
High Speed Data Communication Module
Programming Manual

1

SAFETY PRECAUTIONS
(Read these precautions before using this product.)
Before using this product, please read this manual and the relevant manuals carefully and pay full attention to safety to handle
the product correctly. If products are used in a different way from that specified by manufacturers, the protection function of
the products may not work properly.
Note that these precautions apply only to this product. For the safety precautions of the programmable controller system,
please read the User's Manual for the CPU module used.
In this manual, the safety precautions are classified into two levels: " WARNING" and " CAUTION".

Under some circumstances, failure to observe the precautions given under " CAUTION" may lead to serious
consequences.
Always follow the instructions of both levels because they are important to personal safety.
Make sure that the end users read this manual and then keep the manual in a safe place for future reference.

[Design precautions]

WARNING
 Configure safety circuits external to the programmable controller to ensure that the entire system

operates safely even when a fault occurs in the external power supply or the programmable controller.
Failure to do so may result in an accident due to an incorrect output or malfunction.

 For the operating status of each station after a communication failure, refer to relevant manuals for the
network. Erroneous outputs and malfunctions may lead to accidents. Not doing so can cause an
accident due to false output or malfunction.

 When changing data of the running programmable controller from a peripheral connected to the CPU
module or from a personal computer connected to an intelligent function module or special function
module, configure an interlock circuit in the sequence program to ensure that the entire system will
always operate safely.
For program modification and operating status change, read relevant manuals carefully and ensure
the safety before operation.
Especially in the above mentioned control operations that are performed from an external device to a
remote programmable controller, any problems on the programmable controller side may not be dealt
with promptly due to abnormal data communication.
To prevent this, configure an interlock circuit in the sequence program, and determine corrective
actions to be taken between the external device and CPU module in case of a communication failure.

 Do not write any data in the "system area" of the buffer memory in the intelligent function module.
Also, do not use any "use prohibited" signals as an output signal from the programmable controller
CPU to the intelligent function module.
Doing so may cause malfunction of the programmable controller system.

WARNING Indicates that incorrect handling may cause hazardous conditions, resulting in
death or severe injury.

CAUTION Indicates that incorrect handling may cause hazardous conditions, resulting in
minor or moderate injury or property damage.

2

[Design precautions]

[Security Precautions]

[Operating precautions]

CAUTION
 To change the operating status of the programmable controller CPU from a connected device (remote

run/stop, etc.), set the initial timing of the network parameter to "Always standby for OPEN (can
communicate during STOP)".
If the initial timing is set to "Do not wait for OPEN (cannot communicate during STOP)", then when the
connected device executes a remote STOP, the communication line will be closed.
Subsequently, it will not be possible to re-open the connection from the programmable controller CPU,
and the connected equipment will not be able to execute a remote RUN either.

 During registering each setting, do not power OFF the mounted module or reset the CPU module.
Otherwise, data in the CompactFlash card will be undefined. Therefore, resetting and re-registering
data are required.
This may also cause a module failure or malfunctions.

WARNING
 To maintain the security (confidentiality, integrity, and availability) of the programmable controller and

the system against unauthorized access, denial-of-service (DoS) attacks, computer viruses, and other
cyberattacks from external devices via the network, take appropriate measures such as firewalls,
virtual private networks (VPNs), and antivirus solutions.

WARNING
 Ensure safety before controlling a running programmable controller (e.g. data modification).
 Do not write any data in the "system area" of the buffer memory in the intelligent function module.

Also, do not use any "use prohibited" signals as an output signal from the CPU module to the
intelligent function module.
Doing so may cause malfunction of the programmable controller system.

3

CONDITIONS OF USE FOR THE PRODUCT

INTRODUCTION
Thank you for purchasing the Mitsubishi MELSEC-Q series programmable controllers.
This manual describes the functions and programming to use the following module.
Before using this product, please read this manual and the relevant manuals carefully and develop familiarity with the
functions and performance of the MELSEC-Q series programmable controller to handle the product correctly.

(1) MELSEC programmable controller ("the PRODUCT") shall be used in conditions;
i) where any problem, fault or failure occurring in the PRODUCT, if any, shall not lead to any major or serious accident;
and
ii) where the backup and fail-safe function are systematically or automatically provided outside of the PRODUCT for the
case of any problem, fault or failure occurring in the PRODUCT.

(2) The PRODUCT has been designed and manufactured for the purpose of being used in general industries.
MITSUBISHI ELECTRIC SHALL HAVE NO RESPONSIBILITY OR LIABILITY (INCLUDING, BUT NOT LIMITED TO
ANY AND ALL RESPONSIBILITY OR LIABILITY BASED ON CONTRACT, WARRANTY, TORT, PRODUCT
LIABILITY) FOR ANY INJURY OR DEATH TO PERSONS OR LOSS OR DAMAGE TO PROPERTY CAUSED BY the
PRODUCT THAT ARE OPERATED OR USED IN APPLICATION NOT INTENDED OR EXCLUDED BY
INSTRUCTIONS, PRECAUTIONS, OR WARNING CONTAINED IN MITSUBISHI ELECTRIC USER'S, INSTRUCTION
AND/OR SAFETY MANUALS, TECHNICAL BULLETINS AND GUIDELINES FOR the PRODUCT.
("Prohibited Application")
Prohibited Applications include, but not limited to, the use of the PRODUCT in;
• Nuclear Power Plants and any other power plants operated by Power companies, and/or any other cases in which the

public could be affected if any problem or fault occurs in the PRODUCT.
• Railway companies or Public service purposes, and/or any other cases in which establishment of a special quality

assurance system is required by the Purchaser or End User.
• Aircraft or Aerospace, Medical applications, Train equipment, transport equipment such as Elevator and Escalator,

Incineration and Fuel devices, Vehicles, Manned transportation, Equipment for Recreation and Amusement, and
Safety devices, handling of Nuclear or Hazardous Materials or Chemicals, Mining and Drilling, and/or other
applications where there is a significant risk of injury to the public or property.

Notwithstanding the above restrictions, Mitsubishi Electric may in its sole discretion, authorize use of the PRODUCT in
one or more of the Prohibited Applications, provided that the usage of the PRODUCT is limited only for the specific
applications agreed to by Mitsubishi Electric and provided further that no special quality assurance or fail-safe,
redundant or other safety features which exceed the general specifications of the PRODUCTs are required. For details,
please contact the Mitsubishi Electric representative in your region.

(3) Mitsubishi Electric shall have no responsibility or liability for any problems involving programmable controller trouble and
system trouble caused by DoS attacks, unauthorized access, computer viruses, and other cyberattacks.

4

CONTENTS
SAFETY PRECAUTIONS .1
CONDITIONS OF USE FOR THE PRODUCT .3
INTRODUCTION. .3
RELATED MANUALS .7
HOW TO READ THIS MANUAL .8
TERMS .9

PART 1 High Speed Data Communication Library

CHAPTER 1 OVERVIEW 12

CHAPTER 2 PROCEDURE FROM PROGRAM CREATION TO EXECUTION 14

CHAPTER 3 FUNCTION LIST 16

CHAPTER 4 PROGRAM CREATION OVERVIEW 18
4.1 Processing Flow for Streaming Transfer . 18
4.2 Processing Flow for Data Reading . 19
4.3 Processing Flow for Data Writing . 19

PART 2 CREATING C# PROGRAMS

CHAPTER 5 CREATING C# PROGRAMS 22
5.1 Preparing Development Environment . 22

Importing High Speed Data Communication Library . 22
Using High Speed Data Communication Library . 23

5.2 Designing Programs . 24
Streaming transfer . 24
Receiving streaming transfer data. 25
Receiving notifications of module operation status changes. 26
Reading data using label specification . 27
Writing data using label specification . 28
Reading data using device specification . 29
Writing data using device specification . 30
Programming precautions . 31

5.3 Class and Method . 32
Class list . 33
Communication class . 34
LabelGroupList class . 56
LabelGroup class. 57
DataLabel class . 59
RegisteredLabelName class . 61
ReceiveData class. 63
RecordData class . 64
DataValue class. 68
ConnectionDeviceList class. 74

5

C
O

N
TE

N
TS

ConnectionDevice class . 75
ConnectionDeviceDetail class . 78
DataCommunicationException class . 81
DataCommunicationError enumerator. 82

5.4 Build C# Program . 85

CHAPTER 6 EXECUTING C# USER PROGRAM 87
6.1 Copying Execution File for User Program to Server Personal Computer . 87
6.2 Executing Processing from Server Personal Computer . 87

PART 3 CREATING Java PROGRAMS

CHAPTER 7 CREATING Java PROGRAMS 90
7.1 Preparing Development Environment . 90

Copying High Speed Data Communication Library . 90
Using High Speed Data Communication Library . 90

7.2 Designing Programs . 91
Streaming transfer . 91
Receiving streaming transfer data. 92
Receiving notifications of module operation status changes. 93
Reading data using label specification . 94
Writing data using label specification . 95
Reading data using device specification . 96
Writing data using device specification . 97
Programming precautions . 98

7.3 Class and Method . 99
Class list . 99
Communication class . 101
Notification class . 123
LabelGroupList class . 125
LabelGroup class. 126
DataLabel class . 128
RegisteredLabelName class . 130
ReceiveData class. 132
RecordData class . 133
DataValue class. 137
ConnectionDeviceList class. 147
ConnectionDevice class . 148
ConnectionDeviceDetail class . 151
DataCommunicationException class . 154
DataCommunicationError enumerator. 155

7.4 Compiling Java User Program . 158

CHAPTER 8 EXECUTING Java USER PROGRAM 159
8.1 Copying Execution File for User Program to Server Personal Computer . 159
8.2 Executing Processing from Server Personal Computer . 159

6

PART 4 TROUBLESHOOTING

CHAPTER 9 TROUBLESHOOTING 162
9.1 Troubleshooting related to user programs. 162
9.2 Troubleshooting related to network connection . 163
9.3 Troubleshooting related to label functions. 165
9.4 Troubleshooting related to streaming transfer. 165
9.5 Troubleshooting related to data read and data write functions . 167

APPENDIX 168
Appendix 1 Sample Program . 168

How to use the C# sample program . 168
How to use the Java sample program. 171

INDEX 176

REVISIONS. .178
WARRANTY .179
INFORMATION AND SERVICES .180
TRADEMARKS .180

7

RELATED MANUALS
The following manuals are relevant to this product.

CPU module user's manual to be used

Operating manual

Manual name <Manual number> Description
High Speed Data Communication Module User's Manual
<SH-081162ENG>

Explains the system configuration, functions, and operating methods of
High Speed Data Communication Module.

QCPU User's Manual (Hardware Design, Maintenance and Inspection)
<SH-080483ENG>

Specifications of the hardware (CPU modules, power supply modules,
base units, batteries, and memory cards), system maintenance and
inspection, and troubleshooting.

Qn(H)/QnPH/QnPRHCPU User's Manual (Function Explanation, Program
Fundamentals)
<SH-080808ENG>

Explains the programming methods, devices, and functions of Qn(H)/
QnPH/QnPRHCPU module.

QnUCPU User's Manual (Function Explanation, Program Fundamentals)
<SH-080807ENG>

Explains the programming methods, devices, and functions of QnUCPU
module.

MELSEC-L CPU Module User's Manual (Hardware Design, Maintenance and
Inspection)
<SH-080890ENG>

Specifications of the CPU modules, power supply modules, display unit,
branch module, extension module, SD memory cards, and batteries,
information on how to establish a system, maintenance and inspection,
and troubleshooting.

MELSEC-L CPU Module User's Manual (Function Explanation, Program
Fundamentals)
<SH-080889ENG>

Explains the programming methods, devices, and functions of LCPU
module.

C Controller Module User's Manual (Hardware Design, Function Explanation)
<SH-080766ENG>

Explains the programming methods, and functions of C controller module.

MELSEC-Q C Controller Module User's Manual
<SH-081130ENG>

Explains the system configuration, specifications, functions, handling
methods, wiring, troubleshooting, and programming and function of the C
Controller module.

Manual name <Manual number> Description
GX Works2 Version 1 Operating Manual (Common)
<SH-080779ENG>

Explains the system configuration of GX Works2 and the functions
common to Simple project and Structured project such as parameter
setting, operation method for the online function.

Setting/Monitoring Tools for the C Controller Module Version 4 Operating Manual
<SH-081131ENG>

Explains the procedures to configure and operate a system for Setting/
monitoring tools for the C Controller module are described.

8

HOW TO READ THIS MANUAL
The following explains the page composition and symbols in this manual. The contents of the example page used here are
different from the actual contents for the intention of explaining how to use this manual.

 indicates
 the useful tip.

Indicates the section
of currently open page.

 indicates
the particular attention.

“” indicates screen name
or screen item.

 indicates the
reference manual.

[]indicates the items
which are displayed
on the window.

 indicates an
operation procedure.

 indicates an example
such as setting or
operation.

 indicates the
reference page.

9

TERMS
This manual uses the terms listed in the following table unless otherwise noted

Term Description
Account Designates the right to use the High Speed Data Communication Module or the ID necessary when using the

module

CompactFlash card A storage card regulated by the "CF+ and CompactFlash Specification" issued by the CompactFlash Association
The memory card required for operating the High Speed Data Communication Module.

Configuration Tool An abbreviation for High Speed Data Communication Module Configuration Tool
This tool configures and maintains High Speed Data Communication Module.
Configuration Tool is included in High Speed Data Communication Module Configuration Tool.

Connection via a hub A method of connecting the High Speed Data Communication Module and a personal computer to a local area
network
The High Speed Data Communication Module's IP address must be specified when connecting.
Multiple High Speed Data Communication Modules can be accessed from a personal computer over a network.

CPU module A generic term for MELSEC-Q series and MELSEC-L series CPU module.

Daylight saving time (summer time) A system where clocks are set ahead for a specified period during summer

Development personal computer Indicates that a personal computer for creating user applications using High Speed Data Communication Library

Direct connection A connection method using an Ethernet cable to connect the High Speed Data Communication Module and a
personal computer on a 1:1 basis
They can be easily connected without knowing the IP address.

High Speed Data Communication Library An abbreviation for Visual C# library and Java library
The library to communicate server personal computer to High Speed Data Communication Module
High Speed Data Communication Library is included in High Speed Data Communication Module Tool.

High Speed Data Communication Module An abbreviation for QJ71DC96 MELSEC-Q Series-compatible High Speed Data Communication Module

High Speed Data Communication Module
Tool

A generic term for High Speed Data Communication Module Configuration Tool (SW1DNN-DCUTL) and High
Speed Data Communication Library

JDK An abbreviation for Java Platform, Standard Edition Development Kit

Local time The local time that people use from day to day. It is affected by time zone and whether daylight saving (summer
time) is in effect

Server personal computer Indicates that the transfer destination personal computer from High Speed Data Communication Module

Streaming transfer A method of transferring data by sending a continuous stream of data over the network from the server to the
transfer destination, which processes this stream continuously

Time zone The standard time zones for each region of the world
Each nation uses the time difference (within  12 hours) from the time at the Greenwich Observatory in England
(GMT) as the standard time. Regions using the same time difference are called a time zone.
The standard time for Japan is 9 hours ahead of GMT.
Depending on the country, they may also use daylight saving time in summer.

UTC (coordinated universal time) This is a universal time that does not change regardless of time zone or whether daylight saving (summer time)
is in effect. It is used to compare data times across time zones.

Windows Vista or later A generic term for Windows 10, Windows 8.1, Windows 8, Windows 7, and Windows Vista.

10

MEMO

11

PA
R

T
1

PART 1 High Speed Data
Communication Library

This part explains the functions of High Speed Data Communication Library and overview of the programs.

1 OVERVIEW

2 PROCEDURE FROM PROGRAM CREATION TO EXECUTION

3 FUNCTION LIST

4 PROGRAM CREATION OVERVIEW

12 1 OVERVIEW

1 OVERVIEW
High Speed Data Communication Library prepares communication methods between the server personal computer and High
Speed Data Communication Module.
Use High Speed Data Communication Library to create user programs allowing High Speed Data Communication Module to
communicate.
This allows communication with High Speed Data Communication Module without having to consider communication
protocols.

Use High Speed Data Communication Library when creating the following programs.
 • Streaming transfer programs ( Page 18 Processing Flow for Streaming Transfer)
Programs to receive the streaming transfer data transferred from High Speed Data Communication Module via Ethernet.
 • Data reading programs ( Page 19 Processing Flow for Data Reading)
Programs to read data from the target CPU module on demand.
 • Data writing programs ( Page 19 Processing Flow for Data Writing)
Programs to write data to the target CPU module on demand.

Ethernet

High Speed Data Communication Module

User program

High Speed Data Communication
Library

Allows communication with the High Speed
Data Communication Module without having
to consider communication protocols.

1 OVERVIEW
 13

1
MEMO

14 2 PROCEDURE FROM PROGRAM CREATION TO EXECUTION

2 PROCEDURE FROM PROGRAM CREATION TO
EXECUTION

The following shows the steps from creating a user program using High Speed Data Communication Library to execute the
program.

Install High Speed Data Communication Library into
the development personal computer

For C#: Build user program
For Java: Compile user program

Start

Create user program

Execute user program

Complete

2 PROCEDURE FROM PROGRAM CREATION TO EXECUTION
 15

2

MEMO

16 3 FUNCTION LIST

3 FUNCTION LIST
The major functions of High Speed Data Communication Library are shown below.
: Required, : Execute if needed, : Unnecessary

*1 The supported program by each function is written as follow.
Transfer: Streaming transfer program
Reading: Data reading program
Writing: Data writing programs

Item Description Supported program*1 Reference

Transf
er

Readi
ng

Writin
g

Connection function A function to connect the server personal computer to High
Speed Data Communication Module.

   Page 34
Communication
class
Page 101
Communication
class

Label list acquisition function A function to acquire a list of labels set on High Speed Data
Communication Module.

   Page 41
GetLabelList
Page 42
GetLabelListWith
Comment
Page 107
getLabelList
Page 108
getLabelListWithC
omment

Streaming transfer
setting/receiving
function

Transfer label
registration

A function to register the target labels for streaming transfer
to High Speed Data Communication Module.

   Page 18
Processing Flow
for Streaming
Transfer

Streaming
transfer start

A function to request High Speed Data Communication
Module to start streaming transfer to a server personal
computer.

  

Streaming
transfer stop

A function to request High Speed Data Communication
Module to stop streaming transfer to a server personal
computer.

  

Streaming
transfer
notification

A function to notify a user of a reception of data sent by
streaming transfer from High Speed Data Communication
Module.

  

Re-transfer start
function

A function to execute the communication processing or
streaming transfer start processing with fixed scan interval
when connecting with buffering data transfer.

   

State change notification function A function to notify a user of state changes of connected
High Speed Data Communication Module.

   Page 26
Receiving
notifications of
module operation
status changes

On-demand function Data read A function to read specified data from a CPU module to a
server personal computer.

   Page 19
Processing Flow
for Data Reading

Data write A function to write specified data from a server personal
computer to a CPU module.

   Page 19
Processing Flow
for Data Writing

3 FUNCTION LIST
 17

3

MEMO

18 4 PROGRAM CREATION OVERVIEW
4.1 Processing Flow for Streaming Transfer

4 PROGRAM CREATION OVERVIEW

4.1 Processing Flow for Streaming Transfer
A streaming transfer program executes processes in the order listed below.

*1 A delegate and listener recognize an event occurrence, and determine how to handle the event.
Register the processing for event occurrence to execute registered processing when the event occurs.

Server personal computer High Speed Data
Communication Module

Start communication

Connection
IP address, User name, Password Access authentication

performed with user
name and password.

Accessible label list
Acquire label list

Return a list of labels
along with the data
type the authorized
user can access.

Select transfer label

Streaming transfer target label listRegister transfer
label

Register the label for
streaming transfers.

Start streaming
transfer

Sampling cycle, transfer cycle

End of communication

Disconnection

Stop streaming
transfer

Transfer data

Transfer data

* Repeat receive processing
Stop sampling and
transferring data.

Transfer data receive
processing operates
when data is transferred
from the module.

Sample and transfer
labels specified in the
transfer label registration
with the specified cycle.

Register the streaming process
to receive transferred data.

Register the
delegate (for C#),
the listener (for
Java *1)

 Transfer data receive
 processing
(mount data processing)

 Transfer data receive
 processing
(mount data processing)

Registered transfer
data processing
operates under
another thread.

* For Java, consider delegate as listener.

Register processing
for event occurrence.

Register a delegate
for each process. Registered

listener

Process A

Process B

Process A

Process B

Process A

Process B

Execute registered process
when event occurs

Event A occurred!!

Event B occurred!!

Execute
process A

Execute
process B

Registered
delegate

Registered
delegate

4 PROGRAM CREATION OVERVIEW
4.2 Processing Flow for Data Reading 19

4

4.2 Processing Flow for Data Reading
A data reading program executes processes in the order listed below.

4.3 Processing Flow for Data Writing
A data writing program executes processes in the order listed below.

Server personal computer

Start communication

High Speed Data
Communication Module

Accessible label list

IP address, User name, Password

Target read label list
Read data

Connection

Acquire label list

Select read label

Execute read

Disconnection

End of communication

Access authentication performed
with user name and password.

Return a list of labels along with
the data type the authorized user
can access.

Read data for specified label or
device data, and return to server
personal computer.

Even if a label list
is not acquired,
the data can be
read by specifying
the device name
for the CPU
module.

Even if a label list
is not acquired,
the data can be
written by
specifying the
device name for
the CPU module.

Server personal compute

Start communication

Connection

Acquire label list

Select written labels,
and set write data

Execute write

Disconnection

End of communication

High Speed Data
Communication Module

IP address, User name, Password

Accessible label list

Write target label list,
and write data list

Access authentication performed
with user name and password.

Return a list of labels along with
the data type the authorized user
can access.

Write data to device for the
specified label.

20 4 PROGRAM CREATION OVERVIEW
4.3 Processing Flow for Data Writing

MEMO

21

PA
R

T
3

PART 2 CREATING C#
PROGRAMS

This part explains the creating method of C# program and class method.

5 CREATING C# PROGRAMS

6 EXECUTING C# USER PROGRAM

22 5 CREATING C# PROGRAMS
5.1 Preparing Development Environment

5 CREATING C# PROGRAMS

5.1 Preparing Development Environment
Importing High Speed Data Communication Library
Copy High Speed Data Communication Library under the "Library" folder in the compressed file of this product to a folder (the
working folder when creating the user program) on a personal computer.
The following diagram shows the structure of the "Library" folder.

<Library> <C#> HSDataComLib.dll

<Java> hsdatacomlib.jar

<Samples> Sample.dcp

<C#>

<Java>

(C# class library)

(Java class library)

Sample program storage folder for Visual C# for the
streaming transfer function and the read/write function
with label or device specification

Sample program storage folder for Java for the
streaming transfer function and the read/write function
with label or device specification

<> is the folder

Project file for sample programs

5 CREATING C# PROGRAMS
5.1 Preparing Development Environment 23

5

Using High Speed Data Communication Library
To use the classes and methods provided by High Speed Data Communication Library, High Speed Data Communication
Library needs to be referred on the source code of the user program.

Using C# class library
The following explains the procedure for using High Speed Data Communication Library.
1) Add a reference for High Speed Data Communication Library to the project of user program.
2) Use the using Directive to refer High Speed Data Communication Library.

Adding a reference for High Speed Data Communication Library
Visual Studio 2010 Express is used in the following example.

using Directive
Refer the namespace "MitsubishiElectric.Melsoft.HSDataCommunication" at the top of the user program.

1. Start Visual Studio 2010 Express, and create a new
project.

2. Select [Project]  [Add Reference].

3. Select "HSDataComLib.dll" on the [Browse] tab, and
click the [OK] button.

Specify the folder to which High Speed Data Communication
Library is copied for the storage location of
"HSDataComLib.dll".

//Refer to the High Speed Data Communication Library
using MitsubishiElectric.Melsoft.HSDataCommunication;

24 5 CREATING C# PROGRAMS
5.2 Designing Programs

5.2 Designing Programs
Streaming transfer
The following flow chart shows the processes to execute the streaming transfer after connecting to a High Speed Data
Communication Module and registering the target label list of the streaming transfer. In order to receive the data to be
transferred, register the transfer data receive processing for Communication class event.

No

Yes

Start

1)Register the created streaming transfer data
receive processing.

(Resister to Communication.ReceiveTransferData event)

Connect to a High Speed Data Communication Module.
(Communication.Connect method)

Register the label list access to data object
“RegisteredLabelName”.

Wait processing
(Operates processing of transfer data reception for

another thread/change in status reception)

Were an error or end
conditions fulfilled?

Stop streaming transfer.
(Communication.StopStreamingTransfer method)

Disconnect the High Speed Data Communication Module.
(Communication.Disconnect method)

Complete

* When enabling the buffering transfer data function,
specify the buffering mode and connect to a module.
(Communication.BufMode proprety)

* The processing registered in 1) is executed every time
when the sampled data is transferred to a High Speed
Data Communication Module.
The processing registered in 2) is executed when the
status change event occurred.

*Register Receive TransferDataHandler type user processing
to Receive TransferData event of Communication class.

2)Register the created communication event
notification processing.

(Register to Communication.ReceiveCommunicationEvent event)

*Register Receive CommunicationEventHandler type
user processing to Receive CommunicationEvent of
Communication class.

Start streaming transfer.
(Communication.StartStreamingTransfer/

Communication.StartStreamingTransferByInterval method)

Register the label list as a target for streaming transfer.
(Communication.SetStreamingLabel/

Communication.SetStreamingLabelGroup method)

Acquire the label list set to a High Speed Data
Communication Module.

(Communication.GetLabelList/
Communication.GetLabelListWithComment method)

5 CREATING C# PROGRAMS
5.2 Designing Programs 25

5

Receiving streaming transfer data
The following flow chart shows the processes of the user program when received data transfer result from a High Speed Data
Communication Module after starting streaming transfer.

Complete

Repeat processing for the acquired
number of records

Execute Receive
TransferData listener

Event notification of streaming transfer

Acquire the data included in a record.
(RecordData.DataList method)

Acquire the record of the received transfer data.
(ReceiveData.ReceiveDataList property)

Acquire a data type.
(DataValue.DataType property)

Execute the method depending on the data type.
(such as DataValue.SignedWordData property)

Repeat processing for the acquired
number of data

Repeat processing for the number of
data completion

Repeat processing for the number of
record completion

Execute the processing which operates
the acquired data.

26 5 CREATING C# PROGRAMS
5.2 Designing Programs

Receiving notifications of module operation status changes
The following flow chart shows the processes when received the notification of module status changes from a High Speed
Data Communication Module.
End the wait process of the streaming transfer as necessary.

Complete

Execute ReceiveCommuni-
cation Event event

Acquire the argument status and
the value of errorCode.

Event notification of status change

Execute processing depending on the
value of status or errorCode.

(such as the end processing of the wait processing)

5 CREATING C# PROGRAMS
5.2 Designing Programs 27

5

Reading data using label specification
The following flow chart shows the operations to read data by specifying the target label list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Connect to a High Speed Data Communication Module.
(Communication.Connect method)

Acquire the label list set to a High Speed Data
Communication Module.(Communication.GetLabelList/

Communication.GetLabelListWithComment method)

Complete

Create the instance of data object RecordData
to pass the argument.

Execute an error occurrence
processing.

Acquire the read data from
data object RecordData.

Disconnect the High Speed Data Communication Module.
(Communication.Disconnect method)

Store the label name to be accessed to
the data object RegisteredLabelName.

Was it successful?

Execute reading.
(Communication.ReadDataByLabel method)

28 5 CREATING C# PROGRAMS
5.2 Designing Programs

Writing data using label specification
The following flow chart shows the operations to write data by specifying the target label list for the data write function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Complete

Disconnect the High Speed Data Communication Module.
(Communication.Disconnect method)

Connect to a High Speed Data Communication Module.
(Communication.Connect method)

Acquire the label list set to a High Speed Data
Communication Module.(Communication.GetLabelList/

Communication.GetLabelListWithComment method)

Store the label name to be accessed to the
data object RegisteredLabelName.

Store the write data to data object RecordData.

Was it successful?

Execute writing.
(Communication.WriteDataByLabel method)

Execute an error occurrence
processing.

5 CREATING C# PROGRAMS
5.2 Designing Programs 29

5

Reading data using device specification
The following flow chart shows the operations to read data by specifying the target device list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Complete

Disconnect the High Speed Data Communication Module.
(Communication.Disconnect method)

Connect to a High Speed Data Communication Module.
(Communication.Connect method)

Store the device name to be accessed to String object.

Was it successful?

Execute reading.
(Communication.ReadDataByDevice method)

Execute an error occurrence
processing.Acquire the read data from the argument.

30 5 CREATING C# PROGRAMS
5.2 Designing Programs

Writing data using device specification
The following flow chart shows the operations to write data by specifying the target device list for the data write function after
connecting to a High Speed Data Communication Module.

No

Yes

Disconnect the High Speed Data Communication Module.
(Communication.Disconnect method)

Connect to a High Speed Data Communication Module.
(Communication.Connect method)

Store the device name to be accessed to String object.

Store the write data to the short array.

Execute writing.
(Communication.WriteDataByDevice method)

Start

Complete

Was it successful?

Execute an error occurrence
processing.

5 CREATING C# PROGRAMS
5.2 Designing Programs 31

5

Programming precautions

Connect/Disconnect processing for Communication class
The efficient communication can be established by executing this method only once at the beginning and the end of the
program.

