binary data specified.

ST

ENO:=WXNR(EN,s1,52,d);

HExecution condition

Instruction

Execution condition

WXNR

I L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Exclusive NOR data or the device where exclusive NOR data is stored -32768 to 32767 ANY16
(s2) Exclusive NOR data or the device where exclusive NOR data is stored -32768 to 32767 ANY16

(d) Device for storing the operation result — ANY16

EN Execution condition — BOOL
ENO Execution result — BOOL

HApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) O @) O @) @)

(s2) O @) O @) @)

(d) O @) @) e} —

Processing details

* This instruction performs an exclusive NOR operation on the 16-bit binary data in the device specified by (s1) and the 16-bit
binary data in the device specified by (s2), and stores the operation result in the device specified by (d).

b15 b8 b7 b0

sD[171171,1]/007010]/11111,1]0,001,0]
XNR

b15 b8 b7 b0

2[o0j0,1,1][1,17010]0;0/1,1]0,0}1,1]

b15 b8 b7 b0

@lojo;171]o;0 17107071, 1]1,1,0,0]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions

Performing an XNOR operation on 32-bit data

DXNR

This instruction performs an XNOR operation on the two sets of 32-bit binary data specified.

ST
ENO:=DXNR(EN,s1,52,d);

HExecution condition

Instruction Execution condition

DXNR
L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s1) Exclusive NOR data or the start device where exclusive NOR data is -2147483648 to 2147483647 ANY32
stored

(s2) Exclusive NOR data or the start device where exclusive NOR data is -2147483648 to 2147483647 ANY32
stored

(d) Start device for storing the operation result — ANY32

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) 0 o} o o} o}

(s2) o} o} o} o o

(d) o o) o —

Processing details

* This instruction performs an XNOR operation on the 32-bit binary data in the device specified by (s1) and the 32-bit binary
data in the device specified by (s2), and stores the operation result in the device specified by (d).

(s1)+1 (s1)

b3t b16 b15 b0
[0 o1 1T oto 111 Jolor111]
XNR
(s2)+1 (s2)
b3t b16 b15 bo

{0,170 1[0 o 17017071 0Jo; 101

b31 b16 b15 bo
@[17070 1[0 170701701170 071]

* When a bit device is specified, the instruction performs an operation by assuming that the ones after the number of digit-
specified points are 0.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.2 Logical Operation Instructions 83

6.3 Data Conversion Instructions

Two's complement of 16-bit binary data (sign inversion)

84

NEG

Invert the sign of 16-bit binary device.

ST

ENO:=NEG(EN,d);

HEExecution condition

Instruction Execution condition

NEG
g

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) Device where the data subjected to two's complement is stored — ANY16
EN Execution condition — BOOL
ENO Execution result — BOOL

HApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(d) O O O O —

Processing details

« This instruction inverts the sign of the 16-bit binary data in the device specified by (d), and stores the inverted data in the
device specified by (d).
» The instructions are used to invert positive and negative signs.

b15 b0
Before execution (d) | 1 o |1 [o[1][of[1[o[1]o]1]o][1]0[1]0]~-21846

Signconversionullo‘0‘0‘0|0|0|0|0|0|0‘0‘0‘0‘0‘0‘0|

) [TofxTofafolaola[ol1 ol 1 o 1 T0]

b15 b0

After execution (d)[0 [1[o[1JoJ1]of1]o[1]o[1]o]1]1]0]~21846

-
|

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.3 Data Conversion Instructions

Two's complement of 32-bit binary data (sign inversion)

DNEG

This instruction inverts the sign of 32-bit binary device.

ST

ENO:=DNEG(EN,d);

HExecution condition

Instruction Execution condition

DNEG
L

Setting data

EDescription, range, data type

Operand Description Range Data type
(d) Start device where the data subjected to two's complement is stored — ANY32

EN Execution condition — BOOL
ENO Execution result — BOOL

HApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(d) O O O o —

Processing. details

* This instruction inverts the sign of the 32-bit binary data in the device specified by (d), and stores the inverted data in the

device specified by (d).
» The instructions are used to invert positive and negative signs.

b31 b0
Before execution (d) | 1 [1 [1 [1[1[1[1[{0 Jo[1]o]o[1]o0]0]-218460

"1ToJoJolofo]o]o] 3{ [oJolo[o]0]o]0]

Sign conversion - -

S EIERENERERENED

i
)
U

b31 b0
After execution (d)[0 JoJoJoJoJo o] §0 T1JoJ1]1[1]o]o]~ 218460

[ol1]ofofr]o]o]

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.3 Data Conversion Instructions 85

6.4 Data Transfer Instructions

Transferring 16-bit binary data

MOV

This instruction transfers the 16-bit binary data in the device specified.

ST

ENO:=MOV(EN,s,d);

HEExecution condition

Instruction Execution condition

MoV
L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s) Transfer source data or the number of the device where the transfer -32768 to 32767 ANY16
source data is stored

(d) Transfer destination device number — ANY16

EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB swW G, RWw, RWr, LW K, H

(s) o} o} o} o} o}

(d) 0 o} o} 0 —

Processing details

« This instruction transfers the 16-bit binary data in the device specified by (s) to the device specified by (d).
« If (s) is a digit-specified bit device, the digit-specified bits are targeted. If data specified by (s) is less than 16 bits, Os are
added and transferred.

b15 b7 b0

@ 1+ v | 7 1 Joj1iaitfoioitio
(1) @

b15 b8 b7 b0

@ [ojo0;0;0[0;0;0/0[0;1/1,1][0,0,1]0

(1) If data specified by (s) is less than 16 bits, Os are added and transferred.

Operation.error

There is no operation error.

86 6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions

Transferring 32-bit binary data

This instruction transfers the 32-bit binary data in the device specified.

ENO:=DMOV(EN,s,d);

HExecution condition

DMOV

|

EDescription, range, data type

(s) Transfer source data or the number of the device where the transfer -2147483648 to 2147483647 ANY32
source data is stored

(d) Transfer destination device number — ANY32

EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels

(d) (@) @) @) 0 _

|

« This instruction transfers the 32-bit binary data in the device specified by (s) to the device specified by (d).
« If (s) is a digit-specified bit device, the digit-specified bits are targeted. If data specified by (s) is less than 16 bits, Os are
added and transferred.

b27 b0
___i___i___i___|1|38|0515050|051i1i1 0:0:1:0

v

b31_ - b28b27 b
loioioio1][d]oi1ioio]oiaitit]oioitio

e

© |

(1) If data specified by (s) is less than 32 bits, Os are added and transferred.

There is no operation error.

6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions 87

Inverting and transferring 16-bit binary data

CML

This instruction inverts the specified 16-bit binary data bit by bit, and transfer the inverted data.

ST

ENO:=CML(EN,s,d);

HExecution condition

Instruction Execution condition

CML
L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s) Inversion target data or the number of the device where the inversion -32768 to 32767 ANY16
target data is stored

(d) Number of the device for storing the inverted data — ANY16

EN Execution condition — BOOL

ENO Execution result — BOOL

HApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s) O @) @) O @)

(d) O @) @) O —

Processing. details

« This instruction inverts the 16-bit binary data in the device specified by (s) bit by bit, and transfer the inverted data to the
device specified by (d).

- If (s) is a digit-specified bit device, the digit-specified bits are targeted. If data specified by (s) is less than 16 bits, Os are
added and inverted.

b15 b7 b0

o v L v b Joyrr1i1]oi010

(1) @
b15 b8 b7 b0
@ {11711 1711011 ,0700[1,1,0]1

(s)

[N

(1) If data specified by (s) is less than 16 bits, Os are added and inverted.

Operation.error

There is no operation error.

88 6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions

Inverting and transferring 32-bit binary data

DCML
This instruction inverts the specified 32-bit binary data bit by bit, and transfer the inverted data.

ST
ENO:=DCML(EN,s,d);

HExecution condition

Instruction Execution condition
DCML —,—|_

Setting data

EDescription, range, data type

Operand Description Range Data type

(s) Inversion target data or the number of the device where the inversion -2147483648 to 2147483647 ANY32
target data is stored

(d) Number of the device for storing the inverted data — ANY32

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s) O O) O O

(d) O O O o _

Processing. details

« This instruction inverts the 32-bit binary data in the device specified by (s) bit by bit, and transfer the inverted data to the
device specified by (d).

- If (s) is a digit-specified bit device, the digit-specified bits are targeted. If data specified by (s) is less than 16 bits, Os are
added and inverted.

b28 b27 b0

b31
@[1i1i1i1]ollotriaiafoioloi]1i1i0}n

(1) If data specified by (s) is less than 32 bits, Os are added and inverted.

Operation.error

There is no operation error.

6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions 89

Inverting and transferring 1-bit data

This instruction inverts the specified bit data, and transfer the inverted data.

ENO:=CMLB(EN,s,d);

HEExecution condition

CMLB

|

EDescription, range, data type

(s) Inversion target data or the number of the device where the inversion — ANY_BOOL
target data is stored

(d) Transfer destination device number — ANY_BOOL

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

+ This instruction inverts the bit data in the device specified by (s), and transfer the inverted data to the device specified by
(d).
(d) (s)
ranater
/

The bit is inverted and transferred.

A/

ponrer] 0 []
transfer

F

There is no operation error.

90 6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions

Transferring 1-bit data

This instruction transfers the specified 1-bit data.

ENO:=MOVB(EN,s,d);

HEExecution condition

MOVB

|

EDescription, range, data type

(s) Number of the device where the transfer target data is stored — ANY_BOOL
(d) Transfer destination device number — ANY_BOOL
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

e
o
o
o
|
|

« This instruction transfers the bit data in the device specified by (s) to the device specified by (d).
(d) (s)
Before

The bit is transferred.

A

e

There is no operation error.

6 BASIC INSTRUCTIONS 1
6.4 Data Transfer Instructions 9

MEMO

92 6 BASIC INSTRUCTIONS
6.4 Data Transfer Instructions

PART 5

PART S APPLICATION
INSTRUCTIONS

This part consists of the following chapters.

7 PROGRAM CONTROL

8 DATA PROCESSING

9 STRING PROCESSING

10 REAL VALUE PEOCESSING

93

94

7 PROGRAM CONTROL

7.1 Program Execution Control Instructions

Disabling/enabling interrupt programs

DI, EI

« DI: This instruction disables execution of fixed scan execution type programs.

« El: This instruction clears the fixed scan execution type programs execution disabled state.
ST

ENO:=DI(EN);
ENO:=EI(EN);

HExecution condition

Instruction Execution condition
DI Every scan
El

Processing. details
HDI

« This instruction disables execution of fixed scan execution type programs.

* When the system is powered on or the CPU module is reset, the system is in the state where the DI instruction has been
executed.

» The DI (Disabling interrupt programs) instruction cannot be executed in fixed scan execution type programs. If executed, no
processing is performed.

» The execution of the El instruction enables the interrupt that has been disabled by a single DI (Disabling interrupt
programs) instruction. Note that if the DI (Disabling interrupt programs) instruction is nested, the interrupt will not be
enabled unless executing the El instruction, including the nesting instruction.

[Program Example (DI nesting)]
DI(TRUE);//1st nesting of DI instruction
DI(TRUE);//2nd nesting of DI instruction
EI(TRUE);//2nd nesting of DI instruction interrupted
EI(TRUE);//Interrupt enabled

HEI

« This instruction clears the fixed scan execution type programs execution disabled state that has been set by the DI
(Disabling interrupt programs) instruction, and enables execution of fixed scan execution type programs.

Operation.error

Error code Description

34FBH More than 16 DI (Disabling interrupt programs) instructions are nested.

7 PROGRAM CONTROL
7.1 Program Execution Control Instructions

7.2

Program Control Instructions

Changing the program execution type to standby type

PSTOP

This instruction changes the execution type of the program with the specified program name to a standby type.

ST

ENO:=PSTOP(EN,program name);

HEExecution condition

Instruction

Execution condition

PSTOP

I L

Setting data

EDescription, range, data type

Operand

Description

Range

Data type

(Program name)

Character string data of the program name to be changed to a standby type,

or the start device where the character string data is stored

ANYSTRING_DOUBLE

EN Execution condition — BOOL
ENO Execution result — BOOL
BApplicable devices/labels
Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H
(Program name) — — O — @)

Processing details

« This instruction changes the execution type of the program stored in the device specified by (program name) to a standby

type.

« This instruction is accepted during END processing of the program that executed the instruction, and the execution type

changes to a standby type during END processing of the specified program.
» The PSTOP instruction takes precedence even when the execution type is specified in parameter.

Operation. error

Error code Description
2840H The program specified by (program name) does not exist.
Pointp

For how to change the program execution type, refer to "Motion Module Programs" in the following manual.
[TIMELSEC iQ-R Programming Manual (Motion Control Function Blocks)

7 PROGRAM CONTROL
7.2 Program Control Instructions 95

Changing the program execution type to scan execution type

PSCAN

This instruction changes the execution type of the program with the specified program name to a normal execution type.

ST

ENO:=PSCAN(EN,program name);

HExecution condition

Instruction

Execution condition

PSCAN

L

Setting data

EDescription, range, data type

Operand Description Range Data type

(Program name) The program name to be changed to a normal execution type, or the start | — ANYSTRING_DOUBLE
device where the program name is stored

EN Execution condition — BOOL

ENO Execution result — BOOL

HApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(Program name) — — O — O

Processing. details

* This instruction changes the execution type of the program stored in the device specified by (program name) to a normal
execution type.

* This instruction is accepted during END processing of the program that executed the instruction, and the execution type
changes to a normal execution type during END processing of the specified program.

« The PSCAN instruction takes precedence even when the execution type is specified in parameter.

Operation.error

Error code Description
2840H The program specified by (program name) does not exist.
Pointp

For how to change the program execution type, refer to "Motion Module Programs" in the following manual.
[TIMELSEC iQ-R Programming Manual (Motion Control Function Blocks)

7 PROGRAM CONTROL
7.2 Program Control Instructions

96

8 DATA PROCESSING
8.1

Adding 16-bit binary data

Data Processing Instructions

WSUM(_U)

These instructions add the (n) points of 16-bit binary data from the specified device.

ST
ENO:=WSUM(EN,s,n,d);

ENO:=WSUM_U(EN,s,n,d);

HExecution condition

Instruction Execution condition
WSUM
WSUM_U

Setting data

EDescription, range, data type

Operand Description Range Data type

(s) WSUM Start device where the data for calculating the total value are | — ANY16_S'1
wsum_y | Stored ANY16_U""

(d) WSUM Start device for storing the total value — ANY32_S
WSUM_U ANY32_U

(n) Number of data 0 to 65535 ANY16

EN Execution condition — BOOL

ENO Execution result — BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices/labels

Operand Bit Word Constant
(s) — — O —
(d) 0 o} 0 —
(n) O @) O @)

Processing details

» These instructions add the (n) points of 16-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

(s) 4444 (BIN)

(s)*+1 3333 (BIN)

(s)+2 1234 (BIN) : @ | 13914 (BIN)
(s)+3 | -5426 (BIN) ™) (d)+1 (BIN)
(s)+4 329 (BIN)

(s)+5| 10000 (BIN)

Operation.error

There is no operation error.

8 DATA PROCESSING
8.1 Data Processing Instructions 97

Adding 32-bit binary data

DWSUM(_U)

These instructions add the (n) points of 32-bit binary data in the devices starting from the specified one.

ST

ENO:=DWSUM(EN,s,n,d);

ENO:=DWSUM_U(EN,s,n,d);

HExecution condition

Instruction Execution condition
DWSUM
DWSUM_U

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type

(s) DWSUM Start device where the data for calculating the total value are | — ANY32_S™
Dwsum_u | stored ANY32 U

(d) DWSUM Start device for storing the total value — ANY32_ARRAY
DWSUM U (Number of elements: 2)

(n) Number of data 0 to 65535 ANY 16

EN Execution condition — BOOL

ENO Execution result — BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices/labels

Operand Bit Word Constant
(s) - - O — —
(d) - - O — —
(n) @) @) O O O

Processing. details

» These instructions add the (n) points of 32-bit binary data in the device starting from the one specified by (s), and store the

result in the device specified by (d).

(s)+1,(s) | 32767000 (BIN) T @

(s)+3, (s)+2 6000 (BIN) - .
(d)+1

(5)+5, (s)+4 | 35392000 (BIN) | (M) [> 1., [88640000 (BIN)1

(s)+7, (s)+6 | 11870000 (BIN) @+21 .

(s)+9, (s)+8 | 12345000 (BIN) (d)+3

Operation.error

There is no operation error.

98 8 DATA PROCESSING
8.1 Data Processing Instructions

Calculating the mean value of 16-bit binary data

MEAN(_U)

These instructions calculate the average value of the (n) points of 16-bit data in the devices starting from the specified one.

ST
ENO:=MEAN(EN,s,n,d);

| ENO:=MEAN_U(EN,s,n,d);

HExecution condition

Instruction Execution condition

MEAN
MEAN_U I_

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type

(s) MEAN Start device where the data for calculating the average value are | — ANY16_S"!
MEAN_U | Stored ANY16_U"T

(d) MEAN Device for storing the mean value — ANY16_S
MEAN_U ANY16_U

(n) Number of data, or the device number where the number of datais | 0 to 65535 ANY16

stored
EN Execution condition — BOOL
ENO Execution result — BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices/labels

Operand Bit Word Constant
(s) — — O — —
(d) — - O — —
(n) @) O O O O

Processing details

» These instructions calculate the average value of the (n) points of 16-bit binary data in the devices starting from the one
specified by (s), and stores the average value in the device specified by (d).