Streaming transfer data receive processing
In data receive processing of the streaming transfer, if a large amount of data are received and thus the longer processing
time is required, the transfer data received from the module during the processing are discarded.
Confirm the continuous data reception by checking the index information of each record exists in the reception data are in
sequence.
Note that the sequential order of the index information is corrupted even when a data miss occurs on the module side.
For details of conditions for data miss occurrences, refer to the following section.
 High Speed Data Communication Module User's Manual

ReceiveTransferData registration processing for Communication class
Execute this method before executing the Connect processing for the Communication class.
If the ReceiveTransferData registration processing is executed after executing the Connect processing, the streaming transfer
from the High Speed Data Communication Module and module status changes cannot be received.

get accessor of DataValue class property
The get accessors other than DataType acquires data based on the data type of data stored in the DataValue class.
Therefore, if data is acquired with a data type that differs from the data type of the stored data, a cast conversion is
automatically performed.
The data type of the acquired data may differ from the data type of the stored data depending on the data type after the cast
conversion.
Since the source data information may be lost or a longer processing time may be required due to the cast conversion,
execute the get accessor matches with the data type to be acquired.

Communication during streaming transfer
A 06B0H error occurs when any of the following Communication class methods is executed for a single instance after
executing the StartStreamingTransfer/StartStreamingTransferByInterval method.
Execute the following methods after executing the StopStreamingTransfer method.
 • GetConnectionDeviceList
 • GetLabelList
 • GetLabelListWithComment
 • SetStreamingLabel
 • SetStreamingLabelGroup
 • StartStreamingTransferByInterval
 • StartStreamingTransfer
 • StopStreamingDataBuffering
 • ReadDataByLabel
 • ReadDataByDevice
 • WriteDataByLabel
 • WriteDataByDevice

32 5 CREATING C# PROGRAMS
5.3 Class and Method

5.3 Class and Method
The classes in High Speed Data Communication Library is the communication class that is used for receiving streaming
transfer data and module status changes by realizing the streaming transfer function and the data read/write function, and the
data object class that stores data for communication.
The following figure shows the functions of each class.

Data transfer of streaming transfer data

Response

Request

Transfer

Device
memory

Communi-
cation
class

Data
object
class

Request and response from server personal computer

High Speed Data
Communication

Module

User program
(Library)

Server
personal computer

5 CREATING C# PROGRAMS
5.3 Class and Method 33

5

Class list

Communication class

Data object class

Exception class

Class name Overview Reference
Communication This class processes the communication between the server personal computer and High

Speed Data Communication Module.
Performs the connection to High Speed Data Communication Module, the streaming
transfer, and the data read/write function.
The receive processing for streaming-transferred data and module status changes are
implemented to notify data transfer and status changes from High Speed Data
Communication Module to user programs.

Page 34 Communication
class

Class name Overview Reference
LabelGroupList This class stores information of the label group list.

Stores information of the label group acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 56 LabelGroupList
class

LabelGroup This class stores information of the label group.
Stores information of the label acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 57 LabelGroup class

DataLabel This class stores label names, output data types, and data sizes.
Stores information of the label acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 59 DataLabel class

RegisteredLabelName This class stores registration target label names and data read/write label names.
Stores label group names and label names used for the streaming transfer function and
the data read/write function.

Page 61
RegisteredLabelName class

ReceiveData This class stores the data list sent by the streaming transfer. Page 63 ReceiveData class

RecordData This class stores data used for the streaming transfer function and the data read/write
function.
Data received from the High Speed Data Communication Module is stored in the
streaming transfer function.
Values read from the specified labels are stored in the data read function.
Values written to the specified labels are stored in the data write function.

Page 64 RecordData class

DataValue This class store values for the specified data type.
Stores data match with the output data type of label registered as the target of streaming
transfer when performing the streaming transfer.

Page 68 DataValue class

ConnectionDeviceList This class stores the list of the connected device information. Page 74
ConnectionDeviceList class

ConnectionDevice This class stores the connected device information. Page 75 ConnectionDevice
class

ConnectionDeviceDetail This class stores the details of the connected device information. Page 78
ConnectionDeviceDetail
class

Class name Overview Reference
DataCommunicationException This class stores enumerators of exceptions in the methods for the communication class

and the data object class.
The user program implements the exception handler.

Page 81
DataCommunicationExceptio
n class

DataCommunicationError This class defines the detailed information at the time of error occurrence in the methods
for the communication class and the data object class.

Page 82
DataCommunicationError
enumerator

34 5 CREATING C# PROGRAMS
5.3 Class and Method

Communication class

Constructor

Details of the constructor
Communication

Property list

Property details
AdditionTimeType

*1 The types of time appended to each transfer record are determined when the Connect method is executed.
The type of time received from the module is not changed even if this method is executed after executing the Connect method.
To change the setting, execute the Disconnect method, execute this method, and then execute the Connect method again.

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class Communication: System.IDisposable

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.Communication

Format Content
Communication() Default constructor

Item Content
Function Constructor

Call format public Communication()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to communicate between the server personal computer and the High Speed Data Communication
Module.

Type Property name Accessor Overview Reference
byte AdditionTimeType set/get Specify the time type received from the module at the

streaming transfer to this Communication class.
Page 34 AdditionTimeType

uint BufferingTimeOut set/get Specify the timeout period of the buffering data
transfer function to this Communication class.

Page 35 BufferingTimeOut

byte BufMode set/get Specify the buffering data transfer mode of the
streaming transfer to this Communication class.

Page 35 BufMode

ushort TimeOut set/get Specify the timeout period of processing request for
the High Speed Data Communication Module to this
Communication class.

Page 36 TimeOut

Item Content
Function Acquires or stores the type of time appended to each transfer record.

Syntax public byte AdditionTimeType { get; set; }

Property value A byte value indicates the type of time to be appended
Default: 1

Comment Stores the type of time appended to the transfer record to this Communication class.*1

The following are the time types that can be specified.
0: Local time
1: UTC
An exception occurs when a negative number is stored.
If a value other than 0 or 1 is stored, the Connect method fails.

5 CREATING C# PROGRAMS
5.3 Class and Method 35

5

BufferingTimeOut

*1 The timeout for the buffering data transfer function is determined when the StartStreamingTransfer/StartStreamingTransferByInterval
method is executed.
The timeout period of the buffering data transfer function is not changed even if this method is executed after executing the
StartStreamingTransfer/StartStreamingTransferByInterval method.
To change the setting, execute the StopStreamingTransfer method, execute this method, and then execute the StartStreamingTransfer/
StartStreamingTransferByInterval method again.

BufMode

*1 The buffering transfer data mode is determined when the Connect method is executed.
The buffering data transfer function is not validated even if this method is executed after executing the Connect method.
To validate the buffering transfer data function, execute the Disconnect method, execute this method, and then execute the Connect
method again.

Item Content
Function Acquires or stores the type of time appended to each transfer record.

Syntax public uint BufferingTimeOut{ get; set; }

Property value A uint value indicates the timeout period of the buffering data transfer function
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Stores the timeout period when the buffering data transfer function is executed to this Communication class.*1

Specify the timeout period of the buffering data transfer function. (0, 60 to 86400 seconds)
When using the buffering data transfer function, specify a timeout period to stop the buffering data transfer processing of
the High Speed Data Communication Module in a specified period.
An exception occurs if a value out of the range of 60 to 86400 is stored.
When 0 is specified, the buffering data transfer function continues its operation until the network recovery without the
timeout.

Item Content
Function Acquires or stores the buffering data transfer mode of the streaming transfer.

Syntax public byte BufMode { get; set; }

Property value A byte value indicates the buffering data transfer mode
Default: 0

Comment Stores the buffering data transfer mode of the streaming transfer to this Communication class.
The following are the values that can be specified.
Invalidity (without buffering data transfer): Other than 1
Validity (with buffering data transfer): 1
Specify "1" to validate the buffering transfer data function of High Speed Data Communication Module.*1

36 5 CREATING C# PROGRAMS
5.3 Class and Method

TimeOut

*1 In some Communication class methods, data are divided to process the communication.
Therefore, a timeout may not occur with these methods even when the response timeout period specified in the TimeOut property
elapses.

*2 A longer communication time may be required for the on-demand function when communicating to CPUs on other stations other than
the control CPU of the High Speed Data Communication Module.
Execute the on-demand function after performing the following measures when a timeout occurs in the on-demand function.
 Check the module status and the network connection status of the High Speed Data Communication Module.
 Check the network connection status of CPUs on other stations.
 Set a longer timeout period for the TimeOut property.
 Reduce the number of CPUs on other stations that are accessed simultaneously.
 Reduce the number of device points that are accessed simultaneously.

*3 If the network is disconnected after the connection, a notification is sent by the ReceiveCommunicationEvent event about 10 seconds
after the disconnection.

*4 The response timeout period for communication is determined when the Connect method is executed.
The response timeout period for communication is not changed even if this method is executed after executing the Connect method.
To change the setting, execute the Disconnect method, execute this method, and then execute the Connect method again.

*5 An exception may occur regardless of the timeout period that is set during the connection when the network cable is not connected to
the server personal computer.

Method list

Item Content
Function Acquires or stores the response timeout period for communication.*1,*2

Syntax public ushort TimeOut { get; set; }

Property value A ushort value indicates the response timeout period.
Default: 20

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Stores the response timeout period for communication to this Communication class.
Specify the response timeout period of the communication request for the High Speed Data Communication Module.*3,*4,*5

1 to 255 seconds can be specified. (In seconds)

Type Method name Overview Reference
void Connect(

string ipAddress)
Opens a communication line to the High Speed Data
Communication Module, and establishes a
connection.

Page 38 Connect

void Connect(
string ipAddress,
string userName,
string password)

Opens a communication line to the High Speed Data
Communication Module in which the access
authentication is enabled, and establishes a
connection.

Page 39 Connect

void Disconnect() Closes the communication line to the High Speed Data
Communication Module, and disconnects the
connection.

Page 40 Disconnect

short GetConnectionDeviceList(
ConnectionDeviceList connectionDeviceList)

Acquires the list of the connected device information. Page 40
GetConnectionDeviceList

short GetLabelList(
LabelGroupList labelGroupList)

Acquires the label list set for the High Speed Data
Communication Module.

Page 41 GetLabelList

short GetLabelListWithComment(
LabelGroupList labelGroupList)

Acquires the label list, including comments, set on the
High Speed Data Communication Module.

Page 42
GetLabelListWithComment

short ReadDataByDevice(
string[] deviceList,
short[] deviceValue)

Reads data by specifying the device name from the
programmable controller CPU to the server personal
computer.

Page 43 ReadDataByDevice

short ReadDataByLabel(
RegisteredLabelName[] readLabelList,
RecordData readDeviceList)

Reads data by specifying the label name from the
programmable controller CPU to the server personal
computer.

Page 44 ReadDataByLabel

short SetStreamingLabel(
RegisteredLabelName[] labelList)

Registers the data list streamed from the
programmable controller CPU to the server personal
computer by specifying the label name to the High
Speed Data Communication Module.

Page 45 SetStreamingLabel

5 CREATING C# PROGRAMS
5.3 Class and Method 37

5

*1 A 06B0H error occurs when any of the following Communication class methods is executed for a single instance after executing the
StartStreamingTransfer/StartStreamingTransferByInterval method.
Execute the following methods after executing the StopStreamingTransfer method.
 GetConnectionDeviceList
 GetLabelList
 GetLabelListWithComment
 SetStreamingLabel
 SetStreamingLabelGroup
 StartStreamingTransferByInterval
 StartStreamingTransfer
 StopStreamingDataBuffering
 ReadDataByLabel
 ReadDataByDevice
 WriteDataByLabel
 WriteDataByDevice

short SetStreamingLabelGroup(
string[] labelGroupList)

Registers the data list streamed from the
programmable controller CPU to the server personal
computer by specifying the label name to the High
Speed Data Communication Module.

Page 46
SetStreamingLabelGroup

short StartStreamingTransfer(
uint samplingTime) *1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle.

Page 47
StartStreamingTransfer

short StartStreamingTransfer(
uint samplingTime,
ushort transferCount) *1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle and the number of transfer
records

Page 48
StartStreamingTransfer

short StartStreamingTransferByInterval(
uint samplingTime,
uint transferTime) *1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle and the transfer time.

Page 49
StartStreamingTransferByInt
erval

short StopStreamingDataBuffering(
ushort connectNum)

Discards the transfer data buffered with the buffering
data transfer function, and disconnects the line.

Page 50
StopStreamingDataBuffering

short StopStreamingTransfer() Stops the streaming transfer. Page 51
StopStreamingTransfer

short WriteDataByDevice(
string[] deviceList,
short[] deviceValue)

Writes data by specifying the device name from the
server personal computer to the programmable
controller CPU.

Page 51 WriteDataByDevice

short WriteDataByLabel(
RegisteredLabelName[] writeLabelList,
RecordData writeDeviceList)

Writes data by specifying the label name from the
server personal computer to the programmable
controller CPU.

Page 52 WriteDataByLabel

Type Method name Overview Reference

38 5 CREATING C# PROGRAMS
5.3 Class and Method

Method details
Connect

*1 To receive the streaming transfer data and module status changes, register the delegate before executing the Connect method.

Item Content
Function Opens a communication line to a High Speed Data Communication Module whose access authentication is enabled, and

establishes a connection.

Call format public void Connect(string ipAddress)
throws DataCommunicationException

Argument Type name string

Variable name ipAddress

Content [IN] IP address for the High Speed Data Communication Module

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• AUTHENTICATION_FAILED
• BUFFERING_CONNECT_OVER
• CONNECT_OVER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INTERRUPTED_ERROR
• INVALID_CONNECT
• INVALID_IPADDRESS
• INVALID_REQUEST
• INVALID_RESPONSE
• INVALID_STREAMING
• IO_ERROR
• IPADDRESS_NULL
• NOT_PERMITTED_IPADDRESS
• OUT_RANGE_ADDITIONAL_TIMETYPE
• OUT_RANGE_TIMEOUT
• RECONNECT
• STREAMING_CONNECT_OVER
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Opens a communication line to the High Speed Data Communication Module.*1

When using multiple lines to communicate with a single High Speed Data Communication Module, create communication
class instances for each communication and execute the Connect method.

5 CREATING C# PROGRAMS
5.3 Class and Method 39

5

Connect

*1 To receive the streaming transfer data and module status changes, register the delegate before executing the Connect method.
*2 When a High Speed Data Communication Module on which the account authentication is disabled is connected, the specified user

name and the password are ignored.

Item Content
Function Opens a communication line to the High Speed Data Communication Module, and establishes a connection.

Call format public void Connect(string ipAddress, string userName, string password)
throws DataCommunicationException

Argument Type name string string string

Variable name ipAddress userName password

Content [IN] IP address for the target device [IN] Connection user name (up to 20
characters)*1

[IN] Password for the connection user
name (up to 16 characters)*2

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• AUTHENTICATION_FAILED
• BUFFERING_CONNECT_OVER
• CONNECT_OVER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INTERRUPTED_ERROR
• INVALID_CONNECT
• INVALID_IPADDRESS
• INVALID_REQUEST
• INVALID_RESPONSE
• INVALID_STREAMING
• IO_ERROR
• IPADDRESS_NULL
• NOT_PERMITTED_IPADDRESS
• OUT_RANGE_ADDITIONAL_TIMETYPE
• OUT_RANGE_PASSWORD
• OUT_RANGE_TIMEOUT
• OUT_RANGE_USER_NAME
• PASSWORD_NULL
• RECONNECT
• STREAMING_CONNECT_OVER
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Opens a communication line to the High Speed Data Communication Module in which the account authentication is
enabled.*2

When using multiple lines to communicate with a single High Speed Data Communication Module, create communication
class instances for each communication and execute the Connect method.

40 5 CREATING C# PROGRAMS
5.3 Class and Method

Disconnect

GetConnectionDeviceList

Item Content
Function Disconnects the connection to the High Speed Data Communication Module.

Call format public void Disconnect()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• NOT_CONNECTED_YET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Closes the established communication line, and disconnects the connection.

Item Content
Function Acquires the list of status for devices connected with High Speed Data Communication Module.

Call format public short GetConnectionDeviceList(ConnectionDeviceList connectionDeviceList)
throws DataCommunicationException

Argument Type name ConnectionDeviceList

Variable name connectionDeviceList

Content [IN/OUT] List of status for devices connected with High Speed Data Communication Module

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the list of status for devices connected with High Speed Data Communication Module.
Use this method to check the connections when executing the StopStreamingDataBuffering method.

5 CREATING C# PROGRAMS
5.3 Class and Method 41

5

GetLabelList

*1 "NULL" is stored to the label group comments and label comments in the acquired label list.
*2 When settings are not written to the High Speed Data Communication Module, or when label groups which are accessible with the

account used for the connection do not exit, the number of label groups stored in labelGroupList is set to 0.
When the number of label groups is 0 and the array element is accessed, the exception IndexOutOfRangeException occurs.
Therefore, access the array element after checking the acquired number of label groups is not 0.

*3 When a label group without labels is set, the number of labels in the label group without labels is set to 0 among the label groups stored
in labelGroupList.
When the number of labels is 0 and the array element is accessed, the exception IndexOutOfRangeException occurs.
Therefore, access the array element after checking the acquired number of labels is not 0.

Item Content
Function Acquires the label list set on the High Speed Data Communication Module.

Call format public short GetLabelList(LabelGroupList labelGroupList)
throws DataCommunicationException

Argument Type name LabelGroupList

Variable name labelGroupList

Content [IN/OUT] Stores the label list set on the High Speed Data Communication Module.*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• EXCHANGE_FROM_STRING_FAILED
• EXCHANGE_TO_STRING_FAILED
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the label list set on the High Speed Data Communication Module.*2,*3

Labels of label groups which are accessible with the account used for the connection can be acquired.

42 5 CREATING C# PROGRAMS
5.3 Class and Method

GetLabelListWithComment

*1 When settings are not written to the High Speed Data Communication Module, or when label groups which are accessible with the
account used for the connection do not exit, the number of label groups stored in labelGroupList is set to 0.
When the number of label groups is 0 and the array element is accessed, the exception IndexOutOfRangeException occurs.
Therefore, access the array element after checking the acquired number of label groups is not 0.

*2 When a label group without labels is set, the number of labels in the label group without labels is set to 0 among the label groups stored
in labelGroupList.
When the number of labels is 0 and the array element is accessed, the exception IndexOutOfRangeException occurs.
Therefore, access the array element after checking the acquired number of labels is not 0.

Item Content
Function Acquires the label list, including comments, set on the High Speed Data Communication Module.

Call format public short GetLabelListWithComment(LabelGroupList labelGroupList)
throws DataCommunicationException

Argument Type name LabelGroupList

Variable name labelGroupList

Content [IN/OUT] Stores the label list set on the High Speed Data Communication Module.

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• EXCHANGE_FROM_STRING_FAILED
• EXCHANGE_TO_STRING_FAILED
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the label list, including comments, set on the High Speed Data Communication Module.*1,*2

Labels of label groups which are accessible with the account used for the connection can be acquired.

5 CREATING C# PROGRAMS
5.3 Class and Method 43

5

ReadDataByDevice

*1 An exception occurs if the number of words for the labels to be read exceeds 65536 words.
*2 K5 to K8 cannot be specified for a device name. When specifying K5 to K8, combine and specify the digit specifications for K1 to K4.

(Example) For K5M0
Specify as K4M0 and K1M16.

*3 If a word device or the digit specification of device is specified, one-word device value is acquired. If a bit device or the bit specification
of device is specified, 0 or 1 is acquired for the corresponding bit.
For accessible devices, refer to the following section.
 High Speed Data Communication Module User's Manual
When the consecutive data of 2 words or more are acquired, read the device values by specifying multiple devices.
(Example) When a two-word device value is acquired from D0
Acquire the device value specifying D0 and D1, and process the acquired device value to be two-word data.

*4 An error occurs when the account authentication function is enabled and if the read authority for device specification is not applicable
with the connected account.

*5 Device values other than those of the control CPU of the High Speed Data Communication Module cannot be read. When reading
device values from programmable controller CPUs other than the control CPU of the High Speed Data Communication Module, specify
the labels.

Item Content
Function Reads device values of the specified devices from the programmable controller CPU to the server personal computer.*1

Call format public short ReadDataByDevice(string[] deviceList, short[] deviceValue)
throws DataCommunicationException

Argument Type name string[] short[]

Variable name deviceList deviceValue

Content [IN] List of device names to be read*2

(up to 32 characters for each device name)
[IN/OUT] Storage destination for read device value

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_DEVICE_COUNT
• OUT_RANGE_DEVICE_NAME_LENGTH
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Reads device values stored in the specified devices from the programmable controller CPU.*3,*4,*5

44 5 CREATING C# PROGRAMS
5.3 Class and Method

ReadDataByLabel

*1 An exception occurs if the number of words for the labels to be read exceeds 65536 words.
*2 The combination of general sampling labels and high speed sampling labels can be specified.
*3 An exception occurs if the number of labels to be read exceeds 65536.
*4 An error occurs when the account authentication function is enabled and if a label group without the read authority is specified with the

connected account.

Item Content
Function Reads device values of the specified labels from the programmable controller CPU to the server personal computer.*1

Call format public short ReadDataByLabel(RegisteredLabelName[] readLabelList, RecordData readDeviceList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[] RecordData

Variable name readLabelList readDeviceList

Content [IN] Label list to be read [IN/OUT] Storage destination for read data

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Reads the device value from the programmable controller CPU to the server personal computer by specifying the labels
set on the High Speed Data Communication Module.*2,*3,*4

5 CREATING C# PROGRAMS
5.3 Class and Method 45

5

SetStreamingLabel

*1 When the account authentication function is enabled, an error occurs if a registration of a label group without the read authority is
attempted with the connected account.

*2 The combination of general sampling labels and high speed sampling labels cannot be specified in a single registration.
*3 Overwrites data if the streaming transfer data are already registered.
*4 The total data size for labels that can be registered as the target of streaming transfer is 65536 words.
*5 The number of labels that can be registered as the target of streaming transfer is 65536.

Item Content
Function Registers the target labels for the streaming transfer on the High Speed Data Communication Module.

Call format public short SetStreamingLabel(RegisteredLabelName[] labelList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[]

Variable name labelList

Content [IN] Target label list for streaming transfer*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Specify the labels to be streamed to the server personal computer.*2,*3,*4,*5

46 5 CREATING C# PROGRAMS
5.3 Class and Method

SetStreamingLabelGroup

*1 When the account authentication function is enabled, an error occurs if a registration of a label group without the read authority is
attempted with the connected account.

*2 The combination of general sampling labels and high speed sampling labels cannot be specified in a single registration.
*3 Overwrites data if the streaming transfer data are already registered.
*4 The total data size for labels of label groups that can be registered as the target of streaming transfer is 65536 words.
*5 The number of labels of the label groups that can be registered as the target of streaming transfer is 65536.

Item Content
Function Registers the target label groups for the streaming transfer on the High Speed Data Communication Module.

Call format public short SetStreamingLabelGroup(string[] labelGroupList)
throws DataCommunicationException

Argument Type name string[]

Variable name labelGroupList

Content [IN] Target label group list for streaming transfer*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Specify the label groups to be streamed to the server personal computer.
By specifying the label groups, all labels of the specified label groups are registered.*2,*3,*4,*5

5 CREATING C# PROGRAMS
5.3 Class and Method 47

5

StartStreamingTransfer

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 An error occurs if a value larger than 32,767,000 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to general sampling.
*5 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*6 The value as the same as the sampling cycle is processed for the transfer cycle, and 1 is processed for the number of transfer records.
*7 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*8 The transfer data may be received by ReceiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (Disconnect), expand the timeout cycle with TimeOut property, reconnect the line (Connect), and start
streaming transfer (StartStreamingTransferByInterval).

Item Content
Function Specify the sampling cycle, and start the streaming transfer of the data registered to a High Speed Data Communication

Module.

Call format public short StartStreamingTransfer(uint samplingTime)
throws DataCommunicationException

Argument Type name uint

Variable name samplingTime

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3,*4

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by synchronizing the
transfer cycle with the sampling cycle.*5

Use this method when executing the streaming transfer by specifying general sampling labels.*6,*7,*8

48 5 CREATING C# PROGRAMS
5.3 Class and Method

StartStreamingTransfer

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 An error occurs if a value larger than 32,767,000 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to general sampling.
*5 An error occurs if the specified number of transfer records exceeds the range when the label group registered as the target for streaming

transfer is set to high speed sampling.
*6 Any value other than 1 cannot be specified for the number of transfer records when the label group registered as the target for streaming

transfer is set to general sampling. An error occurs if any value other than 1 is specified.
*7 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*8 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*9 The transfer data may be received by ReceiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (Disconnect), expand the timeout cycle with TimeOut property, reconnect the line (Connect), and start
streaming transfer (StartStreamingTransferByInterval).

Item Content
Function Specify the sampling cycle and a number of transfer record, and start the streaming transfer of the data registered to a

High Speed Data Communication Module.

Call format public short StartStreamingTransfer (uint samplingTime, ushort transferCount)
throws DataCommunicationException

Argument Type name uint ushort

Variable name samplingTime transferCount

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3,*4

[IN] Transfer number of records
Specify the number of records to execute the data transfer
with the specified number of sampling execution.
High speed sampling: 1 to 100*5

General sampling: fixed to 1*6

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by synchronizing the
transfer cycle with the sampling cycle.*7

Data are transferred when the specified number of transfer records is sampled.*8,*9

5 CREATING C# PROGRAMS
5.3 Class and Method 49

5

StartStreamingTransferByInterval

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 By specifying 0 for the transfer cycle, data can be transferred in synchronization with the sampling cycle.
*5 A transfer cycle shorter than the sampling cycle cannot be specified.
*6 The transfer cycle cannot be specified when the label group registered as the target for streaming transfer is set to general sampling.

An error occurs if any value other than 0 is specified.
*7 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*8 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*9 The transfer data may be received by ReceiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (Disconnect), expand the timeout cycle with TimeOut property, reconnect the line (Connect), and start
streaming transfer (StartStreamingTransferByInterval).

Item Content
Function Specify the sampling cycle and transfer cycle, and start the streaming transfer of data registered to a High Speed Data

Communication Module.

Call format public short StartStreamingTransferByInterval(uint samplingTime, uint transferTime)
throws DataCommunicationException

Argument Type name uint uint

Variable name samplingTime transferTime

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3

[IN] Transfer time (milliseconds)
High speed sampling: 0.1 to 100 ms*4,*5

General sampling: fixed to 0*6

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_TRANSFER_TIME
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by specifying the
sampling cycle and the transfer cycle.*7,*8,*9

50 5 CREATING C# PROGRAMS
5.3 Class and Method

When the label group registered as the target of streaming transfer is set to high speed sampling, the following combinations
of sampling cycle and the transfer cycle can be specified.
: Applicable, : Error

*1 An error occurs when a value smaller than the sampling cycle is specified for the transfer cycle.
(Example) Sampling time: 40, Transfer cycle: 30  Error
Sampling time: 40, Transfer cycle: 40  Applicable
Sampling time: 30, Transfer cycle: 40  Applicable

StopStreamingDataBuffering

*1 An error occurs when the account authentication function is enabled and the administrative right does not apply to the connected
account.

Transfer cycle
(milliseconds)

Sampling time (milliseconds)

0 1 2 ... 100 ... 32767 32768 or
higher

0        

1        

2        

...    / *1    

100        

101 or higher        

Item Content
Function Discards the buffering transfer data and disconnects the line.

Call format public short StopStreamingDataBuffering(ushort connectNum)
throws DataCommunicationException

Argument Type name ushort

Variable name connectNum

Content [IN] Connection number to be disconnected
Access status 1 to 5 is specified: 1 to 5

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_CONNECTION_NO
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment When the access status of the specified connection number is buffering the transfer data, the buffered transfer data are
discarded and the line is disconnected.*1

An error occurs when the access status of the specified connection number is not buffering the transfer data.
The connection numbers correspond to the access status 1 to 5 in the access status area of the buffer memory.
(When the GetConnectionDeviceList method is executed, the array elements 0 to 4 in the property
ConnectionDeviceArray[] of argument connectionDeviceList are synonymous with the access status 1 to 5.)
An exception OUT_RANGE_CONNECTION_NO is returned if a value other than 1 to 5 is specified.

5 CREATING C# PROGRAMS
5.3 Class and Method 51

5

StopStreamingTransfer

WriteDataByDevice

Item Content
Function Stops the streaming transfer to the server personal computer.

Call format public short StopStreamingTransfer()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Stops the streaming transfer to the server personal computer.
Stop the re-transfer start function which operates on a user program after detected the disconnection by executing at the
buffering transfer data function.

Item Content
Function Writes device values of the specified devices from the server personal computer to the programmable controller CPU.*1

Call format public short WriteDataByDevice(string[] deviceList, short[] deviceValue)
throws DataCommunicationException

Argument Type name string[] short[]

Variable name deviceList deviceValue

Content [IN] List of device names to be written*2

(up to 32 characters for each device name)
[IN] Storage destination for write device value

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_DEVICE_COUNT
• OUT_RANGE_DEVICE_NAME_LENGTH
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Writes device values from the server personal computer to the devices specified on the programmable controller
CPU.*3,*4,*5

52 5 CREATING C# PROGRAMS
5.3 Class and Method

*1 An exception occurs if the number of words for the devices to be written exceeds 65536 words.
*2 K5 to K8 cannot be specified for a device name. When specifying K5 to K8, combine and specify the digit specifications for K1 to K4.

(Example) For K5M0
Specify as K4M0 and K1M16.