(s)

(s)+1

(d)

Q)
m >

(s)+2
: -
o —

(1) Mean value
« If the calculation result is not an integer, the first decimal place is rounded down.
* When (n) is 0, the processing is not performed.

Operation.error

There is no operation error.

8 DATA PROCESSING
8.1 Data Processing Instructions 99

Calculating the mean value of 32-bit binary data

DMEAN(_U)

These instructions calculate the average value of the (n) points of 32-bit data in the devices starting from the specified one.

ST

ENO:=DMEAN(EN,s,n,d);

| ENO:=DMEAN_U(EN,s,n,d);

HExecution condition

Instruction Execution condition

DMEAN
DMEAN_U l_

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type
(s) DMEAN Start device where the data for calculating the average value are | — ANY32_S™
DMEAN_U | stored ANY32 U™
(d) DMEAN Start device for storing the average value — ANY32_S
DMEAN_U ANY32_U
(n) Number of data, or the device number where the number of data | 0 to 65535 ANY16
is stored
EN Execution condition — BOOL
ENO Execution result — BOOL

*1 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

HApplicable devices/labels

Operand Bit Word Constant
(s) — — O — —
(d) — — O — —
(n)) O O O O

Processing details

» These instructions calculate the average value of the (n) points of 32-bit binary data in the devices starting from the one
specified by (s), and stores the average value in the device specified by (d).

(8)*+1, (s) T
(s)+3, (s)+2 (d)*+1, (d)

(1)
e —

(s)r2(n)-1, (s)+2(n)-2 ﬁ l

(1) Mean value
« If the calculation result is not an integer, the first decimal place is rounded down.
* When (n) is 0, the processing is not performed.

Operation.error

There is no operation error.

1 00 8 DATA PROCESSING
8.1 Data Processing Instructions

Calculating the square root of 32-bit binary data

These instructions perform a square root operation of the specified 32-bit binary data.

ENO:=DSQRT(EN,s,d);

HExecution condition

DSQRT

EDescription, range, data type

|

(s) Device where the data whose square root is to be calculated is stored 0 to 4294967295 ANY32
(d) Device where the obtained square root is stored — ANY32
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

(s)

(d)

O
O
O

|

» These instructions perform a square root operation of the 32-bit binary data specified by (s), and stores the result in (d).

The obtained square root is an integer because the decimal places are rounded down.

V(s)+1, (s)—>(d)

F

There is no operation error.

8 DATA PROCESSING 1 01
8.1 Data Processing Instructions

9 STRING PROCESSING

9.1

String Processing Instructions

Transferring string data

$MOV

This instruction transfers string data to the specified device number and later.

ST

ENO:=STRINGMOV(EN,s,d);

HExecution condition

Instruction

Execution condition

$MOV

L

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type

(s) Character string to be transferred (maximum of 255 characters) — ANYSTRING_SINGLE
or the start device containing such character string

(d) Start device for storing the transferred character string — ANYSTRING_SINGLE

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW | K, H

(®) - - o - -

(@) - - o - -

102

9 STRING PROCESSING
9.1 String Processing Instructions

Processing. details

* This instruction transfers the character string data in the device specified by (s) to the device number specified by (d) and

later. The character strings specified by (s) or the character strings from the device number specified by (s) to the device

number containing O0H are transferred all at once.

b15 b8b7 b0

2nd character . 1st character

4th character : 3rd character

6th character H 5th character
/—_/
——— —

' '2n+1'th character

b15 b8b7 b0
(s) 2nd character H 1st character (d)
(s)+1 4th character 1 3rd character (d)+1
(s)+2 6th character i 5th character |:> (d)+2
: | — — :
(sy+n | 00H | 2n+1'th character |

(@ | 00H

T— Null character (end of string)
* When O0H is stored in the lower byte of (s)+n, 00H will be stored in both upper and lower bytes of (d)+n.

b15 - b8b7 - b0 b15 b8 b7 - b0
(s) 42H (B) 41H (A) () 42HB) + 4HA) |+ (@)
(sy+1| 44H (D) : 43H(C) > (dy+1| 44H(D) | 43H(C)
(sy+2| 45H(E) : OOH (d+2| ©00H . OOH

T—(1) L ®)

(1) Data (upper byte) is not transferred.
(2) Data remain the same.
(3) O0H is automatically stored in the upper byte.

Operation.error

Error code Description

3506H There is no NULL code (00H) in the setting area specified by (s) and later in the device/label memory.

3507H The number of characters in the string specified by (s) exceeds 16383.

3508H The entire string cannot be stored in the setting area specified by (d) in the device/label memory. (The number of required points is
insufficient.)

9 STRING PROCESSING
9.1 String Processing Instructions

103

Transferring Unicode string data

$MOV_WS

This instruction transfers character string [Unicode] data to the specified device number and later.

ST

ENO:=STRINGMOV_WS(EN,s,d);

HExecution condition

Instruction

Execution condition

$MOV_WS

L

Setting data

EDescriptions, ranges, and data types

Operand Description Range Data type

(s) Character string [Unicode] to be transferred (maximum of 255 characters) or the start device — ANYSTRING_DOUBLE
containing the character string [Unicode]

(d) Start device for storing the transferred character string [Unicode] — ANYSTRING_DOUBLE

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB sSw G, RWw, RWr, LW | K, H

(s) - - o - -

(d) - - o - -

Processing. details

* This instruction transfers the character string [Unicode] data in the device specified by (s) to the device number specified by
(d) and later. The character strings [Unicode] specified by (s) or the character strings [Unicode] from the device number
specified by (s) to the device number containing 0000H are transferred all at once.

(s)
(s)+1
(s)+2

(s)+n-

(s)+n

1st character

2nd character

3rd character

/_/
/_/

1 "n'th character

0000H

Operation.error

=

(d)
(d)+1
(d)+2

(d)+n-1
(d)*+n

1st character

2nd character

3rd character

/_/
/_/

n'th character

0000H

Error code Description

3506H There is no 0000H in the setting area specified by (s) and later in the device/label memory.

3507H The number of characters in the character string [Unicode] specified by (s) exceeds 16383.

3508H The entire character string [Unicode] cannot be stored in the setting area specified by (d) in the device/label memory. (The number of
required points is insufficient.)

104

9 STRING PROCESSING

9.1 String Processing Instructions

10 REAL VALUE PEOCESSING

10.1 Floating-point instruction

Adding single-precision real numbers

E+

This instruction adds single-precision real numbers.

ST
ENO:=EPLUS(EN,s1,s2,d);

HExecution condition

Instruction Execution condition
- L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s1) First addend data or the start device where the first addend data is stored | 0, 27'26<|(s1)|<2128 ANYREAL_32

(s2) Second addend data or the start device where the second addend data is | 0, 27'26<|(s2)|<2"28 ANYREAL_32
stored

(d) Start device for storing the operation result — ANYREAL_32

EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O O —

(s2) - — O (@) —

(d) - — O (@) —

Processing. details

« This instruction adds the single-precision real number in the device specified by (s2) to the single-precision real number in
the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| || | + | || | => | | | |

Y Y
Single-precision real number Single-precision real number Single-precision real number

* Value O or 2'126s|specified value (stored value)| <228 can be specified or stored in the devices specified by (s1), (s2), and

(d).

Operation.error

Error code Description
3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
I(d)l<2"?®

10 REAL VALUE PEOCESSING 1
10.1 Floating-point instruction 05

Subtracting single-precision real numbers

E-

This instruction performs subtraction between single-precision real numbers.

ST
ENO:=EMINUS(EN,s1,52,d);

HExecution condition

Instruction Execution condition
} L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Minuend data or the start device where minuend data is stored 0, 27126<|(s1)|<2128 ANYREAL_32
(s2) Subtrahend data or the start device where subtrahend data is stored 0, 27126¢|(s2)|<2128 ANYREAL_32
(d) Start device for storing the operation result — ANYREAL_32
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O O —

(s2) — — O O —

(d) — — O @) —

Processing details

* This instruction subtracts the single-precision real number in the device specified by (s2) from the single-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

i s Y | = | —

~
Single-precision real number Single-precision real number Single-precision real number

» Value O or 2'126s|specified value (stored value)| <228 can be specified or stored in the devices specified by (s1), (s2), and
(d).

* When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.

[=5~ Page 24 Precautions

Operation.error

Error code Description
3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
I(d)l<2*

1 06 10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

Adding double-precision real numbers

ED+

This instruction adds double-precision real numbers.

ST
ENO:=EDPLUS(EN,s1,s2,d);

HExecution condition

Instruction Execution condition
> L

Setting data

EDescription, range, data type

Operand Description Range Data type

(s1) First addend data or the start device where the first addend data is stored | 0, 271022<|(s1)|<21024 ANYREAL_64

(s2) Second addend data or the start device where the second addend data is | 0, 271022<|(s2)|<21024 ANYREAL_64
stored

(d) Start device for storing the operation result — ANYREAL_64

EN Execution condition — BOOL

ENO Execution result — BOOL

BApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O — —

(s2) — — O — —

(d) - - O - -

Processing details

« This instruction adds the double-precision real number in the device specified by (s1) to the double-precision real number in
the device specified by (s2), and store the result in the device specified by (d).

(s1)+3 (s1)+2 (s1)+1 (s1) (s2)+3 (s2)+2 (s2)+1 (s2) (d)+3 (d)+2 (d)+1 (d)
] - L)L) = L]0
Y
Double-precision real number Double-precision real number Double-precision real number

* Value 0 or 2'10223|specified value (stored value)| <21024 can be specified or stored in the devices specified by (s1), (s2),
and (d).

* When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.

[=5~ Page 24 Precautions

Operation.error

Error code Description
3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
|(d)|<21024

10 REAL VALUE PEOCESSING 1
10.1 Floating-point instruction 07

Subtracting double-precision real numbers

ED-

This instruction performs subtraction between double-precision real numbers.

ST
ENO:=EDMINUS(EN,s1,s2,d);

HExecution condition

Instruction Execution condition
" L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Minuend data or the start device where minuend data is stored 0, 271022¢|(s1)|<21024 ANYREAL_64
(s2) Subtrahend data or the start device where subtrahend data is stored 0, 271022¢|(s2)|<21024 ANYREAL_64
(d) Start device for storing the operation result — ANYREAL_64
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O — —

(s2) — — O — —

(d) - - O - —

Processing details

* This instruction subtracts the double-precision real number in the device specified by (s2) from the double-precision real
number in the device specified by (s1), and store the result in the device specified by (d).

(s1)+3 (s1)+2 (s1)+1 (1) (s2)+3 (s2)+2 (s2)+1 (s2) (d)y+3 (d)+2 (d)+1 (d)
OO0 - OO = 400
Double-precisi\;n real number Double-precis\i;n real number Double-precis\i(on real number
» Value O or 2'1022£|specified value (stored value)| <2924 can be specified or stored in the devices specified by (s1), (s2),
and (d).

* When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.
(=5~ Page 24 Precautions

Operation.error

Error code Description
3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
|(d)l<21024

1 08 10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

Multiplying single-precision real numbers

E*

This instruction multiplies single-precision real numbers.

ST
ENO:=EMULTI(EN,s1,52,d);

HExecution condition

Instruction Execution condition
i L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Multiplicand data or the start device where multiplicand data is stored 0, 27126<|(s1)|<2128 ANYREAL_32
(s2) Multiplier data or the start device where multiplier data is stored 0, 27126¢|(s2)|<2128 ANYREAL_32
(d) Start device for storing the operation result — ANYREAL_32
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O O —

(s2) — — O O —

(d) — — O @) —

Processing details

* This instruction multiplies the single-precision real number in the device specified by (s1) by the single-precision real
number in the device specified by (s2), and store the multiplication result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)

| | | = | | | => | || |
S J

~
Single-precision real number Single-precision real number Single-precision real number

» Value O or 2'126s|specified value (stored value)| <228 can be specified or stored in the devices specified by (s1), (s2), and
(d).

» When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.

(=5~ Page 24 Precautions

Operation.error

Error code Description
3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
I(d)<2%®

10 REAL VALUE PEOCESSING 1
10.1 Floating-point instruction 09

Dividing single-precision real numbers

E/

This instruction performs division between single-precision real numbers.

ST
ENO:=EDIVISION(EN,s1,52,d);

HExecution condition

Instruction Execution condition
; L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Dividend data or the start device where dividend data is stored 0, 27126<|(s1)|<2128 ANYREAL_32
(s2) Divisor data or the start device where divisor data is stored 0, 27126¢|(s2)|<2128 ANYREAL_32
(d) Start device for storing the operation result — ANYREAL_32
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O O —

(s2) — — O O —

(d) — — O @) —

Processing details

* This instruction divides the single-precision real number in the device specified by (s1) by the single-precision real number
in the device specified by (s2), and store the division result in the device specified by (d).

(s1)+1 (s1) (s2)+1 (s2) (d)+1 (d)
I | | | + | | | | => | || |
Single-precisi;n real number Single-precision real number Single-precision real number
» Value O or 2'126s|specified value (stored value)| <228 can be specified or stored in the devices specified by (s1), (s2), and

(d).

* When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions

on setting input values using the engineering tool.
[=5~ Page 24 Precautions

Operation.error

Error code Description

34FFH The data (divisor) in the device specified by (s2) is 0.

3502H The data in the device specified by (d) exceeds the following range. (An overflow has occurred.)
I(d)<2"2®

1 1 0 10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

Multiplying double-precision real numbers

ED*

This instruction multiplies double-precision real numbers.

ST
ENO:=EDMULTI(EN,s1,s2,d);

HExecution condition

Instruction Execution condition
"~ L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Multiplicand data or the start device where multiplicand data is stored 0, 271022¢|(s1)|<21024 ANYREAL_64
(s2) Multiplier data or the start device where multiplier data is stored 0, 271022¢|(s2)|<21024 ANYREAL_64
(d) Start device for storing the operation result — ANYREAL_64
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB sw G, RWw, RWr, LW K, H

(s1) — — O — —

(s2) — — O — —

(d) - - O - —

Processing details

* This instruction multiplies the double-precision real number in the device specified by (s1) by the double-precision real
number in the device specified by (s2), and store the multiplication result in the device specified by (d).

(s1)+3 (s1)+2 (s1)+1 (1) (s2)+3 (s2)+2 (s2)+1 (s2) (d)y+3 (d)+2 (d)+1 (d)
OO0 - dOOd = 00
Double-precisi\;n real number Double-precis\i;n real number Double-precis\i(on real number
» Value O or 2'1022£|specified value (stored value)| <2924 can be specified or stored in the devices specified by (s1), (s2),
and (d).

« If the operation result is -0 or an underflow occurs, the operation result turns out to 0.

* When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.

[=5~ Page 24 Precautions

Operation.error

Error code Description
3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
|(d)|<21024

10 REAL VALUE PEOCESSING 111
10.1 Floating-point instruction

Dividing double-precision real numbers

ED/

This instruction performs division between double-precision real numbers.

ST
ENO:=EDDIVISION(EN,s1,s2,d);

HExecution condition

Instruction Execution condition

ED/
L

Setting data

EDescription, range, data type

Operand Description Range Data type
(s1) Dividend data or the start device where dividend data is stored 0, 271022¢|(s1)|<21024 ANYREAL_64
(s2) Divisor data or the start device where divisor data is stored 0, 21022¢|(s2)|<21024 ANYREAL_64
(d) Start device for storing the operation result — ANYREAL_64
EN Execution condition — BOOL

ENO Execution result — BOOL

HMApplicable devices/labels

Operand Bit Word Constant
SB RX, RY, LB SW G, RWw, RWr, LW K, H

(s1) — — O — —

(s2) — — O — —

(d) - - O - —

Processing details

* This instruction divides the double-precision real number in the device specified by (s1) by the double-precision real
number in the device specified by (s2), and store the division result in the device specified by (d).

(s1)+3 (s1)+2 (s1)+1 (s1) (s2)+3 (s2)+2 (s2)+1 (s2) (d)+3 (d)+2 (d)+1 (d)
Ny s I N N = I I B O
Double-precision real number Double-precision real number Double-precision real number

* Value 0 or 2'10223|specified value (stored value)| <21024 can be specified or stored in the devices specified by (s1), (s2),
and (d).

« If the operation result is -0 or an underflow occurs, the operation result turns out to 0.

» When an input value is set using the engineering tool, a rounding error may occur. Refer to the following for the precautions
on setting input values using the engineering tool.

(=5~ Page 24 Precautions

Operation.error

Error code Description

34FFH The data (divisor) in the device specified by (s2) is 0.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
|(d)l<21024

1 12 10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

Inverting the sign of single-precision real number

This instruction inverts the sign of single-precision real number data.

ENO:=ENEG(EN,d);

HEExecution condition

ENEG

|

EDescription, range, data type

(d) Start device containing the single-precision real number data subject to — ANYREAL_32
sign inversion

EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels

* This instruction inverts the sign of the single-precision real number in the device specified by (d) and store the inverted data
in the device specified by (d).

(d)+1 (d) (d)+1 (d)

| 1.2345 | — | -1.2345 |
%f—/ %—J
Single-precision real number Single-precision real number

» The instructions are used to invert positive and negative signs.

3501H The value input to (d) is -0, a subnormal number, NaN (not a number), or +oo.

10 REAL VALUE PEOCESSING 11
10.1 Floating-point instruction 3

Inverting the sign of double-precision real number

This instruction inverts the sign of double-precision real number data.

ENO:=EDNEG(EN,d);

HEExecution condition

EDNEG

|

EDescription, range, data type

(d) Start device containing the double-precision real number subject to sign — ANYREAL_64
inversion

EN Execution condition — BOOL

ENO Execution result — BOOL

BMApplicable devices/labels

« This instruction inverts the sign of the double-precision real number data in the device specified by (d) and store the
inverted data in the device specified by (d).

(d)+3 (d)+2 (d)+1 (d) (d)+3 (d)+2 (d)+1 (d)
4.23542 I— -4.23542
“ J = J
g e
Double-precision real number Double-precision real number

» The instructions are used to invert positive and negative signs.

3501H The value input to (d) is -0, a subnormal number, NaN (not a number), or +oo.

114 10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

Transferring single-precision real number

This instruction transfers single-precision real number data to the specified device.

ENO:=EMOV/(EN,s,d);

HExecution condition

EMOV

|

EDescription, range, data type

(s) Data to be transferred or start device containing the data to be transferred | 0, 27126<|(s)|<2128 ANYREAL_32
(d) Start device for storing transferred data — ANYREAL_32
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

(d) — — (@) O —

|

« This instruction transfers the single-precision real number data stored in the device specified by (s) to the device specified
by (d).

(s)+1 (s) Transfer (d)+1 (d)
| 4.23542 | — | 4.23542 |
%K—J %ﬁ—/
Single-precision real number Single-precision real number

F

There is no operation error.

10 REAL VALUE PEOCESSING 11
10.1 Floating-point instruction 5

Transferring double-precision real number

This instruction transfers double-precision real number data to the specified device.

ENO:

=EDMOV(EN,s,d);

HEExecution condition

EDMOV

EDescription, range, data type

|

(s) Data to be transferred or start device containing the data to be transferred | 0, 271022<|(s)|<21024 ANYREAL_64
(d) Start device for storing transferred data — ANYREAL_64
EN Execution condition — BOOL
ENO Execution result — BOOL

BApplicable devices/labels

(s)

(d)

|

« This instruction transfers the double-precision real number data stored in the device specified by (s) to the device specified

by

(s)+3

(d).
(892 (M1 (8) Transfer (@3 (@2 @1 (d)

4.23542 — 4.23542
J “

Y Y

Double-precision real number Double-precision real number

F

There is no operation error.

116

10 REAL VALUE PEOCESSING
10.1 Floating-point instruction

PART 6

PART 6 STANDARD FUNCTIONS

This part consists of the following chapters.

11 TYPE CONVERSION FUNCTIONS

12 SINGLE VARIABLE FUNCTIONS

13 ARITHMETIC OPERATION FUNCTIONS

14 BOOLEAN FUNCTIONS

15 SELECTION FUNCTIONS

117

11 TYPE CONVERSION FUNCTIONS

11.1 Converting BOOL to WORD

BOOL_TO_WORD
This function converts a value from BOOL data type to WORD data type.

ST
d:=BOOL_TO_WORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable WORD

Processing details

EOperation processing

+ This function converts the value input to (s) from BOOL data type to WORD data type, and output the converted value from
(d).

* When the input value is FALSE, OH (WORD data type) is output.

* When the input value is TRUE, 1H (WORD data type) is output.

(s) (d)
[FALSE | —> | OH |
| TRUE | —> | 1H |
BOOL WORD

* Input a BOOL data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 1 8 11 TYPE CONVERSION FUNCTIONS
11.1 Converting BOOL to WORD

11.2 Converting BOOL to DWORD

BOOL_TO_DWORD

This function converts a value from BOOL data type to DWORD data type.

Structured text

d:=BOOL_TO_DWORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable DWORD

Processing details

EOperation processing

* This function converts the value input to (s) from BOOL data type to DWORD data type, and output the converted value

from (d).
* When the input value is FALSE, OH (DWORD data type) is output.
* When the input value is TRUE, 1H (DWORD data type) is output.

(s) (d)
[FALSE | —> | OH |
| TRUE |—> | 1H |
BOOL DWORD

* Input a BOOL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1 1
11.2 Converting BOOL to DWORD 9

11.3 Converting BOOL to INT

BOOL_TO_INT
This function converts a value from BOOL data type to INT data type.

Structured text
d:=BOOL_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable INT

Processing details
EOperation processing
* This function converts the value input to (s) from BOOL data type to INT data type, and output the converted value from (d).

* When the input value is FALSE, 0 (INT data type) is output.
* When the input value is TRUE, 1 (INT data type) is output.

(s) (d)

| FALSE |—> | 0 |
[TRUE | —> | 1 |

BOOL INT
* Input a BOOL data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 20 11 TYPE CONVERSION FUNCTIONS
11.3 Converting BOOL to INT

11.4 Converting BOOL to DINT

BOOL_TO_DINT

This function converts a value from BOOL data type to DINT data type.

Structured text

d:=BOOL_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable DINT

Processing details

EOperation processing

* This function converts the value input to (s) from BOOL data type to DINT data type, and output the converted value from

(d).
* When the input value is FALSE, O (DINT data type) is output.
* When the input value is TRUE, 1 (DINT data type) is output.

(s) (d)
| FALSE | —> | 0 |
| TRUE | —> | 1 |
BOOL DINT

* Input a BOOL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1 21
11.4 Converting BOOL to DINT

11.5 Converting BOOL to TIME

BOOL_TO_TIME

This function converts a value from BOOL data type to TIME data type.

Structured text

d:=BOOL_TO_TIME(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable BOOL
d Output Output variable TIME

Processing details

EOperation processing

* This function converts the value input to (s) from BOOL data type to TIME data type, and output the converted value from
(d).

* When the input value is FALSE, 0 (TIME data type) is output.

* When the value is TRUE, 1 (TIME data type) is output.

(s) (d)

| FALSE | —> | TH#O0ms |
| TRUE |—> | T#1ms |

¢ J ¢)

BOOL TIME

* Input a BOOL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

1 22 11 TYPE CONVERSION FUNCTIONS
11.5 Converting BOOL to TIME

11.6 cConverting WORD to BOOL

WORD _TO BOOL
This function converts a value from WORD data type to BOOL data type.

Structured text
d:=WORD_TO_BOOL(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable WORD
d Output Output variable BOOL

Processing details

EOperation processing

+ This function converts the value input to (s) from WORD data type to BOOL data type, and output the converted value from
(d).

* When the input value is OH, FALSE is output.

* When the input value is other than OH, TRUE is output.

(s) (d)

[OH | —> | FALSE |
| 1567H |—> | TRUE |

¢ J ¢)

WORD BOOL
* Input a WORD data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1 2
11.6 Converting WORD to BOOL 3

11.7 Converting WORD to DWORD

WORD_TO_DWORD

This function converts a value from WORD data type to DWORD data type.

Structured text

d:=WORD_TO_DWORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable WORD
d Output Output variable DWORD

Processing details

EOperation processing
* This function converts the value input to (s) from WORD data type to DWORD data type, and output the converted value

from (d).
« After the data type is converted, the upper 16 bits are filled with Os.

(s) (d)
| 5678H | —> | 00005678H |
WORD DWORD

* Input a WORD data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 24 11 TYPE CONVERSION FUNCTIONS
11.7 Converting WORD to DWORD

11.8 Converting WORD to INT

WORD_TO_INT

This function converts a value from WORD data type to INT data type.
Structured text

d:=WORD_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable WORD
d Output Output variable INT

Processing details

EOperation processing

(d).

(s) (d

[5678H | —> | 22136

J

¢

WORD
* Input a WORD data type value to (s).

INT
EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS
11.8 Converting WORD to INT

* This function converts the value input to (s) from WORD data type to INT data type, and output the converted value from

125

11.9 cConverting WORD to DINT

WORD_TO_DINT

This function converts a value from WORD data type to DINT data type.
Structured text

d:=WORD_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable WORD
d Output Output variable DINT

Processing details

EOperation processing

« This function converts the value input to (s) from WORD data type to DINT data type, and output the converted value from

(d).
« After the data type is converted, the upper 16 bits are filled with Os.
(s)

| 5678H | —> | 22136 |

WORD

5678H

22136 [0]o]o]o]o]o]o]o

* Input a WORD data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 26 11 TYPE CONVERSION FUNCTIONS
11.9 Converting WORD to DINT

11.10 converting WORD to TIME

WORD_TO_TIME

This function converts a value from WORD data type to TIME data type.

Structured text

d:=WORD_TO_TIME(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable WORD
d Output Output variable TIME

Processing details

EOperation processing

* This function converts the value input to (s) from WORD data type to TIME data type, and output the converted value from

(d).
(s) (d)
[0 | —> | THOms |
| 1234 | —> | T#15234ms |
‘ WORD l ‘ TIME l

* Input a WORD data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS
11.10 Converting WORD to TIME

127

11.11 Converting DWORD to BOOL

DWORD_TO_BOOL

This function converts a value from DWORD data type to BOOL data type.

Structured text

d:=DWORD_TO_BOOL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DWORD
d Output Output variable BOOL

Processing details

EOperation processing
* This function converts the value input to (s) from DWORD data type to BOOL data type, and output the converted value

from (d).
* When the input value is OH, FALSE is output.
* When the input value is other than OH, TRUE is output.

(s) (d)

[OH | —> | FALSE |
| 12345678H |—> | TRUE |

¢ J ¢)

DWORD BOOL
* Input a DWORD data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

1 28 11 TYPE CONVERSION FUNCTIONS
11.11 Converting DWORD to BOOL

11.12 Converting DWORD to WORD

DWORD _TO WORD
This function converts a value from DWORD data type to WORD data type.

Structured text
d:=DWORD_TO_WORD(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DWORD
d Output Output variable WORD

Processing details

EOperation processing

* This function converts the value input to (s) from DWORD data type to WORD data type, and output the converted value
from (d).

» The upper 16-bit data of the input value (DWORD data type) are discarded. (Refer to (1) in the figure below.)

(s) (d)

[12345678H |—> | 5678H |

Y Y

DWORD WORD

12345678H [0]o]o[1]oJo]1]o]o]o]1]1]o]1]o]o[o]1]o[1]o]1]1]0]o[1]1]1]1]o]o]o

5678H o[1]o[1]o[1]1]o]o[1]1[1]1]0]o]0

(M
* Input a DWORD data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Point ;>

When the DWORD_TO_WORD function is executed, the upper 16-bit data of the input value (DWORD data
type) are discarded.

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1 2
11.12 Converting DWORD to WORD 9

11.13 Converting DWORD to INT

DWORD_TO INT
This function converts a value from DWORD data type to INT data type.

Structured text

d:=DWORD_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DWORD
d Output Output variable INT

Processing details

EOperation processing

+ This function converts the value input to (s) from DWORD data type to INT data type, and output the converted value from
(d).

» The upper 16-bit data of the input value (DWORD data type) are discarded. (Refer to (1) in the figure below.)

(s) (d)
| BCB14EH |—> | 24910 |
DWORD INT

sce14er [o]ofo]ofo]ofofo]1]o[1]1]1]1]o]o]o[1]1]o]o[o]o[1]o]1]o]o[1]1]1]0

24910

Y

(1)
* Input a DWORD data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Pointp

When the DWORD_TO_INT function is executed, the upper 16-bit data of the input value (DWORD data type)
are discarded.

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS
130

11.13 Converting DWORD to INT

11.14 Converting DWORD to DINT

DWORD_TO_DINT

This function converts a value from DWORD data type to DINT data type.

Structured text

d:=DWORD_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DWORD
d Output Output variable DINT

Processing details

EOperation processing

+ This function converts the value input to (s) from DWORD data type to DINT data type, and output the converted value from

(d).

(s) (d)
[BC614EH | —> | 12345678
DWORD DINT

* Input a DWORD data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1 1
11.14 Converting DWORD to DINT 3

11.15 Converting DWORD to TIME

DWORD_TO_TIME
This function converts a value from DWORD data type to TIME data type.

Structured text
d:=DWORD_TO_TIME(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DWORD
d Output Output variable TIME

Processing details

EOperation processing
* This function converts the value input to (s) from DWORD data type to TIME data type, and output the converted value from
(d).
(s) (d)

[0 | —> | T#Oms |
[1234567 | —> | T#20m34s567ms |

Y Y

DWORD TIME
* Input a DWORD data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 32 11 TYPE CONVERSION FUNCTIONS
11.15 Converting DWORD to TIME

11.16 Converting INT to BOOL

INT_TO_BOOL
This function converts a value from INT data type to BOOL data type.

Structured text
d:=INT_TO_BOOL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable BOOL

Processing details
EOperation processing
* This function converts the value input to (s) from INT data type to BOOL data type, and output the converted value from (d).

* When the value 0 is input, FALSE is output.
* When the value other than 0 is input, TRUE is output.

(s) (d)
| 0 |—> | FALSE |
| 1567 | —> | TRUE |

¢ J ¢
s

INT BOOL

* Input an INT data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.16 Converting INT to BOOL 33

11.17 Converting INT to WORD

INT_TO_WORD

This function converts a value from INT data type to WORD data type.
Structured text

d:=INT_TO_WORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable WORD

Processing details

EOperation processing

« This function converts the value input to (s) from INT data type to WORD data type, and output the converted value from

(d).
(s) (d)

[22136 | —> | 5678H
INT WORD

* Input an INT data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 34 11 TYPE CONVERSION FUNCTIONS
11.17 Converting INT to WORD

11.18 Converting INT to DWORD

INT_TO_DWORD

This function converts a value from INT data type to DWORD data type.
Structured text

d:=INT_TO_DWORD(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable DWORD

Processing details

EOperation processing

* This function converts the value input to (s) from INT data type to DWORD data type, and output the converted value from

(d).
« After the data type is converted, the upper 16 bits are filled with Os.

(d)

| -325 |—> | 0000FEBBH |

DWORD

-325

ooooreeeH [o]o]o]o]o]o]o]o

* Input an INT data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.18 Converting INT to DWORD 35

11.19 Converting INT to DINT

INT_TO_DINT

This function converts a value from INT data type to DINT data type.
Structured text

d:=INT_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable DINT

Processing details

EOperation processing

* This function converts the value input to (s) from INT data type to DINT data type, and output the converted value from (d).
(s)

(d)
| 1234 | —> | 1234 |
NT DINT

* Input an INT data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 36 11 TYPE CONVERSION FUNCTIONS
11.19 Converting INT to DINT

11.20 Converting INT to REAL

INT_TO_REAL

This function converts a value from INT data type to REAL data type.
Structured text

d:=INT_TO_REAL(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable REAL

Processing details

EOperation processing

* This function converts the value input to (s) from INT data type to REAL data type, and output the converted value from (d).

(s) (d)

| 1234 | —> | 1234.0 |

J ¢
Y

INT

REAL
* Input an INT data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.20 Converting INT to REAL 37

11.21 Converting INT to LREAL

INT_TO_LREAL

This function converts a value from INT data type to LREAL data type.
Structured text

d:=INT_TO_LREAL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable LREAL

Processing details

EOperation processing

* This function converts the value input to (s) from INT data type to LREAL data type, and output the converted value from

(d).
(s) (d)

[1234 | —> | 1234.0
INT LREAL

* Input an INT data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 38 11 TYPE CONVERSION FUNCTIONS
11.21 Converting INT to LREAL

11.22 Converting INT to TIME

INT_TO_TIME

This function converts a value from INT data type to TIME data type.
Structured text

d:=INT_TO_TIME(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable INT
d Output Output variable TIME

Processing details

EOperation processing

+ This function converts the value input to (s) from INT data type to TIME data type, and output the converted value from (d).

(s) (d)

| 32100 | —> | T#325100ms |

J ¢
Y

INT

TIME
* Input an INT data type value to (s).
EOperation result
The operation processing is performed. The operation result is output from (d).
Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.22 Converting INT to TIME 39

11.23 Converting DINT to BOOL

DINT_TO_BOOL

This function converts a value from DINT data type to BOOL data type.

Structured text

d:=DINT_TO_BOOL(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable BOOL

Processing details

EOperation processing
* This function converts the value input to (s) from DINT data type to BOOL data type, and output the converted value from

(d).

* When the value 0 is input, FALSE is output.
* When the value other than 0 is input, TRUE is output.

(s)

(d)

| 0

| —> | FALSE |

| 12345678

| —> | TRUE |

Y

DINT

BOOL

* Input a DINT data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation. error

There is no operation error.

140 11 TYPE CONVERSION FUNCTIONS
11.23 Converting DINT to BOOL

11.24 converting DINT to WORD

DINT_TO_WORD
This function converts a value from DINT data type to WORD data type.

Structured text
d:=DINT_TO_WORD(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable WORD

Processing details

EOperation processing

« This function converts the value input to (s) from DINT data type to WORD data type, and output the converted value from
(d).

» The upper 16-bit data of the input value (DINT data type) are discarded. (Refer to (1) in the figure below.)

(s) (d)
| 12345678 |—> | 614EH |
DINT WORD

12345678 [0]o]oJo]oJo[oJo[1]o[1]1]1]1]o]o]o]1]1]0]o]o]o]1]o]1]o]o]1]1]1]0

614EH

Y

™M
* Input a DINT data type value to (s).

HOperation result
The operation processing is performed. The operation result is output from (d).