*3 If a word device or the digit specification of the device is specified, one-word device value is stored. If a bit device or the bit specification
of device is specified, the value for the writing device value's least significant bit is stored.
For accessible devices, refer to the following section.
 High Speed Data Communication Module User's Manual
When the consecutive data of 2 words or more are acquired, write the device values by specifying multiple devices.
(Example) When a two-word device value is stored from D0
Write the device values by specifying D0 and D1.

*4 An error occurs when the account authentication function is enabled and if the read authority for device specification is not applicable
with the connected account, or if the read authority is applicable but the write authority is not applicable with the connected account.

*5 Device values other than those of the control CPU of the High Speed Data Communication Module cannot be written. When writing
device values from programmable controller CPUs other than the control CPU of the High Speed Data Communication Module, specify
the labels.

WriteDataByLabel

*1 An exception occurs if the number of words for the labels to be written exceeds 65536 words.
*2 The combination of general sampling labels and high speed sampling labels can be specified.
*3 An exception occurs if the number of labels to be written exceeds 65536.
*4 An error occurs when the account authentication function is enabled and if a label group without the read authority or a label group with

the read authority but not with the write authority is specified with the connected account.

Item Content
Function Writes device values of the specified labels from the server personal computer to the programmable controller CPU.*1

Call format public short WriteDataByLabel(RegisteredLabelName[] writeLabelList, RecordData writeDeviceList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[] RecordData

Variable name writeLabelList writeDeviceList

Content [IN] Label list to be written [IN] Storage destination for write data

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_DATASIZE
• INVALID_DATATYPE
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 81 ErrorCode

Comment Writes device values from the server personal computer to the programmable controller CPU by specifying the labels set
on the High Speed Data Communication Module.*2,*3,*4

5 CREATING C# PROGRAMS
5.3 Class and Method 53

5

Setting data
The following describes the operations when writing data to labels whose data type is string type/raw type.
 • When the data size of the set label is an odd number,
A null code (00H) is stored to the upper byte of the last device.

Ex.

When writing "ABC" to the label with the start device: "D0", data type: "string type", and data size: "3" (odd number), the data
are written as shown below.
The character code to handle a single character as one byte (such as "iso-8859-1") is specified for the string.

 • When the write data size or the number of elements is smaller than that of the set label.
Null codes (00H) are stored to the devices following the amount of the write data size or the number of elements.

Ex.

When writing "ABCD" to the label with the start device: "D0", data type: "string type", and data size: "8", the data are written as
shown below.
The character code to handle a single character as one byte (such as "iso-8859-1") is specified for the string.

 • When the write data size or the number of elements is larger than that of the set label.
The exception "INVALID_DATASIZE" occurs.
Check the data size set to the label and correct the write data size not to be larger than the data size.
Note that the data sizes of the same strings are different depending on the encoding code.
Specify the encoding code for each specific purpose.

Ex.

When writing "ABCD" to the label with the start device: "D0", data type: "string type", and size: "8" (odd number), the data are
written depending on the encoding code as shown below.
"UTF-16LE" (two-byte single character)

"iso-8859-1" (one-byte single character)

D0 D1
41H 42H 43H 00H

A B C Null code

D0 D1 D2 D3
41H 42H 43H 44H 00H 00H 00H 00H

A B C D Null code Null code Null code Null code

D0 D1 D2 D3
41H 00H 42H 00H 43H 00H 44H 00H

A Null code B Null code C Null code D Null code

D0 D1 D2 D3
41H 42H 43H 44H 00H 00H 00H 00H

A B C D null code null code null code null code

54 5 CREATING C# PROGRAMS
5.3 Class and Method

Event list

Event details
ReceiveCommunicationEvent

ReceiveTransferData

Delegate list

*1 Since the default is no-operation, it is necessary to create actual processing and register it to the event.

Delegate details
ReceiveCommunicationEventHandler

Type Event name Overview Reference
ReceiveCommunicationEventHandler ReceiveCommunicationEvent The event to register the communication event

notification processing.
Page 54
ReceiveCommunicationEven
t

ReceiveTransferDataHandler ReceiveTransferData The event to register the streaming transfer data
receive processing.

Page 54
ReceiveTransferData

Item Content
Function Registers the communication event notification processing.

Call format public event ReceiveCommunicationEventHandler ReceiveCommunicationEvent

Comment Registers the delegate contains the user processing in which the processing at the time of receiving status changes such
as a line disconnection is written.
Match the user processing with the call format of ReceiveCommunicationEventHandler.

Item Content
Function Registers the streaming transfer data receive processing.

Call format public event ReceiveTransferDataHandler ReceiveTransferData

Comment Registers the delegate contains the user processing in which the processing at the time of receiving the streaming transfer
data is written.
Match the user processing with the call format of ReceiveTransferDataHandler.

Type Method name Overview Reference
void ReceiveCommunicationEventHandler(

short status, short errorCode)
The method which is called when a status change
such as a line disconnection is received.*1

Page 54
ReceiveCommunicationEven
tHandler

void ReceiveTransferDataHandler(
ReceiveData recordList)

The method which is called when the streaming
transfer data sent from the High Speed Data
Communication Module is received.*1

Page 55
ReceiveTransferDataHandler

Item Content
Function Notifies status changes of High Speed Data Communication Module to the server personal computer.

Call format public delegate void ReceiveCommunicationEventHandler (short status, short errorCode)

Argument Type name short short

Variable name status errorCode

Content [IN/OUT] Notified events*1

Disconnection: 0
Update settings: 3
Stop module operation: 1
Library processing overload: 4
Transfer error stop: 5
Re-transfer start failure: 6
Re-transfer start: 7

[IN] Error code of occurred error
(Refer to the error code when an event such as
disconnection, transfer error stop, re-transfer start failure,
and re-transfer start is notified. "0" is stored to events other
than noted.)

Return value 

Comment Notifies status changes such as a line disconnection to the server personal computer.
Implement the processing for the status changes in the user program.

5 CREATING C# PROGRAMS
5.3 Class and Method 55

5

*1 The following are the actions for the stored events.

ReceiveTransferDataHandler

Module status Action
Disconnection: 0 The High Speed Data Communication Module is disconnected, the programmable controller CPU is reset, the power is

turned OFF, or the settings are updated.
Check the LAN cable connections between the server personal computer and the High Speed Data Communication
Module and the system operations.
If no problems are found, execute the Connect processing again and establish the communication.
(If the Connect processing is not executed again, the communication may not be established normally.)
When the StartStreamingTransfer/StartStreamingTransferByInterval processing is executed by enabling the buffering
mode for the buffering transfer data function, "1" is stored to errorCode at the time of the disconnection event occurrence.
When "1" is stored to errorCode, the execution of Connect processing again is unnecessary.
When an incorrect packet is received and the line is disconnected, "2" is stored to errorCode at the time of disconnection
event occurrence.
A "0" is stored to errorCode when disconnected the line other than above.

Update settings: 3 The module settings are changed.
After executing the Disconnect processing and checking the module settings, execute the Connect processing again and
establish the communication.
The disconnection event is notified after the setting update is notified.

Stop module operation: 1 A module stop error occurred.
Execute the Disconnect processing and check the status of the module.
After starting the module in operation, execute the Connect processing again and establish the communication.

Library processing overload: 4 The speed to process the streaming transfer data is slow.
Execute the Disconnect processing, and perform the following actions.
• Reduce the number of labels registered to the streaming transfer.
• Change the output data type and the data size of the labels registered to the streaming transfer, and reduce the number

of points.
• Increase the sampling cycle and the transfer cycle.
• Reduce the number of transfer records.
• Review the processing content for ReceiveTransferData.

After performing the action, execute the Connect processing again and establish the communication.
A library processing overload may occur when the server personal computer is overloaded, such as when running Java
VM for the first time.

Transfer error stop: 5 The streaming transfer is stopped.
Execute the Disconnect processing, and perform the following actions.
• Check the value of errorCode, and perform the actions provided in the error code list.
• Check the status of the network accessing another station/other stations programmable controller CPU.
• Check if the parameters of the programmable controller CPU from which data are sampled are not changed.

After performing the action, execute the Connect processing again and establish the communication.

Re-transfer start failure: 6 Restarting of the streaming transfer failed after the network connection between the server personal computer and the
High Speed Data Communication Module is recovered.
The cause of the restarting failure is stored to errorCode.
The following are the values to be stored.
0: Cancelling request
1: Timeout occurrence
2: Error occurrence (Occurs when data buffering is not executed in High Speed Data Communication Module after the
operation to recover the network such as resetting the CPU module or stopping buffering transfer data from the High
Speed Data Communication Module.)
Check the LAN cable connections between the server personal computer and the High Speed Data Communication
Module and the system operations.
If no problems are found, execute the Connect processing again and establish the communication.

Re-transfer start: 7 The network connection between the server personal computer and the High Speed Data Communication Module is
recovered.
When an processing overload occurs during the buffering data transfer and the old data are overwritten, or the buffer clear
is requested, "1" is stored to errorCode at the time of the re-transfer start event occurrence.

Item Content
Function Notifies the reception of the streaming transfer data sent from the High Speed Data Communication Module to the server

personal computer.

Call format public delegate void ReceiveTransferDataHandler (ReceiveData recordList)

Argument Type name ReceiveData

Variable name recordList

Content [IN/OUT] Received record list

Return value 

Comment Notifies the reception of the streaming transfer data sent from the High Speed Data Communication Module to the server
personal computer.
Implement the processing for the receive data in the user program.

56 5 CREATING C# PROGRAMS
5.3 Class and Method

LabelGroupList class

Constructor

Details of the constructor
LabelGroupList

Property list

Property details
LabelGroupArray

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class LabelGroupList

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.LabelGroupList

Format Content
LabelGroupList() Default constructor

Item Content
Function Constructor

Call format public LabelGroupList()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label group list.
The label group list maintained previously is initialized.

Type Property name Accessor Overview Reference
LabelGroup[] LabelGroupArray get Acquires the label group list from this LabelGroupList

class.
Page 56 LabelGroupArray

Item Content
Function Acquires the label group list.

Syntax public LabelGroup[] LabelGroupArray { get; }

Property value A LabelGroup object array indicates the label group list
Default: null

Exception None

Comment Acquires the label group list from this LabelGroupList class.
"null" is acquired by default.

5 CREATING C# PROGRAMS
5.3 Class and Method 57

5

LabelGroup class

Constructor

Details of the constructor
LabelGroup

Property list

Property details
LabelGroupComment

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class LabelGroup

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.LabelGroup

Format Content
LabelGroup() Default constructor

Item Content
Function Constructor

Call format public LabelGroup()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label group.
The label name, the label comment, the output data type, and the data size maintained previously are initialized.

Type Property name Accessor Overview Reference
string LabelGroupComment get Acquires the label group comment from this

LabelGroup class.
Page 57
LabelGroupComment

string LabelGroupName get Acquires the label group name from this LabelGroup
class.

Page 58 LabelGroupName

DataLabel[] LabelList get Acquires the label list set for the label group from this
LabelGroup class.

Page 58 LabelList

byte SamplingType get Acquires the type of label from this LabelGroup class. Page 58 SamplingType

Item Content
Function Acquires the label group comment.

Syntax public string LabelGroupComment { get; }

Property value A string indicates the label group comment
Default: null

Exception None

Comment Acquires the label group comment from this LabelGroup class.

58 5 CREATING C# PROGRAMS
5.3 Class and Method

LabelGroupName

LabelList

SamplingType

Item Content
Function Acquires the label group name.

Syntax public string LabelGroupName { get; }

Property value A string indicates the label group name
Default: null

Exception None

Comment Acquires the label group name from this LabelGroup class.
Store the acquired label group names in the RegisteredLabelName class, and use them for the arguments of the
SetStreamingLabel, ReadDataByLabel, WriteDataByLabel methods in the Communication class.

Item Content
Function Acquires the label list.

Syntax public DataLabel[] LabelList { get; }

Property value A DataLabel object array indicates the label list.
Default: null

Exception None

Comment Acquires the label list from this LabelGroup class.

Item Content
Function Acquires the type of label.

Syntax public byte SamplingType { get; }

Property value A byte value indicates the type of label
Default: 1

Exception None

Comment Acquires the type of label from this LabelGroup class.
High speed sampling label: 0
General sampling label: 1

5 CREATING C# PROGRAMS
5.3 Class and Method 59

5

DataLabel class

Constructor

Details of the constructor
DataLabel

Property list

Property details
DataSize

*1 Stores the value of size specified with Configuration Tool for "String" and "Raw".

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class DataLabel

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.DataLabel

Format Content
DataLabel() Default constructor

Item Content
Function Constructor

Call format public DataLabel()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label.
The label name, the label comment, the output data type, and the data size maintained previously are initialized.

Type Property name Accessor Overview Reference
short DataSize get Acquires the data size of label from this DataLabel

class.
Page 59 DataSize

short DataType get Acquires the output data type of label from this
DataLabel class.

Page 60 DataType

string LabelComment get Acquires the label comment from this DataLabel class. Page 60 LabelComment

string LabelName get Acquires the label name from this DataLabel class. Page 60 LabelName

Item Content
Function Acquires the data size.

Syntax public short DataSize { get; }

Property value A short value indicates the data size.
Default: 0

Exception None

Comment Acquires the data size of label from this DataLabel class.
The following are the values of data size for each output data type. (Unit: byte)
Bit: 1
Word [signed]: 2
Double word [signed]: 4
Word [unsigned]: 2
Double word [unsigned]: 4
Float [single precision]: 4
Float [double precision]: 8
String: Size*1

Raw: Size*1

60 5 CREATING C# PROGRAMS
5.3 Class and Method

DataType

LabelComment

LabelName

Item Content
Function Acquires the output data type.

Syntax public short DataType { get; }

Property value A short value indicates the output data type.
Default: 0

Exception None

Comment Acquires the output data type of label from this DataLabel class.
The following are the values for each output data type.
Bit: 1
Word [signed]: 10
Double word [signed]: 11
Word [unsigned]: 12
Double word [unsigned]: 13
Float [single precision]: 20
Float [double precision]: 21
String: 30
Raw: 40

Item Content
Function Acquires the label comment.

Syntax public string LabelComment { get; }

Property value A string indicates the label comment
Default: null

Exception None

Comment Acquires the label comment from this DataLabel class.

Item Content
Function Acquires the label name.

Syntax public string LabelName { get; }

Property value A string indicates the label name
Default: null

Exception None

Comment Acquires the label group name from this DataLabel class.
Store the acquired label group names in the RegisteredLabelName class, and use them for the arguments of the
SetStreamingLabel, ReadDataByLabel, WriteDataByLabel methods in the Communication class.

5 CREATING C# PROGRAMS
5.3 Class and Method 61

5

RegisteredLabelName class

Constructor

Details of the constructor
RegisteredLabelName

Property list

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class RegisteredLabelName

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.RegisteredLabelName

Format Content
RegisteredLabelName(string labelGroup Name,
string labelName)

Stores the specified label group name and label name to this RegisteredLabelName class.

Item Content
Function Constructor

Call format public RegisteredLabelName(string labelGroupName, string labelName)
throws DataCommunicationException

Argument Type name string string

Variable name labelGroupName labelName

Content [IN] Target label group name (up to 32 characters) [IN] Target label name (up to 32 characters)

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABELGROUP_NAME_LENGTH
• OUT_RANGE_LABEL_NAME_LENGTH

For details, refer to the following section.
 Page 81 ErrorCode

Comment Stores the target label group names and label names for the streaming transfer function, the data read function, and the
data write function to this RegisteredLabelName class.

Type Property name Accessor Overview Reference
string LabelGroupName set/get Stores the label group name to this

RegisteredLabelName class.
Acquires the label group name from this
RegisteredLabelName class.

Page 62 LabelGroupName

string LabelName set/get Stores the label name to this RegisteredLabelName
class.
Acquires the label name from this
RegisteredLabelName class.

Page 62 LabelName

62 5 CREATING C# PROGRAMS
5.3 Class and Method

Property details
LabelGroupName

LabelName

Item Content
Function Acquires or stores the label group name.

Syntax public string LabelGroupName { get; set; }

Property value A string indicates the label group name
Default: The string specified for Constructor

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABELGROUP_NAME_LENGTH

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the label group name from this RegisteredLabelName class.
Stores the label group name specified to this RegisteredLabelName class.

Item Content
Function Acquires or stores the label name.

Syntax public string LabelName { get; set; }

Property value A string indicates the label name
Default: The string specified for Constructor

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABEL_NAME_LENGTH

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the label name from this RegisteredLabelName class.
Stores the label name specified to this RegisteredLabelName class.

5 CREATING C# PROGRAMS
5.3 Class and Method 63

5

ReceiveData class

Constructor

Details of the constructor
ReceiveData

Property list

Property details
ReceiveDataList

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class ReceiveData

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.ReceiveData

Format Content
ReceiveData() Default constructor

Item Content
Function Constructor

Call format public ReceiveData()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the transfer data list.
The transfer data list maintained previously is initialized.

Type Property name Accessor Overview Reference
RecordData[] ReceiveDataList get Acquires the label group name from this

RegisteredLabelName class.
Page 63 ReceiveDataList

Item Content
Function Acquires the transfer data list.

Syntax public RecordData[] ReceiveDataList { get; }

Property value A RecordData object array indicates the transfer data list
Default: null

Exception None

Comment Acquires the transfer data list from this ReceiveData class.

64 5 CREATING C# PROGRAMS
5.3 Class and Method

RecordData class

Constructor

Details of the constructor
RecordData

Property list

Property details
DataList

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class RecordData

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.RecordData

Format Content
RecordData() Default constructor

Item Content
Function Constructor

Call format public RecordData()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store data used for the streaming transfer function, the data read function, and the data write
function.
The data list, the time synchronization flag, the data sampling time, and the index information maintained previously are
initialized.

Type Property name Accessor Overview Reference
DataValue[] DataList set/get Stores the data list to this RecordData class.

Acquires the data list from this RecordData class.
Page 64 DataList

uint Index get Acquires the index information at the data sampling
from this RecordData class.

Page 65 Index

uint NanoTime get Acquires the time (less than a second) when data are
sampled from this RecordData.

Page 65 NanoTime

uint SecTime get Acquires the time when data are sampled from this
RecordData.

Page 65 SecTime

byte TimeSyncFlag get Acquires the time synchronization execution flag from
this RecordData class.

Page 65 TimeSyncFlag

Item Content
Function Acquires or stores the data list.

Syntax public DataValue[] DataList{ get; set; }

Property value A DataValue object array indicates the data list.
Default: null

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• ARGUMENT_NULL

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data list from this RecordData class.
Stores the specified data list to this RecordData class.

5 CREATING C# PROGRAMS
5.3 Class and Method 65

5

Index

NanoTime

SecTime

TimeSyncFlag

Item Content
Function Acquires the index information.

Syntax public uint Index{ get;}

Property value A uint value indicates the index information
Default: 0

Exception None

Comment Acquires the index information at the data sampling from this RecordData class.
Outputs a numerical value starting from 1 incremented in ascending order.
When the value exceeds the upper limit of 4,294,967,295, it returns to 0 and increments again in the range of 0 to
4,294,967,295.
When a data miss occurs, the index starts again from 1.
For details, refer to the following section.
 High Speed Data Communication Module User's Manual

Item Content
Function Acquires the time (less than a second) when data are sampled.

Syntax public uint NanoTime{ get;}

Property value A uint value indicates the time (less than a second) when data are sampled
Default: 0

Exception None

Comment Acquires the time when data are sampled from this RecordData class.
Acquires the time less than a second from the number of elapsed seconds from January 1, 1970 in nanoseconds.

Item Content
Function Acquires the time when data are sampled.

Syntax public uint SecTime{ get;}

Property value A uint value indicates the time when data are sampled
Default: 0

Exception None

Comment Acquires the time when data are sampled from this RecordData class.
Acquires the number of elapsed seconds from January 1, 1970.

Item Content
Function Acquires the time synchronization execution flag.

Syntax public byte TimeSyncFlag { get;}

Property value A byte value indicates the time synchronization execution flag
Default: 0

Exception None

Comment Acquires the time synchronization execution flag from this RecordData class.
Time synchronization execution: 1
Time synchronization not executed: 0
The time synchronization execution flag becomes "1" only for RecordData transferred after the success of the time query
with the time synchronization function of High Speed Data Communication Module.
When multiple records are transferred, the time synchronization execution flag becomes "1" only for the RecordData
object to which the sampled data are stored after the time synchronization.

66 5 CREATING C# PROGRAMS
5.3 Class and Method

The following is an example when the time synchronization occurs while performing the streaming transfer.
 • When time synchronization occurs at the streaming transfer in sampling synchronization

1

2

3

4

1

2

3

4

Time
synchronization

occurrence

Sampling

Sampling

Sampling

Sampling

Transfer

Transfer

Transfer

Transfer

User program

Sever personal computer

High Speed Data
Communication
Library

High Speed Data
Communication

Module CPU module

* Executing streaming transfer
 (Sampling synchronization of transfer)

RecordData data
object received by
the user program

Data sampled from
CPU module

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 1

Time synchronization
Execution flag: 0

5 CREATING C# PROGRAMS
5.3 Class and Method 67

5

 • When the time synchronization occurs at the streaming transfer in record specification

1

2

3

1

2

3

4

High Speed
Data
Communication
Library

Sampling

Sampling

Sampling

Sampling

Transfer

CPU module

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 1

Time synchronization
Execution flag: 0

Time
synchronization

occurrence

Data sampled from
CPU module

RecordData data
object received
by the user program

High Speed Data
Communication

Module

* Executing streaming transfer
 (Transfer 3 record specification)

Sever personal computer

User program

68 5 CREATING C# PROGRAMS
5.3 Class and Method

DataValue class

Constructor

Constructor details
DataValue

Property list

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class DataValue

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.DataValue

Format Content
DataValue() Default constructor

Item Content
Function Constructor

Call format public DataValue()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store label values.
The data types and values of labels maintained previously are initialized.

Type Property name Accessor Overview Reference
bool BitData set/get *1 Stores the bit data to this DataValue class.

Acquires the bit data from this DataValue class.
Page 69 BitData

short DataType get Acquires the data type of the stored data from this
DataValue class.

Page 69 DataType

double DoubleFloatData set/get *1 Stores the float [double precision] data to this
DataValue class.
Acquires the float [double precision] data from this
DataValue class.

Page 70 DoubleFloatData

byte[] RawData set/get *1 Stores the raw data to this DataValue class.
Acquires the raw data from this DataValue class.

Page 70 RawData

int SignedDoubleWordData set/get *1 Stores the double word [signed] data to this DataValue
class.
Acquires the double word [signed] data from this
DataValue class.

Page 70
SignedDoubleWordData

short SignedWordData set/get *1 Stores the word [signed] data to this DataValue class.
Acquires the word [signed] data from this DataValue
class.

Page 71 SignedWordData

float SingleFloatData set/get *1 Stores the float [single precision] data to this
DataValue class.
Acquires the float [single precision] data from this
DataValue class.

Page 71 SingleFloatData

string StringData set/get *1 Stores the character string data to this DataValue
class.
Acquires the character string data from this DataValue
class.

Page 71 StringData

uint UnsignedDoubleWordData set/get *1 Stores the double word [unsigned] data to this
DataValue class.
Acquires the double word [unsigned] data from this
DataValue class.

Page 72
UnsignedDoubleWordData

5 CREATING C# PROGRAMS
5.3 Class and Method 69

5

*1 The get accessors other than DataType acquires data based on the data type of data stored in the DataValue class.
Therefore, if data is acquired with a data type that differs from the data type of the stored data, a cast conversion is automatically
performed.
The data type of the acquired data may differ from the data type of the stored data depending on the data type after the cast conversion.
Since the source data information may be lost or a longer processing time may be required due to the cast conversion, execute the get
accessor matches with the data type to be acquired.

Property details
BitData

DataType

ushort UnsignedWordData set/get *1 Stores the word [unsigned] data to this DataValue
class.
Acquires the word [unsigned] data from this DataValue
class.

Page 72 UnsignedWordData

Item Content
Function Acquires or stores the bit data.

Syntax public bool BitData{ get; set; }

Property value A bool value indicates the bit data
Default: false

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_BIT_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in bit unit.
Use this property when acquiring bit type data.
An exception occurs when the data type stored in the DataValue class is a character string.
Stores the bit data to this DataValue class.
Execute this method when storing bit type data.

Item Content
Function Acquires the data type of the stored data.

Syntax public short DataType { get; }

Property value A short value indicates the data type
Default: 0

Exception None

Comment Acquires the data type of the data stored in this DataValue class.
The following are the values for each output data type.
Bit: 1
Word [signed]: 10
Double word [signed]: 11
Word [unsigned]: 12
Double word [unsigned]: 13
Float [single precision]: 20
Float [double precision]: 21
String: 30
Raw: 40

Type Property name Accessor Overview Reference

70 5 CREATING C# PROGRAMS
5.3 Class and Method

DoubleFloatData

RawData

SignedDoubleWordData

Item Content
Function Acquires or stores the data in float [double precision] unit.

Syntax public double DoubleFloatData { get; set; }

Property value A double value indicates the float [double precision] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in float [double precision] unit.
Use this property when acquiring float [double precision] data.
Stores the float [double precision] data to this DataValue class.
Execute this method when storing float [double precision] data.

Item Content
Function Acquires or stores the raw data.

Syntax public byte[] RawData { get; set; }

Property value A byte array indicates the raw data
Default: null

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET
• OUT_RANGE_RAW_LENGTH

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in raw unit.
Use this property when acquiring raw data.
When data acquired from the module are stored, the same amount of data set to the acquired label is acquired. (For
example, when the data size is 4, the array element to be stored is 4.)
Stores the raw data to this DataValue class.
An exception occurs if the number of array elements of data to be stored exceeds 8192.

Item Content
Function Acquires or stores the double word [signed] data.

Syntax public int SignedDoubleWordData{ get; set; }

Property value An int value indicates the double word [signed] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in double word unit.
Use this property when acquiring double word [signed] data.
Stores the double word [signed] data to this DataValue class.
Execute this method when storing double word [signed] data.

5 CREATING C# PROGRAMS
5.3 Class and Method 71

5

SignedWordData

SingleFloatData

StringData

*1 When character string data is acquired with the "UTF-16LE" method, a single character is acquired as a two-byte data.
Therefore, the incorrect values are read if data are stored with one-byte ASCII characters.
When acquiring character string data in one-byte unit, specify the encoding code (such as "iso-8859-1") to set data in one-byte unit with
GetStringData (string encode).

*2 When character string data are stored with the "UTF-16LE" method, a single character is stored as a two-byte data. (For example, when
a character "A" is stored, it is stored as a two-byte data.)
Therefore, when the stored data is written to the label of data size 1, the exception INVALID_DATASIZE occurs.
When storing character string data in one-byte unit, specify the encoding code (such as "iso-8859-1") to set data in one-byte unit with
SetStringData (string stringData, string encode).

Item Content
Function Acquires or stores the word [signed] data.

Syntax public short SignedWordData{ get; set; }

Property value A short value indicates the word [signed] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in word unit.
Use this property when acquiring word [signed] data.
Stores the word [signed] data to this DataValue class.
Execute this method when storing word [signed] data.

Item Content
Function Acquires or stores data in float [single precision] unit.

Syntax public float SingleFloatData { get; set; }

Property value A float value indicates the float [single precision] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in float [single precision] unit.
Use this property when acquiring float [single precision] data.
Stores the float [single precision] data to this DataValue class.
Execute this method when storing float [single precision] data.

Item Content
Function Acquires or stores the character string data.

Syntax public string StringData { get; set; }

Property value A string indicates the character string data.
Default: null

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• NOT_DATA_SET
• OUT_RANGE_STRING_LENGTH
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in character string unit.
Use this property when acquiring data in character string despite of the data type of the stored data.
The encoding code of the acquired character string data is "UTF-16LE".*1

Stores the character string data to this DataValue class.
Execute this method when storing character string data.
An exception occurs if the number of characters of data to be stored exceeds 4096.
The encoding code of the stored character string data is "UTF-16LE".*2

72 5 CREATING C# PROGRAMS
5.3 Class and Method

UnsignedDoubleWordData

UnsignedWordData

Method list

*1 The GetStringData processing acquires data based on the data type of data stored in the DataValue class.
Therefore, if the data type of the stored data is not character string, a cast conversion is automatically performed.
The data type of the acquired data may differ from the data type of the stored data depending on the data type after the cast conversion.
Since the source data information may be lost or a longer processing time may be required due to the cast conversion, execute this
method when the data type is character string.

Item Content
Function Acquires or stores the double word [unsigned] data.

Syntax public uint UnsignedDoubleWordData { get; set; }

Property value A uint value indicates the double word [unsigned] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in double word unit.
Use this property when acquiring double word [unsigned] data.
Stores the double word [unsigned] data to this DataValue class.
Execute this method when storing double word [unsigned] data.

Item Content
Function Acquires or stores the word [unsigned] data.

Syntax public ushort UnsignedWordData { get; set; }

Property value A ushort value indicates the word [unsigned] data
Default: 0

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires the data stored in this DataValue class in word unit.
Use this property when acquiring word [unsigned] data.
Stores the word [unsigned] data to this DataValue class.
Execute this method when storing word [unsigned] data.

Type Method name Overview Reference
string GetStringData(string encode)*1 Acquires the character string data from this DataValue

class by specifying the character code.
Page 73 GetStringData

void SetStringData(
string stringData, string encode)

Stores the character string data to this DataValue
class by specifying the character code.

Page 73 SetStringData

5 CREATING C# PROGRAMS
5.3 Class and Method 73

5

Method details
GetStringData

*1 Use this method when the data type of data stored in the DataValue class is character string.
If this method is used for the data type other than character string, the specified character code is ignored.

SetStringData

Item Content
Function Acquires the character string data.

Call format public string GetStringData(string encode)
throws DataCommunicationException

Argument Type name string

Variable name encode

Content [IN] Encoding code of the character string data to be acquired

Return value Returns the character string data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_STRING_LENGTH
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 81 ErrorCode

Comment Acquires data stored in this DataValue class in character string unit.
Character string data are acquired with the specified encoding code.*1

Use this method when acquiring stored character string data by specifying the encoding code.
"null" is stored to the return value by default.

Item Content
Function Stores the character string data.

Call format public void SetStringData(string stringData, string encode)
throws DataCommunicationException

Argument Type name string string

Variable name stringData encode

Content [IN] Character string data [IN] Encoding code for character string

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_STRING_LENGTH
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 81 ErrorCode

Comment Stores the character string data to this DataValue class by specifying the encoding code.
An exception occurs if the number of characters of data to be stored exceeds 8192.
(Example)
• Specifying the encoding code "UTF-16LE" (two-byte single character)

An exception occurs when the character string data with the number of characters exceeding 4096 is stored.
• Specifying the encoding code "iso-8859-1" (one-byte single character)

An exception occurs when the character string data with the number of characters exceeding 8192 is stored.

74 5 CREATING C# PROGRAMS
5.3 Class and Method

ConnectionDeviceList class

Constructor

Details of the constructor
ConnectionDeviceList

Property list

Property details
ConnectionDeviceArray

*1 When values are stored using the GetConnectionDeviceList method in the Communication class, "null" is stored to the
ConnectionDeviceArray array elements in this class for the information of devices without a connection.

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class ConnectionDeviceList

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.ConnectionDeviceList

Format Content
ConnectionDeviceList() Default constructor

Item Content
Function Constructor

Call format public ConnectionDeviceList()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the list of the connected device information.
The information maintained previously is initialized.

Type Property name Accessor Overview Reference
ConnectionDevice[] ConnectionDeviceArray get Acquires the list of the connected device information

from this ConnectionDeviceList class.
Page 74
ConnectionDeviceList

Item Content
Function Acquires the list of the connected device information.

Syntax public ConnectionDevice[] ConnectionDeviceArray{ get; }

Property value A ConnectionDevice object array indicates the list of the connected device information
Default: null

Exception None

Comment Acquires the list of the connected device information from this ConnectionDeviceList class.*1

"null" is acquired by default.

5 CREATING C# PROGRAMS
5.3 Class and Method 75

5

ConnectionDevice class

Constructor

Details of the constructor
ConnectionDevice

Property list

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class ConnectionDevice

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.ConnectionDeivce

Format Content
ConnectionDevice() Default constructor

Item Content
Function Constructor

Call format public ConnectionDevice()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the list of the connected device information.

Type Property name Accessor Overview Reference
short AccessStatus get Acquires the access status from this

ConnectionDevice class.
Page 76 AccessStatus

ConnectionDeviceDetail ConnectionDeviceDetail get Acquires the details of the connected device
information from the ConnectionDevice class.

Page 76
ConnectionDeviceDetail

string ConnectionIPaddress get Acquires the connection IP address from this
ConnectionDevice class.

Page 77
ConnectionIPaddress

uint ConnectionTime get Acquires the connection time from this
ConnectionDevice class.

Page 77 ConnectionTime

string ConnectionUsername get Acquires the connection user name from this
ConnectionDevice class.

Page 77
ConnectionUsername

76 5 CREATING C# PROGRAMS
5.3 Class and Method

Property details
AccessStatus

The following are the values for the access status.

ConnectionDeviceDetail

*1 When values are stored using the GetConnectionDeviceList method in the Communication class, "null" is acquired for the access status
other than the ones indicated below.
 On connection: 10
 On connection (Buffering enabled): 11
 Reading device data: 20
 Reading device data (Buffering enabled): 21
 Writing device data: 30
 Writing device data (Buffering enabled): 31
 On transfer (High speed sampling): 40
 On transfer (High speed sampling) (Buffering enabled): 41
 Buffering transfer data (High speed sampling): 51
 On transfer (General sampling): 60
 On transfer (General sampling) (Buffering enabled): 61
 Buffering transfer data (General sampling): 71

Item Content
Function Acquires the access status.

Syntax public short AccessStatus { get; }

Property value A value for the access status
Default: 0

Exception None

Comment Acquires the access status from this ConnectionDevice class.

Access status Buffering invalid Buffering enabled
No connection 0

Connecting (The connection is established.) 10 11

Reading device data 20 21

Writing device data 30 31

On transfer (High speed sampling) 40 41

On transfer (General sampling) 60 61

Buffering transfer data (High speed sampling)  51

Buffering transfer data (General sampling)  71

On communication with tool 255 

Item Content
Function Acquires the details of the connected device information.

Syntax public ConnectionDeviceDetail ConnectionDeviceDetail { get; }

Property value A value for the connected device information
Default: null

Exception None

Comment Acquires the details of the connected device information from the ConnectionDevice class.*1

5 CREATING C# PROGRAMS
5.3 Class and Method 77

5

ConnectionIPaddress

ConnectionTime

ConnectionUsername

*1 When the access authentication is disabled, "null" is stored to the connection user name.

Item Content
Function Acquires the connection IP address.

Syntax public string ConnectionIPAddress { get; }

Property value A value for the connection IP address
Default: null

Exception None

Comment Acquires the connection IP address from this ConnectionDevice class.

Item Content
Function Acquires the connection time.

Syntax public uint ConnectionTime { get; }

Property value Connection time (the number of elapsed seconds from January 1, 1970)
Default: 0

Exception None

Comment Acquires the connection time from this ConnectionDevice class.

Item Content
Function Acquires the connection user name.

Syntax public string ConnectionUsername { get; }

Property value A value for the connection user name
Default: null

Exception None

Comment Acquires the connection user name from this ConnectionDevice class.*1

78 5 CREATING C# PROGRAMS
5.3 Class and Method

ConnectionDeviceDetail class

Constructor

Details of the constructor
ConnectionDeviceDetail

Property list

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class ConnectionDeviceDetail

Class inheritance System.Object
MitsubishiElectric.Melsoft.HSDataCommunication.ConnectionDeivceDetail

Format Content
ConnectionDeviceDetail() Default constructor

Item Content
Function Constructor

Call format public ConnectionDeviceDetail()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the details of the connected device information.

Type Property name Accessor Overview Reference
uint BufferingDataCountCurrent get Acquires the unprocessed data count (present) from

this ConnectionDeviceDetail class.
Page 79
BufferingDataCountCurrent

uint BufferingDataCountMaximum get Acquires the unprocessed data count (maximum) from
this ConnectionDeviceDetail class.

Page 79
BufferingDataCountMaximu
m

ushort HighSpeedSamplingFailureCount get Acquires the number of high speed sampling failures
from this ConnectionDeviceDetail class.

Page 79
HighSpeedSamplingFailureC
ount

short LatestErrorCode get Acquires the current error code from this
ConnectionDeviceDetail class.

Page 79 LatestErrorCode

uint PossibleBufferingDataCount get Acquires the number of data that can be buffered from
this ConnectionDeviceDetail class.

Page 79
PossibleBufferingDataCount

uint PossibleBufferingTime get Acquires the total time that data can be buffered from
this ConnectionDeviceDetail class.

Page 80
PossibleBufferingTime

ushort ProcessingOverloadCount get Acquires the number of processing overload
occurrences from this ConnectionDeviceDetail class.

Page 80
ProcessingOverloadCount

uint SamplingIntervalAverage get Acquires the sampling time (moving average) from this
ConnectionDeviceDetail class.

Page 80
SamplingIntervalAverage

uint SamplingIntervalMaximum get Acquires the sampling time (maximum) from this
ConnectionDeviceDetail class.

Page 80
SamplingIntervalMaximum

5 CREATING C# PROGRAMS
5.3 Class and Method 79

5

Property details
BufferingDataCountCurrent

BufferingDataCountMaximum

HighSpeedSamplingFailureCount

*1 When the access status is "Streaming transfer (General sampling)" or "Buffering transfer data (General sampling)", "0" is stored to the
number of high speed sampling failures.

LatestErrorCode

PossibleBufferingDataCount

Item Content
Function Acquires the unprocessed data count (present).

Syntax public uint BufferingDataCountCurrent { get; }

Property value A value of the unprocessed data count (present)
Default: 0

Exception None

Comment Acquires the unprocessed data count (present) from this ConnectionDeviceDetail class.

Item Content
Function Acquires the unprocessed data count (maximum).

Syntax public uint BufferingDataCountMaximum { get; }

Property value The value of the unprocessed data count (maximum)
Default: 0

Exception None

Comment Acquires the unprocessed data count (maximum) from this ConnectionDeviceDetail class.

Item Content
Function Acquires the number of high speed sampling failures.

Syntax public ushort HighSpeedSamplingFailureCount { get; }

Property value A value for the number of high speed sampling failures
Default: 0

Exception None

Comment Acquires the number of high speed sampling failures from this ConnectionDeviceDetail class.*1

Item Content
Function Acquires the current error code.

Syntax public short LatestErrorCode { get; }

Property value A value for the current error code
Default: 0

Exception None

Comment Acquires the current error code from this ConnectionDeviceDetail class.

Item Content
Function Acquires the number of data that can be buffered.

Syntax public uint PossibleBufferingDataCount { get; }

Property value A value for the number of data that can be buffered
Default: 0

Exception None

Comment Acquires the number of data that can be buffered from this ConnectionDeviceDetail class.

80 5 CREATING C# PROGRAMS
5.3 Class and Method

PossibleBufferingTime

ProcessingOverloadCount

SamplingIntervalAverage

SamplingIntervalMaximum

Item Content
Function Acquires the total time that data can be buffered.

Syntax public uint PossibleBufferingTime { get; }

Property value A value for the total time that data can be buffered
Default: 0

Exception None

Comment Acquires the total time that data can be buffered from this ConnectionDeviceDetail class.

Item Content
Function Acquires the number of processing overload occurrences.

Syntax public ushort ProcessingOverloadCount { get; }

Property value A value for the number of processing overload occurrences
Default: 0

Exception None

Comment Acquires the number of processing overload occurrences from this ConnectionDeviceDetail class.

Item Content
Function Acquires the sampling time (moving average).

Syntax public uint SamplingIntervalAverage { get; }

Property value A value for the sampling time (moving average)
Default: 0

Exception None

Comment Acquires the sampling time (moving average) from this ConnectionDeviceDetail class.

Item Content
Function Acquires the sampling time (maximum).

Syntax public uint SamplingIntervalMaximum { get; }

Property value A value for the sampling time (maximum)
Default: 0

Exception None

Comment Acquires the sampling time (maximum) from this ConnectionDeviceDetail class.

5 CREATING C# PROGRAMS
5.3 Class and Method 81

5

DataCommunicationException class

Constructor

Details of the constructor
DataCommunicationException

Property list

Property details
ErrorCode

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public class DataCommunicationException

Class inheritance System.Object
System.Exception

System.ApplicationException
MitsubishiElectric.Melsoft.HSDataCommunication.DataCommunicationException

Format Content
DataCommunicationException() Default constructor

Item Content
Function Constructor

Call format public DataCommunicationException()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the enumerators of the exceptions at the method execution.
The enumerators of the exceptions maintained previously are initialized.

Type Property name Accessor Overview Reference
DataCommunicationError ErrorCode get Acquires the enumerators of the exceptions from this

DataCommunicationException class.
Page 81 ErrorCode

Item Content
Function Acquires the data type of the stored data.

Syntax public DataCommunicationError ErrorCode { get; }

Property value A DataCommunicationError enumerator indicates the data type
Default: NONE

Exception None

Comment Acquires the enumerators of the exceptions from this DataCommunicationException class.
For the exception handler occurrence, refer to the following section.
 Page 82 DataCommunicationError enumerator

82 5 CREATING C# PROGRAMS
5.3 Class and Method

DataCommunicationError enumerator

Enumerator list

Item Content
Namespace MitsubishiElectric.Melsoft.HSDataCommunication

Class syntax public enum DataCommunicationError

Class inheritance System.Object
System.Enum<DataCommunicationError>

MitsubishiElectric.Melsoft.HSDataCommunication.DataCommunicationError

Enumerator Description Corrective action
ABORTED_BY_PEER Method suspension error Check if a method other than StopStreamingTransfer is

executed during the streaming transfer.

ARGUMENT_NULL Null was specified for the argument.
A null object exists in the object specified for the
argument.

Review the value specified for the argument, and
execute the method again.

AUTHENTICATION_FAILED The access authentication failed. Check the account authentication setting and check if
the specified user name and password are correct.

BUFFERING_CONNECT_OVER The number of connections in which the buffering
data transfer is enabled exceeded the maximum
number of applicable connections.

Refer to the event history/connection history, check if
there are two connections which are enabled buffering
transfer data.
Take the following corrective action as necessary.
• Disconnect the connection of the user program

executing Connect
• Stop buffering transfer data

CONNECT_OVER The maximum number of devices that can be
connected exceeded.

Refer to the event history/connection history, check if
the connection for High Speed Data Communication
Module is more than 5.
Also, check if there is an unexpected access when
CONNECT_OVER occurred.
Take the following corrective action as necessary.
• Stop accessing from Configuration Tool
• Disconnect the connection of the user program

executing Connect
• Stop buffering transfer data

CONNECT_REFUSED System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.

DISCONNECTED A disconnection was attempted to the connection
of the High Speed Data Communication Module
which is not connected.
A communication was attempted without the
reconnection after the line disconnection event
occurred.

Connect the line.

DISPOSED_ERROR The line was disconnected. Execute the connection processing again.

EXCHANGE_FROM_STRING_FAILED The conversion from the character string failed. Check if .NET Framework 3.5 is installed.

EXCHANGE_TO_BIT_FAILED A conversion from character string data to bit
device was attempted.

Check the data type of the stored data. If the data type is
character string, do not acquire the data as a bit device.

EXCHANGE_TO_NUMBER_FAILED A conversion from character string data to raw
data is failed.

Check that the stored character string can be converted
to acquirable data (integers or decimals) with the
specified method.
Check that the stored character string can be converted
to acquirable data with the specified method.

EXCHANGE_TO_STRING_FAILED A conversion to character string data failed. Check if .NET Framework 3.5 is installed.

EXECUTING Another command was executed from one
instance while the module was in processing.

Execute the method again after canceling or completing
the processing being executed.

GENERAL_ERROR Unknown error Check if .NET Framework 3.5 is installed.

INTERRUPTED_ERROR System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.INVALID_CONNECT

INVALID_DATASIZE A data size that exceeds the label data size
specified in Configuration Tool.

Check that the specified label is correct.
Check that the stored data size (byte) does not exceed
the data size set in Configuration Tool.

5 CREATING C# PROGRAMS
5.3 Class and Method 83

5

INVALID_DATATYPE A data type that differs from the data type of the
label written in Configuration Tool was specified.

Check that the specified label is correct.
Check that the data type of the stored data is correct.

INVALID_IPADDRESS The specified IP address is invalid. Check that the specified IP address is within the IP
address range.

INVALID_REQUEST An invalid request was executed. Check if a computer is connected to a module other than
QJ71DC96 MELSEC-Q Series-compatible High Speed
Data Communication Module.

INVALID_RESPONSE System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.INVALID_STREAMING

IO_ERROR A communication error occurred. Check the following.
• High Speed Data Communication Module status,

network connection status
• Cable connection.

Review the value specified for the IP address, and then
execute the method again.

IPADDRESS_NULL Null was specified for the IP address. Check the value specified for the IP address, and then
execute the method again.

NONE No errors 

NOT_CONNECTED_YET The connection processing is not executed. Execute the connection processing, and then executed
the method again.

NOT_DATA_SET Data is not stored. Store the data and execute the method again.

NOT_PERMITTED_IPADDRESS An IP address which is not authorized to connect
was specified.

Check the specified IP address for the connection, and
check the access authentication.
Check that the specified IP address is correct.

NOT_SAME_ELEMENT_COUNT The number of specified labels or devices does not
match with the number of data.

Check the specified argument, and set each number of
elements to be the same amount.

OUT_RANGE_ADDITIONAL_TIMETYPE The specified type of time information to be
appended is out of the range.

Check that the specified type of additional time
information is within the range.

OUT_RANGE_CONNECT_MODE System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.

OUT_RANGE_CONNECTION_NO The specified connection number is out of the
range.

Check that the specified connection number is within the
range of 1 to 5.

OUT_RANGE_DEVICE_COUNT The specified number of devices is out of the
range.

Check that the specified number of devices is within the
range.

OUT_RANGE_DEVICE_NAME_LENGTH The length of the specified device name is out of
the range.

Check that the length of the specified device name is
within the range.

OUT_RANGE_LABEL_COUNT The specified number of labels is out of the range. Check that the specified number of labels is within the
range.

OUT_RANGE_LABEL_NAME_LENGTH The length of the specified label name is out of the
range.

Check that the length of the specified label name is
within the range.

OUT_RANGE_LABELGROUP_NAME_LENG
TH

The length of the specified label group name is out
of the range.

Check that the length of the specified label group name
is within the range.

OUT_RANGE_PASSWORD The length of the specified password is out of the
range.

Check that the length of the specified password is within
the range.

OUT_RANGE_RAW_LENGTH The number of the specified raw data is out of the
range.

Check that the number of the specified raw data is within
the range.

OUT_RANGE_STRING_LENGTH The length of the specified character string is out
of the range.

Check that the length of the specified character string is
within the range.

OUT_RANGE_TIMEOUT The specified timeout period is out of the range. Check that the specified timeout period is within the
range.

OUT_RANGE_TRANSFER_TIME The specified transfer cycle is out of the range. Check that the specified transfer cycle is within the
range.

OUT_RANGE_USER_NAME The length of the specified user name is out of the
range.

Check that the length of the specified user name is
within the range.

OUT_RANGE_WORD_SIZE The total number of words of the specified label is
out of the range.

Check that the number of words of the specified label is
within the range.

PASSWORD_NULL Null was specified for the password. Review the value of the specified password, and then
execute the method again.

RECONNECT A connection is attempted to the module which is
already connected.

To reconnect, disconnect the line and then connect
again.

Enumerator Description Corrective action

84 5 CREATING C# PROGRAMS
5.3 Class and Method

STREAMING_CONNECT_OVER The maximum number of devices that can be
connected for the streaming transfer exceeded.

Refer to the event history/connection history, check if
the connection of the user program is more than 4.
Also, check if there is an unexpected access when
STREAMING_CONNECT_OVER occurred.
Take the following corrective action as necessary.
• Stop accessing from Configuration Tool
• Disconnect the connection of the user program

executing Connect
• Stop buffering transfer data

TIMEOUT The communication was timed-out. Check the following:
• High Speed Data Communication Module status,

network connection status
• Cable connection
• Network connection status of CPUs on other stations

Execute the method again after performing the following
actions.
• Set a longer timeout period for the TimeOut property.
• Reduce the number of CPUs on other stations that

are accessed simultaneously.
• Reduce the number of device points that are

accessed simultaneously.
Review the value of the specified IP address, and then
execute the method again.
When using the StartStreamingTransferByInterval
method or StartStreamingTransfer method, refer to the
details of the method to be used.
 Page 47 StartStreamingTransfer
 Page 48 StartStreamingTransfer
 Page 49 StartStreamingTransferByInterval

UNSUPPORTED_ENCODING The unsupported character code is specified. Check if .NET Framework 3.5 is installed.
Check if the specified character code is supported by
.NET Framework 3.5.

Enumerator Description Corrective action

5 CREATING C# PROGRAMS
5.4 Build C# Program 85

5

5.4 Build C# Program
This section explains how to build the user program created with C#.

Operating procedure
 • Open the solution file to build the program, and select [Build]  [Build Solution].
The alternative operation to execute the build: select the project to be build on the solution explorer, and select [Build] on the
right-click menu.

86 5 CREATING C# PROGRAMS
5.4 Build C# Program

MEMO

6 EXECUTING C# USER PROGRAM
6.1 Copying Execution File for User Program to Server Personal Computer 87

6

6 EXECUTING C# USER PROGRAM
This chapter explains how to execute a user program on a server personal computer.

6.1 Copying Execution File for User Program to
Server Personal Computer

Copy the execution file (XXXX.exe) created by a development personal computer and High Speed Data Communication
Library (HSDataComLib.dll) to a server personal computer.
Copying the user program (such as XXXX.cs) used for programming on the development personal computer is not needed.

6.2 Executing Processing from Server Personal
Computer

Execute the execution file to start processing.
Execute the execution file according to the format.

88 6 EXECUTING C# USER PROGRAM
6.2 Executing Processing from Server Personal Computer

MEMO

89

PA
R

T
3

PART 3 CREATING Java
PROGRAMS

This part explains the creating method of Java program and class method.

7 CREATING Java PROGRAMS

8 EXECUTING Java USER PROGRAM

90 7 CREATING Java PROGRAMS
7.1 Preparing Development Environment

7 CREATING Java PROGRAMS

7.1 Preparing Development Environment
Copying High Speed Data Communication Library
Copy High Speed Data Communication Library under the "Library" folder in the compressed file of this product to a folder (the
working folder when creating the user program) on a personal computer.
The following diagram shows the structure of the "Library" folder.

Using High Speed Data Communication Library
To use the classes and methods provided by High Speed Data Communication Library, High Speed Data Communication
Library needs to be imported on the source code of the user program.

Using Java class library
Write the import declaration on the user program to use High Speed Data Communication Library.
For the import declaration, write "jp.co.mitsubishielectric.hsdatacommunication.*" or write only classes necessary for the user
program.
For details of the import declaration, refer to the Java language specifications.
The following is an example of the import declaration.

Ex.

When importing "jp.co.mitsubishielectric.hsdatacommunication.*"

Ex.

When importing only necessary classes

//Import High Speed Data Communication Library
import jp.co.mitsubishielectric.hsdatacommunication.*;

//Import High Speed Data Communication Library
import jp.co.mitsubishielectric.hsdatacommunication.Communication;
import jp.co.mitsubishielectric.hsdatacommunication.DataCommunicationException;
import jp.co.mitsubishielectric.hsdatacommunication.DataCommunicationError;

<Library> <C#> HSDataComLib.dll

<Java> hsdatacomlib.jar

<Samples> Sample.dcp

<C#>

<Java>

(C# class library)

(Java class library)

Sample program storage folder for Visual C# for the
streaming transfer function and the read/write function
with label or device specification

Sample program storage folder for Java for the
streaming transfer function and the read/write function
with label or device specification

<> is the folder

Project file for sample programs

7 CREATING Java PROGRAMS
7.2 Designing Programs 91

7

7.2 Designing Programs
Streaming transfer
The following flow chart shows the processes to execute the streaming transfer after connecting to a High Speed Data
Communication Module and registering the target label list of the streaming transfer. In order to receive the data to be
transferred, register the transfer data receive processing with the addListener method of Communication class.

No

Yes

Start

Register the created streaming transfer data receive
processing and communication event notification processing.

(Communication.addListener method)

Connect to a High Speed Data Communication Module.
(Communication.connect method)

Acquire the label list set to the High Speed Data
Communication Module. (Communication.getLabelList/

Communication.getLabelListWithComment method)

Register the label name to be accessed to data object
RegisteredLabelName.

Disconnect the High Speed Data Communication Module.
(Communication.disconnect method)

Stop streaming transfer.
(Communication.stopStreamingTransfer method)

Wait processing
(Operates processing of transfer data reception for

another thread/change in status reception)

Complete

* When enabling the buffering transfer data function,
specify the buffering mode and connect to a module.
(Communication.setBufMode method)

* Operates the registered processing to addListener
method when transferred the sampled data from High
Speed Data Communication Module, or when the status
change event occurred.

Register the label list as a target for streaming transfer.
(Communication.setStreamingLabel/

Communication.setStreamingLabelGroup method)

Start streaming transfer.
(Communication.startStreamingTransfer/

Communication.startStreamingTransferByInterval method)

Were an error or end
conditions fulfilled?

92 7 CREATING Java PROGRAMS
7.2 Designing Programs

Receiving streaming transfer data
The following flow chart shows the processes of the user program when received data transfer result from a High Speed Data
Communication Module after starting streaming transfer.

Acquire the record of the received transfer data.
(ReceiveData.ReceiveDataList method)

Event notification of streaming transfer

Execute receive
TransferData listener

Repeat processing for the acquired
number of records

Acquire the data included in a record.
(RecordData.getDataList method)

Acquire a data type.
(DataValue.DataType method)

Execute the method depending on the data type.
(such as DataValue.getSignedWordData method)

Execute the processing which operates
the acquired data.

Repeat processing for the number of data
completion

Repeat processing for the number of record
completion

Complete

Repeat processing for the acquired
number of data

7 CREATING Java PROGRAMS
7.2 Designing Programs 93

7

Receiving notifications of module operation status changes
The following flow chart shows the processes when received the notification of module status changes from a High Speed
Data Communication Module. End the wait process of the streaming transfer as necessary.

Event notification of status change

Execute receiveCommuni-
cation Event event

Acquire the argument status and
the value of errorCode.

Complete

Execute processing depending on the
value of status or errorCode.

(such as the end processing of the wait processing)

94 7 CREATING Java PROGRAMS
7.2 Designing Programs

Reading data using label specification
The following flow chart shows the operations to read data by specifying the target label list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Connect to a High Speed Data Communication Module.
(Communication.connect method)

Acquire the label list set to a High Speed Data
Communication Module.(Communication.getLabelList/

Communication.getLabelListWithComment method)

Store the label name to be accessed to the
data object RegisteredLabelName.

Create the instance of data object RecordData
to pass the argument.

Was it successful?

Disconnect the High Speed Data Communication Module.
(Communication.disconnect method)

Complete

Execute reading.
(Communication.readDataByLabel method)

Execute an error occurrence
processing.

Acquire the read data from
data object RecordData.

7 CREATING Java PROGRAMS
7.2 Designing Programs 95

7

Writing data using label specification
The following flow chart shows the operations to write data by specifying the target label list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Complete

Disconnect the High Speed Data Communication Module.
(Communication.disconnect method)

Execute an error occurrence
processing.

Connect to a High Speed Data Communication Module.
(Communication.connect method)

Acquire the label list set to the High Speed Data
Communication Module.(Communication.getLabelList/

Communication.getLabelListWithComment method)

Store the label name to be accessed to the
data object RegisteredLabelName.

Store the write data to data object RecordData

Was it successful?

Execute writing.
(Communication.writeDataByLabel method)

96 7 CREATING Java PROGRAMS
7.2 Designing Programs

Reading data using device specification
The following flow chart shows the operations to read data by specifying the target device list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Start

Complete

Disconnect the High Speed Data Communication Module.
(Communication.disconnect method)

Connect to a High Speed Data Communication Module.
(Communication.connect method)

Store the device name to be accessed to the
String object.

Was it successful?

Acquire the read data from the argument.
Execute an error occurrence

processing.

Execute writing.
(Communication.readDataByDevice method)

7 CREATING Java PROGRAMS
7.2 Designing Programs 97

7

Writing data using device specification
The following flow chart shows the operations to write data by specifying the target device list for the data read function after
connecting to a High Speed Data Communication Module.

No

Yes

Disconnect the High Speed Data Communication Module.
(Communication.disconnect method)

Complete

Start

Connect to a High Speed Data Communication Module.
(Communication.connect method)

Store the device name to be accesses to String object.

Store the write data to the short array.

Execute writing.
(Communication.writeDataByDevice method)

Was it successful?

Execute an error occurrence
processing.

98 7 CREATING Java PROGRAMS
7.2 Designing Programs

Programming precautions

connect/disconnect processing for Communication class
The efficient communication can be established by executing this method only once at the beginning and the end of the
program.

Streaming transfer data receive processing
In data receive processing of the streaming transfer, if a large amount of data are received and thus the longer processing
time is required, the transfer data received from the module during the processing are discarded.
Confirm the continuous data reception by checking the index information of each record exists in the reception data are in
sequence.
Note that the sequential order of the index information is corrupted even when a data miss occurs on the module side.
For details of conditions for data miss occurrences, refer to the following section.
 High Speed Data Communication Module User's Manual

addListener processing for Communication class
Execute this method before executing the connect processing for Communication class.
If the addListener processing is executed after executing the connect processing, the streaming transfer from the High Speed
Data Communication Module and module status changes cannot be received.

get processing of DataValue class
The get processing other than getDataType of the DataValue class acquires data based on the data type of data stored in the
DataValue class.
Therefore, if data is acquired with a data type that differs from the data type of the stored data, a cast conversion is
automatically performed.
The data type of the acquired data may differ from the data type of the stored data depending on the data type after the cast
conversion.
Since the source data information may be lost or a longer processing time may be required due to the cast conversion,
execute the get processing matches with the data type to be acquired.

Communication during streaming transfer
A 06B0H error occurs when any of the following Communication class methods is executed for a single instance after
executing the startStreamingTransfer/startStreamingTransferByInterval method.
Execute the following methods after executing the stopStreamingTransfer method.
 • getConnectionDeviceList
 • getLabelList
 • getLabelListWithComment
 • setStreamingLabel
 • setStreamingLabelGroup
 • startStreamingTransferByInterval
 • startStreamingTransfer
 • stopStreamingDataBuffering
 • readDataByLabel
 • readDataByDevice
 • writeDataByLabel
 • writeDataByDevice

7 CREATING Java PROGRAMS
7.3 Class and Method 99

7

7.3 Class and Method
The classes in High Speed Data Communication Library are the communication class that realizes the streaming transfer
function and the data read/write function, the notification class to receive streaming transfer data and module status changes,
and the data object class that stores data for communication.
The following figure shows the functions of each class.