Point;§

When the DINT_TO_WORD function is executed, the upper 16-bit data of the input value (DINT data type) are
discarded.

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 141
11.24 Converting DINT to WORD

11.25 Converting DINT to DWORD

DINT_TO_DWORD
This function converts a value from DINT data type to DWORD data type.

Structured text
d:=DINT_TO_DWORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable DWORD

Processing details

EOperation processing
+ This function converts the value input to (s) from DINT data type to DWORD data type, and output the converted value from

(d).

(s) (d)
[12345678 | —> | BC614EH
DINT DWORD

* Input a DINT data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

142 11 TYPE CONVERSION FUNCTIONS
11.25 Converting DINT to DWORD

11.26 Converting DINT to INT

DINT_TO_INT

This function converts a value from DINT data type to INT data type.

Structured text

d:=DINT_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable INT

Processing details

EOperation processing

* This function converts the value input to (s) from DINT data type to INT data type, and output the converted value from (d).

(s) (d)

| 1234 | —> | 1234 |

¢ J ¢)
Y Y

DINT INT

* Input a DINT data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3500H The 32-bit signed binary data input to (s) is out of the range, -32768 to 32767.

11 TYPE CONVERSION FUNCTIONS 14
11.26 Converting DINT to INT 3

11.27 Converting DINT to REAL

DINT_TO_REAL

This function converts a value from DINT data type to REAL data type.

Structured text

d:=DINT_TO_REAL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable REAL

Processing details

EOperation processing
« This function converts the value input to (s) from DINT data type to REAL data type, and output the converted value from

(d).

(s) (d)
| 16543521 | —> | 16543521.0
DINT REAL

* Input a DINT data type value to (s).
» The number of significant digits is about seven because a REAL data type value is processed in 32-bit single precision.
« If the integer value exceeds the range of -16777216 to 16777215, a rounding error occurs in the converted value.

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

144 11 TYPE CONVERSION FUNCTIONS
11.27 Converting DINT to REAL

11.28 Converting DINT to LREAL

DINT_TO_LREAL

This function converts a value from DINT data type to LREAL data type.

Structured text

d:=DINT_TO_LREAL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable LREAL

Processing details

EOperation processing

« This function converts the value input to (s) from DINT data type to LREAL data type, and output the converted value from

(d).

(s) (d)
| 16543521 | —> | 16543521.0
DINT LREAL

* Input a DINT data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 14
11.28 Converting DINT to LREAL 5

11.29 Converting DINT to TIME

DINT_TO_TIME

This function converts a value from DINT data type to TIME data type.

Structured text

d:=DINT_TO_TIME(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable DINT
d Output Output variable TIME

Processing details

EOperation processing
* This function converts the value input to (s) from DINT data type to TIME data type, and output the converted value from

(d).

(s) (d)
| 1234567 | —> | T#20m34s567ms
DINT TIME

* Input a DINT data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

146 11 TYPE CONVERSION FUNCTIONS
11.29 Converting DINT to TIME

11.30 Converting REAL to INT

REAL_TO_INT
This function converts a value from REAL data type to INT data type.

Structured text
d:=REAL_TO_INT(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable REAL
d Output Output variable INT

Processing details

EOperation processing
« This function converts the value input to (s) from REAL data type to INT data type, and output the converted value from (d).

(s) (d)

| 1234.0 | —> | 1234 |

¢ J ¢)
Y Y

REAL INT

* Input a REAL data type value to (s) within the range of -32768 to 32767.
« After conversion, the first digit after the decimal point of the input value (REAL data type) is rounded off.

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3500H The single-precision real number input to (s) is out of the range, -32768 to 32767.
3501H * An unusual number is input to (s).

* The single-precision real number input to (s) is not within the following range:
21284(5)<.27126 0, 2-126(5)<2128

(E-3.40282347+38 to E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38)

* The value set to a device or label is -0, a subnormal number, NaN (not a number), or +oo.

11 TYPE CONVERSION FUNCTIONS 14
11.30 Converting REAL to INT 7

11.31 Converting REAL to DINT

REAL_TO_DINT

This function converts a value from REAL data type to DINT data type.

Structured text

d:=REAL_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable REAL
d Output Output variable DINT

Processing details

EOperation processing
« This function converts the value input to (s) from REAL data type to DINT data type, and output the converted value from

(d)-
) (C)

[16543521.0 | —> | 16543521 |

¢ J ¢)

REAL DINT
* Input a REAL data type value to (s) within the range of -2147483648 to 2147483647.
« After conversion, the first digit after the decimal point of the input value (REAL data type) is rounded off.

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3500H The single-precision real number input to (s) is out of the range, -2147483648 to 2147483647.
3501H * An unusual number is input to (s).

« The single-precision real number input to (s) is not within the following range:
21284(5)<.27126 0, 2-126(5)<2128

(E-3.40282347+38 to E-1.17549435-38, 0, E1.17549435-38 to E3.40282347+38)

» The value set to a device or label is -0, a subnormal number, NaN (not a number), or +o.

148 11 TYPE CONVERSION FUNCTIONS
11.31 Converting REAL to DINT

11.32 Converting REAL to LREAL

REAL_TO LREAL

This function converts a value from REAL data type to LREAL data type.

Structured text

d:=REAL_TO_LREAL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable REAL
d Output Output variable LREAL

Processing details

EOperation processing

+ This function converts the value input to (s) from REAL data type to LREAL data type, and output the converted value from

(d)-
) (C)

[1234.0 | —> | 1234.0

¢ J ¢)

REAL LREAL

* Input a REAL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
I(d)<2"%®

11 TYPE CONVERSION FUNCTIONS 14
11.32 Converting REAL to LREAL 9

11.33 Converting LREAL to INT

LREAL_TO_INT

This function converts a value from LREAL data type to INT data type.

Structured text

d:=LREAL_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable LREAL
d Output Output variable INT

Processing details

EOperation processing
* This function converts the value input to (s) from LREAL data type to INT data type, and output the converted value from

(d)-
) (C)

[1234.0 | —> | 1234

¢ J ¢)

LREAL INT

* Input an LREAL data type value to (s).
« After conversion, the first digit after the decimal point of the input value (LREAL data type) is rounded off.

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3501H The data input to (s) is -0 or out of the following range.
21024¢(5) (d)<-21022 g, 2-1022(5) (d)<21024
(E-1.7976931348623157+308 to E-2.2250738585072014-308, 0, E2.2250738585072014-308 to E1.7976931348623157+308)

The data input to (s) is other than -32768 to 32767.

1 50 11 TYPE CONVERSION FUNCTIONS
11.33 Converting LREAL to INT

11.34 Converting LREAL to DINT

LREAL_TO_DINT
This function converts a value from LREAL data type to DINT data type.

Structured text
d:=LREAL_TO_DINT(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable LREAL
d Output Output variable DINT

Processing details

EOperation processing
+ This function converts the value input to (s) from LREAL data type to DINT data type, and output the converted value from

(d)-
) (C)

[16543521.0 | —> | 16543521

¢ J ¢)

LREAL DINT

* Input an LREAL data type value to (s).
« After conversion, the first digit after the decimal point of the input value (LREAL data type) is rounded off.

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3501H The data input to (s) is -0 or out of the following range.
-21024<(S), (d)S-2-1022, 0, 2-1022S(S), (d)<21024
(E-1.7976931348623157+308 to E-2.2250738585072014-308, 0, E2.2250738585072014-308 to E1.7976931348623157+308)

The data input to (s) is other than -2147483648 to 2147483647 .

11 TYPE CONVERSION FUNCTIONS 1 1
11.34 Converting LREAL to DINT 5

11.35 Converting LREAL to REAL

LREAL_TO REAL
This function converts a value from LREAL data type to REAL data type.

Structured text
d:=LREAL_TO_REAL(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable LREAL
d Output Output variable REAL

Processing details

EOperation processing
+ This function converts the value input to (s) from LREAL data type to REAL data type, and output the converted value from

(d).
(s) (d)
[1234.0 | —> | 1234.0
LREAL REAL

* Input an LREAL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
I(d)<2"%®

1 52 11 TYPE CONVERSION FUNCTIONS
11.35 Converting LREAL to REAL

11.36 Converting TIME to BOOL

TIME_TO_BOOL

This function converts a value from TIME data type to BOOL data type.

Structured text

d:=TIME_TO_BOOL(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable TIME
d Output Output variable BOOL

Processing details

EOperation processing
* This function converts the value input to (s) from TIME data type to BOOL data type, and output the converted value from

(d).
(s)

(d

| T#0ms

| —> | FALSE |

| T#20m34s567ms

| —> | TRUE |

Y

TIME

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

BOOL

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.36 Converting TIME to BOOL 53

11.37 Converting TIME to WORD

TIME_TO_WORD

This function converts a value from TIME data type to WORD data type.
Structured text

d:=TIME_TO_WORD(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable TIME
d Output Output variable WORD

Processing details

EOperation processing

* This function converts the value input to (s) from TIME data type to WORD data type, and output the converted value from

(d).
(s) (d)
[T#1s234ms | —> | 1234
TIME WORD

* Input a TIME data type value to (s).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

154 11 TYPE CONVERSION FUNCTIONS
11.37 Converting TIME to WORD

11.38 Converting TIME to DWORD

TIME_TO_DWORD

This function converts a value from TIME data type to DWORD data type.
Structured text

d:=TIME_TO_DWORD(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable TIME
d Output Output variable DWORD

Processing details

EOperation processing

* This function converts the value input to (s) from TIME data type to DWORD data type, and output the converted value from
(d).

(s) (d)

[TH20M345567ms | —> | 1234567

J

¢

TII(/IE DWE)RD
* Input a TIME data type value to (s).
EOperation result
The operation processing is performed. The operation result is output from (d).
Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS 1
11.38 Converting TIME to DWORD 55

11.39 Converting TIME to INT

TIME_TO_INT

This function converts a value from TIME data type to INT data type.
Structured text

d:=TIME_TO_INT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable TIME
d Output Output variable INT

Processing details

EOperation processing

« This function converts the value input to (s) from TIME data type to INT data type, and output the converted value from (d).
(s)

(d)
| T#15234ms | —> | 1234 |
TIME INT

* Input a TIME data type value to (s).
» The upper 16-bit data of the input value (TIME data type) are discarded.
EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

1 56 11 TYPE CONVERSION FUNCTIONS
11.39 Converting TIME to INT

11.40 Converting TIME to DINT

TIME_TO_DINT

This function converts a value from TIME data type to DINT data type.
Structured text

d:=TIME_TO_DINT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable TIME
d Output Output variable DINT

Processing details

EOperation processing

(d).

(s) (d)

[TH20M345567ms | —> | 1234567

J

¢

TII(/IE DI;\IT
* Input a TIME data type value to (s).
EOperation result
The operation processing is performed. The operation result is output from (d).
Operation.error

There is no operation error.

11 TYPE CONVERSION FUNCTIONS
11.40 Converting TIME to DINT

* This function converts the value input to (s) from TIME data type to DINT data type, and output the converted value from

157

1 2 SINGLE VARIABLE FUNCTIONS

12.1 cCalculating the Absolute Value

ABS

This function outputs the absolute value of an input value.

Structured text
d:=ABS(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_NUM
d Output Output variable ANY_NUM

Processing details

EOperation processing

* This function outputs the absolute value of the INT, DINT, REAL, or LREAL data type value input to (s), in the same type of
data as (s), from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:
B=|Al

* Input an INT, DINT, REAL, or LREAL data type value to (s).

 If-32768 in INT data type is input to (s), (d) will output -32768.

* If -2147483648 in DINT data type is input to (s), (d) will output -2147483648. (No operation error occurs.)
HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error
* When (s) is of REAL data type

Error code Description
3501H

The value output from (d) is -0, a subnormal number, NaN (not a number), or +oo.

* When (s) is of LREAL data type

Error code Description
3501H

The value output from (d) is -0, a subnormal number, NaN (not a number), or .

1 58 12 SINGLE VARIABLE FUNCTIONS
12.1 Calculating the Absolute Value

12.2 cCalculating the Square Root

SQRT

These functions calculate the square root of an input value.

Structured text
d:=SQRT(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the square root of the REAL/LREAL data type value input to (s) and store the operation result in
(d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=VA

* Input a positive REAL/LREAL data type value to (s).

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3507H The input value is negative.

12 SINGLE VARIABLE FUNCTIONS 1
12.2 Calculating the Square Root 59

12.3 cCalculating the Natural Logarithm

LN

These functions output the natural logarithm (logarithm with base e) of an input value.

Structured text

d:=LN(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the natural logarithm of the REAL/LREAL data type value input to (s), and output the operation
result from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=log (A

 Natural logarithm operation is performed with the base (e) defined as 2.71828.

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3507H The input value is 0 or negative.

1 60 12 SINGLE VARIABLE FUNCTIONS
12.3 Calculating the Natural Logarithm

12.4 cCalculating the Common Logarithm

LOG

These functions output the common logarithm (logarithm with base 10) of an input value.

Structured text
d:=LOG(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the common logarithm of the REAL or LREAL data type value input to (s), and output the
operation result from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=log 10A

* Input a REAL or LREAL data type value to (s).

* Input a positive value only. (Calculation cannot be performed with a negative value.)

« If the operation result is -0 or an underflow occurs, 0 will be output as the operation result.

HOperation result

The operation processing is performed. The operation result is output from (d).
Operation.error

* When (s) is of REAL data type

Error code Description
3501H The value input to (s) is -0, a subnormal number, NaN (not a number), or +oo.
3507H Out-of-range data is set to (s).

* The specified value is a negative number.
 The specified value is 0.

* When (s) is of LREAL data type

Error code Description
3501H The value input to (s) is -0, a subnormal number, NaN (not a number), or +oo.
3507H Out-of-range data is set to (s).

* The specified value is a negative number.
« The specified value is 0.

12 SINGLE VARIABLE FUNCTIONS 1 1
12.4 Calculating the Common Logarithm 6

12.5 cCalculating the Exponent

EXP

These functions output the exponent of an input value.

Structured text

d:=EXP(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing
» These functions calculate the exponent of the REAL/LREAL data type value input to (s), and output the operation result

from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=e?

» Exponent operation is performed with the base (e) defined as 2.71828.

* Input a REAL or LREAL data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3501H The value input to (s) is -0, a subnormal number, NaN (not a number), or +.
3502H The data output from (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

1 62 12 SINGLE VARIABLE FUNCTIONS
12.5 Calculating the Exponent

12.6 cCalculating the Sine

SIN

These functions output the sine of an input value.

Structured text
d:=SIN(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the sine of the REAL data type value (angle) input to (s), and output the operation result from (d).
* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:
B=SIN A

* Input a REAL data type value to (s). Input a value (angle) in radians (anglexn/180).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3501H The data specified by (s) is -0.

12 SINGLE VARIABLE FUNCTIONS 1
12.6 Calculating the Sine 63

12.7 Calculating the Cosine

COS

These functions output the cosine of an input value.

Structured text

d:=COS(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing
» These functions calculate the cosine of the REAL data type value (angle) input to (s), and output the operation result from

(d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=COS A

* Input a REAL data type value to (s). Input a value (angle) in radians (anglexn/180).

EOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

Error code

Description

3501H

The data specified by (s) is -0.

1 64 12 SINGLE VARIABLE FUNCTIONS
12.7 Calculating the Cosine

12.8 cCalculating the Tangent

TAN

These functions output the tangent of an input value.

Structured text

d:=TAN(s);

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing
» These functions calculate the tangent of the REAL data type value (angle) input to (s), and output the operation result from

(d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=TAN A

* Note that even if the input value is 7/2 radian or (3/2)r radian, no error will be issued because of the truncation error in the

radian value.

* Input a REAL data type value to (s). Input a value (angle) in radians (anglexn/180).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

Error code

Description

3501H

The data specified by (s) is -0.

12 SINGLE VARIABLE FUNCTIONS 1
12.8 Calculating the Tangent 65

12.9 cCalculating the Arc Sine

ASIN

These functions output the arc sine (SIN'1) of an input value.

Structured text

d:=ASIN(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the arc sine (SIN'1) of the REAL data type value input to (s), and output the operation result from
(d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=SIN" A

* Input a REAL data type value to (s) within the following range.

ASIN: -1.0t0 1.0

» The value (angle) is output from (d) in radians (anglexn/180).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3501H The data specified by (s) is -0.
3507H The value input with ASIN is other than -1.0 to 1.0.

1 66 12 SINGLE VARIABLE FUNCTIONS
12.9 Calculating the Arc Sine

12.10 calculating the Arc Cosine

ACOS

These functions output the arc cosine (COS'1) of an input value.

Structured text
d:=ACOS(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the arc cosine (COS'1) of the REAL data type value input to (s), and output the operation result
from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=COS™' A

* Input a REAL data type value to (s) within the following range.

ACOS:-1.0t0 1.0

» The value (angle) is output from (d) in radians (anglexn/180).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description
3501H The data specified by (s) is -0.
3507H The value input with ACOS is other than -1.0 to 1.0.

12 SINGLE VARIABLE FUNCTIONS 1
12.10 Calculating the Arc Cosine 67

12.11 calculating the Arc Tangent

ATAN

These functions output the arc tangent (TAN'1) of an input value.

Structured text

d:=ATAN(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_REAL
d Output Output variable ANY_REAL

Processing details

EOperation processing

» These functions calculate the arc tangent (TAN‘1) of the REAL data type value input to (s), and output the operation result
from (d).