Class list

Communication class

Notification class

Class name Overview Reference
Communication This class processes the communication between the server personal computer and High

Speed Data Communication Module.
Performs the connection to High Speed Data Communication Module, the streaming
transfer, and the data read/write function.

Page 101 Communication
class

Class name Overview Reference
Notification This class notifies data transfers and status changes from High Speed Data

Communication Module to user programs.
Inherit this class to the class executing the streaming transfer receive processing.
The receive processing for streaming-transferred data and module status changes are
implemented.

Page 123 Notification class

Data
object
class

Data
object
class

Data transfer of streaming transfer data

Server
personal computer

Request

Response

Transfer

Device
memory

High Speed Data
Communication

Module

Request and response from server personal computer
User program

(Library)

Communication

Notification

class

class

100 7 CREATING Java PROGRAMS
7.3 Class and Method

Data object class

Exception class

Class name Overview Reference
LabelGroupList This class stores information of the label group list.

Stores information of the label group acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 125 LabelGroupList
class

LabelGroup This class stores information of the label group.
Stores information of the label acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 126 LabelGroup class

DataLabel This class stores label names, output data types, and data sizes.
Stores information of the label acquired from the High Speed Data Communication
Module using the label list acquisition function.

Page 128 DataLabel class

RegisteredLabelName This class stores registration target label names and data read/write label names.
Stores label group names and label names used for the streaming transfer function and
the data read/write function.

Page 130
RegisteredLabelName class

ReceiveData This class stores the data list sent by the streaming transfer. Page 132 ReceiveData class

RecordData This class stores data used for the streaming transfer function and the data read/write
function.
Data received from the High Speed Data Communication Module is stored in the
streaming transfer function.
Values read from the specified labels are stored in the data read function.
Values written to the specified labels are stored in the data write function.

Page 133 RecordData class

DataValue This class store values for the specified data type.
Stores data match with the output data type of label registered as the target of streaming
transfer when performing the streaming transfer.

Page 137 DataValue class

ConnectionDeviceList This class stores the list of the connected device information. Page 147
ConnectionDeviceList class

ConnectionDevice This class stores the connected device information. Page 148 ConnectionDevice
class

ConnectionDeviceDetail This class stores the details of the connected device information. Page 151
ConnectionDeviceDetail
class

Class name Overview Reference
DataCommunicationException This class stores exceptions of listed enumerators in the methods for the communication

class and the data object class.
The user program implements the exception handler.

Page 154
DataCommunicationExceptio
n class

DataCommunicationError This class defines the detailed information at the time of error occurrence in the methods
for the communication class and the data object class.

Page 155
DataCommunicationError
enumerator

7 CREATING Java PROGRAMS
7.3 Class and Method 101

7

Communication class

Constructor

Details of the constructor
Communication

Method list

Item Content
Class syntax public class Communication extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.Communication

Format Content
Communication() Default constructor

Item Content
Function Constructor

Call format public Communication()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to communicate between the server personal computer and the High Speed Data Communication
Module.

Type Method name Overview Reference
void addListener(

Notification listener)
Registers a listener to receive streaming transfer
notifications and module status changes to this
Communication class.

Page 103 addListener

void connect(
java.lang.String ipAddress)

Opens a communication line to the High Speed Data
Communication Module, and establishes a
connection.

Page 103 connect

void connect(
java.lang.String ipAddress,
java.lang.String userName,
java.lang.String password)

Opens a communication line to the High Speed Data
Communication Module in which the access
authentication is enabled, and establishes a
connection.

Page 104 connect

void disconnect() Closes the communication line to the High Speed Data
Communication Module, and disconnects the
connection.

Page 105 disconnect

byte getAdditionTimeType() Acquires the type of time appended to each transfer
record from this Communication class.

Page 105
getAdditionTimeType

int getBufferingTimeOut() Acquires the timeout period of the buffering transfer
data function from this Communication class.

Page 105
getBufferingTimeOut

byte getBufMode() Acquires the buffering transfer data mode from this
Communication class.

Page 105 getBufMode

short getConnectionDeviceList(
ConnectionDeviceList connectionDeviceList)

Acquires the list of status for devices connected with
High Speed Data Communication Module.

Page 106
getConnectionDeviceList

short getLabelList(
LabelGroupList labelGroupList)

Acquires the label list set for the High Speed Data
Communication Module.

Page 107 getLabelList

short getLabelListWithComment(
LabelGroupList labelGroupList)

Acquires the label list, including comments, set on the
High Speed Data Communication Module.

Page 108
getLabelListWithComment

short getTimeOut() Acquires the timeout period from this Communication
class.

Page 108 getTimeOut

short readDataByDevice(
java.lang.String[] deviceList,
short[] deviceValue)

Reads data by specifying the device name from the
programmable controller CPU to the server personal
computer.

Page 109 readDataByDevice

102 7 CREATING Java PROGRAMS
7.3 Class and Method

*1 A 06B0H error occurs when any of the following Communication class methods is executed for a single instance after executing the
startStreamingTransfer/startStreamingTransferByInterval method. Execute the following methods after executing the
stopStreamingTransfer method.
 getConnectionDeviceList
 getLabelList
 getLabelListWithComment
 setStreamingLabel
 setStreamingLabelGroup
 startStreamingTransferByInterval
 startStreamingTransfer
 stopStreamingDataBuffering
 readDataByLabel
 readDataByDevice
 writeDataByLabel
 writeDataByDevice

short readDataByLabel(
RegisteredLabelName[] readLabelList,
RecordData readDeviceList)

Reads data by specifying the label name from the
programmable controller CPU to the server personal
computer.

Page 110 readDataByLabel

void setAdditionTimeType(
byte type)

Stores the type of time appended to each transfer
record to this Communication class.

Page 110
setAdditionTimeType

void setBufferingTimeOut(
int timeOut)

Stores the timeout period of the buffering transfer data
function to this Communication class.

Page 111
setBufferingTimeOut

void setBufMode(
byte bufMode)

Stores the buffering transfer data mode at the
streaming transfer to this Communication class.

Page 111 setBufMode

short setStreamingLabel(
RegisteredLabelName[] labelList)

Registers the data list streamed from the
programmable controller CPU to the server personal
computer by specifying the label name to the High
Speed Data Communication Module.

Page 112 setStreamingLabel

short setStreamingLabelGroup(
java.lang.String[] labelGroupList)

Registers the data list streamed from the
programmable controller CPU to the server personal
computer by specifying the label name to the High
Speed Data Communication Module.

Page 113
setStreamingLabelGroup

void setTimeOut(
short timeOut)

Stores the timeout period to this Communication class.
Specifies the response timeout period for
communication.

Page 114 setTimeOut

short startStreamingTransfer(
int samplingTime)*1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle.

Page 115
startStreamingTransfer

short startStreamingTransfer(
int samplingTime,
short transferCount)*1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle and the number of transfer
records

Page 116
startStreamingTransfer

short startStreamingTransferByInterval(
int samplingTime, int transferTime)*1

Starts the streaming transfer of data registered on the
High Speed Data Communication Module.
Specify the sampling cycle and the transfer time.

Page 117
startStreamingTransferByInte
rval

short stopStreamingDataBuffering(
short connectNum)

Discards the transfer data buffered with the buffering
transfer data function, and disconnects the line.

Page 118
stopStreamingDataBuffering

short stopStreamingTransfer() Stops the streaming transfer. Page 119
stopStreamingTransfer

short writeDataByDevice(
java.lang.String[] deviceList,
short[] deviceValue)

Writes data by specifying the device name from the
server personal computer to the programmable
controller CPU.

Page 120 writeDataByDevice

short writeDataByLabel(
RegisteredLabelName[] writeLabelList,
RecordData writeDeviceList)

Writes data by specifying the label name from the
server personal computer to the programmable
controller CPU.

Page 121 writeDataByLabel

Type Method name Overview Reference

7 CREATING Java PROGRAMS
7.3 Class and Method 103

7

Method details
addListener

*1 Execute this method before executing the connect method.

connect

*1 To receive the streaming transfer data and module status changes, execute the addListener method before executing the connect
method.

Item Content
Function Adds a listener to the user program.

Call format public void addListener(Notification listener)
throws DataCommunicationException

Argument Type name Notification

Variable name listener

Content [IN/OUT] Registration destination for listener

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• ARGUMENT_NULL

For details, refer to the following section.
 Page 154 getErrorCode

Comment Registers a listener to receive streaming transfer data and to notify module status changes to this Communication class.*1

Item Content
Function Opens a communication line to a High Speed Data Communication Module whose access authentication is enabled, and

establishes a connection.

Call format public void connect(java.lang.String ipAddress)
throws DataCommunicationException

Argument Type name java.lang.String

Variable name ipAddress

Content [IN] IP address for the High Speed Data Communication Module

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• AUTHENTICATION_FAILED
• BUFFERING_CONNECT_OVER
• CONNECT_OVER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INTERRUPTED_ERROR
• INVALID_CONNECT
• INVALID_IPADDRESS
• INVALID_REQUEST
• INVALID_RESPONSE
• INVALID_STREAMING
• IO_ERROR
• IPADDRESS_NULL
• NOT_PERMITTED_IPADDRESS
• OUT_RANGE_ADDITIONAL_TIMETYPE
• OUT_RANGE_TIMEOUT
• RECONNECT
• STREAMING_CONNECT_OVER
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Opens a communication line to the High Speed Data Communication Module.*1

When using multiple lines to communicate with a single High Speed Data Communication Module, create communication
class instances for each communication and execute the connect method.

104 7 CREATING Java PROGRAMS
7.3 Class and Method

connect

*1 To receive the streaming transfer data and module status changes, execute the addListener method before executing the connect
method.

*2 When a High Speed Data Communication Module on which the account authentication is disabled is connected, the specified user
name and the password are ignored.

Item Content
Function Opens a communication line to the High Speed Data Communication Module, and establishes a connection.

Call format public void connect(java.lang.String ipAddress, java.lang.String userName, java.lang.String password)
throws DataCommunicationException

Argument Type name java.lang.String java.lang.String java.lang.String

Variable name ipAddress userName password

Content [IN] IP address for the target device [IN] Connection user name (up to 20
characters)*1

[IN] Password for the connection user
name (up to 16 characters)*2

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• AUTHENTICATION_FAILED
• BUFFERING_CONNECT_OVER
• CONNECT_OVER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INTERRUPTED_ERROR
• INVALID_CONNECT
• INVALID_IPADDRESS
• INVALID_REQUEST
• INVALID_RESPONSE
• INVALID_STREAMING
• IO_ERROR
• IPADDRESS_NULL
• NOT_PERMITTED_IPADDRESS
• OUT_RANGE_ADDITIONAL_TIMETYPE
• OUT_RANGE_PASSWORD
• OUT_RANGE_TIMEOUT
• OUT_RANGE_USER_NAME
• PASSWORD_NULL
• RECONNECT
• STREAMING_CONNECT_OVER
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Opens a communication line to the High Speed Data Communication Module in which the account authentication is
enabled.*2

When using multiple lines to communicate with a single High Speed Data Communication Module, create communication
class instances for each communication and execute the connect method.

7 CREATING Java PROGRAMS
7.3 Class and Method 105

7

disconnect

getAdditionTimeType

getBufferingTimeOut

getBufMode

Item Content
Function Disconnects the connection to the High Speed Data Communication Module.

Call format public void disconnect()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• NOT_CONNECTED_YET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Closes the established communication line, and disconnects the connection.

Item Content
Function Acquires the type of time appended to each transfer record.

Call format public byte getAdditionTimeType()

Argument Type name 

Variable name 

Content 

Return value Returns the time type.
0: local time
1: UTC

Comment Acquires the type of time appended to each transfer record from this Communication class.
"1: UTC" is stored to the return value by default.

Item Content
Function Acquires the timeout period of the buffering transfer data function.

Call format public int getBufferingTimeOut()

Argument Type name 

Variable name 

Content 

Return value Timeout period of the buffering transfer data function: 0.60 to 86400 seconds

Comment Acquires the timeout period of the buffering transfer data function from this Communication class.
"0" is stored to the return value by default.

Item Content
Function Acquires the buffering transfer data mode of the streaming transfer.

Call format public void getBufMode()

Argument Type name 

Variable name 

Content 

Return value Buffering transfer data mode
Invalidity (without buffering transfer data): Other than 1
Validity (with buffering transfer data): 1

Comment Acquires the buffering transfer data mode from this Communication class.
"0: invalidity (without buffering transfer data)" is stored to the return value by default.

106 7 CREATING Java PROGRAMS
7.3 Class and Method

getConnectionDeviceList
Item Content
Function Acquires the list of status for devices connected with High Speed Data Communication Module.

Call format public short getConnectionDeviceList(ConnectionDeviceList connectionDeviceList)
throws DataCommunicationException

Argument Type name ConnectionDeviceList

Variable name connectionDeviceList

Content [IN/OUT] List of status for devices connected with High Speed Data Communication Module

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the list of status for devices connected with High Speed Data Communication Module.
Use this method to check the connections when executing the stopStreamingDataBuffering method.

7 CREATING Java PROGRAMS
7.3 Class and Method 107

7

getLabelList

*1 "NULL" is stored to the label group comments and label comments in the acquired label list.
*2 When settings are not written to the High Speed Data Communication Module, or when label groups which are accessible with the

account used for the connection do not exit, the number of label groups stored in labelGroupList is set to 0.
When the number of label groups is 0 and the array element is accessed, the exception ArrayIndexOutOfBoundsException occurs.
Therefore, access the array element after checking the acquired number of label groups is not 0.

*3 When a label group without labels is set, the number of labels in the label group without labels is set to 0 among the label groups stored
in labelGroupList.
When the number of labels is 0 and the array element is accessed, the exception ArrayIndexOutOfBoundsException occurs.
Therefore, access the array element after checking the acquired number of labels is not 0.

Item Content
Function Acquires the label list set on the High Speed Data Communication Module.

Call format public short getLabelList(LabelGroupList labelGroupList)
throws DataCommunicationException

Argument Type name LabelGroupList

Variable name labelGroupList

Content [IN/OUT] Stores the label list set on the High Speed Data Communication Module.*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• EXCHANGE_FROM_STRING_FAILED
• EXCHANGE_TO_STRING_FAILED
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the label list set on the High Speed Data Communication Module.*2,*3

Labels of label groups which are accessible with the account used for the connection can be acquired.

108 7 CREATING Java PROGRAMS
7.3 Class and Method

getLabelListWithComment

*1 When settings are not written to the High Speed Data Communication Module, or when label groups which are accessible with the
account used for the connection do not exit, the number of label groups stored in labelGroupList is set to 0.
When the number of label groups is 0 and the array element is accessed, the exception ArrayIndexOutOfBoundsException occurs.
Therefore, access the array element after checking the acquired number of label groups is not 0.

*2 When a label group without labels is set, the number of labels in the label group without labels is set to 0 among the label groups stored
in labelGroupList.
When the number of labels is 0 and the array element is accessed, the exception ArrayIndexOutOfBoundsException occurs.
Therefore, access the array element after checking the acquired number of labels is not 0.

getTimeOut

Item Content
Function Acquires the label list, including comments, set on the High Speed Data Communication Module.

Call format public short getLabelListWithComment(LabelGroupList labelGroupList)
throws DataCommunicationException

Argument Type name LabelGroupList

Variable name labelGroupList

Content [IN/OUT] Stores the label list set on the High Speed Data Communication Module.

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• EXCHANGE_FROM_STRING_FAILED
• EXCHANGE_TO_STRING_FAILED
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the label list, including comments, set on the High Speed Data Communication Module.*1,*2

Labels of label groups which are accessible with the account used for the connection can be acquired.

Item Content
Function Acquires the timeout period for processing.

Call format public short getTimeOut()

Argument Type name 

Variable name 

Content 

Return value Timeout period: returns 1 to 255 (In seconds).

Comment Acquires the response timeout period for the connected processing request from this Communication class.
"20" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 109

7

readDataByDevice

*1 An exception occurs if the number of words for the labels to be read exceeds 65536 words.
*2 K5 to K8 cannot be specified for a device name. When specifying K5 to K8, combine and specify the digit specifications for K1 to K4.

(Example) For K5M0
Specify as K4M0 and K1M16.

*3 If a word device or the digit specification of device is specified, one-word device value is acquired. If a bit device or the bit specification
of device is specified, 0 or 1 is acquired for the corresponding bit.
For accessible devices, refer to the following section.
 High Speed Data Communication Module User's Manual
When the consecutive data of 2 words or more are acquired, read the device values by specifying multiple devices.
(Example) When a two-word device value is acquired from D0
Acquire the device value specifying D0 and D1, and process the acquired device value to be two-word data.

*4 An error occurs when the account authentication function is enabled and if the read authority for device specification is not applicable
with the connected account.

*5 Device values other than those of the control CPU of the High Speed Data Communication Module cannot be read. When reading
device values from programmable controller CPUs other than the control CPU of the High Speed Data Communication Module, specify
the labels.

Item Content
Function Reads device values of the specified devices from the programmable controller CPU to the server personal computer.*1

Call format public short readDataByDevice(java.lang.String[] deviceList, short[] deviceValue)
throws DataCommunicationException

Argument Type name java.lang.String[] short[]

Variable name deviceList deviceValue

Content [IN] List of device names to be read*2

(up to 32 characters for each device name)
[IN/OUT] Storage destination for read device value

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_DEVICE_COUNT
• OUT_RANGE_DEVICE_NAME_LENGTH
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Reads device values stored in the specified devices from the programmable controller CPU.*3,*4,*5

110 7 CREATING Java PROGRAMS
7.3 Class and Method

readDataByLabel

*1 An exception occurs if the number of words for the labels to be read exceeds 65536 words.
*2 The combination of general sampling labels and high speed sampling labels can be specified.
*3 An exception occurs if the number of labels to be read exceeds 65536.
*4 An error occurs when the account authentication function is enabled and if a label group without the read authority is specified with the

connected account.

setAdditionTimeType

*1 The types of time appended to each transfer record are determined when the connect method is executed.
The type of time received from the module is not changed even if this method is executed after executing the connect method.
To change the setting, execute the disconnect method, execute this method, and then execute the connect method again.

Item Content
Function Reads device values of the specified labels from the programmable controller CPU to the server personal computer.*1

Call format public short readDataByLabel(RegisteredLabelName[] readLabelList, RecordData readDeviceList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[] RecordData

Variable name readLabelList readDeviceList

Content [IN] Label list to be read [IN/OUT] Storage destination for read data

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Reads the device value from the programmable controller CPU to the server personal computer by specifying the labels
set on the High Speed Data Communication Module.*2,*3,*4

Item Content
Function Stores the type of time appended to each transfer record.

Call format public void setAdditionTimeType(byte type)
throws DataCommunicationException

Argument Type name byte

Variable name type

Content [IN] Type of time information to be appended
0: local time
1: UTC

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• MINUS_ARGUMENT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the type of time appended to the transfer record to this Communication class.*1

If a value other than 0 or 1 is specified to type, the connect method fails.

7 CREATING Java PROGRAMS
7.3 Class and Method 111

7

setBufferingTimeOut

*1 The timeout for the buffering transfer data function is determined when the startStreamingTransfer/startStreamingTransferByInterval
method is executed.
The timeout period of the buffering transfer data function is not changed even if this method is executed after executing the
startStreamingTransfer/startStreamingTransferByInterval method.
To change the setting, execute the stopStreamingTransfer method, execute this method, and then execute the startStreamingTransfer/
startStreamingTransferByInterval method again.

setBufMode

*1 the buffering transfer data mode is determined when the connect method is executed.
the buffering transfer data function is not validated even if this method is executed after executing the connect method.
To validate the buffering transfer data function, execute the disconnect method, execute this method, and then execute the connect
method again.

Item Content
Function Specify the timeout period of the buffering transfer data function.*1

Call format public void setBufferingTimeOut(int timeOut)
throws DataCommunicationException

Argument Type name int

Variable name timeOut

Content [IN] Timeout period of the buffering transfer data function
0.60 to 86400 seconds

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the timeout period for the execution of the buffering transfer data function to this Communication class.
Specify the timeout period of the buffering transfer data function.
When using the buffering transfer data function, specify a timeout period to stop the buffering transfer data processing of
the High Speed Data Communication Module in a specified period.
An exception occurs if a value out of the range of 60 to 86400 is stored.
When 0 is specified, the buffering transfer data function continues its operation until the network recovery without the
timeout.

Item Content
Function Specify the transfer buffering mode of the streaming transfer.

Call format public void setBufMode(byte bufMode)
throws DataCommunicationException

Argument Type name byte

Variable name bufMode

Content [IN] Buffering transfer data mode
Invalidity (without buffering transfer data): Other than 1
Validity (with buffering transfer data): 1

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• MINUS_ARGUMENT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the buffering transfer data mode of the streaming transfer to this Communication class.
Specify "1" to validate the transfer buffering function of High Speed Data Communication Module.*1

112 7 CREATING Java PROGRAMS
7.3 Class and Method

setStreamingLabel

*1 When the account authentication function is enabled, an error occurs if a registration of a label group without the read authority is
attempted with the connected account.

*2 The combination of general sampling labels and high speed sampling labels cannot be specified in a single registration.
*3 Overwrites data if the streaming transfer data are already registered.
*4 The total data size for labels that can be registered as the target of streaming transfer is 65536 words.
*5 The number of labels that can be registered as the target of streaming transfer is 65536.

Item Content
Function Registers the target labels for the streaming transfer on the High Speed Data Communication Module.

Call format public short setStreamingLabel(RegisteredLabelName[] labelList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[]

Variable name labelList

Content [IN] Target label list for streaming transfer*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Specify the labels to be streamed to the server personal computer.*2,*3,*4,*5

7 CREATING Java PROGRAMS
7.3 Class and Method 113

7

setStreamingLabelGroup

*1 When the account authentication function is enabled, an error occurs if a registration of a label group without the read authority is
attempted with the connected account.

*2 The combination of general sampling labels and high speed sampling labels cannot be specified in a single registration.
*3 Overwrites data if the streaming transfer data are already registered.
*4 The total data size for labels of label groups that can be registered as the target of streaming transfer is 65536 words.
*5 The number of labels of the label groups that can be registered as the target of streaming transfer is 65536.

Item Content
Function Registers the target labelgroups for the streaming transfer on the High Speed Data Communication Module.

Call format public short setStreamingLabelGroup(java.lang.String[] labelGroupList)
throws DataCommunicationException

Argument Type name java.lang.String[]

Variable name labelGroupList

Content [IN] Target labelgroup list for streaming transfer*1

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Specify the label groups to be streamed to the server personal computer.
By specifying the label groups, all labels of the specified label groups are registered.*2,*3,*4,*5

114 7 CREATING Java PROGRAMS
7.3 Class and Method

setTimeOut

*1 In some Communication class methods, data are divided to process the communication.
Therefore, a timeout may not occur with these methods even when the response timeout period specified in the setTimeOut method
elapses.

*2 A longer communication time may be required for the on-demand function when communicating to CPUs on other stations other than
the control CPU of the High Speed Data Communication Module.
Execute the on-demand function after performing the following measures when a timeout occurs in the on-demand function.
 Check the module status and the network connection status of the High Speed Data Communication Module.
 Check the network connection status of CPUs on other stations.
 Set a longer timeout period for the setTimeOut method.
 Reduce the number of CPUs on other stations that are accessed simultaneously.
 Reduce the number of device points that are accessed simultaneously.

*3 If the network is disconnected after the connection, a notification is sent by the receiveCommunicationEvent method of the Notification
class about 10 seconds after the disconnection.

*4 The response timeout period for communication is determined when the connect method is executed.
The response timeout period for communication is not changed even if this method is executed after executing the connect method.
To change the setting, execute the disconnect method once, execute this method, and then execute the connect method again.

*5 An exception may occur regardless of the timeout period that is set during the connection when the network cable is not connected to
the server personal computer.

Item Content
Function Specifies the response timeout period for communication.*1,*2

Call format public void setTimeOut(short timeOut)
throws DataCommunicationException

Argument Type name short

Variable name timeOut

Content [IN] Timeout period
1 to 255 seconds can be specified. (In seconds)

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the response timeout period for communication to this Communication class.
Specify the response timeout period of the communication request for the High Speed Data Communication Module.*3,*4,*5

7 CREATING Java PROGRAMS
7.3 Class and Method 115

7

startStreamingTransfer

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 An error occurs if a value larger than 32,767,000 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to general sampling.
*5 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*6 The value as the same as the sampling cycle is processed for the transfer cycle, and 1 is processed for the number of transfer records.
*7 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*8 The transfer data may be received by receiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (disconnect), expand the timeout cycle with setTimeOut method, reconnect the line (connect), and start
streaming transfer (startStreamingTransferByInterval).

Item Content
Function Starts the streaming transfer of the data registered on the High Speed Data Communication Module.

Call format public short startStreamingTransfer(int samplingTime)
throws DataCommunicationException

Argument Type name int

Variable name samplingTime

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3,*4

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• MINUS_ARGUMENT
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by synchronizing the
transfer cycle with the sampling cycle.*5

Use this method when executing the streaming transfer by specifying general sampling labels.*6,*7,*8

116 7 CREATING Java PROGRAMS
7.3 Class and Method

startStreamingTransfer

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767,000 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 An error occurs if a value larger than 32,767,000 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to general sampling.
*5 An error occurs if the specified number of transfer records exceeds the range when the label group registered as the target for streaming

transfer is set to high speed sampling.
*6 Any value other than 1 cannot be specified for the number of transfer records when the label group registered as the target for streaming

transfer is set to general sampling. An error occurs if any value other than 1 is specified.
*7 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*8 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*9 The transfer data may be received by receiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (disconnect), expand the timeout cycle with setTimeOut method, reconnect the line (connect), and start
streaming transfer (startStreamingTransferByInterval).

Item Content
Function Specify a sampling cycle and a number of transfer record, and start streaming transfer of the data registered to a High

Speed Data Communication Module.

Call format public short startStreamingTransfer(int samplingTime, short transferCount)
throws DataCommunicationException

Argument Type name int short

Variable name samplingTime transferCount

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3,*4

[IN] Transfer number of records
Specify the number of records to execute the data transfer
with the specified number of sampling execution.
High speed sampling: 1 to 100*5

General sampling: fixed to 1*6

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• MINUS_ARGUMENT
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by synchronizing the
transfer cycle with the sampling cycle.*7

Data are transferred when the specified number of transfer records is sampled.*8,*9

7 CREATING Java PROGRAMS
7.3 Class and Method 117

7

startStreamingTransferByInterval

*1 Data can be sampled in each sequence scan by specifying 0 for the sampling cycle.
*2 An error occurs if a value larger than 32,767 ms is specified for the sampling cycle when the label group registered as the target for

streaming transfer is set to high speed sampling.
*3 The sampling time can be specified in units of 100 ms. The milliseconds in tens place and ones place are rounded down.

When a value less than 100 ms is specified for a sampling cycle, data are sampled in 100 ms cycle.
*4 By specifying 0 for the transfer cycle, data can be transferred in synchronization with the sampling cycle.
*5 A transfer cycle shorter than the sampling cycle cannot be specified.
*6 The transfer cycle cannot be specified when the label group registered as the target for streaming transfer is set to general sampling.

An error occurs if any value other than 0 is specified.
*7 An error occurs if three or more streaming transfers to which a high speed sampling label group is specified are performed.
*8 The streaming transfer function is a best effort delivery.

This function may not operate with the specified data sampling cycle or transfer cycle because the module processing time changes
according to the data settings, parameters specified by High Speed Data Communication Library, and status of other devices.
Run the system by fully verifying the processing time of each function when constructing it.
For the processing time, refer to the following section.
 High Speed Data Communication Module User's Manual

*9 The transfer data may be received by receiveTransferData when exception of TIMEOUT occurred.
In that case, disconnect the line (disconnect), expand the timeout cycle with setTimeOut method, reconnect the line (connect), and start
streaming transfer (startStreamingTransferByInterval).

Item Content
Function Specify the sampling cycle and transfer cycle, and start the streaming transfer of data registered to a High Speed Data

Communication Module.

Call format public short startStreamingTransferByInterval(int samplingTime, int transferTime)
throws DataCommunicationException

Argument Type name int int

Variable name samplingTime transferTime

Content [IN] Sampling time (milliseconds)
High speed sampling: 0, 1 to 32,767 ms*1,*2

General sampling: 100 to 32,767,000 ms*3

[IN] Transfer cycle (milliseconds)
High speed sampling: 0.1 to 100 ms*4,*5

General sampling: fixed to 0*6

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• MINUS_ARGUMENT
• NOT_CONNECTED_YET
• OUT_RANGE_TRANSFER_TIME
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Starts the streaming transfer of data registered on the High Speed Data Communication Module by specifying the
sampling cycle and the transfer cycle.*7,*8,*9

118 7 CREATING Java PROGRAMS
7.3 Class and Method

When the label group registered as the target of streaming transfer is set to high speed sampling, the following combinations
of sampling cycle and the transfer cycle can be specified.

: Applicable, : Error
*1 An error occurs when a value smaller than the sampling cycle is specified for the transfer cycle.

(Example) Sampling time: 40, Transfer cycle: 30  Error
Sampling time: 40, Transfer cycle: 40  Applicable
Sampling time: 30, Transfer cycle: 40  Applicable

stopStreamingDataBuffering

*1 An error occurs when the account authentication function is enabled and the administrative right does not apply to the connected
account.

Transfer cycle
(milliseconds)

Sampling time (milliseconds)

0 1 2 ... 100 ... 32767 32768 or
higher

0        

1        

2        

...    / *1    

100        

101 or higher        

Item Content
Function Discards the buffering transfer data and disconnects the line.

Call format public short stopStreamingDataBuffering(short connectNum)
throws DataCommunicationException

Argument Type name short

Variable name connectNum

Content [IN] Connection number to be disconnected
Access status 1 to 5 is specified: 1 to 5

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• OUT_RANGE_CONNECTION_NO
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment When the access status of the specified connection number is buffering the transfer data, the buffered transfer data are
discarded and the line is disconnected.*1

An error occurs when the access status of the specified connection number is not buffering the transfer data.
The connection numbers correspond to the access status 1 to 5 in the access status area of the buffer memory.
(When the getConnectionDeviceList method is executed, the array elements 0 to 4 in the property
ConnectionDeviceArray[] of argument connectionDeviceList are synonymous with the access status 1 to 5.)
An exception OUT_RANGE_CONNECTION_NO is returned if a value other than 1 to 5 is specified.

7 CREATING Java PROGRAMS
7.3 Class and Method 119

7

stopStreamingTransfer
Item Content
Function Stops the streaming transfer to the server personal computer.

Call format public short stopStreamingTransfer()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stops the streaming transfer to the server personal computer.
Stop the re-transfer start function which operates on a user program after detected the disconnection by executing at the
buffering transfer data function.

120 7 CREATING Java PROGRAMS
7.3 Class and Method

writeDataByDevice

*1 An exception occurs if the number of words for the devices to be written exceeds 65536 words.
*2 K5 to K8 cannot be specified for a device name. When specifying K5 to K8, combine and specify the digit specifications for K1 to K4.

(Example) For K5M0
Specify as K4M0 and K1M16.

*3 If a word device or the digit specification of the device is specified, one-word device value is stored. If a bit device or the bit specification
of device is specified, the value for the writing device value's least significant bit is stored.
For accessible devices, refer to the following section.
 High Speed Data Communication Module User's Manual
When the consecutive data of 2 words or more are acquired, write the device values by specifying multiple devices.
(Example) When a two-word device value is stored from D0
Write the device values by specifying D0 and D1.

*4 An error occurs when the account authentication function is enabled and if the read authority for device specification is not applicable
with the connected account, or if the read authority is applicable but the write authority is not applicable.

*5 Device values other than those of the control CPU of the High Speed Data Communication Module cannot be written. When writing
device values from programmable controller CPUs other than the control CPU of the High Speed Data Communication Module, specify
the label.

Item Content
Function Writes device values of the specified devices from the server personal computer to the programmable controller CPU.*1

Call format public short writeDataByDevice(java.lang.String[] deviceList, short[] deviceValue)
throws DataCommunicationException

Argument Type name java.lang.String[] short[]

Variable name deviceList deviceValue

Content [IN] List of device names to be written*2

(up to 32 characters for each device name)
[IN] Storage destination for write device value

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_DEVICE_COUNT
• OUT_RANGE_DEVICE_NAME_LENGTH
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Writes device values from the server personal computer to the devices specified on the programmable controller
CPU.*3,*4,*5

7 CREATING Java PROGRAMS
7.3 Class and Method 121

7

writeDataByLabel

*1 An exception occurs if the number of words for the labels to be written exceeds 65536 words.
*2 The combination of general sampling labels and high speed sampling labels can be specified.
*3 An exception occurs if the number of labels to be written exceeds 65536.
*4 An error occurs when the account authentication function is enabled and if a label group without the read authority or a label group with

the read authority but not with the write authority is specified with the connected account.

Item Content
Function Writes device values of the specified labels from the server personal computer to the programmable controller CPU.*1

Call format public short writeDataByLabel(RegisteredLabelName[] writeLabelList, RecordData writeDeviceList)
throws DataCommunicationException

Argument Type name RegisteredLabelName[] RecordData

Variable name writeLabelList writeDeviceList

Content [IN] Label list to be written [IN] Storage destination for write data

Return value Normal end: Returns 0.
Error end: Returns other than 0.
For error codes, refer to the following section.
 High Speed Data Communication Module User's Manual

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ABORTED_BY_PEER
• ARGUMENT_NULL
• CONNECT_REFUSED
• DISCONNECTED
• DISPOSED_ERROR
• EXCHANGE_FROM_STRING_FAILED
• EXECUTING
• GENERAL_ERROR
• INVALID_DATASIZE
• INVALID_DATATYPE
• INVALID_REQUEST
• INVALID_RESPONSE
• IO_ERROR
• NOT_CONNECTED_YET
• NOT_SAME_ELEMENT_COUNT
• OUT_RANGE_LABEL_COUNT
• OUT_RANGE_WORD_SIZE
• TIMEOUT

For details, refer to the following section.
 Page 154 getErrorCode

Comment Writes device values from the server personal computer to the programmable controller CPU by specifying the labels set
on the High Speed Data Communication Module.*2,*3,*4

122 7 CREATING Java PROGRAMS
7.3 Class and Method

Setting data
The following describes the operations when writing data to labels whose data type is string type/raw type.
 • When the data size of the set label is an odd number,
A null code (00H) is stored to the upper byte of the last device.

Ex.

When writing "ABC" to the label with the start device: "D0", data type: "string type", and data size: "3" (odd number), the data
are written as shown below.
The character code to handle a single character as one byte (such as "iso-8859-1") is specified for the string.

 • When the write data size or the number of elements is smaller than that of the set label.
Null codes (00H) are stored to the devices following the amount of the write data size or the number of elements.

Ex.

When writing "ABCD" to the label with the start device: "D0", data type: "string type", and data size: "8", the data are written as
shown below.
The character code to handle a single character as one byte (such as "iso-8859-1") is specified for the string.

 • When the write data size or the number of elements is larger than that of the set label.
The exception "INVALID_DATASIZE" occurs.
Check the data size set to the label and correct the write data size not to be larger than the data size.
Note that the data sizes of the same strings are different depending on the encoding code.
Specify the encoding code for each specific purpose.

Ex.

When writing "ABCD" to the label with the start device: "D0", data type: "string type", and size: "8" (odd number), the data are
written depending on the encoding code as shown below.
"UTF-16LE" (two-byte single character)

"iso-8859-1" (one-byte single character)

D0 D1
41H 42H 43H 00H

A B C Null code

D0 D1 D2 D3
41H 42H 43H 44H 00H 00H 00H 00H

A B C D Null code Null code Null code Null code

D0 D1 D2 D3
41H 00H 42H 00H 43H 00H 44H 00H

A Null code B Null code C Null code D Null code

D0 D1 D2 D3
41H 42H 43H 44H 00H 00H 00H 00H

A B C D Null code Null code Null code Null code

7 CREATING Java PROGRAMS
7.3 Class and Method 123

7

Notification class

Constructor

Details of the constructor
Notification

Method list

*1 Since the default is no-operation, it is necessary to create a processing to be executed by the override.

Method details
receiveCommunicationEvent

Item Content
Class syntax public class Notification

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.Notification

Format Content
Notification() Default constructor

Item Content
Function Constructor

Call format public Notification()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to notify data transfer and status changes from High Speed Data Communication Module to user
programs.
This constructor is automatically called from the constructor of the user created class on which the Notification class is
implemented.

Type Method name Overview Reference
void receiveCommunicationEvent(

short status, short errorCode)
The method which is called when a status change
such as a line disconnection is received.*1

Page 123
receiveCommunicationEvent

void receiveTransferData(
ReceiveData recordList)

The method which is called when the streaming
transfer data sent from the High Speed Data
Communication Module is received.*1

Page 124
receiveTransferData

Item Content
Function Notifies status changes of High Speed Data Communication Module to the server personal computer.

Call format public void receiveCommunicationEvent(short status, short errorCode)

Argument Type name short short

Variable name status errorCode

Content [IN/OUT] Notified events*1

Disconnection: 0
Update settings: 3
Stop module operation: 1
Library processing overload: 4
Transfer error stop: 5
Re-transfer start failure: 6
Re-transfer start: 7

[IN] Error code of occurred error
(Refer to the error code when an event such as
disconnection, transfer error stop, re-transfer start failure,
and re-transfer start is notified. "0" is stored to events other
than noted.)

Return value None

Comment Notifies status changes such as a line disconnection to the server personal computer.
Implement the processing for the status changes in the user program.

124 7 CREATING Java PROGRAMS
7.3 Class and Method

*1 The following are the actions for the stored events.

receiveTransferData

Module status Action
Disconnection: 0 The High Speed Data Communication Module is disconnected, the programmable controller CPU is reset, the power is

turned OFF, or the settings are updated.
Check the LAN cable connections between the server personal computer and the High Speed Data Communication
Module and the system operations.
If no problems are found, execute the connect processing again and establish the communication.
(If the connect processing is not executed again, the communication may not be established normally.)
When the startStreamingTransfer/startStreamingTransferByInterval processing is executed by enabling the buffering
mode for the buffering transfer data function, "1" is stored to errorCode at the time of the disconnection event occurrence.
When "1" is stored to errorCode, the execution of connect processing again is unnecessary.
When an incorrect packet is received and the line is disconnected, "2" is stored to errorCode at the time of disconnection
event occurrence.
A "0" is stored to errorCode when disconnected the line other than above.

Update settings: 3 The module settings are changed.
After executing the disconnect processing and checking the module settings, execute the connect processing again and
establish the communication.
The disconnection event is notified after the setting update is notified.

Stop module operation: 1 A module stop error occurred.
Execute the disconnect processing and check the status of the module.
After starting the module in operation, execute the connect processing again and establish the communication.

Library processing overload: 4 The speed to process the streaming transfer data is slow.
Execute the disconnect processing, and perform the following actions.
• Reduce the number of labels registered to the streaming transfer.
• Change the output data type and the data size of the labels registered to the streaming transfer, and reduce the number

of points.
• Increase the sampling time and the transfer cycle.
• Reduce the number of transfer records.
• Review the processing content for receiveTransferData.

After performing the action, execute the connect processing again and establish the communication.
A library processing overload may occur when the server personal computer is overloaded, such as when running Java
VM for the first time.

Transfer error stop: 5 The streaming transfer is stopped.
Execute the disconnect processing, and perform the following actions.
• Check the value of errorCode, and perform the actions provided in the error code list.
• Check the status of the network accessing another station/other stations programmable controller CPU.
• Check if the parameters of the programmable controller CPU from which data are sampled are not changed.

After performing the action, execute the connect processing again and establish the communication.

Re-transfer start failure: 6 Restarting of the streaming transfer failed after the network connection between the server personal computer and the
High Speed Data Communication Module is recovered.
The cause of the restarting failure is stored to errorCode.
The following are the values to be stored.
0: Cancelling request
1: Timeout occurrence
2: Error occurrence (Occurres when data buffering is not executed in High Speed Data Communication Module after the
operation to recover the network such as resetting the CPU module or stopping buffering transfer data from the High
Speed Data Communication Module.)
Check the LAN cable connections between the server personal computer and the High Speed Data Communication
Module and the system operations.
If no problems are found, execute the connect processing again and establish the communication.

Re-transfer start: 7 The network connection between the server personal computer and the High Speed Data Communication Module is
recovered.
When an processing overload occurs during the buffering transfer data and the old data are overwritten, or the buffer clear
is requested, "1" is stored to errorCode at the time of the re-transfer start event occurrence.

Item Content
Function Notifies the reception of the streaming transfer data sent from the High Speed Data Communication Module to the server

personal computer.

Call format public void receiveTransferData(ReceiveData recordList)

Argument Type name ReceiveData

Variable name recordList

Content [IN/OUT] Received record list

Return value None

Comment Notifies the reception of the streaming transfer data sent from the High Speed Data Communication Module to the server
personal computer.
Implement the processing for the receive data in the user program.

7 CREATING Java PROGRAMS
7.3 Class and Method 125

7

LabelGroupList class

Constructor

Details of the constructor
LabelGroupList

Method list

Method details
getLabelGroupList

Item Content
Class syntax public class LabelGroupList extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.LabelGroupList

Format Content
LabelGroupList() Default constructor

Item Content
Function Constructor

Call format public LabelGroupList()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label group list.
The label group list maintained previously is initialized.

Type Method name Overview Reference
LabelGroup[] getLabelGroupList() Acquires the label group list from this LabelGroupList

class.
Page 125 getLabelGroupList

Item Content
Function Acquires the label group list.

Call format public LabelGroup[] getLabelGroupList()

Argument Type name 

Variable name 

Content 

Return value Returns the label group list.

Comment Acquires the label group list from this LabelGroupList class.
"null" is stored to the return value by default.

126 7 CREATING Java PROGRAMS
7.3 Class and Method

LabelGroup class

Constructor

Details of the constructor
LabelGroup

Method list

Method details
getLabelGroupComment

Item Content
Class syntax public class LabelGroup extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.LabelGroup

Format Content
LabelGroup() Default constructor

Item Content
Function Constructor

Call format public LabelGroup()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label group.
The label name, the label comment, the output data type, and the data size maintained previously are initialized.

Type Method name Overview Reference
java.lang.String getLabelGroupComment() Acquires the label group comment from this LabelGroup class. Page 126

getLabelGroupComment

java.lang.String getLabelGroupName() Acquires the label group name from this LabelGroup class. Page 127
getLabelGroupName

DataLabel[] getLabelList() Acquires the label list from this LabelGroup class. Page 127 getLabelList

byte getSamplingType() Acquires the type of label from this LabelGroup class. Page 127 getSamplingType

Item Content
Function Acquires the label group comment.

Call format public java.lang.String getLabelGroupComment()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label group comment.

Comment Acquires the label group comment from this LabelGroup class.
"null" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 127

7

getLabelGroupName

getLabelList

getSamplingType

Item Content
Function Acquires the label group name.

Call format public java.lang.String getLabelGroupName()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label group name.

Comment Acquires the label group name from this LabelGroup class.
Store the acquired label group names in the RegisteredLabelName class, and use them for the arguments of the
setStreamingLabel, readDataByLabel, writeDataByLabel methods in the Communication class.
"null" is stored to the return value by default.

Item Content
Function Acquires the label list.

Call format public DataLabel[] getLabelList()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label list.

Comment Acquires the label list from this LabelGroup class.
"null" is stored to the return value by default.

Item Content
Function Acquires the type of label.

Call format public byte getSamplingType()

Argument Type name 

Variable name 

Content 

Return value Returns the stored data sampling method.

Comment Acquires the type of label from this LabelGroup class.
High speed sampling label: 0
General sampling label: 1
"1" is stored to the return value by default.

128 7 CREATING Java PROGRAMS
7.3 Class and Method

DataLabel class

Constructor

Details of the constructor
DataLabel

Method list

Method details
getDataSize

*1 Stores the value of Size specified with Configuration Tool for "String" and "Raw".

Item Content
Class syntax public class DataLabel extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.DataLabel

Format Content
DataLabel() Default constructor

Item Content
Function Constructor

Call format public DataLabel()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the label.
The label name, the label comment, the output data type, and the data size maintained previously are initialized.

Type Method name Overview Reference
short getDataSize() Acquires the data size from this DataLabel class. Page 128 getDataSize

short getDataType() Acquires the output data type from this DataLabel class. Page 129 getDataType

java.lang.String getLabelComment() Acquires the label comment from this DataLabel class. Page 129 getLabelComment

java.lang.String getLabelName() Acquires the label name from this DataLabel class. Page 129 getLabelName

Item Content
Function Acquires the data size.

Call format public short getDataSize()

Argument Type name 

Variable name 

Content 

Return value Returns the stored data size.

Comment Acquires the data size of label from this DataLabel class.
The following are the values of data size for each output data type. (Unit: byte)
Bit: 1
Word [signed]: 2
Double word [signed]: 4
Word [unsigned]: 2
Double word [unsigned]: 4
Float [single precision]: 4
Float [double precision]: 8
String: Size *1

Raw: Size *1

"0" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 129

7

getDataType

getLabelComment

getLabelName

Item Content
Function Acquires the output data type.

Call format public short getDataType()

Argument Type name 

Variable name 

Content 

Return value Returns the stored output data type.

Comment Acquires the output data type of label from this DataLabel class.
The following are the values for each output data type.
Bit: 1
Word [signed]: 10
Double word [signed]: 11
Word [unsigned]: 12
Double word [unsigned]: 13
Float [single precision]: 20
Float [double precision]: 21
String: 30
Raw: 40
"0" is stored to the return value by default.

Item Content
Function Acquires the label comment.

Call format public java.lang.String getLabelComment()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label comment.

Comment Acquires the label comment from this DataLabel class.
"null" is stored to the return value by default.

Item Content
Function Acquires the label name.

Call format public java.lang.String getLabelName()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label name.

Comment Acquires the label name from this DataLabel class.
Store the acquired label group names in the RegisteredLabelName class, and use them for the arguments of the
setStreamingLabel, readDataByLabel, writeDataByLabel methods in the Communication class.
"null" is stored to the return value by default.

130 7 CREATING Java PROGRAMS
7.3 Class and Method

RegisteredLabelName class

Constructor

Details of the constructor
RegisteredLabelName

Method list

Method details
getLabelGroupName

Item Content
Class syntax public class RegisteredLabelName extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.RegisteredLabelName

Format Content
RegisteredLabelName(java.lang.String
labelGroupName, java.lang.String labelName)

Stores the specified label group name and label name to this RegisteredLabelName class.

Item Content
Function Constructor

Call format public RegisteredLabelName(java.lang.String labelGroupName, java.lang.String labelName)
throws DataCommunicationException

Argument Type name java.lang.String java.lang.String

Variable name labelGroupName labelName

Content [IN] Target label group name (up to 32 characters) [IN] Target label name (up to 32 characters)

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABELGROUP_NAME_LENGTH
• OUT_RANGE_LABEL_NAME_LENGTH

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the target label group names and label names for the streaming transfer function, the data read function, and the
data write function to this RegisteredLabelName class.

Type Method name Overview Reference
java.lang.String getLabelGroupName() Acquires the label group name from this

RegisteredLabelName class.
Page 130
getLabelGroupName

java.lang.String getLabelName() Acquires the label name from this
RegisteredLabelName class.

Page 131 getLabelName

void setLabelGroupName(
java.lang.String labelGroupName)

Stores the label group name to this
RegisteredLabelName class.

Page 131
setLabelGroupName

void setLabelName(
java.lang.String labelName)

Stores the label name to this RegisteredLabelName
class.

Page 131 setLabelName

Item Content
Function Acquires the label group name.

Call format public java.lang.String getLabelGroupName()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label group name.

Comment Acquires the label group name from this RegisteredLabelName class.
"null" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 131

7

getLabelName

setLabelGroupName

setLabelName

Item Content
Function Acquires the label name.

Call format public java.lang.String getLabelName()

Argument Type name 

Variable name 

Content 

Return value Returns the stored label name.

Comment Acquires the label name from this RegisteredLabelName class.
"null" is stored to the return value by default.

Item Content
Function Stores the label group name.

Call format public void setLabelGroupName(java.lang.String labelGroupName)
throws DataCommunicationException

Argument Type name java.lang.String

Variable name labelGroupName

Content [IN] Label group name (up to 32 characters)

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABELGROUP_NAME_LENGTH

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the label group name to this RegisteredLabelName class.

Item Content
Function Stores the label name.

Call format public void setLabelName(java.lang.String labelName)
throws DataCommunicationException

Argument Type name java.lang.String

Variable name labelName

Content [IN] Label name (up to 32 characters)

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_LABEL_NAME_LENGTH

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the label name to this RegisteredLabelName class.

132 7 CREATING Java PROGRAMS
7.3 Class and Method

ReceiveData class

Constructor

Details of the constructor
ReceiveData

Method list

Method details
getReceiveDataList

Item Content
Class syntax public class ReceiveData extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.ReceiveData

Format Content
ReceiveData() Default constructor

Item Content
Function Constructor

Call format public ReceiveData()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the information of the transfer data list.
The transfer data list maintained previously is initialized.

Type Method name Overview Reference
ReceiveData() getReceiveDataList() Acquires the transfer data list from this ReceiveData class. Page 132

getReceiveDataList

Item Content
Function Acquires the transfer data list.

Call format public RecordData[] getReceiveDataList()

Argument Type name 

Variable name 

Content 

Return value Returns the transfer data list.

Comment Acquires the transfer data list from this ReceiveData class.
"null" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 133

7

RecordData class

Constructor

Details of the constructor
RecordData

Method list

Method details
getDataList

*1 Store or acquire data according to the function being used.
When using the streaming transfer function: The streamed data list is stored.
When using the data read function: The data list read from the programmable controller CPU is stored.
When using the data write function: The data list to be written to the programmable controller CPU is stored.

Item Content
Class syntax public class RecordData extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.RecordData

Format Content
RecordData() Default constructor

Item Content
Function Constructor

Call format public RecordData()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store data used for the streaming transfer function, the data read function, and the data write
function.
The data list, the time synchronization flag, the data sampling time, and the index information maintained previously are
initialized.

Type Method name Overview Reference
DataValue[] getDataList() Acquires the data list from this RecordData. Page 133 getDataList

long getIndex() Acquires the index information at the data sampling from this
RecordData class.

Page 134 getIndex

long getNanoTime() Acquires the time (less than a second) when data are sampled
from this RecordData.

Page 134 getNanoTime

long getSecTime() Acquires the time when data are sampled from this
RecordData.

Page 134 getSecTime

byte getTimeSyncFlag() Acquires the time synchronization execution flag from this
RecordData class.

Page 134 getTimeSyncFlag

void setDataList(
DataValue[] dataList)

Stores the data list to this RecordData. Page 136 setDataList

Item Content
Function Acquires the data list.*1

Call format public DataValue[] getDataList()

Argument Type name 

Variable name 

Content 

Return value Returns the data list.

Comment Acquires the data list from this RecordData class.
"null" is stored to the return value by default.

134 7 CREATING Java PROGRAMS
7.3 Class and Method

getIndex

getNanoTime

getSecTime

getTimeSyncFlag

Item Content
Function Acquires the index information.

Call format public long getIndex()

Argument Type name 

Variable name 

Content 

Return value Returns the index information.

Comment Acquires the index information at the data sampling from this RecordData class.
Outputs a numerical value starting from 1 incremented in ascending order.
When the value exceeds the upper limit of 4,294,967,295, it returns to 0 and increments again in the range of 0 to
4,294,967,295.
"0" is stored to the return value by default.
When a data miss occurs, the index starts again from 1.
For details, refer to the following section.
 High Speed Data Communication Module User's Manual

Item Content
Function Acquires the time (less than a second) when data are sampled.

Call format public long getNanoTime()

Argument Type name 

Variable name 

Content 

Return value Returns the data sampling time (less than a second).

Comment Acquires the time when data are sampled from this RecordData class.
Acquires the time less than a second from the number of elapsed seconds from January 1, 1970 in nanoseconds.
"0" is stored to the return value by default.

Item Content
Function Acquires the time when data are sampled.

Call format public long getSecTime()

Argument Type name 

Variable name 

Content 

Return value Returns the data sampling time.

Comment Acquires the time when data are sampled from this RecordData class.
Acquires the number of elapsed seconds from January 1, 1970.
"0" is stored to the return value by default.

Item Content
Function Acquires the time synchronization execution flag.

Call format public byte getTimeSyncFlag()

Argument Type name 

Variable name 

Content 

Return value Returns the time synchronization execution flag.

Comment Acquires the time synchronization execution flag from this RecordData class.
Time synchronization execution: 1
Time synchronization not executed: 0
"0" is stored to the return value by default.
The time synchronization execution flag becomes "1" only for RecordData transferred after the success of the time query
with the time synchronization function of High Speed Data Communication Module.
When multiple records are transferred, the time synchronization execution flag becomes "1" only for the RecordData
object to which the sampled data are stored after the time synchronization.

7 CREATING Java PROGRAMS
7.3 Class and Method 135

7

The following is an example when the time synchronization occurs while performing the streaming transfer.
 • When time synchronization occurs at the streaming transfer in sampling synchronization

1

2

3

4

1

2

3

4

Time
synchronization

occurrence

Sampling

Sampling

Sampling

Sampling

Transfer

Transfer

Transfer

Transfer

User program

Sever personal computer

High Speed Data
Communication
Library

High Speed Data
Communication

Module CPU module

* Executing streaming transfer
 (Sampling synchronization of transfer)

RecordData data
object received by
the user program

Data sampled from
CPU module

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 1

Time synchronization
Execution flag: 0

136 7 CREATING Java PROGRAMS
7.3 Class and Method

 • When the time synchronization occurs at the streaming transfer in record specification

setDataList

*1 Store or acquire data according to the function being used.
When using the streaming transfer function: The streamed data list is stored.
When using the data read function: The data list read from the programmable controller CPU is stored.
When using the data write function: The data list to be written to the programmable controller CPU is stored.

Item Content
Function Stores the data list.*1

Call format public void setDataList(DataValue[] dataList)
throws DataCommunicationException

Argument Type name DataValue[]

Variable name dataList

Content [IN] Label group name

Return value 

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• ARGUMENT_NULL

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the data list to this RecordData class.

1

2

3

1

2

3

4

High Speed
Data
Communication
Library

Sampling

Sampling

Sampling

Sampling

Transfer

CPU module

Time synchronization
Execution flag: 0

Time synchronization
Execution flag: 1

Time synchronization
Execution flag: 0

Time
synchronization

occurrence

Data sampled from
CPU module

RecordData data
object received
by the user program

High Speed Data
Communication

Module

* Executing streaming transfer
 (Transfer 3 record specification)

Sever personal computer

User program

7 CREATING Java PROGRAMS
7.3 Class and Method 137

7

DataValue class

Constructor

Details of the constructor
DataValue

Method list

Item Content
Class syntax public class DataValue extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.DataValue

Format Content
DataValue() Default constructor

Item Content
Function Constructor

Call format public DataValue()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store label values.
The data types and values of labels maintained previously are initialized.

Type Method name Overview Reference
boolean getBitData()*1 Acquires the bit data from this DataValue class. Page 139 getBitData

short getDataType() Acquires the data type of the stored data from this
DataValue class.
Bit: 1
Word [signed]: 10
Double word [signed]: 11
Word [unsigned]: 12
Double word [unsigned]: 13
Float [single precision]: 20
Float [double precision]: 21
String: 30
Raw: 40

Page 139 getDataType

double getDoubleFloatData()*1 Acquires the float [double precision] data from this
DataValue class.

Page 140
getDoubleFloatData

byte[] getRawData()*1 Acquires the raw data from this DataValue class. Page 140 getRawData

int getSignedDoubleWordData()*1 Acquires the double word [signed] data from this
DataValue class.

Page 141
getSignedDoubleWordData

short getSignedWordData()*1 Acquires the word [signed] data from this DataValue
class.

Page 141
getSignedWordData

float getSingleFloatData()*1 Acquires the float [single precision] data from this
DataValue class.

Page 141 getSingleFloatData

java.lang.String getStringData()*1 Acquires the character string data from this DataValue
class.

Page 142 getStringData

java.lang.String getStringData(
java.lang.String encode)*1

Acquires the character string data from this DataValue
class by specifying the character code.

Page 142 getStringData

long getUnsignedDoubleWordData()*1 Acquires the double word [unsigned] data from this
DataValue class.

Page 143
getUnsignedDoubleWordDat
a

int getUnsignedWordData()*1 Acquires the word [unsigned] data from this DataValue
class.

Page 143
getUnsignedWordData

void setBitData(
boolean bitData)

Stores the bit data to this DataValue class. Page 143 setBitData

138 7 CREATING Java PROGRAMS
7.3 Class and Method

*1 The get processing other than getDataType of the DataValue class acquires data based on the data type of data stored in the DataValue
class.
Therefore, if data is acquired with a data type that differs from the data type of the stored data, a cast conversion is automatically
performed.
The data type of the acquired data may differ from the data type of the stored data depending on the data type after the cast conversion.
Since the source data information may be lost or a longer processing time may be required due to the cast conversion, execute the get
processing matches with the data type to be acquired.

void setDoubleFloatData(
double doubleFloatData)

Stores the float [double precision] data to this
DataValue class.

Page 144
setDoubleFloatData

void setRawData(
byte[] rawData)

Stores the raw data to this DataValue class. Page 144 setRawData

void setSignedDoubleWordData(
int signedDoubleWordData)

Stores the double word [signed] data to this DataValue
class.

Page 144
setSignedDoubleWordData

void setSignedWordData(
short signedWordData)

Stores the word [signed] data to this DataValue class. Page 144
setSignedWordData

void setSingleFloatData(
float singleFloatData)

Stores the float [single precision] data to this
DataValue class.

Page 145 setSingleFloatData

void setStringData(
java.lang.String stringData)

Stores the character string data to this DataValue
class.

Page 145 setStringData

void setStringData(
java.lang.String stringData,
java.lang.String encode)

Stores the character string data to this DataValue
class by specifying the character code.

Page 145 setStringData

void setUnsignedDoubleWordData(
long unsignedDoubleWordData)

Stores the double word [unsigned] data to this
DataValue class.

Page 146
setUnsignedDoubleWordDat
a

void setUnsignedWordData(
int unsignedWordData)

Stores the word [unsigned] data to this DataValue
class.