* When the input value is defined as A and the output value is defined as B, the relationship of A and B will be as follows:

B=TAN' A

* Input a REAL data type value to (s) within the following range.

ATAN: +1.17549738 to +3.40282%38

» The value (angle) is output from (d) in radians (anglexn/180).

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3501H The data specified by (s) is -0.

1 68 12 SINGLE VARIABLE FUNCTIONS
12.11 Calculating the Arc Tangent

1 3 ARITHMETIC OPERATION FUNCTIONS

13.1 Addition

ADD

This function outputs the sum of input values ((s1)+(s2)+---+(s28)).

Structured text”’
d:=ADD(s1,s2);

*1 The input variable s can be changed within the range from 2 to 28.

Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (IN1) to s28 (IN28) Input Input variable ANY_NUM
d Output Output variable ANY_NUM

Processing. details

HOperation processing
« This function adds the INT, DINT, WORD, DWORD, REAL, or LREAL data type values input to (s1) to (s28)
((s1)+(s2)+--+(s28)), and output the operation result, in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1) (s2) (d)
[rzs]+ [sere | —p
INT INT INT

* Input an INT, DINT, WORD, DWORD, REAL, or LREAL data type value to (s1) to (s28).

13 ARITHMETIC OPERATION FUNCTIONS

13.1 Addition 1 69

« If an underflow or overflow occurs in the operation result, the output from (d) will be as follows.

Data type Description
INT Even if an underflow or overflow occurs, no operation error is issued.
[Example 1]

32767+2=-32767

(7FFFH)+(0002H)=(8001H)

A negative value results because the most significant bit is 1.
[Example 2]

-32767+(-2)=32766

(8000H)+(FFFEH)=(7FFEH)

A positive value results because the most significant bit is 0.

DINT Even if an underflow or overflow occurs, no operation error is issued.
[Example 1]

2147483647+2=-2147483647

(7FFFFFFFH)+(00000002H)=(80000001H)

A negative value results because the most significant bit is 1.
[Example 2]

-2147483648+(-2)=2147483646

(80000000H)+(FFFEH)=(7FFFFFFEH)

A positive value results because the most significant bit is 0.

WORD Even if an overflow occurs, no operation error is issued.
[Example]

65535+ 1=0

(FFFFH) + (0001H) = (0000H)

DWORD Even if an overflow occurs, no operation error is issued.
[Example]

4294967295+ 1=0

(FFFFFFFFH) + (00000001H) = (00000000H)

REAL An operation error occurs and an undefined value is output.

LREAL

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error
* When (s1) to (s28) are of REAL data type

Error code Description

3501H The value input to (s1) to (s28) is -0, a subnormal number, NaN (not a number), or +oo.

The value output from (d) is -0, a subnormal number, NaN (not a number), or +oo.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
I(d)<2"%®

* When (s1) to (s28) are of LREAL data type

Error code Description

3501H The value input to (s1) to (s28) is -0, a subnormal number, NaN (not a number), or .

The value output from (d) is -0, a subnormal number, NaN (not a number), or +oo.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
|(d)|<21024

13 ARITHMETIC OPERATION FUNCTIONS

1 70 13.1 Addition

13.2 Multiplication

MUL
This function outputs the product of input values ((s1)x(s2)x---x(s28)).

Structured text’
d:=MUL(s1,s2);

*1 The input variable s can be changed within the range from 2 to 28.
Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (IN1) to s28 (IN28) Input Input variable ANY_NUM
d Output Output variable ANY_NUM

Processing. details

HOperation processing
« This function multiplies the INT, DINT, WORD, DWORD, REAL, or LREAL data type values input to (s1) to (s28)
((s1)x(s2)x---x(s28)), and output the operation result, in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1) (s2) (d)

[0]« [35 Jo—" [10]

. y) . y)
INT INT INT

* Input an INT, DINT, WORD, DWORD, REAL, or LREAL data type value to (s1) to (s28).
« If an underflow or overflow occurs in the operation result, the output from (d) will be as follows.

Data type Description
INT « Even if an underflow or overflow occurs, no operation error is issued.
WORD + Even if the operation result is outside the INT or WORD data type range, the INT or WORD data type value is output; (In this

case, the output value is of INT or WORD data type with the upper 16 bits deleted although the operation result is a DINT or
DWORD data type value.)

« If the operation result is outside the INT or WORD data type range, convert the input value to the DINT or DWORD data type by
using the INT_TO_DINT or WORD_TO_DWORD function, and then perform operation.

DINT « Even if an underflow or overflow occurs, no operation error is issued.

DWORD « Even if the operation result is outside the DINT or DWORD data type range, the DINT or DWORD data type value is output; (In
this case, the output value is of DINT or DWORD data type with the upper 32 bits deleted although the operation result is 64-bit
data.)

« If the operation result is outside the DINT or DWORD data type range, convert the input value to the REAL data type by using the
DINT_TO_REAL function, and then perform operation.

REAL An operation error occurs and an undefined value is output.
LREAL

EOperation result
The operation processing is performed. The operation result is output from (d).

Point/®

If the operation result is outside the data type range, convert the input value as appropriate before operation.

13 ARITHMETIC OPERATION FUNCTIONS 1 1
13.2 Multiplication 7

* When (s1) to (s28) are of REAL data type

3501H

The value input to (s1) to (s28) is -0, a subnormal number, NaN (not a number), or .

3502H

The data output from (d) exceeds the following range. (An overflow has occurred.)
l(d)<2"2®

* When (s1) to (s28) are of LREAL data type

3501H

The value input to (s1) to (s28) is -0, a subnormal number, NaN (not a number), or +oo.

3502H

The data output from (d) exceeds the following range. (An overflow has occurred.)
|(d)|<21024

1 72 13 ARITHMETIC OPERATION FUNCTIONS
13.2 Multiplication

13.3 Subtraction

SuB

This function outputs the difference between input values ((s1)-(s2)).

Structured text

d:=SUB(s1,s2);

Setting data

EDescription, type, data type

Argument Description Type Data type
s1 (IN1) Input Input variable ANY_NUM
s2 (IN2) Input Input variable ANY_NUM
d Output Output variable ANY_NUM

Processing details

HOperation processing

* This function performs subtraction between the INT, DINT, WORD, DWORD, REAL, or LREAL data type values input to
(s1) and (s2) ((s1)-(s2)), and output the operation result, in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1) (s2) (d)
[o5 | - o789 | C——>
INT INT INT

* Input an INT, DINT, WORD, DWORD, REAL, or LREAL data type value to (s1) and (s2).

« If an underflow or overflow occurs in the operation result, the output from (d) will be as follows.

Data type Description
INT Even if an underflow or overflow occurs, no operation error is issued.
[Example 1]
32767-(-2)=-32767
(7FFFH)-(FFFEH)=(8001H)
A negative value results because the most significant bit is 1.
[Example 2]
-32767-2=32766
(8000H)-(0002H)=(7FFEH)
A positive value results because the most significant bit is 0.
DINT Even if an underflow or overflow occurs, no operation error is issued.
[Example 1]
2147483647-(-2)=-2147483647
(7FFFFFFFH)-(0000FFFEH)=(80000001H)
A negative value results because the most significant bit is 1.
[Example 2]
-2147483648-2=2147483646
(80000000H)-(00000002H)=(7FFFFFFEH)
A positive value results because the most significant bit is 0.
WORD Even if an underflow occurs, no operation error is issued.
[Example]
0-1=65535
(0000H) - (0001H) = (FFFFH)
DWORD Even if an underflow occurs, no operation error is issued.
[Example]
0-1=4294967295
(00000000H) - (00000001H) = (FFFFFFFFH)
REAL An operation error occurs and an undefined value is output.
LREAL

13 ARITHMETIC OPERATION FUNCTIONS

13.3 Subtraction

173

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error
* When (s1) and (s2) are of REAL data type

Error code Description

3501H The value input to (s1) is -0, a subnormal number, NaN (not a number), or +oo.
The value input to (s2) is -0, a subnormal number, NaN (not a number), or +o.
The value output from (d) is -0, a subnormal number, NaN (not a number), or .

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)

|(d)|<2128

* When (s1) and (s2) are of LREAL data type

Error code Description

3501H The value input to (s1) is -0, a subnormal number, NaN (not a number), or +oo.
The value input to (s2) is -0, a subnormal number, NaN (not a number), or +oo.
The value output from (d) is -0, a subnormal number, NaN (not a number), or +oo.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)

|(d)|<21024

13 ARITHMETIC OPERATION FUNCTIONS

1 74 13.3 Subtraction

13.4 Division

DIV

This function outputs the quotient of input values ((s1)+(s2)).

Structured text
d:=DIV(s1,s2);

Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (IN1) Dividend Input variable ANY_NUM
s2 (IN2) Divisor Input variable ANY_NUM
d Output Output variable ANY_NUM

Processing details

HOperation processing
* This function performs division between the INT, DINT, WORD, DWORD, REAL, or LREAL data type values input to (s1)

and (s2) ((s1)+(s2)), and output the operation result, in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1) (s2) (d)
Quotient Remainder
| 5 | + 2 | c—> 2 | 1 |
INT INT INT The value is not output.

* Input an INT, DINT, WORD, DWORD, REAL, or LREAL data type value to (s1) and (s2). (Note that the value input to (s2)
shall be other than 0.)

13 ARITHMETIC OPERATION FUNCTIONS 1
13.4 Division 75

HOperation result
The operation processing is performed. The operation result is output from (d).

F

* When (s1) and (s2) are of INT or WORD data type

34FFH The value (divisor) input to (s2) is 0.

* When (s1) and (s2) are of DINT or DWORD data type

34FFH The value (divisor) input to (s2) is 0.

* When (s1) and (s2) are of REAL data type

34FFH The value (divisor) input to (s2) is 0.

3501H The value input to (s1) is -0, a subnormal number, NaN (not a number), or +oo.

The value input to (s2) is -0, a subnormal number, NaN (not a number), or +o.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
I(d)l<2"28

* When (s1) and (s2) are of LREAL data type

34FFH The value (divisor) input to (s2) is 0.

3501H The value input to (s1) is -0, a subnormal number, NaN (not a number), or +oo.

The value input to (s2) is -0, a subnormal number, NaN (not a number), or +oo.

3502H The data output from (d) exceeds the following range. (An overflow has occurred.)
|(d)|<21024

13 ARITHMETIC OPERATION FUNCTIONS

176 13.4 Division

13.5 Remainder

MOD

This function outputs the remainder of input values ((s1)+(s2)).

Structured text

The function is described as an operator. (LI1 MELSEC iQ-R Programming Manual (Program Design))

Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (IN1) Dividend Input variable ANY_INT
s2 (IN2) Divisor Input variable ANY_INT
d Output Output variable ANY_INT

Processing details

HOperation processing
* This function performs division between the INT, DINT, WORD, or DWORD data type values input to (s1) and (s2)
((s1)+(s2)), and output the remainder of the operation result, in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1) (s2) (d)
Quotient Remainder
| 5 | = 2 |——> | 2 | 1 |
INT INT The value is not output. INT

* Input an INT, DINT, WORD, or DWORD data type value to (s1) and (s2). (Note that the value input to (s2) shall be other
than 0.)

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error
* When (s1) and (s2) are of INT or WORD data type

Error code Description

34FFH The value (divisor) input to (s2) is 0.

* When (s1) and (s2) are of DINT or DWORD data type

Error code Description

34FFH The value (divisor) input to (s2) is 0.

13 ARITHMETIC OPERATION FUNCTIONS

13.5 Remainder 1 77

13.6 Assignment (Move Operation)

MOVE

This function outputs the assignment value of an input value.

Structured text

d:=MOVE(s);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY
d Output Output variable ANY

Processing details

EOperation processing

« This function assigns the value of the input variable specified by (s) to the output variable specified by (d).

* Input a BOOL, INT, DINT, WORD, DWORD, REAL, LREAL, STRING, TIME, structure, or array data type value to (s) and
(d). The values input to (s) and (d) must be of the same data type.

(s) (d)

| 12 | ——> | 12 |
NT INT
(s) (d)
2147483647 | ——> | 2147483647
DINT DINT
(s) (d)
65535 | ——> | 65535
WORD WORD
(s) (d)
4294967295 | ——> | 4294967295
DWORD DWORD
(s) (d)
3.402823+38 | ——> | 3.402823+38
REAL REAL
(s) (d)
[179769313486231+308 | > [1.79769313486231+308

s s

LREAL LREAL

EOperation result
The operation processing is performed. The operation result is output from (d).

Operation. error

Error code Description

3506H There is no NULL code (00H) in the setting area specified by (s) in the device/label memory.

3507H The number of characters in the string input to (s) exceeds 16383.

3508H The entire string cannot be stored in the setting area specified by (d) in the device/label memory. (The number of required points is
insufficient.)

1 13 ARITHMETIC OPERATION FUNCTIONS
78 13.6 Assignment (Move Operation)

14 BOOLEAN FUNCTIONS

14.1 NOT Operation

NOT

This function outputs the logical NOT of input values.

Structured text

The function is described as an operator. (LI MELSEC iQ-R Programming Manual (Program Design))

Setting data

EDescription, type, data type

Argument Description Type Data type
s (IN) Input Input variable ANY_BIT
d Output Output variable ANY_BIT

Processing details

EOperation processing
* This function performs a NOT operation (bit-by-bit) on the BOOL, WORD, or DWORD data type value input to (s), and

output the operation result, in the same data type as (s), from (d).

[Ex]

Data type: WORD

@[of1]r]ofx]

o
N
N
o]
o]
o]
o]
N
N
N
N

@ [1]ofol1]o]

t[ofofr[1]r]1]ofofo]o]

* Input a BOOL, WORD, or DWORD data type value to (s).

HOperation result

The operation processing is performed. The operation result is output from (d).

Operation.error

There is no operation error.

14 BOOLEAN FUNCTIONS

14.1 NOT Operation 1 79

15 seLEcTION FUNCTIONS

15.1 Selecting the Maximum/Minimum Value

MAX, MIN

* MAX: This function outputs the maximum input value.
* MIN: This function outputs the minimum input value.

Structured text”’

d:=MAX(s1,s2);
d:=MIN(s1,s2);

*1 The input variable s can be changed within the range from 2 to 28.

Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (IN1) to s28 (IN28) Input Input variable ANY_ELEMENTARY
d Output Output variable ANY_ELEMENTARY

Processing. details

HOperation processing
« MAX

This function outputs the maximum value of the BOOL, INT, DINT, WORD, DWORD, REAL, LREAL, STRING, or TIME data
type values input to (s1) to (s28), in the same data type as (s), from (d).

[Ex]

Data type: INT

(s1)...(s28)

MAX (d)
-IN2 INT

INT

* MIN
This function outputs the minimum value of the BOOL, INT, DINT, WORD, DWORD, REAL, LREAL, STRING, or TIME data
type values input to (s1) to (s28), in the same data type as (s), from (d).

Data type: INT

(s1)... (s28)
1234 MIN (d)

INT _INT MIN 1234
5678 _IN2 INT

INT

* Input a BOOL, INT, DINT, WORD, DWORD, REAL, LREAL, STRING, or TIME data type value to (s1) to (s28).

» Conditions for comparing the STRING data type values are as follows:
Match: « All characters matched

Bigger string: * The one having a character with a bigger code (when strings consist of different characters)
« The one having a longer length (when strings are of different lengths)

Smaller string: « The one having a character with a smaller code (when strings consist of different characters)
« The one having a shorter length (when strings are of different lengths)

1 80 15 SELECTION FUNCTIONS
15.1 Selecting the Maximum/Minimum Value

HOperation result
The operation processing is performed. The operation result is output from (d).

Operation.error

Error code Description

3506H There is no NULL code (00H) in each setting area specified by (s1) to (s28) in the device/label memory.

3507H The number of characters in the strings input to (s1) to (s28) exceeds 16383.

3508H The entire string cannot be stored in the setting area specified by (d) in the device/label memory. (The number of required points is
insufficient.)

15 SELECTION FUNCTIONS 1 1
15.1 Selecting the Maximum/Minimum Value 8

MEMO

1 82 15 SELECTION FUNCTIONS
15.1 Selecting the Maximum/Minimum Value

PART 7

PART 7 STANDARD FUNCTION
BLOCKS

This part consists of the following chapters.

16 BISTABLE FUNCTION BLOCKS

17 EDGE DETECTION FUNCTION BLOCKS

18 TIMER FUNCTION BLOCKS

183

1 6 BISTABLE FUNCTION BLOCKS

16.1 Bistable Function Block (Set-Dominant)

SR

These function blocks discriminate between two input values, and output 1 (TRUE) or O (FALSE).

Structured text

Instance name(S1:=s1,R:=s2,Q1:=d);

Setting data

EDescription, type, data type

Argument Description Type Data type
s1(S1) Set command Input variable BOOL
s2 (R) Reset command Input variable BOOL
d(Q1) Output Output variable BOOL

Processing details

HOperation processing

* When (s1) turns on, (d) is set. Turning on (s2) while (s1) is off resets (d).
* Even when (s2) turns on while (s1) is on, (d) is not reset.

HOperation result

The operation processing is performed. The operation result is output from (d).

 Timing chart

'
1ON

(s1) OFF
(s2) OFF
(d) OFF

Lo

(1)

@)

(1) When (s1) turns on, (d) turns on.

(2) When (s2) turns on while (s1) is off, (d) turns off.

Operation.error

There is no operation error.

16 BISTABLE FUNCTION BLOCKS
184

16.1 Bistable Function Block (Set-Dominant)

16.2 Bistable Function Block (Reset-Dominant)

RS

These function blocks discriminate between two input values, and output 1 (TRUE) or O (FALSE).

Structured text

Instance name(S:=s1,R1:=s2,Q1:=d);

Setting data
EDescription, type, data type

Argument Description Type Data type
s1(S) Set command Input variable BOOL
s2 (R1) Reset command Input variable BOOL
d(Q1) Output Output variable BOOL

Processing details

HOperation processing
* When (s1) turns on, (d) is set. When (s2) turns on, (d) is reset.
* Even when (s1) turns on while (s2) is on, (d) is not set.

EOperation result
The operation processing is performed. The operation result is output from (d).
 Timing chart

ON ! 1ON 1ON ON ! {ON {ON

wor O L L T LT

ON OoN !
l)OFF l N 1

(s2)

(d)

™ @)

(1) When (s2) turns off while (s1) is on, (d) turns on.
(2) When (s2) turns on, (d) turns off.

Operation.error

There is no operation error.

16 BISTABLE FUNCTION BLOCKS 1
16.2 Bistable Function Block (Reset-Dominant) 85

MEMO

1 86 16 BISTABLE FUNCTION BLOCKS
16.2 Bistable Function Block (Reset-Dominant)

1 7 EDGE DETECTION FUNCTION BLOCKS

17.1 Detecting a Rising Edge

R_TRIG

These function blocks detect a signal rising edge, and outputs the pulse signal.

Structured text

Instance name(CLK:=s,Q:=d);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (CLK) Rising edge detection input Input variable BOOL
d(Q) Output Output variable BOOL

Processing details

EOperation processing
When (s) turns on, (d) turns on only for one scan.

HOperation result
The operation processing is performed. The operation result is output from (d).

» Timing chart
tON | TN :ONé :ONé :ONé :ONé
(s) OFF ; l : l i l i l E l E

(d) oFF l OFF 1 OFF OFF OFF 1 OFF 1 OFF

(] ()
(1) (d) turns on at the rising edge of (s).
(2) (d) turns off in the next scan.

Operation.error

There is no operation error.

17 EDGE DETECTION FUNCTION BLOCKS 1
17.1 Detecting a Rising Edge 87

17.2 Detecting a Falling Edge

F_TRIG

These function blocks detect a signal falling edge, and outputs the pulse signal.
Structured text

Instance name(CLK:=s,Q:=d);

Setting data

EDescription, type, data type

Argument Description Type Data type

s (CLK) Falling edge detection input Input variable BOOL

d(Q) Output Output variable BOOL
Processing details

EOperation processing

When (s) turns off, (d) turns on only for one scan.

HOperation result

The operation processing is performed. The operation result is output from (d).

 Timing chart

OoN ! oN ! ON !

ON ! ON !
(s) OFF T) OFF T Y)OFF T)OFF T

@ OFF /‘(ﬂl\ (ﬂl (ﬂl (ﬂl (ﬂl . (:ON

(1) (2)

(1) (d) turns on at the falling edge of (s).
(2) (d) turns off in the next scan.

Operation.error

There is no operation error.

1 17 EDGE DETECTION FUNCTION BLOCKS
88 17.2 Detecting a Falling Edge

OFF T Y)OFF Y)OFF

1 8 TIMER FUNCTION BLOCKS

18.1 Pulse Timer

TP

These function blocks keep the signal on for the specified period of time.

Structured text

Instance name(IN:=s,PT:=n,Q:=d1,ET:=d2);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Start of output Input variable BOOL

n (PT) Output time setting value Input variable TIME
d1(Q) Output Output variable BOOL

d2 (ET) Elapsed time Output variable TIME

Processing. details

HOperation processing

1. Output
* When (s) turns on, (d1) turns on for the period of time set by (n). The time elapsed after (d1) turns on is set to (d2).
» Use the long timer to count the elapsed time.

2. Endof output

» Once the elapsed time reaches the setting time, (d1) turns off.
« If (s) is off after (d1) turns off, the elapsed time is reset.

» Even when (s) turns off while (d1) is on, (d1) does not turn off.

3. Output time setting
The valid setting range of (n) is T#1 ms to T#2147483 ms. Note that the valid setting range will be as follows by changing the
timer limit setting using the engineering tool.

Minimum value Maximum value

Identical to the long timer setting value [ms] in the timer limit setting. The time satisfying the following condition is used.

Note that if the long timer setting value is smaller than 1 ms, the Note that the maximum value is a value that can be included within the range of time
minimum value will be 1 ms. type because the output time setting value is of time type (32-bit value).

« Output time setting value [ms] < 2147483647 [ms] x Long timer setting value in the
timer limit setting [ms]

[Example]

« If the long timer setting value is 0.001 ms: T#1 ms to T#2147483 ms

« If the long timer setting value is 1000 ms: T#1000 ms to T#2147483000 ms

The value at the rising edge (off to on) of (d1) is used for the setting value of (n). When the (n) value is changed when (d1) is
on, the new value will be enabled at the next output start timing.

18 TIMER FUNCTION BLOCKS
18.1 Pulse Timer 1 89

190

HOperation result

The operation result will be as follows.

Operation result

(d1), (d2)

No operation error

Operation result output value

Operation error

Undefined value

* Timing chart
When n=T#5s (5s)

(1) When (s) turns on, (d1) turns on. When (s) turns on, (d2) starts measuring time.
(2) When the time measured in (d2) reaches the time set in (n), (d1) turns off.
(3) When both (s) and (d1) are off, the value in (d2) is initialized.

Operation.error

Error code Description

3500H The output time setting value exceeds the valid range.

18 TIMER FUNCTION BLOCKS
18.1 Pulse Timer

18.2 On Delay Timer

TON

These function blocks turn on a signal after the specified period of time.

Structured text

Instance name(IN:=s,PT:=n,Q:=d1,ET:=d2);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Time measurement Input variable BOOL

n (PT) Delay time setting value Input variable TIME
d1(Q) Output Output variable BOOL

d2 (ET) Elapsed time Output variable TIME

Processing. details

HOperation processing
1. Output

* When (s) turns on, (d1) turns on after the time that was set by (n). The delay time elapsed after (d1) turns on is set to (d2).
* When (s) turns off, (d1) turns off and the delay elapsed time is also reset.

» Use the long timer to count the elapsed time.

2. Delay time setting

The valid setting range of (n) is T#1 ms to T#2147483 ms. Note that the valid setting range will be as follows by changing the

timer limit setting using the engineering tool.

Minimum value

Maximum value

Identical to the long timer setting value [ms] in the timer limit setting.
Note that if the long timer setting value is smaller than 1 ms, the
minimum value will be 1 ms.

The time satisfying the following condition is used.

Note that the maximum value is a value that can be included within the range of time
type because the delay time setting value is of time type (32-bit value).

« Delay time setting value [ms] < 2147483647 [ms] x Long timer setting value of in

the timer limit setting [ms]

[Example]

« If the long timer setting value is 0.001 ms: T#1ms to T#2147483 ms

« If the long timer setting value is 1000 ms: T#1000 ms to T#2147483000 ms

The value at the rising edge (off to on) of (d) is used for the setting value of (n). When the (n) value is changed while (s) is on,
the new value will be enabled at the next rising edge of (s).

18 TIMER FUNCTION BLOCKS 1 1
18.2 On Delay Timer 9

HOperation result
The operation result will be as follows.

Operation result (d1), (d2)

No operation error Operation result output value

Operation error Undefined value

* Timing chart
When n=T#5s (5s)

1ON

(s) OFF

(1) When (s) turns on, (d2) starts measuring time.
(2) When the time measured in (d2) reaches the time set in (n), (d1) turns on.
(3) When both (s) and (d1) turn off, the value in (d2) is initialized.

Operation.error

Error code Description

3500H The output time setting value exceeds the valid range.

192

18 TIMER FUNCTION BLOCKS
18.2 On Delay Timer

18.3 Off Delay Timer

TOF

These function blocks turn off a signal after the specified period of time.

Structured text

Instance name(IN:=s,PT:=n,Q:=d1,ET:=d2);

Setting data
EDescription, type, data type

Argument Description Type Data type
s (IN) Time measurement Input variable BOOL

n (PT) Delay time setting value Input variable TIME
d1(Q) Output Output variable BOOL

d2 (ET) Elapsed time Output variable TIME

Processing. details

HOperation processing

1. Output
* When (s) turns on, (d1) turns on.

* When (s) changes from on to off, (d1) turns off after the time that was set by (n). The delay time elapsed after (d1) turns off

is set to (d2).
» Use the long timer to count the elapsed time.

2. Delay time setting

The valid setting range of (n) is T#1 ms to T#2147483 ms. Note that the valid setting range will be as follows by changing the

timer limit setting using the engineering tool.

Minimum value

Maximum value

Identical to the long timer setting value [ms] in the timer limit setting.
Note that if the long timer setting value is smaller than 1 ms, the
minimum value will be 1 ms.

The time satisfying the following condition is used.

Note that the maximum value is a value that can be included within the range of time

type because the delay time setting value is of time type (32-bit value).

* Delay time setting value [ms] < 2147483647 [ms] x Long timer setting value of in
the timer limit setting [ms]

[Example]

« If the long timer setting value is 0.001 ms: T#1ms to T#2147483 ms

« If the long timer setting value is 1000 ms: T#1000 ms to T#2147483000 ms

The value at the falling edge (on to off) of (s) is used for the setting value of (n). When the (n) value is changed when (s) is off,
the new value will be enabled at the next falling edge of (s).

18 TIMER FUNCTION BLOCKS 1
18.3 Off Delay Timer 93

HOperation result
The operation result will be as follows.

No operation error Operation result output value
Operation error Undefined value
* Timing chart

When n=T#5s (5s)

ON'!

T Do

(s) OFF

(d1) OFF

(d2)

/ /

™) @) @)

(1) When (s) turns off, (d2) starts measuring time.
(2) When the time measured in (d2) reaches the time set in (n), (d1) turns on.
(3) When (s) turns on, the value in (d2) is initialized.

- Operation error

3500H The output time setting value exceeds the valid range.

1 94 18 TIMER FUNCTION BLOCKS
18.3 Off Delay Timer

18.4 Timer Function Block

TIMER_O_M

These function blocks start counting a timer when the execution condition is satisfied, and continue counting until the timer

reaches the set value.

Structured text

Instance name(Coil:=s1,Preset:=s2,Valueln:=s3,ValueOut:=d1,Status:=d2);

Setting data
EDescription, type, data type

Argument Description Type Data type
s1 (Coil) Execution condition (TRUE: Executed, FALSE: Not executed) Input variable BOOL

s2 (Preset) Timer setting value Input variable INT

s3 (Valueln) Initial timer value Input variable INT

d1 (ValueOut) Current timer value Output variable INT

d2 (Status) Output Output variable BOOL

Processing details
ETIMER_10_FB_M

* When (s1) turns on, measurement of the current value starts. The measurement starts from (s3)x10 ms. When the value
reaches (s2)x10 ms, (d2) turns on. The measured current value is output to (d1).

* When (s1) turns off, the current value returns to the initial value (s3), and (d2) also turns off.

« If the unit of measurement of the high-speed timer (in the timer limit setting) is changed from the default value using the
engineering tool, a warning will be issued during conversion of modified or newly added programs or all programs in a
project.

» The valid setting range of (s2) is 0 to 32767.

» The valid setting range of (s3) is -32768 to 32767. Note that if a negative value is specified, 0 will be used as the initial
value.

[Ex]

[Label definitions]

Label name Data type Class Description
TIMER_10_FB_M_1 TIMER_10_FB_M VAR An instance of standard FB
i_Coil_B Bit VAR Executing condition (TRUE:
Execution, FALSE: Stop)

o_ValueOut_| Word (signed) VAR Timer current value
o_Status_B Bit VAR Output

[Program]

TIMER_10_FB_M_1(

Coil :=i_Coil_B,

Preset := 10,

Valueln := 1,

ValueOut => o_ValueOut_|,
Status => o_Status_B);

[Timing chart]

ON

i_Coil_B
OFF

o_ValueOut_|

1 90ms

< [
o_Status_B \T %
OFF

18 TIMER FUNCTION BLOCKS 1
18.4 Timer Function Block 95

ETIMER_100_FB_M

* When (s1) turns on, measurement of the current value starts. The measurement starts from (s3)x100 ms. When the value
reaches (s2)x100 ms, (d2) turns on. The measured current value is output to (d1).

* When (s1) turns off, the current value returns to the initial value (s3), and (d2) also turns off.

« If the unit of measurement of the low-speed timer (in the timer limit setting) is changed from the default value using the
engineering tool, a warning will be issued during conversion of modified or newly added programs or all programs in a
project.

» The valid setting range of (s2) is 0 to 32767.

» The valid setting range of (s3) is -32768 to 32767. Note that if a negative value is specified, 0 will be used as the initial
value.

[Ex]

[Label definitions]

Label name Data type Class Description
TIMER_100_FB_M_1 TIMER_100_FB_M VAR An instance of standard FB
i_Coil_B Bit VAR Executing condition (TRUE:
Execution, FALSE: Stop)

o_ValueOut_| Word (signed) VAR Timer current value
o_Status_B Bit VAR Output
[Program]

TIMER_100_FB_M_1(

Coil :=i_Coil_B,

Preset := 10,

Valueln =1,

ValueOut => o_ValueOut_|,
Status => o_Status_B);

[Timing chart]

ON
i_Coil_B
- OFF

o_ValueOut_| 1

900ms

< >
o_Status_B S‘T ’ﬂ
OFF

1 96 18 TIMER FUNCTION BLOCKS
18.4 Timer Function Block

ETIMER_HIGH_FB_M

« This is a high-speed timer whose unit of measurement is 0.1 to 100 ms. When (s1) turns on, measurement of the current

value starts. The measurement starts from (s3)x0.1 to 100 ms (variable; set in parameter). When the value reaches

(s2)x0.1 to 100 ms, (d2) turns on. The measured current value is output to (d1).
* When (s1) turns off, the current value returns to the initial value (s3), and (d2) also turns off.
» The unit of measurement of the high-speed timer is 10 ms by default. The unit can be changed in the range from 0.01 to

100 ms.
» The valid setting range of (s2) is 0 to 32767.

» The valid setting range of (s3) is -32768 to 32767. Note that if a negative value is specified, 0 will be used as the initial

value.

[Ex]

[Label definitions]

Label name Data type Class Description
TIMER_HIGH_FB_M_1 TIMER_HIGH_FB_M VAR An instance of standard FB
i_Coil_B Bit VAR Executing condition (TRUE:
Execution, FALSE: Stop)

o_ValueOut_| Word (signed) VAR Timer current value
o_Status_B Bit VAR Output

[Program]

TIMER_HIGH_FB_M_1(

Coil :=i_Coil_B,

Preset := 10,

Valueln :=1,

ValueOut => o_ValueOut_|,
Status => o_Status_B);

[Timing chart]

ON

i_Coil_B
OFF

o_ValueOut_|

1 90ms

< [
o_Status_B \T %
OFF

18 TIMER FUNCTION BLOCKS 1
18.4 Timer Function Block 97

ETIMER_LOW_FB_M

» This is a low-speed timer whose unit of measurement is 1 to 1000 ms. When (s1) turns on, measurement of the current

value starts. The measurement starts from (s3)x1 to 1000 ms (variable; set in parameter). When the value reaches (s2)x1

to 1000 ms, (d2) turns on. The measured current value is output to (d1).
* When (s1) turns off, the current value returns to the initial value (s3), and (d2) also turns off.

» The unit of measurement of the low-speed timer is 100 ms by default. The unit can be changed in the range from 1 to 1000

ms (in increments of 1 ms).
» The valid setting range of (s2) is 0 to 32767.

» The valid setting range of (s3) is -32768 to 32767. Note that if a negative value is specified, 0 will be used as the initial

value.

[Ex]

[Label definitions]

Label name Data type Class Description
TIMER_LOW_FB_M_1 TIMER_LOW_FB_M VAR An instance of standard FB
i_Coil_B Bit VAR Executing condition (TRUE:
Execution, FALSE: Stop)

o_ValueOut_| Word (signed) VAR Timer current value
o_Status_B Bit VAR Output
[Program]

TIMER_LOW_FB_M_1(

Coil :=i_Coil_B,

Preset := 10,

Valueln =1,

ValueOut => o_ValueOut_|,
Status => o_Status_B);

[Timing chart]

ON
i_Coil_B
- OFF 10
o_ValueOut_| 1

900ms

b ¥
o_Status_B T
- - OFF

1 98 18 TIMER FUNCTION BLOCKS
18.4 Timer Function Block

ETIMER_CONT_FB_M/TIMER_CONTHFB_M

« This is a retentive timer that measures the on time of a variable. When (s1) turns on, measurement of the current value
starts. There are two retentive timers: low-speed (TIMER_CONT_FB_M) and high-speed (TIMER_CONTHFB_M) retentive
timers.

The measurement starts from (s3)x1 to 1000 ms (0.1 to 100 ms for the high-speed retentive timer) (variable; set in
parameter). When the value reaches (s2)x1 to 1000 ms (0.1 to 100 ms for the high-speed retentive timer), (d2) turns on.

The measured current value is output to (d1).