Page 146
setUnsignedWordData

Type Method name Overview Reference

7 CREATING Java PROGRAMS
7.3 Class and Method 139

7

Method details
getBitData

getDataType

Item Content
Function Acquires the data in bit unit.

Call format public boolean getBitData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the bit data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_BIT_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in bit unit.
Use this property when acquiring bit type data.
An exception occurs when the data type stored in the DataValue class is a character string.
"false" is stored to the return value by default.

Item Content
Function Acquires the data type of the stored data.

Call format public short getDataType()

Argument Type name 

Variable name 

Content 

Return value Returns the data type of the stored data.
Bit: 1
Word [signed]: 10
Double word [signed]: 11
Word [unsigned]: 12
Double word [unsigned]: 13
Float [single precision]: 20
Float [double precision]: 21
String: 30
Raw: 40

Comment Acquires the data type of the data stored in this DataValue class.
When multiple data are registered, the data type of the most recently registered method is stored.
"0" is stored to the return value by default.

140 7 CREATING Java PROGRAMS
7.3 Class and Method

getDoubleFloatData

getRawData

Item Content
Function Acquires the float [double precision] data.

Call format public double getDoubleFloatData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the float [double precision] data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in float [double precision] unit.
Use this property when acquiring float [double precision] data.
"0.0" is stored to the return value by default.

Item Content
Function Acquires the raw data.

Call format public byte[] getRawData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the raw data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in raw unit.
Use this property when acquiring raw data.
When data acquired from the module are stored, the same amount of data set to the acquired label is acquired. (For
example, when the data size is 4, the array element to be stored is 4.)
"null" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 141

7

getSignedDoubleWordData

getSignedWordData

getSingleFloatData

Item Content
Function Acquires the double word [signed] data.

Call format public int getSignedDoubleWordData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the double word data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in double word unit.
Use this property when acquiring double word [signed] data.
"0" is stored to the return value by default.

Item Content
Function Acquires the word [signed] data.

Call format public short getSignedWordData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the word data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in word unit.
Use this property when acquiring word [signed] data.
"0" is stored to the return value by default.

Item Content
Function Acquires the float [single precision] data.

Call format public float getSingleFloatData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the float [single precision] data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in float [single precision] unit.
Use this property when acquiring float [single precision] data.
"0.0" is stored to the return value by default.

142 7 CREATING Java PROGRAMS
7.3 Class and Method

getStringData

*1 When character string data is acquired with the "UTF-16LE" method, a single character is acquired as a two-byte data.
Therefore, the incorrect values are read if data are stored with one-byte ASCII characters.
When acquiring character string data in one-byte unit, specify the encoding code (such as "iso-8859-1") to set data in one-byte unit with
getStringData(java.lang.String encode).

getStringData

*1 Use this method when the data type of data stored in the DataValue class is character string.
If this method is used for the data type other than character string, the specified character code is ignored.

Item Content
Function Acquires the character string data.

Call format public java.lang.String getStringData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the character string data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• NOT_DATA_SET
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in character string unit.
Use this property when acquiring data in character string despite of the data type of the stored data.
The encoding code of the character string data acquired by this method is "UTF-16LE".*1

"null" is stored to the return value by default.

Item Content
Function Acquires the character string data.

Call format public java.lang.String getStringData(java.lang.String encode)
throws DataCommunicationException

Argument Type name java.lang.String

Variable name encode

Content [IN] Encoding code of the character string data to be acquired

Return value Returns the character string data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library error.
• ARGUMENT_NULL
• NOT_DATA_SET
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires data stored in this DataValue class in character string unit.
Character string data are acquired with the specified encoding code.*1

Use this method when acquiring stored character string data by specifying the encoding code.
"null" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 143

7

getUnsignedDoubleWordData

getUnsignedWordData

setBitData

Item Content
Function Acquires the double word [unsigned] data.

Call format public long getUnsignedDoubleWordData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the double word data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in double word unit.
Use this property when acquiring double word [unsigned] data.
"0" is stored to the return value by default.

Item Content
Function Acquires the word [unsigned] data.

Call format public int getUnsignedWordData()
throws DataCommunicationException

Argument Type name 

Variable name 

Content 

Return value Returns the word data.

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• EXCHANGE_TO_NUMBER_FAILED
• NOT_DATA_SET

For details, refer to the following section.
 Page 154 getErrorCode

Comment Acquires the data stored in this DataValue class in word unit.
Use this property when acquiring word [unsigned] data.
"0" is stored to the return value by default.

Item Content
Function Stores the bit type data.

Call format public void setBitData(boolean bitData)

Argument Type name boolean

Variable name bitData

Content [IN] Bit type data

Return value None

Comment Stores the bit type data to this DataValue class.
Execute this method when storing bit type data.

144 7 CREATING Java PROGRAMS
7.3 Class and Method

setDoubleFloatData

setRawData

setSignedDoubleWordData

setSignedWordData

Item Content
Function Stores the data in float [double precision] unit.

Call format public void setDoubleFloatData(double doubleFloatData)

Argument Type name double

Variable name doubleFloatData

Content [IN] Float [double precision] data

Return value None

Comment Stores the data in float [double precision] unit to this DataValue class.
Execute this method when storing float [double precision] data.

Item Content
Function Stores the data in raw unit.

Call format public void setRawData(byte[] rawData)
throws DataCommunicationException

Argument Type name byte[]

Variable name rawData

Content [IN] Raw data

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_RAW_LENGTH

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the raw data to this DataValue class.
An exception occurs if the number of array elements of data to be stored exceeds 8192.

Item Content
Function Stores the double word [signed] data.

Call format public void setSignedDoubleWordData(int signedDoubleWordData)

Argument Type name int

Variable name signedDoubleWordData

Content [IN] Data in double word unit

Return value None

Comment Stores the data in double word unit to this DataValue class.
Execute this method when storing double word [signed] data.

Item Content
Function Stores the word [signed] data.

Call format public void setSignedWordData(short signedWordData)

Argument Type name short

Variable name signedWordData

Content [IN] Data in word unit

Return value None

Comment Stores the data in word unit to this DataValue class.
Execute this method when storing word [signed] data.

7 CREATING Java PROGRAMS
7.3 Class and Method 145

7

setSingleFloatData

setStringData

*1 When character string data are stored with the "UTF-16LE" method, a single character is stored as a two-byte data. (For example, when
a character "A" is stored, it is stored as a two-byte data.)
Therefore, when the stored data is written to the label of data size 1 with this method, the exception INVALID_DATASIZE occurs.
When storing character string data in one-byte unit, specify the encoding code (such as "iso-8859-1") to set data in one-byte unit with
setStringData(java.lang.String stringData, java.lang.String encode).

setStringData

Item Content
Function Stores the data in float [single precision] unit.

Call format public void setSingleFloatData(float singleFloatData)

Argument Type name float

Variable name singleFloatData

Content [IN] Data in float [single precision] unit

Return value None

Comment Stores the data in float [single precision] unit to this DataValue class.
Execute this method when storing float [single precision] data.

Item Content
Function Stores the character string data.

Call format public void setStringData(java.lang.String stringData)
throws DataCommunicationException

Argument Type name java.lang.String

Variable name stringData

Content [IN] Character string data

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_STRING_LENGTH
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the character string data to this DataValue class.
An exception occurs if the number of characters of data to be stored exceeds 4096.
The encoding code of the character string data stored by this method is "UTF-16LE".*1

Item Content
Function Stores the character string data.

Call format public void setStringData(java.lang.String stringData, java.lang.String encode)
throws DataCommunicationException

Argument Type name java.lang.String java.lang.String

Variable name stringData encode

Content [IN] Character string data [IN] Encoding code for character string

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following are the exceptions for High Speed Data Communication Library.
• ARGUMENT_NULL
• OUT_RANGE_STRING_LENGTH
• UNSUPPORTED_ENCODING

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the character string data to this DataValue class by specifying the encoding code.
An exception occurs if the number of characters of data to be stored exceeds 8192.
(Example)
• Specifying the encoding code "UTF-16LE" (two-byte single character)

An exception occurs when the character string data with the number of characters exceeding 4096 is stored.
• Specifying the encoding code "iso-8859-1" (one-byte single character)

An exception occurs when the character string data with the number of characters exceeding 8192 is stored.

146 7 CREATING Java PROGRAMS
7.3 Class and Method

setUnsignedDoubleWordData

setUnsignedWordData

Item Content
Function Stores the double word [unsigned] data.

Call format public void setUnsignedDoubleWordData(long unsignedDoubleWordData)
throws DataCommunicationException

Argument Type name long

Variable name unsignedDoubleWordData

Content [IN] Data in double word unit

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_UNSIGNED_DOUBLE_WORD

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the data in double word unit to this DataValue class.
An exception occurs if a value out of the range of 0 to 4,294,967,295 is stored.
Execute this method when storing double word [unsigned] data.

Item Content
Function Stores the word [unsigned] data.

Call format public void setUnsignedWordData(int unsignedWordData)
throws DataCommunicationException

Argument Type name int

Variable name unsignedWordData

Content [IN] Data in word unit

Return value None

Exception DataCommunicationException  High Speed Data Communication Library error
The following is the exception for High Speed Data Communication Library.
• OUT_RANGE_UNSIGNED_WORD

For details, refer to the following section.
 Page 154 getErrorCode

Comment Stores the data in word unit to this DataValue class.
An exception occurs if a value out of the range of 0 to 65535 is stored.
Execute this method when storing word [unsigned] data.

7 CREATING Java PROGRAMS
7.3 Class and Method 147

7

ConnectionDeviceList class

Constructor

Details of the constructor
ConnectionDeviceList

Method list

getConnectionDeviceList

*1 When values are stored using the getConnectionDeviceList method in the Communication class, "null" is stored to the array elements
stored in the return value of getConnectionDeviceList in this class.

Item Content
Class syntax public class ConnectionDeviceList extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.ConnectionDeviceList

Format Content
ConnectionDeviceList() Default constructor

Item Content
Function Constructor

Call format public ConnectionDeviceList()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the list of the connected device information.
The information maintained previously is initialized.

Type Method name Overview Reference
ConnectionDevice[] getConnectionDeviceList() Acquires the list of the connected device information from this

ConnectionDeviceList class.
Page 147
getConnectionDeviceList

Item Content
Function Acquires the list of the connected device information.

Call format public ConnectionDevice[] getConnectionDeviceList()

Argument Type name 

Variable name 

Content 

Return value Returns the list of the connected device information.

Comment Acquires the list of the connected device information from this ConnectionDeviceList class.
"null" is stored to the return value by default.*1

148 7 CREATING Java PROGRAMS
7.3 Class and Method

ConnectionDevice class

Constructor

Details of the constructor
ConnectionDevice

Method list

getAccessStatus

Item Content
Class syntax public class ConnectionDevice extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.ConnectionDevice

Format Content
ConnectionDevice() Default constructor

Item Content
Function Constructor

Call format public ConnectionDevice()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the list of the connected device information.
The information maintained previously is initialized.

Type Method name Overview Reference
short getAccessStatus() Acquires the access status from this ConnectionDevice class. Page 148 getAccessStatus

ConnectionDeviceDetail getConnectionDeviceDetail() Acquires the details of the connected device information from
the ConnectionDevice class.

Page 149
getConnectionDeviceDetail

java.lang.String getConnectionIPaddress() Acquires the connection IP address from this ConnectionDevice
class.

Page 149
getConnectionIPaddress

long getConnectionTime() Acquires the connection time from this ConnectionDevice class. Page 150
getConnectionTime

java.lang.String getConnectionUsername() Acquires the connection user name from this ConnectionDevice
class.

Page 150
getConnectionUsername

Item Content
Function Acquires the access status.

Call format public short getAccessStatus()

Argument Type name 

Variable name 

Content 

Return value Returns the access status.

Comment Acquires the access status from this ConnectionDevice class.
"0" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 149

7

The following are the values for the access status.

getConnectionDeviceDetail

*1 When values are stored using the getConnectionDeviceList method in the Communication class, "null" is acquired to the return values of
getConnectionDeviceDetail in this class for the access status other than the ones indicated below.
 On connection: 10
 On connection (Buffering enabled): 11
 Reading device data: 20
 Reading device data (Buffering enabled): 21
 Writing device data: 30
 Writing device data (Buffering enabled): 31
 On transfer (High speed sampling): 40
 On transfer (High speed sampling) (Buffering enabled): 41
 Buffering transfer data (High speed sampling) (Buffering enabled): 51
 On transfer (General sampling): 60
 On transfer (General sampling) (Buffering enabled): 61
 Buffering transfer data (General sampling) (Buffering enabled): 71

getConnectionIPaddress

Access status Buffering invalid Buffering enabled
No connection 0

(The connection is established.) 10 11

Reading device data 20 21

Writing device data 30 31

On transfer (High speed sampling) 40 41

On transfer (General sampling) 60 61

Buffering transfer data (High speed sampling)  51

Buffering transfer data (General sampling)  71

On communication with tool 255 

Item Content
Function Acquires the details of the connected device information.

Call format public ConnectionDeviceDetail getConnectionDeviceDetail()

Argument Type name 

Variable name 

Content 

Return value Returns the details of the connected device information.

Comment Acquires the details of the connected device information from the ConnectionDevice class.
"null" is stored to the return value by default.*1

Item Content
Function Acquires the connection IP address.

Call format public java.lang.String getConnectionIPaddress()

Argument Type name 

Variable name 

Content 

Return value Returns the connection IP address.

Comment Acquires the connection IP address from this ConnectionDevice class.
"null" is stored to the return value by default.

150 7 CREATING Java PROGRAMS
7.3 Class and Method

getConnectionTime

getConnectionUsername

*1 When the access authentication is disabled, "null" is stored to the connection user name.

Item Content
Function Acquires the connection time.

Call format public long getConnectionTime()

Argument Type name 

Variable name 

Content 

Return value Returns the connection time.

Comment Acquires the connection time (the number of elapsed seconds from January 1, 1970) from this ConnectionDevice class.
"0" is stored to the return value by default.

Item Content
Function Acquires the connection user name.

Call format public java.lang.String getConnectionUsername()

Argument Type name 

Variable name 

Content 

Return value Returns the connection user name.

Comment Acquires the connection user name from this ConnectionDevice class.
"null" is stored to the return value by default.*1

7 CREATING Java PROGRAMS
7.3 Class and Method 151

7

ConnectionDeviceDetail class

Constructor

Details of the constructor
ConnectionDeviceDetail

Method list

Item Content
Class syntax public class ConnectionDeviceDetail extends java.lang.Object

Class inheritance java.lang.Object
jp.co.mitsubishielectric.hsdatacommunication.ConnectionDeviceDetail

Format Content
ConnectionDeviceDetail() Default constructor

Item Content
Function Constructor

Call format public ConnectionDeviceDetail()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the details of the connected device information.
The information maintained previously is initialized.

Type Method name Overview Reference
long getBufferingDataCountCurrent() Acquires the number of buffering data (current) from

this ConnectionDeviceDetail class.
Page 152
getBufferingDataCountCurre
nt

long getBufferingDataCountMaximum() Acquires the number of buffering data (maximum)
from this ConnectionDeviceDetail class.

Page 152
getBufferingDataCountMaxi
mum

int getHighSpeedSamplingFailureCount() Acquires the number of high speed sampling failures
from this ConnectionDeviceDetail class.

Page 152
getHighSpeedSamplingFailur
eCount

short getLatestErrorCode() Acquires the current error code from this
ConnectionDeviceDetail class.

Page 152
getLatestErrorCode

long getPossibleBufferingDataCount() Acquires the number of data that can be buffered from
this ConnectionDeviceDetail class.

Page 153
getPossibleBufferingDataCo
unt

long getPossibleBufferingTime() Acquires the total time that data can be buffered from
this ConnectionDeviceDetail class.

Page 153
getPossibleBufferingTime

int getProcessingOverloadCount() Acquires the number of processing overload
occurrences from this ConnectionDeviceDetail class.

Page 153
getProcessingOverloadCoun
t

long getSamplingIntervalAverage() Acquires the sampling time (moving average) from this
ConnectionDeviceDetail class.

Page 153
getSamplingIntervalAverage

long getSamplingIntervalMaximum() Acquires the sampling time (maximum) from this
ConnectionDeviceDetail class.

Page 153
getSamplingIntervalMaximu
m

152 7 CREATING Java PROGRAMS
7.3 Class and Method

Method details
getBufferingDataCountCurrent

getBufferingDataCountMaximum

getHighSpeedSamplingFailureCount

*1 When the access status is "On transfer (General sampling)" or "Buffering transfer data (General sampling)", "0" is stored to the number
of high speed sampling failures.

getLatestErrorCode

Item Content
Function Acquires the number of buffering data (current).

Call format public long getBufferingDataCountCurrent()

Argument Type name 

Variable name 

Content 

Return value Returns the number of buffering data (current).

Comment Acquires the number of buffering data (current) from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the number of buffering data (maximum).

Call format public long getBufferingDataCountMaximum()

Argument Type name 

Variable name 

Content 

Return value Returns the number of buffering data (maximum).

Comment Acquires the number of buffering data (maximum) from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the number of high speed sampling failures.

Call format public int getHighSpeedSamplingFailureCount()

Argument Type name 

Variable name 

Content 

Return value Returns the number of high speed sampling failures.

Comment Acquires the number of high speed sampling failures from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.*1

Item Content
Function Acquires the current error code.

Call format public short getLatestErrorCode()

Argument Type name 

Variable name 

Content 

Return value Returns the current error code.

Comment Acquires the current error code from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 153

7

getPossibleBufferingDataCount

getPossibleBufferingTime

getProcessingOverloadCount

getSamplingIntervalAverage

getSamplingIntervalMaximum

Item Content
Function Acquires the number of data that can be buffered.

Call format public long getPossibleBufferingDataCount()

Argument Type name 

Variable name 

Content 

Return value Returns the number of data that can be buffered.

Comment Acquires the number of data that can be buffered from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the total time that data can be buffered.

Call format public long getPossibleBufferingTime()

Argument Type name 

Variable name 

Content 

Return value Returns the total time that data can be buffered.

Comment Acquires the total time that data can be buffered from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the number of processing overload occurrences.

Call format public int getProcessingOverloadCount()

Argument Type name 

Variable name 

Content 

Return value Returns the number of processing overload occurrences.

Comment Acquires the number of processing overload occurrences from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the sampling time (moving average).

Call format public long getSamplingIntervalAverage()

Argument Type name 

Variable name 

Content 

Return value Returns the sampling time (moving average).

Comment Acquires the sampling time (moving average) from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

Item Content
Function Acquires the sampling time (maximum).

Call format public long getSamplingIntervalMaximum()

Argument Type name 

Variable name 

Content 

Return value Returns the sampling time (maximum).

Comment Acquires the sampling time (maximum) from this ConnectionDeviceDetail class.
"0" is stored to the return value by default.

154 7 CREATING Java PROGRAMS
7.3 Class and Method

DataCommunicationException class

Constructor

Details of the constructor
DataCommunicationException

Method list

Method details
getErrorCode

Item Content
Class syntax public class DataCommunicationException extends Exception

Class inheritance java.lang.Object
java.lang.Throwable

java.lang.Exception
jp.co.mitsubishielectric.hsdatacommunication.DataCommunicationException

Format Content
DataCommunicationException() Default constructor

Item Content
Function Constructor

Call format public DataCommunicationException()

Argument Type name 

Variable name 

Content 

Return value None

Comment Constructs a class to store the enumerators of the exceptions at the method execution.
The enumerators of the exceptions maintained previously are initialized.

Type Method name Overview Reference
DataCommunicationError getErrorCode() Acquires the enumerators of the exceptions from

this DataCommunicationException class.
Page 154 getErrorCode

Item Content
Function Acquires the enumerators of the exceptions.

Call format public DataCommunicationError getErrorCode()

Argument Type name 

Variable name 

Content 

Return value Returns the enumerators of the exceptions.

Comment Acquires the enumerators of the exceptions from this DataCommunicationException class.
For the exception handler occurrence, refer to the following section.
 Page 155 DataCommunicationError enumerator
"NONE" is stored to the return value by default.

7 CREATING Java PROGRAMS
7.3 Class and Method 155

7

DataCommunicationError enumerator

Enumerator list

Item Content
Class syntax public enum DataCommunicationError

Class inheritance java.lang.Object
java.lang.Enum<DataCommunicationError>

jp.co.mitsubishielectric.hsdatacommunication.DataCommunicationError

Enumerator Description Corrective action
ABORTED_BY_PEER Method suspension error Check if a method other than stopStreamingTransfer is

executed during the streaming transfer.

ARGUMENT_NULL Null was specified for the argument.
A null object exists in the object specified for the
argument.

Review the value specified for the argument, and
execute the method again.

AUTHENTICATION_FAILED The access authentication failed. Check the account authentication setting and check if
the specified user name and password are correct.

BUFFERING_CONNECT_OVER The number of connections in which the buffering
transfer data is enabled exceeded the maximum
number of applicable connections.

Refer to the event history/connection history, check if
there are two connections which are enabled buffering
transfer data.
Take the following corrective action as necessary.
• Disconnect the connection of the user program

executing connect
• Stop buffering transfer data

CONNECT_OVER The maximum number of devices that can be
connected exceeded.

Refer to the event history/connection history, check if
the connection for High Speed Data Communication
Module is more than 5.
Also, check if there is an unexpected access when
CONNECT_OVER occurred.
Take the following corrective action as necessary.
• Stop accessing from Configuration Tool
• Disconnect the connection of the user program

executing connect
• Stop buffering transfer data

CONNECT_REFUSED System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.

DISCONNECTED A disconnection was attempted to the connection
of the High Speed Data Communication Module
which is not connected.
A communication was attempted without the
reconnection after the line disconnection event
occurred.

Connect the line.

DISPOSED_ERROR The line was disconnected. Execute the connection processing again.

EXCHANGE_FROM_STRING_FAILED The conversion from the character string failed. Check that JDK provided by Oracle is used.

EXCHANGE_TO_BIT_FAILED A conversion from character string data to bit
device was attempted.

Check the data type of the stored data. If the data type is
character string, do not acquire the data as a bit device.

EXCHANGE_TO_NUMBER_FAILED A conversion from character string data to raw
data is failed.

Check that the stored character string can be converted
to acquirable data (integers or decimals) with the
specified method.
Check that the stored character string is within the range
of acquirable data with the specified method.

EXCHANGE_TO_STRING_FAILED A conversion to character string data failed. Check that JDK provided by Oracle is used.

EXECUTING Another command was executed from one
instance while the module was in processing.

Execute the method again after canceling or completing
the processing being executed.

GENERAL_ERROR Unknown error Check that JDK provided by Oracle is used.

INTERRUPTED_ERROR System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.INVALID_CONNECT

INVALID_DATASIZE A data size that exceeds the label data size
specified in Configuration Tool.

Check that the specified label is correct.
Check that the stored data size (byte) does not exceed
the data size set in Configuration Tool.

INVALID_DATATYPE A data type that differs from the data type of the
label written in Configuration Tool was specified.

Check that the specified label is correct.
Check that the data type of the stored data is correct.

156 7 CREATING Java PROGRAMS
7.3 Class and Method

INVALID_IPADDRESS The specified IP address is invalid. Check that the specified IP address is within the IP
address range.

INVALID_REQUEST An invalid request was executed. Check if a computer is connected to a module other than
QJ71DC96 MELSEC-Q Series-compatible High Speed
Data Communication Module.

INVALID_RESPONSE System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.INVALID_STREAMING

IO_ERROR A communication error occurred. Check the following.
• High Speed Data Communication Module status,

network connection status
• Cable connection.

Review the value specified for the IP address, and then
execute the method again.

IPADDRESS_NULL Null was specified for the IP address. Check the value specified for the IP address, and then
execute the method again.

MINUS_ARGUMENT A negative value was specified for the argument. Review the specified argument, and then execute the
method again.

NONE No errors 

NOT_CONNECTED_YET The connection processing is not executed. Execute the connection processing, and then executed
the method again.

NOT_DATA_SET Data is not stored. Store the data and execute the method again.

NOT_PERMITTED_IPADDRESS An IP address which is not authorized to connect
was specified.

Check the specified IP address for the connection, and
check the access authentication.
Check that the specified IP address is correct.

NOT_SAME_ELEMENT_COUNT The number of specified labels or devices does not
match with the number of data.

Check the specified argument, and set each number of
elements to be the same amount.

OUT_RANGE_ADDITIONAL_TIMETYPE The specified type of time information to be
appended is out of the range.

Check that the specified type of additional time
information is within the range.

OUT_RANGE_CONNECT_MODE System error Please consult your local Mitsubishi representative,
explaining a detailed description of the problem.

OUT_RANGE_CONNECTION_NO The specified connection number is out of the
range.

Check that the specified connection number is within the
range of 1 to 5.

OUT_RANGE_DEVICE_COUNT The specified number of devices is out of the
range.

Check that the specified number of devices is within the
range.

OUT_RANGE_DEVICE_NAME_LENGTH The length of the specified device name is out of
the range.

Check that the length of the specified device name is
within the range.

OUT_RANGE_LABEL_COUNT The specified number of labels is out of the range. Check that the specified number of labels is within the
range.

OUT_RANGE_LABEL_NAME_LENGTH The length of the specified label name is out of the
range.

Check that the length of the specified label name is
within the range.

OUT_RANGE_LABELGROUP_NAME_LENG
TH

The length of the specified label group name is out
of the range.

Check that the length of the specified label group name
is within the range.

OUT_RANGE_PASSWORD The length of the specified password is out of the
range.

Check that the length of the specified password is within
the range.

OUT_RANGE_RAW_LENGTH The number of the specified raw data is out of the
range.

Check that the number of the specified raw data is within
the range.

OUT_RANGE_STRING_LENGTH The length of the specified character string is out
of the range.

Check that the length of the specified character string is
within the range.

OUT_RANGE_TIMEOUT The specified timeout period is out of the range. Check that the specified timeout period is within the
range.

OUT_RANGE_TRANSFER_TIME The specified transfer cycle is out of the range. Check that the specified transfer cycle is within the
range.

OUT_RANGE_UNSIGNED_DOUBLE_WOR
D

The specified data is out of the range of double
word [unsigned].

Check that the specified data is within the range of
double word [unsigned].

OUT_RANGE_UNSIGNED_WORD The specified data is out of the range of word
[unsigned].

Check that the specified data is within the range of word
[unsigned].

OUT_RANGE_USER_NAME The length of the specified user name is out of the
range.

Check that the length of the specified user name is
within the range.

OUT_RANGE_WORD_SIZE The total number of words of the specified label is
out of the range.

Check that the number of words of the specified label is
within the range.

Enumerator Description Corrective action

7 CREATING Java PROGRAMS
7.3 Class and Method 157

7

PASSWORD_NULL Null was specified for the password. Review the value of the specified password, and then
execute the method again.

RECONNECT A connection is attempted to the module which is
already connected.

To reconnect, disconnect the line, and then connect
again.

STREAMING_CONNECT_OVER The maximum number of devices that can be
connected for the streaming transfer exceeded.

Refer to the event history/connection history, check if
the connection of the user program is more than 4.
Also, check if there is an unexpected access when
STREAMING_CONNECT_OVER occurred.
Take the following corrective action as necessary.
• Stop accessing from Configuration Tool
• Disconnect the connection of the user program

executing connect
• Stop buffering transfer data

TIMEOUT The communication was timed-out. Check the following:
• High Speed Data Communication Module status,

network connection status
• Cable connection
• Network connection status of CPUs on other stations

Execute the method again after performing the following
actions.
• Set a longer timeout period for the TimeOut property.
• Reduce the number of CPUs on other stations that

are accessed simultaneously.
• Reduce the number of device points that are

accessed simultaneously.
Review the value of the specified IP address, and then
execute the method again.
When using startStreamingTransferByInterval or
startStreamingTransfer, refer to the details of the method
to be used.
 Page 115 startStreamingTransfer
 Page 116 startStreamingTransfer
 Page 117 startStreamingTransferByInterval

UNSUPPORTED_ENCODING The unsupported character code is specified. Check that JDK provided by Oracle is used.
Check if the specified character code is supported by
JDK provided by Oracle.

Enumerator Description Corrective action

158 7 CREATING Java PROGRAMS
7.4 Compiling Java User Program

7.4 Compiling Java User Program
This section explains how to compile the user program created with Java.
When compiling the user program to which High Speed Data Communication Library is imported, the classpath to High Speed
Data Communication Library needs to be specified.
Specify the classpath to High Speed Data Communication Library using "-classpath(-cp)" when compiling the program.
When another class file is referred, enter a delimiter to the specified target of "-classpath".
For a delimiter, use a semicolon (;) for Windows, and a colon (:) for the UNIX based operating system.
The following is the command format when compiling the program.
javac -classpath XXXX.java
 = Path to High Speed Data Communication Library copied to the development personal computer
XXXX.java = User program name

Operating procedure
1. Start a command prompt.

2. Change the work folder for the command prompt to the folder to which the sample program is stored.

Ex.

When the work folder at the command prompt activation is "C:\Users\Administrator"
Execute "cd C:\java\StreamingTransferSample".

3. The user program is compiled.

Ex.

When compiling "StreamingTransferSample.java"

 After compiling the program, the executable file StreamingTransferSample.class etc.) is created in the same folder as the
user program.

8 EXECUTING Java USER PROGRAM
8.1 Copying Execution File for User Program to Server Personal Computer 159

8

8 EXECUTING Java USER PROGRAM
This chapter explains how to execute a user program from the server personal computer.

8.1 Copying Execution File for User Program to
Server Personal Computer

Copy the execution files (XXXX.class) and High Speed Data Communication Library (hsdatacomlib.jar) created by a
development personal computer to a server personal computer.
Copying the user program (XXXX.java) used for programming on the development personal computer is not needed.