Even when (s1) is off, the on/off states of (d1) and (d2) are held. When (s1) turns on again, the measurement resumes with
the measured value that has been held.

The unit of measurement (time limit) for the retentive timers is common to both the low-speed timer (TIMER_LOW_FB_M)
and high-speed timer (TIMER_HIGH_FB_M).

« Low-speed retentive timer: Low-speed timer
« High-speed retentive timer: High-speed timer

The valid setting range of (s2) is 0 to 32767.
The valid setting range of (s3) is -32768 to 32767. Note that if a negative value is specified, 0 will be used as the initial

value.
» To reset (d1) of a retentive timer, reset (s1) of FB directly.

[Ex]

[Label definitions]

Label name Data type Class Description
TIMER_CONT_FB_M_1 TIMER_CONT_FB_M VAR An instance of standard FB
i_Coil_B Bit VAR Executing condition (TRUE:
Execution, FALSE: Stop)

o_ValueOut_| Word (signed) VAR Timer current value
o_Status_B Bit VAR Output

[Program]

TIMER_CONT_FB_M_1(

Coil :=i_Coil_B,

Preset := 200,

Valueln :=0,

ValueOut => o_ValueOut_|,
Status => o_Status_B);

[Timing chart]

i_Coil_B

OFF
o_ValueOut_| 0
o_Status_B

OFF

Operation.error

There is no operation error.

18 TIMER FUNCTION BLOCKS 1
18.4 Timer Function Block 99

MEMO

200 18 TIMER FUNCTION BLOCKS
18.4 Timer Function Block

PART 8 MOTION DEDICATED
INSTRUCTIONS

This part consists of the following chapter.

19 MOTION DEDICATED INSTRUCTIONS

PART 8

201

1 9 MOTION DEDICATED INSTRUCTIONS

19.1 Overview

The module dedicated instruction enables access and execution of instructions to the labels defined in the motion from control
CPUs such as a programmable controller CPU.

The dedicated instruction which can be executed from the programmable controller CPU to the Motion module is shown

below.
Instruction Execution condition
G(P).CEXECUTE Instructs the execution of processing in the Motion module.

The module dedicated instruction executes the processing with the dedicated instruction execution task in the motion module.
The priority of the task is lower than the fixed cycle task (which executes the motion operation, etc.) and higher than the
normal task. Therefore, it does not effect to the operation cycle by the instruction execution. However, it may cause the
processing time of the normal task gets longer.

Operation of this function for each system status
O: Possible, X: Not possible

System status Operation availability
STOP O
RUN O
Moderate error O
Major error X

202 19 MOTION DEDICATED INSTRUCTIONS
19.1 Overview

19.2 User Function Execution Instruction

G(P).CEXECUTE

These instructions instruct the execution of processing in the Motion module.

Ladder

ST

— =0

| W [61]62]@n]w@ }—{

ENO:=G_CEXECUTE(EN,U,s1,s2,d1,d2);
ENO:=GP_CEXECUTE(EN,U,s1,s2,d1,d2);

FBD/LD

C—1
— EN ENO —
— U d1 —
— si d2 —
— s2

HEExecution condition

Instruction Execution condition
G.CEXECUTE —,_|_
GP.CEXECUTE —t_

Setting data

EDescription, range, data type

Operand Description Range Data type Data type
(Label)

(V) Start I/O number (first three digits in four-digit hexadecimal 00H to FEH 16-bit unsigned binary ANY16
representation) of a module

(s1) Start device where control data is stored Page 204 Control data Device name ANY1672

(s2) Start device where request data is stored —" Device name ANY1672

(d1) Start device for storing response data — Device name ANY1672

(d2) Device that turns on for one scan upon completion of the — Bit ANYBIT_ARRAY
instruction (Number of
When the instruction completes with an error, (d2)+1 also turns on. elements: 2)

EN Execution condition — Bit BOOL

ENO Execution result — Bit BOOL

*1 The maximum size of response data and request data will be 8K words.
*2 When specifying setting data by using a label, define an array to secure enough operation area and specify an element of the array

label.

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

203

BApplicable devices/labels

() - - ¢ - — | = - |0 o e e
(s1) — — o — - | = — |0 — e el
(s2) — — oM — - | = — |0 — e el
(d1) - - o" — - | = e - - |= |-
(d2) 0" - o — - | = - | = — — | = |-

*1 FD cannot be used.
*2 FXand FY cannot be used.
*3 T, ST, C, and FD cannot be used.

HEControl data

+0 Allowable number of Sets the allowable number of words of response data that can be stored in (d1). 1108192 User
response data

+1 Completion status The completion status is stored upon completion of the instruction. — System
« 0: Completed successfully
« Other than 0: Completed with an error (error code)

HRequest data

+0 Request data length Specify the request data length. (Number of words) 1to 8192 User

+1to +O Request data Specify the request data. — User

HResponse data

+0 Response data length The response data length is stored. (Number of words) 0 to 8192 System

+1to +0 Response data The response data is stored. — System

|

» The request data stored in the device specified by (s2) and later is handed over to the Motion module specified by (U), and
the response data is stored in the device specified by (d1) and later. However, if the received response data is larger than
the allowable number of response data specified in (s1), only the allowable number of response data will be stored and the
remaining will be discarded. (The dedicated instruction will be completed successfully.) In this case, the response data
length (d1) will be the number of data actually stored.

+ Set (s2) according to the process which will be executed. The description of (d1) changes depending on the process to be
executed. The following shows details.

204 19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

HLabel read request
Reads labels from the Motion module.

The execution of this request requires the SignallO add-on.

Operand: (s2)

Device Item Description Setting range | Set by
+0 Request data Specify the request data length. (Number of words from +1 to +0) 3 to 258 User
length
+1 Request ID Specify "1". 1 User
+2to +0 Label name Specify the label name to be read with character string [Unicode] (including Maximum of 257 | User
the last NULL character). characters
* Only primitive data type can be read. Specify the end element for
structures.
« Specify [start...end] when reading out the multiple array elements in a
batch. This notation can be used at only one location in the label. Ex. If the
array is Label[10...20], the elements [10] to [20] will be read.
* Local labels cannot be specified.
Operand: (d1)
Device Item Description Setting range | Set by
+0 Response data The response data length is stored. (Number of words) 4 to 8192 System
length « The response data length depends on the label type to be read.
« If an array is specified and the response data length is greater than 8192

points, the data will be stored within the range of not exceeding 8192 points

and not separating the data and complete normally. Ex. The WSTRING

character string of 100 length is stored up to 81 strings (8100 points), the

82nd string will not be stored.
+1to +3 Reserved "0" is stored. 0 System
+4 to +00 Read data The read data is stored. — System

« Stores in bit 0 for a BOOL type label. When reading out the multiple data
with specified array, store in order without space such as bit 0, bit 1, ...

* When reading out the array of STRING/WSTRING type array, output the
character string in the NULL tab-delimited format type. In the case of
STRING type, adjust the number of NULL to set each head of the string at
word border. (Insert NULL x 1 when the length is odd number without
NULL and insert NULL x 2 in the case of even number.)

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

205

206

HLabel write request
Writes labels to the Motion module.

The execution of this request requires the SignallO add-on.

Operand: (s2)

Device

Item

Description

Setting range

Set by

+0

Request data
length

Specify the request data length. (Number of words from +1 to +0)

4 to0 8192

User

+1

Request ID

Specify "2".

2

User

+2 to +M

Label name

Specify the label name to be written with character string [Unicode] (including
the last NULL character).

* Only primitive data type can be written. Specify the end element for
structures.

« Specify [start...end] when writing out the multiple array elements in a batch.
This notation can be used at only one location in the label. Ex. If the array is
Label[10...20], the elements [10] to [20] will be written.

* Local labels cannot be specified.

Maximum of 256
characters

User

+(M+1) to +00

Write data

Specify the data to be written.

« If an array is specified and the request data length exceeds the request
data length specified in (s2+0), the data will be written within the range of
not exceeding the request data length and not seperated, and complete
normally.

« Stores in bit 0 for a BOOL type label. When reading out the multiple data
with specified array, store in order without space such as bit 0, bit 1,

» When writing in the array of STRING/WSTRING type label, set the
character string in the NULL tab-delimited format type. In the case of
STRING type, adjust the number of NULL to set each head of the string at
word border.

User

Operand: (d1)

Device

Item

Description

Setting range

Set by

+0

Response data
length

The response data length is stored. (Number of words)

1

System

+1

Number of write
points

The number of points (number of words) written is stored.
* The bool type label is 16 pieces/1 point.

System

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

EMotion instruction execution
Executes the program instructions of the Motion module. For the processing details of each instruction, refer to the following.
The execution of this request requires Addon_Program_ST.
[=5~ Page 95 Program Control Instructions

Operand: (s2)

Device Item Description Setting range | Set by

+0 Request data Specify the request data length. (Number of words from +1 to +0) 3 t0 8192 User
length

+1 Request ID Specify "3". 3 User

+2 to +M Instruction name | Specify the instruction to be executed with ASCII character string (including Maximum of 256 | User

the last NULL character). characters

+(M+1) to +0O Argument Specify the argument to be passed to the instruction. — User

Operand: (d1)

Device Item Description Setting range | Set by

+0 Response data The response data length is stored. (Number of words) 1to 8192 System
length

+1to +0O Response data The response data is stored. — System

Instruction names which can be specified, the arguments, and the response data are shown below.

Instruction Argument Response data

name

PSCAN'! +0 to: program name (character string [Unicode], including the last | +0: bit O ...Execution result (ENO) is stored.2
NULL character) bit 1-F ...0 is stored.

PSTOP'! +0 to: program name (character string [Unicode], including the last | +0: bit 0 ... Execution result (ENO) is stored."?

NULL character)

bit 1-F ...0 is stored.

*1 Return the response data by executing the acceptance of instruction with dedicated instruction task. After that, execute the change
processing with the normal task cycle.
*2 ltis always 1 when this instruction is executed. The judgement of the success and failure by execution, check the
PROGRAM_INFO.Status.

Point ;>

The instruction can be executed only while the Motion module is set to RUN. If the instruction is executed
while the Motion module is set to STOP, an error will occur.

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

207

Precautions

» The G(P).CEXECUTE instruction cannot be executed additionally while another G(P).CEXECUTE instruction is being

executed. If two G(P).CEXECUTE instructions are executed at the same time, their operation will not be guaranteed.
Implement measures such as executing the next G(P).CEXECUTE instruction after the completion device (d2) of the first
instruction turns ON to prevent two instructions from being executed at the same time.

The operand must be specified even when request data and response data are not required.

Do not change each data (control data and request data, etc.) specified in the dedicated instruction until the dedicated
instruction process is completed.

The character string type or the structure including the character string type of the Motion module is not made public. To
read/write from the PLC program, use the G(P).CEXECUTE instruction.

The operation when reading or writing public labels using the G(P).CEXECUTE instruction is as follows. Depending on the
timing of the operation, the consistency of data may not be maintained. It is recommended to use the instruction depending
on the purpose, such as using public labels for things that need to be updated in fixed cycles, and accessing all other things
with the G(P).CEXECUTE instruction.

G(P).CEXECUTE | Label read Label write

Public label

Motion control

type

Programmable The read value and the module label value may not match depending on the Will be overwritten with the public label.
controller CPU = operation timing.*1

Motion module

Motion module = The read value and the module label value may not match depending on the The write value and the module label value may not
Programmable operation timing.’k1 match depending on the operation timing.*1
controller CPU

*1 The priority of the dedicated instruction execution task (==~ Page 202 Overview) is lower than buffer memory refresh processing task,

and will not synchronize with public label refresh.

Operation.error

Error code Description

((s1)+1)

1800H The out of the range value is specified for the request ID.

1801H The G(P).CEXECUTE instruction is executed in the dedicated instruction disabled status.
1802H Multiple instructions are executed.

1803H » The system memory capacity for the PlcInstruction add-on is insufficient.

* The buffer memory capacity (For Motion Control FB area) is insufficient.

1804H » The specified request data is error.
« An error is detected in Motion Control FB related add-on."
1805H The specified value set to the request data length is out of range.
1806H The specified value set to the allowable amount of response data is out of range.
1807H Required add-ons for the instruction execution have not been loaded.
180FH Dedicated instruction execution errors.

*2 An system error occurs at the same time. Check the details of the error of each function in the event history.
» For above error codes, take corrective actions according to the generated error.

Upon completion with an error, the completion status indication device (d2)+1 is turned TRUE and an error code is stored in
the completion status (s1)+1. Response data (d1) will not store the data.

The Plclnstruction add-on does not output the self-diagnostic error. Check the instruction completion status for the instruction

execution error.

208

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

Program example

[Label write request]
A program example is shown below when X888 is turned ON the character string "ONLY_INSIDE" will be written to Software

stroke limit override of the axis 1 by the G(P).CEXECUTE instruction.

Classification

Label Name

Description

Software stroke limit override of the axis 1

Module label Axis0001.Cd.SwStrokeLimit_Override
Local label Define the local label as follows. The settings of Assign (Device/Label) are not required for the label that the assignment device is not
set because the unused internal relay and data device are automatically assigned.
Labesl Mame Data Twpe Class
1 uCexecutem =1 iord [Unsigned]- Bit String [16—-bit]{0..1) o R -
2 wSexecutew_s2 Word [Signed](. 497 AR -
E] uCexecutew di Word [Unsigned]- Bit String [16—bitJ{0..1) o R -
4 bCexecutew_d2 Eit{0_1)} AR -
ht==2)
w2 uGexecuten s 1[0]
) RACH B
| |
| oW KI5 wCexecutew _=2[0]
| O w2 wCexecutew_s2[1]
Aie0001 Cd BwEStroke wilezecuten_s22]
| EMOVNE Lirnit Override’”
| SO CMNLY_TMEDE wexecuten s2[37]
U1 UCexecutew_s1 wlexscutew_s2 uGexecutew 41 bCezecuten 42

GP.CEXECUTE

[Label read request]
A program example is shown below when X889 is turned ON the character string set to Software stroke limit override will be

read of the axis 1 by the G(P).CEXECUTE instruction.

Classification

Label Name

Description

Software stroke limit override of the axis 1

Module label Axis0001.Cd.SwStrokeLimit_Override
Local label Define the local label as follows. The settings of Assign (Device/Label) are not required for the label that the assignment device is not
set because the unused internal relay and data device are automatically assigned.
Label MName Uata 1vpe lass
1 uCexecuter_s | wiord [Unsiened] Bit Strineg [16-bit]{0..1) R -
2 wilexecuter_s2 wWiord [Siened]{0.49) W R -
] wiCexecuter_d1 wiord [Siened]{D. 132 AR -~
4 biCexecuter_d2 Eit(0..1) R -~
p=te)
K14 uCexecuter_s1[0]
(65) A =
I
‘ O (25 whexecuter_s2[0]
‘ O K1 wiexecuter s2[1]
Axis000T Cd Swstroke C ter =221
| sovws Lirnit Override" [omesEE
‘ — K14 wGexecuter d1
U1 uCexecuter 51 | wlexecuter 52 wCerecuter d1 bCexecuter d2

GF CEXECUTE

19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

MEMO

21 0 19 MOTION DEDICATED INSTRUCTIONS
19.2 User Function Execution Instruction

INDEX

0to9 Standard function blocks 183
Standard functions 117

16-bit data (worddata). 19

32-bit data (double word data) 20
A

Application instructions 93
B

Basicinstructions 60

Bitdata 18

Buffermemory 8
C

Character stringdata. 25
D

Destination(d) 14

Double-precision real numberdata 23
E

Execution condition. 27
|

Instruction configuration. 14
L

Label. ... 8
M

Manual page organization 10
N

Numericalvalue (n). 14
(0]

Operand 9
P

Programmable controller CPU 9
R

Real number data (floating-point data). 23
S

Sequence instructions 46

Single-precision real numberdata. 23

SOUMCE (S) « v v e 14

211

INSTRUCTION INDEX

DWORD_TO DINT .. .oveeeeeaan.. 131
DWORD TO INT. .. teieaeeeaan 130
DWORD_TO TIME .o oeeeeenean 132
DWORD_TO WORD vvveeeeennn, 129
DWSUM(U) .« vveeeeee e 98
DXNR . . oo eee e e e 83
DXOR .« v e eeeee e 81

Symbols
) 62
U)o e 68
1) 69
U)o 60
SMOV ... 102
SMOV_WS. ... 104
A
ABS. . 158
ACOS ..ot 167
ADD 169
ASIN . .o 166
ATAN .o 168
B
BOOL_ TODINT ..ot 121
BOOL_ TODWORDoovviunn... 119
BOOL TO_INT. ... iii e 120
BOOL_TO_TIMEcvvviininnnn.. 122
BOOL_.TOWORDcovvvinnnnn. 118
Cc
CML .ot 88
CMLB .\ttt 90
COS .. 164
D
D-(U) .ttt 66
o (U) T 70
3 U 71
DH(_U). oo 64
DAND . ..ottt 77
DCML vttt et e e e e e e e 89
(3] 5] =107 (11) P 75
DDIVISION(_U) « oo 71
DEC(LU) ittt 73
Dl . e 94
3] N7 U 74
DINT_TO BOOLoivieenennn.. 140
DINT_TODWORD.oovvunn... 142
DINT_TO_INT ..o 143
DINT.TO LREAL........cvvviininnn... 145
DINT.TO REAL.viiiianannnnn. 144
DINT.TOTIMEt 146
DINT.TOWORD........oovvvnenn... 141
DIV .o 175
DIVISION(_U). ..ot 69
DMEAN(U)ot 100
DMINUS(_LU) .ot 66
DMOV . . ettt et e e 87
DMULTI(U)o et 70
DNEG . .ttt ettt 85
DOR .ottt et e e 79
DPLUS(U) « oottt e 64
DSQRT ...t 101
DWORD_TO BOOLvvoeeeeeeenn.. 128

212

E-. 106
B 109
B/ 110
E+ 105
ED-. ... 108
ED*. .. 111
ED/. .. 112
ED+ ... 107
EDDIVISION i 112
EDIVISION 110
EDMINUS 108
EDMOV. 116
EDMULTL 111
EDNEG. i 114
EDPLUS 107
El ..o 94
EMINUS 106
EMOV. 115
EMULTI. ... o 109
ENEG..... 113
EPLUS 105
EXP .. 162

G(P).CEXECUTE . . . oo oeeeeeeeeeee 203
INCCUY. o oot e e 72
INT_ TO BOOL .. .'vveeiiaeieen 133
INT TO DINT oo 136
INT_ TO DWORD.ooeeeieaen.. 135
INT TO LREAL. .. voeee e 138
INT TO REAL. ... eeee e 137
INT TO TIME ..o ooeeee e 139
INT. TO WORD.ooeeeaeieenn 134

N 160
LOG oot e 161
LREAL TO DINT. ..o teeee e 151
LREAL TO INT. ..ot 150
LREAL TO REALoovieeeeaann, 152

M TIME_TO DINT . .o oot e 157

TIME_TO_DWORD . ..o, 155
MAX ..o 180 TIME_TO_INTo 156
MEAN(U). ..o 99 TIME_TO_WORD. . . .« eeeieain s 154
MIN. ... 180 TOF o e 193
MINUS(LU) ..o 62 TON © oot 191
MOD ... 177 TP 189
MOV . .ttt 86
MOVB . .ottt 91
MOVE . .\ttt 178 w
MUL ..o 7 WAND. . ..o 76
MULTICU). e 68 WOR. . .ottt 78
WORD_TO_BOOLo 123
N WORD_TO DINT.o 126
WORD_TO_DWORD 124
NEG 84 WORD_TO INT. ..ot 125
NOT .. 179 WORD TO TIME.ot 127
WSUM(U) -t 97
o T 82
e N 80
o 46
OUT_C oo 53
OUTH oot e 47
OUTH_ST © oo 47
OUTH T+ttt 47
OUT LC .+ttt 54
OUT LST. .ttt 50
OUT LTttt 50
OUT ST et 47
OUT T oot 47
P
V) I 60
PSCAN ..t eee 96
PSTOP &\ttt 95
R
REAL_TO DINT.o 148
REAL_TO_INT oo 147
REAL_TO_LREALooeinnn... 149
RS. .+ e 185
2 P 57
3 187
S
SET. e 55
SIN . o 163
SQRT ..t 159
SR. L e 184
STRINGMOVo 102
STRINGMOV_WSco.... 104
SUB .ot 173
T
TAN. oo 165
TIMER_100_FB_Mooo... 195
TIMER_10_FB_M.ot 195
TIMER_CONT FB_M ... \eien 195
TIMER_CONTHFB_M.o 195
TIMER_HIGH_FB_M.o 195
TIMER_LOW_FB M., 195
TIME_TO_BOOLo 153

213

REVISIONS

*The manual number is given on the bottom left of the back cover.

Revision date

*Manual number

Description

July 2019

IB(NA)-0300431ENG-A

First edition

January 2020

IB(NA)-0300431ENG-B

BAdded models

RD78GHV, RD78GHW

BMAdded or modified parts

TERMS, GENERIC TERMS AND ABBREVIATIONS, Section 1.2, 11.1, 11.2, 19.4, WARRANTY,
TRADEMARKS

August 2020

IB(NA)-0300431ENG-C

BAdded or modified parts

RELEVANT MANUAL, MANUAL PAGE ORGANIZATION, Part 2, 6, 7, 8, Chapter 3, 4, 11, 12, 13, 14,
15, 16,17 ,18, 19, Section 1.1, 1.4,3.2,5.1,6.1,7.1,7.2,9.1, 10.1, 11.26, 11.30, 11.31, 11.32, 11.33,
11.34,11.35,12.1,12.2,12.3, 12.4, 12,5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 13.1, 13.2, 13.3, 13.4,
13.5,13.6, 15.1, 16.2, 18.1, 18.2, 18.3, 18.4, 19.1, 19.2, INSTRUCTION INDEX

August 2021

IB(NA)-0300431ENG-D

BWAdded or modified parts
INTRODUCTION, RELEVANT MANUALS, TERMS, GENERIC TERMS AND ABBREIVIATIONS,
Section 1.2,6.2,6.3,7.2, 8.1, 18.2, 19.2, WARRANTY

January 2022

IB(NA)-0300431ENG-E

BWAdded or modified parts
RELEVANT MANUALS, TERMS, FUTURE SUPPORT PLANNED, Section 3.2, 5.1

August 2022

IB(NA)-0300431ENG-F

Partially modified

November 2023

IB(NA)-0300431ENG-G

WAdded or modified parts
INFORMATION AND SERVICES, TRADEMARKS

Japanese manual number: 1B-0300430-H

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot
be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

© 2019 MITSUBISHI ELECTRIC CORPORATION

214

WARRANTY

Warranty
1. Warranty period and coverage

We will repair any failure or defect hereinafter referred to as "failure" in our FA equipment hereinafter referred to as the "Product” arisen

during warranty period at no charge due to causes for which we are responsible through the distributor from which you purchased the

Product or our service provider. However, we will charge the actual cost of dispatching our engineer for an on-site repair work on

request by customer in Japan or overseas countries. We are not responsible for any on-site readjustment and/or trial run that may be

required after a defective unit is repaired or replaced.

[Term]

For terms of warranty, please contact your original place of purchase.

[Limitations]

(1) You are requested to conduct an initial failure diagnosis by yourself, as a general rule.

It can also be carried out by us or our service company upon your request and the actual cost will be charged. However, it will not
be charged if we are responsible for the cause of the failure.

(2) This limited warranty applies only when the condition, method, environment, etc. of use are in compliance with the terms and
conditions and instructions that are set forth in the instruction manual and user manual for the Product and the caution label affixed
to the Product.

(3) Even during the term of warranty, the repair cost will be charged on you in the following cases;

1. afailure caused by your improper storing or handling, carelessness or negligence, etc., and a failure caused by your hardware
or software problem

2. afailure caused by any alteration, etc. to the Product made on your side without our approval

3. a failure which may be regarded as avoidable, if your equipment in which the Product is incorporated is equipped with a safety
device required by applicable laws and has any function or structure considered to be indispensable according to a common
sense in the industry

4. afailure which may be regarded as avoidable if consumable parts designated in the instruction manual, etc. are duly maintained
and replaced

5. any replacement of consumable parts (battery, fan, smoothing capacitor, etc.)

6. a failure caused by external factors such as inevitable accidents, including without limitation fire and abnormal fluctuation of
voltage, and acts of God, including without limitation earthquake, lightning and natural disasters

7. afailure generated by an unforeseeable cause with a scientific technology that was not available at the time of the shipment of
the Product from our company

8. any other failures which we are not responsible for or which you acknowledge we are not responsible for

2. Term of warranty after the stop of production

(1) We may accept the repair at charge for another seven (7) years after the production of the product is discontinued. The
announcement of the stop of production for each model can be seen in our Sales and Service, etc.

(2) Please note that the Product (including its spare parts) cannot be ordered after its stop of production.

3. Service in overseas countries

Our regional FA Center in overseas countries will accept the repair work of the Product. However, the terms and conditions of the repair
work may differ depending on each FA Center. Please ask your local FA center for details.

4. Exclusion of loss in opportunity and secondary loss from warranty liabilit
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and compensation for
damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Change of Product specifications
Specifications listed in our catalogs, manuals or technical documents may be changed without notice.
6. Application and use of the Product
(1) For the use of our Motion module, its applications should be those that may not result in a serious damage even if any failure or
malfunction occurs in the Motion module, and a backup or fail-safe function should operate on an external system to the Motion
module when any failure or malfunction occurs.
(2) Our Motion module is designed and manufactured as a general purpose product for use at general industries.
Therefore, applications substantially influential on the public interest for such as atomic power plants and other power plants of
electric power companies, and also which require a special quality assurance system, including applications for railway companies
and government or public offices are not recommended, and we assume no responsibility for any failure caused by these
applications when used
In addition, applications which may be substantially influential to human lives or properties for such as airlines, medical treatments,
railway service, incineration and fuel systems, man-operated material handling equipment, entertainment machines, safety
machines, etc. are not recommended, and we assume no responsibility for any failure caused by these applications when used.
We will review the acceptability of the abovementioned applications, if you agree not to require a specific quality for a specific
application. Please contact us for consultation.
(3) Mitsubishi shall have no responsibility or liability for any problems involving programmable controller trouble and system trouble
caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

215

INFORMATION AND SERVICES

For further information and services, please contact your local Mitsubishi Electric sales office or representative.

Visit our website to find our locations worldwide.

MITSUBISHI ELECTRIC Factory Automation Global Website
Locations Worldwide
www.MitsubishiElectric.com/fa/about-us/overseas/

TRADEMARKS

Microsoft, Microsoft Access, Excel, SQL Server, Visual Basic, Visual C++, Visual Studio, Windows, Windows NT, Windows
Server, Windows Vista, and Windows XP are trademarks of the Microsoft group of companies.

The company names, system names and product names mentioned in this manual are either registered trademarks or
trademarks of their respective companies.

In some cases, trademark symbols such as '™ or *®" are not specified in this manual.

216 IB(NA)-0300431ENG-G

IB(NA)-0300431ENG-G(2311)MEE
MODEL: RD78-P-MF-E
MODEL CODE: 1XB041

MITSUBISHI ELECTRIC CORPORATION

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA 461-8670, JAPAN

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

Specifications subject to change without notice.

	SAFETY PRECAUTIONS
	INTRODUCTION
	CONTENTS
	RELEVANT MANUALS
	TERMS
	GENERIC TERMS AND ABBREVIATIONS
	MANUAL PAGE ORGANIZATION
	PART 1 OVERVIEW
	1 OVERVIEW
	1.1 Instruction Configuration
	1.2 Data Specification Method
	Bit data
	16-bit data (word data)
	32-bit data (double word data)
	Real number data (floating-point data)
	Character string data

	1.3 Execution Condition
	1.4 Precautions on Programming
	Errors common to instructions
	Timer, long timer, and long retentive timer type labels
	Operations arising when the OUT and SET/RST instructions of the same device are used

	PART 2 LISTS OF INSTRUCTIONS AND FUN/FB
	2 MOTION SYSTEM INSTRUCTIONS
	2.1 Sequence Instructions
	2.2 Basic Instructions
	2.3 Application Instructions
	Program control
	Data processing
	String processing
	Real value processing

	3 STANDARD FUNCTIONS/FUNCTION BLOCKS
	3.1 Standard Functions
	3.2 Standard Function Blocks

	4 MOTION DEDICATED INSTRUCTIONS

	PART 3 SEQUENCE INSTRUCTIONS
	5 SEQUENCE INSTRUCTIONS
	5.1 Output Instructions
	Out (excluding the timer and counter)
	Timer
	Long timer
	Counter
	Long counter
	Setting devices
	Resetting devices

	PART 4 BASIC INSTRUCTIONS
	6 BASIC INSTRUCTIONS
	6.1 Arithmetic Operation Instructions
	Adding 16-bit binary data
	Subtracting 16-bit binary data
	Adding 32-bit binary data
	Subtracting 32-bit binary data
	Multiplying 16-bit binary data
	Dividing 16-bit binary data
	Multiplying 32-bit binary data
	Dividing 32-bit binary data
	Incrementing 16-bit binary data
	Decrementing 16-bit binary data
	Incrementing 32-bit binary data
	Decrementing 32-bit binary data

	6.2 Logical Operation Instructions
	Performing an AND operation on 16-bit data
	Performing an AND operation on 32-bit data
	Performing an OR operation on 16-bit data
	Performing an OR operation on 32-bit data
	Performing an XOR operation on 16-bit data
	Performing an XOR operation on 32-bit data
	Performing an XNOR operation on 16-bit data
	Performing an XNOR operation on 32-bit data

	6.3 Data Conversion Instructions
	Two's complement of 16-bit binary data (sign inversion)
	Two's complement of 32-bit binary data (sign inversion)

	6.4 Data Transfer Instructions
	Transferring 16-bit binary data
	Transferring 32-bit binary data
	Inverting and transferring 16-bit binary data
	Inverting and transferring 32-bit binary data
	Inverting and transferring 1-bit data
	Transferring 1-bit data

	PART 5 APPLICATION INSTRUCTIONS
	7 PROGRAM CONTROL
	7.1 Program Execution Control Instructions
	Disabling/enabling interrupt programs

	7.2 Program Control Instructions
	Changing the program execution type to standby type
	Changing the program execution type to scan execution type

	8 DATA PROCESSING
	8.1 Data Processing Instructions
	Adding 16-bit binary data
	Adding 32-bit binary data
	Calculating the mean value of 16-bit binary data
	Calculating the mean value of 32-bit binary data
	Calculating the square root of 32-bit binary data

	9 STRING PROCESSING
	9.1 String Processing Instructions
	Transferring string data
	Transferring Unicode string data

	10 REAL VALUE PEOCESSING
	10.1 Floating-point instruction
	Adding single-precision real numbers
	Subtracting single-precision real numbers
	Adding double-precision real numbers
	Subtracting double-precision real numbers
	Multiplying single-precision real numbers
	Dividing single-precision real numbers
	Multiplying double-precision real numbers
	Dividing double-precision real numbers
	Inverting the sign of single-precision real number
	Inverting the sign of double-precision real number
	Transferring single-precision real number
	Transferring double-precision real number

	PART 6 STANDARD FUNCTIONS
	11 TYPE CONVERSION FUNCTIONS
	11.1 Converting BOOL to WORD
	11.2 Converting BOOL to DWORD
	11.3 Converting BOOL to INT
	11.4 Converting BOOL to DINT
	11.5 Converting BOOL to TIME
	11.6 Converting WORD to BOOL
	11.7 Converting WORD to DWORD
	11.8 Converting WORD to INT
	11.9 Converting WORD to DINT
	11.10 Converting WORD to TIME
	11.11 Converting DWORD to BOOL
	11.12 Converting DWORD to WORD
	11.13 Converting DWORD to INT
	11.14 Converting DWORD to DINT
	11.15 Converting DWORD to TIME
	11.16 Converting INT to BOOL
	11.17 Converting INT to WORD
	11.18 Converting INT to DWORD
	11.19 Converting INT to DINT
	11.20 Converting INT to REAL
	11.21 Converting INT to LREAL
	11.22 Converting INT to TIME
	11.23 Converting DINT to BOOL
	11.24 Converting DINT to WORD
	11.25 Converting DINT to DWORD
	11.26 Converting DINT to INT
	11.27 Converting DINT to REAL
	11.28 Converting DINT to LREAL
	11.29 Converting DINT to TIME
	11.30 Converting REAL to INT
	11.31 Converting REAL to DINT
	11.32 Converting REAL to LREAL
	11.33 Converting LREAL to INT
	11.34 Converting LREAL to DINT
	11.35 Converting LREAL to REAL
	11.36 Converting TIME to BOOL
	11.37 Converting TIME to WORD
	11.38 Converting TIME to DWORD
	11.39 Converting TIME to INT
	11.40 Converting TIME to DINT

	12 SINGLE VARIABLE FUNCTIONS
	12.1 Calculating the Absolute Value
	12.2 Calculating the Square Root
	12.3 Calculating the Natural Logarithm
	12.4 Calculating the Common Logarithm
	12.5 Calculating the Exponent
	12.6 Calculating the Sine
	12.7 Calculating the Cosine
	12.8 Calculating the Tangent
	12.9 Calculating the Arc Sine
	12.10 Calculating the Arc Cosine
	12.11 Calculating the Arc Tangent

	13 ARITHMETIC OPERATION FUNCTIONS
	13.1 Addition
	13.2 Multiplication
	13.3 Subtraction
	13.4 Division
	13.5 Remainder
	13.6 Assignment (Move Operation)

	14 BOOLEAN FUNCTIONS
	14.1 NOT Operation

	15 SELECTION FUNCTIONS
	15.1 Selecting the Maximum/Minimum Value

	PART 7 STANDARD FUNCTION BLOCKS
	16 BISTABLE FUNCTION BLOCKS
	16.1 Bistable Function Block (Set-Dominant)
	16.2 Bistable Function Block (Reset-Dominant)

	17 EDGE DETECTION FUNCTION BLOCKS
	17.1 Detecting a Rising Edge
	17.2 Detecting a Falling Edge

	18 TIMER FUNCTION BLOCKS
	18.1 Pulse Timer
	18.2 On Delay Timer
	18.3 Off Delay Timer
	18.4 Timer Function Block

	PART 8 MOTION DEDICATED INSTRUCTIONS
	19 MOTION DEDICATED INSTRUCTIONS
	19.1 Overview
	19.2 User Function Execution Instruction

	INDEX
	INSTRUCTION INDEX
	REVISIONS
	WARRANTY
	INFORMATION AND SERVICES
	TRADEMARKS