8.2 Executing Processing from Server Personal
Computer

Execute the execution file to start processing.
This section explains how to execute a data processing by executing the execution file named XXXX.class copied into the
C:\java folder on the server personal computer (Windows) as an example.

Operating procedure
1. Start a command prompt.

2. Change the operation folder for the command prompt to the folder that stores the execution file.

Ex.

When the execution file is stored in the java folder and the work folder for the command prompt is "C:\Users\Administrator".
Execute "cd C:\java\StreamingTransferSample".

3. Execute the execution file.

Ex.

When executing the execution file "XXXX.class" attaching the option "-classpath" with java command.
Execute "java -classpath .;C:\java\hsdatacomlib.jar XXXX".

Processing starts.

160 8 EXECUTING Java USER PROGRAM
8.2 Executing Processing from Server Personal Computer

MEMO

161

PA
R

T
4

PART 4 TROUBLESHOOTING

This part explains the troubleshooting at creating programs.

9 TROUBLESHOOTING

162 9 TROUBLESHOOTING
9.1 Troubleshooting related to user programs

9 TROUBLESHOOTING
This section explains the error definition and corrective action by function and symptom.
The method name is written based on C# in this chapter unless otherwise noted.

9.1 Troubleshooting related to user programs
Symptom Check point Corrective action
Build fails. (C#) Does the reference of High Speed Data

Communication Library add to the project?
• Check if "HSDataComLib.dll" is referred on the

solution explorer, and add the reference.

Compilation fails. (Java) Has High Speed Data Communication Library been
imported?

• Import High Speed Data Communication Library at
the top of the user program.

 High Speed Data Communication Module User's
Manual

Is the classpath specified at compilation? • Specify '-classpath' for compilation option.
 Page 158 Compiling Java User Program

Is the classpath specification destination correct? • Check the location where High Speed Data
Communication Library is installed, and change
the classpath specification.

 Page 158 Compiling Java User Program

Execution fails. (C#) Is the High Speed Data Communication Library
copied to a server personal computer?

Check the storage folder of the execution file, and
copy "HSDataComLib.dll" to the server personal
computer.

Execution fails. (Java) Is the High Speed Data Communication Library
copied to a server personal computer?

Copy "hsdatacomlib.jar" to the server personal
computer.

Is the classpath specification destination correct? Check the storage folder of the execution file, and
change the specification destination of the class
path.

9 TROUBLESHOOTING
9.2 Troubleshooting related to network connection 163

9
9.2 Troubleshooting related to network connection
Symptom Check point Corrective action
Cannot access the High Speed Data
Communication Module. (The Connect method
does not complete successfully.)

Is the mode of the intelligent function module switch
setting "Online"?

• Set the mode to "Online".
 High Speed Data Communication Module User's
Manual

Is the High Speed Data Communication Module
connected to the network? (X4 = ON)

• Connect the High Speed Data Communication
Module to the network.

Is there a disconnection along the connection route? • Connect the cables properly.
• Replace the cables to new ones.

Is there a terminal on the network with the same IP
address as the High Speed Data Communication
Module?

• Make sure that overlapping terminals are not exist
on the network.

 High Speed Data Communication Module User's
Manual

Does a firewall or proxy server exist along the
connection route?

• Ask your network administrator about the firewall
and proxy server settings.

Is Windows firewall enabled on the personal
computer?

• Disable Windows firewall on the personal
computer when using the module search function
or direct connection.

Is antivirus software blocking Ethernet
communications?

• Change the antivirus software settings to allow
Ethernet communications.

• Lower the antivirus software's security settings
level.

• Stop the antivirus software.

Is there any problem on the personal computer? • Replace it with another personal computer.

Are the authorities of the user logged on to
Windows sufficient?

• For Windows Vista or later, logon as a user with
a "standard" or higher user account.

• For Windows XP, logon as a user with a "limited"
or higher user account.

Is the IP address of the High Speed Data
Communication Module specified in transfer setup
correct? (When the power is turned ON without a
CompactFlash card inserted, the module operates
with the IP address in the initial status
(192.168.3.3).)

• Review the IP address of the High Speed Data
Communication Module specified in transfer
setup.

 High Speed Data Communication Module User's
Manual
• Directly connect the personal computer and

specify direct connection in transfer setup.
 High Speed Data Communication Module User's
Manual

Has an error occurred on the own station's
programmable controller CPU?

• Check the error code for the programmable
controller CPU, take corrective action according to
the error code.

Is the High Speed Data Communication Module
mounting slot set to other than "Intelli." (other CPU in
multiple CPU, I/O module) in the PLC parameter (I/O
assignment) of the host programmable controller
CPU?

• Review the PLC parameter (I/O assignment) of
the programmable controller CPU.

Are the High Speed Data Communication Module
and personal computer connected to each other via
a hub?

• For a direct connection, connect the High Speed
Data Communication Module to the personal
computer on a 1:1 basis.

 High Speed Data Communication Module User's
Manual

164 9 TROUBLESHOOTING
9.2 Troubleshooting related to network connection

Cannot access the High Speed Data
Communication Module. (The Connect method
does not complete successfully.)

Are multiple IP addresses enabled at the same time
in the personal computer side?

• For a direct connection, make sure the multiple IP
addresses are not enabled at the same time in the
personal computer. Disable the wireless LAN
function.

Are there more than 5 connections? Check the module's access status with the following,
and check whether there are 5 connections to the
module.
• Configuration Tool diagnostics (access status)
• Access status area of buffer memory If there are 5

connections, perform the measures below, and
then try again.

• Close the diagnostics window of Configuration
Tool.

• Close a user program.

Is the account authentication function enabled? • Check whether the account authentication
function of the High Speed Data Communication
Module is enabled.

Is the IP address specified by the user program
correct?

• Review the IP address of the High Speed Data
Communication Module, and review whether the
specification of the user program is correct.

Is the number of connections greater than the
number of transfer-enabled personal computers?

Check the module's access status with the following,
and check whether there are four connections to the
module other than "On communication with tool".
• Configuration Tool diagnostics (access status)
• Access status area of buffer memory

If there are four connections other than "On
communication with tool", close a user program, and
try again.

Are there more than 2 connections which enable
buffering?

• Disabled the buffering and execute user program.
• End the user program which enables buffering,

and execute again.

Is the specified value of buffering mode correct? • Check if the value stored to the buffering mode is
within the range, and execute again.

Does the specified time information to add have the
correct type?

• Specify a value for the time information to add that
is within the range, and try again.

Is the specified user name correct?
Or is the length of the user name in bounds?

• Make sure that the account specified in the user
program exists.

• Review whether the length of the specified user
name is within bounds.

Is the specified password correct?
Or is the length of the password in bounds?

• Make sure that the combination of the specified
account and password are correct.

• Review whether the length of the specified
password is within bounds.

• Make sure that the specified password is not null,
and then try again.

Is the IP filter function enabled? • Check whether the access restriction function of
the High Speed Data Communication Module is
enabled, and make sure that the server personal
computer's IP address is accessible.

Was the communication right after disconnection? Disconnect the line, and reconnect after a while.

Symptom Check point Corrective action

9 TROUBLESHOOTING
9.3 Troubleshooting related to label functions 165

9
9.3 Troubleshooting related to label functions

9.4 Troubleshooting related to streaming transfer

Symptom Check point Corrective action
The GetLabelList/GetLabelListWithComment
method does not complete successfully.

Has streaming transfer been started? Check the module's access status with the following,
and check whether the connection that is executing
the method is performing the streaming transfer.
• Configuration Tool diagnostics (access status)
• Establish the access area of the buffer memory or

a new connection, and execute on the connection.

In the GetLabelList/GetLabelListWithComment
method, there is no label group list/label list to
store to.

Are the High Speed Data Communication Module
and personal computer connected with an account
where the accessible label group exists?

• Check the settings written to the High Speed Data
Communication Module, and make sure that the
label is set in the label group.

Connected with the account that accessible label
group exist

• Check the connected account, and make sure that
the checkbox for authority to read the label group
list is selected.

Symptom Check point Corrective action
The SetStreamingLabel/
SetStreamingLabelGroup method
do not complete successfully. Is the total
number of word exceeded 8192 word?

Is non-existent label group or label name specified? • Review that the label group specified in the user
program matches the label group name or group
name set in the High Speed Data Communication
Module.

Are a high-speed sampling label group and general
sampling label group specified simultaneously?

• Review that the user program does not specify
both a high-speed sampling label group and
general sampling label group.

Does the total number of high speed sampling labels
to register in a High Speed Data Communication
Module exceed 8192?

• Reduce the total number of labels or words in the
high-speed sampling labels specified by the user
program.

• If the total number of high-speed sampling labels
or words registered by multiple user programs is
greater than 8192, then reduce the total number of
labels or words. Alternatively, stop a user
program.

Are there more than 16384 general sampling labels
per connection to register to the High Speed Data
Communication Module?

• Reduce the number of general sampling labels
specified in the user program.

Does the total number of labels to register to the
High Speed Data Communication Module exceed
the per-module limit of 65536?
Is the total number of words greater than 65536?

• Reduce the total number of labels or words
specified by the user program.

• If the total number of labels or words registered by
multiple user programs is greater than 65536,
then reduce the total number of labels or words.
Alternatively, stop a user program.

Has streaming transfer been started? Check the module's access status with the following,
and check whether the connection that is executing
the method is performing the streaming transfer.
• Configuration Tool diagnostics (access status)
• Establish the access area of the buffer memory or

a new connection, and execute on the connection.

The number of label groups or labels specified in the
user program is 0?

• Check if the number of labels acquired with the
GetLabelList/GetLabelListWithComment method
exist more than one.

• Check the number of label groups or labels
specified in the user program, and specify more
than one label.

166 9 TROUBLESHOOTING
9.4 Troubleshooting related to streaming transfer

The StartStreamingTransfer/
StartStreamingTransferByInterval method
does not complete normally.

Are three or more streaming transfers for the
specified high-speed sampling label group executed
on a single module?

• Reduce the number of streaming transfers per
module for the specified high-speed sampling
label group.

• Check the module's access status by follows, and
check the buffering transfer data (high speed
sampling) count.

• Configuration Tool diagnostics (access status)
• Access status area of buffer memory

Has streaming transfer been started? Check the module's access status with the following,
and check whether the connection that is executing
the method is performing the streaming transfer.
• Configuration Tool diagnostics (access status)
• Establish the access area of the buffer memory or

a new connection, and execute on the connection.

The StartStreamingTransfer/
StartStreamingTransferByInterval method
cannot be received the transferred data.

• For C#
Is the ReceiveTransferData registration processing
executed before executed the Connect method?
• For Java

Is the addListener method executed before
executing the connect method?

• For C#
Execute the ReceiveTransferData registration
processing before executed the Connect method of
the user program.
• For Java

Run addListener method before the user program's
connect method.

The streaming transfer of the module which is
executing buffering transfer data is not
restarted.

Is there a disconnection along the connection route? • Connect the cables properly.
• Replace the cables to new ones.

Does a firewall or proxy server exist along the
connection route?

Ask your network administrator about the firewall
and proxy server settings.

Is antivirus software blocking Ethernet
communications?

• Change the antivirus software settings to allow
Ethernet communications.

• Lower the antivirus software's security settings
level.

• Stop the antivirus software.

Is the timeout period elapsed? Start streaming transfer again after stopping
buffering and set a longer timeout period for the
TimeOut property.

Symptom Check point Corrective action

9 TROUBLESHOOTING
9.5 Troubleshooting related to data read and data write functions 167

9
9.5 Troubleshooting related to data read and data

write functions
Symptom Check point Corrective action
The ReadDataByLabel/
WriteDataByLabel method does not complete
normally.

Is the total number of specified labels greater than
65536?

• Reduce the number of labels specified in the user
program.

Is the total size in words of the specified labels
greater than 65536?

• Reduce the total size in words of the specified
labels in the user program.

Does the connected account have Label group
access authority?

• Make sure that the connected account has access
authority (Read from CPU/Write to CPU) for label
groups.

Did access to the other module fail? • Check the access log file, and check if there was a
problem with the other module's access network.

• If there was an error, take measures in
accordance with the error code.

Has streaming transfer been started? Check the module's access status with the following,
and check whether the connection that is executing
the method is performing the streaming transfer.
When performing the streaming transfer, execute the
method after stopping the streaming transfer.
• Configuration Tool diagnostics (access status)
• Establish the access area of the buffer memory or

a new connection, and execute on the connection.

Does the time exceed the timeout period? Execute the following, and then try the action again.
• Set a longer timeout period for the SetTimeOut

method.
• Check the network connection status of CPUs on

other stations.
• Reduce the number of CPUs on other stations that

are accessed simultaneously.
• Reduce the number of device points that are

accessed simultaneously.

The readDataByDevice/
writeDataByDevice method does not complete
normally.

Is the total number of specified devices greater than
65536?

• Reduce the number of devices specified in the
user program.

Is a device specified in columns K5 to K8 specified? • Check the specified device. If it is specified in
columns K5 to K8, change it to a combination
specifying columns K1 to K4.

Does the connected account have device access
authority?

• Make sure that the connected account has device
specification access authority (Read from CPU/
Write to CPU).

Is nonexistent device accessed? • Review whether the specified device name is a
device that is accessible to the control CPU of
own station.

Has streaming transfer been started? Check the module's access status with the following,
and check whether the connection that is executing
the method is performing the streaming transfer.
• Configuration Tool diagnostics (access status)
• Establish the access area of the buffer memory or

a new connection, and execute on the connection.

168 APPX
Appendix 1 Sample Program

APPENDIX
Appendix 1 Sample Program
The sample program is stored in the "Samples" folder under "Library" in the compressed file of this product.
The sample program is used at the user's own risk.

How to use the C# sample program

Sample Program List

How to user the sample program
This section explains the configuration and procedures for operating the sample program.

System Configuration for Operating the Sample Program
Connect the High Speed Data Communication Module to the configuration personal computer on a 1:1 basis via hub.
Set the IP address of the configuration personal computer to "192.168.3.1".

Folder Name Details
StreamingTransferSample Performs the stream transfer to transfer values of LABEL_B0 (B0 device) and LABEL_D0 (D0 device) in 100 ms cycles.

Receives data for approximately 60 seconds.

DataReadWriteSample Read the current value of B10 device and D10 device, and write to the module with adding "1" (bit device is inverted).
Read the current value of the LABEL_B0 (B0 device) and LABEL_D0 (D0 device), and write to the module with adding "1"
(bit device is inverted).

Ethernet

Q04UDEHCPU

Intranet Configuration/display personal computer

High Speed Data
Communication Module
(IP address:192.168.3.3)

APPX
Appendix 1 Sample Program 169

A

Operating Procedures for Sample Program
The following explain the procedure to operate the sample program that executes the streaming transfer.

1. Copy the "Library\Samples" folder in the compressed
file to the c: drive.

The contents under the java folder, however, delete them if
unnecessary.

2. Start Configuration Tool.
(Example: Execute [Start]  [All Programs]  [MELSOFT
Application]  [High Speed Data Communication]  [High
Speed Data Communication Module Configuration Tool].)

3. Write the settings to the module.
Write the project file included in the sample program to be
executed.
(Example: Open "C:\Sample\Sample.dcp" with Configuration
Tool, and write to the module.)

4. Start up the solution of the sample program.
Start up the solution to build the sample program.
(Example: Execute "C:\Sample\C#\HSDCSample.sln".)

Library

Samples

Sample.dcp

Sample.dcp

C#

C#

Samples

This product (SW1DNN- DCUTL)

Copy Samples folder

C Drive

Sample

Sample.dcp

High Speed Data Communication
Module

C Drive

Write the settings

Open the project
Configuration Tool

170 APPX
Appendix 1 Sample Program

Source code of the sample program
The sample program of the streaming transfer function is stored in the "C#" folder under "Library" - "Samples" in the
compressed file of this product.

5. When the screen on the left is displayed after start the
solution, click the [Finish] button.

6. Build the sample program to be executed.

7. After build the sample program, execute the created exe
file.

APPX
Appendix 1 Sample Program 171

A

How to use the Java sample program

Sample Program List

How to user the sample program
This section explains the configuration and procedures for operating the sample program.
Set the environment variable to be needed to execute "javac", "java" on the command prompt.
 Page 174 Setting the environment variable

System Configuration for Operating the Sample Program
Connect the High Speed Data Communication Module to the configuration personal computer on a 1:1 basis via hub.
Set the IP address of the configuration personal computer to "192.168.3.1".

Folder Name Details
StreamingTransferSample Performs the stream transfer to transfer values of LABEL_B0 (B0 device) and LABEL_D0 (D0 device) in 100 ms cycles.

Receives data for approximately 60 seconds.

DataReadWriteSample Read the current value of B10 device and D10 device, and write to the module with adding "1" (bit device is inverted).
Read the current value of the LABEL_B0 (B0 device) and LABEL_D0 (D0 device), and write to the module with adding "1"
(bit device is inverted).

Ethernet

Q04UDEHCPU

Intranet Configuration/display personal computer

High Speed Data
Communication Module
(IP address:192.168.3.3)

172 APPX
Appendix 1 Sample Program

Operating Procedures for Sample Program
The following explain the procedure to operate the sample program that executes the streaming transfer.
Install JDK to a personal computer to set up the environment to compile Java programs.

1. Copy the "hsdatacomlib.jar" folder, "Sample.dcp" folder,
and "StreamingTransferSample" folder in the
compressed "Library" file to the "C:\java".

Do not change the configuration of the folder under the
"StreamingTransferSample" folder.
Since the folders are configured on the name of the sample
project package, the compilation is failed if the folder
configuration is changed.

2. Start Configuration Tool.
(Example: Execute [Start]  [All Programs]  [MELSOFT
Application]  [High Speed Data Communication]  [High
Speed Data Communication Module Configuration Tool].)

3. Write the settings to the module.
Write the project file included in the sample program to be
executed.
(Example: Open "C:\java\Sample.dcp" with Configuration
Tool, and write to the module.)

java

Library

Samples

Sample.dcp

Sample.dcp

Streaming
TransferSample

java

java

Streaming
TransferSample

Copy two files
and one folder

This product (SW1DNN- DCUTL)

hsdatacomlib.jar
(High Speed Data
Communication Library)

hsdatacomlib.jar
(High Speed Data
Communication Library)

C Drive

java

Sample.dcp

High Speed Data
Communication

Module

Configuration Tool

C Drive

Write the settings

Open the project

APPX
Appendix 1 Sample Program 173

A

4. Start a command prompt.
Start a command prompt to compile the sample program.
(Example: Execute [Start]  [All Programs]  [Accessory] 
[Command Prompt].)

5. Change the work folder.
Change the work folder for the command prompt to the folder
to which the sample program is stored.
(Example: Execute "cd c:\java\StreamingTransferSample".)

6. Compile the sample program.
Specify a High Speed Data Communication Library to
"classpath", and compile the sample program.
(Example: Execute "javac -classpath
C:\java\hsdatacomlib.jar
C:\java\StreamingTransferSample\jp\co\mitsubishielectric\hs
datacommunication\samples\StreamingTransferSample.java
".)

7. Execute the sample program.
Specify a High Speed Data Communication Library to
ClassPath, and execute the sample program.
(Example: Execute "java -classpath
.;C:\java\hsdatacomlib.jar
jp.co.mitsubishielectric.hsdatacommunication.samples.Strea
mingTransferSample".)
Execute the command prompt in the same directory as the
work folder changed in the step 6.

174 APPX
Appendix 1 Sample Program

Setting the environment variable

Operating procedure
1. Install JDK to a personal computer downloaded from Oracle website.
For the installation method, refer to the JDK installation guide on the ORACLE website.
(Example: Install JDK 7 Update 7 to C:\Program Files\Java\jdk1.7.0_07.)

2. Start up the control panel.

3. Select "System and Security".

4. Select "System".

5. Select "Advanced system settings".

6. Click the [Environment Variables] button on the "System Property" screen.

7. Select "Path" from "User variables for User", and click the [New] button.
If the "Path" is not exist, click the [New] button to create the Path.

8. Add "JDK installed folder\bin" to "Value".
If the value is already entered, enter ";" to delimit them.
(Example: Add ";C:\Program Files\Java\jdk1.7.0_07\bin." after the entered value.)

Source code of the sample program
The sample program of the streaming transfer function is stored in the "Java" folder under "Library" - "Samples" in the
compressed file of this product.

APPX
Appendix 1 Sample Program 175

A

MEMO

176

INDEX

B
Build . 85

C
Class . 33,99
Compiling. 158

D
Data reading. 19
Data writing . 19
Development environment 22,90
Device specification 29,30,96,97

E
Enumerator . 82,155
Executing C# user program 87
Executing Java user program 159

L
Label specification 27,28,94,95

R
Receiving notifications of module operation status
changes. 26,93
Receiving streaming transfer data. 25,92

S
Streaming transfer 18,24,91

U
Using C# class library . 23
using Directive . 23
Using Java class library 90

I

177

MEMO

178

REVISIONS
*The manual number is written at the bottom left of the back cover.

Japanese manual number: SH-081161-E

 2013 MITSUBISHI ELECTRIC CORPORATION

Revision date *Manual number Description
April 2013 SH(NA)-081163ENG-A First edition

April 2014 SH(NA)-081163ENG-B Windows 8.1 is supported.

March 2016 SH(NA)-081163ENG-C Windows 10 is supported.

April 2021 SH(NA)-081163ENG-D Partial correction

October 2024 SH(NA)-081163ENG-E Partial correction

This manual confers no industrial property rights or any rights of any other kind, nor does it confer any patent licenses. Mitsubishi Electric Corporation cannot
be held responsible for any problems involving industrial property rights which may occur as a result of using the contents noted in this manual.

179

WARRANTY
Please confirm the following product warranty details before using this product.

1. Gratis Warranty Term and Gratis Warranty Range
If any faults or defects (hereinafter "Failure") found to be the responsibility of Mitsubishi occurs during use of the product
within the gratis warranty term, the product shall be repaired at no cost via the sales representative or Mitsubishi Service
Company.
However, if repairs are required onsite at domestic or overseas location, expenses to send an engineer will be solely at
the customer's discretion. Mitsubishi shall not be held responsible for any re-commissioning, maintenance, or testing
on-site that involves replacement of the failed module.
[Gratis Warranty Term]
The gratis warranty term of the product shall be for one year after the date of purchase or delivery to a designated place.
Note that after manufacture and shipment from Mitsubishi, the maximum distribution period shall be six (6) months, and
the longest gratis warranty term after manufacturing shall be eighteen (18) months. The gratis warranty term of repair
parts shall not exceed the gratis warranty term before repairs.
[Gratis Warranty Range]
(1) The range shall be limited to normal use within the usage state, usage methods and usage environment, etc., which

follow the conditions and precautions, etc., given in the instruction manual, user's manual and caution labels on the
product.

(2) Even within the gratis warranty term, repairs shall be charged for in the following cases.
1. Failure occurring from inappropriate storage or handling, carelessness or negligence by the user. Failure caused

by the user's hardware or software design.
2. Failure caused by unapproved modifications, etc., to the product by the user.
3. When the Mitsubishi product is assembled into a user's device, Failure that could have been avoided if functions

or structures, judged as necessary in the legal safety measures the user's device is subject to or as necessary by
industry standards, had been provided.

4. Failure that could have been avoided if consumable parts (battery, backlight, fuse, etc.) designated in the
instruction manual had been correctly serviced or replaced.

5. Failure caused by external irresistible forces such as fires or abnormal voltages, and Failure caused by force
majeure such as earthquakes, lightning, wind and water damage.

6. Failure caused by reasons unpredictable by scientific technology standards at time of shipment from Mitsubishi.
7. Any other failure found not to be the responsibility of Mitsubishi or that admitted not to be so by the user.

2. Onerous repair term after discontinuation of production
(1) Mitsubishi shall accept onerous product repairs for seven (7) years after production of the product is discontinued.

Discontinuation of production shall be notified with Mitsubishi Technical Bulletins, etc.
(2) Product supply (including repair parts) is not available after production is discontinued.

3. Overseas service
Overseas, repairs shall be accepted by Mitsubishi's local overseas FA Center. Note that the repair conditions at each FA
Center may differ.

4. Exclusion of loss in opportunity and secondary loss from warranty liability
Regardless of the gratis warranty term, Mitsubishi shall not be liable for compensation to:
(1) Damages caused by any cause found not to be the responsibility of Mitsubishi.
(2) Loss in opportunity, lost profits incurred to the user by Failures of Mitsubishi products.
(3) Special damages and secondary damages whether foreseeable or not, compensation for accidents, and

compensation for damages to products other than Mitsubishi products.
(4) Replacement by the user, maintenance of on-site equipment, start-up test run and other tasks.

5. Changes in product specifications
The specifications given in the catalogs, manuals or technical documents are subject to change without prior notice.

180

INFORMATION AND SERVICES
For further information and services, please contact your local Mitsubishi Electric sales office or representative.
Visit our website to find our locations worldwide.

MITSUBISHI ELECTRIC Factory Automation Global Website
Locations Worldwide
www.MitsubishiElectric.com/fa/about-us/overseas/

TRADEMARKS
CompactFlash is either a registered trademark or a trademark of SanDisk Corporation.
Ethernet is a registered trademark of Fuji Xerox Co., Ltd. in Japan.
Microsoft, Visual C#, Visual Studio, Windows, Windows Vista, and Windows XP are trademarks of the Microsoft group of
companies.
Oracle and Java are registered trademarks of Oracle and/or its affiliates.
The company names, system names and product names mentioned in this manual are either registered trademarks or
trademarks of their respective companies.
In some cases, trademark symbols such as '' or '' are not specified in this manual.

SH(NA)-081163ENG-E(2410)KWIX
MODEL: QJ71DC96-P-E
MODEL CODE: 13JC26

Specifications subject to change without notice.

When exported from Japan, this manual does not require application to the
Ministry of Economy, Trade and Industry for service transaction permission.

HEAD OFFICE: TOKYO BLDG., 2-7-3, MARUNOUCHI, CHIYODA-KU, TOKYO 100-8310, JAPAN
NAGOYA WORKS: 1-14, YADA-MINAMI 5-CHOME, HIGASHI-KU, NAGOYA 461-8670, JAPAN

	SAFETY PRECAUTIONS
	CONDITIONS OF USE FOR THE PRODUCT
	INTRODUCTION
	CONTENTS
	RELATED MANUALS
	HOW TO READ THIS MANUAL
	TERMS
	PART 1 High Speed Data Communication Library
	1 OVERVIEW
	2 PROCEDURE FROM PROGRAM CREATION TO EXECUTION
	3 FUNCTION LIST
	4 PROGRAM CREATION OVERVIEW
	4.1 Processing Flow for Streaming Transfer
	4.2 Processing Flow for Data Reading
	4.3 Processing Flow for Data Writing

	PART 2 CREATING C# PROGRAMS
	5 CREATING C# PROGRAMS
	5.1 Preparing Development Environment
	Importing High Speed Data Communication Library
	Using High Speed Data Communication Library

	5.2 Designing Programs
	Streaming transfer
	Receiving streaming transfer data
	Receiving notifications of module operation status changes
	Reading data using label specification
	Writing data using label specification
	Reading data using device specification
	Writing data using device specification
	Programming precautions

	5.3 Class and Method
	Class list
	Communication class
	LabelGroupList class
	LabelGroup class
	DataLabel class
	RegisteredLabelName class
	ReceiveData class
	RecordData class
	DataValue class
	ConnectionDeviceList class
	ConnectionDevice class
	ConnectionDeviceDetail class
	DataCommunicationException class
	DataCommunicationError enumerator

	5.4 Build C# Program

	6 EXECUTING C# USER PROGRAM
	6.1 Copying Execution File for User Program to Server Personal Computer
	6.2 Executing Processing from Server Personal Computer

	PART 3 CREATING Java PROGRAMS
	7 CREATING Java PROGRAMS
	7.1 Preparing Development Environment
	Copying High Speed Data Communication Library
	Using High Speed Data Communication Library

	7.2 Designing Programs
	Streaming transfer
	Receiving streaming transfer data
	Receiving notifications of module operation status changes
	Reading data using label specification
	Writing data using label specification
	Reading data using device specification
	Writing data using device specification
	Programming precautions

	7.3 Class and Method
	Class list
	Communication class
	Notification class
	LabelGroupList class
	LabelGroup class
	DataLabel class
	RegisteredLabelName class
	ReceiveData class
	RecordData class
	DataValue class
	ConnectionDeviceList class
	ConnectionDevice class
	ConnectionDeviceDetail class
	DataCommunicationException class
	DataCommunicationError enumerator

	7.4 Compiling Java User Program

	8 EXECUTING Java USER PROGRAM
	8.1 Copying Execution File for User Program to Server Personal Computer
	8.2 Executing Processing from Server Personal Computer

	PART 4 TROUBLESHOOTING
	9 TROUBLESHOOTING
	9.1 Troubleshooting related to user programs
	9.2 Troubleshooting related to network connection
	9.3 Troubleshooting related to label functions
	9.4 Troubleshooting related to streaming transfer
	9.5 Troubleshooting related to data read and data write functions

	APPENDIX
	Appendix 1 Sample Program
	How to use the C# sample program
	How to use the Java sample program

	INDEX
	REVISIONS
	WARRANTY
	INFORMATION AND SERVICES
	TRADEMARKS

